Как подключить лампочку к аккумулятору
В действительности выполнить подключение лампочки к батарейке можно по простой схеме. Цепь состоит из следующих элементов:
- Проводов для соединения.
- Переключателя или выключателя.
- Лампочки, на схеме обычно ее обозначают HL.
- Элемента питания.
Если у вас обычная лампа накаливания из фонарика или гирлянды, то полярность здесь особой роли не играет. В случае, когда имеется светодиод, тогда нужно знать какой конец цеплять к плюсу, а какой к минусу. О простой схеме подключения диода можно узнать здесь.
После сбора цепи световое устройство будет стабильно работать. Обратите внимание на то какое напряжение она потребляет. Если 1,5 вольт, то для того чтобы она загорелась потребуется одна пальчиковая батарейка. Соответственно если имеется 3 v, тогда используйте 2 элемента питания типа АА.
Но что делать если осветительный прибор на 6,3 вольта, как на рисунке ниже? В этом случае наша лампочка тоже будет светится от двух и даже одной батарейки, но гораздо хуже.
Таким образом подключение элемента питания с малым напряжением, к нагрузке с повышенным потреблением энергии отразиться в слабой работе устройства.
Здесь легко и интересно общаться. Присоединяйся!
Можно. Но вот светиться она не будет. А если подсоединить через инвертор 12 вольт в 220, тогда будет
подключить можно всё, что угодно
а вот светить она скорее всего не будет (нужно 12 в 220 преобразовывать)
да, но светить она не будет, так как очень мало напряжения! 220 v —-> 12 V
только если преобразовать напряжения!
Можно, но через инвертор 12-220.
Светить не будет, проше с того же авто 12-вольтную, а еще лучше светодиодный фонарь на 12 в, намного дольше светить будет.
Можно. Вреда не будет. Пользы тоже.
Нить накала едва нагреется – скорее всего, это даже не будет видно.
А чтобы иметь очень хорошее освещение от автомобильного аккумулятора – надо купить светодиодной ленты и напрямую подключить ее к клеммам аккумулятора (лучше, конечно, через выключатель) , соблюдая полярность. Трёх метров самой дешевой ленты мне хватило для вполне полноценного освещения комнаты в 10. 12 кв. метров. Потребляет же она всего 1 А – одной зарядки аккумулятора хватает на десятки часов.
Можно, не сгорит, но тлеть будет.
Можно, через преобразователь напряжения 12/220. Причём лампу накаливания и «сберегайку» можно питать постоянным током.
Но лампу на 220 к аккумулятору на 12В подключать нет смысла, потому что выпускаются лампы специально на 12В, причём «сберегайки» и светодиодные тоже.
Проще всего найти в магазине лампу накаливания на 12В. Есть разной мощности – от 25 до 100Вт, колба и цоколь как у обычных на 220, обозначаются МО12-40, МО12-60 и т. п. (вторая цифра – мощность).
СТРАНИЦЫ
Рубрики
- Импульсные источники питания (6)
- Немного теории (21)
- Практические примеры (17)
- Светодиоды и светильники (4)
- Справочные материалы (7)
- Электромонтажные работы (4)
Как запитать электрическую лампочку (1 вариант)?
Довольно часто возникает ситуация, когда к электрической сети с одним напряжением, необходимо подключить потребитель электрической энергии рассчитанный на другое напряжение.
Рассмотрим частный случай, когда лампочку, рассчитанную на 6 Вольт, необходимо подключить к аккумуляторной батарее на 12 Вольт.
Рассмотрим электрическую схему цепи (рис 1). Необходимо рассчитать дополнительное сопротивление, изготавливаемое из высокоомного провода, из нихрома. Имеем:
- электрическая лампочка на 6 Вольт, 0,5 Ампера;
- аккумуляторная батарея напряжением U = 12 Вольт;
- вольтметр, для замеров напряжения в цепи.
На лампочке должно падать, по условию U = 6В, тогда на дополнительном сопротивлении будет падать напряжение равное
12 В – 6 В = 6 В.
Ток в цепи известен I = 0,5 А, падение напряжения на дополнительном сопротивлении U = 6 В. По закону Ома, величина дополнительного сопротивления будет:
R = U : I = 6 В : 0,5 А = 12 Ом.
Смотрим таблицу допустимых токов в проводниках для нихрома, для тока 0,5 А.
На седьмой строчке таблицы выберем допустимый ток I = 0,6 A.
Диаметр провода при этом равен 0,5 мм, сопротивление 1 метра провода из нихрома равно 5,1 Ома.
Тогда длина провода для резистора будет: 12 Ом : 5,1 Ом = 2,35 метра.
Если провод голый, без изоляции, то его наматывают на каркас виток к витку с зазором, если провод в изоляции, то можно мотать на каркас в навал. Каркас изготавливается из негорючего изоляционного материала.
Подведем итоги: провод из нихрома диаметром 0,5 мм, длиной 2,35 метра имеет сопротивление 12 Ом.
Если изготовить дополнительный резистор из проволоки другого металла, то длина ее будет другой.
На практике, высокоомное сопротивление изготавливается, как правило, из неизвестного, подвернувшегося под руку, высокоомного провода (например, спирали от электроплитки или духовки).
Если ток электрической лампочки неизвестен, (напряжение ее обязательно указано на цоколе), то с помощью одного вольтметра, можно практическим путем подобрать длину спирали под данную лампочку.
Собираем схему ( рис 2) контролируем напряжение на лампочке с помощью вольтметра. Длину спирали выбираем заведомо длиннее необходимой. Начиная с самого длинного конца, щупом перемещаемся по спирали (спираль нужно чуть-чуть растянуть), постоянно контролируя напряжение на лампочке.
Когда напряжение на лампочке будет равно 6 Вольт, это и определит необходимую длину провода для дополнительного сопротивления R.
Недостаток такого способа снижения напряжения на нагрузке (лампочке) состоит в том, что под каждую нагрузку необходимо рассчитывать резистор с другим сопротивлением, зависящим от тока потребления. Если мы захотим включить еще одну такую же лампочку (будут параллельно включены одновременно две лампочки), ток потребления вырастет вдвое. Падение напряжения на дополнительном резисторе тоже увеличится, а на лампочках понизится, лампочки будут светить впол накала.
Есть другой способ снижения напряжения на нагрузке.
Автономное освещение в гараже — 3 рабочих способа. Какой лучше и дешевле. Аккумуляторное освещение на 12В.
Гараж для многих мужчин является не только помещением для крытой стоянки машины, но и полноценным рабочим местом.
Автолюбители ежедневно проводят в нем многие часы своей жизни, причем не только для ремонтных работ. Окна в таких местах не предусмотрены, поэтому полноценное освещение здесь выходит на первый план.
Возникает либо масса препонов с документами, либо элементарно поблизости этих самых электросетей попросту нет. Но не стоит расстраиваться, ведь существует несколько простых способов осветить свою гаражную постройку, даже не имея под боком линий электропередач.
Выбор светильников
В первую очередь следует определиться со следующими моментами:
- какие светильники будут применяться
- какие лампочки будут в этих светильниках
- какой интенсивности освещение вам необходимо
Во-первых, светильники должны быть экономными. Ведь у вас не будет рядом ЛЭП от которой можно спокойно взять несколько киловатт. Поэтому лучшим вариантом будут маломощные светодиодные модели или лампочки напряжением 12 вольт.
Даже при таком напряжении питания, они вполне способны выдавать полноценный световой поток ничем не хуже ламп накаливания 220В. Освещение от них будет яркое и равномерное.
При этом, расход энергии от автономного источника питания сведется к минимуму. Запитать их можно от аккумуляторов минимальной мощности. Не обязательно от автомобильных, подойдут даже б/ушные компьютерные ИБП.
Лампочки разной мощности под обычный патрон Е27 на 12В можно заказать у китайцев отсюда.
Еще в качестве подсветки можно применить светодиодную ленту. Если ее наклеить по периметру помещения, или лентами по несколько полос в центре, то получится общее равномерное освещение.
Также кусочки такой ленты можно вклеить в старый прожектор, взяв из под него только корпус. Благодаря отражателю, освещение будет более чем ярким, а потребление минимальным.
Короткими отрезками ленты удобно организовывать локальную подсветку рабочего места или смотровой ямы.
Только не забывайте про влажность. Из-за нее, для ям нужно покупать не простую ленту с защитой IP20, а модели с повышенным классом влагозащиты.
То же самое относится и к погребу. Вообще использование в таких местах освещения U=12В является единственно правильным решением. Если это будет не лента, а светильник, то его тоже нужно выбирать с влагозащитой. Подробнее
Когда вы определились с источниками света, далее требуется сделать выбор, от чего же они будут получать питание.
Сразу оговоримся, что не будем всерьез рассматривать такие экзотичные виды как солнечные панели, ветрогенераторы или филиппинский фонарь.
Солнечная панель и ветрогенератор
Хотя панели и ветряки уже и не являются особой редкостью в наших магазинах, но мало кто рискнет монтировать солнечную батарею на крыше гаража вдали от своего дома.
Фактор воровства и вандализма здесь никак нельзя игнорировать. Тем более, подобные источники имеют кучу недостатков:
- высокая стоимость
- сложность в подключении. Скорее всего, придется приглашать специалиста.
- покупка дополнительного оборудования – накопительные аккумуляторы
- прямая зависимость от погодных условий
Освещение от филиппинского фонаря
Филиппинский фонарь для наших широт, это вообще редкая экзотика, мало кому знакомая. Достоинство у него одно – абсолютная бесплатность.
Название фонарика пошло из тех мест, где его собственно и изобрели. Кстати там подобным освещением занимается целая волонтерская организация, с весьма говорящим названием – ”Литр света”.
Основано все на преломлении естественного освещения от солнца. Делается такой фонарик из пластиковой бутылки, наполненной водой.
Порядок изготовления следующий:
- бутылка тщательно отмывается до блеска, все этикетки удаляются
- сверху одевается экран прямоугольной формы из нержавейки
- вода в бутылке разбавляется хлоркой или отбеливателем. Эти компоненты нужны, чтобы жидкость не зацветала и не приходилось ее часто менять.
- бутылку нужно наполнить водой на 3см выше самого экрана
- в крыше просверливается отверстие, куда и закрепляется такой светильник
Чтобы не было протечек, все стыки герметизируются силиконом.
Один такой фонарик сопоставим по мощности освещения с 50 ваттной лампочкой накаливания и покрывает площадь до 10м2.
Дабы поднять уровень освещенности, придется смонтировать на крыше несколько таких девайсов.
Однако нужно быть объективным, такой способ освещения больше применим для какого-нибудь сарая с хламом, нежели гаража, где хранится машина стоимостью несколько тысяч долларов. Никто в здравом уме не будет дырявить свою крышу ради бутылки с водой.
Поэтому далее остановимся на более практичных способах освещения.
Электроснабжение от генератора
Один из распространенных случаев гаражного освещения – покупка бензо или дизельгенератора. Здесь можно обойтись моделями самых минимальных мощностей до 1кВт.
Кроме того, при крайней необходимости, от такой электростанции с легкостью подключаются все электроинструменты в гараже – болгарка, дрель, маленький наждак и т.п.
Однако минусов здесь не избежать:
- выхлопные газы
- постоянный шум и тарахтение
- проблемы с запуском в зимнее время
- жалобы соседей, которым все это будет доставлять неудобство
Аккумуляторное освещение
Отсеяв оригинальные и малоприменимые варианты, обратимся к наиболее востребованному источнику питания для освещения в гараже. Таковым, по прежнему остается автомобильный аккумулятор на 12В. Емкость подойдет самая обычная – 55Ач.
Для светодиодных лампочек или лед ленты, одного заряда при щадящем режиме может хватать более чем на 10 часов непрерывной работы и даже больше.
Естественно это должна быть отдельная батарея, а не та, которая используется в вашем авто. После падения напряжения, аккумулятор придется нести домой на подзарядку.
При использовании аккумуляторов всегда следите за напряжением разряда.
Большинство батарей после просадки менее 10-10,5В уже трудно восстановимы для полноценной работы.
Поэтому для контроля всегда ставьте параллельно в цепь питания миниатюрный цифровой вольтметр.
Заказать такой можно здесь.
Также можно воспользоваться и клеммами со встроенным цифровым измерителем напряжения.
Естественно все освещение, хоть оно и на 12В, нужно будет подключать через аппараты защиты – автоматические выключатели 5-10А.
Наиболее эффективно такая подсветка организуется на основе светодиодных лент.
Вот хорошее видео о том, как мужчина собрал почти полноценное освещение в своем загородном доме с помощью светодиодной ленты и АКБ, и пользовался им несколько месяцев.
Некоторые собирают подобные схемы на основе аккумулятора и инвертора. Но зачем тратить изначальную энергию еще и на работу преобразователя?
Когда у вас уже есть лампочки или Led лента на 12В, то гораздо проще и дешевле сразу их и подключать от этого напряжения.
Если вам нужно подсветить не весь гараж, а только отдельные зоны, то с этим могут справиться обычные литий-ионные батарейки. Даже аккумулятор покупать не придется.
Как собрать такую конструкцию и на какое время хватит этой подсветки можно узнать из статьи ниже.
У кого нет желания аккуратно делать схему, укладывать провода, могут вообще все гаражное освещение собрать буквально “на коленке”.
Берете б/у аккумулятор от ИБП. На толстой картонке монтируете минивольтметр и кнопку вкл/выкл.
После чего подключаете от этой конструкции светодиодные полоски – дневные ходовые огни. Такая конструкция особенно оправдана в погребах и небольших помещениях.
Использовать нужно именно ходовые огни, потому что они изначально водонепроницаемы. Все контакты и места соединения желательно заизолировать.
Вот видео, как собрать такое освещение за несколько минут.
Лампочка со встроенным аккумулятором
Ну а самым простым вариантом, будет использование светодиодных лампочек со встроенным аккумулятором.
Развешиваете патроны в местах, где вам нужно получить больше света. Вкручиваете в них лампы и все.
Никаких проводов, контроля уровня напряжения, аппаратов защиты и т.д. Одна такая лампочка может проработать до 12 часов. Выдаваемый световой поток до 500Лм.
После чего, выкручиваете ее и везете домой. Там, опять вкрутив в патрон, находящийся под напряжением 220В подзаряжаете.
Стоимость такого освещения будет самой экономной.
варианты подключения диода к аккумулятору в авто, какой нужен для этого резистор, схема включения > Свет и светильники
Схема энергосберегающей лампы: принцип работы и устройствоЧитайте здесь, как устроена и работает схема энергосберегающей лампы, какие виды таких приборов освещения существуют, какие у них главные эксплуатационные характеристики, каковы принципы и устройство их работы, какие компоненты составляют их схему и как происходит зажигание. …
27 04 2021 14:32:43
Подсветка WLED: что это, отличия, лучше LED или WLEDУзнайте, что такое подсветка WLED, каковы ее преимущества и чем она отличается от альтернативных видов конструкции. Выясните, какие изменения такая технология вносит в цветопередачу, уточните остальные преимущества, возможности и особенности….
15 04 2021 4:51:56
Диммируемые светодиодные лампы: что такое диммирование, потолочные светильники и лампы с диммером, бывают ли регулируемые лампочки e14, e27, g4Смотрите здесь, что такое диммер и каковы особенности его работы, как выбрать диммируемые светодиодные лампы. Узнайте, что такое мерцание светодиодов, уровни диммирования и какие существуют цоколи ламп. Читайте, что такое цветовая температура, световой поток и индекс цветопередачи….
09 04 2021 0:34:15
Светодиодная подсветка: как сделать освещение из led ленты своими рукамиЧитайте здесь, что такое светодиодная подсветка из светодиодной ленты и какими главными параметрами она характеризуется. Как сделать светодиодную подсветку своими руками. Основные правила и схемы подключения для одноцветных и RGB-лент. В каких случаях нужен радиатор и что использовать в качестве его основы….
03 04 2021 4:49:46
Схема драйвера для прожектора LED на 50 WСмотрите здесь электрическую схему драйвера для прожектора led на 50 w. Причины перегорания матрицы. Ремонт светодиодного прожектора на 50 ватт. Как сделать LED-прожектор своими руками….
25 03 2021 10:39:11
Как выбрать люстру: виды, размер, диаметр, интерьер, площадь зала, гостиной или другой комнатыЧитайте, как правильно выбирать люстру под разные виды потолка, площадь. Варианты светильников с разными типами ламп. Какую модель подобрать в зал, детскую комнату, кухню, гостиную и другие помещения в доме. Описание и фото разных решений в интерьере….
18 03 2021 22:57:40
Светодиодная лента: что это такое, особенности маркировки, для чего используется, каких цветов бывает и как выбрать диодную лентуЧитайте, какие светодиодные ленты предлагает рынок, какая Led лента лучшая для дома. Узнайте, как расшифровать маркировку и выбрать изделие по напряжению, мощности, световой отдаче, цвету. Как подобрать драйвер для приобретенной ленты. Как определить длину отрезка, если блок питания уже куплен….
10 03 2021 9:14:44
Cree Q5 характеристики и сравнение с другими диодамиЧитайте здесь, какие характеристики имеют светодиоды Cree Q5, какие основные особенности имеют ультра-яркие их модификации High Brightness, каковы главные плюсы и минусы светодиодов Q5, какие аналоги существуют и как отличить оригинал от подделки….
28 01 2021 4:43:39
Светодиод 3 Вт: характеристика LED 3 wЧитайте, в чем состоят особенности конструкции светодиодов мощностью 3 ватта. Узнайте, его технические характеристики, специфические качества элементов и схему подключения светильников….
20 01 2021 17:24:11
Подсветка для унитаза с датчиком движенияУзнайте, что такое подсветка для унитаза, как она работает и устанавливается. Читайте, чем полезен датчик движения, какими возможностями он обладает. Запомните, как выбирать подходящий прибор и в каких странах их чаще всего производят….
15 01 2021 17:18:57
SMD 5050: характеристика, мощность и технические параметрыУзнайте, какими особенностями и техническими характеристиками обладают светодиоды типа SMD 5050. Читайте, какие параметры выделяют их среди подобных элементов, в чем состоят особенности конструкции и сборки. Выясните, какие применяются схемы подключения и как выполняется монтаж компонентов….
07 01 2021 5:22:17
Замена лампы ближнего света Рено Меган 2Читайте здесь, как происходит замена лампы ближнего света Рено Меган 2 своими руками, какие лампы для этого подойдут, каковы главные особенности процедуры, как выполнить ее через отверстия в подкрылках и моторный отсек….
23 12 2020 17:55:15
Прибор для проверки светодиодов своими руками: схема супер тестера LedЧитайте, как сделать прибор для проверки светодиодов своими руками. Узнайте, вы каких ситуациях самоделка лучше приобретенного в магазине прибора. Почему выходят из строя светодиодные элементы в лампах, лентах, телевизорах. Почему не стоит заниматься ремонтом телевизора самостоятельно….
22 12 2020 10:25:14
Подсветка витрин: освещение для прилавков и витрин лентой со светодиодамиУзнайте, какое значение имеет подсветка витрин, ее возможности, способность привлекать покупателей и создавать эксклюзивный вид для обычной стандартной витрины. Выясните, какие существуют требования и нормы для осветительных приборов на витринах. Ознакомьтесь с порядком монтажа светодиодной ленты….
11 12 2020 9:12:19
Вакуумный диод: устройство, принцип работы, вольт амперная характеристикаЧитайте, что такое вакуумный диод, чем отличается от полупроводникового. Узнайте, как он устроен и по какому принципу работает. Как создается график В А Х, на какие особенности необходимо обратить внимание. В каком оборудовании используются электровакуумные диоды, что нужно учесть при выборе. …
09 12 2020 3:26:45
из бутылки: как сделать настольную лампу, люстру и бра своими рукамиЧитайте здесь, как своими руками изготовить светильник из бутылки, какие его виды бывают и где они используются, как своими руками сделать ночник, лампу и настенное бра из бутылки, какие материалы и инструменты для этого потребуются и как выглядят этапы их сборки….
07 12 2020 3:35:28
RGB подсветка: что это, где применяется, как подобрать светодиодную ленту, что значит цвет свеченияЧитайте здесь, что такое RGB подсветка, для чего она используется и где применяется. Узнайте, каковы особенности светодиодных лент, их основные параметры и свойства. Выясните, по каким критериям происходит выбор ленты, что следует учесть, подбирая устройство для работы в заданных условиях….
01 12 2020 18:16:20
Как подключить контрольную лампу зарядки акб
Виды реле контрольной лампы заряда.
Существует несколько видов реле контрольной лампы заряда аккумуляторной батареи. Прежде всего, самое распространённое, это электромагнитное реле марки РС 702. Оно применяется на автомобилях марки ВАЗ 2101 (02, 03,06) и их модификаций. На иномарках 80-х годов применяются электронные реле.
Электромагнитное реле контрольной лампы заряда аккумуляторной батареи по конструкции аналогично обыкновенному универсальному реле с нормально замкнутыми контактами. То есть контакты размыкаются при наличии питания на катушке, а размыкаются при снятии питания.
Состоит реле прежде всего из электромагнита с подвижным ярмом. На ярме закреплен подвижный контакт. Также реле имеет не подвижный контакт. Все элементы закреплены на текстолитовой или пластиковой пластине и закрыты металлической или пластмассовой крышкой.
Принцип работы реле контрольной лампы заряда (электромагнитное).
Основная часть реле это электромагнит. Он состоит из катушки, намотанной из медного провода и размещённой на сердечнике магнитопровода. В результате подачи напряжения на катушку электромагнита в сердечнике образуется электромагнитное поле. Силовые линии этого поля проходят по ярму магнитопровода и подвижной пластине.
В результате ярмо притягивается к сердечнику. Так как подвижный контакт закреплен на ярме, следовательно контакты замыкаются.
Схема подключения реле контрольной лампы.
Рассмотрим схему подключения реле приведённую ниже. При включении выключателя зажигания питание подаётся на контакт, а также на катушку реле. Второй вывод катушки соединяется с выводом статорной обмотки. Как видно из схемы, на этом выводе нет, ни какого минуса. Следовательно, ток по катушке проходить не будет и электромагнитного поля не будет, то есть контакты останутся замкнутыми за счёт пружины. При работе генератора в статоре будет наводиться переменное напряжение. В результате на выводах катушки реле контрольной лампы появится разность потенциалов равное примерно 5 – 6 В. По катушке будет проходить ток достаточный для притягивания сердечника. Контакты при этом размыкаются и контрольная лампа тухнет.
Электронные реле контрольной лампы.
Также кроме электромагнитных реле электронные реле.
Безусловно эти реле на много надёжнее. Они получили широкое применение в иностранных автомобилях 80-х годов выпуска. Принцип этих реле заключается в контроле напряжения бортовой сети. Если напряжение меньше номинала, то происходит включение контрольной лампы по средствам электромагнитного реле или встроенного транзистора. На отечественных автомобилях такой принцип встречается на Нивах с карбюраторным двигателем и импортной панелью приборов, а также на других моделях с импортными панелями приборов. В качестве контрольной лампы, в таких панелях применялся светодиод управление которым производит блок встроенный в панель. Такие автомобили были выпущены ограниченной серией.
Самая основная функция генератора – зарядка батареи аккумулятора и питание электрического оборудования двигателя.
Генератор – механизм, который превращает механическую энергию в электрическую. Генератор имеет вал, на который насажен шкив, через который и получает вращения от коленчатого вала двигателя.
Интерактивное изображение схемы генератора. Работает при наведении курсора мышки
Автомобильный генератор используют для питания электропотребителей, таких как: система зажигания, бортовой компьютер, автомобильная светотехника, система диагностики, а также есть возможность заряжать автомобильный аккумулятор. Мощность генератора легкового автомобиля составляет приблизительно 1 кВт. Автомобильные генераторы достаточно надежные в работе, потому что обеспечивают бесперебойную работу множеству приборов в автомобиле, а поэтому и требования к ним соответствующие.
Устройство генератора
Устройство автомобильного генератора подразумевает наличие собственного выпрямителя и регулирующей схемы. Генерирующая часть генератора с помощью неподвижной обмотки (статора) вырабатывает трёхфазный переменный ток, который далее выпрямляется серией из шести больших диодов и уже постоянный ток заряжает аккумулятор. Переменный ток индуцируется вращающимся магнитным полем обмотки (вокруг обмотки возбуждения или ротора). Далее ток через щётки и кольца скольжения подаётся на электронную схему.
Устройство генератора: 1.Гайка. 2.Шайба. 3.Шкив. 4.Передняя крышка. 5.Дистанционное кольцо. 6.Ротор. 7.Статор. 8.Задняя крышка. 9.Кожух. 10.Прокладка. 11.Защитная втулка. 12.Выпрямительный блок с конденсатором. 13.Щелкодержатель с регулятором напряжения.
Располагается генератор в передней части двигателя автомобиля и запускается с помощью коленчатого вала. Схема подключения и принцип работы генератора автомобиля одинаковый для любых автомобилей. Есть конечно некоторые отличия, но они, как правило, связаны с качеством изготовленного товара, мощностью и компоновкой узлов в моторе. Во всех современных автомобилях устанавливают генераторные установки переменного тока, которые включают не только сам генератор, но и регулятор напряжения. Регулятор равносильно распределяет силу тока в обмотке возбуждения, именно за счет этого и происходит колебание мощности самой генераторной установки в тот момент, когда напряжение на силовых клеммах выхода остается неизменным.
Принцип работы генератора авто
Схема подключения генератора ВАЗ 2110-2115
Схема подключения генератора переменного тока включает такие составляющие:
- Аккумулятор.
- Генератор.
- Блок предохранителя.
- Ключ зажигания.
- Приборная панель.
- Выпрямительный блок и добавочные диоды.
Принцип работы достаточно простой, при включении зажигания плюс через замок зажигание идет через блок предохранителей, лампочку, диодный мост и выходит через резистор на минус. Когда лампочка на приборной панели загорелась, далее плюс идет на генератор (на обмотку возбуждения), далее в процессе запуска двигателя шкив начинает вращаться, также вращается якорь, за счет электромагнитной индукции вырабатывается электродвижущая сила и появляется переменный ток.
Далее в выпрямительный блок через синусоиду в левое плечо диод пропускает плюс, а в правое минус. Добавочные диоды на лампочку отсекают минусы и получаются только плюсы, далее он идет на узел приборной панели, а диод, который там стоит он пропускает только минус, в итоге лампочка гаснет и плюс тогда идет через резистор и выходит на минус.
Принцип работы автомобильного генератора постоянного, можно объяснить так: через обмотку возбуждения начинает течь небольшой постоянный ток, который регулируется управляющим блоком и поддерживается им на уровне чуть больше 14 В. Большинство генераторов в автомобиле способны вырабатывать как минимум 45 ампер. Генератор работает на 3000 оборотах в минуту и выше — если посмотреть на соотношение размеров ремней вентиляторов для шкивов, то оно по отношению к частоте двигателя составит два или три к одному.
Во избежание этого пластины и другие части выпрямителя генераторов частично или полностью покрывают изоляционным слоем. В монолитную конструкцию выпрямительного блока теплоотводы объединяются в основном монтажными платами из изоляционного материала, армированными соединительными шинками.
Далее рассмотрим схему подключения автомобильного генератора на примере автомобиля ВАЗ-2107.
Схема подключения генератора на ВАЗ 2107
Схема зарядки ВАЗ 2107 зависит от того, какой применяется тип генератора. Чтобы подзарядить аккумуляторную батарею на таких авто, как: ВАЗ-2107, ВАЗ-2104, ВАЗ-2105, которые стоят на карбюраторном двигателе, будет необходим генератор типа Г-222 или его аналог с максимальным током отдачи в 55А. В свою очередь автомобили ВАЗ-2107 у которых инжекторный двигатель используют генератор 5142.3771 или его прототип, который называется генератором повышенной энергии, с максимальным током отдачи 80-90А. Также можно устанавливать более мощные генераторы с током отдачи до 100А. Абсолютно во все виды генераторов переменного тока встраиваются выпрямительные блоки и регуляторы напряжения, они, как правило, изготовлены в одном корпусе со щетками либо съемные и крепятся на самом корпусе.
Схема зарядки ВАЗ 2107 имеет незначительные отличия в зависимости от года изготовления автомобиля. Самым главным отличием есть наличие или отсутствие контрольной лампы заряда, которая расположена на панели приборов, также способ ее подключения и наличие либо отсутствие вольтметра. Такие схемы в основном используются на карбюраторных автомобилях, тогда как на авто с инжекторными двигателями схема не меняется, она идентична с теми автомобилями, которые изготовлялись ранее.
Обозначения генераторных установок:
- “Плюс” силового выпрямителя: “+”, В, 30, В+, ВАТ.
- “Масса”: “-”, D-, 31, B-, M, E, GRD.
- Вывод обмотки возбуждения: Ш, 67, DF, F, EXC, E, FLD.
- Вывод для соединения с лампой контроля исправности: D, D+, 61, L, WL, IND.
- Вывод фазы:
, W, R, STА.
Схема генератора ВАЗ-2107 тип 37.3701
- Аккумуляторная батарея.
- Генератор.
- Регулятор напряжения.
- Монтажный блок.
- Выключатель зажигания.
- Вольтметр.
- Контрольная лампа заряда аккумуляторной батареи.
При включении зажигания плюс от замка идет к предохранителю № 10, а затем уже поступает на реле контрольной лампы заряда аккумуляторной батареи, потом идет к контакту и на вывод катушки. Второй вывод катушки взаимодействует с центральным выводом стартера, где соединяются все три обмотки. Если контакты реле замыкаются, то и контрольная лампа горит. При запуске двигателя генератор вырабатывает ток и на обмотках появляется переменное напряжение 7В. Через катушку реле проходит ток и якорь начинает притягиваться, при этом контакты размыкаются. Генератор № 15 через предохранитель № 9 пропускает ток. Аналогично через генератор напряжения щетки получает питание обмотка возбуждения.
Схема зарядки ВАЗ с инжекторными двигателями
Такая схема идентичная схемам на других моделях ВАЗов. Она отличается от предыдущих, способом возбуждения и контроля на исправность генератора. Он может быть осуществлен при помощи специальной контрольной лампы и вольтметра на панели приборов. Также через лампу заряда происходит первоначальное возбуждение генератора в момент начала работы. Во время работы генератор работает “анонимно”, тоесть возбуждение идет напрямую с 30-го вывода.Когда включается зажигание, то питание через предохранитель №10 идет на лампу зарядки в панели приборов. Далее через монтажный блок поступает на 61-й вывод. Три дополнительные диода обеспечивают питание регулятору напряжения, а он в свою очередь передает его на обмотку возбуждения генератора. В этом случае контрольная лампа будет гореть. Именно в тот момент, когда генератор будет работать на обкладках выпрямительного моста напряжение будет гораздо выше, чем у аккумуляторной батареи. В этом случае контрольная лампа не будет гореть, потому что напряжение с ее стороны на дополнительных диодах будет ниже, чем со стороны статорной обмотки и диоды закроются. Если во время работы генератора контрольная лампа горит в пол накала, то это может означать, что пробиты дополнительные диоды.
Проверка работы генератора
Проверить работоспособность генератора можно несколькими способами применяя определенные методы, например: можно проверить ток отдачи генератора, падение напряжения на проводе, который соединяет токовый вывод генератора с аккумуляторной батареей или проверить регулируемое напряжение.
Для проверки будет необходим мультиметр, автомобильный аккумулятор и лампа с припаянными проводами, провода для подключения между генератором и аккумулятором, а еще можно взять дрель с подходящей головкой, так как возможно придется крутить ротор за гайку на шкиве.
Элементарная проверка лампочкой и мультиметорм
Схема подключения: выходная клемма (В+) и ротор (D+). Лампу нужно подключить между основным выходом генератора В+ и контактом D+. После этого берем силовые провода и подключаем “минус” к минусовой клемме аккумулятора и к массе генератора, “плюс” соответственно к плюсу генератора и к выходу В+ генератора. Закрепляем на тиски и подключаем.
Включаем тестер в режим (DC) постоянного тока, цепляем один щуп на аккумулятор к “плюсу”, второй также, но к “минусу”. Далее, если все в рабочем состоянии, то должна загореться лампочка, напряжение в этом случае будет 12,4В. Затем берем дрель и начинаем крутить генератор, соответственно лампочка в этом момент перестанет гореть, а напряжение уже будет 14,9В. После чего добавляем нагрузку, берем гологенную лампу h5 и вешаем ее на клемму аккумулятора, она должна загореться. После чего в аналогичном порядке подключаем дрель и напряжение на вольтметре будет показывать уже 13,9В. В пассивном режиме аккумулятор под лампочкой дает 12,2В, а когда крутим дрелью, то 13,9В.
Схема проверки генератора
Строго не рекомендуется:
- Проводить проверку на работоспособность генератора путем короткого замыкания, то есть “на искру”.
- Допускать, чтобы генератор работал без включенных потребителей, также нежелательна работа при отключенном аккумуляторе.
- Соединение клеммы “30” (в некоторых случаях B+) с “массой” или клемму “67” (в некоторых случаях D+).
- Проводить сварочные работы кузова автомобиля при подключенных проводах генератора и аккумулятора.
Добрый день, комрады!
Прошу помощи, сам уже загнался.
Полностью меняю проводку и дошло дело до контрольной лампы зарядки… Откуда чего брать? Это вообще возможно сделать не прибегая к пайке и разборке? Генератор 17.3701 вот такой:
Киньте в меня схемой плиз или подскажите на какой генератор поменять без танцев с болгаркой и сваркой.
Recommendations
Comments 31
спасибо я седня нашел у себя релюху старую нормально замкнутую и как бы через нее получается …даже можно отдельный провод после запуска ток по нему от гены сразу на стартер.
нормально …однако …лови==упс==спасибо == а как чего подключать неясно …может и с нами поделитесь…
Контрольную лампу в итоге так и не подключил. Ориентируюсь по вольтметру.
Схема по которой подключал гену.
У этого генератора всего 40А отдача плюс довольно неудачный щеточный узел в плане защиты от грязи (защиты нет вообще ни какой). Нет и никаких дополнительных выводов для подключения лапочки или реле управляющей лампочкой. У меня такой стоял, реле было как то переделано что просто измеряло бортовое напряжение и зажигало лампочку если напруга падала ниже 13.0 В, что пару раз не слабо напрягло. После лебежения лампочка долго не гасла, при всем исправном — просто сел АКБ и шел его заряд.
Пока так. Прежде чем лебедку ставить, дел еще огого сколько предстоит и не факт что двигатель этот останется… 40А для текущих нужд думаю хватит.
А вот ездить без контрольных ламп мне неуютно. Думал есть отработанное решение, ан нет, не все так просто оказывается (((
Решений море — вопрос какое из них тебе будет легче реализовать.
Самое простое — вольтметр. В прикуриватель цифровой. Вот скажем видео и там ссылки на алиэкспресс
Когда будешь менять генератор на более мощный — он будет иметь дополнительные диоды в выпрямительном мосту и подключения реле-регулятора через них — туда лампочку и задействуешь.
Это первое что я сделал)
Поглядывай на него и этого вполне хватит.
У этого генератора всего 40А отдача плюс довольно неудачный щеточный узел в плане защиты от грязи (защиты нет вообще ни какой). Нет и никаких дополнительных выводов для подключения лапочки или реле управляющей лампочкой. У меня такой стоял, реле было как то переделано что просто измеряло бортовое напряжение и зажигало лампочку если напруга падала ниже 13.0 В, что пару раз не слабо напрягло. После лебежения лампочка долго не гасла, при всем исправном — просто сел АКБ и шел его заряд.
может хватит онанизмом заниматься?
Где то читал что, ресурс обычного генератора ограничен ресурсом щёток и медных колец на роторе.
А ресурс бес щёточного гены ограничен ресурсом подшипников, а это (цифр не помню ) на порядок больше.
Примеры установок БЕЗ ЩЁТОЧНЫХ генераторов на «УАЗ»огены.
Суть думая понятна, сморганить кронштейн по месту не составит особого труда.
Согласился бы, если бы не одно существенное НО — предельные обороты у этих тракторных генераторов зачастую меньше предельных оборотов бензинового мотора. Добавляем сюда передаточное число со шкива коленвала на шкив генератора и получаем разорванный генератор. Что у кого-то он служит хорошо и долго не означает что так будет у всех.
ну не знаю
люди ставят и горя не знают
там в роторе разваливаться нечему!
у него нету обмоток
Это называется «ошибка выживших» — типа раз у них все ОК, значит у всех так же. Однако смотрим технические данные:
Частота вращения номинальная, мин-1 5 000
Частота вращения максимальная, мин-1 6 000
Т.е. заявленные 110А он выдаст при 5000 оборотов, а при 6000 уже имеет право сломаться.
Сам в сторону этих генераторов облизываюсь… Но рисковать как то не хочется.
ну тогда надо ставить автомбусный у них там есть и по 200 ампер
Как подключать провода к форсунке и аккумулятору
Chily: | ||||
Fuerza
Прочистить форсунку таким способом не удастся, так только проверяется её работоспособность. Слышен щелчок — форсунка работает, нет — отправляем её на заслуженный отдых. Теперь о лампочках. Не заморачивайся, делай без неё, ничего твоим форсункам не будет. А если и собрался перестраховаться, то в схеме второклассник может разобраться что к чему.
НЕ ПРАВИЛЬНО Лампочку подключаешь только к +, и через неё на контакт форсунки. Второй провод от минуса тупо на второй контакт форсунки. Как понять лампочьку подключаеш только к плюсу?Имеется в виду — Добавлено: [mergetime]1264179733[/mergetime] Дучч форсунки и на Фокусах есть. Благодарю вас за понимание и помошь…Простите за глупые вопросы с моей стороны. Если делать как вы советуете получается следуюшие: Береш провод, подключаеш один конец к + акумулятора, далее провод подключить к лампочьке( кстати как подключить к лампочьке? так как я сдела или только к шапке или только к железному корпусу?)и не разрывая провод идеш к форсунке? А на самой форсунке нужно подключить этот провод к плюсу или минусу?(плюс подписан справо форсунки) И второй провод от минуса акумулятора нужно подключать к минусу на форсунке? Я делал так: потом взял коричневый провод и прикрепил его к шапочке лампочки Далее конец голубого провода подсоеденил к плюсу на форсунке(плюс с правой стороны подписан) а конец коричневого подключил к плюсу аккумулятора получилось следующие: потом взял другой провод(голубой) и один его конец подключил к минусу на аккумуляторе а второй конец к форсунке. Все в месте получилось следующие: Выключатель,включатель(кнопку) я не стал прикреплять к проводам а заместо этого просто дотрагивался до минуса на аккумуляторе ,держал и убирал его! И так несколько раз. Итого:Какие то звуки послышались в форсунке но лампочка не загоралась. Вопросы: Простите что не в тот форум,тему |
Благодарю вас за понимание и помошь…Простите за глупые вопросы с моей стороны.
Если делать как вы советуете получается следуюшие: Береш провод, подключаеш один конец к + акумулятора, далее провод подключить к лампочьке( кстати как подключить к лампочьке? так как я сдела или только к шапке или только к железному корпусу?)и не разрывая провод идеш к форсунке? А на самой форсунке нужно подключить этот провод к плюсу или минусу?(плюс подписан справо форсунки)
И второй провод от минуса акумулятора нужно подключать к минусу на форсунке?
Я делал так:
Нашел два провода. Один коричневый второй голубой.
Оба разрезал на две части.
Получилась четыре куска!Два коричневых ,два голубых
вот фото
потом взял коричневый провод и прикрепил его к шапочке лампочки
( прикрепил его изолентой! но на фото показал без изоленты)
потом взял голубой провод и привезал его к железному корпусу лампочки.
Сделал так потому что подумал что шапка плюс а корпус минус…
получилось следующие:
[URL=]My Webpage[/URL]
Далее конец голубого провода подсоеденил к плюсу на форсунке(плюс с правой стороны подписан) а конец коричневого подключил к плюсу аккумулятора
получилось следующие:
[URL=][/URL]
потом взял другой провод(голубой) и один его конец подключил к минусу на аккумуляторе а второй конец к форсунке.
Все в месте получилось следующие:
[URL= ] [/URL]
Выключатель,включатель(кнопку) я не стал прикреплять к проводам а заместо этого просто дотрагивался до минуса на аккумуляторе ,держал и убирал его! И так несколько раз.
Итого:Какие то звуки послышались в форсунке но лампочка не загоралась.
Звуки наверное от открывания запорной иглы в форсунке…
Я подумал что что то не так делаю!
Вопросы:
1.Как я понимаю если лампочка не загоралась значит она не исполняла функцию ограничителя по току?Это так?
2.Если это так то могла ли форсунка испортится? Если да то как это проверить?Не просто же люди советуют использовать лампочку!!!Значет действительно форсунка без нее может испортиться?
3.Как правильно подключать провода?Подробно объясните мне пожалуйста.
Простите что не в тот форум,тему
Как зарядить аккумулятор без зарядного устройства, схемы
Привет всем автомобилистам, которым знакома ситуация, когда автомобильный аккумулятор сдох, а зарядного устройства под рукой нет. Прикурить тоже нет возможности поскольку время 3 часа ночи, а вам нужно срочно ехать. И для таких особых случаев я вам покажу все возможные методы зарядки автомобильного аккумулятора без зарядного устройства.
Хочу предупредить сразу в некоторых случаях есть 220 вольт опасное для жизни, так что будьте бдительны и аккуратны.
Итак способ первый…
У каждого есть ноутбук, на дворе двадцать первый век, нанотехнологии и всё такое, так что ноутбук обязательная составляющая нашей жизни и если у вас он есть, значит найдется и адаптер питания к нему, которой как правило выдаёт 18-19 вольт на выходе. Его и будем использовать в качестве зарядного устройства.
Далее в гараже находим 12-и вольтовую лампочку от 5 ватт скажем до 50, чем мощнее лампа, тем больше будет ток зарядки, но не советую поднимать ток больше 3.5-4 Ампер, иначе адаптер ноутбука может сгореть от перегрузки.
Собираем всё по схеме, лампа как вы поняли подключена последовательно и просто ограничивает ток заряда.
Я подключил в цепь амперметр, чтобы вы могли посмотреть ток протекающий в цепи.
Получилась зарядка на скорую руку, пожалуй это самый безопасный способ, дальше уже всё будет гораздо опасней.
Способ номер два… Лампочка и диод
Берём простую лампочку на 220 вольт, мощностью от 40 до 100 ватт, как и в первом варианте она будет ограничивать ток заряда и чем мощнее лампа, тем больше ток в цепи.
Собираем схему из лампочки и диода, которые подключены последовательно и потом это всё подключаем в сеть 220 вольт.
Взрывов не будет и даже если возникнут какие проблемы, лампа просто будет гореть в полный накал. Диод любой с током от 3 ампер, хотя в цепи будет протекать ток куда меньше указанного но лучше иметь некоторый запас. Напряжение диода не менее 400 вольт, а лучше 600 или 1000. Например один из моих любимых диодов IN5408 или что-то из советских. Не дотрагивайтесь до узлов схемы во время работы, это опасно.
Как ранее заметил лампочка у нас ограничивает ток, а диод срезает нижнюю полуволну сетевого синуса, это простой однополупериодной выпрямитель, после диода напряжение получается уже в районе 110 вольт, но при подключении к АКБ ток будет играть роль своеобразного стабилизирующего элемента. Ток в цепи контролируется опять же амперметром.
Вариант номер 3… Лампа и мост.
Тут всё так же, как и в прошлом варианте, только диод заменён на полноценный мост, иначе говоря двухполупериодный выпрямитель.На выходе такого моста уже постоянное напряжение. Диодный мост, который отлично подходит для этих целей, может быть найден в старом не рабочем компьютером блоке питания.
На нём всё четко подписано, куда что подключать. И ещё, эта схема также опасна, как и предыдущая.
Вариант под номером 4… Конденсатор и диод.
Вначале скажу, что диод можно заменить на полноценное мост, эта схема схожа с двумя предыдущими вариантами, но тут лампа заменена на неполярный конденсатор именно он ограничивает ток заряда.
Конденсатор обязательно нужен плёночной на напряжение не менее 400 вольт, а от его ёмкости зависит ток заряда, а если точнее то 1 мкф ёмкости обеспечивает ток заряда от 70 до 100 ма.
Но если нет конденсатора большой ёмкости, то можно параллельно соединить несколько штук меньшей ёмкости, с учетом того, что напряжение всех конденсаторов должно обязательно быть одинаковым.
Способ номер 5… Компьютерный блок питания.
Этот вариант менее безопасен, подойдёт любой компьютерный блок питания, любого формата и мощности. Как мы знаем он может обеспечивать на выходе несколько напряжений, но нас интересует только шина на 12 вольт, а точнее черный и желтый провод, соответственно минус и плюс.
Но 12 вольт компьютерного блока питания явно недостаточно для зарядки автомобильного аккумулятора. Так как же поднять напряжение не переделав сам блок, на самом деле всё очень просто.
Для начала находим зеленый провод и замыкаем его с любым из черных, этим мы запустим блок питания без подключения к компьютеру. Благодаря тому, что в компьютерном блоке питания имеется обратная связь и шим стабилизация, то нагружая одну из низковольтных шин, (например — шину на 5 вольт) на нём будет просадка напряжения, а микросхема шин автоматическим образом постарается поднять напряжение до уровня 5 вольт.
Одновременно поднимается напряжение и на остальных шинах. И чем больше нагрузить низковольтные шины, тем больше поднимается напряжение на шине 12 вольт. Но злоупотреблять этим не нужно, если чрезмерно нагрузить шины, то блок питания в какой то момент, просто уйдет в защиту.
Введите электронную почту и получайте письма с новыми поделками.
Чтобы снять блок защиты достаточно на пару секунд отключить зеленый провод от черного, затем снова подключить.А в качестве нагрузки для низковольтных шин можно использовать 12-и вольтовые галогенные лампы с мощностью от 20 до 50 ватт.
Как видим аккумулятор заряжается, а амперметр, как всегда показывает ток заряда.
Но вот и всё, в конце еще раз прошу соблюдать меры по безопасности, поскольку все указанные варианты, кроме первого и последнего не имеют гальванической развязки сетью и когда будете дотрагиваться до схемы, убедитесь, что сетевой кабель отключен и имеется видимый разрыв, то же самое при включении, сначала убедитесь что нигде нет короткого замыкания, затем подключите клеммы к АКБ и лишь только после этого включайте схему в сеть.
Так же крайне не рекомендуется использовать указанная варианты регулярно, этим вы сократите срок службы аккумулятора.
Автор; АКА КАСЬЯН
Зарядка акб с лампочкой
Схема простого автомобильного зарядного устройства состоит из трансформатора, тумблеров, автомобильных ламп накаливания и выпрямительного диодного моста.
При изготовлении такого самодельного зарядного устройства для АКБ необходимо знать и соблюдать правила электробезопасности!
Такое простейшее автомобильное зарядное устройство можно сделать своими руками и использовать для зарядки 12 вольтовых аккумуляторов с емкостью от 4 до 75 ампер-часов. При этом лампы используются не только для ограничения тока, но и для индикации заряда — в начале заряда они светят ярко, а в конце тускло. При использовании ЗУ совместно с разрядным устройством можно восстанавливать аккумуляторы и измерять их фактическую ёмкость
*В схеме используются недорогие автомобильные лампы накаливания: 60 Вт — ближний свет, 21 Вт — указатели поворотов и 5 Вт — дублирование указателя поворотов.
**Максимальный рабочий ток тумблера зависит от мощности лампы.
Можно также использовать двухконтактные лампы 21+5 Вт. Количество ламп и тумблеров может быть любым, но при всех включенных лампах суммарный ток не должен превышать 8 А. Мощность трансформатора для заряда АКБ емкостью 75 А/час. должна быть не менее 200 ВТ, для заряда АКБ емкостью 55-60 А/ч – не менее 150 Вт. Для заряда аккумуляторных батарей от источников бесперебойного питания или им подобных емкостью 4 – 8 A/h минимальная мощность трансформатора составит 10 и 20 Вт соответственно. Запас по мощности не повредит, особенно если аккумулятор сильно разряжен.
Данное зарядное устройство имеет минимум деталей: понижающий трансформатор, параллельно включенные лампочки, тумблера (включатели), диодный мост и 2-а предохранителя. Я буду ориентироваться что читатель совсем не разбирается на достаточном уровне в электротехнике и буду пытаться подробно рассказать что, как и зачем. И так, вот схема приведена такого устройства ниже:
В самом начале вам нужно будет найти силовой понижающий трансформатор на напряжение 14,5 вольт. Почему 14,5 вольт? Потому что заряжая аккумулятор 12 вольт ему будет не достаточно 12 вольт, т.к. полностью заряженный аккумулятор будет считаться 13-14 вольт. Трансформатор должен быть достаточно мощным, где то 250 ват, не меньше. Ну если конечно вы планируете заряжать аккумулятор током в 1-3 Ампера, то трансформатор можно взять на 150 ват со старого лампового телека – он подойдет. При работе схемы следите за нагревом трансформатора, так как при большом токе заряда вторичная обмотка начинает греться. Если обмотка перегреется, то изолирующий лак на проволоке расплавиться и трансформатор перестанет работать, так как произойдет межвитковое замыкание. Или будет работать не корректно, то есть может уменьшиться напряжение. Предохранитель в цепи служит защитой от случайного короткого замыкания. Ведь бывает такое. Теперь стоит сказать о лампочках: чем больше мощность лампы, тем выше ток заряда будет. Приведена таблица ниже по току и мощностям лампочек:
Ток рассчитывается по закону Ома. ФОРМУЛА: Ток = мощность/напряжение. Ведь лампочка – это как сопротивление, только оно излучает еще и свет. В качестве сопротивления в лампе такой элемент, как нить накаливания, сделанная из вольфрама. При этом лампочка в данном случае служит еще не только как сопротивление, но и как индикатор заряда. Когда аккумулятор начинает заряжаться, то лампочка начинает светится более тускло. Когда аккумулятор будет заряжен, то лампочка будет светится в пол накала. Все лампочки соединены параллельно для удобства управления током заряда. Вот формула чтобы определить общее сопротивление 2-ух параллельно соединенных сопротивлений (лампочек): Сопротивление общ.= (сопротивление первой лампочки + сопротивление второй лампочки)/2. Теперь находим ток: Ток= напряжение/ сопротивление общ. . Сопротивление у лампочки можно померить с помощью мультиметра, настроив его на омметр или обычны омметром. То есть, когда все ключи будут замкнуты, то ток будет проходить максимальный. Ключ (тумблера) ставим на токи 3-5 ампер.
Теперь перейдем к диодному мосту, который выпрямляет переменный ток в постоянный. Диодный мостик наш должен быть обязательно рассчитан на ток зарядки. Если ток зарядки у нас 10 Ампер, то диодный мост должен быть на ток не меньше 10А ну и соответственно на напряжение тоже должен быть рассчитан. Диодный мост можно купить на радиорынке. Или собираем диодный мост из диодов и диоды ставим любые, но чтобы соответствовали току и напряжению. Тут в этой схеме можно даже использовать одно полупериудный выпрямитель (для экономии диодов), тут 4 диода в принципе ни к чему. Аккумулятору без разницы с какими пульсациями будет поступать ток зарядки. Одно полупериудный выпрямитель – это то есть устанавливаем один диод в разрыв любой из линий на 10-15 Ампер. Далее следует поставить предохранитель, который защитит вашу цепь от короткого замыкания. И в итоге можно подключать аккумулятор к зарядке. Для контроля тока рекомендую установить амперметр в разрыв цепи. И тогда переключая лампочки, мы сможем увидеть реальный ток заряда аккумулятора. При зарядке мы будем наблюдать, как лампочки будут постепенно тухнуть – это будет считаться, что аккумулятор заряжается. Учтите, что при включении каждой паралельно включенной лампочки ток примерно возрастает на 1,6 Ампера.
Так же, рекомендую установить параллельно в цепь светодиод с последовательно включенным резистором. Светодиод будет сигнализировать о включенном зарядном. Резистор будет служить в качестве ограничителя тока, значит, мы можем регулировать яркость светодиода, изменяя сопротивление резистора. Резистор последовательно соединенный с светодиодов включаем параллельно в цепь первичной обмотки трансформатора . Резистор брать порядка 220 кОм, ведь 220 вольт все-таки… В простом варианте заражать аккумулятор емкостью 60 Ампер/час можно без тумблеров через одну лампочку в 60 ват. Можно взять 3 лампочки по 20 ват и соединить последовательно – то же самое выйдет, или взять две лампочки по 120 ват и соединить параллельно – выйдет так же 60 ватт. Теперь немного о зарядке. Если вы включили две лампочки и оди достаточно так светятся ярко, то аккумулятор полностью разряжен. Нужно аккумулятор зарядить до тех пор, пока не начнут лампочки гореть тускло. Как только лампочки начали светится тускло, то включаем еще один тумблер и у нас ток возрастает на 1,6 Ампера. Лампочки при этом начинают все три светиться ярче, так как сопротивление стало меньше по закону ома. И так включаем до конца.
Все устройство готово. Это самое простое зарядное устройство, которое есть вообще. Но помните, что это фактически самое простое зарядное и в нем нету защиты от перезаряда и прочих выкрунтасов, так что вам постоянно требуется следить за нагревом элементов. Обязательно следите за показанием цифр на амперметре, следите за аккумулятором и напряжением на аккумуляторе, следите за диодным мостом чтобы не грелся и слегка посматривайте за трансформатором (тоже может греться). Если диодный мост греется, то установите на диодный мост радиатор (теплоотвод). При этом очень хорошо будет помазать термопастой теплоотвод и сам диодный мост, а потом плотно прижать. Ведь через пасту диоду будет легде отдавать тепло радиатору, что спасет жизнь диодного мостика. ))) Если у вас установлен диод или диоды, то есть специальные радиаторы такие полоской под диоды. Их просто прикручиваем болтами и все.
И напоследок
А мой совет, если у вас есть знания в области электроники и элекротехники, то лучше соберите импульсное зарядное устройство с защитой от короткого замыкания, перегрузок, переплюсовки, перезаряда, не дозаряда схему – она будет на много надежней данной представленной. Ведь если в данной схеме попутать плюс с минусом и поставить заряжать, то вы рискуете выкинуть этот аккумулятор.
У каждого может возникнуть ситуация когда аккумулятор сел а в наличии нет зарядного устройства. Но почти всегда имеется минимальный набор предметов с помощью которых можно соорудить импровизированное зарядное устройство.
Самый простой вариант это зарядить АКБ с помощью источника постоянного тока, который может оказаться под рукой. Источник тока должен быть напряжением больше 16 вольт иначе аккумулятор не зарядится полностью, но если батарея разряжена в 0 то сгодится и с меньшим напряжением (блок питания ПК) но батарея будет заряжена на 30%. Подходящим вариантом является блок питания ноутбука- на выходе у него как правило 18-20 вольт и он способен отдать ток 3-6 Ампера.
Для зарядки нам понадобится несколько проводов, и лампочка на 55-90 ватт 12 вольт. Идеально подойдет лампа головного света. К зарядному от ноутбука подсоединяем два провода- как правило плюс находится на внутреннем контакте разъема а минус на внешнем. подсоединяем батарею и лампочку к зарядному, плюс на плюс минус на минус, предварительно соединив их последовательно.
Лампочка нам нужна чтобы не было перегрузки на зарядке от ноутбука. В противном случае она либо перегреется и сгорит, либо просто отключит напряжение увидев подключенную батарею как короткое замыкание. В зависимости от мощности зарядки, степени разряжености батареи и подключенной лампы ток зарядки может колебаться от 3 до 6 ампер.
Полу разряженный аккумулятор при указанных параметрах полностью заряжается за 5-10 часов, а для подзарядки аккумулятора, который еще кое-как крутит стартер до состояния, чтобы с первой попытки завести автомобиль, достаточно 30- 60 минут!
Но такое зарядное лучше без присмотра не оставлять- поскольку устройство не отключится при достижении батареей необходимого напряжения. А при перезаряде АКБ будет греться, активно выделять водород (кипеть) и естественно портится. При отсутствии измерительных приборов конец зарядки можно определить по моменту начала кипения- эта та точка при которой батарея берет в заряд гораздо меньше а лишнюю энергию преобразует в разложение воды электролита.
Вторым вариантом зарядки аккумулятора является зарядка от бытовой сети переменного тока в 220 вольт. Принцип подключения такой же, как описывали раньше.
Разница заключается в том, что лампа должна быть на 220 вольт а ее мощность подбирается в зависимости от желаемого тока зарядки. Лампа в 100ватт даст зарядный ток в 0.5 ампера а лампа или иной прибор на 1000 ватт даст ток около 4 ампер.
Следующее отличие в том, что в сети переменный ток и напрямую им батарею не зарядить. В последовательную цепь из АКБ и лампы следует включить диод который рассчитан на прямое и обратное напряжение не менее 400 вольт. Диод можно найти например в энерго сберегающей лампе. обычно в них устанавливают 1N4007 расчитанный на ток до 1 ампера, который можно установить в паре с лампой на 150 ватт. Но разбирать лампу следует в случае безвыходной ситуации-когда акум сел а ехать срочно нужно и зарядки нет. но КПД этого устройства весьма мал поэтому целесообразнее применить диодный мост.
При его использовании схема подключения следующая.
При использовании зарядного от сети 220 вольт нужно быть предельно осторожным, так как все элементы будут находится под напряжением опасным для жизни. Не допускайте контакта с оголенными проводами и токопроводящими частями импровизированной зарядки.
Эти два способа зарядки акб являются екстренной мерой но могут использоватся продолжительное время как замена специализированным зарядкам. но лучше все таки преобрести фирменную которая гораздо более функциональная и безопасная как для аккумулятора так и для вашего здоровья.
Как сделать схему
Вы когда-нибудь задумывались о разнице между батареями и электричеством от розеток или о том, как сделать электрическую цепь?
На этой странице вы узнаете об электронах и электрическом токе, батареях, схемах и многом другом!
Проекты схемотехники
Построить схему
Как сделать схему? Цепь — это путь, по которому течет электричество. Он начинается с источника питания, такого как батарея, и течет по проводу к лампочке или другому объекту и обратно к другой стороне источника питания.Вы можете построить свою собственную схему и посмотреть, как она работает с этим проектом!
Что вам понадобится:
* Чтобы использовать фольгу вместо проволоки, отрежьте 2 полоски длиной 6 дюймов и шириной 3 дюйма. Плотно согните каждую по длинному краю, чтобы получилась тонкая полоска.)
** Чтобы использовать скрепки вместо держателей батарей, прикрепите один конец скрепки для бумаг к каждому концу батареи, используя тонкие полоски ленты. Затем подсоедините провода к скрепкам.
Часть 1 — Создание схемы:
- Подсоедините один конец каждого провода к винтам на основании патрона лампы.(Если вы используете фольгу, попросите взрослого помочь вам открутить каждый винт настолько, чтобы под ним поместилась полоска фольги.)
- Подключите свободный конец одного провода к отрицательному («-») концу одной батареи. Что-нибудь случилось?
- Присоедините свободный конец другого провода к положительному («+») концу батареи. Что теперь происходит?
Часть 2 — Дополнительная мощность
- Отключите аккумулятор от цепи. Поставьте одну батарею так, чтобы конец со знаком «+» был направлен вверх, затем установите другую батарею рядом с ней так, чтобы плоский конец со знаком «-» был направлен вверх.Обмотайте середину батарей липкой лентой, чтобы удерживать их вместе.
- Прикрепите скрепку к батареям так, чтобы она соединяла конец «+» одной батареи с концом «-» другой. Закрепите скрепку узкой лентой (не заклеивайте концы металлических батарей).
- Переверните батарейки и приклейте один конец скрепки к каждой батарейке. Теперь вы можете подключить к каждой скрепке по одному проводу. (В нижней части аккумуляторного блока должна быть только одна канцелярская скрепка — не подключайте к ней провод.)
- Подсоедините свободные концы проводов к лампочке.
(Примечание: вместо шагов 1-3 вы можете использовать две батареи в держателях батарей и соединить их вместе одним проводом.)
Что случилось:
В первой части вы узнали, как сделать схему с батареей, чтобы зажечь лампочку.
Электроэнергия подается от аккумуляторов. Когда они подключены должным образом, они могут «запитать» такие вещи, как фонарик, будильник, радио… даже робота!
Почему не загорелась лампочка, когда вы подключили ее к одному концу аккумулятора с помощью провода?
Электричество от батареи должно проходить через один конец (отрицательный или «-») и обратно через положительный («+») конец, чтобы работать.
То, что вы построили с батареей, проводом и лампочкой на шаге 3, называется разомкнутой цепью .
Для того, чтобы электричество пошло, нужна замкнутая цепь . Электричество вызывается крошечными частицами с отрицательным зарядом, называемыми электронами .
Когда цепь замкнута или замкнута, электроны могут течь от одного конца батареи по всем проводам к другому концу батареи.По пути он будет переносить электроны к подключенным к нему электрическим объектам — например, к лампочке — и заставлять их работать!
Во второй части вы добавили еще одну батарею. Это должно было заставить лампочку гореть ярче, потому что две батареи вместе могут обеспечить больше электричества, чем одна!
Скрепка в нижней части батарейного блока позволяла электричеству течь между батареями, делая поток электронов сильнее.
Вы видите, как работают замкнутые и разомкнутые цепи, чтобы позволить или остановить электричество?
Изолятор или проводник?
Материалы, через которые может проходить электричество, являются проводниками вызова.Материалы, препятствующие протеканию электричества, называются изоляторами.
Вы можете узнать, какие предметы в вашем доме являются проводниками, а какие — изоляторами, используя схему, которую вы создали в последнем проекте, чтобы проверить их!
Что вам понадобится:
- Цепь с лампочкой и 2 батареями
- Дополнительная проволока с зажимом типа «крокодил» (или проволока из алюминиевой фольги *)
- Объекты для испытаний (из металла, стекла, бумаги, дерева и пластика)
- Рабочий лист (необязательно)
Чем вы занимаетесь:
- Отсоедините один из проводов от аккумуляторной батареи.Подключите один конец нового провода к батарее. У вас должно получиться два провода со свободными концами (между лампочкой и аккумулятором).
- Произошел разрыв цепи, лампочка не должна загореться. Затем вы протестируете объекты, чтобы увидеть, являются ли они проводниками или изоляторами. Если объект является проводником, лампочка загорится. Это изолятор, он не горит. Для каждого объекта угадайте, думаете ли вы, что каждый объект замкнет цепь и загорится лампочка или нет.
- Подсоедините концы свободных проводов к объекту и посмотрите, что произойдет. Вот некоторые предметы, которые вы можете проверить: скрепку, ножницы (попробуйте лезвия и ручки по отдельности), стакан, пластиковую посуду, деревянный кубик, вашу любимую игрушку или что-нибудь еще, о чем вы можете подумать.
Что случилось:
Перед тем, как тестировать каждый объект, угадайте, загорится он лампочкой или нет. Если это так, то объект, к которому вы прикасаетесь проводами, является проводником.
Лампочка загорается, потому что проводник замыкает цепь, и электричество может течь от батареи к лампочке и обратно к батарее! Если он не загорается, объект является изолятором и останавливает поток электричества, как это делает разомкнутая цепь.
Когда вы настраивали цепь на шаге 1, это была разомкнутая цепь. Электроны не могли двигаться по кругу, потому что два провода не соприкасались. Электроны были прерваны.
Когда вы помещаете металлический предмет между двумя проводами, металл замыкает или замыкает цепь — электроны могут течь через металлический объект и переходить от одного провода к другому! Объекты, замыкающие цепь, заставили лампочку загореться. Эти объекты — проводники. Они проводят электричество.
Большинство других материалов, таких как пластик, дерево и стекло, являются изоляторами. Изолятор в разомкнутой цепи не замыкает цепь, потому что электроны не могут проходить через него! Лампочка не загоралась, когда между проводами вставлялся изолятор.
Если вы используете провода или зажимы из крокодиловой кожи, внимательно посмотрите на них. Внутри они металлические, а снаружи пластик. Металл — хороший проводник. Пластик — хороший изолятор. Пластик, обернутый вокруг провода, помогает удерживать электроны, протекающие по металлическому проводу, блокируя их передачу на другой объект за пределами проводов.
Урок схемотехники
Что такое электричество?
Все вокруг вас состоит из крошечных частиц, называемых атомами.
Атомы содержат внутри еще более мелкие частицы, называемые электронами . Электроны всегда имеют отрицательный заряд.
Когда электроны движутся, они производят электричество!
Электричество — это движение или поток электронов от одного атома к другому. Не волнуйтесь, если это покажется сложным. Это!
Электроны называются субатомными частицами , что означает, что то, что они делают, происходит внутри атомов, так что это довольно сложная наука.
Вы помните, как узнали о магнитах? У них есть положительный и отрицательный заряды, а противоположные заряды (+ »и« — ») притягиваются друг к другу. То же самое и с электрическими зарядами. Отрицательно заряженные электроны пытаются соответствовать положительным зарядам в других объектах.
Как электроны перемещаются от одного атома к другому?
Они плавают вокруг своих атомов до тех пор, пока не получат достаточно электроэнергии, чтобы их толкнуть.
Энергия, которая заставляет их двигаться, исходит от источника питания, такого как аккумулятор или электрическая розетка.
Это работает примерно так же, как вода течет по шлангу, когда вы открываете кран.
Когда вы включаете выключатель или подключаете прибор, электроны проходят по проводам и выходят в виде электричества, которое мы иногда называем «мощностью».
Вы, наверное, знаете, что в некоторых электронных устройствах используются батарейки, а некоторые могут быть подключены к розетке.
В чем разница? Электричество, которое исходит из розеток в вашем доме, очень мощное — в нем много электронов, протекающих с большим количеством энергии.
Он называется переменным током , или переменным током. Электроны в переменном токе очень быстро перемещаются вперед и назад (со скоростью света) по проводам на сотни миль от больших электростанций к розеткам, встроенным в стены домов и зданий.
Поскольку переменный ток очень силен, он также может быть очень опасным. Никогда не прикасайтесь к линии электропередачи, не вставляйте пальцы или предметы, кроме электрических вилок, в розетки. Вы можете получить сильный удар, который может нанести вам вред из-за сильных токов, протекающих по проводам и розеткам.
Батареи вырабатывают гораздо менее мощную форму электричества, называемую постоянным током или DC. В постоянном токе электроны движутся только в одном направлении — от отрицательного (-) конца или вывода к положительному (+) выводу, через батарею и обратно обратно через «-» конец.
Ток, протекающий по проводам, подключенным к батареям, намного безопаснее переменного тока.
Он также очень полезен для питания небольших предметов, таких как сотовые телефоны, радио, часы, игрушки и многое другое.
Все о схемах
Цепь — это путь, по которому течет электричество. Если путь нарушен, это называется разомкнутой цепью, и электроны не могут двигаться полностью. Если цепь замкнута, это замкнутая цепь, и электроны могут перемещаться от одного конца источника питания (например, батареи) через провод к другому концу источника питания. В цепи батареи положительный и отрицательный концы батареи должны быть соединены через цепь, чтобы обмениваться электронами с лампочкой или другим объектом, подключенным к цепи.
Переключатель — это то, что позволяет размыкать и замыкать цепь. Если вы включаете выключатель света в своем доме, вы замыкаете или замыкаете цепь. Внутри стены выключатель замыкает цепь, и электричество течет к свету. Когда вы выключаете свет, цепь отключается (теперь это разомкнутая цепь ), электроны перестают течь, и свет гаснет.
Отрицательно заряженные электроны, о которых мы говорили выше, не могут «прыгать», чтобы соответствовать положительным зарядам — они могут перемещаться только от одного атома к другому.Вот почему цепи должны быть замкнутыми, чтобы работать.
Жизнь без электричества
Отключалось ли когда-нибудь электричество там, где вы живете?
Иногда сильный ветер и шторм могут повредить линии электропередач (высокие столбы, удерживающие толстые провода, по которым течет электричество), нарушая поток электричества.
Когда это происходит, электроны перестают течь и не могут добраться туда, куда бы они ни направлялись. Когда в ваш дом не подается электричество, ни свет, ни розетки не будут работать!
Если на улице темно, то и внутри будет темно.
Компьютеры, телефоны, микроволновые печи, радио и другие устройства, которые необходимо подключить для работы, перестанут работать.
Если вы раньше теряли власть, можете ли вы описать, на что это было похоже?
Вы делали что-нибудь, что было прервано?
Вам приходилось использовать свечи, чтобы видеть?
Если вы никогда раньше не сталкивались с перебоями в подаче электроэнергии, постарайтесь подумать обо всех своих повседневных делах, требующих электричества.
Как бы изменился ваш день, если бы у вас не было электричества? Есть ли вещи, которые вы могли бы использовать вместо этого, работающие от батареек?
- Изучите этот урок естествознания, чтобы узнать больше об энергии и различных видах электричества.
Научные слова
Электроны — крошечные частицы внутри атомов, которые всегда имеют отрицательный заряд. Именно они вызывают электричество.
Текущий — электроны текут, чтобы произвести электричество.
Обрыв цепи — прерванный путь, по которому электроны не могут течь.
Замкнутая цепь — непрерывный путь, по которому электроны могут течь от источника питания обратно к другому концу источника питания.
Учебное пособие по физике: Требования схемы
Предположим, вам дали небольшую лампочку, электрохимический элемент и оголенный медный провод, и вас попросили найти четыре различных расположения трех элементов, которые приведут к образованию электрической цепи, которая зажгла бы лампочку. Какие четыре схемы приведут к успешному зажиганию лампочки? И что еще более важно, что общего у каждой из четырех схем, что привело бы нас к пониманию двух требований к электрической цепи?Само по себе упражнение является стоящим занятием, и если оно не выполнялось раньше, следует попробовать его, прежде чем читать дальше.Как и во многих лабораторных занятиях, в фактическом участии в работе есть сила, которую нельзя заменить простым чтением о ней. Когда это упражнение выполняется в классе физики, есть множество наблюдений, которые можно сделать, наблюдая за классом, полным студентов, стремящихся найти четыре схемы. Часто используются следующие меры, которые не приводят к включению лампочки.
После нескольких минут попыток, нескольких здоровых смешков и периодических восклицаний о том, насколько сильно нагревается провод, нескольким ученикам удается зажечь лампочку.В отличие от вышеупомянутых попыток, первая успешная попытка характеризуется созданием полной проводящей петли от положительной клеммы к отрицательной клемме, при этом как батарея, так и лампочка являются частью петли. Как показано на схеме справа, основание лампочки подключается к положительному выводу элемента, а провод проходит от ребристых сторон лампы до отрицательного вывода элемента. Создается полная проводящая петля, в которую входит лампочка.Существует цепь, и заряд течет по всему проводящему пути, зажигая при этом лампочку. Сравните расположение элемента, лампы и провода справа с неудачным расположением, показанным выше. При попытке A провод не возвращается к отрицательному выводу ячейки. При попытке B провод действительно образует петлю, но не возвращается к отрицательному выводу ячейки. В попытке C нет полного цикла. Попытка D похожа на попытку B тем, что есть петля, но не от положительной клеммы к отрицательной.И при попытке E возникает петля, и она идет от положительного вывода к отрицательному; это цепь, но лампочка в нее не входит. ВНИМАНИЕ: При попытке E ваши пальцы нагреваются, когда вы держите оголенный провод, и заряд начинает течь с высокой скоростью между положительной и отрицательной клеммами.
Анатомия лампочкиКак только одна группа студентов успешно зажигает лампочку, многие другие лабораторные группы быстро следуют ее примеру.Но тогда возникает вопрос, какими еще способами можно расположить элемент, лампочку и оголенный провод, чтобы зажечь лампочку. Часто короткий урок анатомии лампочки побуждает лабораторные группы быстро найти одну или несколько оставшихся схем.
Лампочка — это относительно простое устройство, состоящее из нити накала, опирающейся на два провода или как-то прикрепленных к ним. Провода и нить накала — это проводящие материалы, которые позволяют заряду проходить через них.Один провод подключается к ребристым сторонам лампочек. Другой провод подключается к нижнему цоколю лампочки. Ребристый край и нижнее основание разделены изоляционным материалом, который предотвращает прямой поток заряда между нижним основанием и ребристым краем. Единственный путь, по которому заряд может пройти от ребристого края к нижнему основанию или наоборот, — это путь, который включает провода и нить накала. Заряд может входить в ребристый край, проходить через нить и выходить из нижнего основания; или он может войти в нижнее основание, пройти сквозь нить и выйти из ребристого края.Таким образом, есть две возможные точки входа и две соответствующие точки выхода.
Успешный способ зажечь лампу, как показано выше, заключался в размещении нижнего основания лампы на положительной клемме и соединении ребристого края с отрицательной клеммой с помощью провода. Любой заряд, который попадает в лампочку в нижнем основании, выходит из лампы в том месте, где провод соприкасается с ребристым краем. Тем не менее, нижнее основание не обязательно должно быть той частью лампы, которая касается положительного полюса.Лампа загорится так же легко, если ребристый край поместить поверх положительной клеммы, а нижнее основание соединить с отрицательной клеммой с помощью провода. Последние две компоновки, которые приводят к включению лампочки, включают размещение лампы на отрицательном выводе ячейки, либо путем соприкосновения с ребристым краем, либо с нижним основанием. Затем провод должен соединить другую часть лампы с положительной клеммой элемента.
Требование замкнутого проводящего путиЕсть два требования, которые должны быть выполнены, чтобы установить электрическую цепь.Первое наглядно продемонстрировано вышеупомянутой деятельностью. Должен быть замкнутый проводящий путь, который простирается от положительного вывода к отрицательному. Недостаточно просто наличия замкнутого проводящего контура; Сама петля должна проходить от положительного вывода к отрицательному выводу электрохимической ячейки. Электрический контур похож на водяной контур в аквапарке. Поток заряда по проводам аналогичен потоку воды по трубам и горкам в аквапарке.Если труба закупоривается или ломается так, что вода не может пройти полный путь через контур , то поток воды скоро прекратится. В электрической цепи все соединения должны быть выполнены из токопроводящих материалов, способных нести заряд. По мере продолжения эксперимента с ячейкой, лампочкой и проводом некоторые студенты исследуют способность различных материалов нести заряд, вставляя их в свои цепи. Металлические материалы являются проводниками и могут быть вставлены в цепь, чтобы успешно зажечь лампочку.С другой стороны, бумага и пластмассы обычно являются изоляторами, и их вставка в цепь будет препятствовать прохождению заряда до такой степени, что ток пропадет и лампочка больше не загорится. Должен быть замкнутый проводящий контур от положительного вывода к отрицательному, чтобы установить цепь и иметь ток.
С пониманием этого первого требования к электрической цепи становится ясно, что происходит, когда лампа накаливания в настольной лампе или торшере перестает работать.Со временем нить накаливания лампочки становится слабой и хрупкой, часто может сломаться или просто ослабнуть. Когда это происходит, цепь разомкнута, и замкнутый проводящий контур больше не существует. Без замкнутого проводящего контура не может быть ни цепи, ни потока заряда, ни горящей лампочки. В следующий раз, когда вы обнаружите сломанную лампочку в лампе, осторожно извлеките ее и осмотрите нить. Часто встряхивание снятой лампы вызывает дребезжание; нить накала, вероятно, упала с опорных стоек, на которые она обычно опирается, на дно стеклянного шара.При встряхивании вы услышите стук нити, ударяющейся о стеклянный шар.
Потребность в энергоснабженииВторое требование к электрической цепи, которое является общим для каждой из успешных попыток, продемонстрированных выше, заключается в том, что на двух концах цепи должна быть разность электрических потенциалов. Чаще всего это устанавливается при использовании электрохимической ячейки, набора ячеек (т.е.е., аккумулятор) или какой-либо другой источник энергии. Существенно, что существует некоторый источник энергии, способный увеличивать электрическую потенциальную энергию заряда, когда он перемещается от терминала с низкой энергией к терминалу с высокой энергией. Как обсуждалось в Уроке 1, для перемещения положительного тестового заряда против электрического поля требуется энергия. Применительно к электрическим цепям движение положительного тестового заряда через элемент от вывода с низким энергопотреблением к выводу с высоким энергопотреблением является движением против электрического поля.Это движение заряда требует, чтобы над ним была проделана работа, чтобы поднять его вверх к терминалу с более высокой энергией. Электрохимическая ячейка выполняет полезную роль в обеспечении энергии для работы с зарядом, чтобы накачать ее, или переместить ее через ячейку от отрицательной клеммы к положительной. Таким образом, ячейка устанавливает разность электрических потенциалов на двух концах электрической цепи. (Концепция разности электрических потенциалов и ее применение к электрическим цепям подробно обсуждались в Уроке 1.)
В бытовых электрических цепях энергия подается местной коммунальной компанией, которая отвечает за обеспечение того, чтобы пластины hot и нейтральные в монтажной коробке вашего дома всегда имели разность электрических потенциалов около 110 вольт. 120 Вольт (в США). В типичной лабораторной деятельности электрохимический элемент или группа элементов (то есть батарея) используется для установления разности электрических потенциалов на двух концах внешней цепи около 1.5 Вольт (одна ячейка) или 4,5 Вольт (три ячейки в упаковке). Часто проводят аналогии между электрической цепью и водным контуром в аквапарке или поездкой на американских горках в парке развлечений. Во всех трех случаях что-то движется по полному циклу, то есть по цепи. И во всех трех случаях важно, чтобы схема включала участок, в котором энергия подводится к воде, каботажному автомобилю или заряду, чтобы переместить его на вверх по склону против его естественного направления движения от низкопотенциальной энергии до высокая потенциальная энергия.В аквапарке есть водяной насос, который перекачивает воду с уровня земли на вершину горки. У аттракционов «американские горки» есть цепь с приводом от двигателя, которая переносит поезд каботажных вагонов от уровня земли до вершины первого падения. А электрическая цепь имеет электрохимический элемент, батарею (группу ячеек) или какой-либо другой источник энергии, который перемещает заряд с уровня земли (отрицательный вывод) на положительный вывод. Путем постоянной подачи энергии для перемещения заряда от клеммы с низкой энергией и низким потенциалом к клемме с высокой энергией и высоким потенциалом можно поддерживать непрерывный поток заряда.
Устанавливая эту разницу в электрическом потенциале, заряд может течь вниз по внешней цепи. Это движение заряда естественно и не требует энергии. Подобно движению воды в аквапарке или американским горкам в парке развлечений, движение под уклон является естественным и происходит без потребности в энергии из внешнего источника. Разница потенциалов — будь то гравитационный или электрический потенциал — заставляет воду, каботажную машину и заряд двигаться.Эта разность потенциалов требует ввода энергии от внешнего источника. В случае электрической цепи одним из двух требований для создания электрической цепи является источник энергии.
В заключение, есть два требования, которые должны быть выполнены, чтобы установить электрическую цепь. Требования:
- Должен быть источник энергии, способный выполнять работу на зарядке, чтобы переместить его из места с низким энергопотреблением в место с высоким энергопотреблением и, таким образом, установить разность электрических потенциалов на двух концах внешней цепи.
- Во внешней цепи должен быть замкнутый проводящий контур, который простирается от положительной клеммы с высоким потенциалом к отрицательной клемме с низким потенциалом.
1. Если электрическую схему можно сравнить с водным контуром в аквапарке, то …
… батарея будет аналогична ____.… положительный полюс аккумуляторной батареи будет аналогичен ____.
… ток аналогичен ____.
… заряд будет аналогичен ____.
… разность электрических потенциалов аналогична ____.
Выбор:
A. давление воды
млрд. Галлонов воды, стекающей по горке в минуту
С.вода
D. нижняя часть слайда
E. водяной насос
F. верх горки
2. Используйте свое понимание требований к электрической цепи, чтобы определить, будет ли проходить заряд через следующие устройства ячеек, лампочек, проводов и переключателей.Если нет расхода заряда то объясните почему нет.
а. | б. |
Поток заряда: да или нет? Пояснение: | Поток заряда: да или нет? Пояснение: |
c. | d. |
Поток заряда: да или нет? Пояснение: | Поток заряда: да или нет? Пояснение: |
3.На схеме справа показана лампочка, подключенная к автомобильному аккумулятору 12 В. Показаны клеммы + и -.
а. Когда + заряд проходит через батарею от D к A, он ________ (получает, теряет) потенциальную энергию и ________ (получает, теряет) электрический потенциал. Точка максимальной энергии в батарее — это клемма ______ (+, -).г. Когда + заряд движется по внешней цепи от A к D, он ________ (получает, теряет) потенциальную энергию и ________ (получает, теряет) электрический потенциал.Точка максимальной энергии во внешней цепи находится ближе всего к клемме ______ (+, -).
г. Используйте знаки>, <и = для сравнения электрического потенциала (В) в четырех точках цепи.
V A V B V C V D
4. В фильме « Tango and Cash » Курт Рассел и Сильвестр Сталлоне сбегают из тюрьмы, спрыгнув с вершины высокой стены по воздуху на высоковольтную линию электропередачи.Перед прыжком Сталлоне возражает против этой идеи, говоря Расселу: «Мы собираемся поджариться». Рассел отвечает: «Вы ведь не учились в школе физики. Пока вы касаетесь только одного провода и ваши ноги не касаются земли, вас не ударит током». Это правильное утверждение?
выпускников Массачусетского технологического института пытаются зажечь лампочку с помощью аккумулятора и провода — Джош Сильверман
Видео: Скандальное!
Я видел это видео, в котором учащиеся инженеров на выпуске из Массачусетского технологического института не могли запитать лампочку, используя батарею и один провод:
Удивительно, что у инженеров возникли проблемы с настройкой схемы.Давайте посмотрим на проблему и посмотрим, что этот эпизод может научить нас эффективному обучению.
Решение: назад к основам электричества
Обычная лампочка имеет два вывода: один на основании, а другой на резьбе лампы. Если эти две клеммы поддерживать разные напряжения, ток будет течь через лампочку, вызывая накал накала.
Очевидный способ замкнуть цепь и зажечь лампочку — использовать два провода:
- подключить провод между одним выводом аккумулятора и ободом лампочки
- и второй провод между другой клеммой аккумулятора и цоколем лампы.
Хотя установка с одним проводом кажется другим, на самом деле это то же самое. Мы можем убедиться в этом, нарисовав диаграмму.
Случай 1: Замыкание цепи двумя проводами
Рассмотрим обычную схему с двумя проводами
Зададим себе простой вопрос: что такое провод? Ответ: инструмент для соединения двух компонентов электрической цепи. Это все, что нам нужно, чтобы замкнуть цепь одним проводом.
Случай 2: Замыкание цепи одним проводом
Глядя на батарею и лампочку, становится ясно, что мы можем прикоснуться одной из клемм батареи непосредственно к резьбе лампочки.
Например, прикоснувшись к положительной клемме батареи к резьбе лампы, мы поместим ее на тот же потенциал, что и на положительной клемме. Если теперь мы воспользуемся проводом для соединения клеммы в основании лампы с отрицательной клеммой аккумулятора, цепь замкнется, и на клеммах лампы будет поддерживаться постоянное напряжение, равное напряжению аккумулятора. будь легким!
Таким образом, мы можем устранить один из проводов без происшествий.
Вы могли заметить, что это не единственный способ замкнуть цепь. Фактически, есть еще три варианта, которые будут работать. Хотя лампочка требует напряжения на клеммах, полярность ее не волнует.
Итак, мы также можем сделать следующее:
Простой урок: если есть способ заставить два компонента схемы соприкасаться без использования провода, в этом нет необходимости.
Опасность высшего образования: потеря основ
Эти студенты, вероятно, все знали, как работают лампочки, электрические цепи и батареи. Тем не менее, они также, вероятно, провели последние несколько лет в колледже в старших классах, где основное внимание уделялось абстракции и теории. Столкнувшись с основами, они больше не понимали, где лампочка и батарея вписываются в их набор навыков и базу знаний. Это проблема не только Массачусетского технологического института или элитных академических кругов. Потеря понимания основ — врожденная опасность очень быстрого обучения многому.
Начальник отдела счастья Зорро консультируется с Питом.
Заключение: выработайте твердое понимание простых случаев
В любой сфере, в которой вы находитесь, вы можете защитить себя от будущей лампочки + момент батареи, заложив свои фундаментальные знания в твердое понимание простых случаев. Если вы хорошо понимаете основы своей дисциплины, вы всегда сможете извлечь из них более сложные идеи.И наоборот, чрезвычайно сложно заново открыть для себя основы , просто вспомнив обилие фантастических результатов в вашей области исследования. Другими словами, когда вы заблудитесь… вернитесь к основам.
Хотите еще такого? Ознакомьтесь с курсом «Физика повседневного».
лампочек и батарей рядом — Activity
Быстрый просмотр
Уровень оценки: 4 (3-5)
Требуемое время: 1 час
Расходные материалы на группу: 8 долларов США.50
Размер группы: 4
Зависимость действий: Нет
Тематические области: Алгебра, физические науки
Подпишитесь на нашу рассылку новостей
Резюме
Каждый день нас окружают схемы, в которых используются схемы «параллельно» и «последовательно».Сложные схемы, разработанные инженерами, состоят из множества более простых параллельных и последовательных схем. В этом практическом задании учащиеся создают параллельные схемы, исследуя их функции и их уникальные особенности. Эта инженерная программа соответствует научным стандартам нового поколения (NGSS).Инженерное соединение
Инженерыприменяют свое понимание схемотехники при разработке практичных повседневных изделий.Они часто предпочитают использовать параллельные цепи, чтобы при выходе из строя одной части цепи остальная часть цепи продолжала работать. Например, при проектировании электрической системы для автомобилей, грузовиков и внедорожников инженеры-электрики настраивают систему проводки таким образом, чтобы стоп-сигналы и фары включались параллельно. Таким образом, когда одна из лампочек перегорает, другая фара или стоп-сигнал остаются включенными.
Цели обучения
После этого занятия студенты должны уметь:
- Определение, распознавание и сборка параллельных цепей и параллельных участков более сложных цепей
- Объясните путь электрического заряда через цепь
- Понимание уравнений для расчета электроэнергии
- Поймите, что инженеры применяют свое понимание схемотехники при разработке практичных повседневных изделий.
Образовательные стандарты
Каждый урок или задание TeachEngineering соотносится с одним или несколькими научными дисциплинами K-12, образовательные стандарты в области технологий, инженерии или математики (STEM).
Все 100000+ стандартов K-12 STEM, охватываемых TeachEngineering , собираются, обслуживаются и упаковываются сетью стандартов достижений (ASN) , проект D2L (www.achievementstandards.org).
В ASN стандарты иерархически структурированы: сначала по источникам; например , по штатам; внутри источника по типу; например , естественные науки или математика; внутри типа по подтипу, затем по классу, и т. д. .
NGSS: научные стандарты нового поколения — наукаОжидаемые характеристики NGSS | ||
---|---|---|
4-ПС3-2. Проведите наблюдения, чтобы доказать, что энергия может передаваться с места на место с помощью звука, света, тепла и электрического тока.(4 класс) Вы согласны с таким раскладом? Спасибо за ваш отзыв! | ||
Нажмите, чтобы просмотреть другие учебные программы, соответствующие этим ожиданиям от результатов. | ||
В этом упражнении основное внимание уделяется следующим аспектам трехмерного обучения NGSS: | ||
Наука и инженерная практика | Основные дисциплинарные идеи | Пересекающиеся концепции |
Проведите наблюдения, чтобы получить данные, которые послужат основой для доказательства для объяснения явления или проверки проектного решения. Соглашение о выравнивании: Спасибо за ваш отзыв! | Энергия может передаваться с места на место с помощью движущихся объектов, звука, света или электрического тока. Соглашение о выравнивании: Спасибо за ваш отзыв! Энергия присутствует всякий раз, когда есть движущиеся объекты, звук, свет или тепло. Когда объекты сталкиваются, энергия может передаваться от одного объекта к другому, тем самым изменяя их движение.При таких столкновениях некоторая энергия обычно также передается окружающему воздуху; в результате воздух нагревается и раздается звук.Соглашение о выравнивании: Спасибо за ваш отзыв! Свет также передает энергию с места на место.Соглашение о выравнивании: Спасибо за ваш отзыв! Энергия также может передаваться с места на место с помощью электрического тока, который затем может использоваться локально для создания движения, звука, тепла или света.Токи, возможно, возникли с самого начала путем преобразования энергии движения в электрическую.Соглашение о выравнивании: Спасибо за ваш отзыв! | Энергия может передаваться различными способами и между объектами. Соглашение о выравнивании: Спасибо за ваш отзыв! |
Ожидаемые характеристики NGSS | ||
---|---|---|
4-ПС3-4.Примените научные идеи для разработки, тестирования и усовершенствования устройства, преобразующего энергию из одной формы в другую. (4 класс) Вы согласны с таким раскладом? Спасибо за ваш отзыв! | ||
Нажмите, чтобы просмотреть другие учебные программы, соответствующие этим ожиданиям от результатов. | ||
В этом упражнении основное внимание уделяется следующим аспектам трехмерного обучения NGSS: | ||
Наука и инженерная практика | Основные дисциплинарные идеи | Пересекающиеся концепции |
Применяйте научные идеи для решения задач проектирования. Соглашение о выравнивании: Спасибо за ваш отзыв! | Энергию также можно передавать с места на место с помощью электрического тока, который затем можно использовать локально для создания движения, звука, тепла или света. Токи, возможно, возникли с самого начала путем преобразования энергии движения в электрическую. Соглашение о выравнивании: Спасибо за ваш отзыв! Выражение «производить энергию» обычно относится к преобразованию накопленной энергии в желаемую форму для практического использования.Соглашение о выравнивании: Спасибо за ваш отзыв! Возможные решения проблемы ограничены доступными материалами и ресурсами (ограничениями). Успешность разработанного решения определяется с учетом желаемых характеристик решения (критериев). Различные предложения по решениям можно сравнивать на основе того, насколько хорошо каждое из них соответствует указанным критериям успеха или насколько хорошо каждое из них учитывает ограничения.Соглашение о выравнивании: Спасибо за ваш отзыв! | Энергия может передаваться различными способами и между объектами. Соглашение о выравнивании: Спасибо за ваш отзыв! Инженеры улучшают существующие технологии или разрабатывают новые.Соглашение о выравнивании: Спасибо за ваш отзыв! Большинство ученых и инженеров работают в группах.Соглашение о выравнивании: Спасибо за ваш отзыв! Наука влияет на повседневную жизнь.Соглашение о выравнивании: Спасибо за ваш отзыв! |
- Интерпретируйте дробь как деление числителя на знаменатель (a / b = a ÷ b).Решайте словесные задачи, связанные с делением целых чисел, что приводит к ответам в форме дробей или смешанных чисел, например, используя визуальные модели дробей или уравнения для представления проблемы.
(Оценка
5) Подробнее
Посмотреть согласованную учебную программу
Вы согласны с таким раскладом? Спасибо за ваш отзыв!
- Сложить, вычесть, умножить и разделить десятичные дроби до сотых, используя конкретные модели или чертежи и стратегии, основанные на разряде, свойствах операций и / или соотношении между сложением и вычитанием; свяжите стратегию с письменным методом и объясните используемую аргументацию.(Оценка
5) Подробнее
Посмотреть согласованную учебную программу
Вы согласны с таким раскладом? Спасибо за ваш отзыв!
Какое альтернативное выравнивание вы предлагаете для этого контента?
Список материалов
Каждой группе необходимо:
На долю всего класса:
- резинки
- Инструмент для зачистки проводов или наждачная бумага (для удаления изоляции на концах проводов)
- кусачки
- отвертка
Примечание. Многие материалы, необходимые для этой лаборатории, могут быть повторно использованы во многих других сферах деятельности, связанных с электричеством.Когда батареи изнашиваются, утилизируйте их на свалке с опасными отходами.
Рабочие листы и приложения
Посетите [www.teachengineering.org/activities/view/cub_electricity_lesson06_activity1], чтобы распечатать или загрузить.Больше подобной программы
Параллельная схема и закон Ома: много путей для подачи электричестваСтуденты изучают состав и практическое применение параллельной схемы по сравнению с последовательной схемой.Студенты проектируют и строят параллельные схемы, исследуют их характеристики и применяют закон Ома.
Лампочки и батарейки в рядВо время этого упражнения студенты строят простую последовательную схему и обнаруживают свойства, связанные с последовательными схемами.
Электрификация мираСтуденты знакомятся с фундаментальными концепциями электричества. Они отвечают на такие вопросы, как «Как вырабатывается электроэнергия?» и «Как это используется в повседневной жизни?» Наглядные примеры принципиальных схем используются, чтобы помочь объяснить, как течет электричество.
Цепи: один путь для электричестваСтуденты узнают, что движение заряда по цепи зависит от сопротивления и расположения компонентов схемы. В одном из связанных практических занятий студенты создают и исследуют характеристики последовательных цепей.В другом задании учащиеся конструируют и собирают фонарики.
Введение / Мотивация
Спросите студентов, принимал ли кто-нибудь из них когда-либо душ, когда кто-то в другой части дома смыл воду из туалета — ОЙ! Вода в душе становится очень горячей, потому что вы были вынуждены делить холодную воду с другим устройством в доме.Аналогичным образом работает параллельная схема. Когда два устройства соединены параллельно, они вынуждены делить ток, протекающий по цепи.
Спросите студентов, есть ли у кого-нибудь из них дома лампа с трехходовой лампой? (Некоторые ответят утвердительно.) Тем ученикам, которые не знакомы с трехсторонней лампочкой, объясните, что она имеет три нити накала, обеспечивающие настройку низкой, средней и высокой яркости, например 60 Вт / 75 Вт / 100 Вт. Вт. С каждым щелчком лампы лампочка становится ярче.Спросите учеников, у которых дома есть трехпозиционная лампочка, у них когда-либо средний уровень яркости не работал, но самый низкий и самый высокий уровни все еще работают? (Студент может ответить «да».) Напомните студентам, что, когда они строили цепи, которые были включены последовательно, когда одна лампочка была вынута из последовательной цепи, образовалась разомкнутая цепь, и электроны не могли течь, чтобы зажечь другие лампы. Теперь спросите студентов, как это возможно, что, когда средний уровень яркости не работает в трехсторонней лампочке, самый низкий уровень и самый высокий уровень все еще работают? (Ответ: электроны все еще могут течь к двум другим нитям, потому что три нити соединены параллельно.) Объясните учащимся, что нити в трехходовой лампочке соединены «параллельно».
В качестве другого примера расскажите учащимся, что при проектировании электрической системы для легковых, грузовых автомобилей или внедорожников инженеры-электрики проектируют систему проводки таким образом, чтобы стоп-сигналы и фары подключались параллельно. Таким образом, когда одна из лампочек в фаре или стоп-сигнале перегорает, другая фара или стоп-сигнал остается включенной. Фары и стоп-сигналы — это лишь несколько примеров из множества устройств, которые инженеры подключают параллельно .Инженеры часто используют параллельные цепи, чтобы убедиться, что в случае разрыва одной части цепи остальная часть цепи продолжает работать.
Процедура
Рисунок 1. Параллельная цепь (слева) и соответствующая ей электрическая схема (справа). авторское право
Авторские права © 2003 Джо Фридрихсен, Программа ITL, Университет Колорадо в Боулдере
Предпосылки — Параллельные схемы
- Поскольку каждое устройство подключается через одни и те же два узла (точка пересечения двух проводов), напряжение на каждом устройстве одинаковое.
- Общее сопротивление параллельной цепи меньше, чем сопротивление любой ветви.
- По закону Ома (I = V / R) полный ток равен напряжению, деленному на общее сопротивление.
- Общий ток делится между параллельными ветвями. Ветви с более низким сопротивлением имеют более высокий ток, а ветви с более высоким сопротивлением — более низкий ток.
- Полный ток равен сумме токов в ответвлениях.
- Общее напряжение для идентичных батарей, подключенных параллельно, такое же, как напряжение на любой одной батарее.
- Инженеры подключают устройства параллельно, так что, если одна часть цепи выходит из строя, остальная часть цепи продолжает работать.
До операции
- Соберите все материалы. Если вы выполняли упражнение с последовательной схемой (Урок 5, Лампочки и батареи в ряд), повторно используйте провода, лампочки, патроны для лампочек и батареи из этого упражнения.
- Отрежьте четыре куска по 6 дюймов (15 см), два куска по 10 дюймов (25 см) и по одному куску 4 дюйма (10 см) для каждой команды.
Со студентами
- Попросите учащихся угадать, сколько батареек потребуется, чтобы зажечь две лампочки, и записать свой прогноз в Рабочем листе «Рядом».
- Попросите учащихся использовать инструменты для зачистки проводов или наждачную бумагу, чтобы удалить примерно 1/2 дюйма (1,3 см) изоляции с концов каждого куска провода.
- Попросите каждую команду изготовить держатель батареи. Используя малярную ленту, последовательно соедините две батареи типа D. Положительный полюс одной батареи должен касаться отрицательной клеммы второй батареи. Отрежьте держатель для бумажных полотенец по длине двух батареек. Поместите две батареи в трубку для бумажных полотенец. Подключите 10-дюймовый провод к положительной клемме одной батареи, а другой 10-дюймовый провод к отрицательной клемме второй батареи.
- Постройте цепь, используя две последовательно соединенные батареи, выключатель, два держателя и лампочки, включенные параллельно (см. Рисунок 2). Включите выключатель. Что происходит? (Ответ: загораются обе лампочки.)
Рис. 2. Параллельная цепь с двумя лампочками. Авторское право
Авторское право © 2003 Джо Фридрихсен, Программа ITL, Университет Колорадо в Боулдере
- Откройте выключатель и выньте одну из лампочек из держателя. Включите выключатель. Что происходит? (Ответ: Загорается оставшаяся в цепи лампочка.См. Рисунок 3.)
Рис. 3. Параллельная цепь с одной удаленной лампочкой и одной лампочкой, оставшейся в цепи. Авторское право
Авторские права © 2003 Джо Фридрихсен, Программа ITL, Университет Колорадо в Боулдере
- Откройте выключатель и замените снятую лампочку. Теперь снимаем вторую лампочку. Включите выключатель. Что происходит? (Ответ: Сейчас в цепи загорается лампочка.)
- Открыть выключатель. Замените снятую лампочку и добавьте третью лампочку параллельно первым двум.Замкните выключатель, чтобы проверить цепь. Что происходит? (Ответ: Каждая из трех лампочек такая же яркая, как когда было только две лампочки.)
- Используйте схему одной команды и продемонстрируйте, что происходит с яркостью лампочек, когда вы добавляете четвертую лампочку параллельно. Что происходит? (Ответ: Четвертая лампочка такая же яркая, как и первые три. Кроме того, первые три лампы такие же яркие, как и раньше.)
- Используйте полученные знания о параллельных цепях, чтобы заполнить Рабочий лист по математике электроэнергии и Рабочий лист по математике параллельных цепей.Или, если время ограничено, назначьте домашнее задание.
Оценка
Оценка перед началом деятельности
Человеческое изображение: Попросите трех добровольцев. Назначьте одного добровольца «батареей», а двух — «лампочками». (Это может помочь нарисовать соответствующие символы на листах бумаги и приклеить их к рубашкам.) Попросите учеников физически изобразить последовательную схему, взявшись за руки в Затем попросите учащихся изобразить параллельную цепь, повернув лампочки и подставку для батареек в одном направлении, при этом их руки касаются локтей человека перед ними.
Прогноз: Раздайте параллельные рабочие листы перед началом занятия. Попросите учащихся предсказать, сколько батарей, по их мнению, потребуется, чтобы зажечь две лампочки, и записать свой прогноз на листе.
Встроенная оценка деятельности
Рабочий лист: Раздайте параллельные рабочие листы перед началом упражнения и попросите учащихся следовать по тексту, сначала схематически схематически создавая последовательную схему, а затем заполняя ответы по мере выполнения упражнения.
Оценка после деятельности
Круглый стол: Разделите класс на группы по 3-5 студентов в каждой. Попросите учащихся каждой команды составить список объектов, в которых могут быть параллельные цепи, и каждый человек по очереди записывает идеи. Студенты разносят список по группе, пока не будут исчерпаны все идеи. Попросите команды прочитать ответы вслух и записать их на доске. (Возможные предметы: освещение в доме, бытовая техника, компьютеры, игрушки, проигрыватели компакт-дисков, сотовые телефоны и т. Д.)
Сделайте это весело с Boggle !: Повторите то же действие, что и выше, за исключением случаев, когда команды зачитывают свои ответы вслух и записывают их на доске, спросите, придумали ли другие команды такая же идея. Если у других команд есть такой же ответ на своих листах, все команды должны вычеркнуть этот ответ в своем списке. Побеждает команда, у которой есть самые «уникальные» идеи!
Решение задач / Домашнее задание: Попросите учащихся заполнить Рабочий лист по математике электроэнергии и Рабочий лист по математике параллельных цепей.
Вопросы безопасности
- Попросите учащихся не играть с лампочками или держателями. Если какой-либо из этих предметов сломается, они могут нанести травму.
- Попросите учащихся не играть с изолированным проводом; они могут порезаться, уколоть себя или других.
Советы по поиску и устранению неисправностей
Чтобы помочь студентам понять уравнение в Таблице математики электроэнергии, просмотрите его вместе с ними и попросите их найти «отсутствующую переменную».«
Между всеми компонентами схемы должен быть хороший электрический контакт. Если учащимся трудно заставить схему работать, проверьте все соединения.
Расширения деятельности
Используйте цепь одной команды и вставьте параллельно третью батарею. Используйте мультиметр, чтобы измерить напряжение на двух батареях. Как это сравнить с напряжением одной батареи D-cell? (Ответ: напряжение на трех идентичных батареях, подключенных параллельно, такое же, как напряжение на двух батареях.)
Используйте мультиметр, чтобы определить напряжение и ток на одной лампочке, используя простую схему с одной лампочкой. Используйте эти значения, чтобы найти сопротивление лампочки, используя закон Ома R = V / I. Затем используйте мультиметр, чтобы определить напряжение на двух параллельных лампах и ток в цепи. Найдите сопротивление этой нагрузки, используя R = V / I. Сравните сопротивление одной лампы с сопротивлением двух параллельно включенных лампочек. Сравните ток в одной лампочке с током в цепи.
Примечание. Мультиметр — это прибор, который сочетает в себе измерительные возможности амперметра (измеряет ток), вольтметра (измеряет разность потенциалов или напряжение между двумя точками) и омметра (измеряет сопротивление) в одном приборе для измерения (ток, напряжение и сопротивление) от цепей. . Мультиметры доступны в Radio Shack (или другом магазине электроники) по цене от 15 до 100 долларов.
Масштабирование активности
Для младших классов используйте рабочие листы по математике в качестве задания или выполняйте их вместе, как класс.
Авторские права
© 2004 Регенты Университета КолорадоАвторы
Ксочитл Замора Томпсон; Сабер Дурен; Джо Фридрихсен; Дарья Котыс-Шварц; Малинда Шефер Зарске; Дениз В. КарлсонПрограмма поддержки
Комплексная программа преподавания и обучения, Инженерный колледж, Университет Колорадо в БоулдереБлагодарности
Содержание этой учебной программы по электронной библиотеке было разработано за счет грантов Фонда улучшения послесреднего образования (FIPSE), U.S. Департамент образования и Национальный научный фонд (грант ГК-12 № 0338326). Однако это содержание не обязательно отражает политику DOE или NSF, и вы не должны рассчитывать на одобрение со стороны федерального правительства.
Последнее изменение: 23 января 2021 г.
Почему правильное размещение проводов на лампочке важно для успешного зажигания лампы
Сводка
Используя это упражнение, учащиеся должны выяснить, почему провода нужно проложить сбоку от лампочки и на дне лампочки, чтобы она загорелась.Учащиеся соберут простую схему, используя батарею, 2 провода и лампочку. Чтобы понять, как лампочка становится частью простой схемы, ученики исследуют структуру лампочки, заглянув внутрь большей лампочки. Затем ученики изобразят структуру лампы и прохождение электричества через эту простую цепь (включая лампочку, провода и батарею).
Целей обучения
— Учащиеся узнают, как электрический ток проходит через лампочку как часть простой цепи.
— Студенты смогут объяснить, почему важно прикасаться к проводу в нижней части лампочки и на металлической стороне лампочки.
— Студенты изобразят внутреннюю структуру лампочки и проследят поток электричества через лампочку как часть простой схемы.
— Словарь: простая схема, ток, нить накала
Контекст для использования
Это задание можно использовать в вашем классе (3–6 классы) на вводном уровне по простым схемам.Вся работа должна занять около 30-45 минут. Размер класса может быть разным. Вы можете попросить учащихся работать индивидуально или в небольших группах. Это простое практическое открытие для студентов, открывающее глаза на то, как электрический ток проходит через лампочку. Необходимые материалы:
Подготовка: Учитель должен снять внешнее стекло с нескольких больших лампочек (по одной на каждую небольшую группу, чтобы сэкономить на количестве лампочек)
Другие необходимые материалы (на каждого ученика или на небольшую группу):
2 провода
1 батарея
1 маленькая лампочка
держатель батареи (если имеется)
лента для удержания проводов (если держатель батареи недоступен)
Как только ученики обнаружат и обсудят работу простой схемы с использованием меньшей лампочки, они должны будьте готовы к основной части этого занятия (изучению внутренней структуры лампочки).
Предмет : Физика: электричество и магнетизм
Тип ресурса : Мероприятия: Классные занятия
Уровень класса : средний (3-5)
Описание и учебные материалы
Подготовка: Учитель должен снять стекло с нескольких больших лампочек (по одной на каждую небольшую группу)Другие необходимые материалы (на студента или на небольшую группу):
2 провода
1 аккумулятор
1 маленькая лампочка
держатель батареи (при наличии)
лента для удержания проводов (если нет держателя для батареек)
Студенты сначала попробуют зажечь лампочку с помощью батареи, двух проводов и маленькой лампочки.Как только это станет для всех успешным, обсудите (или просмотрите), как работает простая схема.
Затем, без предварительных инструкций, спросите, что они знают о лампочке. «Как поток электричества к лампочке зажигает лампочку?» Чтобы помочь ученикам понять это, им нужно будет увидеть, где ток проходит через лампочку. Чтобы сэкономить на лампочках, я бы разделил ваш класс на небольшие группы. Раздайте каждой небольшой группе студентов электрическую лампочку с удаленным наружным стеклом.(Чтобы лучше исследовать структуру лампочки, вы должны использовать более крупные стандартные бытовые лампочки.) Попросите их осмотреть внутреннюю часть лампочки, чтобы увидеть, где провода должны соприкасаться с лампочкой, и спросите: «Почему именно там? »
Изучив внутреннюю структуру лампочки, они должны понять, что один провод в лампочке прикреплен к металлической стороне лампы, а затем к нити накала. Другой провод помогает замкнуть цепь в лампе, присоединяясь к нити накала, а затем к основанию лампы.Это открытие должно помочь им понять, как ток может проходить в лампочку и выходить из нее, чтобы простая цепь оставалась замкнутой, когда она зажигает лампочку. Чтобы объяснить зажигание нити накала в лампе, необходимы дополнительные исследования и обсуждения.
После того, как структура лампочки будет изучена, обсуждена и понята, можно нарисовать и пометить схему внутренней части лампочки, проводов и батареи. Затем на диаграмму следует добавить поток тока.
(См .: http: // home.howstuffworks.com/light-bulb1.htm)
Вы можете расширить это упражнение, посмотрев внутрь фонарика и попытавшись выяснить, как лампочка загорается в фонарике. Схема простой схемы в фонарике может быть нарисована.
Учебные заметки и советы
Я много раз учил простые схемы, используя лампочку в качестве одного из инструментов. Я знал, что ученики должны коснуться металлической стороны и дна лампочки, чтобы она загорелась, но это упражнение помогает ученикам обнаружить и понять, почему эти два контакта важны.Советы по безопасности: Учителя должны снимать внешнее стекло с лампочки, а не ученики. Убедитесь, что дети осторожно обращаются с большими открытыми лампочками. Остерегайтесь острых краев. НЕ позволяйте учащимся подключать эти открытые лампочки к току.
Оценка
— Понаблюдайте за их практической работой (изготовление лампочки с использованием 1 батареи, 2 проводов и 1 лампочки, чтобы замкнуть простую схему)
— Схема внутреннего устройства лампочки
ученика
— Схема батареи, проводов, большой лампочки с внутренней структурой и отслеживание тока через эту простую схему подключения.
Стандарты
4.II.C.1 — простые схемы
Ссылки и ресурсы
Как работают электрические схемы | Основы освещения
Основные схемы
Электрическая цепь — это непрерывный путь, по которому электрический ток существует и / или может течь. Простая электрическая схема состоит из источника питания, двух проводов (один конец каждого подсоединяется к каждой клемме ячейки) и небольшой лампы для к которым прикреплены свободные концы проводов, идущих от ячейки.
Когда соединения выполнены правильно, цепь «замкнется», и ток пройдет через цепь и зажжет лампу.
Простая электрическая схема
После того, как один из проводов отсоединен от источника питания или в потоке сделан «разрыв», цепь теперь «разомкнута» и лампа больше не будет светиться.
На практике цепи «размыкаются» такими устройствами, как переключатели, предохранители и автоматические выключатели. Две общие схемы классификации бывают последовательными и параллельными.
Элементы последовательной цепи соединены встык; один и тот же ток течет по его частям одну за другой.
Цепи серииВ последовательной цепи ток через каждый из компонентов одинаков, и напряжение на компонентах — это сумма напряжений по каждому компоненту.
Пример последовательной цепи
Параллельные схемы
В параллельной цепи напряжение на каждом из компонентов одинаковое, а полный ток является суммой токов. через каждый компонент.
Если два или более компонента соединены параллельно, они имеют одинаковую разность потенциалов ( напряжение) на их концах. Потенциальные различия между компоненты одинаковы по величине и имеют одинаковую полярность. Одно и то же напряжение применимо ко всем цепям компоненты соединены параллельно.
Если каждая лампочка подключена к аккумулятору отдельным контуром, считается, что лампы параллельны.
Пример параллельной схемы.
Пример схемы
Рассмотрим очень простую схему, состоящую из четырех лампочек и одной на 6 В. аккумулятор. Если провод соединяет батарею с одной лампочкой, второй лампочкой, третьей лампочкой, а затем обратно с батареей в одну непрерывную петлю, говорят, что луковицы соединены последовательно. Если три лампочки соединены последовательно, через все их, а падение напряжения на каждой лампочке составляет 1,5 В, и этого может быть недостаточно, чтобы они светились.
Если лампочки соединены параллельно, ток, протекающий через лампочки, объединяется, образуя ток. протекает в батарее, а падение напряжения на каждой лампочке составляет 6,0 В, и все они светятся.
В последовательной цепи каждое устройство должно функционировать, чтобы цепь была замкнутой. Одна лампочка перегорела в последовательной цепи разрывает цепь. В параллельных цепях каждая лампа имеет свою собственную цепь, поэтому все лампы, кроме одной, могут перегореть, и последний по-прежнему будет работать.
Цепей постоянного тока (DC)
Цепей постоянного тока (DC)ВСЕ ТАБЛИЦЫ НА ОДНОЙ СТРАНИЦЕ ДЛЯ ЛЕГКОЙ ПЕЧАТИ
ОСОБЫЕ ЗАДАЧИ
В этом эксперименте вы исследуете два способа соединения элементов схемы. Один метод, называемый соединением серии , характеризуется одинаковый ток проходит через каждый элемент. Другой метод, называемый параллельным соединением , характеризуется одинаковое напряжение на каждом элементе.(Возможно, что набор элементов схемы не будет последовательная или параллельная конфигурация.)Представьте, что вы прикрепили одну лампочку к одной батарее. Это будет наш стандарт для сравнения. Если подключено несколько лампочек серии, то каждая отдельная лампочка будет светиться тусклее, чем стандартная и если одна из последовательно подключенных лампочек удалена, все остальные лампочки также погаснут.
Если несколько лампочек подключены параллельно, то каждая в отдельности лампа будет светиться с той же яркостью, что и стандартная, и если одна из параллельные лампочки удаляются, остальные лампочки продолжают гореть такая же яркость, как и до снятия.
Другие элементы схемы, такие как батареи, также могут быть подключены в последовательно или параллельно.
ОБОРУДОВАНИЕ
Печатная плата, D-ячейки (2), провода, резисторы, лампочки, мультиметр, и выводы зонда.СИМВОЛЫ ДЛЯ ЭЛЕМЕНТОВ ЦЕПИ
В этой лабораторной работе вы будете использовать множество электрических компонентов, все это будет обозначено на схематических диаграммах. Вам нужно будет распознавать эти компоненты для эффективного выполнения лабораторной работы.СХЕМА ПЛАТЫ
ПРОЦЕДУРА
Подчеркнутые отрывки ниже требуют ответа или наброска в вашем ноутбук.Часть 1 — Лампочки
- Если вы не снимаете данные, отключите аккумулятор. Этот увеличит срок службы батареи и лампочек.
- Используйте два куска провода, чтобы подключить одну лампочку к одной батарее в таким образом, чтобы лампочка светилась. В случае неудачи попробуйте в в следующем порядке другая схема подключения, другая лампа и другой аккумулятор. Эскиз с использованием обозначений для электрических компоненты, показанные выше, схематическая диаграмма (не изображение) схема, которую вы успешно использовали для зажигания лампочки.Нарисуйте провода выполняется вертикально или горизонтально относительно страницы. Это будет сделайте диаграмму более понятной. Вам не нужно включать пружины в принципиальные схемы; они действуют как часть проволоки.
- Поменяйте местами два провода на светофоре. (т.е. возьмите провод на каждом пружина соединяется с светом и соединяется с другой пружиной.) Влияет ли это на яркость света лампочка?
- Поменяйте местами два провода на батарее. Есть ли в этом влияет на яркость лампочки?
- Подключите цепь таким образом, чтобы зажечь две лампочки на равная яркость. Запишите уровень яркости этих огней относительно одной лампочки, которую вы зажгли на шаге 2. (Точные цифры указаны не обязательно, просто запишите, горит ли лампочка в этой цепи. ярче, тусклее или такой же яркости, как у лампы на шаге 2.) Затем эскиз, в схематическом методе, описанном выше, схема, которую вы использовали чтобы зажечь обе лампочки. Помните, когда на самом деле цепи, отключите аккумулятор.
- Выкрутить одну из лампочек из патрона.(Нет
необходимо вынуть лампочку из патрона, просто откручиваем ее до тех пор, пока
лампочка выключается и остается выключенной.) Запишите этот эффект
действие имеет на другую лампочку в цепи. (т.е. делает ли это
оставаться включенным, гаснуть, становиться ярче или тусклее и т.д.
необходимы числа.) Верните лампочку в патрон и повторите
для другой лампы.
Лампочка снята Эффект снятия Первая лампочка Вторая лампа - Лампочки включены последовательно или параллельно?
- Используя те же две лампочки и одну батарею, подключите другую цепь таким образом, чтобы зажечь две лампочки. лампы с одинаковой яркостью, но с другим уровнем яркости, чем ранее. Запишите уровень яркости этих огней относительно одной лампочки, которую вы зажгли на шаге 2. (Точные цифры не необходимо, просто запишите, ярче ли лампочки этой схемы, тусклее или такой же яркости, как у лампы на шаге 2.) Затем нарисуйте в схематический метод, описанный выше, схема, которую вы использовали для освещения обе лампочки. Помните, когда на самом деле цепь не проверяется, отключите аккумулятор.
- Выкрутить одну из лампочек из патрона. Запишите
эффект, который это действие оказывает на другую лампочку в цепи. (т.е.
остается включенным, гаснет, становится ярче или тусклее и т. д. Здесь снова
точные числа не требуются.) Верните лампу в патрон.
и повторите для другой лампочки.
Лампочка снята Эффект снятия Первая лампочка Вторая лампа - Лампочки включены последовательно или параллельно?
- Постройте цепь, состоящую из трех последовательно соединенных лампочек. Запись уровень яркости этих огней относительно одной лампочки, которую вы горит на шаге 2. Изобразите схему.
- Постройте цепь, состоящую из трех параллельно включенных лампочек. Запись уровень яркости этих огней относительно одной лампочки, которую вы горит на шаге 2. Постройте схему.
- Постройте цепь, которая зажигает две лампочки с одинаковой интенсивностью и один с разной интенсивностью. Нарисуйте принципиальную схему успешная схема, обозначив индикаторы A, B и C, как на плате.
- Снимите по очереди каждую из трех лампочек. Опишите эффект
удаления на двух других луковицах.
Лампочка снята Эффект снятия А B С - Подключите одну лампочку к батареям каждым из трех способов.
показано на рисунках ниже. Запишите яркость лампочки
для каждой конфигурации батареи.
Конфигурация батареи Яркость 1 2 3 - Посмотрите, как батареи были подключены на каждой из фигур
выше. (т.е. были ли они последовательно, параллельно, ни то, ни другое…) Запись
для каждой конфигурации, использованной выше, какой это был тип подключения.
Конфигурация батареи Тип подключения 1 2 3 - Соберите схему, показанную на рисунке ниже. Поверните ручку на переменный резистор или потенциометр (потенциометр — единственный новый компонент в этой схеме.) Если вам сложно повернуть пальцами возьмите монету или аналогичный предмет. Есть лампочка последовательно или параллельно с потенциометром?
- Потенциометр установлен на высокое сопротивление, когда ручка полностью повернута. против часовой стрелки, и устанавливается на низкое сопротивление, когда ручка полностью по часовой стрелке. Когда лампочка самая яркая — когда потенциометр установлено низкое или высокое сопротивление?
- Теперь вы должны почувствовать работу последовательного и параллельного схемы. Запишите любые обобщения, которые вы можете сделать по поводу подключенных к электросети светильников. серии, а также параллельно.
- Последовательно записывайте любые обобщения о батареях. и параллельно.
Часть 2 — Резисторы
Код резистора
Пример считывания кодированного сопротивления
Предположим, что первая полоса (начиная слева) желтая, вторая полоса оранжевая, третья полоса — красная, а четвертая — золотая.Желтый = 4, оранжевый = 3 и красный = 2 нуля, поэтому значение составляет 4300 Ом. В допуск или неопределенность при изготовлении резистора в соответствии с золотая полоса составляет 5%.Попробуйте учебное пособие Лори Уокер, найденное в Интернете.
Теперь приступим к измерительной части лаборатории. Вы будете использовать свой мультиметр в следующие несколько сеансов. Не покидайте мультиметр включен на длительное время, когда он не используется.
- Ознакомьтесь с мерами предосторожности при использовании мультиметр как омметр.
- Выберите три резистора с одинаковым кодовым сопротивлением. Группы должно быть таким же; цвет и форма корпуса резистора могут отличаться.
- Запишите цвета полос, закодированное сопротивление и допуск в таблице ниже.
- Подключите три резистора в последовательную схему, показанную ниже, используя пружины в нижней части доски, чтобы удерживать резисторы. Оставьте аккумулятор вне цепи для сопротивления измерения.
- Не подключайте аккумулятор при измерении сопротивления! Измерьте фактическое сопротивление каждого из резисторов с помощью мультиметр и записать те значения с ошибками в таблицу ниже. Чтобы определить правильную настройку глюкометра, запустите глюкометр на самое большое значение, затем уменьшите значение и остановитесь на настройка, которая может обрабатывать как размер измеряемых данных и имеет наибольшее количество значащих цифр в чтении.
- В столбце «Соглашение?» Определите, насколько
и стоимость производителя согласны. То есть их ошибки пересекаются?
См. Тейлор стр. 5, если вы запутались.
Резистор
Цвет 1
Цвет 2
Цвет 3
Цвет4
Кодированное сопротивление
Допуск
Сопротивление измеренное
ошибка чтения
Соглашение?
1
2
3
- Скопируйте измеренные значения сопротивления для резисторов 1, 2 и 3 в таблицу, подобную приведенной ниже.Не забудьте указать единицы измерения и ошибки чтения.
- Измерьте R12, R23 и R123 с помощью мультиметра и запишите значения в таблице.
- Добавьте батарею к трем последовательно включенным резисторам, как показано ниже.
- Ознакомьтесь с мерами предосторожности при использовании мультиметр как вольтметр.
- Теперь измерим напряжения в цепи. Убедитесь, что ваш
измеритель находится в режиме измерения постоянного напряжения, а НЕ
чередование настроек. (Чередуется тот, у которого есть ~
символ этим.)
Чтобы определить правильную настройку глюкометра, запустите глюкометр на самое большое значение, затем уменьшите значение и остановитесь на настройка, которая может обрабатывать как размер измеряемых данных и имеет наибольшее количество значащих цифр в чтении. Запишите свои результаты в таблицу ниже.
Комбинация резисторов
Сопротивление
Напряжение
R12
R23
R123
R1
(копия сверху)
R2
(копия сверху)
R3
(копия сверху)
- Теперь выберите три резистора, которые все разные.
друг от друга по значению сопротивления.Выполните те же действия для этих
резисторов, как и для трех одинаковых выше, и запишите
ваши результаты в таблице ниже. ПРИМЕЧАНИЕ: как только вы выберете этот резистор
комбинации, вы будете использовать ее для остальной части лаборатории, поэтому обязательно
следите за своими резисторами.
Резистор
Цвет 1
Цвет 2
Цвет 3
Цвет4
Кодированное сопротивление
Допуск
Сопротивление измеренное
ошибка чтения
Соглашение?
1а
2а
3a
- Измерьте сопротивление и напряжение на неидентичных резисторах. запишите свои результаты в таблицу ниже.
Комбинация резисторов
Сопротивление
Напряжение
R1a2a
R2a3a
R1a2a3a
R1a
(копия сверху)
R2a
(копия сверху)
R3a
(копия сверху)
14.Теперь удалите последовательную цепь (сохраните отслеживать какой резистор какой резистор) и построить параллельную схему показано ниже с использованием трех одинаковых резисторов. Снова запись Сопротивление и напряжение как в схеме выше . Важно : При измерении сопротивления между R12 и R23 необходимо удалить резистор, который не измеряется. из схемы. (Удаление одного из его выводов из пружины достаточно — просто чтобы он больше не был частью схемы.) Если вы это сделаете не делайте этого, вы не получите правильных результатов.Пунктирный Линии ниже показывают, как должно быть разорвано соединение для R12. измерение. ЭТО ТОЛЬКО ДЛЯ СОПРОТИВЛЕНИЯ, НЕ ДЛЯ НАПРЯЖЕНИЯ. В течение измерения напряжения, держите все ваши резисторы в цепи. Подключите аккумулятор к двум свободным проводам и снимите показания напряжения.
Комбинация резисторов
Сопротивление
Напряжение
R12
R23
R123
R1
(копия сверху)
R2
(копия сверху)
R3
(копия сверху)
15.Затем замените три одинаковых резисторы с тремя неидентичными, стараясь отслеживать из которых один — R1a и т. д. Проведите измерения на Снова предыдущая схема, с той же осторожностью при удалении R3 резистор от измерения R1R2 и резистор R1 от R2R3 измерение.
Комбинация резисторов
Сопротивление
Напряжение
R1a2a
R2a3a
R1a2a3a
R1a
(копия сверху)
R2a
(копия сверху)
R3a
(копия сверху)
Вопросы:
1.