применение и изготовление своими руками
Сегодня все большую популярность завоёвывают индукционные обогреватели. Такие устройства имеют ряд преимуществ: они более экономичны, обладают высоким КПД и их даже можно изготовить в домашних условиях. Подобными нагревателями можно отапливать помещение, либо использовать их в качестве проточных водонагревателей.
В последнее время все больше владельцев собственных квадратов отдают предпочтение электрическим обогревателям именно такого типа. Это легко объясняется. В отличие от других видов устройств, они безопасны, не оставляют копоти, сажи и, что весьма удобно, при их эксплуатации отсутствует надобность в приобретении дров. Однако подобное оборудование нельзя назвать экономным.
Что собой представляет
Индукционные вихревые обогреватели подходят для отопления дома, гаража, квартиры, бани, в общем, любых квадратных метров, где тепла недостаточно или оно отсутствует вовсе. Индукционные обогреватели работают за счёт вихревых токов (токи Фуко), создаваемых магнитным полем.
Нагрев до высоких температур (70 градусов) с помощью такого устройства происходит довольно быстро, примерно за 5 минут.
Преимущества и недостатки
Анализируя рабочий процесс обогревателя и связанные с ним затраты, хочется отметить несомненные плюсы, которые получает обладатель такого устройства:
- КПД 99%, практически отсутствует потеря тепла.
- При работе системы не образовывается накипь, в отличие от нагревателей, имеющих ТЭН.
- Экологически безопасный обогрев помещения.
- При обогреве можно использовать как воду (чаще всего), так и антифриз, масло.
- Отсутствует надобность в частом профилактическом обслуживании.
- Процесс установки не требует специальных навыков, неприхотливая эксплуатация.
- Высокая пожаро- и электро-безопасность.
- Возможность совмещения с другими системами отопления.
- Работа от сети как переменного тока, так и постоянного.
- Срок службы свыше 20 лет.
Несмотря на все преимущества, которыми обладает прибор, нельзя не отметить существенные минусы:
- высокая стоимость оборудования в магазинах;
- дорогостоящее отопление;
- требуется наличие стабильного электроснабжения;
- большой вес устройства;
- возможность установки только в закрытую систему отопления.
Применение
Отопление, основанное на вихревых токах, созданных электромагнитными полями может найти своё применение при:
- обогреве жилого хозяйства, дома, бани, гаража, промышленного или административного здания;
- в системе горячего водоснабжения;
- обогреве сооружений и конструкций, имеющих определённые требования к источникам тепла (по безопасности).
Индукционный обогреватель своими руками
Из-за дороговизны прибора многие решают изготовить подобный нагреватель самостоятельно. В интернете можно встретить много статей, в которых описывается, как сделать индукционный котел – обогреватель своими руками. Мы опишем принцип изготовления простейшего типа устройства, чтобы с подобной задачей мог справиться любой хозяин.
Перед тем как приступить к работе, подготовьте следующие инструменты: кусачки, паяльник (если вы планируете делать сердечник из металлической трубы), отвертки.
- Нарежьте проволоку из нержавеющей стали диаметром 7 мм на кусочки приблизительно в 5 мм.
- Подготовьте пластиковую или металлическую трубу (сердечник), стенки которой должны быть толщиной не менее 3-5 мм, чтобы она смогла выдерживать высокие температуры.
- Заполните трубу доверху обрезками из проволоки.
- Концы трубы закройте сеткой, чтобы исключить вероятность выпадения из неё обрезков во время работы прибора.
- Далее по всей длине трубы спиралью намотайте медную проволоку, сделав порядка 90 витков.
- Изготовьте котёл, вырезав прямоугольный участок трубы.
- В отверстие котла вставьте изготовленное устройство.
- Концы медной проволоки подключите к инвертору с высокой частотой действия. Купить его можно практически во всех магазинах, имеющих строительное направление.
Перед сборкой оборудования оцените свои силы и возможности. Не беритесь за изготовление нагревательного прибора, если ничего не понимаете в электричестве.
Индукционный обогреватель воды для системы отопления
Обогреватель имеет весьма неприхотливую конструкцию.
Такое устройство следует снабдить патрубками: для холодной и горячей воды. Сверху через патрубок горячая вода будет подаваться в систему отопления. А снизу на вводной части через него будет пребывать холодная вода
Безопасное использование
Учитывайте, что индукционный обогреватель – это электрическое устройство повышенной опасности. Правила, которые стоит учесть, при изготовлении такого оборудования:
- Оснастите устройство датчиком температуры. В случае перегрева оборудования система должна иметь возможность автоматического отключения.
- Для самодельного оборудования организуйте отдельную линию электропроводки с увеличенным сечением провода.
- Не пренебрегайте изоляцией оголённых участков, обезопасьте своих близких от удара током.
- Перед включением индуктора убедитесь, что труба заполнена водой. При её отсутствии прибор может сгореть, а труба расплавиться.
- Не размещайте оборудование в жилой зоне. Электромагнитные волны оказывают негативное влияние на здоровье людей и животных.
- Прибор следует установить на высоте более чем 80 см от пола, а расстояние от устройства до потолка должно составлять не менее 30 см.
- Заземлите оборудование.
- Установку прибора следует производить через автомат, чтобы в случае аварии, устройство было отключено от питания.
- Для снижения давления в системе не лишним будет установить предохранительный клапан в системе трубопровода.
Если обобщить информацию, то можно сделать вывод:
- Индукционный нагреватель имеет высокий коэффициент полезного действия, у некоторых моделей он достигает 99%.
- Устройство может использоваться как в виде водонагревателя, так и в виде котла в системе отопления.
- Конструкция нагревателя достаточно проста, поэтому её сборка и установка возможна своими силами.
- Использование индукционного водонагревателя на территории РФ не регламентировано.
Несмотря на все плюсы, решение об установки подобного оборудования стоит принимать взвешенно:
- Во-первых, оно потребляет достаточно большое количество электроэнергии.
- Во-вторых, прибор, особенно собранный самостоятельно, нельзя назвать полностью безопасным.
- В-третьих, он оказывает негативное влияние на здоровье людей и животных. Поэтому устанавливать его всё же следует на дачах или в собственных домах.
какой лучше выбрать? Обзор самых экономичных, эффективных и безопасных дачных потолочных обогревателей с терморегулятором
Дача может доставить немало приятных минут. Но только в том случае, когда на ней созданы все условия для нормальной работы и жизни. Одно из этих условий, учитывая особенности российского климата – использование обогревателей в холодное время года.
Виды
Ультрафиолетовые
Надо понимать, однако, что такие приборы создают слабое ионизирующее излучение. Оно хоть и незначительно, но вредит человеческому здоровью, особенно при регулярном воздействии.
Типичная для ультрафиолетовых приборов конструкция состоит из корпуса и излучающей лампы. Мощность ультрафиолетовых обогревателей может различаться. Однако самые мощные аппараты на даче не нужны — они применяются в медицинских учреждениях и в некоторых других сферах деятельности. Принцип работы и основы применения, однако, везде одни и те же. Совпадают и требования техники безопасности.
Индукционные
Обогреть каменные дачные дома ультрафиолетовое устройство не сможет. А вот индукционная техника справится с такой задачей очень легко. По сравнению с обычными электрическими, индукционные обогреватели расходуют меньше тока и обеспечивают более высокий КПД. Подобные устройства могут использоваться в одинаковой степени и для отопления, и как проточные водонагреватели.
Устроено индукционное отопление очень просто. Проходящий через цилиндрическую катушку переменный ток формирует магнитное поле, которое в другом контуре генерирует вихревые токи. А уже эти импульсы приводят к появлению тепла. Температура действительно будет очень высока: 70 градусов. Этот показатель достигается приблизительно за 5 минут.
Индукционный нагреватель, в отличие от систем на основе ТЭН, не покрывается изнутри накипью. Это очень безопасное в экологическом отношении решение.
Пользователи могут использовать в качестве теплоносителя не только воду, но и антифриз, и смазочное масло. Отпадает потребность часто обслуживать такое оборудование. Установить индукционный нагреватель смогут все желающие.
Индуктивные аппараты легко комбинируются с другими отопительными системами. Они могут подключаться и к постоянному, и к переменному току. Срок эксплуатации при соблюдении основных требований может превышать 20 лет. Но надо учитывать, что индукционные нагреватели:
стоят дорого;
зависят от стабильного электропитания;
потребляют дорогостоящий ресурс;
могут быть установлены лишь в закрытой схеме отопления;
весьма тяжелы.
Часто можно услышать про «умные» дачные обогреватели. Это не какой-то отдельный тип, а скорее характеристика конкретных систем. Термин «умный» выражает всего лишь повышенную экономичность и одновременно гибкость работы. Суть в том, что автоматика увеличивает по мере необходимости расход энергии, а когда температура воздуха становится выше, интенсивность работы уменьшается. По большей части «умными» считаются электрические нагревательные системы.
Яркий пример — кварцевые приборы. Из обычного кварцевого песка путем уплотнения создается цельная плита. Внутрь плиты закладывают ТЭНы. Кварцевый нагреватель хорош:
пригодностью для работы в различных помещениях;
отменным быстродействием;
отсутствием посторонних неприятных запахов;
невысоким расходом тока.
Однако кварцевое нагревательное оборудование отличается большой тяжестью, что не всегда удобно. Еще один тип обогревателей для дачи — настенный формат. Такие устройства позволяют экономить место и потому пригодны даже для самых малых помещений.
К сведению: кварцевые нагревательные системы как раз в большинстве своем вешаются на стену.
Однако в настенном формате делаются и конвективные нагревательные аппараты различного рода.
Бензиновые
Среди бензиновых аппаратов на даче может употребляться каталитический обогреватель. Суть его очень проста:
бензин в резервуаре нагревается;
происходит испарение;
пары доходят до специального каталитического патрона;
на поверхности этого патрона они и сгорают;
через вентиляционные отверстия продукты сгорания уходят наружу, а взамен поступает свежий воздух.
Вместо обычного фитиля, используется сетка, размещаемая внутри патрона. Часть изделий содержит катализаторы с добавками платины. Но на даче может применяться и более традиционный бензиновый котел. КПД основной части таких моделей составляет 95%. Благодаря высокой мощности гарантируется прогрев даже крупного помещения. Работа бензинового котла может быть легко автоматизирована. В отличие от газового нагревателя, можно поставить его без официального разрешения и формирования сложной технической документации. Однако надо помнить и о слабостях, таких как:
дороговизна топлива;
обязательное создание мощной вентиляции;
необходимость создавать отдельное строение (по правилам пожарной безопасности бензиновый очаг нельзя ставить непосредственно в жилье).
Дизельные
Основные требования при установке дизельных обогревателей те же самые, что и у их бензиновых аналогов. Однако часть дизельных устройств имеет мобильное исполнение. Передвигаться они могут за счет тележки или колесной пары. В большинстве продвинутых моделей используются индикаторы уровня горючего. Кроме перечисленных деталей, конструкция включает:
терморегулятор;
сопло для горючего;
свечи зажигания;
воздушную трубу;
стабилизатор огня;
фильтр для воздуха;
насос;
моторный вентилятор.
Дизельные обогреватели прямого действия не имеют ни фильтров, ни воздуховодов. Из-за сброса продуктов сгорания напрямую в обслуживаемое помещение использовать аппарат можно только кратковременно.
Почти все современные системы имеют блоки автоматики. Для жилой дачи целесообразно применять обогреватели непрямого сгорания. Они подают намного более чистый воздух, потому что имеют дымоход и другие средства фильтрации.
Рейтинг производителей
Перечислять и описывать различные варианты дачных обогревателей можно еще долго. Но гораздо важнее обратить внимание на то, продукцию каких фирм лучше всего выбирать. Для начала стоит разобрать масляные обогреватели.
Очень хорошим примером считают модель «Ресанта ОМ-12Н». Хотя это латвийский бренд, производственные мощности давно перенесены в КНР. Мощность устройства составляет 2,5 кВт. Металлический радиатор разделен на 12 секций. Эти параметры позволяют ускорить прогрев любого помещения. Обогреватель выручит даже там, где больше нет источников тепла. Так как «Ресанта ОМ-12Н» невелика по размеру и предназначена для установки на пол, можно ставить ее почти в любом месте, не опасаясь никаких проблем. Для управления конструкторы предусмотрели пару механических переключателей. Они позволяют задать 3 разных режима прогрева и обеспечить поддержание заданной температуры в автоматическом режиме. Производитель заявляет, что такая техника не производит постороннего шума, что очень удобно.
Хорошей альтернативой можно считать Electrolux EOH/M-9157. Как и предыдущий аппарат, этот обогреватель сделан в КНР, однако, бренд зарегистрирован в Швеции. Мощность данного масляного радиатора составляет 1,5 кВт. Этого показателя хватает, чтобы обеспечить комфортную температуру на площади 20 кв. м. Регулятор поддерживает задание оптимального режима без всяких проблем. Термостат работает очень надежно. Сильной стороной этого масляного радиатора является и привлекательный дизайн.
При всей популярности масляных обогревателей нельзя игнорировать и конвективные электрические устройства. Хорошим примером такой техники можно считать норвежский Nobo NFC 4S 20. Как и подобает современным разработкам, данный аппарат может управляться со смартфона. Обогреваемая площадь варьируется от 20 до 28 кв. м. При этом Nobo NFC 4S 20 рассчитан как на напольный, так и на настенный монтаж. Производитель заявляет, что его продукт отвечает самым высоким требованиям безопасности.
Допускается эксплуатация даже в весьма влажной атмосфере и/или на деревянных опорах. Если по любой причине приток воздуха падает ниже допустимых значений, либо неоправданно повышается напряжение в сети, защитные устройства уберегут от проблем.
Электронный термостат используется для задания требуемого теплового режима от 5 до 30 градусов. Поддерживаться этот режим будет автоматически. Производитель заявляет, что его инженерам удалось добиться отличного эксплуатационного ресурса. Срок службы при благоприятных условиях достигает 30 лет.
Из альтернативных устройств отлично зарекомендовал себя обогреватель Timberk TEC. E 5 M 1000. Сам производитель счел нужным указать, что предельная площадь обогреваемого помещения составляет только 13 кв. м. Но для дачи по понятным причинам это минусом не является. Скорее будет даже плюсом — поскольку отпадает необходимость тратить лишнюю энергию. Полезным свойством можно считать также возможность установки и на пол, и на стену. Благодаря этой опции выбор вариантов расположения максимально широк. Разработчики постарались сделать свое устройство полностью защищенным от попадания воды и перегрева. Потому необходимость в дополнительной защите отпадает.
Солидную конкуренцию этому аппарату может составить Stiebel Eltron CNS 150 S. Это немецкий конвектор с добротными практическими характеристиками, однако, его дизайн не слишком внушает доверие. Впрочем, если на даче планируется только делать различные работы, а не отдыхать и расслабляться, эффективность этого обогревателя оправдает все его эстетические изъяны. Несмотря на ограниченную мощность, прогрев будет происходить очень легко и быстро. Крепить Stiebel Eltron можно исключительно на стену. Регулировка температуры гибкая, вернее, предусмотрено множество ее степеней. При этом термическое реле надежно предотвращает перегрев, а щелчки при работе этого реле не доставят неудобств. Из явных недостатков можно назвать только высокую цену.
Немецкому продукту уверенно бросает вызов французский обогреватель Noirot Spot E-5 2000. Изготовитель позиционирует этот электрический аппарат как идеальный помощник в обогреве холодного жилья. Конструкторы использовали конвективный принцип. Официальное описание продукта делает упор на его бесшумность и эффективность.
Независимо от времени работы конвектора, его поверхность не прогреется более чем до 60 градусов. Подключать устройство можно без заземления.
Уровень защиты достаточен, чтобы можно было ставить этот обогреватель даже вблизи раковины. Noirot Spot рассчитан на довольно сильные колебания напряжения. Реализована опция автоматического рестарта, которая срабатывает после возврата напряжения в норму. Разработчики изначально постарались сделать аппарат работающим в режиме 24/7. Современный цифровой термостат обеспечивает выставление температуры с погрешностью не более 0,1 градуса.
Но на даче могут использоваться не только обычные электрические, но и инфракрасные обогреватели. Получать тепло они будут за счет электрической спирали либо традиционного ТЭН. Излучателем оказываются особые пластинчатые панели. Закрепить инфракрасный обогреватель можно и на стену, и на потолок. Однако регулировать температуру удается не во всех моделях.
По цене среди устройств такого рода выгодно выделяется Timberk TCH Q2 800. Шведское изделие выпускается на китайских фабриках. Оно сможет обогреть дачный домик площадью до 12 кв. м. Наибольшее потребление тока достигает всего лишь 0,8 кВт, а в экономичном режиме — на 50% меньше. Это наверняка пригодится тем, кто чаще бывает на даче осенью или в начале весны, а не зимой. Производитель заявляет, что КПД устройства составляет 93%. В отзывах же отмечается очень быстрое достижение требуемой температуры. Уже к концу первой минуты после запуска обогревателя появляется ощущение тепла.
Приятной альтернативой может считаться обогреватель NeoClima IR-3.0. Это устройство отличается высокой мощностью (3 кВт), его бренд принадлежит греческой компании, а основное производство развернуто в РФ. Отопительный прибор выпускается только в потолочном варианте. С его помощью можно прогреть даже довольно крупные дачные дома (до 30-36 кв. м.). Наряду с обычным ТЭН, тут применяется еще и излучающая панель, помогающая распределить тепло более равномерно.
К сожалению, выделиться чем-то еще этот обогреватель не может. Серьезной слабостью NeoClima можно считать его совместимость только с трехфазными сетями. Не везде доступно именно такое электропитание. Проблемы могут быть связаны и с отсутствием термостата. Если учесть еще и довольно высокую цену, становится понятно, что это скорее нишевый продукт.
По быстродействию выгодно выделяется российский обогреватель Almac ИК-5. Вдобавок он стоит сравнительно недорого. Устройство оптимизировано для обогрева комнат размером от 5 до 10 м2. Привлекательной чертой будет и очень быстрый самостоятельный монтаж без дополнительных инструментов. Потребление энергии не превышает 0,5 кВт (а при подключении с термостатом еще меньше). Конструкторы позаботились о применении необходимого количества защитных датчиков. Алюминиевый корпус и крепкий нагревательный элемент позволят обогревателю проработать не менее 5 лет.
Очень хорошие оценки завоевал и Ballu BIH-AP4-0.6. Это устройство работает с высоким КПД, и потому даже небольшая мощность не мешает ему добиваться исключительных результатов. Штатная комплектация не позволяет регулировать прогрев, но такую опцию можно добавить за счет дополнительных компонентов.
Советы по выбору
Знание практичных и популярных моделей важно. Но чтобы лучше выбрать обогреватель, надо ознакомиться и с другими практическими тонкостями, не ограничиваясь одним только рейтингом. Во многих случаях дачники предпочитают газовое отопление. Работающие на газе обогреватели преимущественно используют конвективный эффект, что позволяет обойтись без сложной системы подачи теплоносителя. Газовое оборудование просто в эксплуатации и является одним из самых эффективных приспособлений для обогрева.
Даже если площадь помещения превысит 60 кв. м, можно не сомневаться — в доме будет тепло. Пользоваться газовым оборудованием умеют практически все. Оно совершенно автономно и не требует подключения к электросети. Однако назвать такой способ обогрева вполне безопасным вряд ли возможно.
Серьезный пожарный риск представляют и дизельные, и бензиновые обогреватели. Потому электрическое оборудование надо стараться использовать везде, где только возможно.
При подборе конкретного варианта следует обращать внимание на:
функциональные характеристики;
необходимую площадь;
необходимый уровень защиты;
дизайнерские свойства;
удобство при работе и управлении;
уровень надежности.
Экономичный дачный обогреватель — только тот, который имеет переключатели режимов. В зимний период требуется максимально интенсивная работа, а вот в межсезонье такая высокая производительность попросту не нужна. Но если планируется приезжать на дачу зимой только изредка, чтобы наводить и поддерживать порядок, важно будет другое свойство — скорость прогрева. Учитывать надо и другую особенность дачной жизни — большую опасность представляют грабежи. Потому предпочтение надо отдавать тем моделям, которые легко демонтируются и так же легко готовятся к работе с началом полевого сезона.
Если тепло не слишком принципиально для владельцев дачи, то они могут выбрать красивый декоративный камин. Электрокамины не нуждаются в дымоходах и не засоряют воздух копотью. Кроме того, камины бывают очень разнообразны по форме и габаритам. Самые продвинутые модели даже снабжаются увлажняющей системой, исключающей пересушивание воздуха. Нужно помнить, что обогреватели ведущих марок даже при идентичной мощности могут различаться:
Обзор отзывов
Очень хорошие оценки дают инфракрасному обогревателю Hyundai H-HC3-06-UI999. Устройство получилось весьма недорогим и защищено от опрокидывания. Управление им весьма просто. Есть только один недостаток — излишняя легкость. Из-за него использовать обогреватель в доме с детьми или животными опрометчиво.
Если обращать внимание на масляный нагреватель, однозначно стоит отдать предпочтение Timberk TOR 21.2512 BC. Аппарат ценят за внешний вид и функциональность. Его считают весьма удобным для дачи решением. Положительные оценки дают системе, блокирующей утечку масла. Однако потребители отмечают, что не на всех дачах есть довольно мощная электросеть.
Из электрических конвекторов выделяют Oasis LK-20D. Со своей задачей это устройство справляется отлично. Из достоинств отмечают быстрый прогрев. Также внимание обращают на удобство переключения режимов. Нельзя не упомянуть и оценки карбоновых обогревателей.
Очень хорошим примером является Polaris PKSH 0508H. Это устройство экономично и сразу радует теплом, когда подходят к нему. Но некоторые люди отмечают, что при длительном соседстве карбоновый аппарат провоцирует головную боль. Во многом это оправдывается экономией энергии. Полезным свойством считают наличие таймера, который позволяет упорядочить использование обогревателя.
Обзор обогревателей для дома и дачи в видео ниже.
Индукционные нагреватели (котлы) — варианты конструкций
За последние 10-15 лет индукционные нагреватели на токах промышленной частоты приобрели широкое распространение. Впрочем, заявляемые производителями высокие потребительские качества индукционных нагревателей, такие как надежность, неприхотливость, экономичность находят подтверждение в условиях реальной эксплуатации. Но при этом почти каждый производитель демонстрирует очередной патент и заявляет, что его индукционный нагреватель – «самый индукционный». Давайте попробуем разобраться, что объединяет, а что различает индукционные нагреватели разных производителей.
►См. Индукционные нагреватели в нашем каталоге
ИНДУКЦИОННЫЕ НАГРЕВАТЕЛИ: ЧТО ОБЩЕГО?Как бы это банально ни звучало, но общее в индукционных нагревателях – это индукционный способ нагрева. Мы уже рассматривали подробно принцип работы индукционных нагревателей и их отличие от других типов электронагревателей.
Любой индукционный нагреватель будет состоять из первичной обмотки (катушки индуктивности) и вторичной обмотки – теплообменного устройства. Теплообменное устройство представляет собой короткозамкнутый виток, который разогревается под воздействием переменного магнитного поля, индуцируемого катушками индуктивности (отсюда, собственно, само название – «индукционный нагреватель»). В общем виде, принцип можно проиллюстрировать так:
Причем, что интересно, запатентовать этот принцип невозможно – он основан на элементарных физических законах и доступен каждому. Так, например, энергетикам известно такое свойство трансформатора как его разогрев в процессе работы. Только в случае с трансформатором выделение тепла – это головная боль для энергетиков, в конструкции же индукционного нагревателя это свойство возведено в абсолют, и сегодня производители заявляют о достижении ими КПД 98, а то и все 99%. Производители вообще любят показатель КПД, потому что этот показатель – относительный, а следовательно можно заявлять что угодно, и при этом не бояться ответственности: при определенных условиях можно заявить, что КПД вообще 100% — на то он и относительный коэффициент.
Индукционные нагреватели: единство и борьба противоположностей
Так в чем же тогда эти запатентованные различия? Оказывается, главным образом, в конструкции теплообменника. Конечно, есть различия и в конструкции магнитопроводов и в конструкции катушек – они могут быть вытянутыми, сплющенными, могут отличаться материалом провода и количеством витков, однако суть от этого не поменяется. Задача первичной обмотки – генерировать переменное магнитное поле, и в любом нагревателе она с этим справляется. Так что в способе нагрева различий у индукционных нагревателей разных производителей практически нет. Зато существенные различия заключаются в конструкциях теплообменников. Что интересно, общепринятой классификации в настоящее время не существует, поэтому возьмем на себя смелость предложить свою собственную, итак:
- Индукционный нагреватель кожухового типа
- Индукционный нагреватель с трубчатым теплообменником
- Индукционный нагреватель с объемным теплообменником (электронагреватель индуктивно-кондуктивного типа – именно так называет его сам производитель)
Индукционный нагреватель кожухового типа
Начнем с первого – «индукционного нагревателя кожухового типа». Производители таких нагревателей называют их иначе, но в данной статье нам интересны не названия, а принцип нагрева.
Мы назвали этот тип индукционных нагревателей «кожуховым» потому что внешне этот тип отличается от остальных тем, что производители помещают конструкцию нагревателя (т.е. индуктор и теплообменник) внутрь кожуха цилиндрической формы. Внешне он даже чем-то напоминает электродный котел, однако отличается от последнего способом нагрева теплоносителя.
Внутри кожуха размещен вытянутый индуктор, внутри и снаружи которого располагается теплообменник, нагревающийся под воздействием электромагнитного поля. Проходя через теплообменник, вода нагревается и подается в систему отопления.
Преимущества конструкции:
- Более компактен, имеет меньшие габариты и массу чем остальные типы индукционных нагревателей. Есть мнение, что эстетически он также выглядит лучше, но это спорно, во-первых, и не является определяющим для промышленного нагревателя – во-вторых.
- Менее материалоемок (теплообменное устройство состоит из «черного» металла марки Ст3сп) по сравнению с другими представителями класса, а потому у него ниже себестоимость и, соответственно, цена приобретения.
- Может размещаться на стене (другие индукционные нагреватели – только напольного исполнения)
Недостатки конструкции:
- Изготовление теплообменника из обычного металла удешевляет конструкцию, но делает ее элементы более подверженными коррозии, особенно в периоды профилактических работ и слива теплоносителя.
- Конструкция теплообменника такова, что она оказывает повышенное гидродинамическое сопротивление, вследствие чего снижается скорость теплоносителя, при поступлении его внутрь. Это может приводить сразу к двум неприятностям: во-первых, к осаждению загрязнений, имеющихся в теплоносителе, в нижней части нагревателя и, в дальнейшем, еще большему затруднению протока и, во-вторых, к снижению теплосъема с поверхности теплообменника. Вообще, конструкция таких нагревателей предполагает довольно высокую плотность теплового потока – 9-10 Вт/см2 и ухудшение теплопередачи вызовет кипение в пограничном слое теплоносителя. Это чревато ускоренным осаждением накипи в таких местах (по сути – по всей площади теплообменника), а также к дальнейшему снижению теплопередачи и, в конце концов, к перегреву греющего контура.
- Недостаток из предыдущего пункта усугубляется тем, что конструкция неремонтопригодна – стоимость и сроки ремонта будут примерно такими же, как и стоимость, и сроки на приобретение нового нагревателя.
- Также вертикальное расположение теплообменника приводит к тому, что растворенные в теплоносителе газы и воздух, в процессе нагрева, будут собираться в верхней части теплообменника, вытесняя оттуда теплоноситель, что может привести к местному перегреву теплообменника из-за отсутствия необходимого теплосъема, а теплонагруженность нагревателя, как мы указывали выше, достаточно велика.
- Несмотря на то, что одним из главных преимуществ электронагревателей индукционного типа является обеспечение 2-го класса защиты от поражения электрическим током (т.е. практически абсолютная защита даже без заземления), к конструкции этого типа нагревателей эта особенность, увы, не относится, поскольку в случае нарушения изоляции обмоток индуктора, теплоноситель окажется под напряжением – точно так же, как и ТЭНовый котел.
- Индукционные нагреватели кожухового типа ограничены в мощности и температуре нагрева. Мощность единичного нагревателя, как правило, не превышает 70-100 кВт, а максимальная температура теплоносителя – 100-110 °С (впрочем, для обычной системы отопления этого достаточно). Ограничение по мощности приводит к необходимости параллельной установки нескольких нагревателей.
Вывод: конструкция индукционных нагревателей кожухового типа получила достаточно широкое распространение, главным образом, благодаря простоте изготовления, относительно низкой себестоимости (а, следовательно, отпускной цены) и системе распределения через дилеров (маржинальность продукта позволяет делиться ею с посредниками). Однако данный тип нагревателей лишь условно относится к нагревателям «трансформаторного» типа, и не всегда заслуженно использует в своих заявлениях те преимущества, которые присущи этому типу нагревателей.
Индукционный нагреватель с трубчатым теплообменником
Если говорить откровенно, то первый коммерческий успех индукционных электронагревателей истинно трансформаторного типа, сопутствовал именно этой конструкции индукционных нагревателей, которые появились на рынке в середине 90-х годов прошлого века и получили довольно широкое распространение. В чем их особенность:
Во-первых, эти нагреватели уже не прячутся в кожух. Особенной красотой они, конечно, не блещут, но для покупателя важны другие их свойства. Во-вторых, здесь катушка индуктивности (первичная обмотка) полностью отделена от теплообменника (вторичной обмотки) что исключает поражение электрическим током: даже в случае нарушения изоляции обмоток электросеть не может замкнуться на теплоноситель, так что это настоящий 2-ой класс электробезопасности. И, наконец, в третьих, теплообменное устройство здесь представляет собой набор трубок, огибающих катушки индуктора.
В остальном, все так же как у всех остальных индукционных нагревателей – катушки возбуждают магнитное поле, которое, проходя через металл теплообменника, возбуждает в нем вихревые токи, которые его и разогревают, а потом тепло снимается теплоносителем с принудительной циркуляцией.
Преимущества конструкции:
- Конструкция приближена к «сухому» трансформатору, а, следовательно, при должном высоком качестве производства, обладает такими свойствами как долговечность (до 100 000 часов), электрическая безопасность и высокая надежность (во всяком случае, выше чем у «кожуховых нагревателей» и многократно выше, чем у ТЭНовых нагревателей).
- Доступность больших мощностей в единице оборудования (до 500 кВт мощности в одном нагревателе). Аналогично кожуховым индукционным нагревателям, трубчатые индукционные нагреватели также могут устанавливаться в параллель, и тогда необходимая мощность будет ограничиваться только доступностью электроэнергии и потребностью в тепловой энергии.
- Возможность обеспечения высоких температур нагрева (до 250-300 °С), что существенно расширяет области применения нагревателей. Она уже не ограничивается областью отопления и горячего водоснабжения. При помощи высокотемпературного жидкого теплоносителя есть возможность заменять паровые системы нагрева в промышленности (реакторы, пресса и т.д.) на жидкостные, что существенно повышает надежность, безопасность и управляемость процессами нагрева.
- Вообще, если сравнивать с ТЭНами и электродными котлами, преимуществ можно указать множество. Наша же основная задача – сравнить с другими типами конструкций индукционных нагревателей.
Недостатки конструкции:
- Вероятно неравномерное распределение теплового потока по сечению трубы теплообменника. Из-за неравномерного омического сопротивления и поверхностного эффекта наибольшая часть тепловой энергии (рассчетно, до 70%) может выделяться всего в 30% поверхности трубы со стороны обмотки. Плотность теплового потока в этих зонах соизмерима с плотностью теплового потока обычного ТЭНа. Что может привести к локальному перегреву, парообразованию в пограничном слое теплоносителя и отложению солей на стенках трубы, с последующим ухудшением теплопередачи и, как следствие, местным перегревам. Эффект накипеобразования многократно усиливается в местах сварки труб, в связи с высокими значениями плотности тока в этих соединениях.
- Несмотря на заявляемый коэффициент мощности 0,98, эффект повышенного рассеяния магнитных потоков вокруг трубчатых витков, скорее всего, снижает этот коэффициент до 0,9, иначе чем объяснить, что для обеспечения одной и той же тепловой мощности, нагреватели с трубчатым теплообменником имеют боле высокие потребляемые мощности и токи в обмотках? В свою очередь это приводит к повышению затрат у потребителя, поскольку ему приходится использовать провода увеличенного сечения, а также повышает себестоимость производителя (и, следовательно, цену приобретения для покупателя).
- Трубчатый теплообменник оказывает повышенное гидродинамическое сопротивление, что приводит к необходимости установки более мощных (и дорогих) циркуляционных насосов.
- Повышена масса нагревателя, т. к. трубчатая конфигурация теплообменника требует значительного промежутка между стержнями сердечника трансформатора. Это приводит к увеличению ярем магнитопровода трансформатора и удорожанию изделия в целом.
- Катушки индуктора хоть и надежно пропитаны изоляцией, однако же ничем не защищены от случайного или (того хуже) целенаправленного механического воздействия, что, конечно же, не повышает надежность нагревателя.
- Трубчатый теплообменник не ремонтопригоден, и в случае выхода из строя подлежит полной замене на заводе-производителе.
Вывод: индукционные нагреватели с трубчатым теплообменником – это в принципе первые коммерчески успешные индукционные нагреватели, и это действительно шаг вперед по сравнению с ТЭНовыми котлами и нагревателями кожухового типа и сразу два шага вперед по отношению к электродным котлам (за счет факторов безопасности). Применение трубчатого теплообменника изначально было продиктовано технологическими ограничениями и финансовыми вопросами, поскольку трубчатый теплообменник проще в производстве, чем объемный (о котором речь пойдет далее), однако он не лишен недостатков, исправить которые производителям не позволяют рамки патентных правоотношений.
Индукционный нагреватель с объемным теплообменником
Объемный тип теплообменника, в виде опытных образцов, появился даже раньше, чем трубчатый. Однако первые конструкции были не очень удачны – пожалуй, даже нет смысла их описывать, поскольку сейчас они если и выпускаются, то кустарно. Нас будет интересовать последняя итерация конструкции, которую производитель называет также нагревателем индуктивно-кондуктивного типа. Конечно, это лишь способ позиционирования продукта, однако это название очень четко отражает сущность данного нагревателя.
Индукционные нагреватели с объемным теплообменником появились уже в XXI веке и при их создании, несомненно, были учтены недостатки всех прочих конструкций. Что же представляет собой конструкция индуктивно-кондуктивного электронагревателя с объемным теплообменником?
Как видим из рисунка, конструкция довольно сильно напоминает индукционный нагреватель с трубчатым теплообменником, однако вместо трубок здесь используется полый цилиндр, внутри которого находится индуктор. По мнению многих (и автора в том числе) индуктивно-кондуктивные индукционные нагреватели эстетически выглядят лучше, чем нагреватели с трубчатым теплообменником, поскольку объемный теплообменник выполняет и роль кожуха: внешний вид создает ощущение законченности и какой-то защищенности.
Это также полноценный индукционный нагреватель, конструкция которого роднит его с «сухим» трансформатором. И он, конечно, обладает всеми преимуществами, которые из этого вытекают: высокая надежность, долговечность, пожарная и электрическая безопасность, поскольку первичная обмотка, на которую подается напряжение, отделена от теплообменника, что исключает поражение электрическим током: это полноценный 2-ой класс электробезопасности.
Вихревые токи здесь возникают в толще металла, из которого сделан полый цилиндр. Надо сразу отметить, что само конструктивное решение повышает надежность нагревателя и его устойчивость к повреждениям. Судите сами: обмотки катушек индуктивности, которые можно легко повредить у нагревателя с трубчатым теплообменником, здесь надежно закрыты от внешнего воздействия. От упорного вредителя они, конечно, не спасут, а вот случайно повредить индуктор уже значительно сложнее.
Материал теплообменника здесь – нержавеющая сталь марки AISI-304, так что коррозия ей не грозит.
Единственное место, которое можно отнести к узким местам (и о котором любят упоминать конкуренты) – это сварные швы на теплообменнике, ведь отливать полые цилиндры без швов человечество еще, к сожалению, не научилось. Но зато человечество научилось хорошо сваривать детали. Случай с объемными теплообменниками здесь не исключение.
Преимущества конструкции:
- Индуктивно-кондуктивный электронагреватель максимально приближен к конструкции «сухого» трансформатора, а, следовательно, обладает такими свойствами как долговечность (до 100 000 часов или, в пересчете на годы, порядка 30 лет!), электрическая безопасность, высокая надежность и все прочие преимущества по сравнению с ТЭНовыми и электродными котлами.
- Доступность больших мощностей в единице оборудования (до 500 кВт мощности в одном нагревателе). Также существуют модификации высоковольтных индукционных котлов, которые могут обеспечить мощность нагрева свыше 6 МВт. Аналогично прочим индукционным нагревателям, индукционные нагреватели с объемным теплообменником также могут устанавливаться в параллель, и, тем самым, обеспечивать любую мощность нагрева.
- Возможность обеспечения высоких температур нагрева (до 200-250 °С), что существенно расширяет области применения нагревателей. Это немного ниже, чем у трубчатых теплообменников, что обусловлено как раз конструкцией. Трубки обеспечивают лучшую вентиляцию и охлаждение катушек. В индукционных нагревателях с объемным теплообменником катушки закрыты, однако и температур, обеспечиваемых этими нагревателями, достаточно для многих технологических процессов (обогрев реакторов, гальванических ванн, сушильных камер, прессов и т.д.).
- Равномерное распределение теплового потока по более развитой поверхности теплообменника гарантирует отсутствие явлений местного перегрева, отложения накипи и очень небольшой градиент температур между теплоносителем и теплообменником (не более 20 °С) что служит дополнительным аргументом в пользу надежности и пожарной безопасности нагревателя индуктивно-кондуктивного типа.
- «Честный» высокий коэффициент мощности 0,98-0,985 благодаря более равномерному поглощению магнитного поля цилиндрическим теплообменником.
- Более низкая масса нагревателей по сравнению с аналогичными по мощности нагревателями на трубках.
Недостатки:
- Более высокая себестоимость материалов и высокотехнологичность производства: высокое качество и отличные потребительские свойства дешевыми не бывают.
- Низкая маржинальность (наценка) делает продукт не интересным для посредников, поэтому продукцию необходимо заказывать только у производителя.
- Теплообменник в большинстве случаев не ремонтопригоден, однако, риск выхода его из строя самый низкий из всех типов индукционных нагревателей. Кроме того, его замена может быть произведена эксплуатирующей организацией, а не только заводом-изготовителем.
►См. Индукционные нагреватели в нашем каталоге
Вывод: если говорить о том, что индукционные нагреватели – это следующий шаг по отношению к ТЭНовым и электродным котлам, то индуктивно-кондуктивные нагреватели с объемным теплообменником – это пример дальнейшего развития конструкции, которая, пожалуй, как никогда близка к ожидаемому идеалу. Главное, при наличии очень хорошей и энергоэффективной конструкции, — это высокая культура и качество производства, которая бы неукоснительно следовала конструкторской документации и исполняла замысел инженеров и ученых, положивших годы в создание такого сложного, но такого простого оборудования, как индукционный электронагреватель.
Индукционный обогреватель для дома – плюсы и минусы, обзор
Электрическая индукция в промышленности используется давно, в частной жизни встречалась редко, пока не сделали индукционные плиты для кухни. Раз есть плиты, почему не сделать котел? Однако, чтобы производство быстрее окупилось, необходимо быстро реализовать готовую продукцию. Чтобы продать – нужно расхвалить, приукрасить. Чтобы не сожалеть о покупке, необходимо рассмотреть достоинства, недостатки котла.
Стандартная конструкция обогревателя с индукционной катушкойУстройство, принцип действия индукционного нагревателя
Чтобы разобрать принцип работы индукционного котла, необходимо вспомнить физику. Если по прямому проводнику пропустить постоянный ток, вокруг появится электромагнитное поле. Будет вращаться по часовой стрелке, если смотреть по направлению движения электронов. Когда провод сворачивают в катушку, магнитное поле собирается в пучок, сила увеличивается.
В центр катушки помещают сердечник из токопроводящего материала (проводник). Свободные, слабо закрепленные электроны переместятся к одному концу сердечника. При подаче на катушку переменного тока, магнитный поток меняет направление, электроны движутся от одного края сердечника к другому.
Магнитное поле сконцентрировано, проникает через сердечник, «таская» за собой электроны. Электроны, находящиеся на поверхности, меньше встречают препятствий, чем находящиеся внутри проводника. Преодолевая сопротивление, работают, нагревая материал. Особенность используют в индукционных агрегатах.
Чтобы электроны работали больше, частоту увеличивают. Частоты:
- средние 1–20 кГц;
- высокие 30–100 кГц;
- сверхвысокие 0,1–2 МГц.
Для создания частот используют генераторы. Катушку называют индуктором.
Области применения
При повышении частоты, влияющая способность магнитного потока внутри тела уменьшается. Например, на сверхвысоких частотах глубина разогрева может составлять 1 мм и меньше. Позволит работать с высокоточными инструментами, не деформируя, разогревать мелкие детали, например, в механических часах.
Самое большее применение получили высокочастотные аппараты. Используются для ковки, пайки, закалки металла. Средняя частота применяется в индукционных печах для глубокого нагрева металла.
Индукционный обогреватель – котёл отопления
Пример обогревателя — труба, вокруг которой намотана катушка. Витки изолируются друг от друга, катушка от трубы. Конструкция, генератор могут располагаться в корпусе, например, трубе. При подключении электрической схемы образуется магнитное переменное поле, нагревающее трубу. Нагреваясь, труба отдает тепло жидкости, она передает батареям, конвектору.
Схема устройстваИндукционный котел нагревается очень быстро, отопление не может быть с естественной циркуляцией, необходим насос.
Виды индукционных котлов
Принцип работы водонагревателей одинаковый, однако, существуют отличия в конструкциях:
- с инверторами;
- с трубчатым теплообменником;
- кожуховые;
- с объемным теплообменником.
По частоте тока:
- низкочастотные SAV;
- высокочастотные ВИН.
Индукционные обогреватели, если не оговаривается в паспорте, требуют заземления.
Индукционные обогреватели SAV
Обогреватель работает на частоте 50 Гц. Катушка наматывается на металлическую трубу, по ней проходит теплоноситель. В других конструкциях труба огибает наружные витки катушки, поверхность нагрева увеличивается. Оборудование простое. Чтобы увеличить производительность, подключают несколько нагревателей последовательно. Питание котел получает от сети 220, 380 В.
Вода обтекает катушкуВИН агрегаты отопления
Обогреватель ВИН (вихревой индукционный нагреватель) отличается от предыдущего вида наличием генератора частот. Электрическая схема может получать питание от аккумулятора. Производят из ферромагнитного материала. Стоит ВИН обогреватель значительно больше, чем SAV.
Оценка маркетинговых характеристик-утверждений
Отопление индукционными аппаратами имеет право на существование. Не лишен отрицательных особенностей. Рекламщики иногда умалчивают о недостатках, преувеличивают достоинства, вводя в заблуждение покупателей.
Экономичность
Существует заверение, что индукция повышает КПД. Все электронагреватели имеют КПД не ниже 96%. Получить 100% тяжело, любой проводник в обычных условиях имеет сопротивление. При нагревании материала сопротивление увеличивается. Индуктор — не исключение, часть энергии теряется в катушке, КПД не 100%.
Потери энергии в электронагревателях идут на нагрев теплоносителя.
Возможно, мнение сложилось из-за быстрого нагрева. ТЭН действительно греется медленнее, но запасенная энергия отдается жидкости.
Долговечность
Другое утверждение связано с большим сроком службы, надежностью. Объясняют тем, что в простой конструкции ломаться нечему. В электродных котлах тоже ломаться нечему. Если ТЭН выйдет из строя, можно поменять, чего нельзя сказать про индуктивную катушку.
Неизменность характеристик за срок эксплуатации
Утверждение связано с образованием накипи на нагревательном элементе. На катушке накипь не появится, она не соприкасается с водой. Труба, нагреваемая индуктором, покрывается налетом в тэновом, электродном котлах. Зависит от качества воды, температуры.
Даже в термосе образуется накипь, хотя кипяток там только хранится.
Бесшумность
Еще одно утверждение, не поддающееся логике, что только индукционный аппарат бесшумный. Какой шум издают другие электрические нагревательные приборы? Есть кипятильники. Когда вода закипает, появляется шум. Однако, в котлах это нештатная ситуация. Вода может шуметь в радиаторе, это не связано с обогревателем. Относится к работе насоса, регулировке системы отопления.
Компактность
Утверждение, что индукторная схема самая компактная неверно. Новые модели электродных котлов, обладая хорошей мощностью, имеют меньшие размеры, выглядят симпатичнее. Для координирования индуктора нужен шкаф, где будут располагаться управляющие органы. Электродные, тэновые устройства монтируются в одном корпусе.
Безопасность
Прямая угроза для непосвященного человека. Связано с двумя факторами:
- опасность электрического тока;
- сильное магнитное поле.
Электрический прибор, получающий питание от сети, несет потенциальную опасность. Индукционное устройство – трансформатор. Катушка имеет изоляцию, но где гарантия, что прибор собран качественно, изоляция не будет разрушена? Есть схема защиты в виде заземления, автоматов. Особенно, электроприбор представляет опасность для детей.
Если индукция делает основную работу, ареал распространяется далеко от котла. Банковская карта, находящаяся в кармане, размагнитится.
Есть люди, чьи жизненные функции контролируются очень чувствительными электронными приборами. Говорить о безопасности мощного магнитного излучателя могут только неосведомленные люди. Котел должен стоять в специальном помещении (котельной). Ошибочность утверждений:
Недостатки индукционных нагревателей
Аспекты, которые обходят стороной маркетологи:
- скорость нагрева;
- переключение мощности;
- отсутствие сигнализации;
- шум контакторов;
- вес;
- цена.
Если во включенном котле не окажется воды, нагревательную трубу индукционное поле просто разрежет. Не все индукторы снабжены переключателями мощности. Приводит к скачку напряжения в сети.
Котел (первые модели) не имеет системы сигнализации, которая оповещает об ошибке. Индуктор включается на полную мощность, используются мощные контакторы.
Если взять котел индукционный и любой другой электрический котел той же мощности, первый — значительно тяжелее. Одинаковой мощности, автоматики, котел с индуктором стоит в два раза больше, чем с ТЭНом, электродами. Не значит, что для обогрева индуктор не подходит, нужно знать особенности.
Правила эксплуатации
Отопление с индуктором должно иметь:
- водяной насос;
- заземление на котле;
- группу безопасности;
- датчики температур, связанные с аварийной схемой отключения.
Обзор производителей
Известных российские производители:
- Миратрон;
- Эдисон;
- Гейзер.
Миратрон дает возможность владельцу менять мощность агрегата — 4,5–30 кВт.
Обогреватель, автоматика находятся в ящикеМощный котел Эдисон снабжен необходимой автоматикой.
Обогреватель ЭдисонГейзер мощностью 4,5 — 250 кВт имеет 2-ой класс безопасности, не требуется заземление.
Обогреватель Гейзер с автоматикойКогда есть полная информация о котлах, легче выбрать. Отзыв пользователя:
Средняя оценка оценок более 0 Поделиться ссылкойустройство и принцип работы, схема изготовления своими руками
Индукционный нагреватель можно устанавливать в квартире, для этого не нужно никаких согласований и связанных с ними расходов и хлопот. Достаточно желания хозяина. Проект подключения требуется только теоретически. Это и стало одной из причин популярности индукционных нагревателей, даже несмотря на приличную стоимость электроэнергии.Индукционный способ нагрева
Индукционный нагрев — это нагрев переменным электромагнитным полем проводника, помещенного в это поле. В проводнике возникают вихревые токи (токи Фуко), которые и нагревают его. По сути дела — это трансформатор, первичная обмотка — это катушка, называемая индуктором, а вторичная обмотка — это вкладка или короткозамкнутая обмотка. Тепло не подводится к вкладке, а генерируется в ней самой блуждающими токами. Все, окружающее ее, остается холодным, что является определенным преимуществом устройств такого рода.Тепло во вкладке распределяется неравномерно, а только в поверхностных ее слоях и далее по объему распространяется за счет теплопроводности материала вкладки. Причем с повышением частоты переменного магнитного поля глубина проникновения уменьшается, а интенсивность увеличивается.
Для работы индуктора с частотой большей, чем в сети (50Гц), применяются транзисторные или тиристорные преобразователи частоты. Тиристорные преобразователи позволяют получать частоты до 8 КГц, транзисторные — до 25КГц. Схемы их подключения можно найти легко.
Планируя установку систем отопления в собственном доме или на даче, кроме прочих вариантов на жидком или твердом топливе, необходимо рассмотреть вариант с применением индукционного нагрева котла. С таким отоплением экономить на электроэнергии не удастся, но отсутствуют опасные для здоровья вещества.
Принцип работы индуктора
Основное назначение индуктора — выработка тепловой энергии за счет электрической без использования теплоэлектронагревателей принципиально другим способом.
Типовой индуктор состоит из следующих основных деталей и устройств:
- генератор переменного тока — устройство для изменения сетевой частоты в более высокую, которая транслируется на катушку;
- индуктор — катушка, в которой индуцируется переменное магнитное поле;
- нагревательный элемент — металлический предмет, в котором под воздействием электромагнитного поля возникают вихревые токи, которые и нагревают проводник.
Устройство нагревательного прибора
Основные элементы индукционного нагревателя для отопительной системы.
- Стальная проволока диаметром 5-7 мм.
- Труба из пластика с толстой стенкой. Внутренний диаметр не менее 50 мм и длина подбирается по месту установки.
- Медная эмалированная проволока для катушки. Размеры подбираются в зависимости от мощности устройства.
- Сетка из нержавеющей стали.
- Сварочный инвертор.
Порядок изготовления индукционного котла
Вариант первый
Стальную проволоку порубить на отрезки длиной не более 50 мм. Рубленой проволокой заполнить пластиковую трубу. Торцы заглушить проволочной сеткой для предотвращения высыпания проволоки.На концах трубы установить переходники от пластиковой трубы к размеру трубы в месте подключения нагревателя.
Медным эмалированным проводом намотать обмотку на корпусе нагревателя (пластиковой трубе). Для этого понадобится порядка 17 метров провода: количество витков — 90, наружный диаметр трубы порядка 60 мм: 3,14 х 60 х90 = 17 (метров). Длину уточните дополнительно, когда будет точно известен наружный диаметр трубы.
Пластиковую трубку, а теперь уже индукционный котел, врезать в трубопровод в вертикальном положении.
При проверке работоспособности индукционного нагревателя убедитесь, что в котле присутствует теплоноситель. В противном случае корпус (пластиковая труба) расплавится очень быстро.
Подключить котел к инвертору, необходимо заполнить систему теплоносителем и можно включать.
Вариант второй
Конструкция индукционного нагревателя из сварочного инвертора по этому варианту более сложна, требует определенных навыков и умений работать своими руками, однако, она более эффективна. Принцип тот же — индукционный нагрев теплоносителя.
Для начала нужно изготовить сам индукционный нагреватель — котел. Для этого понадобятся две трубки разного диаметра, которые вставляются одна в другую с зазором между ними порядка 20 мм. Длина трубок от 150 до 500 мм, в зависимости от предполагаемой мощности индукционного нагревателя. Нужно вырезать два кольца соответственно зазору между трубками и приварить их герметично по торцам. Получилась емкость тороидальной формы.
Остается вварить в наружную стенку входную (нижнюю) трубку по касательной к корпусу и верхнюю (выходную) трубку параллельно входной на противоположной стороне тороида. Размер трубок — по размеру труб отопительной системы. Расположение входного и выходного патрубков по касательной, обеспечит циркуляцию теплоносителя по всему объему котла без образования застойных зон.
Второй шаг — создание обмотки. Эмалированный медный провод нужно наматывать вертикально, пропуская его внутрь и поднимая наверх по внешнему контуру корпуса. И так 30-40 витков, образуя тороидальную катушку. В таком варианте нагреваться будет одновременно вся поверхность котла, таким образом, значительно повышая его производительность и эффективность.
Изготовить наружный корпус обогревателя из непроводящих материалов, использовав, например, пластиковую трубу большого диаметра или банальное пластиковое ведро, если будет достаточно его высоты. Диаметр наружного корпуса должен обеспечивать выход патрубков котла сбоку. Обеспечить соблюдение правил электробезопасности по всей схеме подключения.
Корпус котла отделить от наружного корпуса теплоизолятором, можно использовать как сыпучий термоизоляционный материал (керамзит), так и плиточный (изовер, минплита и тому подобное). Этим предотвращаются потери тепла в атмосферу от конвекции.
Остается заполнить систему своим теплоносителем и подсоединить индукционный нагреватель из сварочного инвертора.
Такой котел совершенно не требует вмешательства и может работать 25 и более лет без ремонта, поскольку в конструкции отсутствуют движущиеся детали, а в схеме подключения предусмотрено использование автоматического управления.
Вариант третий
Это, наоборот, самый простой вариант обогрева жилища, выполняемый своими руками. На вертикальной части трубы системы отопления нужно выбрать прямой участок длиной не менее метра и очистить его от краски наждачной шкуркой. Затем этот участок трубы изолировать 2-3 слоями электротехнической ткани или плотной стеклоткани. После этого эмалированным медным проводом намотать индукционную катушку. Тщательно изолировать всю схему подключения.Остается только подключить сварочный инвертор и наслаждаться теплом в своем жилище.
Обратите внимание на несколько моментов.
- Нежелательно устанавливать такой обогреватель в жилых комнатах, где чаще всего находятся люди. Дело в том, что электромагнитное поле распространяется не только внутри катушки, но и в окружающем пространстве. Чтобы убедиться в этом, достаточно воспользоваться обыкновенным магнитом. Нужно взять его в руку и подойти к катушке (котлу). Магнит начнет ощутимо вибрировать и тем сильнее, чем ближе катушка. Поэтому лучше использовать котел в нежилой части дома или квартиры.
- Устанавливая катушку на трубе, убедитесь, что на этом участке системы отопления теплоноситель естественным образом течет вверх, чтобы не создавать противотока, иначе система вообще не будет работать.
Можно предложить много вариантов применения индукционного нагрева в жилище. Например, в системе горячего водоснабжения можно вообще отказаться от подачи горячей воды, подогревая ее на выходах из каждого крана. Однако, это тема для отдельного рассмотрения.
Несколько слов о безопасности при использовании индукционных нагревателей со сварочным инвертором:
- для обеспечения электробезопасности необходимо тщательно изолировать токопроводящие элементы конструкций по всей схеме подключения;
- индукционный нагреватель рекомендуется только для закрытых систем отопления, в которых циркуляция обеспечивается водяным насосом;
- рекомендуется размещать индукционную систему на расстоянии не менее 30 см от стен и мебели и в 80 сантиметрах от пола или потолка;
- чтобы обезопасить работу системы нужно оснастить систему манометром, аварийным клапаном и устройством автоматического регулирования.
- установить устройство для стравливания воздуха из системы отопления во избежание образования воздушных пробок.
КПД индукционных котлов и нагревателей близка к 100%, при этом нужно учитывать, что потери электроэнергии в сварочных инверторах и проводке, так или иначе, возвращаются к потребителю в виде тепла.
Прежде чем приступать к изготовлению индукционной системы, посмотрите технические данные промышленных образцов. Это поможет определиться с исходными данными самодельной системы.
Желаем успехов в творчестве и труде на самого себя!
Оцените статью: Поделитесь с друзьями!Как сделать простой индукционный нагреватель для отопления
Невиданная экономия, суперэффективность, неимоверный срок службы и даже новый принцип передачи энергии. Именно так характеризуют продавцы индукционных котлов свой товар. Пора и нам приобщиться к высоким технологиям будущего и узнать, на самом ли деле оно так прекрасно, это индукционное отопление.
Блок: 1/4 | Кол-во символов: 298
Источник: http://teploguru.ru/sistemy/indukcionnoe-otoplenie.html
История индукционного нагрева
Открытие электромагнитной индукции в 1831 году принадлежит Майклу Фарадею. При движении проводника в поле магнита в нём наводится ЭДС, так же как при движении магнита, силовые линии которого пересекают проводящий контур. Ток в контуре называется индукционным. На законе электромагнитной индукции основаны изобретения множества устройств, в том числе определяющих — генераторов и трансформаторов, вырабатывающих и распределяющих электрическую энергию, что является фундаментальной основой всей электротехнической промышленности.
В 1841 году Джеймс Джоуль (и независимо от него Эмиль Ленц) сформулировал количественную оценку теплового действия электрического тока: «Мощность тепла, выделяемого в единице объёма среды при протекании электрического тока, пропорциональна произведению плотности электрического тока на величину напряженности электрического поля» (закон Джоуля — Ленца). Тепловое действие индуцированного тока породило поиски устройств бесконтактного нагрева металлов. Первые опыты по нагреву стали с использованием индукционного тока были сделаны Е. Колби в США.
Первая успешно работающая т. н. канальная индукционная печь для плавки стали была построена в 1900 году на фирме «Benedicks Bultfabrik» в городе Gysing в Швеции. В респектабельном журнале того времени «THE ENGINEER» 8 июля 1904 г. появилась знаменитая публикация, где шведский изобретатель инженер F. A. Kjellin рассказывает о своей разработке. Печь питалась от однофазного трансформатора. Плавка осуществлялась в тигле в виде кольца, металл, находящийся в нём, представлял вторичную обмотку трансформатора, питающегося током 50-60 Гц.
Первая печь мощностью 78 кВт была запущена в эксплуатацию 18 марта 1900 года и оказалась весьма неэкономичной, поскольку производительность плавки составляла всего 270 кг стали в сутки. Следующая печь была изготовлена в ноябре того же года мощностью 58 кВт и ёмкостью 100 кг по стали. Печь показала высокую экономичность, производительность плавки составила от 600 до 700 кг стали в сутки. Однако износ футеровки от тепловых колебаний оказался на недопустимом уровне, частые замены футеровки снижали итоговую экономичность.
Изобретатель пришёл к выводу, что для максимальной производительности плавки необходимо при сливе оставлять значительную часть расплава, что позволяет избежать многих проблем, в том числе износа футеровки. Такой способ выплавки стали с остатком, который стали называть «болото», сохранился до сих пор в некоторых производствах, где применяются печи большой ёмкости.
В мае 1902 года была введена в эксплуатацию значительно усовершенствованная печь ёмкостью 1800 кг, слив составлял 1000—1100 кг, остаток 700—800 кг, мощность 165 кВт, производительность плавки стали могла доходить до 4100 кг в сутки! Такой результат по потреблению энергии 970 кВт⋅ч/т впечатляет своей экономичностью, которая мало уступает современной производительности порядка 650 кВт⋅ч/т. По расчётам изобретателя из потребляемой мощности 165 кВт в потери уходило 87,5 кВт, полезная тепловая мощность составила 77,5 кВт, получен весьма высокий полный КПД, равный 47 %. Экономичность объясняется кольцевой конструкцией тигля, что позволило сделать многовитковый индуктор с малым током и высоким напряжением — 3000 В. Современные печи с цилиндрическим тиглем значительно компактнее, требуют меньших капитальных вложений, проще в эксплуатации, оснащены многими усовершенствованиями за сотню лет своего развития, однако КПД повышен несущественно. Правда, изобретатель в своей публикации игнорировал тот факт, что плата за электроэнергию осуществляется не за активную мощность, а за полную, которая при частоте 50-60 Гц примерно вдвое выше активной мощности. А в современных печах реактивная мощность компенсируется конденсаторной батареей.
Своим изобретением инженер F. A. Kjellin положил начало развития промышленных канальных печей для плавки цветных металлов и стали в индустриальных странах Европы и в Америке. Переход от канальных печей 50-60 Гц к современным высокочастотным тигельным длился с 1900 по 1940 г.
Блок: 2/13 | Кол-во символов: 4046
Источник: https://ru.wikipedia.org/wiki/%D0%98%D0%BD%D0%B4%D1%83%D0%BA%D1%86%D0%B8%D0%BE%D0%BD%D0%BD%D1%8B%D0%B9_%D0%BD%D0%B0%D0%B3%D1%80%D0%B5%D0%B2
О принципе индуктивного нагрева
Для начала разъясним, как функционируют электрические индукционные нагреватели. Переменный ток, проходя по виткам катушки, образует вокруг нее электромагнитное поле. Если поместить внутрь обмотки сердечник из магнитящегося металла, то он станет нагреваться вихревыми токами, возникающими под воздействием поля. Вот и весь принцип.
Важное условие. Чтобы металлический сердечник нагревался, катушка должна питаться переменным током, меняющим знак и вектор поля с высокой частотой. При подаче на обмотку постоянного тока вы получите обыкновенный электромагнит.
Сам нагревательный элемент носит название индуктора и является главной частью установки. В отопительных котлах он представляет собой стальную трубу с протекающим внутри теплоносителем, а в кухонных плитах – плоскую катушку, максимально приближенную к варочной панели, как изображено далее на фото.
Катушка-индуктор нагревает железную трубу, которая передает тепло протекающей воде
Вторая часть индукционного нагревателя — схема, повышающая частоту тока. Дело в том, что напряжение с промышленной частотой 50 Гц малопригодно для работы подобных устройств. Если присоединить индуктор к сети напрямую, то он начнет сильно гудеть и слабо прогревать сердечник, причем вместе с обмотками. Чтобы эффективно преобразовывать электричество в теплоту и полностью передавать ее металлу, частоту нужно повысить минимум до 10 кГц, чем и занимается электросхема.
В чем заключаются реальные преимущества индукционных котлов перед ТЭНовыми и электродными:
- Деталь, нагревающая воду, — это простой кусок трубы, не участвующий в электрохимических процессах (как в электродных теплогенераторах). Поэтому срок службы индуктора ограничивается только работоспособностью катушки и может достигать 10—20 лет.
- По той же причине элемент одинаково хорошо «дружит» со всеми видами теплоносителей – водой, антифризом и даже машинным маслом, разницы нет.
- Внутренности индуктора не покрываются накипью в процессе эксплуатации.
Здесь сердечником служит посуда из магнитного металла
Примечание. С индукционными котлами связано множество мифов. Например, продавцы утверждают, что они экономичнее других электрических обогревателей на 10—20%, хотя в действительности КПД всех электрокотлов равен 98%. Список преимуществ ограничивается тремя вышеперечисленными пунктами, остальное – .
Блок: 2/4 | Кол-во символов: 2336
Источник: https://otivent.com/indukcionnyj-nagrevatel-svoimi-rukami
Принцип действия
Индукционный нагрев — это нагревание материалов электрическими токами, которые индуцируются переменным магнитным полем. Следовательно — это нагрев изделий из проводящих материалов (проводников) магнитным полем индукторов (источников переменного магнитного поля).
Индукционный нагрев проводится следующим образом. Электропроводящая (металлическая, графитовая) заготовка помещается в так называемый индуктор, представляющий собой один или несколько витков провода (чаще всего медного). В индукторе с помощью специального генератора наводятся мощные токи различной частоты (от десятка Гц до нескольких МГц), в результате чего вокруг индуктора возникает электромагнитное поле. Электромагнитное поле наводит в заготовке вихревые токи. Вихревые токи разогревают заготовку под действием джоулева тепла.
Система «индуктор-заготовка» представляет собой бессердечниковый трансформатор, в котором индуктор является первичной обмоткой. Заготовка является как бы вторичной обмоткой, замкнутой накоротко. Магнитный поток между обмотками замыкается по воздуху.
На высокой частоте вихревые токи вытесняются образованным ими же магнитным полем в тонкие поверхностные слои заготовки Δ (скин-эффект), в результате чего их плотность резко возрастает и заготовка разогревается. Нижерасположенные слои металла прогреваются за счёт теплопроводности. Важен не ток, а большая плотность тока. В скин-слое Δ плотность тока увеличивается в e раз относительно плотности тока в заготовке, при этом в скин-слое выделяется 86,4 % тепла от общего тепловыделения. Глубина скин-слоя зависит от частоты излучения: чем выше частота, тем тоньше скин-слой. Также она зависит от относительной магнитной проницаемости μ материала заготовки.
Для железа, кобальта, никеля и магнитных сплавов при температуре ниже точки Кюри μ имеет величину от нескольких сотен до десятков тысяч. Для остальных материалов (расплавы, цветные металлы, жидкие легкоплавкие эвтектики, графит, электропроводящая керамика и т. д.) μ примерно равна единице.
Формула для вычисления глубины скин-слоя в мм:
,
где ρ — удельное электрическое сопротивление материала заготовки при температуре обработки, Ом·м, f — частота электромагнитного поля, генерируемого индуктором, Гц.
Например, при частоте 2 МГц глубина скин-слоя для меди около 0,047 мм, для железа ≈ 0,0001 мм.
Индуктор сильно нагревается во время работы, так как сам поглощает собственное излучение. К тому же он поглощает тепловое излучение от раскалённой заготовки. Делают индукторы из медных трубок, охлаждаемых водой. Вода подаётся отсасыванием — этим обеспечивается безопасность в случае прожога или иной разгерметизации индуктора.
Блок: 3/13 | Кол-во символов: 2644
Источник: https://ru.wikipedia.org/wiki/%D0%98%D0%BD%D0%B4%D1%83%D0%BA%D1%86%D0%B8%D0%BE%D0%BD%D0%BD%D1%8B%D0%B9_%D0%BD%D0%B0%D0%B3%D1%80%D0%B5%D0%B2
Покупать или нет
Так всё же, имеет ли смысл приобретать индукционный котёл для отопления? Увы, мы не можем дать однозначного ответа на этот вопрос. Рассказы о его сверхэкономичности оказались мифом, надёжность может быть высокой. А может и не быть. Бесшумность, о которой говорят, присуща всем электронагревателям, звук может издавать насос. Компактность весьма спорна.
На первый взгляд, индукционный котёл (справа) намного компактнее ТЭНового котла (слева). Однако в корпусе последнего размещена куча всякого необходимого оборудования, которое понадобится для индукционного тоже. И не факт, что расположенное вразнобой, оно не займёт на стене больше места
В остальном преимуществ у индукционного котла перед обычными мы не видим. Но есть недостаток: он дороже стоит. Или, если быть точнее, больше просят денег. Причём хороший ТЭНовый котёл за свои деньги представляет собой сбалансированное, полностью готовое к установке и эксплуатации устройство. А индукционный нагреватель ещё нужно комплектовать дополнительным оборудованием. На наш взгляд, маркетологи и продавцы, представляя нам ординарный товар в качестве эксклюзива, пытаются «снять стружку». Получить прибыль большую, чем на других изделиях. Хотя, тенденция к снижению цен уже наметилась и можно ожидать, что в течение нескольких ближайших лет на индукционные котлы установятся справедливые цены. Либо их просто перестанут выпускать.
Если вы рассматриваете возможность приобретения индукционного водонагревателя для отопления собственного дома, рекомендуем пообщаться с профессиональными теплотехниками, как проектировщиками, так и практиками. Опытные специалисты отслеживают тенденции, имеют возможность давать оценки по новым видам техники на основе собственного из практического опыта. Поставщиков оборудования тоже стоит послушать, но сказанное ими следует воспринимать критически.
Блок: 3/4 | Кол-во символов: 1847
Источник: http://teploguru.ru/sistemy/indukcionnoe-otoplenie.html
Варианты самодельных устройств
На просторах интернета размещено достаточное количество разнообразных конструкций, создаваемых для различных целей. Взять индукционный малогабаритный нагреватель, сделанный из компьютерного блока питания 250—500 Вт. Модель, показанная на фото, пригодится мастеру в гараже или автосервисе для плавки стержней из алюминия, меди и латуни.
Но для отопления помещений конструкция не подойдет по причине малой мощности. В интернете есть два реальных варианта, чьи испытания и работа засняты на видео:
- водонагреватель из полипропиленовой трубы с питанием от сварочного инвертора либо индукционной кухонной панели;
- стальной котел с нагревом от той же варочной панели.
Справка. Существуют и другие, полностью самодельные конструкции, где преобразователи частоты умельцы собирают с нуля. Но для этого нужны знания и навыки в области радиотехники, поэтому рассматривать их мы не будем, а просто приведем пример такой схемы.
Теперь давайте подробнее разберем, как делаются индукционные нагреватели своими руками, а главное, — как они потом функционируют.
Изготавливаем нагревательный элемент из трубы
Если вы плотно занимались поиском информации по данной теме, то наверняка столкнулись с этой конструкцией, поскольку мастер выложил ее сборку на популярном видеоресурсе YouTube. После чего многие сайты разместили текстовые версии изготовления этого индуктора в виде пошаговых инструкций. Вкратце нагреватель делается так:
- Внутрь трубы из полипропилена диаметром 40 мм и длиной 50 см наталкиваются металлические ершики для мытья посуды (можно рубленую проволоку — катанку). Они должны притягиваться магнитом.
- К трубе припаиваются отводы с резьбами для подключения к отопительной сети.
- Снаружи вдоль корпуса приклеиваются 4—5 стержней из текстолита. На них наматывается провод сечением 1.7—2 мм² со стеклоизоляцией, применяющийся в сварочных трансформаторах.
- Варочная панель разбирается и «родной» индуктор плоской формы демонтируется. Вместо него подключается самодельный нагреватель из трубы.
Важный нюанс. Длину и сечение провода для намотки катушки следует определять по штатному индуктору печки, чтобы она соответствовала мощности полевых транзисторов в электросхеме. Если взять больше провода, то упадет мощность нагрева, меньше – перегреются и выйдут из строя транзисторы. Как это выглядит визуально, смотрите на видео:
Как нетрудно догадаться, роль нагревательного элемента здесь играют металлические ершики, находящиеся в переменном магнитном поле катушки. Если запустить варочную панель на максимум, одновременно пропуская через импровизированный котел проточную воду, то ее удастся нагреть на 15—20 °С, что и показали испытания агрегата.
Поскольку мощность большинства индукционных плит лежит в пределах 2—2.5 кВт, то с помощью теплогенератора можно обогреть помещения общей площадью не более 25 м². Есть способ увеличить нагрев, подключив индуктор к сварочному аппарату, но здесь есть свои сложности:
- Инвертор выдает постоянный ток, а нужен переменный. Для подсоединения индукционного нагревателя аппарат придется разобрать и найти на схеме точки, где напряжение еще не выпрямлено.
- Нужно взять провод большего сечения и подобрать число витков путем расчета. Как вариант, медную проволоку Ø1.5 мм в эмалевой изоляции.
- Понадобится организовать охлаждение элемента.
Проверку работоспособности индуктивного водонагревателя автор демонстрирует в своем видео, представленном ниже. Испытания показали, что агрегат требует доработки, но конечный результат, к сожалению, неизвестен. Похоже, что умелец оставил проект незавершенным.
Как собрать индукционный котел
В этом случае дешевую китайскую плиту разбирать не нужно. Суть в том, чтобы сварить по ее размерам котловой бак, руководствуясь пошаговой инструкцией:
- Возьмите стальную профильную трубу 20 х 40 мм с толщиной стенки 2 мм и нарежьте из нее заготовок по ширине панели.
- Сварите трубки между собой по длине, стыкуя меньшими сторонами.
- Сверху и снизу к торцам герметично приварите железные крышки. Сделайте в них отверстия и поставьте патрубки с резьбами.
- К одной из сторон прикрепите сваркой 2 уголка, чтобы они образовали полку для индукционной печки.
- Покрасьте агрегат термостойкой эмалью из баллончика. Подробнее процесс сборки показан в видеоролике.
Окончательная сборка и запуск заключается в монтаже котла на стену и его врезке в систему отопления. Варочная панель вставляется в гнездо из уголков на задней стенке бака и подключается к электросети. Остается заполнить систему теплоносителем, стравить воздух и включить нагрев индуктора.
Здесь вас подстерегает та же проблема, что встречалась с предыдущей моделью. Несомненно, индукционный нагрев будет работать, но его мощности 2.5 кВт хватит для обогрева парочки небольших комнат при морозе на улице. Осенью и весной, когда температура не опустилась ниже нуля, самодельный котел сможет отопить площадь 35—40 м². Как его правильно подключить к системе, смотрите в очередном видеосюжете:
Блок: 3/4 | Кол-во символов: 4928
Источник: https://otivent.com/indukcionnyj-nagrevatel-svoimi-rukami
Применение
Отопление, основанное на вихревых токах, созданных электромагнитными полями может найти своё применение при:
- обогреве жилого хозяйства, дома, бани, гаража, промышленного или административного здания;
- в системе горячего водоснабжения;
- обогреве сооружений и конструкций, имеющих определённые требования к источникам тепла (по безопасности).
Блок: 4/7 | Кол-во символов: 346
Источник: http://Tehnika.expert/klimaticheskaya/obogrevatel/indukcionnyj.html
Видео: индукционный котел
Блок: 4/4 | Кол-во символов: 26
Источник: http://teploguru.ru/sistemy/indukcionnoe-otoplenie.html
Преимущества
- Высокоскоростной разогрев или плавление любого электропроводящего материала.
- Возможен нагрев в атмосфере защитного газа, в окислительной (или восстановительной) среде, в жидкости, в вакууме.
- Нагрев через стенки защитной камеры, изготовленной из стекла, цемента, пластмасс, дерева — эти материалы очень слабо поглощают электромагнитное излучение и остаются холодными при работе установки. Нагревается только электропроводящий материал — металл (в том числе расплавленный), углерод, проводящая керамика, жидкие металлы и т. п. Например, внутренности радиолампы можно прогревать для обезгаживания прямо через стеклянную колбу. Электролиты (растворы солей) невозможно нагревать индукционным нагревом, так как ионы, в отличие от электронов, обладают большой массой и малой подвижностью.
- За счёт возникающих МГД-усилий происходит интенсивное перемешивание жидкого металла, вплоть до удержания его в подвешенном состоянии в воздухе или защитном газе — так получают сверхчистые сплавы в небольших количествах (левитационная плавка, плавка в электромагнитном тигеле).
- Поскольку разогрев ведётся посредством электромагнитного излучения, отсутствует загрязнение заготовки продуктами горения факела в случае газопламенного нагрева или материалом электрода в случае дугового нагрева. Помещение образцов в атмосферу инертного газа и высокая скорость нагрева позволят ликвидировать окалинообразование.
- Нет загрязнения воздуха, так как отсутствуют продукты горения. Небольшие установки индукционного нагрева можно эксплуатировать в замкнутом и плохо проветриваемом помещении, не оборудованном специальными средствами вентиляции и вытяжками (гаражи, небольшие домашние мастерские, подвалы).
- Удобство эксплуатации за счёт небольшого размера индуктора.
- Индуктор можно изготовить особой формы — это позволит равномерно прогревать по всей поверхности детали сложной конфигурации, не приводя к их короблению или локальному непрогреву.
- Легко провести местный и избирательный нагрев.
- Так как наиболее интенсивно разогрев идет в тонких верхних слоях заготовки, а нижележащие слои прогреваются более медленно за счёт теплопроводности, метод является идеальным для проведения поверхностной закалки деталей (сердцевина детали при этом остаётся вязкой).
- Лёгкая автоматизация оборудования и конвейерных производственных линий. Простота управления циклами нагрева и охлаждения. Простая регулировка и удерживание температуры, стабилизация мощности, подача и съём заготовок.
Блок: 5/13 | Кол-во символов: 2454
Источник: https://ru.wikipedia.org/wiki/%D0%98%D0%BD%D0%B4%D1%83%D0%BA%D1%86%D0%B8%D0%BE%D0%BD%D0%BD%D1%8B%D0%B9_%D0%BD%D0%B0%D0%B3%D1%80%D0%B5%D0%B2
Индукционный обогреватель своими руками
Из-за дороговизны прибора многие решают изготовить подобный нагреватель самостоятельно. В интернете можно встретить много статей, в которых описывается, как сделать индукционный котел – обогреватель своими руками. Мы опишем принцип изготовления простейшего типа устройства, чтобы с подобной задачей мог справиться любой хозяин.
Перед тем как приступить к работе, подготовьте следующие инструменты: кусачки, паяльник (если вы планируете делать сердечник из металлической трубы), отвертки.
- Нарежьте проволоку из нержавеющей стали диаметром 7 мм на кусочки приблизительно в 5 мм.
- Подготовьте пластиковую или металлическую трубу (сердечник), стенки которой должны быть толщиной не менее 3-5 мм, чтобы она смогла выдерживать высокие температуры.
- Заполните трубу доверху обрезками из проволоки.
- Концы трубы закройте сеткой, чтобы исключить вероятность выпадения из неё обрезков во время работы прибора.
- Далее по всей длине трубы спиралью намотайте медную проволоку, сделав порядка 90 витков.
- Изготовьте котёл, вырезав прямоугольный участок трубы.
- В отверстие котла вставьте изготовленное устройство.
- Концы медной проволоки подключите к инвертору с высокой частотой действия. Купить его можно практически во всех магазинах, имеющих строительное направление.
Перед сборкой оборудования оцените свои силы и возможности. Не беритесь за изготовление нагревательного прибора, если ничего не понимаете в электричестве.
Блок: 5/7 | Кол-во символов: 1434
Источник: http://Tehnika.expert/klimaticheskaya/obogrevatel/indukcionnyj.html
Индукционный обогреватель воды для системы отопления
Обогреватель имеет весьма неприхотливую конструкцию. Он высокоэффективен и надёжен. Используя его при изготовлении котла в системе отопления, можно пренебречь установкой насоса, поскольку вода будет течь по трубам в результате конвекции.
Такое устройство следует снабдить патрубками: для холодной и горячей воды. Сверху через патрубок горячая вода будет подаваться в систему отопления. А снизу на вводной части через него будет пребывать холодная вода
Блок: 6/7 | Кол-во символов: 502
Источник: http://Tehnika.expert/klimaticheskaya/obogrevatel/indukcionnyj.html
Левитационная плавка (плавка во взвешенном состоянии, плавка в электромагнитном тигле)
Переменный ток в индукторе порождает ток противоположного направления в заготовке. Область заготовки вблизи индуктора можно рассматривать как «виток» проводника с током. Токи, протекающие в противоположных направлениях, отталкиваются по закону Ампера. Таким образом, заготовка отталкивается от индуктора (электромагнитное дутьё).
Для подвешивания электропроводящей заготовки применяют индукторы специальных конструкций, обычно выполненных в виде конуса с противовитком. Электромагнитное поле в подобном индукторе сильнее снизу и по бокам, образуя потенциальную яму, удерживающую заготовку от движения вниз и вбок.
Одновременно с левитацией осуществляется интенсивный разогрев заготовки, что позволяет осуществлять плавку без контакта с тиглем и без загрязнения пробы материалом тигля. Данный метод применяется, например, для получения сверхчистых образцов сплавов.
Блок: 7/13 | Кол-во символов: 954
Источник: https://ru.wikipedia.org/wiki/%D0%98%D0%BD%D0%B4%D1%83%D0%BA%D1%86%D0%B8%D0%BE%D0%BD%D0%BD%D1%8B%D0%B9_%D0%BD%D0%B0%D0%B3%D1%80%D0%B5%D0%B2
Проблема индукционного нагрева заготовок из магнитных материалов
Если инвертор для индукционного нагрева не является автогенератором, не имеет схемы автоподстройки частоты (ФАПЧ) и работает от внешнего задающего генератора (на частоте, близкой к резонансной частоте колебательного контура «индуктор — компенсирующая батарея конденсаторов»). В момент внесения заготовки из магнитного материала в индуктор (если размеры заготовки достаточно крупны и соизмеримы с размерами индуктора), индуктивность индуктора резко увеличивается, что приводит к скачкообразному уменьшению собственной резонансной частоты колебательного контура и отклонению её от частоты задающего генератора. Контур выходит из резонанса с задающим генератором, что приводит к увеличению его сопротивления и скачкообразному уменьшению передаваемой в заготовку мощности. Если мощность установки регулируется внешним источником питания, то естественной реакцией оператора является увеличить напряжение питания установки. При разогреве заготовки до точки Кюри, её магнитные свойства исчезают, собственная частота колебательного контура возвращается обратно к частоте задающего генератора. Сопротивление контура резко уменьшается, резко возрастает потребляемый ток. Если оператор не успеет снять повышенное напряжение питания, то установка перегревается и выходит из строя. Если установка оборудована автоматической системой управления, то система управления должна отслеживать переход через точку Кюри и автоматически уменьшать частоту задающего генератора, подстраивая его в резонанс с колебательным контуром (либо уменьшать подаваемую мощность, если изменение частоты недопустимо).
Если производится нагрев немагнитных материалов, то вышесказанное значения не имеет. Внесение в индуктор заготовки из немагнитного материала практически не меняет индуктивность индуктора и не сдвигает резонансную частоту рабочего колебательного контура, и необходимости в системе управления нет.
Если размеры заготовки много меньше размеров индуктора, то она тоже не сильно сдвигает резонанс рабочего контура.
Индукционные плиты
Индукционная плита — кухонная электрическая плита, разогревающая металлическую посуду индуцированными вихревыми токами, создаваемыми высокочастотным магнитным полем, частотой 20-100 кГц.
Такая плита обладает большим КПД по сравнению с ТЭН электроплитками, так как меньше тепла уходит на нагрев корпуса, а кроме того отсутствует период разгона и остывания (когда зря тратится выработанная, но не поглощенная посудой энергия).
Индукционные плавильные печи
Индукционные (бесконтактные) плавильные печи — электрические печи для расплавления и перегрева металлов, в которых нагрев происходит за счет вихревых токов, возникающих в металлическом тигеле (и металле), либо только в металле (если тигель изготовлен не из металла; такой способ нагрева более эффективен, если тигель плохо теплоизолирован).
Применяется в литейных цехах металлургических заводов, а также в цехах точного литья и ремонтных цехах машиностроительных заводов для получения стальных отливок высокого качества. Возможна плавка цветных металлов (бронзы, латуни, алюминия) и их сплавов в графитовом тигле. Индукционная печь работает по принципу трансформатора, у которого первичной обмоткой является водоохлаждаемый индуктор, вторичной и одновременно нагрузкой — находящийся в тигле металл. Нагрев и расплавление металла происходят за счёт протекающих в нём токов, которые возникают под действием электромагнитного поля, создаваемого индуктором.
Блок: 9/13 | Кол-во символов: 3487
Источник: https://ru.wikipedia.org/wiki/%D0%98%D0%BD%D0%B4%D1%83%D0%BA%D1%86%D0%B8%D0%BE%D0%BD%D0%BD%D1%8B%D0%B9_%D0%BD%D0%B0%D0%B3%D1%80%D0%B5%D0%B2
Замечания
- Индуктор по возможности необходимо располагать как можно ближе к заготовке. Это не только увеличивает плотность электромагнитного поля вблизи заготовки (пропорционально квадрату расстояния), но и увеличивает коэффициент мощности .
- Увеличение частоты резко уменьшает коэффициент мощности (пропорционально кубу частоты).
- При нагреве магнитных материалов дополнительное тепло также выделяется за счет перемагничивания, их нагрев идёт намного эффективнее (до точки Кюри).
- При расчёте индуктора необходимо учитывать индуктивность подводящих к индуктору шин, которая может быть намного больше индуктивности самого индуктора (если индуктор выполнен в виде одного витка небольшого диаметра или даже части витка — дуги).
- Иногда в качестве генератора высокой частоты использовали списанные мощные радиопередатчики, где антенный контур заменяли на нагревательный индуктор.
- Индукционный нагрев можно проводить в воде, даже солёной. Так как ионы растворённых в воде солей тяжёлые и обладают большой инерционностью, высокочастотное электромагнитное поле не может их «раскачать» и загрязнённая вода не нагревается.
Блок: 10/13 | Кол-во символов: 1109
Источник: https://ru.wikipedia.org/wiki/%D0%98%D0%BD%D0%B4%D1%83%D0%BA%D1%86%D0%B8%D0%BE%D0%BD%D0%BD%D1%8B%D0%B9_%D0%BD%D0%B0%D0%B3%D1%80%D0%B5%D0%B2
Литература
- Бабат Г. И., Свенчанский А. Д. Электрические промышленные печи. — М.: Госэнергоиздат, 1948. — 332 с.
- Бурак Я. И., Огирко И. В. Оптимальный нагрев цилиндрической оболочки с зависящими от температуры характеристиками материала // Мат. методы и физ.-мех. поля. — 1977. — Вып. 5. — С. 26-30.
- Васильев А. С. Ламповые генераторы для высокочастотного нагрева. — Л.: Машиностроение, 1990. — 80 с. — (Библиотечка высокочастотника-термиста; Вып. 15). — 5300 экз. — ISBN 5-217-00923-3.
- Власов В. Ф. Курс радиотехники. — М.: Госэнергоиздат, 1962. — 928 с.
- Изюмов Н. М., Линде Д. П. Основы радиотехники. — М.: Госэнергоиздат, 1959. — 512 с.
- Лозинский М. Г. Промышленное применение индукционного нагрева. — М.: Изд-во АН СССР, 1948. — 471 с.
- Применение токов высокой частоты в электротермии / Под ред. А. Е. Слухоцкого. — Л.: Машиностроение, 1968. — 340 с.
- Слухоцкий А. Е. Индукторы. — Л.: Машиностроение, 1989. — 69 с. — (Библиотечка высокочастотника-термиста; Вып. 12). — 10 000 экз. — ISBN 5-217-00571-8.
- Фогель А. А. Индукционный метод удержания жидких металлов во взвешенном состоянии / Под ред. А. Н. Шамова. — 2-е изд., испр. — Л.: Машиностроение, 1989. — 79 с. — (Библиотечка высокочастотника-термиста; Вып. 11). — 2950 экз. — ISBN 5-217-00572-6.
Блок: 13/13 | Кол-во символов: 1251
Источник: https://ru.wikipedia.org/wiki/%D0%98%D0%BD%D0%B4%D1%83%D0%BA%D1%86%D0%B8%D0%BE%D0%BD%D0%BD%D1%8B%D0%B9_%D0%BD%D0%B0%D0%B3%D1%80%D0%B5%D0%B2
Количество использованных доноров: 5
Информация по каждому донору:
- https://ru.wikipedia.org/wiki/%D0%98%D0%BD%D0%B4%D1%83%D0%BA%D1%86%D0%B8%D0%BE%D0%BD%D0%BD%D1%8B%D0%B9_%D0%BD%D0%B0%D0%B3%D1%80%D0%B5%D0%B2: использовано 7 блоков из 13, кол-во символов 15945 (42%)
- http://Tehnika.expert/klimaticheskaya/obogrevatel/indukcionnyj.html: использовано 4 блоков из 7, кол-во символов 2980 (8%)
- https://StrojDvor.ru/otoplenie/princip-raboty-indukcionnogo-nagrevatelya/: использовано 1 блоков из 6, кол-во символов 2319 (6%)
- http://teploguru.ru/sistemy/indukcionnoe-otoplenie.html: использовано 4 блоков из 4, кол-во символов 9898 (26%)
- https://otivent.com/indukcionnyj-nagrevatel-svoimi-rukami: использовано 2 блоков из 4, кол-во символов 7264 (19%)
Обогреватели КОУЗИ
«КОУЗИ» — это электрический обогреватель, который, благодаря уникальной запатентованной конструкции, сочетает в себе свойства инфракрасного обогревателя и конвектора. Рядом с ним мы ощущаем приятное комфортное тепло и при этом он быстро прогревает воздух в помещении.
Обогреватель «КОУЗИ» состоит из двух пленочных нагревательных элементов, которые располагаются вдоль всей передней и задней стенки прибора. Проходя между ними холодный воздух постепенно нагревается и выходит через верхние отверстия.
При этом температура самого нагревательного элемента не поднимается выше +75˚C. Обогреватель не сушит воздух, не выжигает пыль. Он пожаробезопасен, имеет хорошую защиту от поражения током (класс защиты 1) и может устанавливаться во влажных помещениях (степень защиты IP24).
Конструкция обогревателя не имеет механических движущихся частей, поэтому он абсолютно бесшумен в работе. Срок службы составляет более 20 лет, а гарантия 3 года.
Как система отопления «КОУЗИ» экономит ваши деньги?
Обогреватели «КОУЗИ» обладают небольшой потребляемой мощностью (не более 0,45 кВт) и высоким КПД (99,9%).
Каждый потраченный рубль на оплату счетов за электричество превращается в тепло.
Экономия на монтаже. Система отопления «КОУЗИ» может быть смонтирована за несколько часов. Не нужно строить бойлерные помещения. Не нужно монтировать трубопроводы, заполнять систему водой или антифризом. При этом систему отопления «КОУЗИ» можно монтировать постепенно, по мере необходимости или наличия денежных средств, без ущерба качеству для дальнейшей эксплуатации.
Экономия на электроэнергии за счет гибкого регулирования системы. Совместно с обогревателями «КОУЗИ» могут применятся различные термостаты, в том числе и программируемые или управляемые удаленно. Можно настроить температуру отдельно в каждом помещении, при этом не будут перегреваться помещения, которые в этом не нуждаются (например кладовки). Можно настроить систему так, что во время вашего отсутствия она снижает потребление электричества, а к моменту вашего приезда вновь повышает температуру.
Экономия за счет недорогого подключения к коммуникациям. Сети электроснабжения широко распространены, да и подключение к ним стоит недорого. При этом стоимость земельных участков с возможностью подключения к газу и без такой возможности может отличаться в разы. Причем часто за счет этой разницы, а особенно учитывая стоимость монтажа, можно отапливать электрическими конвекторами несколько десятков лет, прежде чем все затраты окупятся.
Отдельно хочется сказать о комфорте.
Как мы отметили ранее, температура нагревательного элемента составляет не более +75˚C. Учитывая то, что потребляемая мощность маленькая, то можно установить несколько обогревателей в помещения, обеспечив равномерный прогрев. При этом не будет «выжигаться кислород», пыль. Как мы отмечали в предыдущих статьях, благоприятный микроклимат особенно важен при постоянном проживании.
Модели различаются
Акция с 15.09.2017 по 15.10.2017
При заказе свыше 5 конвекторов любой мощности и типоразмера — термостат в подарок.
При заказе свыше 10 конвекторов любой мощности — термостат в подарок + бесплатная доставка до двери.
Что такое индукционный нагрев? | Inductoheat Inc
Компании группыInductotherm используют электромагнитную индукцию для плавления, нагрева и сварки в различных отраслях промышленности. Но что такое индукция? И чем он отличается от других способов обогрева?
Для типичного инженера индукция — увлекательный метод нагрева. Наблюдение за тем, как кусок металла в катушке становится вишнево-красным за считанные секунды, может быть удивительным для тех, кто не знаком с индукционным нагревом.Оборудование для индукционного нагрева требует понимания физики, электромагнетизма, силовой электроники и управления технологическими процессами, но основные концепции, лежащие в основе индукционного нагрева, просты для понимания.
Основы
Обнаружил Майкл Фарадей, индукция начинается с катушки из проводящего материала (например, меди). Когда ток течет через катушку, создается магнитное поле внутри и вокруг катушки. Способность магнитного поля выполнять работу зависит от конструкции катушки, а также от величины тока, протекающего через катушку.
Направление магнитного поля зависит от направления протекания тока, поэтому переменный ток через катушку приведет к изменению направления магнитного поля с той же скоростью, что и частота переменного тока. Переменный ток 60 Гц заставит магнитное поле менять направление 60 раз в секунду. Переменный ток 400 кГц вызовет переключение магнитного поля 400 000 раз в секунду.
Когда проводящий материал, заготовка, помещается в изменяющееся магнитное поле (например, поле, генерируемое переменным током), в заготовке индуцируется напряжение (закон Фарадея).Индуцированное напряжение приведет к потоку электронов: току! Ток, протекающий через заготовку, будет идти в направлении, противоположном току в катушке. Это означает, что мы можем контролировать частоту тока в заготовке, контролируя частоту тока в катушке.
Когда ток течет через среду, движение электронов будет сопротивляться. Это сопротивление проявляется в виде тепла (эффект джоулевого нагрева). Материалы, которые более устойчивы к потоку электронов, будут выделять больше тепла, когда через них протекает ток, но, безусловно, можно нагревать материалы с высокой проводимостью (например, медь) с помощью индуцированного тока.Это явление критично для индукционного нагрева.
Что нам нужно для индукционного нагрева?
Все это говорит нам о том, что для индукционного нагрева необходимы две основные вещи:
- Изменяющееся магнитное поле
- Электропроводящий материал, помещенный в магнитное поле
Чем отличается индукционный нагрев от других методов нагрева?
Есть несколько методов нагрева объекта без индукции.Некоторые из наиболее распространенных промышленных практик включают газовые печи, электрические печи и соляные бани. Все эти методы основаны на передаче тепла продукту от источника тепла (горелки, нагревательного элемента, жидкой соли) посредством конвекции и излучения. Когда поверхность продукта нагревается, тепло передается через продукт за счет теплопроводности.
Продукты с индукционным нагревом не используют конвекцию и излучение для доставки тепла к поверхности продукта. Вместо этого тепло генерируется на поверхности продукта за счет протекания тока.Затем тепло от поверхности продукта передается через продукт за счет теплопроводности. Глубина, на которую тепло генерируются непосредственно с помощью индуцированного тока зависит от того, что называется в электрических опорной глубины .
Электрическая опорная глубина сильно зависит от частоты переменного тока, протекающего через заготовку. Более высокая частота ток приведет к мельче электрических эталонной глубины и более низкая частота ток приведет к более глубокой электрическим эталонной глубине .Эта глубина также зависит от электрических и магнитных свойств детали.
Эталонная электрическая глубина высоких и низких частот Компании группыInductotherm используют преимущества этих физических и электрических явлений, чтобы адаптировать решения для обогрева для конкретных продуктов и приложений. Тщательный контроль мощности, частоты и геометрии змеевика позволяет компаниям группы Inductotherm проектировать оборудование с высоким уровнем управления технологическим процессом и надежностью независимо от области применения.
Индукционная плавка
Для многих процессов плавление — это первый шаг в производстве полезного продукта; индукционная плавка происходит быстро и эффективно. Изменяя геометрию индукционной катушки, индукционные плавильные печи могут удерживать заряды, размер которых варьируется от объема кофейной кружки до сотен тонн расплавленного металла. Кроме того, регулируя частоту и мощность, компании Группы Inductotherm могут обрабатывать практически все металлы и материалы, включая, помимо прочего, железо, сталь и сплавы нержавеющей стали, медь и сплавы на ее основе, алюминий и кремний.Индукционное оборудование разрабатывается индивидуально для каждого приложения, чтобы обеспечить его максимальную эффективность.
Основным преимуществом индукционной плавки является индукционное перемешивание. В индукционной печи металлическая шихта плавится или нагревается током, генерируемым электромагнитным полем. Когда металл расплавляется, это поле также заставляет ванну двигаться. Это называется индуктивным перемешиванием. Это постоянное движение естественным образом перемешивает ванну, создавая более однородную смесь, и способствует легированию.Величина перемешивания определяется размером печи, мощностью, подаваемой на металл, частотой электромагнитного поля и типом / количеством металла в печи. При необходимости количество индукционного перемешивания в любой печи можно регулировать для специальных применений.
Индукционная вакуумная плавка
Поскольку индукционный нагрев осуществляется с помощью магнитного поля, заготовка (или нагрузка) может быть физически изолирована от индукционной катушки огнеупором или другой непроводящей средой.Магнитное поле будет проходить через этот материал, чтобы вызвать напряжение в находящейся внутри нагрузке. Это означает, что груз или заготовку можно нагревать в вакууме или в тщательно контролируемой атмосфере. Это позволяет обрабатывать химически активные металлы (Ti, Al), специальные сплавы, кремний, графит и другие чувствительные проводящие материалы.
Индукционный нагрев
В отличие от некоторых методов сжигания, индукционный нагрев точно регулируется независимо от размера партии. Изменение тока, напряжения и частоты через индукционную катушку приводит к точно настроенному инженерному нагреву, идеально подходящему для точных применений, таких как упрочнение, закалка и отпуск, отжиг и другие формы термообработки.Высокий уровень точности важен для критически важных приложений, таких как автомобилестроение, аэрокосмическая промышленность, волоконная оптика, соединение боеприпасов, закалка проволоки и отпуск пружинной проволоки. Индукционный нагрев хорошо подходит для специальных применений в металлах, включая титан, драгоценные металлы и современные композиты. Точный контроль нагрева, доступный с помощью индукции, не имеет себе равных. Кроме того, при использовании тех же принципов нагрева, что и при нагревании в вакуумных тиглях, индукционный нагрев может осуществляться в атмосфере для непрерывного использования.Например, светлый отжиг трубы и трубы из нержавеющей стали.
Высокочастотная индукционная сварка
Когда индукция осуществляется с использованием высокочастотного (HF) тока, возможна даже сварка. В этом приложении очень мелкие электрические опорные глубины , которые могут быть достигнуты с помощью высокочастотного тока. В этом случае металлическая полоса формируется непрерывно, а затем проходит через набор точно спроектированных валков, единственная цель которых — прижать кромки сформированной полосы друг к другу и создать сварной шов.Непосредственно перед тем, как сформированная полоса достигает комплекта валков, она проходит через индукционную катушку. В этом случае ток течет вниз по геометрической «форме», образованной краями полосы, а не только вокруг внешней стороны сформированного канала. По мере прохождения тока по краям ленты они нагреваются до подходящей температуры сварки (ниже температуры плавления материала). Когда кромки прижимаются друг к другу, весь мусор, оксиды и другие примеси вытесняются, что приводит к образованию твердотельного кузнечного шва.
Будущее
С наступлением эры высокотехнологичных материалов, альтернативных источников энергии и необходимости расширения возможностей развивающихся стран уникальные возможности индукции предлагают инженерам и конструкторам будущего быстрый, эффективный и точный метод нагрева.
Основы технологии индукционного нагрева
Индукционный нагрев
Проще говоря, индукционный нагрев является наиболее чистым, эффективным, рентабельным, точным и повторяемым методом нагрева материалов, доступным на сегодняшний день в отрасли.
Точно разработанные индукционные катушки в сочетании с мощным и гибким индукционным источником питания обеспечивают воспроизводимые результаты нагрева, соответствующие желаемому применению. Индукционные источники питания, разработанные для точной количественной оценки нагрева материала и реагирования на изменения свойств материала во время цикла нагрева, делают реальностью достижение различных профилей нагрева с помощью одного приложения нагрева.
Целью индукционного нагрева может быть упрочнение детали для предотвращения износа; придать металлопластику для ковки или горячей штамповки желаемую форму; спаять или спаять две части вместе; плавить и смешивать ингредиенты, которые входят в жаропрочные сплавы, что делает возможным создание реактивных двигателей; или для любого количества других приложений.
Основы
Индукционный нагрев происходит в электропроводящем объекте (не обязательно из магнитной стали), когда объект находится в переменном магнитном поле. Индукционный нагрев происходит из-за гистерезиса и потерь на вихревые токи.
Гистерезисные потери возникают только в магнитных материалах, таких как сталь, никель и некоторые другие. Потери на гистерезис утверждают, что это вызвано трением между молекулами, когда материал намагничивается сначала в одном направлении, а затем в другом.Молекулы можно рассматривать как небольшие магниты, которые вращаются при каждом изменении направления магнитного поля. Требуется работа (энергия), чтобы перевернуть их. Энергия превращается в тепло. Скорость расхода энергии (мощности) увеличивается с увеличением скорости реверсирования (частоты).
Вихретоковые потери возникают в любом проводящем материале в переменном магнитном поле. Это вызывает заголовок, даже если материалы не обладают какими-либо магнитными свойствами, обычно присущими железу и стали.Примерами являются медь, латунь, алюминий, цирконий, немагнитная нержавеющая сталь и уран. Вихревые токи — это электрические токи, индуцируемые в материале действием трансформатора. Как следует из их названия, кажется, что они движутся вихрями на водоворотах внутри твердой массы материала. Вихретоковые потери намного важнее гистерезисных потерь при индукционном нагреве. Обратите внимание, что индукционный нагрев применяется к немагнитным материалам, в которых отсутствуют гистерезисные потери.
Для нагрева стали для закалки, ковки, плавки или любых других целей, требующих температуры выше температуры Кюри, мы не можем полагаться на гистерезис.Сталь теряет свои магнитные свойства выше этой температуры. Когда сталь нагревается ниже точки Кюри, вклад гистерезиса обычно настолько мал, что им можно пренебречь. Для всех практических целей вихревые токи I 2 R — это единственный способ, которым электрическая энергия может быть преобразована в тепло для целей индукционного нагрева.
Две основные вещи для индукционного нагрева:
- Изменяющееся магнитное поле
- Электропроводящий материал, помещенный в магнитное поле
Преимущества индукционного нагрева
Индукционный нагрев особенно полезен при выполнении повторяющихся операций.После того, как машина индукционного нагрева правильно отрегулирована, часть за частью нагревается с одинаковыми результатами. Возможность индукционного нагрева для одинакового нагрева следующих друг за другом деталей означает, что процесс можно адаптировать к полностью автоматическому режиму, когда детали загружаются и разгружаются механически.
Индукционный нагрев сделал возможным размещение таких операций, как закалка, на производственных линиях вместе с другими станками, а не в удаленных отдельных отделах. Это экономит время на транспортировку деталей из одной части завода в другую.Индукционный нагрев чистый. Не сбрасывает неприятный жар. Условия работы вокруг машин индукционного нагрева хорошие. Они не выделяют дым и грязь, которые иногда бывают в цехах термообработки и кузнечных цехах.
Другой желательной характеристикой индукционного нагрева является его способность нагревать только небольшую часть заготовки, что дает преимущества, когда нет необходимости нагревать всю деталь. Это преимущество имеет решающее значение для основных деталей с несколькими локализованными участками повышенного износа при нормальной эксплуатации.Раньше требовался более качественный и более дорогой материал, чтобы выдерживать эксплуатационный износ. С помощью индукции можно обрабатывать менее дорогие материалы на месте для достижения требуемой долговечности.
Индукционный нагрев быстрый. Правильно настроенная машина индукционного нагрева может обрабатывать большие объемы деталей в минуту за счет использования эффективной конструкции змеевика и обращения с деталями. Поскольку машины индукционного нагрева хорошо подходят для автоматизации, их можно легко интегрировать с существующими линиями по производству деталей.В отличие от решений для лучистого отопления, индукционный нагрев нагревает только часть внутри змеевика, не тратя энергию на ненужный нагрев.
Индукционный нагрев чистый. Без операций пламени, которые оставляют сажу или иным образом требуют очистки после нагрева, индукция является выбором для деталей, требующих чистого нагрева, например, при пайке. Поскольку в индукционном нагреве используются магнитные поля, проницаемые через стекло или другие материалы, возможен контролируемый индукционный нагрев атмосферы.
История индукционного нагрева
Фарадей (1791-1867) был знаком с фундаментальными принципами, лежащими в основе индукции. Сначала акцент был сделан на нежелательных последствиях явления. Большое внимание было уделено поиску методов уменьшения влияния индукции, чтобы такие устройства, как трансформаторы, двигатели и генераторы, могли стать более эффективными.
Майклу Фарадею (1791-1867) приписывают открытие фундаментальных принципов, лежащих в основе индукционного нагрева в 1831 году.Тем не менее, исследования индукции были сосредоточены на поиске методов уменьшения влияния индукции, чтобы такие устройства, как трансформаторы, двигатели и генераторы, поначалу могли стать более эффективными.
Интерес к возможности плавления металлов индукцией возник в 1916 году. Одним из первых коммерческих приложений было плавление небольших зарядов с использованием генераторов искрового разрядника. Еще одним ранним применением было нагревание металлических элементов вакуумных трубок для отвода поглощенных газов перед герметизацией.
За несколько лет до Второй мировой войны ряд компаний, более или менее независимо друг от друга, начали понимать, что индукция является решением для широкого спектра специализированных нагревательных приложений. Хотя индукция не стала промышленным процессом еще долго после ее теоретического открытия, ее рост был быстрым во время Второй мировой войны, когда возникла немедленная потребность в производстве большого количества деталей с минимальными трудозатратами.
Сегодня индукция заняла свое место в нашей промышленной экономике как средство ускорения производства деталей, снижения производственных затрат и достижения качественных результатов.
Нажмите, чтобы узнать об истории Радин
Будущее индукции
С наступлением эры высокотехнологичных материалов, альтернативных источников энергии и необходимости расширения возможностей развивающихся стран уникальные возможности индукции предлагают инженерам и конструкторам будущего быстрый, эффективный и точный метод нагрева.
Как технология выбора для быстрого, чистого, повторяемого, точного и эффективного нагрева, индукция прочно зарекомендовала себя в будущем производства как краеугольный камень отрасли.Быстрая зрелость Induction с момента своего открытия принесла ей репутацию передовой технологии, критически важной для открытия новых, более эффективных процессов. Сегодня индукция является синонимом новаторских решений, открывающих путь к новой парадигме в производственных технологиях.
Технология Radyne находится на переднем крае индукционного нагрева, вводя инновации в новые способы дальнейшего развития методов и процессов индукционного нагрева в новых, ранее заброшенных областях. Мы являемся ведущим мировым производителем и пионером в разработке передового оборудования для индукционного нагрева и нагрева с регулируемой атмосферой.Щелкните здесь, чтобы узнать больше о блоке питания TFD.
Дополнительная литература
Дальнейшее обсуждение темы основ индукционного нагрева можно найти, продолжив нашу статью о передовых концепциях индукционного нагрева, охватывающую темы, лежащие в основе теории индукционного нагрева, установленной здесь. Для еще большего количества ресурсов индукционного нагрева Radyne предоставляет несколько ресурсов для вашего удобства, позволяющих использовать теорию индукции для осознанной работы: в том числе плакаты для справки с общими лабораторными и производственными таблицами и справочники по основам индукции.
Что это такое и как это работает
Главная> Индукционный нагрев> Что такое индукционный нагрев
Индукционный нагрев — это процесс, который используется для склеивания, упрочнения или размягчения металлов или других проводящих материалов. Для многих современных производственных процессов индукционный нагрев предлагает привлекательное сочетание скорости, стабильности и контроля.
Основные принципы индукционного нагрева применяются в производстве с 1920-х годов. Во время Второй мировой войны технология быстро развивалась, чтобы удовлетворить насущные потребности военного времени в быстром и надежном процессе упрочнения металлических деталей двигателя.В последнее время акцент на бережливых производственных технологиях и упор на улучшенный контроль качества привели к новому открытию индукционной технологии, наряду с разработкой полностью контролируемых твердотельных индукционных источников питания.
В чем уникальность этого метода нагрева? В наиболее распространенных методах нагрева к металлической части непосредственно прикладывают горелку или открытое пламя. Но при индукционном нагреве тепло фактически «индуцируется» внутри самой детали за счет циркулирующих электрических токов.
Индукционный нагрев основан на уникальных характеристиках радиочастотной (РЧ) энергии — той части электромагнитного спектра, которая ниже инфракрасной и микроволновой энергии. Поскольку тепло передается продукту с помощью электромагнитных волн, деталь никогда не вступает в прямой контакт с каким-либо пламенем, сам индуктор не нагревается (см. Рисунок 1), и продукт не загрязняется. При правильной настройке процесс становится очень повторяемым и управляемым.
Как работает индукционный нагрев
Как именно работает индукционный нагрев? Это помогает получить базовое представление о принципах электричества.Когда переменный электрический ток подается на первичную обмотку трансформатора, создается переменное магнитное поле. Согласно закону Фарадея, если вторичная обмотка трансформатора находится в магнитном поле, индуцируется электрический ток.
В базовой установке индукционного нагрева, показанной на Рисунке 2, твердотельный ВЧ-источник питания передает переменный ток через индуктор (часто медную катушку), а нагреваемая деталь (заготовка) помещается внутри индуктора. Индуктор служит первичной обмоткой трансформатора, а нагреваемая часть становится вторичной обмоткой короткого замыкания.Когда металлическая деталь помещается в индуктор и попадает в магнитное поле, внутри детали индуцируются циркулирующие вихревые токи.
Как показано на рисунке 3, эти вихревые токи протекают против удельного электрического сопротивления металла, генерируя точное и локализованное тепло без какого-либо прямого контакта между деталью и индуктором. Это нагревание происходит как с магнитными, так и с немагнитными частями, и его часто называют «эффектом Джоуля», ссылаясь на первый закон Джоуля — научную формулу, выражающую связь между теплотой, производимой электрическим током, проходящим через проводник.
Во-вторых, внутри магнитных деталей создается дополнительное тепло за счет гистерезиса — внутреннего трения, возникающего при прохождении магнитных деталей через индуктор. Магнитные материалы, естественно, обладают электрическим сопротивлением быстро меняющимся магнитным полям внутри индуктора. Это сопротивление вызывает внутреннее трение, которое, в свою очередь, выделяет тепло.
Таким образом, в процессе нагрева материала нет контакта между индуктором и деталью, и также отсутствуют газы сгорания.Нагреваемый материал может располагаться в помещении, изолированном от источника питания; погруженный в жидкость, покрытый изолированными веществами, в газовой атмосфере или даже в вакууме.
Важные факторы, которые следует учитывать
Эффективность системы индукционного нагрева для конкретного применения зависит от нескольких факторов: характеристик самой детали, конструкции индуктора, мощности источника питания и величины изменения температуры, необходимой для данного применения.
Характеристики детали
МЕТАЛЛ ИЛИ ПЛАСТИК
Во-первых, индукционный нагрев работает напрямую только с проводящими материалами, обычно с металлами. Пластмассы и другие непроводящие материалы часто можно нагревать косвенно, сначала нагревая проводящий металлический приемник, который передает тепло непроводящему материалу.
МАГНИТНЫЙ ИЛИ НЕМАГНИТНЫЙ
Магнитные материалы легче нагревать. Помимо тепла, вызванного вихревыми токами, магнитные материалы также выделяют тепло за счет так называемого эффекта гистерезиса (описанного выше).Этот эффект перестает проявляться при температурах выше «точки Кюри» — температуры, при которой магнитный материал теряет свои магнитные свойства. Относительное сопротивление магнитных материалов оценивается по шкале «проницаемости» от 100 до 500; в то время как немагнитные материалы имеют проницаемость 1, магнитные материалы могут иметь проницаемость до 500.
ТОЛСТЫЙ ИЛИ ТОЛЩИЙ
В случае токопроводящих материалов около 85% теплового эффекта происходит на поверхности или «коже» детали; интенсивность нагрева уменьшается по мере удаления от поверхности.Поэтому мелкие или тонкие детали обычно нагреваются быстрее, чем большие толстые, особенно если более крупные детали необходимо нагреть полностью.
Исследования показали взаимосвязь между частотой переменного тока и глубиной проникновения нагрева: чем выше частота, тем меньше нагрев детали. Частоты от 100 до 400 кГц производят относительно высокоэнергетическое тепло, идеально подходящее для быстрого нагрева небольших деталей или поверхности / кожи больших деталей. Было показано, что для глубокого проникающего тепла наиболее эффективными являются более длительные циклы нагрева на более низких частотах от 5 до 30 кГц.
СОПРОТИВЛЕНИЕ
Если вы используете один и тот же индукционный процесс для нагрева двух кусков стали и меди одинакового размера, результаты будут совершенно разными. Почему? Сталь — наряду с углеродом, оловом и вольфрамом — имеет высокое электрическое сопротивление. Поскольку эти металлы сильно сопротивляются току, быстро накапливается тепло. Металлы с низким удельным сопротивлением, такие как медь, латунь и алюминий, нагреваются дольше. Удельное сопротивление увеличивается с повышением температуры, поэтому очень горячая сталь будет более восприимчива к индукционному нагреву, чем холодная.
Конструкция индуктора
Именно внутри индуктора создается переменное магнитное поле, необходимое для индукционного нагрева, за счет протекания переменного тока. Таким образом, конструкция индуктора — один из наиболее важных аспектов всей системы. Хорошо спроектированный индуктор обеспечивает правильный режим нагрева для вашей детали и максимизирует эффективность источника питания индукционного нагрева, при этом позволяя легко вставлять и извлекать деталь.
Мощность блока питания
Размер индукционного источника питания, необходимый для нагрева конкретной детали, можно легко рассчитать.Во-первых, необходимо определить, сколько энергии необходимо передать заготовке. Это зависит от массы нагреваемого материала, удельной теплоемкости материала и требуемого повышения температуры. Также следует учитывать потери тепла от теплопроводности, конвекции и излучения.
Требуемая степень изменения температуры
Наконец, эффективность индукционного нагрева для конкретного применения зависит от требуемого изменения температуры. Возможен широкий диапазон температурных изменений; Как правило, для увеличения степени изменения температуры обычно используется большая мощность индукционного нагрева.
Что это такое и как это работает?
Системы индукционного нагрева
Источник питания для индукционного нагрева преобразует сетевое питание переменного тока в переменный ток более высокой частоты, подает его на рабочую катушку и создает внутри катушки электромагнитное поле. Ваша заготовка помещается в это поле, которое наводит в ней вихревые токи. Трение этих токов генерирует точное, чистое, бесконтактное тепло. Для охлаждения рабочей катушки и индукционной системы обычно требуется система водяного охлаждения.
Рабочая частота
Размер заготовки и область применения нагрева определяют рабочую частоту оборудования для индукционного нагрева. Как правило, чем больше размер обрабатываемой детали, тем ниже частота, а чем меньше размер обрабатываемой детали, тем выше частота. Рабочая частота определяется емкостью цепи резервуара, индуктивностью индукционной катушки и свойствами материала заготовки.
Магнитные материалы и глубина проникновения
Если материал вашей заготовки является магнитным, например углеродистая сталь, он будет легко нагреваться с помощью двух методов индукционного нагрева: вихретокового и гистерезисного нагрева.Гистерезисный нагрев очень эффективен до температуры Кюри (для стали 600 ° C (1100 ° F)), когда магнитная проницаемость уменьшается до 1, а вихревой ток остается для нагрева. Наведенный ток в заготовке будет течь по поверхности, где 80% тепла, производимого в детали, генерируется во внешнем слое (скин-эффект). Более высокие рабочие частоты имеют небольшую толщину скин-слоя, в то время как более низкие рабочие частоты имеют большую толщину скин-слоя и большую глубину проникновения.
КПД сцепления
Связь между током, протекающим в заготовке, и расстоянием между заготовкой и индукционной катушкой является ключевым фактором; чем ближе катушка, тем больше ток в заготовке.Но расстояние между катушкой и заготовкой необходимо сначала оптимизировать с учетом требуемого нагрева и практического обращения с заготовкой. Многие факторы в индукционной системе можно отрегулировать в соответствии с катушкой и оптимизировать эффективность связи.
Важность конструкции змеевика
Эффективность индукционного нагрева увеличивается до максимума, если ваша заготовка может быть помещена внутри индукционной катушки. Если ваш технологический процесс не позволяет разместить заготовку внутри катушки, катушку можно поместить внутрь заготовки.Размер и форма медной индукционной катушки с водяным охлаждением будут соответствовать форме вашей заготовки и предназначены для подачи тепла в нужное место на заготовке.
Требования к питанию
Мощность, необходимая для нагрева заготовки, зависит от:
- Масса вашей заготовки
- Свойства материала вашей заготовки
- Требуемое повышение температуры
- Время нагрева, необходимое для удовлетворения ваших технологических потребностей
- Эффективность поля за счет конструкции катушки
- Любые потери тепла в процессе нагрева
После того, как мы определим мощность, необходимую для нагрева вашей заготовки, мы сможем выбрать правильное оборудование для индукционного нагрева с учетом эффективности связи катушек.
Индукционный нагреватель — принцип работы
Исторически различные методы отопления использовались как для бытовых, так и для коммерческих целей. Проводимость, конвекция и излучение являются основными типами теплопередачи с более сложной термодинамикой, основанной на этих трех основных принципах. В обрабатывающей промышленности используются несколько методов теплопередачи для изменения удельного электрического сопротивления, магнитных и физических свойств металлов с использованием более совершенных методов.Вопрос в том, можно ли использовать индукционные нагреватели и для теплопередачи?Что такое индукционный нагрев?
Индукционный нагрев — это процесс, предназначенный для нагрева электропроводящего материала, такого как металл, с целью изменения его физических свойств без контакта материала с индуктором. Тепло передается проводящему материалу циркулирующими электрическими токами, когда он находится в магнитном поле. Металлы предварительно нагреваются до высоких температур, например, перед прессованием и ковкой.Это называется индукционной ковкой, и для нагрева используется индукционный нагреватель.
В промышленных процессах, требующих от производителей изменения металлов, в основном используется индукционный нагрев. Металлы, будучи хорошими проводниками, легко становятся мягкими или твердыми, а также связываются с другими металлами посредством индукционного нагрева.
Для процесса индукционного нагрева материал можно размещать подальше от источника питания. Материал также можно погружать в жидкости, газы или хранить в вакууме. Остаточные выбросы при горении отсутствуют, поэтому металлы нагреваются без пламени и дыма.Этот процесс обеспечивает улучшенную, регулируемую и стабильную скорость передачи тепла в систему с минимальными потерями тепла.
Индукционный нагрев полезен для всех тех процессов, где нужно избегать прямого пламени, добиваться быстрых результатов, высокого качества и долговечности.
Компоненты индукционного нагревателя
Типичный индукционный нагреватель состоит из:
- блок питания
- электромагнит
- электрический осциллятор
- индукционная рабочая катушка
Источник питания должен обеспечивать переменный ток на рабочую катушку.
Как работает индукционный нагреватель?
Нагреваемый материал находится внутри змеевика. Индукционная рабочая катушка имеет водяное охлаждение и не касается нагретого материала. Блок питания используется для преобразования постоянной мощности в переменный ток.
Электронный генератор посылает на электромагнит переменный ток высокой частоты. Катушка получает переменное магнитное поле. Это магнитное поле передается в материал или проводник, настроенный для нагрева.В проводнике возникает электрический ток, также известный как вихревой ток. Затем проводник нагревается за счет протекания и циркуляции вихревых токов через сопротивление материала. Это также известно как Джоулев нагрев. Ферромагнитные металлы, такие как железо, также могут нагреваться из-за потерь на магнитный гистерезис.
Image © 2018 EngineeringClicksНачальная частота высокого электрического тока может варьироваться в зависимости от многих факторов, таких как тип нагреваемого материала, уровень глубины нагрева, тип соединения между катушкой и проводником, а также размер объекта.
Материалами для обогрева могут быть металлы, полупроводники, а также непроводники. Стекло и пластик не являются проводниками. Для нагрева материала с низкой проводимостью или без проводимости; индукция сначала используется для нагрева другого проводника, такого как графит, который может передавать тепло непроводящему материалу.
Индукционный нагрев полезен для многих типов процессов. Его можно использовать там, где подходит очень низкая температура, а также для других процессов, где температура может достигать 3000 градусов по Цельсию.В зависимости от процесса и спецификаций процесс нагрева может занять много месяцев или всего долю секунды.
Факторы, влияющие на индукцию нагрева
Скорость нагрева металла в основном зависит от его удельного сопротивления. Если он имеет более высокое удельное сопротивление и низкое сопротивление, то при прохождении тока он выделяет больше тепла. Но из-за низкого удельного сопротивления металл выделяет меньше тепла. Поэтому черные металлы, имеющие более высокое удельное сопротивление, являются наиболее подходящими для индукционного нагрева.Индукционный нагреватель также может повышать температуру меди и алюминия, но медленнее.
Тепло, выделяемое в металле, также зависит от начального тока катушки, количества витков катушки, частоты источника питания, связи между катушкой и материалом и удельного электрического сопротивления материала.
Если система подключена и расположена правильно, индукция будет более плавной и управляемой. Во время и после процесса индукционный нагреватель не нагревается.
Приложения
Индукционный нагрев используется в домашнем хозяйстве для приготовления пищи на плитах. В промышленности существует множество применений индукции, например, в исследованиях и проектировании, сушке объектов, сварке деталей, методах усадки, ковке, плавлении, герметизации, а также пайке.
Можете ли вы придумать, помимо использования индукционного нагревателя, какие-либо другие способы преобразования электроэнергии в тепловую?
Индукционные нагреватели DynaVap: подробный обзор и сравнение
В течение довольно долгого времени сеансы с DynaVap VapCap были невозможны без зажигалки и баллончика с бутаном.Каждое занятие требовало твердой руки, живого пламени и некоторой ловкости, чтобы закрепить его. Индукционные нагреватели избавляются от этих требований и обеспечивают более безопасный и расслабляющий сеанс с постоянным нагревом и нулевым пламенем. Давайте углубимся и изучим ваши варианты.
Что такое индукционный нагреватель VapCap?
Индукционные нагреватели DynaVap постоянно и легко нагревают VapCaps без зажигалки, независимо от того, подключены ли они к сети или работают от батареи. Они заменяют двуручный подход привлекательным современным решением, исключающим все скручивание и шипение.Просто вставьте VapCap в камеру и дождитесь щелчка!
Портативный индукционный нагреватель OrionКак они работают?
Все индукционные нагреватели для DynaVap работают одинаково, за одним исключением. Включите главный выключатель, и нагреватель готов и ждет. Вставьте VapCap в камеру до щелчка и начинайте вейпинг! У обогревателей Apollo 2 и Rover есть небольшой переключатель в отверстии, на которое вы нажимаете стержнем, инициируя цикл нагрева. Однако Orion определяет присутствие VapCap и начинает нагреваться, как только вы вставляете VapCap, не нажимая на переключатель.Это похоже на волшебство! Ни один из этих обогревателей не включится, пока не будет вставлено что-нибудь металлическое. Ластик для карандашей или другой материал не подойдет.
Индукционный нагреватель Apollo 2 Rover с DynaVap 2020 MЗачем нужен один?
Одним словом, легкость и последовательность. Искусство владения фонариком обычно требует обучения, прежде чем вы будете производить удары, которые вам нужны, с помощью VapCap. Какую часть шапки вы нагреваете? Как повернуть шток? Насколько близко вы подходите к пламени? Возьмите индукционный нагреватель, и вам никогда не придется задавать эти вопросы.Они просты, надежны и обеспечивают максимально постоянный обогрев. Существует не так много причин не использовать его с DynaVap M.
.Аполлон 2
Индукционный обогреватель Apollo 2 — это обогреватель начального уровня, который идеально подходит для домашнего использования. Этот обогреватель поставляется с громоздким блоком питания, поэтому он, вероятно, будет проводить большую часть своего времени на вашем столе или тумбочке. Он демонстрирует этикетку Dynatec и оснащен небольшим магнитом сверху, чтобы удерживать вашу кепку.Подключите его и нажмите тумблер на задней панели, чтобы включить его. Нагревательный туннель станет зеленым, и он будет готов к работе. Вставляйте VapCap, пока цвет индикатора не изменится с зеленого на красный, дождитесь щелчка, а затем нажмите его.
Индукционный нагреватель Apollo 2 первого поколения с космической крышкой.Для нашего обзора мы прогнали Apollo 2 через несколько VapCap, и в среднем у него было от семи до девяти секунд на нажатие. Цикл нагрева у этого нагревателя намеренно ниже, чем у Orion.Если вам нравятся более горячие сеансы, вам нужно оставить VapCap в камере через секунду или две после щелчка. Обратной стороной является больше работы над более горячими хитами. Плюс — большая гибкость и контроль, особенно для любителей вкусов.
Аполлон 2 Ровер
Apollo 2 Rover является продолжением своего предшественника с обновленным дизайном крышки и встроенным аккумулятором. Вы заметите, что оригинальные Apollo 2 и Rover имеют одинаковый размер и имеют одинаковый магнитный держатель и одинаковое расположение камеры.Поднимите их обоих, и вы сразу заметите значительную разницу в весе аккумуляторной батареи Rover. Отключитесь от стены и наслаждайтесь постоянным обогревом, где бы вы ни находились! Rover предоставляет своим пользователям такую же мощь, как Apollo 2, но с портативностью и более низкопрофильной вилкой питания.
У Rover такой же тепловой профиль, как у Apollo 2, и он также щелкает за семь-девять секунд. Индикатор камеры начнет светиться ярко-зеленым при полной зарядке и постепенно погаснет до желтого цвета по мере разряда батареи.Dynavap заявляет о 100+ циклах нагрева на одной зарядке, а в нашем тестировании мы получили почти 150! Можно с уверенностью сказать, что это может привести в движение вечеринку с задней дверью.
Орион
Индукционный нагреватель Orion отличается привлекательным компактным дизайном и обновленными функциями. Он размером с Crafty + и весит не больше, чем оригинальный Apollo 2. Он имеет шикарную черную отделку с охлаждающим магнитом сверху и этикеткой Dynatec по бокам. Быстрая зарядка через USB-C с легким доступом к источнику питания, где бы вы ни находились.
Трижды нажмите кнопку питания, и устройство загорится зеленым световым индикатором. Индукционный нагреватель Orion определяет ваш VapCap и включает нагреватель без необходимости использования кнопки. Вместо того, чтобы нажимать на DynaVap, просто вставьте его, и нагреватель включится мигающим оранжевым светом, пока вы ждете щелчка. Мигающий свет хорош. Это избавляет от перегрева наугад, так как вы можете считать количество миганий после щелчка, а не просто считать в уме.
У Orion было впечатляющее время нагрева от четырех до шести секунд, более горячая сессия, и он долгое время работал без подзарядки. Цветные индикаторы показывают текущий заряд: зеленый при полном заряде, синий при достижении 30% и красный при 0%. Мы пропустили Orion через перчатку VapCaps и смогли откачать в общей сложности 87 тепловых циклов, прежде чем он вышел из строя. Dynavap утверждает, что 60+ циклов от одной зарядки более консервативны.
Какой мне подходит?
👉 Индукционный нагреватель | Аполлон 2 | Аполлон 2 Ровер | Орион |
💰 Цена | 129 долларов США.99 | $ 174,99 | $ 199,99 |
📏Размер | 4,6 дюйма x 3,5 дюйма x 1,9 дюйма | 4,6 дюйма x 3,5 дюйма x 1,9 дюйма | 4,4 дюйма x 2,3 дюйма x 1,3 дюйма |
⚖️ Масса | 200 г | 250 г | 150 г |
✋ Это портативный? | № | Есть | Есть |
⏳ Среднее время нагрева | 7 секунд | 7 секунд | 4.5 секунд |
🔄 Нагрев за зарядку | НЕТ | 100+ | 60+ |
Если вы строго дома и / или имеете ограниченный бюджет, Apollo 2 — ваш лучший выбор. Он легкий, прочный и никогда не кончится. В остальном Rover работает точно так же с зарядным устройством, и его можно таскать по дому или на вечеринку.
Если вам нужен более портативный вариант, и цена вас не пугает, мы отдаем предпочтение Orion. Он достаточно мал, чтобы положить его в небольшую сумку или сумочку, не занимая слишком много места, и позволяет проводить сеансы всю ночь. Его небольшой рост не привлечет слишком много нежелательного внимания, если вы возьмете его с собой в общественные места, а зарядка через USB-C — наш любимый способ зарядки на ходу.
Только Orion действительно карманный.Кому это не подходит?
Трудно оспорить идею индукционного нагревателя, но, возможно, они подойдут не всем.Если вы придерживаетесь минималистского подхода или путешествуете налегке, вам будет сложно превзойти размер и цену карманного фонарика. Бутан и зажигалки дешевы. Orion — один из самых маленьких индукционных нагревателей, которые мы когда-либо видели, но он имеет свою цену и не останется незамеченным в вашем кармане или сумке.
Если идея бездумного подогрева VapCap вызывает у вас тошноту, держитесь подальше от этого! Известно, что сеансы с DynaVap и фонариком для некоторых пользователей носят личный характер. Осторожное вращение VapCap в сочетании с устойчивой рукой пламени приблизили пользователей к своим сеансам благодаря своему ритуальному характеру.
Несколько советов
Индукционные нагреватели DynaVap нагревают VapCaps без каких-либо догадок, но это не значит, что вы каждый раз приковываетесь к одному и тому же. Например, вы можете удалить VapCap примерно за секунду до щелчка, чтобы получить более аккуратные и более низкие значения температуры. Или попробуйте подержать его на секунду после щелчка, чтобы получить более толстые и мощные удары, но не заходите слишком далеко!
Этот метод наиболее прост с Orion, потому что вы можете использовать мигающий свет, чтобы правильно рассчитать время. Если вы хотите попробовать аромат, попробуйте сосчитать шесть или семь миганий, а затем нажмите.Для толстых ударов попробуйте два или три моргания после щелчка. Поиграйте с ним и посмотрите, что лучше всего подходит для вас!
Индикатор в форме колпачка слева от VapCap мигает. Используйте его для выдержки горячих или холодных ударов.Хотите концентрировать удары монстров с помощью Dynacoil? Оставьте колпачок в индукционном нагревателе до щелчка, пока нагреватель не отключится автоматически. Тогда займись этим. Однако не делайте этого с сухими травами!
Индукционные нагреватели предназначены не только для удобства. Это отличные инструменты для настоящих мастеров DynaVap, которые не обращают внимания на щелчки и вейпы.Не полагаясь ни на что, кроме инстинкта, как только они слышат щелчок, они начинают свои удары, а затем снова и снова нагреваются до щелчка остывания. Эти рыцари-джедаи из Dynaverse могут сбить полную чашу за один долгий сеанс толстыми ударами, танцующими на краю горения. Чтобы добиться этого, не сжигая травы, требуется много практики, но сеансы безумные!
👉 Купить индукционные нагреватели DynaVapиндукционных нагревателей | Компания Timken
Индукционные нагреватели Timken EcoPower ™ могут использоваться как для монтажа, так и для демонтажа компонентов с плотной посадкой и идеально подходят для установки подшипников с большим внутренним диаметром в ветряных турбинах.Эти устройства экономят время, нагревая детали быстрее, чем традиционные методы, и снижают потребление энергии за счет использования меньшего количества ампер для работы.
Каждый индукционный нагреватель Timken EcoPower ™ настраивается в соответствии с потребностями конкретного применения. Специалист Timken будет работать с вами напрямую, чтобы определить генератор подходящего размера и подходящий нагревательный инструмент. В зависимости от ваших потребностей мы предлагаем гибкие змеевики, фиксированные змеевики и нагревательные столы, которые наилучшим образом соответствуют спецификациям работы.
Атрибуты дизайна:
- Нагревать детали быстро, равномерно и контролируемым образом с помощью переменного тока средней частоты, который проходит через электромагнит
- Универсальность для различных деталей — нагрев внутреннего или внешнего кольца
- Простые в использовании элементы управления позволяют точно настроить температуру, время и мощность
- Непрерывная работа без нагрева катушек благодаря специальным змеевикам с воздушным охлаждением
- Гибкость, обеспечиваемая четырьмя различными вариантами эргономичных индукционных инструментов
- Может использоваться с включенным в комплект легким мобильным генератором или конфигурацией с несколькими генераторами для нагрева крупных компонентов
Приложения:
- Установка подшипников и деталей для ветроэнергетических установок
Детали:
Одной из причин выхода из строя подшипников в системах ветряных турбин является чрезмерный или недостаточный нагрев подшипника во время установки.Кроме того, установка больших ветроэнергетических подшипников часто сама по себе является трудоемким процессом из-за необходимости нагревать подшипник. Преодоление этих проблем стало проще благодаря индукционным нагревателям Timken EcoPower ™.
Низкочастотные индукционные нагреватели и индукционные нагреватели EcoPower ™: сравнение функций и режимов работы
Низкочастотный нагреватель | Нагреватель EcoPower ™ | |
Частота | 50 Гц | 10-25 кГц |
Ампер | 125 А | 63 А |
шт. Макс.вес | до 3000 кг | до 9000 кг |
Общая масса | Около 250 кг | 45 кг |
Охлаждение змеевика | Вода | Нет |
Темп. |