где проходят, разница температур между ними, давление на радиаторах
От того, насколько эффективно налажена работа системы отопления в доме, будет зависеть комфорт семьи в зимний период. Если батареи нагреваются плохо, необходимо устранить неисправность, а для этого важно знать, как устроено отопление в целом.
Водяной обогрев пространства представляет собой источник тепла и теплоноситель, который разносится по батареям. Подача и обратка присутствует в одно- и двухтрубной системах. Во второй, чёткого распределения нет, трубу условно принято делить пополам.
Особенности подачи в системе отопления
Подача тепла идёт сразу от котла, жидкость при этом разносится по батареям от основного элемента — котла (или же центральной системы). Она характерна для однотрубной системы. Если её усовершенствовать, то возможна врезка труб ещё и на обратку.
Фото 1. Схема отопления для частного двухэтажного дома с указанием труб подачи и обратки.
Где проходит обратка
Если говорить кратко, то схема обогрева состоит из нескольких важных элементов: отопительный котёл, батареи и расширительный бак. Чтобы тепло поступало по радиаторам, необходим теплоноситель: вода или антифриз. При грамотном построении схемы, теплоноситель нагревается в котле, поднимается по трубам, увеличивая свой объём, а все излишки при этом попадают в расширительный бак.
Исходя из того, что батареи наполнены жидкостью, горячая вода вытесняет холодную, та, в свою очередь, попадает еще раз в котёл для последующего нагрева. Постепенно градус воды увеличивается и достигает нужной температуры. Циркуляция теплоносителя при этом может быть естественной или гравитационной, осуществляемой при помощи насосов.
Исходя из этого, обраткой можно считать теплоноситель, который прошёл весь контур, отдавая тепло, и уже охлаждённый снова попал в котёл для последующего нагрева.
Отличия между ними
Разница между описанными понятиями состоит в следующем:
- Подача представляет собой теплоноситель, который идёт по радиаторам от источника тепла.
- Обратка — жидкость, которая прошла всю схему, и остыв снова попала к источнику тепла для последующего нагрева. Следовательно, происходит на выходе.
- Отличие в температуре: обратка холоднее.
- Отличие в установке. Водовод, который прикреплён к верхней части батареи, является подачей. То, что крепится к низу — обратка.
Важно! Необходимо соблюдать некоторые советы. Вся система должна быть полностью заполнена водой или антифризом. Поддерживать скорость движения жидкости, её циркуляцию и давление не менее важно.
Разница температур на радиаторах
Разница температур должна составлять 30 °C. При этом на ощупь батареи будут примерно одинаковыми. Важно следить, чтобы перепад этих значений не был слишком большим.
Фото 2. Схема отопления для 6 радиаторов: указаны изменения температуры подачи и обратки на каждом из них.
Полезное видео
В видео рассматривается вопрос: где лучше поставить циркуляционный насос, на подаче или обратке?
Итоги сравнения
Подводя итоги, становится понятно, что однотрубная система разводки с обраткой имеет наибольшую перспективу, особенно для многоэтажных домов. Простота монтажа, низкая стоимость и небольшое количество коммуникаций всё-таки имеют преимущество перед двухтрубной с подачей.
Однако не стоит забывать, что с помощью двухтрубной схемы, возможно
Насос на подачу или обратку. Куда лучше его поставить?
На сегодняшний день в интернете много информации о циркуляционных насосах и их установке. И все-таки этот вопрос актуальный, потому что в силу свой специальности многим пользователям трудно понять и разобраться в данной системе. В статье разберемся, где лучше ставить насос – на подаче или на обратке.
Где обычно рекомендуют устанавливать насос?
Часто в интернете можно встретить информацию о том, что насос лучше ставить на обратку и конечно, этому есть определенные объяснения:
- Если поставить насос на подаче, то насос быстрее выйдет из строя, потому что тут температура выше, а если поставить на обратке, то агрегат прослужит много лет;
- На подаче плотность воды меньше и ее трудно качать;
- Давление в обратке выше, а соответственно насосу работать легче.
Но все выше приведенные доводы считаются не совсем правильными и мы разберемся почему.
- Во-первых, допустимая температура для насосов является +110 — +115 градусов, но в отопительной системе, обычно температура достигает 80 о и в редких случаях 90о. Поэтому здесь никак не влияет момент куда установить насос на обратку или на подачу.
- Плотность воды также не влияет, потому что разница между этим параметром при температуре 50о и 80о настолько мала, что она никак не скажется на работе агрегата.
- Разница давлений, между значением в теплоносители и магистрали также очень маленькая, что и не имеет смысла ее высчитывать.
Исходя отсюда делаем единственный вывод, что устанавливать циркуляционные насосы можно как на подаче, так и на обратке. И где он будет установлен никак не отразиться на его работе и долговечности. Главным условием, которое должно соблюдаться при установке котла — это удобство обслуживания.
Как правильно должен быть установлен насос?
При установке насоса главное все сделать правильно. Важно чтобы ротор стоял горизонтально. На сегодняшний день современные насосы выпускаются с мокрым ротором, через который омываются поверхности, которые трутся. Клемная коробка, которая установлена на роторе должна располагаться сверху или сбоку. Не допустимо ее располагать снизу потому что не удобно будет ее обслуживать, и в случае прорыва может затопить. Как уже выяснили ранее, то совершенно не важно на подаче или обратке будет стоять насос. Важно совсем другое, а именно насос должен располагаться между котлом и радиаторами. Он может быть перед радиаторами или после них, причем потоки будут совершенно одинаковыми. Ни в коем случае нельзя ставить насос по средине системы, потому что будет образовываться потоки пониженного давления.
Это все общая информация, но что делать если у Вас твердотопливный котел.
Где ставить насос при твердотопливном котле?
Если такой агрегат перегревается, то потушить его мгновенно нельзя, так как заставить гореть дрова быстрее не возможно. Если насос в данной системе смонтирован на подаче, то при закипании котла образуется пар, который попадает в насос с крыльчаткой и происходит следующее:
- Насос не предназначен для перекачки газов, поэтому аппарат перестает работать, скорость течения падает.
- В бак котла начинает поступать мало охлажденной жидкости, поэтому возникает перегрев, количество пара стремительно растет.
- Когда большое количество пара попадает в крыльчатку, то движение в системе останавливается. Данная ситуация аварийная, срабатывает предохранительный клапан, который выбрасывает пар прямо в помещение.
- Если же дрова в этом случае не потушить, то возможно, что клапан не сможет справиться с давлением и произойдет взрыв.
Если насос установлен на обратке, то:
- Он не при какой сложившейся ситуации не встретит пар;
- И даже если пар попадает в систему, то он проталкивается в радиатор, где превращается снова в жидкость.
Причем разница возможного взрыва в обоих случаях составляет 25 минут, этого времени вполне достаточно, чтобы подойти к котлу, потушить там дрова и не допустить взрыва.
Поэтому в котлах твердотопливных, особенно в которых мало автоматики или вообще отсутствует, нужна ставить насос на обратку. Причем правильно, чтобы было установлено в следующей последовательности: кран — грязевик — насос — кран. Если система гибридная, она вполне может работать самотеком, но когда так не справляется устанавливают насос. В этой разветвляющей системе важно установить кран. Но самой распространенной ошибкой, которую допускают все — это установка обратного клапана. Устанавливать его ни в коем случае нельзя, потому что он спровоцирует остановку самотека. Кран можно открывать, когда система работает самотеком и закрывать, когда включается насос.
Очень важно отнести к системе отопления с особой внимательностью, ведь от этого зависит не только тепло в доме, но его безопасность. Поэтому при самостоятельной установке обязательно следовать инструкции без каких — либо отклонений. Ну, а если сомневаетесь в своих возможностях, то лучше обратиться к профессионалам, которые выполнят все правильно и грамотно.
Читайте так же:Автор: Андрей Елфимов
http://eurosantehnik.ruАвтор проекта eurosantehnik.ru Автор youtube-канала: Технотерм
Что такое дифференциальное давление? | Donaldson — Промышленная пыль, дым и масляный туман
Авторы: Билл Роскес (Bill Rosckes) и Ладжин Ларсен (LaJean Larsen), инженеры по применению в компании Donaldson Torit
Все владельцы и операторы пылесборников стремятся к снижению выбросов, увеличению срока службы фильтров и снижению расхода сжатого воздуха. Однако многим из них не хватает базового понимания дифференциального давления, которое могло бы дать им необходимую информацию для сокращения расходов. В этой статье рассматривается значение дифференциального давления применительно к системам удаления сухой пыли.
Что такое дифференциальное давление?
Дифференциальное давление — это разность давлений на грязной (сторона фильтра или камера с загрязненным воздухом) и чистой (камера с чистым воздухом) сторонах пылесборника. Дифференциальное давление является мерой измерения общего сопротивления потоку воздуха между двумя камерами пылесборника. Как правило, общее сопротивление включает в себя потери в отверстиях трубной решетки, сопротивление чистого фильтрующего материала и сопротивление пыли, скопившейся на фильтрующем материале.
На что указывает дифференциальное давление?
Изменения дифференциального давления указывают на физические изменения в фильтрах. Внезапное снижение дифференциального давления может предупредить об утечке или разрыве фильтра. Внезапный рост дифференциального давления может указывать на нарушение работы системы очистки или выход из строя устройства выгрузки материала.
Постепенное увеличение дифференциального давления может быть связано с дополнительным сопротивлением потоку воздуха через пылесборник из-за скопившейся на фильтрах пыли. Показания сопротивления потоку можно использовать для определения относительного состояния фильтров по мере накопления пыли, чтобы очищать фильтры по необходимости.
Как измеряется дифференциальное давление?
Дифференциальное давление измеряется различными датчиками, в том числе *манометрами Magnehelic®, *манометрами Photohelic® или цифровыми электронными индикаторами перепада давления. Эти манометры обычно измеряют дифференциальное давление в дюймах водяного столба. Используются и другие единицы измерения, например миллиметры водяного столба, миллиметры ртутного столба, паскали.
Манометры, например Magnehelic, измеряют дифференциальное давление, но не поддерживают электронное управление. Другие манометры, например Photohelic, или цифровые электронные индикаторы перепада давления могут измерять дифференциальное давление и оснащаются выходом для управления очисткой фильтра с учетом дифференциального давления.
Как работает обычная система очистки?
Обычная система очистки фильтров в пылесборниках использует сжатый воздух. Система очистки состоит из воздушного коллектора, установленного на пылесборнике и подключенного к источнику сжатого воздуха. На коллектор установлены диафрагменные клапаны, оснащенные трубками, которые входят в пылесборник и подведены к каждому комплекту фильтров. Внутри каждого диафрагменного клапана установлена резиновая диафрагма, которая поддерживает одинаковое давление с обеих сторон клапана, что позволяет изолировать каждую трубку от коллектора.
На коллектор также установлен корпус с электромагнитными клапанами, число которых обычно совпадает с числом диафрагменных клапанов. Каждый электромагнитный клапан соединен с соответствующим диафрагменным клапаном трубкой, которая обычно имеет диаметр 0,64 см (0,25 дюйма).
Подводящие и возвратные каналы для выравнивания давления в существующих домах
Описание
В существующих домах домовладельцы могут иногда испытывать сильные сквозняки, перепады температур между комнатами, плохую циркуляцию воздуха или центральные системы принудительной вентиляции, которые казались более шумными или работали больше, чем им нужно. Одной из причин этих проблем может быть перепад давления между комнатами. Испытание давлением как часть оценки энергопотребления всего дома может определить, не сбалансировано ли давление в доме.Несбалансированная система HVAC с воздуховодом может привести к потере энергии и плохому терморегулированию.
Рисунок 1. Регулятор постоянного воздушного потока — это регулируемое отверстие, которое автоматически регулирует воздушный поток в системах воздуховодов до постоянного уровня. (Источник: American Aldes.)Иногда плохая циркуляция возникает из-за отсутствия правильного размера (низкого давления) обратного воздушного пути обратно к воздухообрабатывающему устройству.
- Убедитесь, что мебель или предметы хранения не блокируют решетку возвратного воздуха, если она расположена низко на стене.
- Убедитесь, что размер решетки соответствует требованиям ACCA Manual D.
- Если возвратная решетка и воздуховод слишком малы, проверьте, можно ли их увеличить.
- Если невозможно увеличить обратный путь, посмотрите, есть ли альтернативный маршрут для добавления второго обратного пути.
- Если обратный путь представляет собой переход через стену, потолок или пол в механическое помещение (часто называемый «дикий» возврат), увеличьте размер решетки, но обязательно поставьте Z-образный канал, 90- градусный воротник или хотя бы перегородку для уменьшения шума.
- Убедитесь, что во всех спальнях есть соответствующие прорези в дверях, чтобы обеспечить выравнивание, когда комнаты закрыты, или имеется передаточная решетка, установленная через стену, или отводной канал, установленный над потолком, чтобы обеспечить циркуляцию обратно в общественное пространство, а затем в центральный кондиционер.
Иногда проблема заключается в плохо сбалансированной системе приточного воздуха.
- В идеале каждый приточный отводной воздуховод должен иметь ручной балансировочный демпфер, обычно расположенный на отводе приточного ствола, чтобы регулировать воздушный поток в каждой комнате. Если это так, постепенно регулируйте заслонки, чтобы уменьшить поток воздуха в комфортные комнаты и тем самым увеличить поток воздуха в неудобные комнаты.
- В качестве альтернативы, ручные балансировочные заслонки в приточных магистральных каналах обеспечивают контроль баланса воздуха в различных частях или зонах дома (а не в отдельных комнатах).Это обычное решение для двухэтажных домов, где один ствол обслуживает первый этаж, а другой — второй этаж. Эти амортизаторы багажника также допускают сезонную регулировку; например, чтобы подавать меньше воздуха наверх во время отопительного сезона и больше воздуха наверх во время сезона охлаждения.
- Если заслонки ответвления подачи не установлены или недоступны (например, из-за готового потолка подвала или каналов, установленных внутри этажей), можно выполнить незначительную регулировку баланса воздуха путем стратегического открытия и закрытия заслонок в регистрах подачи потолка / пола.Обратите внимание, что такой подход может привести к недопустимому шуму в регистрах (например, свисту) из-за увеличения скорости воздуха.
- Внимание: балансировочные заслонки и регуляторы регистра предназначены для точной настройки воздушных потоков, но не предназначены для исправления значительных ошибок размера воздуховода. Слишком много закрытых заслонок может привести к недостаточному потоку воздуха через печь / устройство обработки воздуха и привести к неисправности оборудования HVAC; это особенно важно в период охлаждения, так как это может привести к обледенению испарителя.
Если ручные заслонки недоступны или отсутствуют, рассмотрите возможность установки устройств пассивной регулировки воздушного потока (Рисунок 1).В этих амортизаторах используется саморегулирующийся аэродинамический профиль, обеспечивающий расход, не превышающий максимального расчетного, независимо от колебаний давления (рис. 2). Если общий поток системы пропорционально регулируется с помощью регулятора соответствующего размера в шейке каждого регистра, система будет оставаться сбалансированной в пределах диапазона давлений, для которого указаны регуляторы. Модернизация может быть выполнена изнутри комнаты, сняв решетку регистра и установив картридж в горловину диффузора (Рисунок 3).Следуйте инструкциям производителя по размеру и установке.
Если требуется несколько сезонных, еженедельных и ежедневных схем балансировки из-за значительных различий в загруженности и использовании, может быть желательна правильно спроектированная система автоматического управления зонами (балансирующие заслонки с электронным управлением со специальным термостатом для каждой независимой зоны) для повышения комфорта пассажиров. (см. руководство по проектированию ACCA Manual Zr).
Для получения дополнительной информации см. Следующие руководства:
Для доступа к некоторым ссылкам может потребоваться покупка у издателя.Хотя мы постоянно обновляем нашу базу данных, ссылки могли измениться с момента публикации. Если вы обнаружите неработающие ссылки, обратитесь к нашему веб-мастеру.
% PDF-1.3 % 118 0 объект > эндобдж xref 118 34 0000000016 00000 н. 0000001049 00000 н. 0000001189 00000 н. 0000001329 00000 н. 0000001975 00000 н. 0000002133 00000 п. 0000002430 00000 н. 0000002611 00000 н. 0000003083 00000 н. 0000003942 00000 н. 0000006976 00000 н. 0000007282 00000 н. 0000008077 00000 н. 0000008364 00000 н. 0000009164 00000 п. 0000009963 00000 н. 0000010322 00000 п. 0000010697 00000 п. 0000011502 00000 п. 0000011573 00000 п. 0000011644 00000 п. 0000014960 00000 п. 0000022242 00000 п. 0000024932 00000 п. 0000025772 00000 п. ~ Sͬ7ѓ M: 1) p7pIrcͲJZzz kz
[ZG`hˀ (VhtoҿODԐ? {! c, K.r9, S ܜ EYYKfx \\ a6Ӱhy: / + 4s \ #D «H ځ \) br | + ** B ~ Ϋ {\ nsiZ-] Q1x! ~ E \ (\ % M) / FontFile3 139 0 R >> эндобдж 126 0 объект > эндобдж 127 0 объект > транслировать * Ac { pjfk! [4xox3GE2 \) UeX; 5a9v.W | vNVBO! jPt, YVV} = 6 샺 ? ‘pE0> -‘ gh ߟ zS («Nӈ (QD’i @> AEI {» ZV \ AHnNy: rv? OwIiF; N * 79Z% h {+
Проект воздуховода 2 — Доступное статическое давление
В части 1 этой серии статей по проектированию воздуховодов я обсудил основы физики движения воздуха в воздуховодах. Теперь мы собираемся использовать это, чтобы выяснить, как заставить все части работать вместе должным образом.Сначала мы выбираем воздуходувку, которая будет обеспечивать необходимый нам общий воздушный поток. Затем мы проектируем систему воздуховодов, которая будет подавать необходимое количество воздуха в каждую комнату. Для этого нам нужно взять концепцию перепада давления и применить ее к воздуходувкам и воздуховодам.
Подробнее о перепадах давления
Из части 1 этой серии мы знаем, что перепады давления будут происходить по всей системе воздуховодов. Когда воздух попадает в фильтр, змеевик, теплообменник (если есть печь), регистры, решетки, балансировочные заслонки и сами воздуховоды, он теряет давление.Итак, давайте разберемся с этим.
На схеме ниже показаны компоненты нашей системы. AHU — это блок обработки воздуха (или его обработки). Вот где воздуходувка. Воздух из дома возвращается в кондиционер через возвратные каналы. Воздух кондиционируется внутри AHU, а затем отправляется обратно в дом через приточные каналы.
Говоря здесь о давлении, мы не говорим об абсолютном давлении. Мы говорим об относительном давлении. Когда мы говорим о давлении, мы ориентируемся на давление внутри кондиционированного пространства.Это наш ноль.
На обратной стороне нагнетателя давление будет отрицательным. По мере того, как воздух движется из комнаты в обратную решетку и вниз к AHU, давление становится все более и более отрицательным по отношению к комнате. Со стороны подачи давление положительное. По мере того, как воздух движется из AHU через приточные каналы в помещения, давление становится все более и более положительным.
Максимальное положительное и отрицательное давление возникает на устройстве обработки воздуха. Чем дальше мы удаляемся от воздуходувки, тем ближе статическое давление в воздуховодах к нулю или комнатное давление.
Мощность нагнетателя
Чтобы получить определенный поток воздуха, нагнетатель должен работать против определенного давления и с определенной настройкой скорости нагнетателя. Вот таблица от одного юнита.
Скорость нагнетателя устанавливается перемещением проводов к разным ответвлениям. В данном случае их 5 штук. Цифры в верхней строке — это общее внешнее статическое давление (TESP), на которое рассчитан AHU. Это изменение давления в AHU при проталкивании и вытягивании воздуха через воздуховоды.
Обычно вы хотите разработать систему для работы на средней скорости (коснитесь 3 в таблице выше). Таким образом, у вас будет возможность для настройки при вводе системы в эксплуатацию. Кроме того, большинство систем рассчитаны на работу при общем внешнем статическом давлении 0,50 дюйма водяного столба (iwc). Для системы, описанной выше, эти параметры обеспечивают расход воздуха 899 кубических футов в минуту. Если это то число, которое вам нужно, вам просто нужно убедиться, что ваша система рассчитана на работу при 0,5 iwc.
Итак, от обратной (самой отрицательной) стороны AHU к подающей (самой положительной) мы хотим, чтобы общее изменение давления не превышало 0.5 iwc. (Это типичное число. Некоторые устройства обработки воздуха имеют более высокий рейтинг, а другие — более низкий.) Это общее изменение давления в AHU. Фактическое давление в системе будет зависеть от воздуховодов и других компонентов. Пока мы в этом случае на уровне 0,5 или ниже, мы получим хороший воздушный поток.
Обратите внимание, я сказал здесь изменение давления, а не падение давления. Воздуходувка вызывает повышение давления. Это сила, стоящая за воздушным потоком, поэтому от отрицательной стороны (возвратные каналы) к положительной стороне (приточные каналы) давление возрастает.
Понятно?
Определение доступного статического давления (ASP)
Далее происходит разделение двух видов перепадов давления в системе воздуховодов. Во-первых, нам нужны все внешние падения давления компонентов , а не воздуховодов или фитингов. Эти штуки должны входить в систему воздуховодов и, как правило, иметь известные перепады давления. Мы вычитаем их из общего числа внешнего статического давления (обычно 0,5 iwc). Что осталось, так это доступное статическое давление (ASP) для воздуховодов и фитингов.
Вот скриншот используемого нами программного обеспечения (RightSuite Universal).
Вверху указано полное внешнее статическое давление. Он вводится автоматически после выбора оборудования, но вы можете изменить числа здесь. В приведенной выше таблице у меня есть разные числа для нагрева и охлаждения, просто чтобы проиллюстрировать влияние на чистую прибыль, но обычно эти числа одинаковы.
Затем вы вводите все перепады внешнего давления. Змеевик и теплообменник здесь равны нулю, потому что змеевик уже включен в общее внешнее статическое давление, потому что он находится внутри AHU, и нет теплообменника, поскольку это тепловой насос.В случае печи у вас будет змеевик, который находится за пределами AHU, и вам нужно будет его добавить. Я не думаю, что у нас когда-либо был проект, в котором теплообменник был бы внешним, и его нужно было бы добавить сюда.
Остальные числа, показанные там, являются довольно стандартными, но вы хотите ввести реальные числа, если они у вас есть. Например, если вы используете деревянные решетки, перепады давления будут значительно выше. Но, пожалуйста, не используйте деревянные решетки! Из-за них будет очень сложно получить хороший воздушный поток.
Бюджет вашего воздуховода
После того, как вы ввели номинальное внешнее статическое давление и все ваши внешние падения давления, то, что осталось после вычитания падений из номинального давления, — это доступное статическое давление. Вот сколько вам осталось «потратить» на систему воздуховодов.
Подводя итог, где мы находимся сейчас:
- Воздуходувка создает повышение давления для перемещения воздуха по каналам.
- Он рассчитан на определенный объем воздушного потока при определенном общем внешнем статическом давлении.
- Воздуховоды, фитинги и другие компоненты вызывают падение давления.
- Вычитание падений давления для всего, что не является воздуховодами или фитингами, из общего внешнего статического давления дает доступное статическое давление.
- Доступное статическое давление — это бюджет падения давления, с которым необходимо работать при проектировании воздуховодов.
Теперь перейдем к следующему этапу и спроектируем систему воздуховодов, в которой падение давления будет не более доступного статического давления.Для этого мы определяем размеры воздуховодов и выбираем фитинги, используя так называемую эквивалентную длину. И это тема следующей статьи из этой серии.
Купить руководства ACCA на Amazon *
Другие статьи из серии Duct Design:
Основные принципы проектирования воздуховодов, часть 1
Конструкция воздуховода 3 — Общая полезная длина
Конструкция воздуховода 4 — Расчет скорости трения
Конструкция воздуховода 5 — Определение размеров воздуховодов
Статьи по теме
Две основные причины снижения потока воздуха в воздуховодах
Заболевание гибких протоков, не нарушайте воздушный поток
Наука о провисании — гибкий воздуховод и воздушный поток
Секрет эффективного движения воздуха через систему воздуховодов
* Это ссылки Amazon Associate.Вы платите ту же цену, что и обычно, но Energy Vanguard взимает небольшую комиссию, если вы совершаете покупку после перехода по ссылке.
Статическое давление: что это такое? Какая разница?
Когда вы идете к врачу, медсестра всегда выполняет несколько измерений. Один из них — артериальное давление — это ключевой показатель здоровья сердечно-сосудистой системы.
Если у вас артериальное давление 120/80 или меньше, вы в хорошей форме. Но начните пробираться на территорию 140/90, и у вас возникнут проблемы.
Статическое давление в воздуховодах работает точно так же. Подобно тому, как высокое кровяное давление указывает на проблему с вашим здоровьем, высокое статическое давление указывает на проблему с вашим оборудованием HVAC и воздуховодами. Что-то создает чрезмерную нагрузку на вашу систему, и она будет работать намного лучше, если вы определите проблему и устраните ее.
Ваше отопительное и воздушное оборудование прослужит дольше. Вам тоже будет намного удобнее.
Статическое давление — это буквально сопротивление.
СистемыHVAC, независимо от размера, предназначены для перемещения определенного количества воздуха. Точно так же воздуховоды должны быть спроектированы таким образом, чтобы вся система могла работать должным образом и эффективно. Когда все спроектировано и установлено правильно, статическое давление там, где оно должно быть. Вы даже можете назвать систему «здоровой».
К сожалению, в реальном мире все работает иначе.
Неправильная установка воздуховодов, плохая конструкция системы и выбор фильтров — все это способствует высокому статическому давлению.Во многих домах играет роль комбинация этих факторов. Пока вы не решите проблему (ы) статического давления, ваша система никогда не будет работать в полную силу и может выйти из строя раньше, чем вы ожидаете.
Тем временем вы можете получить:
- Шумные системы: Ограничения воздушного потока делают работу шумной. Чем выше статическое давление, тем громче ваша система. Вы слышите потрясающий свист воздуха каждый раз, когда включается ваша система? Вероятно, это из-за высокого статического давления.
- Неправильный воздушный поток: Вы когда-нибудь замечали горячие точки, холодные точки или воздух, который просто парит над регистром? Часто причиной является высокое статическое давление. Когда статическое давление велико, система может перемещать слишком много (или недостаточно) воздуха на тонну, что создает дискомфортные условия во всем доме.
- Неисправность оборудования: Если вы никогда не заменяли вентиляторный двигатель или компрессор, считайте себя одним из счастливчиков. Это дорогостоящий ремонт, и вы можете какое-то время оставаться без отопления, переменного тока или тепла.Статическое давление, как мы вскоре рассмотрим, может привести к такому отказу.
- Отказ системы: В серьезных случаях статическое давление может значительно сократить срок службы вашего оборудования. Если многие компоненты начинают выходить из строя, вы можете столкнуться с ситуацией, когда замена всего обходится дешевле, чем ремонт отдельных частей.
Испытываете ли вы какие-либо из этих проблем с системой HVAC в вашем доме в Атланте? Возможно, пришло время осмотреть воздуховоды и испытать статическое давление, и фотоэлектрические системы могут помочь!Свяжитесь с нами сегодня
Чтобы лучше понять проблему, представьте, что у вас есть компактный автомобиль.Скажем, Honda Civic. Civic хорошо ведет себя на ровной гладкой дороге. Ничто его не сдерживает.
Теперь немного увеличьте градиент. Есть некоторая нагрузка на двигатель автомобиля, но он все еще работает нормально. Еще немного увеличьте уклон, и машина может начать сопротивляться. Теперь прицепите к задней части прицеп — прицеп с лошадью. И продолжайте увеличивать градиент…
Вы уловили идею. В конце концов, маленькая машинка не сможет справиться с сопротивлением. Что-то сломается.Вы можете даже уничтожить машину.
Статическое давление очень много. Чем больше он увеличивается, тем больше перетаскивания добавляет в вашу систему. Правильное сопротивление гарантирует, что воздух движется так, как должен. Добавьте слишком большое сопротивление, и у вас будут проблемы.
Что вызывает высокое статическое давление и что с этим делать?
Рад, что вы спросили! Вот некоторые из наиболее распространенных причин, по которым ваша система может иметь высокое статическое давление:
- Ваш 1-дюймовый гофрированный фильтр: Они есть у всех, но стандартные 1-дюймовые гофрированные фильтры могут значительно ограничить воздушный поток.Они пытаются фильтровать много воздуха на небольшой площади, и чем толще (или выше значение MERV) фильтр, тем сильнее ограничение. Вот почему мы рекомендуем использовать медиа-фильтр с низким перепадом давления. Вы получаете необходимую фильтрацию без значительного увеличения статического давления. Если вас действительно беспокоит аллергия, вы даже можете добавить ультрафиолетовое излучение в каналы подачи или перейти на фильтр HEPA. Все эти варианты предпочтительнее 1-дюймовых фильтров.
- Плохая конструкция и / или установка воздуховодов: Ограничения в воздуховодах могут способствовать высокому статическому давлению.Виной всему могут быть провисающие гибкие воздуховоды, чрезмерные изгибы и провалы, а также другие неудачи при установке. Решение — переустановить или заменить воздуховод. Когда это невозможно, переход на двигатель вентилятора с регулируемой скоростью (вместо системы «вкл / выкл») даст вам лучший воздушный поток, несмотря на проблемы с воздуховодом.
- Возвратный воздух меньшего размера: Этот тип воздуховода подходит для неправильной работы воздуховодов, но возвратный воздух меньшего размера представляет собой уникальные проблемы. Ваш компрессор предназначен для перекачивания хладагента под высоким давлением, но слишком мало возвратного воздуха может привести к тому, что система отправит жидкость обратно в компрессор, когда это не должно быть.В долгосрочной перспективе это сокращает срок службы вашего компрессора. Это также может привести к выходу из строя электродвигателя вентилятора — дорогостоящее решение. Решение состоит в том, чтобы добавить обратный канал или увеличить размер существующего обратного канала.
Другая возможность состоит в том, что ваш фильтр действительно загрязнен. Если с момента последней замены прошло более 90 дней, отключите его, чтобы снизить статическое давление.
Несколько слов о низком статическом давлении
Мы только что много говорили о высоком статическом давлении, но низкое статическое давление также может быть проблемой. Хотя очень редко , низкое статическое давление обычно указывает на одно из двух:
- Ваш установщик увеличил размер магистральных линий. Мы видели это в некоторых старых домах. По какой-то причине (в грузовике не было нужного оборудования?), Кто бы ни устанавливал магистральные трубопроводы, их размеры были завышены.
- Вы внесли много изменений в энергоэффективность. Может быть, вы сжали свой домашний конверт в попытке сэкономить энергию. В крайних случаях ваш обновленный дом может быть несовместим со старыми воздуховодами.Раньше они были подходящего размера, но сейчас они не подходят.
В любом случае, вам, вероятно, трудно оставаться комфортно. Воздушный поток недостаточно силен. Вам будет жарко с одной стороны комнаты и холодно с другой.
Обычно решение заключается в перепроектировании и переустановке воздуховодов.
Контроль статического давления
Статическое давление — это не то, что можно легко проверить без специального оборудования, желания просверлить воздуховоды и некоторого опыта.Это одна из причин, по которой люди нанимают такие компании, как мы!
Статическое давление — это одна из вещей, которые мы отслеживаем в рамках наших соглашений об обслуживании. Мы возьмем новые показания и сравним их со старыми так же, как медсестра делает с вашим кровяным давлением. Это действительно полезное измерение, потому что оно помогает нам устранять проблемы:
- Высокое статическое давление? Мы можем проверить, используете ли вы ограничительный фильтр или ваш возвратный воздуховод недостаточен.
- Низкое статическое давление? Может быть, у вас слишком большие воздуховоды.Мы можем это проверить. Низкое статическое давление — редкость, но не редкость.
И так далее. Чем раньше вы проверите свое статическое давление, тем быстрее вы сможете решить проблемы, прежде чем они приведут к отказу оборудования.
В HVAC простейшие изменения могут иметь большое значение. Простое решение, такое как изменение типа фильтра, который вы используете для снижения статического давления, может сэкономить вам тысячи на , заменяющую систему, которую вам не нужно покупать .
Звучит безумно? Так происходит все время.Статическое давление — вещь серьезная.
Что такое дисбаланс давления в помещении?
Дисбаланс давления в помещении может оказать огромное негативное влияние на ваш дом, сделать его более пыльным и неудобным, а также увеличить ваши счета за электроэнергию! Способ работает, он довольно простой.
Ваша система воздуховодов — это система с замкнутым контуром. На каждый кубический фут воздуха, который выталкивается из каждого источника, этот же объем воздуха должен быть возвращен обратно в обратном трубопроводе, где расположен ваш воздушный фильтр. Ваша система знает, сколько воздуха необходимо вернуть обратно, поэтому, когда двери в определенные комнаты закрываются, иногда это вызывает то, что мы называем «дисбалансом давления в помещении».
Дисбаланс давления в помещении — это когда проход воздуха из определенного помещения по существу перекрыт (дверью), не позволяя воздуху вернуться обратно в обратку, где находится фильтр. Когда это происходит, в каждой спальне создается положительное давление, в результате чего кондиционированный воздух, за охлаждение которого вы платите, выталкивается через щели и отверстия в вашем доме, расположенные в окнах, розетках или светильниках CAN. Имея это в виду, основная часть дома подвергается отрицательному давлению.
Почему для меня важно отрицательное давление в доме?
Если дом подвергается отрицательному давлению, он, по сути, начнет всасывать воздух из любого места, куда он может приносить пыль, мусор и любые другие вредные частицы на чердаке. Он также начнет всасывать наружный воздух из-под щелей в двери или окнах. Это создает большое количество пыли в доме, а также оказывает сильное негативное влияние на вашу систему воздуховодов, заставляя ее работать тяжелее, чем когда-либо прежде.
Как можно решить проблему дисбаланса давления в помещении?
Для решения проблемы дисбаланса давления в помещении можно использовать три различных подхода.
- Просто оставляйте двери открытыми всегда — самое дешевое и простое из решений
- Передаточные решетки или системы Tamarack — решетка специальной конструкции, которая размещается над дверной рамой, или специально разработанная вставка, которая находится внизу вашей двери.Обе эти системы позволят воздуху, находящемуся внутри помещения, беспрепятственно возвращаться обратно в обратку, даже если дверь закрыта. новое вентиляционное отверстие в комнате с возвратной решеткой, позволяющее воздуху свободно течь обратно к центральным возвратным решеткам, не ограничиваясь закрытием двери
Страница не найдена — NASCSP
- О компании
- Совет директоров
- Контакты персонала
- Государственные контакты
- Карьера
- Национальные партнеры
- CSBG
- Услуги и техническая поддержка
- Ресурсы CSBG
- Сбор данных и отчетность
- Защита интересов
- WAP
- Услуги обучения WAP
- WAPTAC
- Публикации по утеплению
- Защита интересов
- Новости / События
- Календарь
- Ресурсы по коронавирусу
- Конференции
- НОВОСТИ
- Блог
- Мультимедийная библиотека
- Контакт
- Racial Equity (расовое равенство)
- Рабочая группа
- Ресурсы
404
Ой! Эта страница не может быть найдена.
Вернуться домой- О компании
- Совет директоров
- Контакты персонала
- Государственные контакты
- КАРЬЕРА
- CSBG
- Услуги и техническая поддержка
- Ресурсы CSBG
- Сбор данных и отчетность
- Защита интересов
- WAP
- WAPTAC
- Сетевые ресурсы WAP
- Публикации по утеплению
- Защита интересов
- Новости / События
- Конференции
- События
- Блог о состоянии бедности
- Контакт
, Определение размера и выбор водяного насоса конденсатора.
5.0 КАЛЬКУЛЯТОР ВОДЯНОГО НАСОСА КОНДЕНСАТОРА — ВЫХОДЫ
В этом разделе рассматриваются уравнения, которые используют входные данные и ссылки для создания выходных данных в калькуляторе.
5.1 Скорость жидкости
Первое уравнение использует входные данные из раздела информации о трубе и вводимый пользователем расход потока для определения скорости жидкости в трубе. Когда вы выбираете материал трубы, тип трубы и размер трубы, калькулятор автоматически определит внутреннюю площадь из таблицы в ссылках.Если комбинация материала трубы, типа трубы и размера трубы не указана в калькуляторе, тогда в столбце скорости появится «N / A». Вам следует дважды проверить, существует ли комбинация, прежде чем продолжить.
5.2 Число Рейнольдса
Первое уравнение использует входные данные из раздела информации о трубе и вводимый пользователем расход потока для определения скорости жидкости в трубе.Когда вы выбираете материал трубы, тип трубы и размер трубы, калькулятор автоматически вычисляет число Рейнольдса.
Следующее уравнение вычисляет число Рейнольдса. В этом уравнении используется скорость из предыдущего уравнения, а также внутренний диаметр трубы и свойства жидкости (плотность и вязкость).
Число Рейнольдса разделяет поток жидкости на (1) ламинарный, (2) переходный или (3) турбулентный.Разделение между этими тремя классификациями определено ниже. Расчеты трения наиболее точны для потока жидкости в турбулентной области. По этой причине калькулятор выделяет красным цветом любое число Рейнольдса, которое находится ниже турбулентной области.
5,3 Коэффициент трения
Коэффициент трения находится с помощью уравнения Коулбрука.Уравнение Коулбрука связывает коэффициент трения с числом Рейнольдса и относительной шероховатостью.
Итерационный процесс: поскольку коэффициент трения находится на обеих сторонах уравнения, вы должны использовать итерационный процесс, чтобы найти коэффициент трения. Сначала необходимо выбрать значение коэффициента трения в правой части уравнения, а затем найти коэффициент трения в левой части.Затем используйте только что вычисленный коэффициент трения, вставьте это значение в правую часть уравнения и повторите процесс. Процесс заканчивается, когда коэффициенты трения правой и левой стороны сходятся примерно к одному и тому же числу. Калькулятор завершает этот процесс, выполнив девять итераций.
Турбулентный поток: Это уравнение работает только для турбулентного потока. Другое уравнение используется для ламинарного потока. К счастью, на практике в конденсаторах поток почти всегда турбулентный.Однако калькулятор включает условное форматирование, чтобы визуально сказать вам, не является ли поток турбулентным. Вы должны использовать свои знания о турбулентном диапазоне из предыдущего раздела, чтобы убедиться, что ваши расчеты потока находятся в турбулентном диапазоне.
5.4 Падение давления
Следующим шагом калькулятора является расчет падения давления для четырех различных категорий: (1) трубопровод, (2) клапаны и фитинги, (3) оборудование и (4) расширители / редукторы.Каждая из четырех категорий имеет свои собственные конкретные уравнения, но (1) и (2) включены в одну и ту же строку на калькуляторе. В следующих параграфах будут рассмотрены вычисления для каждой из четырех категорий.
5.4.1 Падение давления — трубопроводы и клапаны / фитинги
Падение давления на прямом участке трубопровода определяется с помощью коэффициента трения и уравнения Дарси Вайсбаха. Это уравнение использует скорость, коэффициент трения, внутренний диаметр трубы и длину трубопровода для расчета падения давления. Для получения дополнительных сведений см. Уравнение ниже. Результатом этого уравнения является падение давления в футах напора.
Падение давления на клапанах и фитингах определяется методом 3-K.В методе 3-K используются три значения K для характеристики каждого типа клапана и фитинга. Эти три K-значения — это K1, Kinf и Kd. Эти значения K используются вместе с числом Рейнольдса и номинальным диаметром трубы для определения окончательного значения K.
Поскольку вычисленное значение K является функцией числа Рейнольдса и номинального диаметра трубы, значение K применимо для труб различных размеров, материалов труб, жидкостей и скоростей жидкости.Когда у вас есть значение K, значение K используется для расчета падения давления на клапанах и фитингах.
5.4.2 Падение давления — оборудование
Нет уравнений, определяющих падение давления в секции оборудования. В этом разделе калькулятора вы можете ввести значения падения давления на оборудовании. Типичное оборудование включает чиллеры, сетчатые фильтры, фанкойлы, расходомеры, регулирующие клапаны и змеевики вентиляционных установок.Падение давления в этом оборудовании при заданном расходе должно быть обеспечено производителем оборудования. Обычно производитель предоставляет единственное значение, которое указывает падение давления при заданном расходе (галлонов в минуту). Это типично для чиллеров, фанкойлов и приточно-вытяжных установок. В других случаях производитель предоставит график, показывающий падение давления при различных расходах. Это типично для расходомеров, регулирующих клапанов и фильтров.
5.4.3 Падение давления — расширители / редукторы
Последний расчет падения давления — это падение давления из-за расширения и сужения трубы. Это расширение и уменьшение трубы происходит при изменении размера трубы. Этот расчет зависит от формы изменения размера трубы. Например, форма может быть квадратной, закругленной, конической, а изменение размера трубы может быть резким или постепенным. Каждый тип изменения размера трубы имеет собственное уравнение
Пример уравнений, используемых в калькуляторе, включает уравнение уменьшения квадрата.Во-первых, вы должны найти K-значение.
Калькулятор автоматически проверяет соответствие требованиям уравнения.Существуют другие уравнения для каждого расширения / уменьшения трубы и каждого набора требований, как показано в таблице ниже.
После того, как вычислено значение K, калькулятор вычисляет перепад давления по приведенному ниже уравнению.
5.4.4 Суммарное падение давления с гидроприводом — всасывание и нагнетание
Два последних столбца справа от всех категорий падения давления — это полное падение давления на гидравлически удаленном участке всасывающего или нагнетательного трубопровода. Если вы выберете «Да» в разделе «Гидравлически удаленный ход» и «Всасывание» или «Нагнетание», тогда в этом столбце будет показано падение давления в секции трубы, секции трубного редуктора / расширительной секции или оборудования в разделе «Всасывающая гидравлическая дистанционная работа» или «Нагнетание». Гидравлически дистанционный ход ».Это значение используется для расчета общего имеющегося чистого положительного напора на всасывании, а также общего динамического напора водяного насоса конденсатора.
Имеется 5,5 чистая положительная высота всасывания
Калькулятор также рассчитывает имеющуюся чистую положительную высоту всасывания, которая используется для выбора насоса, который может работать в расчетных условиях без кавитации.Кавитация возникает, когда давление всасывания (напор) в насосе меньше давления пара воды. Если давление всасывания ниже давления пара, образуются маленькие пузырьки пара. Когда эти пузырьки достигают насоса, давление жидкости увеличивается, и пузырьки лопаются, вызывая повреждение рабочих колес и других частей насоса. Это так называемая кавитация.
Высота всасывания определяется как давление на входе в насос, а чистый положительный напор на всасывании представляет собой разность между высотой всасывания на входе и давлением пара жидкости на входе в насос.
Высота всасывания определяется путем определения всех давлений, действующих на жидкость, положительных или отрицательных во всасывающем трубопроводе. Следующий рисунок лучше всего описывает все давления, которые могут воздействовать на насос.
(1) Pabs: Это давление относится к абсолютному давлению, действующему на жидкость.Если резервуар находится под давлением, то значение определяется заранее. Если резервуар открыт для атмосферы, то давление равно 1 атмосфере [атм] или 14,7 фунтов на квадратный дюйм или 33,9 фута водяного столба.
(2) Пелев: Это давление определяет перепад высот между верхней поверхностью жидкости и центральной линией насоса на стороне всасывания трубопровода. Это значение может быть положительным или отрицательным и измеряется в «футах головы». Чтобы рассчитать это значение, вам нужно только найти Пелев для всасывающего трубопровода.
(3) Пс. fric: Давление на трение всасывания или напор — это величина потери давления из-за трения в трубопроводах, фитингах, оборудовании, клапанах и т. д., ведущих от источника жидкости к насосу.
(4) Всасывание: Наконец, все давления, ведущие к насосу, суммируются, и результирующее значение представляет собой давление всасывания в насосе, обусловленное как водой, так и абсолютным давлением.
(5) Pvapor: Давление пара воды можно найти, просто просмотрев таблицы свойств жидкости и определив давление пара при рабочей температуре. Вода является наиболее распространенной жидкостью, используемой в системах перекачки воды конденсатора, и таблица соответствующих значений давления пара и температуры приведена ниже. Используйте книгу Основы ASHRAE, чтобы найти похожие таблицы.
Из приведенной выше таблицы видно, что по мере увеличения температуры воды давление, при котором происходит испарение, также увеличивается. Проблема кавитации становится еще более острой при более высоких температурах.
Наконец, уравнение для NPSHA, приведенное в начале этого раздела, можно резюмировать как:
Требуемый чистый положительный напор на всасывании (NPSHR) является важным критерием при выборе водяного насоса конденсатора.
NPSHR предоставляется производителем насоса и представляет собой минимально необходимое давление на всасывании насоса. NPSHA должен быть выше, чем NPSHR, чтобы предотвратить кавитацию.
Калькулятор также показывает чистую положительную высоту всасывания, доступную в верхней части калькулятора, как окончательную сумму всех значений потерь на трение, высоты всасывания, давления пара и абсолютного давления.
5.6 Общий динамический напор
Общий динамический напор суммирует все потери на трение в напорном и всасывающем трубопроводах для всех трех категорий (трубопроводы / фитинги / клапаны, оборудование / прочее.& редукторы / расширения). Общий динамический напор также включает высоту нагнетания за вычетом высоты всасывания. Окончательное уравнение показано ниже.
Если вы используете приведенный ниже пример, вы можете увидеть пример того, как используется приведенное выше уравнение.