Мигающий светодиод своими руками: схемы с описанием
Мигающие светодиоды часто применяют в различных сигнальных цепях. В продаже довольно давно появились светодиоды (LED) различных цветов, которые при подключении к источнику питания периодически мигают. Для их мигания не нужны никакие дополнительные детали. Внутри такого светодиода смонтирована миниатюрная интегральная микросхема, управляющая его работой. Однако для начинающего радиолюбителя намного интереснее сделать мигающий светодиод своими руками, а заодно изучить принцип работы электронной схемы, в частности мигалок, освоить навыки работы с паяльником.
[contents]
Как сделать светодиодную мигалку своими руками
Существует множество схем, с помощью которых можно заставить мигать светодиод. Мигающие устройства можно изготовить как из отдельных радиодеталей, так и на основе различных микросхем. Сначала мы рассмотрим схему мигалки мультивибратора на двух транзисторах. Для ее сборки подойдут самые ходовые детали.
На рисунке изображена схема мигалки мультивибратора, состоящая всего из девяти деталей. Для ее сборки потребуются:
- два резистора по 6.8 – 15 кОм;
- два резистора имеющие сопротивление 470 – 680 Ом;
- два маломощных транзистора имеющие структуру n-p-n, например КТ315 Б;
- два электролитических конденсатора емкостью 47 –100 мкФ
- один маломощный светодиод любого цвета, например красный.
Не обязательно, чтобы парные детали, например резисторы R2 и R3, имели одинаковую величину. Небольшой разброс номиналов практически не сказывается на работе мультивибратора. Также данная схема мигалки на светодиодах не критична к напряжению питания. Она уверенно работает в диапазоне напряжений от 3 до 12 вольт.
Схема мигалки мультивибратора работает следующим образом. В момент подачи на схему питания, всегда один из транзисторов окажется открытым чуть больше чем другой. Причиной может служить, например, чуть больший коэффициент передачи тока. Пусть первоначально больше открылся транзистор Т2. Тогда через его базу и резистор R1 потечет ток заряда конденсатора С1. Транзистор Т2 будет находиться в открытом состоянии и через R4 будет протекать его ток коллектора. На плюсовой обкладке конденсатора С2, присоединенной к коллектору Т2, будет низкое напряжение и он заряжаться не будет. По мере заряда С1 базовый ток Т2 будет уменьшаться, а напряжение на коллекторе расти. В какой-то момент это напряжение станет таким, что потечет ток заряда конденсатора C2 и транзистор Т3 начнет открываться. С1 начнет разряжаться через транзистор Т3 и резистор R2. Падение напряжения на R2 надежно закроет Т2. В это время через открытый транзистор Т3 и резистор R1 будет течь ток и светодиод LED1 будет светиться. В дальнейшем циклы заряда-разряда конденсаторов будут повторяться попеременно.
Если посмотреть осциллограммы на коллекторах транзисторов, то они будут иметь вид прямоугольных импульсов.
Когда ширина (длительность) прямоугольных импульсов равна расстоянию между ними, тогда говорят, что сигнал имеет форму меандра. Снимая осциллограммы с коллекторов обоих транзисторов одновременно, можно заметить, что они всегда находятся в противофазе. Длительность импульсов и время между их повторениями напрямую зависят от произведений R2C2 и R3C1. Меняя соотношение произведений можно изменять длительность и частоту вспышек светодиода.
Для сборки схемы мигающего светодиода понадобятся паяльник, припой и флюс. В качестве флюса можно использовать канифоль или жидкий флюс для пайки, продающийся в магазинах. Перед сборкой конструкции необходимо тщательно зачистить и залудить выводы радиодеталей. Выводы транзисторов и светодиода нужно соединять в соответствии с их назначением. Также необходимо соблюдать полярность включения электролитических конденсаторов. Маркировка и назначение выводов транзисторов КТ315 показаны на фото.
Проще всего определить катод светодиода, рассматривая прибор на просвет. Катодом является электрод с большей площадью. Минусовой вывод «электролита» обычно помечен белой полосой на корпусе прибора.
В зависимости от задач, которые ставит перед собой радиолюбитель, схему мигалки можно собрать «навесу», соединяя выводы радиодеталей между собой с помощью отрезков тонкого провода. В этом случае может получиться конструкция наподобие той, что показана ниже на фото.
Собираем мигалку «на коленке»Если нужно собрать мигалку для последующего применения, то монтаж можно выполнить на куске жесткого картона или изготовить печатную плату из текстолита.
Простая мигалка на светодиоде
Существуют более простые схемы мигалок на светодиоде. Одна из таких показана на следующем фото.
Схема самой простой мигалкиЕсли внимательно присмотреться к этой светодиодной мигалке, то можно увидеть, что транзистор в схеме мигалки включен «неправильно». Во-первых, неправильно подключены эмиттер и коллектор.
После того, как сделаете своими руками простую мигалку, можете переходить к более сложным мигающим устройствам, например к созданию цветомузыки на светодиодах.
Мигающий светодиод на одной батарейке
Большинство светодиодов работают при напряжениях свыше 1.5 вольт. Поэтому их нельзя простым способом зажечь от одной пальчиковой батарейки. Однако существуют схемы мигалок на светодиодах позволяющие преодолеть эту трудность. Одна из таких показана ниже.
В схеме мигалки на светодиодах имеется две цепочки заряда конденсаторов: R1C1R2 и R3C2R2. Время заряда конденсатора С1 гораздо больше времени заряда конденсатора С2. После заряда С1 открываются оба транзистора и конденсатор С2 оказывается последовательно соединен с батарейкой. Через транзистор Т2 суммарное напряжение батареи и конденсатора прикладывается к светодиоду. Светодиод загорается. После разряда конденсаторов С1 и С2 транзисторы закрываются и начинается новый цикл зарядки конденсаторов. Такая схема мигалки на светодиодах называется схемой с вольтодобавкой.
Мы рассмотрели несколько схем мигалок на светодиодах. Собирая эти и другие устройства можно не только научиться паять и читать электронные схемы. На выходе можно получить вполне работоспособные приборы полезные в быту. Дело ограничивается только фантазией создателя. Проявив смекалку, из светодиодной мигалки можно, например, сделать сигнализатор открытой дверцы холодильника или указатель поворотов велосипеда.
Простейшие схемы подключения светодиодов в 220 вольт без драйвера (самое простое питание светодиода от сети напряжением 220В)
Потому что нужно грамотно решить сразу две задачи:
- Ограничить прямой ток через светодиод, чтобы он не сгорел.
- Обеспечить защиту светодиода от пробоя обратным током.
Если проигнорировать любой из этих пунктов, светодиод моментально накроется медным тазом.
В самом простейшем случае ограничить ток через светодиод можно резистором и/или конденсатором. А предотвратить пробой от обратного напряжения можно с помощью обычного диода или еще одного светодиода.
Поэтому самая простая схема подключения светодиода к 220В состоит всего из нескольких элементов:
Защитный диод может быть практически любым, т.к. его обратное напряжение никогда не будет превышать прямого напряжения на светодиоде, а ток ограничен резистором.
Сопротивление и мощность ограничительного (балластного) резистора зависит от рабочего тока светодиода и рассчитывается по закону Ома:
R = (Uвх — ULED) / I
А мощность рассеивания резистора рассчитывается так:
P = (Uвх — ULED)2 / R
где Uвх = 220 В,
ULED — прямое (рабочее) напряжение светодиода. Обычно оно лежит в пределах 1.5-3.5 В. Для одного-двух светодиодов им можно пренебречь и, соответственно, упростить формулу до R=Uвх/I,
I — ток светодиода. Для обычных индикаторных светодиодов ток будет 5-20 мА.
Пример расчета балластного резистора
Допустим, нам нужно получить средний ток через светодиод = 20 мА, следовательно, резистор должен быть:
R = 220В/0.020А = 11000 Ом (берем два резистора: 10 + 1 кОм)
P = (220В)2/11000 = 4.4 Вт (берём с запасом: 5 Вт)
Необходимое сопротивление резистора можно взять из таблицы ниже.
Таблица 1. Зависимость тока светодиода от сопротивления балластного резистора.
Сопротивление резистора, кОм | Амплитудное значение тока через светодиод, мА | Средний ток светодиода, мА | Средний ток резистора, мА | Мощность резистора, Вт |
---|---|---|---|---|
43 | 7. 2 | 2.5 | 5 | 1.1 |
24 | 13 | 4.5 | 9 | 2 |
22 | 14 | 5 | 10 | 2.2 |
12 | 26 | 9 | 18 | 4 |
10 | 31 | 11 | 22 | 4.8 |
7.5 | 41 | 15 | 29 | 6.5 |
4.3 | 72 | 25 | 51 | 11.3 |
2.2 | 141 | 50 | 100 | 22 |
Другие варианты подключения
В предыдущих схемах защитный диод был включен встречно-параллельно, однако его можно разместить и так:
Это вторая схема включения светодиодов на 220 вольт без драйвера. В этой схеме ток через резистор будет в 2 раза меньше, чем в первом варианте. А, следовательно, на нем будет выделяться в 4 раза меньше мощности. Это несомненный плюс.
Но есть и минус: к защитному диоду прикладывается полное (амплитудное) напряжение сети, поэтому любой диод здесь не прокатит. Придется подобрать что-нибудь с обратным напряжением 400 В и выше. Но в наши дни это вообще не проблема. Отлично подойдет, например, вездесущий диод на 1000 вольт — 1N4007 (КД258).
Не смотря на распространенное заблуждение, в отрицательные полупериоды сетевого напряжения, светодиод все-таки будет находиться в состоянии электрического пробоя. Но благодаря тому, что сопротивление обратносмещенного p-n-перехода защитного диода очень велико, ток пробоя будет недостаточен для вывода светодиода из строя.
Внимание! Все простейшие схемы подключения светодиодов в 220 вольт имеют непосредственную гальваническую связь с сетью, поэтому прикосновение к ЛЮБОЙ точке схемы — ЧРЕЗВЫЧАЙНО ОПАСНО!
Для уменьшения величины тока прикосновения нужно располовинить резистор на две части, чтобы получилось как показано на картинках:
Благодаря такому решению, даже поменяв местами фазу и ноль, ток через человека на «землю» (при случайном прикосновении) никак не сможет превысить 220/12000=0. 018А. А это уже не так опасно.
Как быть с пульсациями?
В обеих схемах светодиод будет светиться только в положительный полупериод сетевого напряжения. То есть он будет мерцать с частой 50 Гц или 50 раз в секунду, причём размах пульсаций будет равен 100% (10 мс горит, 10 мс не горит и так далее). Это будет заметно глазу.
К тому же, при подсветке мерцающими светодиодами каких-либо движущихся объектов, например, лопастей вентилятора, колес велосипеда и т.п., неизбежно будет возникать стробоскопический эффект. В некоторых случаях данный эффект может быть неприемлем или даже опасен. Например, при работе за станком может показаться, что фреза неподвижна, а на самом деле она вращается с бешенной скоростью и только и ждет, чтобы вы сунули туда пальцы.
Чтобы сделать пульсации менее заметными, можно удвоить частоту включения светодиода с помощью двухполупериодного выпрямителя (диодного моста):
Обратите внимание, что по сравнению со схемой #2 при том же самом сопротивлении резисторов, мы получили в два раза больший средний ток. И, соответственно, в четыре раза большую мощность рассеивания резисторов.
К диодному мосту при этом не предъявляется каких-либо особых требований, главное, чтобы диоды, из которых он состоит, выдерживали половину рабочего тока светодиода. Обратное напряжение на каждом из диодов будет совсем ничтожным.
Еще, как вариант, можно организовать встречно-параллельное включение двух светодиодов. Тогда один из них будет гореть во время положительной полуволны, а второй — во время отрицательной.
Фишка в том, что при таком включении максимальное обратное напряжение на каждом из светодиодов будет равно прямому напряжению другого светодиода (несколько вольт максимум), поэтому каждый из светодиодов будет надежно защищен от пробоя.
Светодиоды следует разместить как можно ближе друг к другу. В идеале — попытаться найти сдвоенный светодиод, где оба кристалла размещены в одном корпусе и у каждого свои выводы (хотя я таких ни разу не видел).
Вообще говоря, для светодиодов, выполняющих индикаторную функцию, величина пульсаций не очень-то и важна. Для них самое главное — это максимально заметная разница между включенным и выключенным состоянием (индикация вкл/выкл, воспроизведение/запись, заряд/разряд, норма/авария и т.п.)
А вот при создании светильников, всегда нужно стараться свести пульсации к минимуму. И не столько из-за опасностей стробоскопического эффекта, сколько из-за их вредного влияния на организм.
Какие пульсации считаются допустимыми?
Все зависит от частоты: чем она ниже, тем заметнее пульсации. На частотах выше 300 Гц пульсации становятся совершенно невидимыми и вообще никак не нормируются, то есть даже 100%-ные считаются нормой.
Не смотря на то, что пульсации освещенности на частотах 60-80 Гц и выше визуально не воспринимаются, тем не менее, они способны вызывать повышенную усталость глаз, общую утомляемость, тревожность, снижение производительности зрительной работы и даже головные боли.
Для предотвращения вышеперечисленных последствий, международный стандарт IEEE 1789-2015 рекомендует максимальный уровень пульсаций яркости для частоты 100 Гц — 8% (гарантированно безопасный уровень — 3%). Для частоты 50 Гц — это будут 1.25% и 0.5% соответственно. Но это для перфекционистов.
На самом деле, для того, чтобы пульсации яркости светодиода перестали хоть как-то досаждать, достаточно, чтобы они не превышали 15-20%. Именно таков уровень мерцания ламп накаливания средней мощности, а ведь на них никто и никогда не жаловался. Да и наш российский СНиП 23-05-95 допускает мерцание света в 20% (и только для особо кропотливых и ответственных работ требование повышено до 10%).
В соответствии с ГОСТ 33393-2015 «Здания и сооружения. Методы измерения коэффициента пульсации освещенности» для оценки величины пульсаций вводится специальный показатель — коэффициент пульсаций (Кп).
Коэфф. пульсаций в общем рассчитывается по сложной формуле с применением интегральной функции, но для гармонических колебаний формула упрощается до следующей:
Кп = (Еmax — Emin) / (Emax + Emin) ⋅ 100%,
где Емах — максимальное значение освещенности (амплитудное), а Емин — минимальное.
Мы будем использовать эту формулу для расчета емкости сглаживающего конденсатора.
Очень точно определить пульсации любого источника света можно при помощи солнечной панели и осциллографа:
Как уменьшить пульсации?
Посмотрим, как включить светодиод в сеть 220 вольт, чтобы снизить пульсации. Для этого проще всего подпаять параллельно светодиоду накопительный (сглаживающий) конденсатор:
Из-за нелинейного сопротивления светодиодов, расчет емкости этого конденсатора является довольно нетривиальной задачей.
Однако, эту задачу можно упростить, если сделать несколько допущений. Во-первых, представить светодиод в виде эквивалентного постоянного резистора:
А во-вторых, сделать вид, что яркость светодиода (а, следовательно, и освещенность) имеет линейную зависимость от тока.
Давайте попробуем приблизительно рассчитать емкость конденсатора на конкретном примере.
Расчет емкости сглаживающего конденсатора
Допустим, мы хотим получить коэфф. пульсаций 2.5% при токе через светодиод 20 мА. И пусть в нашем распоряжении оказался светодиод, на котором при токе в 20 мА падает 2 В. Частота сети, как обычно, 50 Гц.
Так как мы решили, что яркость линейно зависит от тока через светодиод, а сам светодиод мы представили в виде простого резистора, то освещенность в формуле расчета коэффициента пульсаций можем спокойно заменить на напряжение на конденсаторе:
Кп = (Umax — Umin) / (Umax + Umin) ⋅ 100%
Подставляем исходные данные и вычисляем Umin:
2.5% = (2В — Umin) / (2В + Umin) ⋅ 100% => Umin = 1.9В
Период колебаний напряжения в сети равен 0.02 с (1/50).
Таким образом, осциллограмма напряжения на конденсаторе (а значит и на нашем упрощенном светодиоде) будет выглядеть примерно вот так:
Вспоминаем тригонометрию и считаем время заряда конденсатора (для простоты не будем учитывать сопротивление балластного резистора):
tзар = arccos(Umin/Umax) / 2πf = arccos(1. 9/2) / (2⋅3.1415⋅50) = 0.0010108 с
Весь остальной остаток периода кондер будет разряжаться. Причем, период в данном случае нужно сократить в два раза, т.к. у нас используется двухполупериодный выпрямитель:
tразр = Т — tзар = 0.02/2 — 0.0010108 = 0.008989 с
Осталось вычислить емкость:
C = ILED⋅ dt/dU = 0.02 ⋅ 0.008989/(2-1.9) = 0.0018 Ф (или 1800 мкФ)
На практике вряд ли кто-то будет ставить такой большой кондер ради одного маленького светодиодика. Хотя, если стоит задача получить пульсации в 10%, то нужно всего 440 мкФ.
Повышаем КПД
Обратили внимание, насколько большая мощность выделяется на гасящем резисторе? Мощность, которая тратится впустую. Нельзя ли ее как-нибудь уменьшить?
Оказывается, еще как можно! Достаточно вместо активного сопротивления (резистора) взять реактивное (конденсатор или дроссель).
Дроссель мы, пожалуй, сразу откинем из-за его громоздкости и возможных проблем с ЭДС самоиндукции. А насчет конденсаторов можно подумать.
Как известно, конденсатор любой емкости обладает бесконечным сопротивлением для постоянного тока. А вот сопротивление переменному току рассчитывается по этой формуле:
Rc = 1 / 2πfC
то есть, чем больше емкость C и чем выше частота тока f — тем ниже сопротивление.
Прелесть в том, что на реактивном сопротивлении и мощность тоже реактивная, то есть ненастоящая. Она как бы есть, но ее как бы и нет. На самом деле эта мощность не совершает никакой работы, а просто возвращается назад к источнику питания (в розетку). Бытовые счетчики ее не учитывают, поэтому платить за нее не придется. Да, она создает дополнительную нагрузку на сеть, но вас, как конечного потребителя, это вряд ли сильно обеспокоит =)
Таким образом, наша схема питания светодиодов от 220В своими руками приобретает следующий вид:
Но! Именно в таком виде ее лучше не использовать, так как в этой схеме светодиод уязвим для импульсных помех.
Включение или выключение распложенных на одной с вами линии мощной индуктивной нагрузки (двигатель кондиционера, компрессор холодильника, сварочный аппарат и т.п.) приводит к появлению в сети очень коротких выбросов напряжения. Конденсатор С1 представляет для них практически нулевое сопротивление, следовательно мощный импульс направится прямиком к С2 и VD5.
К сожалению, электролитические конденсаторы, из-за своей большой паразитной индуктивности, плохо справляются с ВЧ-помехами, поэтому большая часть энергии импульса пойдет через p-n-переход светодиода.
Еще один опасный момент возникает в случае включения схемы в момент пучности напряжения в сети (т.е. в тот самый момент, когда напряжение в розетке находится на пике своего значения). Т.к. С1 в этот момент полностью разряжен, то возникает слишком большой бросок тока через светодиод.
Все это со временем это приводит к прогрессирующей деградации кристалла и падению яркости свечения.
Во избежание таких печальных последствий, схему нужно дополнить небольшим гасящим резистором на 47-100 Ом и мощностью 1 Вт. Кроме того, резистор R1 будет выступать в роли предохранителя на случай пробоя конденсатора С1.
Получается, что схема включения светодиода в сеть 220 вольт должна быть такой:
И остается еще один маленький нюанс: если выдернуть эту схему из розетки, то на конденсаторе С1 останется какой-то заряд. Остаточное напряжение будет зависеть от того, в какой момент была разорвана цепь питания и в отдельных случаях может превышать 300 вольт.
А так как конденсатору некуда разряжаться, кроме как через свое внутреннее сопротивление, то заряд может сохраняться очень долго (сутки и более). И все это время кондер будет ждать вас или вашего ребенка, через которого можно будет как следует разрядиться. Причем, для того, чтобы получить удар током, не нужно лезть в недра схемы, достаточно просто прикоснуться к обоим контактам штепсельной вилки.
Чтобы помочь кондеру избавиться от ненужного заряда, подключим параллельно ему любой высокоомный резистор (например, на 1 МОм). Этот резистор не будет оказывать никакого влияния на расчетный режим работы схемы. Он даже греться не будет.
Таким образом, законченная схема подключения светодиода к сети 220В (с учетом всех нюансов и доработок) будет выглядеть так:
Значение емкости конденсатора C1 для получения нужного тока через светодиод можно сразу взять из Таблицы 2, а можно рассчитать самостоятельно.
Вот здесь можно посмотреть, как еще сильнее усовершенствовать данную схему, добавив в нее стабилизатор тока на одном транзисторе и стабилитроне. Это существенно понизит пульсации и продлит срок службы светодиодов.Расчет гасящего конденсатора для светодиода
Не буду приводить утомляющие математические выкладки, дам сразу готовую формулу емкости (в Фарадах):
C = I / (2πf√(U2вх — U2LED)) [Ф],
где I — ток через светодиод, f — частота тока (50 Гц), Uвх — действующее значение напряжения сети (220В), ULED — напряжение на светодиоде.
Если расчет ведется для небольшого числа последовательно включенных светодиодов, то выражение √(U2вх — U2LED) приблизительно равно Uвх, следовательно формулу можно упростить:
C ≈ 3183 ⋅ ILED / Uвх [мкФ]
а, раз уж мы делаем расчеты под Uвх = 220 вольт, то:
C ≈ 15 ⋅ ILED [мкФ]
Таким образом, при включении светодиода на напряжение 220 В, на каждые 100 мА тока потребуется примерно 1.5 мкФ (1500 нФ) емкости.
Кто не в ладах с математикой, заранее посчитанные значения можно взять из таблицы ниже.
Таблица 2. Зависимость тока через светодиоды от емкости балластного конденсатора.
C1 | 15 nF | 68 nF | 100 nF | 150 nF | 330 nF | 680 nF | 1000 nF |
---|---|---|---|---|---|---|---|
ILED | 1 mA | 4.5 mA | 6.7 mA | 10 mA | 22 mA | 45 mA | 67 mA |
Немного о самих конденсаторах
В качестве гасящих рекомендуется применять помехоподавляющие конденсаторы класса Y1, Y2, X1 или X2 на напряжение не менее 250 В. Они имеют прямоугольный корпус с многочисленными обозначениями сертификатов на нем. Выглядят так:
Если вкратце, то:
- X1 – используются в промышленных устройствах, подключаемых к трехфазной сети. Эти конденсаторы гарантированно выдерживают всплеск напряжения в 4 кВ;
- X2 – самые распространенные. Используются в бытовых приборах с номинальным напряжением сети до 250 В, выдерживают скачек до 2.5 кВ;
- Y1 – работают при номинальном сетевом напряжении до 250 В и выдерживают импульсное напряжение до 8 кВ;
- Y2 – довольно-таки распространенный тип, может быть использован при сетевом напряжении до 250 В и выдерживает импульсы в 5 кВ.
Допустимо применять отечественные пленочные конденсаторы К73-17 на 400 В (а лучше — на 630 В).
Сегодня широкое распространение получили китайские «шоколадки» (CL21), но в виду их крайне низкой надежности, очень рекомендую удержаться от соблазна применять их в своих схемах. Особенно в качестве балластных конденсаторов.
Внимание! Полярные конденсаторы ни в коем случае нельзя использовать в качестве балластных!
Итак, мы рассмотрели, как подключать светодиод к 220В (схемы и их расчет). Все приведенные в данной статье примеры хорошо подходят для одного или нескольких маломощных светодиодов, но совершенно нецелесообразны для мощных светильников, например, ламп или прожекторов — для них лучше использовать полноценные схемы, которые называются драйверами.
Цветомузыка на светодиодах своими руками
Цветомузыка своими руками – что может быть приятней и интересней для радиолюбителя, ведь собрать ее несложно, имея хорошую схему.
В современной радиотехнике существует огромное разнообразие радиоэлементов и светодиодов, преимущество которых трудно подвергнуть сомнению. Большой диапазон цветов, яркий и насыщенный свет, высокая скорость срабатывания различных элементов, низкое потребление энергии. Этот список достоинств можно продолжать бесконечно.
Принцип работы цветомузыки: светодиоды, собранные по схеме, моргают от имеющегося источника звука (это может быть плеер или магнитола и колонки) с определенной частотой.
Преимущества использования светодиодов перед используемыми ранее в ЦМУ:
- световая насыщенность света и обширный цветовой диапазон;
- хорошая скорость;
- малая энергоемкость.
Простейшие схемы
Простая цветомузыка, которую можно собрать, имеет один светодиод, питается от источника постоянного тока напряжением 6–12 В.
Простейшая схема на один светодиодМожно собрать вышеприведенную схему, используя светодиодную ленту и подобрав необходимый транзистор. Недостатком является то, что существует зависимость частоты мигания светодиодов от уровня звука. Другими словами, полноценный эффект можно наблюдать только при одном уровне звучания. Если снизить громкость, то будет редкое мигание, а при повышении громкости останется постоянное свечение.
Убрать этот недостаток можно при помощи трехканального преобразователя звука. Ниже приведена простейшая схема, собрать ее своими руками на транзисторах несложно.
Схема цветомузыки с трехканальным преобразователем звукаДля данной схемы необходим источник питания на 9 вольт, который позволит светиться светодиодам в каналах. Чтобы собрать три усилительных каскада, понадобятся транзисторы КТ315 (аналог КТ3102). В качестве нагрузки используются разноцветные светодиоды. Для усиления использован понижающий трансформатор. Резисторы выполняют функцию регулировки вспышек светодиодов. В схеме стоят фильтры для пропускания частот.
Можно улучшить схему. Для этого надо добавить яркость лампочками накаливания на 12 В. Понадобятся тиристоры управления. Все устройство необходимо запитать от трансформатора. По такой наипростейшей схеме можно уже работать. Цветомузыка на тиристорах может быть собрана даже начинающим радиотехником.
Схема цветомузыки с тиристорным управлениемКак сделать цветомузыку на светодиодах своими руками? Первое, что необходимо сделать – это подобрать электрическую схему.
Ниже приведена схема светомузыки с RGB-лентой. Для подобной установки необходим источник питания на 12 вольт. Она может работать в двух режимах: как светильник и как цветомузыка. Режим выбирается переключателем, установленным на плате.
Электрическая схема со светодиодной лентой для ЦМУЭтапы изготовления
Необходимо сделать печатную плату. Для этого нужно взять фольгированный стеклотекстолит размерами 50 х 90 мм и толщиной 0,5 мм. Процесс изготовления платы состоит из нескольких этапов:
- подготовка фольгированного текстолита;
- сверление отверстий под детали;
- нанесение дорожек;
- травление.
Плата готова, комплектующие закуплены. Теперь начинается самый ответственный момент – распайка радиоэлементов. От того, как аккуратно они будут установлены и запаяны, будет зависеть окончательный результат.
Перечень необходимых радиоэлементовСобираем нашу печатную плату с напаянными на ней компонентами вот в такой доступный плафон.
Цветомузыкальная приставка, собранная своими рукамиКраткое описание радиоэлементов
Радиоэлементы для электрической схемы вполне доступны, приобрести их в ближайшем магазине электротоваров не составит труда.
Для цветомузыкального сопровождения подойдут проволочные резисторы мощностью 0,25–0,125 Вт. Величину сопротивления всегда можно определить по цветным полоскам на корпусе, зная порядок их нанесения. Подстроечные резисторы бывают как отечественные, так и импортные.
Конденсаторы, выпускаемые промышленностью, делятся на оксидные и электролитические. Подобрать нужные не составит труда, проделав элементарные расчеты. Некоторые оксидные конденсаторы могут иметь полярность, которую необходимо соблюдать при монтаже.
Диодный мост можно взять уже готовый, но если его нет, то выпрямительный мост несложно собрать, используя диоды серии КД или 1N4007. Светодиоды берутся обычные, с разноцветным свечением. Использование cветодиодных RGB-лент – перспективное направление в радиоэлектронике.
Светодиодная RGB-лентаВозможность сборки цветомузыкальной приставки для автомобиля
Если получилось порадовать цветомузыкой из светодиодной ленты, сделанной своими руками, то подобную установку со встроенной магнитолой можно изготовить для автомобиля. Ее легко собрать и быстро настроить. Предлагается разместить приставку в пластиковом корпусе, который можно купить в отделе электрорадиотехники. Установка надежно защищена от влаги и пыли. Ее несложно установить за приборной панелью автомобиля.
Также подобный корпус можно изготовить самостоятельно, используя оргстекло.
Подбираются пластины нужных габаритов, в первой из деталей делаются два отверстия (для питания), зашкуриваются все детали. Собираем все с помощью термопистолета.
Отличный световой эффект достигается, если использовать разноцветную (RGB) ленту.
Вывод
Известная поговорка «не боги горшки обжигают» остается актуальной и в наши дни. Разнообразный ассортимент электронных компонентов дает народным умельцам широкий простор для фантазии. Цветомузыка на светодиодах, сделанная своими руками, – это одно из проявлений безграничного творчества.
Схема контрольки на светодиодах -собираем своими руками
Контролька в автомобиле — незаменимый инструмент для автолюбителя, особенно, если необходимо оперативно и правильно определить необходимый провод. Схема контрольки на светодиодах, заключает в себе один принцип, который рассмотрим чуть ниже, и имеет только разнообразные модификации
Наиболее Распространенная Схема контрольки на светодиодах
Схема контрольки на светодиодах самая наипростейшая. Это даже схемой назвать нельзя — игрушка для детей.
Используем два сетодиода разноцветных — зеленый и красный. Красный — плюс, зеленый — минус. Резистор можно поставить до 5 кОм — защита от того, чтобы не сжечь светодиоды.
Имеется кнопка, при нажатии которой можно с точностью определять слаботочный это провод (т.е. можно ли к нему подключаться или нет).
При обычном прикосновении щупа к плюсовому проводу — загорится красный светодиод. Если плюс «сильный», то будет гореть еще и лампочка. И в том и в другом случае — необходимо нажимать кнопку.
Если горит зеленый светодиод — то мы нашли минус.
Схема контрольки на светодиодах с аккумулятором на 3,7 В с пищалкой
Особенности данной схемы:
- Светодиоды впаиваются параллельно и встречно.
- Данная схема контрольки на светодиодах с пищалкой. Удобная функция.
- Выключатель нужен для производства зарядки аккумуляторов. Для этого надо подключить как щуп, так и крокодил к аккумулятору и заряд пойдет. Также выключатель предотвращает саморазряд аккумуляторов, в случае самопроизвольного соприкосновения щупа и крокодила.
- Зуммер сигнализирует на цепь
- Лампочка и еще один выключатель создают нагрузку на искомом проводе. Мы можем легко найти силовой «плюс», по аналогии с первой схемой контрольки, которую мы рассматривали выше.
Схема контрольки на светодиодах с автомобильным аккумулятором
Данная схема контрольки на светодиодах тоже простенькая и ею удобно пользоваться в подкапотном пространстве, т.к. питание данной контрольки происходит от автомобильного аккумулятора.
Для сборки нам потребуются: 2 светодиода, подключенные последовательно и в разных направлениях, 2 стабилитрона на 8В и провода (крокодилы), которые мы подключаем к аккумулятору. Ну и сам щуп. Все это можно уместить в обычной отвертке.
При попадании щупа на провод с плюсом — загорается красный диод. Соединяя щуп с минусом — горит зеленый светодиод. Все очень просто.
Видео на тему схема контрольки на светодиодах
И наконец, подведем итоги: все схемы контрольки на светодиодах имеют похожий вид, просто в зависимости от «хотелок» автолюбителя мы можем предвносить в конструкцию разные изменения, либо выкидывать из схемы часть компонентов.
Сейчас можете посмотреть видео по рассматриваемой нами теме:
Схемы на светодиодах
Схема со светодиодами встречается в бытовых приборах, элементах интерьера и даже произведениях искусства. При наличии необходимой элементной базы, амперметра и вольтметра, своими руками можно собрать множество таких практичных поделок на основе мультивибратора.
Содержание статьи
Схемы часов на светодиодах
Существует несколько способов реализации часов на светодиодах. Это могут быть уличные или настенные устройства. Сложность лишь в том, что не каждый пользователь сможет без подготовки справиться с программируемыми элементами.
Совет: Вольтметр и амперметр нужно освоить, наловчившись грамотно работать с паяльником. Разобраться в принципе работы микроконтроллера не таки сложно, но для начала лучше выбрать что-то более простое, без включения процессоров и контроллеров, постепенно усложняя поставленную задачу.
Примеры схем для часов:
- Уличные часы. Для их реализации потребуется 2 дисплея, один из которых будет на самом корпусе, а второй может быть вынесен, куда потребуется. Кроме временной шкалы, схема часов может быть также рассчитана на обозначение даты и температурных показателей. Сложность заключается не только в программировании схемы, но также в её прошивке, поэтому данный вариант применения светодиода подходит лишь для уверенных в себе радиолюбителей.
- Настенные часы. Исходником для светодиодных часов могут послужить обычные аналоговые. Стрелочные часы имеют один существенный недостаток – их показания довольно сложно разглядеть в темноте или с большого расстояния. Взяв на вооружение вольтметр, амперметр и светодиоды, эту ситуацию довольно просто исправить. На циферблате размещается 24 светодиода (по 12 для часов и минут соответственно), а касательные выполняют функции стрелок. Для включения освещения в вечернее время можно поставить таймер.
Схемы со светодиодами для велосипедистов
Светодиоды дают множество возможностей протюннинговать велосипед. Он будет не только интересно смотреться, удивляя каждого встречного необычной подсветкой, но самое главное – езда в темное время суток станет абсолютно безопасной.
Усовершенствовать велосипед с помощью включения в схему светодиода можно несколькими способами:
Установка светодиодов на спицы
Потребуется: сами светодиоды, провода для монтажа, изолента, батарейки или любой другой источник питания, выключатель, паяльник (иногда также вольтметр и амперметр).
- к выводам светодиодов припаять провода, накрепко изолируемых их лентой;
- закрепляем диоды на каждой из спиц, используя пластиковые стяжки;
- производим последовательное подключение светодиодов, закрепляем выключатель;
- на втулке колеса крепим батарейку.
Монтаж светодиодной ленты на корпус или его элементы
Лента обязательно должна быть водонепроницаемой и по возможности – достаточно гибкой. Довольно дешево приобрести такую «гирлянду» можно найти на многих сайтах, если не хочется составлять собственноручно.
Потребуется: аккумулятор на 12 В, контроллер для светодиодов для включения подсветки любого из 7 цветов или их комбинации, велосумка, около 5 м кабеля, скотч, изолента, вольтметр и амперметр.
- примерка ленты на месте будущей фиксации;
- лента нарезается на сегменты требуемой длины, с неё снимается резиновое покрытие;
- кабель припаивается к контактным дорожкам с последующей изоляцией.
Можно также подобрать подсветку для велосипеда для обозначения сигналов поворотов.
Маячок на базе светодиода
На основе мультивибратора можно собрать простенький маячок на светодиодах, который поможет без труда найти любой предмет в темное время суток. Владельцы домашних животных нередко вешают такие устройства на ошейник питомца, чтобы быть в курсе любых его передвижений.
Типичная схема включения состоит из несимметричного мультивибратора на биполярных транзисторах разной проводимости (стандартное обозначение – VT2 и VT3). Устройство генерирует короткие импульсы с небольшим интервалом (2-3 секунды). Можно переработать схему под 2 или 3 светодиода.
Источником освещения может послужить любой мощный светодиод, а датчиком – фототранзистор.
Идея заключается в том, чтобы в светлое время напряжение на эмиттерном переходе было низким (вольтметр поможет измерить его и отладить), и он запирался, а в темное – транзистор начинает генерировать импульсы, освещая помещение при помощи светодиода.
Какие ещё схемы можно реализовать?
Светодиоды открывают практически бесконечные возможности для реализации разнообразных подсветок. Такие схемы могут использоваться в качестве интерьерных решений (подсветка для аквариума, часов, картины). Ближе к праздникам становятся востребованными схемы с переходами, бегущие огни для украшения дома.
На базе светодиода можно осуществить и более сложные схемы. К их реализации лучше приступать, когда вольтметр и амперметр станут такими же привычными инструментами, как и молоток.
Схема драйвера светодиодов 220В
Преимущества светодиодных лап рассматривались неоднократно. Обилие положительных отзывов пользователей светодиодного освещения волей-неволей заставляет задуматься о собственных лампочках Ильича. Все было бы неплохо, но когда дело доходит до калькуляции переоснащения квартиры на светодиодное освещения, цифры немного «напрягают».
Для замены обыкновенной лампы на 75Вт идёт светодиодная лампочка на 15Вт, а таких ламп надо поменять десяток. При средней стоимости около 10 долларов за лампу бюджет выходит приличный, да и еще нельзя исключить риск приобретения китайского «клона» с жизненным циклом 2-3 года. В свете этого многие рассматривают возможность самостоятельного изготовления этих девайсов.
Теория питания светодиодных ламп от 220В
Самый бюджетный вариант можно собирать своими руками из вот таких светодиодов. Десяток таких малюток стоит меньше доллара, а по яркости соответствует лампе накаливания на 75Вт. Собрать всё воедино не проблема, вот только напрямую в сеть их не подключишь – сгорят. Сердцем любой светодиодной лампы является драйвер питания. От него зависит, насколько долго и хорошо будет светить лампочка.
Что бы собрать светодиодную лампу своими руками на 220 вольт, разберёмся в схеме драйвера питания.
Параметры сети значительно превышают потребности светодиода. Что бы светодиод смог работать от сети требуется уменьшить амплитуду напряжения, силу тока и преобразовать переменное напряжение сети в постоянное.
Для этих целей используют делитель напряжения с резисторной либо ёмкостной нагрузкой и стабилизаторы.
Компоненты диодного светильника
Схема светодиодной лампы на 220 вольт потребует минимальное количество доступных компонентов.
- Светодиоды 3,3В 1Вт – 12 шт.;
- керамический конденсатор 0,27мкФ 400-500В – 1 шт.;
- резистор 500кОм — 1Мом 0,5 — 1Вт – 1 ш.т;
- диод на 100В – 4 шт.;
- электролитические конденсаторы на 330мкФ и 100мкФ 16В по 1 шт.;
- стабилизатор напряжения на 12В L7812 или аналогичный – 1шт.
Изготовление драйвера светодиодов на 220В своими руками
Схема лед драйвера на 220 вольт представляет собой не что иное, как импульсный блок питания.
В качестве самодельного светодиодного драйвера от сети 220В рассмотрим простейший импульсный блок питания без гальванической развязки. Основное преимущество таких схем – простота и надёжность. Но будьте осторожны при сборке, поскольку у такой схемы нет ограничения по отдаваемому току. Светодиоды будут отбирать свои положенные полтора ампера, но если вы коснётесь оголённых проводов рукой, ток достигнет десятка ампер, а такой удар тока очень ощутимый.
Схема простейшего драйвера для светодиодов на 220В состоит их трёх основных каскадов:
- Делитель напряжения на ёмкостном сопротивлении;
- диодный мост;
- каскад стабилизации напряжения.
Первый каскад – ёмкостное сопротивление на конденсаторе С1 с резистором. Резистор необходим для саморазрядки конденсатора и на работу самой схемы не влияет. Его номинал не особо критичен и может быть от 100кОм до 1Мом с мощностью 0,5-1 Вт. Конденсатор обязательно не электролитический на 400-500В (эффективное амплитудное напряжение сети).
При прохождении полуволны напряжения через конденсатор, он пропускает ток, пока не произойдет заряд обкладок. Чем меньше его ёмкость, тем быстрее происходит полная зарядка. При ёмкости 0,3-0,4мкФ время зарядки составляет 1/10 периода полуволны сетевого напряжения. Говоря простым языком, через конденсатор пройдет лишь десятая часть поступающего напряжения.
Второй каскад – диодный мост. Он преобразует переменное напряжение в постоянное. После отсечения большей части полуволны напряжения конденсатором, на выходе диодного моста получаем около 20-24В постоянного тока.
Третий каскад – сглаживающий стабилизирующий фильтр.
Конденсатор с диодным мостом выполняют функцию делителя напряжения. При изменении вольтажа в сети, на выходе диодного моста амплитуда так же будет меняться.
Что бы сгладить пульсацию напряжения параллельно цепи подключаем электролитический конденсатор. Его ёмкость зависит от мощности нашей нагрузки.
В схеме драйвера питающее напряжение для светодиодов не должно превышать 12В. В качестве стабилизатора можно использовать распространённый элемент L7812.
Собранная схема светодиодной лампы на 220 вольт начинает работать сразу, но перед включением в сеть тщательно изолируйте все оголённые провода и места пайки элементов схемы.
Вариант драйвера без стабилизатора тока
В сети существует огромное количество схем драйверов для светодиодов от сети 220В, которые не имеют стабилизаторов тока.
Проблема любого безтрансформаторного драйвера – пульсация выходного напряжения, следовательно, и яркости светодиодов. Конденсатор, установленный после диодного моста, частично справляется с этой проблемой, но решает её не полностью.
На диодах будет присутствовать пульсация с амплитудой 2-3В. Когда мы устанавливаем в схему стабилизатор на 12В, даже с учётом пульсации амплитуда входящего напряжения будет выше диапазона отсечения.
Диаграмма напряжения в схеме без стабилизатора
Диаграмма в схеме со стабилизатором
Поэтому драйвер для диодных ламп, даже собранный своими руками, по уровню пульсации не будет уступать аналогичным узлам дорогих ламп фабричного производства.
Как видите, собрать драйвер своими руками не представляет особой сложности. Изменяя параметры элементов схемы, мы можем в широких пределах варьировать значения выходного сигнала.
Если у вас возникнет желание на основе такой схемы собрать схему светодиодного прожектора на 220 вольт, лучше переделать выходной каскад под напряжение 24В с соответствующим стабилизатором, поскольку выходной ток у L7812 1,2А, это ограничивает мощность нагрузки в 10Вт. Для более мощных источников освещения требуется либо увеличить количество выходных каскадов, либо использовать более мощный стабилизатор с выходным током до 5А и устанавливать его на радиатор.
Понравилась статья? Расскажите о ней! Вы нам очень поможете:)
Материалы по теме:
Сетевая лампа на светодиодах своими руками
В настоящее время стоимость электроэнергии значительно выросла. Для того чтобы оптимизировать бюджет можно воспользоваться двумя вариантами: увеличить свои месячные доходы или начать экономить. Второй способ займет гораздо меньше времени и усилий. Поэтому в качестве одного из решений проблемы выступает замена обычных лам накаливания на более энергосберегающие. В качестве альтернативы обычно рассматривают ЛДС или LED-светодиоды. Однако последние имеют гораздо больший срок службы и мощность всего 8 Ватт.
Принципиальная схема лампы на светодиодах представлена на следующем рисунке:
Изготовить сетевую лампу на светодиодах своими руками не так сложно, как может показаться с первого взгляда. Для этого придется купить в магазине радиотоваров несколько деталей:
- Светодиод мощностью 1 Ватт – 8 шт.;
- Радиатор – 1 шт.;
- Мост диодный – 1 шт.;
- Кусок оргстекла или пластмассы – 1 шт.;
- Резистор на 56 Ом – 1 шт.;
- Резистор на 100 Ом – 1 шт.;
- Резистор на 1,2 кОм – 1 шт.;
- Резистор на 3,9 кОм – 1 шт.;
- Конденсатор неполярный 680 нФ с напряжением 400 В – 1 шт.;
- Конденсатор полярный 2мкФ с напряжением 400 В – 1 шт.;
- Транзистор 13001 – 2 шт.
Желательно приобрести готовую диодную сборку. Если такую не удалось найти, что основу для LED-лампы можно спаять самостоятельно. Когда все элементы будущей конструкции есть в наличии, то можно приступать к работе.
На кусочке оргстекла необходимо сделать разметку под светодиоды, она должна совпадать с формой радиатора. После этого в материале высверливают небольшие отверстия.
После этого заготовку нужно зашкурить наждачной бумагой или шлифовальной машинкой. Обрабатываю поверхность детали до тех пор, пока она не станет матовой. Затем на светодиодах выравнивают лапки, концы проводов не должны касаться радиатора.
Далее светодиоды нужно прикрепить к оргстеклу. После установки их спаивают между собой, соблюдая полярность.
Когда все элементы установлены на свои места, то нужно подпаять проводки. Для отвода тепла стоит воспользоваться термопастой. Оптимальным по свойствам является состав КПТ-8, его следует наносить непосредственно на светодиоды.
Затем светодиоды крепят на радиаторе и собирают электронную часть. Специалисты рекомендуют паять все по схеме навесом. В итоге должна получится следующая конструкция:
После этого можно переходить к проверке работоспособности устройства. В равнении с обычной лампой накаливания светодиоды более яркие. Они имеют больший срок эксплуатации и прочность.
светодиодов для начинающих: 9 шагов (с изображениями)
В отличие от светодиодов, которые подключены последовательно, светодиоды, подключенные параллельно, используют один провод для подключения всех положительных электродов светодиодов, которые вы используете, к положительному проводу источника питания и используйте другой провод для подключения всех отрицательных электродов светодиодов, которые вы используете, к отрицательному проводу источника питания. Параллельная разводка имеет ряд явных преимуществ по сравнению с последовательным соединением.
Если вы соедините целую группу светодиодов параллельно, вместо того, чтобы разделять мощность, подаваемую на них, между ними, все они будут использовать ее.Таким образом, аккумулятор на 12 В, подключенный к четырем последовательно соединенным 3-вольтовым светодиодам, будет распределять 3 В для каждого из светодиодов. Но та же батарея 12 В, подключенная к четырем светодиодам 3 В параллельно, подает полное напряжение 12 В на каждый светодиод — этого достаточно, чтобы наверняка сжечь светодиоды!
Подключение светодиодов параллельно позволяет нескольким светодиодам использовать только один источник питания низкого напряжения. Мы могли бы взять те же четыре светодиода на 3 В и подключить их параллельно к меньшему источнику питания, скажем, двум батареям АА, вырабатывающим в общей сложности 3 В, и каждый из светодиодов получит необходимое им 3 В.
Короче говоря, последовательная проводка делит общий источник питания между светодиодами. Их параллельное соединение означает, что каждый светодиод будет получать полное напряжение, выводимое источником питания.
И, наконец, несколько предупреждений … при параллельном подключении источник питания истощается быстрее, чем при последовательном подключении, поскольку в конечном итоге они потребляют больше тока от источника питания. Он также работает только в том случае, если все светодиоды, которые вы используете, имеют одинаковую мощность. ЗАПРЕЩАЕТСЯ смешивать и сочетать светодиоды разных типов / цветов при параллельном подключении.
Хорошо, теперь приступим к делу.
Я решил сделать две разные параллельные установки.
Первый, который я попробовал, был максимально простым — всего два светодиода 1,7 В, подключенных параллельно к одной батарее 1,5 В AA. Я подключил два положительных электрода на светодиодах к положительному проводу, идущему от батареи, и подключил два отрицательных электрода на светодиодах к отрицательному проводу, идущему от батареи. Для светодиодов 1,7 В не требуется резистор, потому что 1.5В от аккумулятора хватило, чтобы зажечь светодиод, но не больше, чем напряжение на светодиодах, чтобы не было риска его перегорания. (Эта установка не изображена)
Оба светодиода 1,7 В горели от источника питания 1,5 В, но помните, что они потребляли больше тока от батареи и, таким образом, ускоряли разрядку батареи. Если бы к батарее было подключено больше светодиодов, они бы потребляли еще больше тока от батареи и разряжали бы ее еще быстрее.
Для второй установки я решил собрать все, чему я научился, и подключить два светодиода параллельно к моему источнику питания 9 В — определенно слишком много энергии для одних светодиодов, поэтому мне наверняка придется использовать резистор.
Чтобы выяснить, какое значение мне следует использовать, я вернулся к верной формуле — но, поскольку они были подключены параллельно, в формуле есть небольшое изменение, когда дело доходит до тока — I.
R = (V1 — V2 ) / I
, где:
V1 = напряжение питания
V2 = напряжение светодиода
I = ток светодиода (в других расчетах мы использовали 20 мА, но поскольку параллельное подключение светодиодов потребляет больше тока, мне пришлось умножить ток на этот LED отображает общее количество светодиодов, которые я использовал.20 мА x 2 = 40 мА или 0,04 А.
И мои значения для формулы на этот раз были:
R = (9В — 1,7В) / .04A
R = 182,5 Ом
Опять же, поскольку пакет разнообразия не поставлялся с резистором точного номинала, я попытался используйте два резистора на 100 Ом, соединенные последовательно, чтобы получить сопротивление 200 Ом. Я закончил тем, что просто повторил ошибку, которую сделал на последнем шаге, еще раз, и по ошибке соединил их параллельно, так что два резистора 100 Ом в конечном итоге дали сопротивление только 50 Ом.Опять же, эти светодиоды особенно простили мою ошибку — и теперь я получил ценный урок о последовательном и параллельном подключении резисторов.
Последнее замечание о параллельном подключении светодиодов — пока я ставлю резистор перед обоими светодиодами, рекомендуется ставить резистор перед каждым светодиодом. Это более безопасный и лучший способ подключить светодиоды параллельно резисторам, а также гарантирует, что вы не сделаете ошибку, которую я сделал случайно.
Загорелись светодиоды 1,7 В, подключенные к батарее 9 В, и мое маленькое приключение в страну светодиодов было завершено.
Осветите его — Maker Camp
Осветите — Maker CampМы обнаружили, что у вас отключен JavaScript. Сайт требует включения javascript для лучшего взаимодействия с пользователем.
Проверить Maker Campus
Обучение производителей от производителей
Добро пожаловать в мир DIY Illumination!
Создавайте множество различных бумажных проектов, которые освещаются крутыми и удивительными способами, по мере того, как вы изучаете основы схемотехники, создавая светодиоды, медную ленту и батарейки типа «таблетка».Основываясь на проекте бумажных схем для начинающих, поэкспериментируйте с более продвинутыми методами, такими как создание выключателя своими руками или создание параллельной схемы с несколькими лампами. Изучите больше идей, материалов и проектов, таких как светящиеся вертушки, светящиеся вертолеты и всплывающие открытки. Развлекайтесь и проявляйте творческий подход, чтобы осветить свой мир, как хотите!
НАЧНИТЕ ИЗГОТОВЛЕНИЕ С БУМАЖНЫМИ КОНТУРАМИ
Для нашего начального проекта бумажных схем, давайте разработаем светящуюся поздравительную открытку.
ЧТО ВАМ НУЖНО?
- Светодиодные фонари (один или несколько цветов)
- Батарейки типа «таблетка» 3 В (например, CR2032)
- Медная лента (токопроводящая фольга)
- Бумага (визитки, картон, плотная бумага, бумажные стаканчики или другая бумага)
- Ножницы
- Прозрачная лента
- Зажимы для папок (маленькие, шириной около 3/4 дюйма)
- Цветные ручки, карандаши или маркеры
НАЧАЛЬНЫЙ ПРОЕКТ БУМАЖНЫХ ЦЕПЕЙ
Узнайте, как сделать простую схему, которая зажигает светодиод на листе бумаги.Для начала подарите отдыхающим один светодиод и батарею. Предложите им изучить внешний вид этих материалов и поделиться тем, что они заметили. Затем попросите их попробовать зажечь светодиод.
Обратите внимание, что на каждой стороне батареи есть символ. На одной стороне есть знак плюса (+), обозначающий положительный вывод. На другой стороне стоит знак минус (-), обозначающий отрицательную клемму. Светодиод также имеет положительную и отрицательную клеммы. Более длинная нога положительна, а более короткая — отрицательна.
Чтобы светодиод загорелся, подключите отрицательный полюс батареи к отрицательному полюсу светодиода, а положительный полюс батареи — к положительному полюсу светодиода.
Совет фасилитатора: поощряйте эксперименты
Вы можете попробовать начать с очень небольшого количества инструкций. Позвольте создателям вмешаться и попытаться заставить это работать. Моменты «неудачи» — когда что-то работает не так, как ожидалось — могут предоставить вам возможности для поощрения настойчивости и позволят разработчикам практиковаться в решении проблем.
Представьте схему схемы:
Когда каждый сможет заставить свой светодиод загореться, представьте эту базовую схему, которую они могут использовать для изготовления схемы на бумаге. Вы можете раздать распечатанные копии или нарисовать схему на доске, чтобы каждый мог ссылаться на нее, когда будет делать свои собственные.
* Совет по безопасности: края медной ленты острые, поэтому будьте осторожны, чтобы не порезать пальцы!
Ниже приведены шаги по изготовлению бумажных схем, которые вы можете использовать, чтобы помочь производителям.
1. Добавьте медную ленту
Возьмите лист бумаги и наложите на него медную ленту так, чтобы она следовала линиям на схеме. Чтобы сделать повороты, приклейте ленту, пока не дойдете до угла, в котором хотите повернуть. Затем сложите ленту, чтобы получился угол.
Структура базовой схемы
Электрическая цепь — это путь, по которому течет электричество.
Ваша схема состоит из нескольких основных частей:
- Аккумулятор , накапливающий электрическую энергию
- Медная лента , , которая проводит электричество от батареи к свету.
- Светодиод , который включается, когда через него проходит электричество
2. Присоедините светодиод.
Возьмите светодиод и раздвиньте ножки так, чтобы они торчали в стороны. Поместите светодиод поверх медной ленты так, чтобы ножки касались ленты. Затем закрепите их на месте прозрачной лентой.
3. Добавьте аккумулятор
Поместите аккумулятор отрицательной (-) стороной вниз, где находится кружок со знаком (-). Он должен касаться медной ленты.Затем загните угол бумаги так, чтобы лента, идущая к положительному (+) кружку, касалась батареи. Ваш свет должен включиться.
4. Замкните цепь.
Используйте зажим для бумаги, чтобы удерживать цепь на месте. Если индикатор не загорается, убедитесь, что медная лента проходит по обеим сторонам аккумулятора и светодиода без разрывов, и что две полоски ленты не касаются друг друга.
Советы по устранению неполадок
- Для включения света необходимо замкнуть цепь; убедитесь, что медная лента не обрывается.
- Убедитесь, что верхняя часть медной ленты прикреплена даже по углам.
- Проверьте направление свечения светодиода; убедитесь, что отрицательный конец подключен к отрицательной стороне батареи, а положительный конец подключен к положительной стороне.
- Проверьте, нет ли ослабленных соединений.
ПРОДОЛЖАЙТЕ ИЗГОТОВЛЕНИЕ С БУМАЖНЫМИ КОНТУРАМИ
ПРОЕКТЫ COOL PAPER CIRCUITS ДЛЯ OPEN MAKE
Совместное использование и отражение
- Каким был опыт создания подсветки?
- Какой самый любимый материал вы использовали сегодня для создания своей схемы?
- Что вы хотите изменить или добавить в свою бумажную схему?
- Можете ли вы перечислить три вещи, которые вы хотите сделать, используя методы, которые вы узнали сегодня?
Теперь, когда вы закончили делать бумажные схемы, поделитесь своими проектами с другими отдыхающими в нашем сообществе Google+ и в других социальных сетях, всегда используя #MakerCamp!
УЗНАТЬ БОЛЬШЕ ПРОЕКТОВ MAKER CAMP НАЙДИТЕ ЕЩЕ БОЛЬШЕ ПРОЕКТОВ У производителя:Обратите внимание
Ваша безопасность — это ваша личная ответственность, включая правильное использование оборудования и защитного снаряжения, а также определение того, достаточно ли у вас навыков и опыта.Электроинструменты, электричество и другие ресурсы, используемые для этих проектов, опасны, если не используются должным образом и с соответствующими мерами предосторожности, включая защитное снаряжение и наблюдение взрослых. На некоторых иллюстративных фотографиях не изображены меры предосторожности или оборудование, чтобы более наглядно показать этапы проекта. Вы используете инструкции и предложения, содержащиеся в Maker Camp, на свой страх и риск. Maker Media, Inc. не несет никакой ответственности за любой возникший в результате ущерб, травмы или расходы.
ПОДЕЛИТЬСЯ СВОИМИ ПРОЕКТАМИ
Делитесь фотографиями и видео своей крутой сборки! Обязательно используйте #makercamp
. РАЗМЕСТИТЬ СВОИ ПРОЕКТЫНабор для вечеринок BrushBot
Наборы Brushbot Party Pack (12) — идеальный способ развлечь вашу следующую вечеринку.
Учимся паять
С помощью нашего эксклюзивного набора десятки тысяч людей научили паять.
Настройки файлов cookie
LED Circuits and Projects-Простая схема с принципиальной схемой, рабочая
CircuitsToday.com представляет несколько простых светодиодных схем и проектов, которые можно реализовать даже дома. Эти схемы и проекты уже были протестированы и опубликованы вместе с принципиальной схемой, схемами и подробным рабочим описанием каждого из них.Также просмотрите комментарии к каждой статье о схемах светодиодов, чтобы лучше понять используемые ИС и модификации, которые могут быть внесены в схему. Чтобы узнать о работе светодиода, щелкните ссылку — Светодиодный рабочий
1. Танцующий свет
В схеме используется таймер 555 и микросхема CD 4017. Тактовые импульсы для микросхемы CD 4017 подаются микросхемой таймера, которая подключена как нестабильный мультивибратор. Номер контакта 14 микросхемы CD 4017 является входным контактом часов.Когда на этот вывод подаются тактовые импульсы, 10 выходных выводов поочередно становятся на высокий уровень один за другим. Когда светодиоды подключены к этим выходам, они также непрерывно включаются и выключаются в соответствии с импульсами, которые выдает таймер. Взгляните на принципиальную схему в основной статье.
2. Ночной свет безопасности
Как следует из названия, эта схема используется для обеспечения безопасности вашего дома путем автоматического включения света примерно через два часа после полуночи.Это делается с помощью CMOS IC 4060. Схема потребует LDR, TRIAC , светодиоды и резисторы в соответствии с ее конструкцией. Узнайте больше об этой интересной схеме из ее оригинального содержания.
3. Светодиод с задержкой включения
В этой схемотехнике светодиод, подключенный к выходу, светится только через заданное время после включения питания. Конденсатор играет важную роль при включении транзистора. Также для схемы необходим потенциометр с предустановкой и потенциометр .
4. Светодиодный фонарик с использованием MAX660
Микросхема преобразователя напряжения типа CMOS MX 66o используется для изготовления этой цепи светодиодного фонарика. ИС может управлять 3 яркими белыми светодиодами. Это простая схема светодиодного фонарика на базе микросхемы MAX660 от MAXIM semiconductors. MAX 660 — это микросхема преобразователя напряжения монолитного типа CMOS. ИС может легко управлять тремя очень яркими белыми светодиодами. Светодиоды подключены параллельно к выходному выводу 8 микросхемы.
5.Светодиодные индикаторы температуры
Схема представляет собой не что иное, как два светодиода (D1 и D2), состояние которых контролируется температурой окружающей среды. В этой схеме используется датчик температуры под названием Lm 35 IC. С каждым повышением температуры на 1 градус выходной сигнал датчика увеличивается на 10 милливольт. Также используется операционный усилитель CA3130, и выходной сигнал датчика температуры подается на неинвертирующий вход операционного усилителя. На инвертирующий вход подается опорное напряжение с помощью потенциометра.Когда опорное напряжение и неинвертирующее входное напряжение становятся одинаковыми из-за повышения температуры, выход операционного усилителя переходит в насыщение. Это включает транзистор, подключенный к выходу операционного усилителя, и, таким образом, заставляет светодиод светиться. Дальнейшую работу над статьей можно получить по основной ссылке выше.
6. Цепь светодиодной лампы USB
Это практичная лампа с питанием от USB, которую можно использовать для освещения вашей комнаты во время сбоя питания.Напряжение, необходимое для работы, получается от 5 вольт, имеющихся в USB-порту. Напряжение должно проходить через токоограничивающий резистор и транзистор. В схеме используются два светодиода для лампы. Другой светодиод необходим в качестве индикатора, показывающего соединение между USB-портом и схемой.
7. Светодиодный термометр для измерения температуры
Датчик под названием LM 34 IC и микросхема драйвера гистограммы под названием LM 3914 IC используются для разработки высокоточного термометра Фаренгейта со светодиодной диаграммой.Схема используется для определения температуры в градусах Фаренгейта. Его можно изменить для измерения температуры в градусах Цельсия, заменив IC датчика LM 34 на LM 35. Вольтметр используется для калибровки цепи. Подробное объяснение схемы можно получить из схемы выше.
8. Автоматический светодиодный аварийный свет
Эта единственная статья содержит три схемы аварийного освещения, состоящие из 3 различных ИС. Первый — это простая схема аварийного освещения, которая используется для определения дневного света и, таким образом, выключения.Также происходит обратное, когда из-за недостатка дневного света светодиод загорается. Схема использует LDR для восприятия света. Фотография схемы и дизайна PCB также доступна в исходном содержании.
Следующая статья — это автоматическая светодиодная схема аварийного освещения с использованием IC LM 317. Модифицированная версия также доступна здесь.
9. Простой индикатор уровня воды
Эту схему можно использовать для определения уровня любых проводящих неагрессивных жидкостей.Схема требует пяти транзисторов и соответствующего управляющего светодиода. Транзистор включается, когда ток базы подается от электродных зондов, подключенных внутри резервуара. На разных уровнях резервуара подключаются разные датчики. Один электродный зонд (F) с напряжением 6 В переменного тока размещен на дне резервуара. Все остальные зонды размещаются на квартальном, половинном и трех квартальном уровнях. Схема подключена таким образом, что, когда вода касается каждого датчика уровня, соответствующий ему светодиод начинает светиться, показывая правильный уровень.Узнайте больше о схеме по ссылке выше. Не забудьте просмотреть примечания, в которых указывается важность чистого переменного тока для схемы.
10. Мигающий светодиодный блок
Это самая дешевая и менее энергоемкая схема (достаточно 3-вольтовых кнопочных элементов) из представленной. Схема предназначена для работы в качестве мигающего светодиода для создания эффекта вращения, когда светодиоды расположены правильно. Схема состоит из таймера 555, подключенного как нестабильный мультивибратор с рабочим циклом 50 процентов и частотой 4 Гц, чтобы управлять 6 светодиодами.Другая схема таймера также подключена в качестве инвертора импульсов запуска, чтобы управлять еще 6 светодиодами. Схема устроена так, что микросхемы поглощают ток, потребляемый светодиодами. Подробное объяснение и принципиальная схема доступны в вышеуказанном посте.
11. Регулятор уровня воды
Это одна из самых надежных схем на этом сайте. Схема использует микросхему таймера 555 IC , шесть транзисторов, реле и несколько пассивных компонентов. Схема построена таким образом, что она автоматически переключает двигатель в положение ВЫКЛ, как только вода поднимается выше желаемого уровня.Схема также может использоваться для запуска двигателя, чтобы перекачивать воду в резервуар. В цепи используются четыре датчика, которые подключаются на нижнем уровне, на полууровне, на среднем уровне и на уровне полного резервуара. Уровень воды измеряется с помощью трех транзисторов. Транзисторы остаются выключенными до тех пор, пока уровень воды не превышает четверть уровня. Когда уровень воды касается одного из датчиков (кроме нижнего уровня), соответствующие транзисторы смещаются и включаются. Дальнейшая работа реле, подключенных к транзисторам, и важность таймера 555 можно понять из основной статьи.
12. Цепь светодиодной лампы из металлолома
Эта простая светодиодная схема основана на преобразовании сломанной или неисправной КЛЛ в энергосберегающую светодиодную лампу. Изображения завершенной схемы и принципиальная схема также представлены в основной статье. Не забудьте взглянуть на различные процедуры, перечисленные для сборки схемы.
Основные способы использования светодиодной схемы
Мой сын очень заинтересован в светодиодах. Он хочет создать простую схему светодиодного мигающего сигнала.Но мы должны изучить принципы работы светодиода раньше. В электронных схемах используется множество светодиодов.
Что такое светодиод?
Светодиод представляет собой светоизлучающий диод. Это более сложный электронный компонент, чем лампа или лампа накаливания. Светодиоды имеют много цветов для использования. Что важно, они используют очень небольшой ток, 10 мА.
В обычных магазинах электроники есть много типов светодиодов. Но теперь мне нравится использовать в своих электронных схемах стандартные светодиоды диаметром 3 мм и 5 мм.Потому что они такие дешевые.
Распиновка светодиода
Это изображение крупным планом 3 мм светодиода и его распиновка. Имеет полярность как диод. Значит, мы должны связать это правильно или предвзято. Он не загорится при неправильном подключении или обратном смещении.
Когда мы нашли крупный план светодиода. Во-первых, более длинный вывод является положительным (+) или анодным (A). Другой вывод короче, отрицательный (-) или катодный (K).
Но иногда это один и тот же отрывок. Нам нужно смотреть на плоскую сторону светодиода.Он всегда указывает катод (К) или отрицательный (-). Значит, другой положительный (+) или анодный (A).
Затем посмотрите на символ светодиода по сравнению с обычным диодом.
Зачем нужны символы? Если вы рисуете схему, если на это уходит много времени, следует использовать символы.
Похоже на диод. Большая треугольная стрелка указывает направление протекающего тока. Маленькие стрелки на схеме указывают излучаемый свет.
В целом, на диаграмме не отображаются знаки «+» или «-».На нем отображается только буква «К», обозначающая катод, и буква А, обозначающая анод.
А, мы часто используем светодиод с ограничивающим резистором.
Примечание: Думаю, нам не нужно разбираться в устройстве светодиода. На нашем уровне достаточно просто использовать.
Как проверить светодиод
Для начала, какое напряжение использует светодиод?
Детали, которые вам понадобятся
- Красный светодиод 3 мм
- Источник питания
- Вольтметр в мультиметре
У моего сына на макете красный светодиод 3 мм.Потому что для этого не нужен электрический паяльник. Идеально для него.
Затем он пытается использовать регулируемый источник питания постоянного тока, от 1,25 В до 25 В 1A. Для питания светодиода. Осторожность! Для начала только с 1,25 В.
- Теперь светодиод гаснет.
- Затем отрегулируйте напряжение до 1,5 В. Но светодиод все равно гаснет (не горит).
- Светодиод загорается при напряжении 1,7 В.
- Когда он добавляет напряжение до 2,2В, то сильно греется.
- При 1,8 В светодиоды обеспечивают наилучшее освещение и нормальную температуру
Изучение: взаимосвязь между током и напряжением
Напряжение светодиода
Обычно для всех светодиодов требуется ток через резистор около 10 мА для небольших размеров ( 3 мм) и 20 мА для 5 мм.Но для каждого цвета требуется разное напряжение.
- Красный светодиод: 1,7 В
- Зеленый светодиод: 2,3 В
- Желтый светодиод: 2,3 В
- Оранжевый светодиод: 2,1 В
- Синий светодиод: 3,3 В
- Белый светодиод: 3,6 В
Это хорошо падение напряжения символа. Потому что это постоянное напряжение.
На блок-схеме ниже. Я покажу вам, как использовать светодиод с батареей 3 В через ограничительный резистор четырех цветов: красный, зеленый, желтый и оранжевый.Они используют разное сопротивление.
Примечание: Вот как найти резистор ограничения тока .
Почему светодиод не светится?
Если подключить светодиод в цепь. Но это не работает. Почему не светится?
Например, две схемы ниже.
- Сначала красный светодиод подключен с обратным смещением или неправильным образом.
- Во-вторых, для белого светодиода требуется питание 3,6 В. Но теперь у него всего 3 батареи.
Как использовать белый светодиод
Добавляем в схему еще одну батарею на 1,5 В. Теперь у нас есть батарея на 4,5 В. Таким образом, мы можем использовать их для белых и синих светодиодов.
Как использовать сине-белый светодиод с батареей 4,5 В или 5 В.
Это просто основные принципы использования светодиода. Когда ты делаешь реальные проекты. Это могут быть хорошие идеи для вас.
Пример реального использования LED
При работе мы, вероятно, разбираемся в электронике больше.
DIY простой светодиодный светильник 12В
Светодиодная лампа пользуется большей популярностью, чем обычная лампочка.Потому что он имеет высокий КПД, низкое энергопотребление и, следовательно, термостойкость.
Я покупаю светодиодную лампу 12 В Для использования в автомобилях и для общего использования
Затем я попытался измерить ток, протекающий через нее, всего около 20 мА.
Но иногда нам нужно что-то доработать поблизости. Чтобы использовать возобновляемые, экономичные, не нужно покупать дополнительные, лучше удалить использованные старые.
Я пытаюсь использовать другую сверхяркую светодиодную схему.
Как обычно, потребуется напряжение около 1.8В-4В и ток около 10мА. Когда мы хотим сохранить низкое энергопотребление. Так же использовали серию или приводим 3 светодиода последовательно. Если напряжение на каждом из них составляет примерно 3 В, через него протекает ток примерно 10 мА.
Диод используется для защиты обратного напряжения светодиодов, но он снижает напряжение с 12В до 11,3В. По принципу этого.
И используйте резистор R, ограничивающий ток до 3 светодиодов. Вы можете использовать приведенную ниже формулу.
R = (11,3 В — Вольт светодиода) / токи светодиода
— Напряжение светодиода = 3 В x 3 = 9 В
— Ток светодиода = 10 мА
= (11.3 В — 9 В) / 10 мА = 300 Ом
Но я использую 330 Ом 0,25 Вт
Тогда измеряемый ток составляет только 9 мА. Если мы используем аккумулятор на 12 В, 500 мАч, мы будем использовать их в течение 50 часов. Это хорошо для экономии.
ПОЛУЧИТЬ ОБНОВЛЕНИЕ ПО ЭЛЕКТРОННОЙ ПОЧТЕ
Я всегда стараюсь сделать Electronics Learning Easy .
Аудио управляемая светодиодная схема с использованием транзисторов
В этом проекте мы собираемся создать схему светодиодов с аудиоуправлением с использованием транзистора.В схеме светодиодов с аудиоуправлением светодиоды включаются и выключаются в зависимости от музыки. Эта схема проста и эффективна, она требует небольшого количества аудиосигнала на входе, который поступает с выхода разъема для наушников любого устройства воспроизведения звука, такого как mp3-плеер, CD-проигрыватель, компьютер, мобильный телефон и т. Д.
Мы собираемся сделать эту схему, используя 15 светодиодов и транзистор. Эта схема основана на транзисторе BD140, она очень проста и проста и требует всего нескольких компонентов.Светодиоды включаются и выключаются в зависимости от высоты и продолжительности звука или ритма, эта схема позволяет выбирать звук высокой интенсивности, например бас. Эти светодиоды следят за звуком и ударами высокого тона и соответственно гаснут и загораются.
Компоненты оборудования
[inaritcle_1] Принципиальная схемаРабочий
Рабочее напряжение этой цепи составляет 12 В постоянного тока. В этой схеме мы используем 15 светодиодов, а группа из трех светодиодов подключена к одному ограничивающему току резистору.Мы используем транзистор BD140, к которому можно подключить до 60 светодиодов.
Аудиовход улавливает звуковые сигналы и преобразует их в уровни напряжения, которые затем подаются на фильтр R-C для устранения шума из звука. Транзистор PNP используется для усиления звуковых сигналов, поступающих от фильтра, и они передаются на массив резисторов и светодиодов. Транзистор помогает в усилении и светит светодиодами в соответствии со звуковой картиной.
Вы можете увеличить количество светодиодов, если хотите, но убедитесь, что они подключаются таким же образом, как на этой принципиальной схеме.Для дальнейшего увеличения светодиодов вы также можете заменить транзистор, например, транзистор MJ2955 или TIP32
.Приложения и способы использования
- Disco Lights
- Проблесковый маячок
- Рекламное хранилище
18 Идеи для схем солнечного света DIY
Согласно Википедии, солнечная энергия — это «лучистый свет и тепло от солнца». Эта энергия используется в самых разных целях; некоторые примеры — тепло, свет и фотосинтез.
В этой статье мы собрали статьи, которые помогут вам создать солнечный контур, который можно использовать в качестве источника света в различных приложениях. Солнечные светильники продаются для всех областей вашего дома, от садовых огней до ночных светильников, даже светильников с датчиками движения и огней для вечеринок. Здесь мы составили список из 18 простых способов создания недорогих схем солнечного освещения своими руками
1. Схема солнечного садового освещения с автоматическим отключением
В этой базовой схеме используются светодиоды, солнечная панель и аккумулятор. аккумулятор вместе с транзистором PNP и резисторами.В дневное время напряжение батареи не достигает светодиодов, потому что транзистор действует как переключатель. Солнечная панель поглощает достаточно солнечной энергии, чтобы перезаряжаемая батарея освещала подключенные светодиоды.
Щелкните здесь для этого процесса .
2. Схема самостоятельного солнечного освещения — уличный фонарь
Две солнечные панели подключены к монтажной плате, которая затем подключается к двум аккумуляторным батареям. Батареи используют накопленную мощность солнечных панелей для освещения светодиодной лампы мощностью 1 Вт.Он помещает батарею в пластиковый ящик и прикрепляет устройство к деревянной доске, чтобы все устройство оставалось вертикальным, чтобы получился уличный фонарь.
Смотреть видео
3. Простая схема DIY солнечного света
Если вы ищете очень простой способ создать светодиодную лампу на солнечной энергии, это базовое руководство, которое предлагает только то. Этот блогер использует солнечную батарею на 12 В, которая заряжает аккумулятор в дневное время. А вечером этот же ток отключается от солнечной панели.Батарея становится источником питания для светодиодной лампы мощностью 1 Вт.
Щелкните здесь для получения дополнительной информации .
4. Схема самостоятельного солнечного освещения в саду
Легкое для понимания видео, демонстрирующее, как можно сделать самодельную схему солнечного освещения для своего сада. Этот видеоблогер предлагает использовать солнечную панель на 5 В, но то же самое руководство можно применить и к цепи на 12 В. Поскольку это устройство выходит в сад и может попасть под дождь или воду с растений, рекомендуется поместить все части, кроме панели и света, в водонепроницаемую коробку.
Смотреть видео
5. Цепь солнечного света с белым светодиодом
Если вы делаете схему солнечного света своими руками, важно использовать источник света, который будет быть достаточно ярким, чтобы его можно было увидеть. Для таких областей, как сады, в этом руководстве рекомендуется использовать белые светодиоды, потому что они очень люминесцентные и обеспечивают эффективное освещение.
Также важно правильно рассчитать размер и напряжение аккумулятора, чтобы обеспечить достаточную мощность.
Щелкните здесь, чтобы узнать больше .
6. Схема солнечного ночника — DIY
Узнайте, как сделать схему солнечного ночника с помощью платы TP4056. Преимущество доски такого типа в том, что она портативна. Кроме того, эта плата поставляется с защитой аккумулятора или без нее. Этот видеоблогер предлагает использовать тот, у которого есть защита. При максимальном пребывании на солнце 5 часов солнечная панель, предложенная в этом видео, рассчитана примерно на 2 часа.9Ач энергии.
Посмотреть видео
7. DIY Схема солнечного освещения для экстерьера дома
Это отличный проект для ваших детей, как этот блоггер показывает нам на своих фотографиях. Он использует аккумулятор на 12 В, светодиодные лампы и солнечную батарею. Построив уличный солнечный свет, он смог сделать внешний вид своего дома более безопасным, а также сократить расходы на электроэнергию. Он также рассказывает, как он создал второй, более крупный вариант светодиодного солнечного света, чтобы дать больше света.
Щелкните здесь, чтобы следовать этому процессу .
8. Схема самостоятельного солнечного защитного освещения
Это видео знакомит зрителя с более продвинутым DIY. Это предполагает использование датчика движения PIR. PIR означает, что пассивное инфракрасное излучение относится к использованию датчика для обнаружения присутствия человека в комнате. Это отличный вариант, если вы хотите добавить дополнительные функции безопасности в свой дом или квартиру и вокруг них.
Посмотреть видео
9.DIY Solar Night Light
Если вы хотите превратить существующий ночник в светильник на солнечной энергии, это видео будет вам очень полезно. Этот человек показывает вам, как взять оригинальный пластиковый корпус и создать печатную плату с использованием 18650 и TP4056. Затраты на этот проект очень минимальны, потому что вы используете то, что у вас уже есть дома, и вы можете легко превратить этот свет в вариант зеленой энергии.
Посмотреть видео
10.Схема самостоятельного солнечного освещения для крыльца
Отличный процесс для тех, кто хочет больше контролировать, когда загорается свет на крыльце и как долго он остается включенным. Эта схема DIY предлагает программируемый таймер и даже позволяет задержку включения или выключения. Как это работает, очень технически, но это очень хорошо объяснено автором этой статьи.
Щелкните для подробностей процесса .
11. Базовая схема солнечного декоративного освещения своими руками
Базовое видео, демонстрирующее базовую схему солнечного освещения.Но информация очень подробная. Этот человек объясняет, как создать световую цепь, используя транзистор, два резистора, аккумуляторную батарею, диод и довольно небольшую солнечную панель. Он объясняет, что части могут быть заменены в зависимости от ваших потребностей. Он предоставляет базовую модель того, как построить схему солнечного освещения своими руками.
Посмотреть видео
12. Самодельная солнечная световая цепь с использованием солнечной панели 6 В
Солнечная панель 6 В используется для создания этой простой ночной лампы, работающей от солнечной энергии.Он заряжается в течение дня и автоматически включается на закате. Затем светодиод питается от аккумулятора и горит до утра. Этот человек также предлагает поставить лампочку перед зеркалом или отражающим предметом, чтобы усилить свет. Схемы соединений
Чтобы узнать больше о том, как его построить, щелкните здесь .
13. Схема самостоятельного солнечного освещения с использованием литиевой батареи
Здесь мы можем увидеть сборку с солнечной панелью, литиевой батареей и светодиодными лампами.Этот садовый светильник предназначен для зарядки днем и зажигания ночью. Чтобы сделать его экономичным и свести к минимуму затраты, этот человек не использует сенсор или микроконтроллер. Отсутствие этого также помогает упростить монтажную плату.
Смотреть видео
14. Контур солнечного света DIY с активацией движения
Солнечный свет, активируемый движением, важен для безопасности и защиты вашего дома.В этом посте показано, как собрать его, используя модуль датчика PIR, транзистор PNP, транзистор NPN, светодиодную лампу, резисторы, свинцово-кислотную батарею и солнечную панель.
Детектор движения включает свет, когда человек или животное оказывается в пределах его досягаемости, и затем выключается, когда в этом районе больше нет движения. Рекомендуется разместить его в нескольких частях дома.
Нажмите здесь, чтобы узнать, как сделать .
15. Схема DIY солнечного света для школы Проект
Очень простой учебник о том, как сделать схему солнечного света своими руками.Это можно использовать для школьного проекта или просто как введение в создание световых цепей перед переходом к более сложным проектам. Используемые предметы очень недорогие, а использованные аккумулятор и банку, вероятно, уже можно найти в доме.
Посмотреть видео
16. Подвесная цепь солнечного света DIY
Какая уникальная идея — добавить подвесной вариант к вашей схеме DIY солнечного света. Преимущество заключается в том, что вы можете переместить его в любое место, где вы хотите, чтобы было светло, а также в течение дня его можно наклонить к солнцу, чтобы сохранить максимальный заряд солнечной панели.
Пластиковый контейнер и проволочная вешалка — дополнительные предметы, которые этот человек использовал для создания этого уникального стиля солнечного света.
Чтобы узнать больше о том, как это сделать, нажмите здесь .
17. Схема DIY солнечного света для струнных светильников
Для вечеринки на открытом воздухе необходимо праздничное освещение. Вот отличный способ сделать самодельную версию гирлянды на солнечных батареях, используя схему освещения на солнечной энергии. Хотя для этого проекта вы можете использовать белые светодиоды, для более красивой обстановки можно использовать цветные светодиоды, как предлагает автор.Кроме того, для защиты светодиодной цепочки важно использовать какой-нибудь шланг для очистки.
Подробнее о пошаговом руководстве .
18. Схема DIY солнечного света с использованием модели Joule Thief
«Joule Thief» используется для описания минималистского стиля усилителя напряжения. Этот термин относится к типу схемы, которая имеет небольшие размеры, низкую стоимость и обычно проста в сборке. Это то, что вы найдете на этой простой схеме и видео этой цепи солнечного света.Солнце падает на солнечную батарею и заряжает аккумулятор.
В этой конкретной модели используется небольшая солнечная панель, батарея на 1 или 2 В и диоды, а также электрическая панель.
Посмотреть видео
Valentine STEM: Light-Up Circuit Valentines
Знаете ли вы, что можно рисовать по электрической цепи? Я тоже этого не делал, пока несколько месяцев назад не наткнулся на электрическую краску. И его так же легко использовать, как клей с блестками. Действительно.С тех пор, как я его нашел, я придумывал проекты, такие как эти валентинки Light-Up Circuit Valentines . Это сердце для разговоров с собственным светодиодом и батареей, созданное специально для света вашей жизни. На День святого Валентина или любой другой день вы хотите показать свою любовь. Этот пост содержит партнерские ссылки.
Как сделать светящиеся схемы валентинки
Эти валентинки точно не пугают! Дети во всем мире изготавливают их в классах, дома, после школы, в скаутах, библиотеках и т. Д.Все, что вам нужно, это несколько расходных материалов и этот полезный шаблон для печати. Чтобы получить шаблон, просто заполните форму, и она будет отправлена вам по электронной почте.
Copper Tape Light Up Valentine Circuits Обновление
Я слышал от многих из вас, что в наши дни сложно достать батарейки. Поэтому я обновил шаблон, чтобы вы могли использовать медную ленту и стандартные батарейки CR2032.
Медная лента для освещения цепи, необходимые для подарков на День Святого Валентина
Вот то, что вам нужно купить (не забудьте также получить бесплатную распечатку, заполнив форму в верхней части этого сообщения):
Как сделать так, чтобы медная лента загоралась Валентина схемная карта
- Загрузите и распечатайте шаблон, затем вырежьте его по внешней линии розового сердца.
- Построить схему:
- Согните выводы светодиода под углом 90 градусов, чтобы они могли плотно прилегать к картону. Если провода слишком длинные, чтобы следовать за линией сердца, вы можете сократить их короче, но убедитесь, что положительный вывод длиннее, чтобы облегчить построение.
- Теперь о медной ленте… Всегда старайтесь использовать длинные непрерывные участки медной ленты без разрывов. Если он сломается, дайте ленту примерно на дюйм перекрывать следующую часть.
- Обмотайте положительный вывод светодиода медной лентой, чтобы он прикреплял провод к карте и проходил вниз по правой стороне сердца до батарейного отсека переключателя.
- Повторите то же самое с отрицательным проводом светодиода и приклейте левую сторону сердца к положительному кругу батареи.
- Установите аккумулятор положительной стороной вверх и закройте карту. Аккумулятор можно прикрепить к карте петлей из медной ленты или куска прозрачной ленты. Чтобы включить карту, закройте переключатель пальцем или скрепкой для бумаги.
И вернемся к исходному посту….
День Святого Валентина с подсветкой своими руками
Хорошо, я буду честен здесь.Это один из моих самых любимых проектов в Left Brain Craft Brain. Я всегда шучу, что если что-то блестит, я хочу этого. Если загорится, даже лучше. Моя дочь собирает светящиеся игрушки и светящиеся палочки с угрожающей скоростью просто потому, что я тоже их люблю. Так что, когда у меня появилась возможность сделать светящийся стем-проект Valentine, я был в восторге.
Часто бывает трудно найти простые технологические проекты, которые завершили бы обучение STEM / STEAM, но этот основной проект Valentine действительно достаточно прост для ребенка.Моему дошкольнику нужно было много держать за руку, но ребенок младшего школьного возраста мог делать это и сам.
Требуются припасы для свечей на день Святого Валентина
- Распечатайте и вырежьте валентинки: Распечатайте бесплатную распечатку Light Up Valentine Circuits. Вырежьте сердечки по черной внешней линии в форме сердца, не забудьте вырезать квадратную часть в правом нижнем углу. Это будет выключатель для Валентина.
- Вставьте светодиод: Сначала проткните два отверстия в карте канцелярской кнопкой, по одному на каждую черную точку рядом с кружком с крестиком.Это символ света. Затем вставьте светодиод, убедившись, что длинный штифт вставлен в отверстие со знаком +. Сложите провода на обратной стороне карты.
- Добавьте батарею и раскрасьте сердечную цепь: Установите батарею, как показано на валентинке, так, чтобы положительный вывод был совмещен со знаком плюс. Обратите внимание, батарейки типа «таблетка» представляют опасность при проглатывании, поэтому держите их подальше от детей, которые все еще суют что-то в рот.
- Начните красить электрокраской {affiliate} по розовой внутренней линии сердца.Вам не нужна сверхтяжелая линия (это не пышная краска), но убедитесь, что вы получаете непрерывную линию краски шириной примерно с розовую линию. Если линия слишком тонкая, светодиоду не хватает мощности. Не заполняйте область батареи или светодиода, а также пустое место возле переключателя.
- Покрасьте переключатель: Залейте розовый квадрат электрокраской. Используйте ровно столько, чтобы покрыть квадрат легким слоем. Здесь действительно легко использовать слишком много, из-за чего он сохнет вечно.
- Дайте высохнуть: Дайте токопроводящей краске высохнуть. В инструкции по краске указано 15 минут, но я, должно быть, нанёс более толстый слой, поэтому на это ушло несколько часов. Краска становится полностью токопроводящей только тогда, когда полностью высыхает.
- Зажигаем: Чтобы включить Valentine, переверните переключатель так, чтобы он замкнул цепь. Светодиод загорится.
Знаете, почему еще мне нравится этот проект? Моя дочь определенно осветила мою жизнь 🙂
Еще больше практических проектов STEM на День святого Валентина для детей
Если вам это нравится, вы тоже полюбите это!
25+ художественных проектов в стиле Дня святого Валентина для детей
День святого Валентина: наука, техника, инженерия, искусство и математика для детей
Ищете способы показать свою любовь к STEAM? Стиль мгновенного удовлетворения? Оцените STEAM Kids Valentine’s Day ! В нем 14 заданий, вдохновляющих сердца, которые избавят ваших детей от скуки.ОБНОВЛЕНИЕ: Некоторые люди спрашивали меня, где взять батареи.