Расчет нагрузки на отопление укрупненный: расчет часовых и годовых показателей

Содержание

расчет часовых и годовых показателей

На чтение 8 мин Просмотров 2.2к. Опубликовано Обновлено

Как оптимизировать затраты на отопление? Эта задача решается только комплексным подходом, учитывающим все параметры системы, здания и климатические особенности региона. При этом важнейшей составляющей является тепловая нагрузка на отопление: расчет часовых и годовых показателей входят в систему вычислений КПД системы.

Зачем нужно знать этот параметр

Распределение тепловых потерь в доме

Что же представляет собой расчет тепловой нагрузки на отопление? Он определяет оптимальное количество тепловой энергии для каждого помещения и здания в целом. Переменными величинами являются мощность отопительного оборудования – котла, радиаторов и трубопроводов. Также учитываются тепловые потери дома.

В идеале тепловая мощность отопительной системы должна компенсировать все тепловые потери и при этом поддерживать комфортный уровень температуры. Поэтому прежде чем выполнить расчет годовой нагрузки на отопление, нужно определиться с основными факторами, влияющими на нее:

  • Характеристика конструктивных элементов дома. Наружные стены, окна, двери, вентиляционная система сказываются на уровне тепловых потерь;
  • Размеры дома. Логично предположить, что чем больше помещение – тем интенсивнее должна работать система отопления. Немаловажным фактором при этом является не только общий объем каждой комнаты, но и площадь наружных стен и оконных конструкций;
  • Климат в регионе. При относительно небольших снижениях температуры на улице нужно малое количество энергии для компенсации тепловых потерь. Т.е. максимальная часовая нагрузка на отопление напрямую зависит от степени снижения температуры в определенный период времени и среднегодовое значение для отопительного сезона.

Учитывая эти факторы составляется оптимальный тепловой режим работы системы отопления. Резюмируя все вышесказанное можно сказать, что определение тепловой нагрузки на отопление необходимо для уменьшения расхода энергоносителя и соблюдения оптимального уровня нагрева в помещениях дома.

Для расчета оптимальной нагрузки на отопление по укрупненным показателям нужно знать точный объем здания. Важно помнить, что эта методика разрабатывалась для больших сооружений, поэтому погрешность вычислений будет велика.

Выбор методики расчета

Санитарно-эпидемиологические требования для жилых домов

Перед тем, как выполнить расчет нагрузки на отопление по укрупненным показателям или с более высокой точностью необходимо узнать рекомендуемые температурные режимы для жилого здания.

Во время расчета характеристик отопления нужно руководствоваться нормами СанПиН 2.1.2.2645-10. Исходя из данных таблицы, в каждой комнате дома необходимо обеспечить оптимальный температурный режим работы отопления.

Методики, по которым осуществляется расчет часовой нагрузки на отопление, могут иметь различную степень точности. В некоторых случаях рекомендуется использовать достаточно сложные вычисления, в результате чего погрешность будет минимальна. Если же оптимизация затрат на энергоносители не является приоритетной задачей при проектировании отопления – можно применять менее точные схемы.

Во время расчета почасовой нагрузки на отопление нужно учитывать суточную смену уличной температуры. Для улучшения точности вычисления нужно знать технические характеристики здания.

Простые способы вычисления тепловой нагрузки

Любой расчет тепловой нагрузки нужен для оптимизации параметров системы отопления или улучшения теплоизоляционных характеристик дома. После его выполнения выбираются определенные способы регулирования тепловой нагрузки отопления. Рассмотрим нетрудоемкие методики вычисления этого параметра системы отопления.

Зависимость мощности отопления от площади

Таблица поправочных коэффициентов для различных климатических зон России

Для дома со стандартными размерами комнат, высотой потолков и хорошей теплоизоляцией можно применить известное соотношение площади помещения к требуемой тепловой мощности. В таком случае на 10 м² потребуется генерировать 1 кВт тепла. К полученному результату нужно применить поправочный коэффициент, зависящий от климатической зоны.

Предположим, что дом находится в Московской области. Его общая площадь составлять 150 м². В таком случае часовая тепловая нагрузка на отопление будет равна:

15*1=15 кВт/час

Главным недостатком этого метода является большая погрешность. Расчет не учитывает изменение погодных факторов, а также особенности здания – сопротивление теплопередачи стен, окон. Поэтому на практике его использовать не рекомендуется.

Укрупненный расчет тепловой нагрузки здания

Укрупненный расчет нагрузки на отопление характеризуется более точными результатами. Изначально он применялся для предварительного расчета этого параметра при невозможности определить точные характеристики здания. Общая формула для определения тепловой нагрузки на отопление представлена ниже:

Где — удельная тепловая характеристика строения. Значения нужно брать из соответствующей таблицы, а – поправочный коэффициент, о котором говорилось выше,  – наружный объем строения, м³, Tвн и Tнро – значения температуры внутри дома и на улице.

Таблица удельных тепловых характеристик зданий

Предположим, что необходимо рассчитать максимальную часовую нагрузку на отопление в доме с объемом по наружным стенам 480 м³ (площадь 160 м², двухэтажный дом). В этом случае тепловая характеристика будет равна 0,49 Вт/м³*С. Поправочный коэффициент а = 1 (для Московской области). Оптимальная температура внутри жилого помещения (Твн ) должна составлять +22°С. Температура на улице при этом будет равна -15°С. Воспользуемся формулой для расчета часовой нагрузки на отопление:

Q=0.49*1*480(22+15)= 9,408 кВт

По сравнению с предыдущим расчетом полученная величина меньше. Однако она учитывает важные факторы – температуру внутри помещения, на улице, общий объем здания. Подобные вычисления можно сделать для каждой комнаты. Методика расчета нагрузки на отопление по укрупненным показателям дает возможность определить оптимальную мощность для каждого радиатора в отдельно взятом помещении. Для более точного вычисления нужно знать среднетемпературные значения для конкретного региона.

Такой метод расчета можно применять для вычисления часовой тепловой нагрузки на отопление. Но полученные результаты не дадут оптимально точную величину тепловых потерь здания.

Точные расчеты тепловой нагрузки

Значение теплопроводности и сопротивление теплопередачи для строительных материалов

Но все же этот расчет оптимальной тепловой нагрузки на отопление не дает требуемую точность вычисления. Он не учитывает важнейший параметр – характеристики здания. Главной из них является сопротивление теплопередачи материал изготовления отдельных элементов дома – стен, окон, потолка и пола. Именно они определяют степень сохранения тепловой энергии, полученной от теплоносителя системы отопления.

Что же такое сопротивление теплопередачи (R)? Это величина, обратная теплопроводности (λ) – возможности структуры материала передавать тепловую энергию. Т.е. чем больше значение теплопроводности – тем выше тепловые потери. Для расчета годовой нагрузки на отопление воспользоваться этой величиной нельзя, так как она не учитывает толщину материала (d). Поэтому специалисты используют параметр сопротивление теплопередачи, который вычисляется по следующей формуле:

R=d/λ

Расчет по стенам и окнам

Сопротивление теплопередачи стен жилых зданий

Существуют нормированные значения сопротивления теплопередачи стен, которые напрямую зависят от региона, где расположен дом.

В отличие от укрупненного расчета нагрузки на отопление сначала нужно вычислить сопротивление теплопередачи для наружных стен, окон, пола первого этажа и чердака. Возьмем за основу следующие характеристики дома:

  • Площадь стен – 280 м². В нее включены окна – 40 м²;
  • Материал изготовления стен – полнотелый кирпич (λ=0.56). Толщина наружных стен – 0,36 м. Исходя из этого рассчитываем сопротивление телепередачи — R=0.36/0.56= 0,64 м²*С/Вт;
  • Для улучшения теплоизоляционных свойств был установлен наружный утеплитель – пенополистирол толщиной 100 мм. Для него λ=0,036. Соответственно R=0,1/0,036= 2,72 м²*С/Вт;
  • Общее значение R для наружных стен равно 0,64+2,72= 3,36 что является очень хорошим показателем теплоизоляции дома;
  • Сопротивление теплопередачи окон — 0,75 м²*С/Вт (двойной стеклопакет с заполнением аргоном).

Фактически тепловые потери через стены составят:

(1/3,36)*240+(1/0.75)*40= 124 Вт при разнице температуры в 1°С

Температурные показатели возьмем такие же, как и для укрупненного вычисления нагрузки на отопление +22°С в помещении и -15°С на улице. Дальнейший расчет необходимо делать по следующей формуле:

124*(22+15)= 4,96 кВт/час

Расчет по вентиляции

Затем необходимо вычислить потери через вентиляцию. Общий объем воздуха в здании составляет 480 м³. При этом его плотность примерно равна 1,24 кг/м³. Т.е. его масса равна 595 кг. В среднем за сутки (24 часа) происходит пятикратное обновление воздуха. В таком случае для вычисления максимальной часовой нагрузки для отопления нужно рассчитать тепловые потери на вентиляцию:

(480*40*5)/24= 4000 кДж или 1,11 кВт/час

Суммируя все полученные показатели можно найти общие тепловые потери дом:

4,96+1,11=6,07 кВт/час

Таким образом определяется точная максимальная тепловая нагрузка на отопление. Полученная величина напрямую зависит от температуры на улице. Поэтому для расчета годовой нагрузки на отопительную систему нужно учитывать изменение погодных условий. Если средняя температура в течение отопительного сезона составляет -7°С, то итоговая нагрузка на отопление будет равна:

(124*(22+7)+((480*(22+7)*5)/24))/3600)*24*150(дней отопительного сезона)=15843 кВт

Меняя температурные значения можно сделать точный расчет тепловой нагрузки для любой системы отопления.

К полученным результатам нужно прибавить значение тепловых потерь через крышу и пол. Это можно сделать поправочным коэффициентом 1,2 – 6,07*1,2=7,3 кВт/ч.

Полученная величина указывает на фактические затраты энергоносителя при работе системы. Существует несколько способов регулирования тепловой нагрузки отопления. Наиболее действенный из них – уменьшение температуры в комнатах, где нет постоянного присутствия жильцов. Это можно осуществить с помощью терморегуляторов и установленных датчиков температуры. Но при этом в здании должна быть установлена двухтрубная система отопления.

Для вычисления точного значения тепловых потерь можно воспользоваться специализированной программой Valtec. В видеоматериале показа пример работы с ней.

Расчет тепловой нагрузки на отопление дома

РАСЧЕТ ТЕПЛОВОЙ НАГРУЗКИ НА ОТОПЛЕНИЕ ДОМА ПО УКРУПНЕННЫМ ИЗМЕРИТЕЛЯМ

Расчет тепловой нагрузки на отопление дома произведен по удельной теплопотере, потребительский подход определения приведенных коэффициентов теплопередачи — вот главные вопросы, которые мы с вами рассмотрим в данном посте. Здравствуйте, дорогие друзья!  Мы произведем с вами расчет тепловой нагрузки на отопление дома (Qо.р) различными способами по укрупненным измерителям. Итак, что нам известно на данный момент:1. Расчетная зимняя температура наружного воздуха для проектирования отопления tн = -40 оС. 2. Расчетная (усредненная) температура воздуха внутри отапливаемого дома tв = +20 оС. 3. Объем дома по наружному обмеру V = 490,8 м3. 4. Отапливаемая площадь дома Sот = 151,7 м2 (жилая – Sж = 73,5 м2). 5. Градусо сутки отопительного периода ГСОП = 6739,2 оС*сут.

Расчет тепловой нагрузки на отопление дома

1. Расчет тепловой нагрузки на отопление дома по отапливаемой площади.

Здесь все просто – принимается, что теплопотери составляют 1 кВт * час на 10 м2 отапливаемой площади дома, при высоте потолка до 2,5м. Для нашего дома расчетная тепловая нагрузка на отопление будет равна Qо.р = Sот * wуд = 151,7 * 0,1 = 15,17 кВт. Определение тепловой нагрузки данным способом не отличается особой точностью. Спрашивается, откуда же взялось данное соотношение и насколько оно соответствует нашим условиям. Вот здесь то и надо сделать оговорочку, что данное соотношение справедливо для региона Москвы (tн = до -30 оС) и дом должен быть нормально утепленным. Для других регионов России удельные теплопотери wуд , кВт/м2 приведены в Таблице 1.

Таблица 1

Регионwуд , кВт/м2
Москва, Московская область, Центральные области Европейской части России (включая Ленинградскую на севере и Курскую на юге)0,10-0,15
Северные регионы (Карелия, Архангельская область, республика Коми и др.)0,15-0,2
Южные регионы (Воронежская, Волгоградская области, Краснодарский край и др.)0,07-0,09

Что еще надо учесть при выборе коэффициента удельных теплопотерь? Cолидные проектные организации требуют от «Заказчика» до 20-ти дополнительных данных и это оправдано, так как правильный расчет потерь тепла домом — один из основных факторов, определяющий, насколько комфортно будет находиться в помещении. Ниже приведены характерные требования с разъяснениями:

— суровость климатической полосы – чем ниже температура «за бортом», тем сильнее придется топить. Для сравнения: при -10 градусах – 10 кВт, а при -30 градусах – 15 кВт;
— состояние окон – чем герметичней и больше количество стекол, тем потери уменьшаются. К примеру (при -10 градусах): стандартная двойная рама – 10 кВт, двойной стеклопакет – 8 кВт, тройной стеклопакет – 7 кВт;
— отношения площадей окон и пола – чем больше окна, тем больше потерь. При 20 % — 9 кВт, при 30 % — 11 кВт, а при 50 % — 14 кВт;
— толщина стен или теплоизоляция напрямую влияют на потери тепла. Так при хорошей теплоизоляции и достаточной толщине стен (3 кирпича – 800 мм) требуется 10 кВт, при 150 мм утеплителя или толщине стены в 2 кирпича – 12 кВт, а при плохой изоляции или толщине в 1 кирпич – 15 кВт;
— число наружных стен – напрямую связанно со сквозняками и многосторонним воздействием промерзания. Если помещение имеет одну внешнюю стену, то требуется 9 кВт, а если — 4, то – 12 кВт;
— высота потолка хоть и не так значительно, но все же влияет на увеличение потребляемой мощности. При стандартной высоте в 2,5 м требуется 9,3 кВт, а при 5 м – 12 кВт.
Данное пояснение показывает, что грубый расчет требуемой мощности 1 кВт котла на 10 м2 отапливаемой площади, имеет обоснование.

2. Расчет тепловой нагрузки на отопление дома по укрупненным показателям согласно § 2.4 СНиП Н-36-73. Чтобы определить тепловую  нагрузку на отопление данным способом, нам надо знать жилую площадь дома. Если она не известна, то принимается в размере 50% от общей площади дома. Зная расчетную температуру наружного воздуха для проектирования отопления, по таблице 2 определяем укрупненный показатель максимально-часового расхода тепла на 1 м2 жилой площади.

Таблица 2

Расчетная температура наружного воздуха для воздуха для проектирования отопления, оС0-10-20-30-40
Укрупненный показатель максимально-часового расхода тепла на отопление жилых зданий (на 1 м2 жилой площади), кДж/(ч*м2)335461545628670

Для нашего дома расчетная тепловая нагрузка на отопление будет равна Qо.р = Sж * wуд.ж = 73,5 * 670 = 49245 кДж/ч или 49245/4,19=11752 ккал/ч или 11752/860=13,67 кВт

3. Расчет тепловой нагрузки на отопление дома по удельной отопительной характеристике здания. Определять тепловую нагрузку  по данному способу будем по  удельной тепловой характеристике (удельная теплопотеря тепла) и объема дома по формуле:

Qо.р = α * qо * V * (tв – tн ) * 10-3 , кВт

Qо.р – расчетная тепловая нагрузка на отопление, кВт;
α — поправочный коэффициент, учитывающий климатические условия района и применяемый в случаях, когда расчетная температура наружного воздуха tн отличается от -30 оС, принимается по таблице 3;

qо – удельная отопительная характеристика здания, Вт/м3 * оС;
V – объем отапливаемой части здания по наружному обмеру, м3;
tв – расчетная температура воздуха внутри отапливаемого здания, оС;
tн – расчетная температура наружного воздуха для проектирования отопления, оС.
В данной формуле все величины, кроме удельной отопительной характеристики дома qо, нам известны. Последняя является теплотехнической оценкой строительной части здания и показывает тепловой поток, необходимый для повышения температуры 1 м3 объема постройки на 1 °С. Численное нормативное значение данной характеристики, для жилых домом и гостиниц, приведено в таблице 4.

Поправочный коэффициент α

Таблица 3

-10-15-20-25-30-35-40-45-50
α1,451,291,171,0810,950,90,850,82

Удельная отопительная характеристика здания, Вт/м3 * оС

Таблица 4

Тип зданияСтроительный объем здания V,тыс.м3Удельная отопительная характеристика на отопление qо, Вт/м3 * оС
Жилые дома, гостиницы, общежитиядо 3
до 5
до 10
0,49
0,44
0,39

Итак, Qо.р =  α* qо * V * (tв – tн ) * 10-3 = 0,9 * 0,49 * 490,8 * (20 – (-40) ) * 10-3 = 12,99 кВт. На стадии технико-экономического обоснования строительства (проекта) удельная отопительная характеристика должна являться одним из контрольных ориентиров. Все дело в том, что в справочной литературе, численное значение ее разное, поскольку приведена она для разных временных периодов, до 1958года, после 1958года, после 1975года и т.д. Кроме того, хоть и не значительно, но менялся также и климат на нашей планете. А нам бы хотелось знать значение удельной отопительной характеристики здания на сегодняшний день. Давайте попробуем определить ее самостоятельно.

ПОРЯДОК ОПРЕДЕЛЕНИЯ УДЕЛЬНОЙ ОТОПИТЕЛЬНОЙ ХАРАКТЕРИСТИКИ

1. Предписывающий подход к выбору сопротивления теплопередаче наружных ограждений. В этом случае расход тепловой энергии не контролируется, а значения сопротивлений теплопередаче отдельных элементов здания должно быть не менее нормируемых значений, смотри таблицу 5. Здесь уместно привести формулу Ермолаева для расчета удельной отопительной характеристики здания. Вот эта формула

qо = [Р/S * ((kс + φ * (kок — kс)) + 1/Н * (kпт + kпл)], Вт/м3 * оС

φ – коэффициент остекления наружных стен, принимаем φ = 0,25. Данный коэффициент принимается в размере 25% от площади пола; Р – периметр дома, Р = 40м; S – площадь дома (10 *10), S = 100 м2; Н – высота здания, Н = 5м; kс, kок, kпт, kпл – приведенные коэффициенты теплопередачи соответственно наружной стены, световых проемов (окон), кровли (потолка), перекрытия над подвалом (пола). Определение приведенных коэффициентов теплопередачи, как при предписывающем подходе, так и при потребительском подходе, смотри таблицы 5,6,7,8. Ну что ж, со строительными размерами дома мы определились, а как быть с ограждающими конструкциями дома? Из каких материалов должны быть изготовлены стены, потолок пол, окна и двери? Дорогие друзья, вы должны четко понять, что на данном этапе нас не должен волновать выбор материала ограждающих конструкций. Спрашивается, почему? Да потому, что в выше приведенную формулу мы поставим значения нормируемых приведенных коэффициентов теплопередачи ограждающих конструкций. Так вот, независимо из какого материала будут выполнены эти конструкции и какова их толщина, сопротивление должно быть определенным. (Выписка из СНиП II-3-79* Строительная теплотехника).

Нормируемое сопротивление теплопередаче ограждающих конструкций
(предписывающий подход)

Таблица 5

ЗданияГСОП, оС*сутСопротивление теплопередаче ограждающих конструкций Rо, м2 * оС/Вт (не менее)
СтенПоловПотолковОкон
Жилые2000
4000
6000
8000
10000
12000
6739,2
2,1
2,8
3,5
4,2
4,9
5,6
3,76
3,2
4,2
5,2
6,2
7,2
8,2
5,57
2,8
3,7
4,6
5,5
6,4
7,3
4,93
   0,3
0,45
0,6
0,7
0,75
0,8
0,47

Определение приведенных коэффициентов теплопередачи ограждающих конструкций
(предписывающий подход)

Таблица 6

ЗданияГСОП, оС*сутПриведенные коэффициенты теплопередачи ограждающих конструкций kпр = 1/ Rо, Вт/ м2 * оС (не менее)
СтенПоловПотолковОкон
Жилые6739,20,2660,180,2032,13

И вот только теперь, зная ГСОП = 6739,2 оС*сут, методом интерполяции мы определяем нормируемые сопротивления теплопередаче ограждающих конструкций, смотри таблицу 5. Приведенные коэффициенты теплопередачи будут равны соответственно: kпр = 1/ Rо и приведены в таблице 6. Удельная отопительная характеристика дома qо = = [Р/S * ((kс + φ * (kок — kс)) + 1/Н * (kпт + kпл)] = [40/100 * ((0,266 + 0,25 * (2,13 – 0,266)) + 1/5 * (0,203 + 0,18)] = 0,37 Вт/м3 * оС
Расчетная тепловая нагрузка на отопление при предписывающем подходе будет равна Qо.р =  α* qо * V * (tв – tн ) * 10-3 = 0,9 * 0,37 * 490,8 * (20 – (-40) ) * 10-3 = 9,81 кВт

2. Потребительский подход к выбору сопротивления теплопередаче наружных ограждений. В данном случае, сопротивление теплопередаче наружных ограждений можно снижать в сравнении с величинами указанными в таблице 5, пока расчетный удельный расход тепловой энергии на отопление дома не превысит нормируемый. Сопротивление теплопередаче отдельных элементов ограждения не должно быть ниже минимальных величин: для стен жилого дома Rс = 0,63Rо, для пола и потолка Rпл = 0,8Rо, Rпт = 0,8Rо, для окон Rок = 0,95Rо. Результаты расчета приведены в таблице 7. В таблице 8 приведены приведенные коэффициенты теплопередачи при потребительском подходе. Что касается удельного расхода тепловой энергии за отопительный период, то для нашего дома эта величина равна 120 кДж/ м2 * оС* сут. И определяется она по СНиП 23-02-2003. Мы же определим данную величину когда будем производить расчет тепловой нагрузки на отопление более подробным способом – с учетом конкретных материалов ограждений и их теплофизических свойств (п. 5 нашего плана по расчету отопления частного дома).

Нормируемое сопротивление теплопередаче ограждающих конструкций
(потребительский подход)

Таблица 7

ЗданияГСОП, оС*сутСопротивление теплопередаче ограждающих конструкций Rо, м2 * оС/Вт (не менее)
СтенПоловПотолковОкон
Жилые6739,2 2,13,76*0,63 =2,375,57*0,8 = 4,46 4,93* 0,8 = 3,94  0,47* 0,95 = 0,446

Определение приведенных коэффициентов теплопередачи ограждающих конструкций
(потребительский подход)

Таблица 8

ЗданияГСОП, оС*сутПриведенные коэффициенты теплопередачи ограждающих конструкций kпр = 1/ Rо, Вт/ м2 * оС (не менее)
СтенПоловПотолковОкон
Жилые6739,20,4220,2240,2542,24

Удельная отопительная характеристика дома qо = = [Р/S * ((kс + φ * (kок — kс)) + 1/Н * (kпт + kпл)] = [40/100 * ((0,422 + 0,25 * (2,24 – 0,422)) + 1/5 * (0,254 + 0,224)] = 0,447 Вт/м3 * оС. Расчетная тепловая нагрузка на отопление при потребительском подходе будет равна Qо.р = α * qо * V * (tв – tн ) * 10-3 = 0,9 * 0,447 * 490,8 * (20 – (-40) ) * 10-3 = 11,85 кВт

Расчет тепловой нагрузки на отопление дома

Основные выводы:
1. Расчетная тепловая нагрузка на отопление по отапливаемой площади дома, Qо.р = 15,17 кВт.
2. Расчетная тепловая нагрузка на отопление по укрупненным показателям согласно § 2.4 СНиП Н-36-73. отапливаемой площади дома, Qо.р = 13,67 кВт.
3. Расчетная тепловая нагрузка на отопление дома по нормативной удельной отопительной характеристике здания, Qо.р = 12,99 кВт.
4. Расчетная тепловая нагрузка на отопление дома по предписывающему подходу к выбору сопротивления теплопередаче наружных ограждений, Qо.р = 9,81 кВт.
5. Расчетная тепловая нагрузка на отопление дома по потребительскому подходу к выбору сопротивления теплопередаче наружных ограждений, Qо.р = 11,85 кВт.
Как видите, дорогие друзья, расчетная тепловая нагрузки на отопление дома при разном подходе к ее определению, разнится довольно таки значительно – от 9,81 кВт до 15,17 кВт. Какую же выбрать и не ошибиться? На этот вопрос мы и постараемся ответить в следующих постах. Сегодня мы с вами выполнили 2-ой пункт нашего плана по расчету системы отопления дома. Кто еще не успел присоединяйтесь!

С уважением, Григорий Володин

Методика расчета тепловой нагрузки по укрупненным показателям

Автор На чтение 17 мин. Опубликовано

Мы работаем с 9:00 до 20:00 , ежедневно

Основные услуги:
Оборудование:
Выполненные проекты
Тепловая нагрузка
Поставка аварийных душевых кабин
Энергетическое обследование школы №277
Энергетический паспорт детского сада №693
Согласование и пересмотр тепловых нагрузок в теплоснабжающей организации

Расчет тепловых нагрузок по укрупненным показателям

Специалисты нашей компании осуществляют расчет тепловой нагрузки и ее согласование с теплоснабжающей организацией для заключения договора на теплоснабжение.

Методика определения потребности в топливе, электрической энергии и воде при производстве и передаче тепловой энергии и теплоносителей в системах коммунального теплоснабжения» разработана для использования при прогнозировании и планировании потребности в топливе, электрической энергии и воде теплоснабжающими организациями жилищно-коммунального комплекса, органами управления жилищно-коммунальным хозяйством.

Методика используется также для обоснования потребности теплоснабжающих организаций в финансовых средствах при рассмотрении тарифов (цен) на тепловую энергию, ее передачу и распределение.

Использование Методики позволяет оценивать технико-экономическую эффективность при планировании энергосберегающих мероприятий, внедрении энергоэффективных технологических процессов и оборудования.

Расчетную часовую тепловую нагрузку отопления отдельного здания можно определить по укрупненным показателям:

где a – поправочный коэффициент, учитывающий отличие расчетной температуры наружного воздуха для проектирования отопления to от to = -30 °С, при которой определено соответствующее значение qo; принимается по таблице;

V – объем здания по наружному обмеру, м 3 ;

qo – удельная отопительная характеристика здания при to = -30 °С, ккал/м 3 ч°С; принимается по таблицам;

Kи.р – расчетный коэффициент инфильтрации, обусловленной тепловым и ветровым напором, т.е. соотношение тепловых потерь зданием с инфильтрацией и теплопередачей через наружные ограждения при температуре наружного воздуха, расчетной для проектирования отопления.

Значение V, м 3 , следует принимать по информации типового или индивидуального проектов здания или бюро технической инвентаризации (БТИ).

Если здание имеет чердачное перекрытие, значение V, м 3 , определяется как произведение площади горизонтального сечения здания на уровне его I этажа (над цокольным этажом) на свободную высоту здания – от уровня чистого пола I этажа до верхней плоскости теплоизоляционного слоя чердачного перекрытия, при крышах, совмещенных с чердачными перекрытиями, – до средней отметки верха крыши. Выступающие за поверхности стен архитектурные детали и ниши в стенах здания, а также неотапливаемые лоджии при определении расчетной часовой тепловой нагрузки отопления не учитываются.

При наличии в здании отапливаемого подвала к полученному объему отапливаемого здания необходимо добавить 40% объема этого подвала. Строительный объем подземной части здания (подвал, цокольный этаж) определяется как произведение площади горизонтального сечения здания на уровне его I этажа на высоту подвала (цокольного этажа).

Расчетный коэффициент инфильтрации Kи.р определяется по формуле:

где g – ускорение свободного падения, м/с 2 ;

L – свободная высота здания, м;

w – расчетная для данной местности скорость ветра в отопительный период, м/с; принимается по СНиП 23-01-99

В местностях, где расчетное значение температуры наружного воздуха для проектирования отопления to £ -40 °С, для зданий с неотапливаемыми подвалами следует учитывать добавочные тепловые потери через необогреваемые полы первого этажа в размере 5%

Для зданий, законченных строительством, расчетную часовую тепловую нагрузку отопления следует увеличивать на первый отопительный период для каменных зданий, построенных:

– в мае-июне – на 12%;

– в июле-августе – на 20%;

– в сентябре – на 25%;

– в отопительном периоде – на 30%.

Удельную отопительную характеристику здания qo, ккал/м 3 ч ° можно рассчитать по формуле:

Средняя часовая тепловая нагрузка горячего водоснабжения потребителя тепловой энергии Qhm, Гкал/ч, в отопительный период определяется по формуле:

где a – норма затрат воды на горячее водоснабжение абонента, л/ед. измерения в сутки; должна быть утверждена местным органом самоуправления; при отсутствии утвержденных норм принимается по таблице Приложения 3 (обязательного) СНиП 2.04.01-85;

N – количество единиц измерения, отнесенное к суткам, – количество жителей, учащихся в учебных заведениях и т.д.;

tc – температура водопроводной воды в отопительный период, °С; при отсутствии достоверной информации принимается tc = 5 °С;

T – продолжительность функционирования системы горячего водоснабжения абонента в сутки, ч;

Qт.п – тепловые потери в местной системе горячего водоснабжения, в подающем и циркуляционном трубопроводах наружной сети горячего водоснабжения, Гкал/ч.

Среднюю часовую тепловую нагрузку горячего водоснабжения в неотопительный период, Гкал, можно определить из выражения:

где Qhm – средняя часовая тепловая нагрузка горячего водоснабжения в отопительный период, Гкал/ч;

b – коэффициент, учитывающий снижение средней часовой нагрузки горячего водоснабжения в неотопительный период по сравнению с нагрузкой в отопительный период; если значение b не утверждено органом местного самоуправления, b принимается равным 0,8 для жилищно-коммунального сектора городов средней полосы России, 1,2-1,5 – для курортных, южных городов и населенных пунктов, для предприятий – 1,0;

ths, th – температура горячей воды в неотопительный и отопительный период, °С;

tcs, tc – температура водопроводной воды в неотопительный и отопительный период, °С; при отсутствии достоверных сведений принимается tcs = 15 °С, tc = 5 °С.

При проектировании систем обогрева всех типов строений нужно провести правильные вычисления, а затем разработать грамотную схему отопительного контура. На этом этапе особое внимание следует уделить расчету тепловой нагрузки на отопление. Для решения поставленной задачи важно использовать комплексный подход и учесть все факторы, влияющие на работу системы.

С помощью показателя тепловой нагрузки можно узнать количество теплоэнергии, необходимой для обогрева конкретного помещения, а также здания в целом. Основной переменной здесь является мощность всего отопительного оборудования, которое планируется использовать в системе. Кроме этого, требуется учитывать потери тепла домом.

Идеальной представляется ситуация, в которой мощность отопительного контура позволяет не только устранить все потери теплоэнергии здания, но и обеспечить комфортные условия проживания. Чтобы правильно рассчитать удельную тепловую нагрузку, требуется учесть все факторы, оказывающие влияние на этот параметр:

  • Характеристики каждого элемента конструкции строения. Система вентиляции существенно влияет на потери теплоэнергии.
  • Размеры здания. Необходимо учитывать как объем всех помещений, так и площадь окон конструкций и наружных стен.
  • Климатическая зона. Показатель максимальной часовой нагрузки зависит от температурных колебаний окружающего воздуха.

Оптимальный режим работы системы обогрева может быть составлен только с учетом этих факторов. Единицей измерения показателя может быть Гкал/час или кВт/час.

Перед началом проведения расчета нагрузки на отопление по укрупненным показателям нужно определиться с рекомендуемыми температурными режимами для жилого строения. Для этого придется обратиться к нормам СанПиН 2.1.2.2645−10. Исходя из данных, указанных в этом нормативном документе, необходимо обеспечить оптимальные температурные режимы работы системы обогрева для каждого помещения.

Используемые сегодня способы выполнения расчетов часовой нагрузки на отопительную систему позволяют получать результаты различной степени точности. В некоторых ситуациях требуется провести сложные вычисления, чтобы минимизировать погрешность.

Если же при проектировании системы отопления оптимизация расходов на энергоноситель не является приоритетной задачей, допускается использование менее точных методик.

Любая методика расчета тепловой нагрузки позволяет подобрать оптимальные параметры системы обогрева. Также этот показатель помогает определиться с необходимостью проведения работ по улучшению теплоизоляции строения. Сегодня применяются две довольно простые методики расчета тепловой нагрузки.

Если в строении все помещения имеют стандартные размеры и обладают хорошей теплоизоляцией, можно воспользоваться методом расчета необходимой мощности отопительного оборудования в зависимости от площади. В этом случае на каждые 10 м 2 помещения должен производиться 1 кВт тепловой энергии. Затем полученный результат необходимо умножить на поправочный коэффициент климатической зоны.

Это самый простой способ расчета, но он имеет один серьезный недостаток — погрешность очень высока. Во время проведения вычислений учитывается лишь климатический регион. Однако на эффективность работы системы обогрева влияет много факторов. Таким образом, использовать эту методику на практике не рекомендуется.

Применяя методику расчета тепла по укрупненным показателям, погрешность вычислений окажется меньшей. Этот способ сначала часто применялся для определения теплонагрузки в ситуации, когда точные параметры строения были неизвестны. Для определения параметра применяется расчетная формула:

Qот = q0*a*Vн*(tвн — tнро),

где q0 — удельная тепловая характеристика строения;

a — поправочный коэффициент;

Vн — наружный объем строения;

tвн, tнро — значения температуры внутри дома и на улице.

В качестве примера расчета тепловых нагрузок по укрупненным показателям можно выполнить вычисления максимального показателя для отопительной системы здания по наружным стенам 490 м 2 . Строение двухэтажное с общей площадью в 170 м 2 расположено в Санкт-Петербурге.

Сначала необходимо с помощью нормативного документа установить все нужные для расчета вводные данные:

  • Тепловая характеристика здания — 0,49 Вт/м³*С.
  • Уточняющий коэффициент — 1.
  • Оптимальный температурный показатель внутри здания — 22 градуса.

Предположив, что минимальная температура в зимний период составит -15 градусов, можно все известные величины подставить в формулу — Q =0.49*1*490 (22+15)= 8,883 кВт. Используя самую простую методику расчета базового показателя тепловой нагрузки, результат оказался бы более высоким — Q =17*1=17 кВт/час. При этом укрупненный метод расчета показателя нагрузки учитывает значительно больше факторов:

  • Оптимальные температурные параметры в помещениях.
  • Общую площадь строения.
  • Температуру воздуха на улице.

Также эта методика позволяет с минимальной погрешностью рассчитать мощность каждого радиатора, установленного в отдельно взятом помещении. Единственным ее недостатком является отсутствие возможности рассчитать теплопотери здания.

Так как даже при укрупненном расчете погрешность оказывается довольно высокой, приходится использовать более сложный метод определения параметра нагрузки на отопительную систему. Чтобы результаты оказались максимально точными, необходимо учитывать характеристики дома. Среди них важнейшей является сопротивление теплопередачи ® материалов, использовавшихся для изготовления каждого элемента здания — пол, стены, а также потолок.

Эта величина находится в обратной зависимости с теплопроводностью (λ), показывающей способность материалов переносить теплоэнергию. Вполне очевидно, что чем выше теплопроводность, тем активнее дом будет терять теплоэнергию. Так как эта толщина материалов (d) в теплопроводности не учитывается, то предварительно нужно вычислить сопротивление теплопередачи, воспользовавшись простой формулой — R=d/λ.

Рассматриваемая методика состоит из двух этапов. Сначала рассчитываются теплопотери по оконным проемам и наружным стенам, а затем — по вентиляции. В качестве примера можно взять следующие характеристики строения:

  • Площадь и толщина стен — 290 м² и 0,4 м.
  • В строении находятся окна (двойной стеклопакет с аргоном) — 45 м² (R =0,76 м²*С/Вт).
  • Стены изготовлены из полнотелого кирпича — λ=0,56.
  • Здание было утеплено пенополистиролом — d =110 мм, λ=0,036.

Исходя из вводных данных, можно определить показатель сопротивления телепередачи стен — R=0.4/0.56= 0,71 м²*С/Вт. Затем определяется аналогичный показатель утеплителя — R=0,11/0,036= 3,05 м²*С/Вт. Эти данные позволяют определить следующий показатель — R общ =0,71+3,05= 3,76 м²*С/Вт.

Фактические теплопотери стен составят — (1/3,76)*245+(1/0.76)*45= 125,15 Вт. Параметры температур остались без изменений в сравнении с укрупненным расчетом. Очередные вычисления проводятся в соответствии с формулой — 125,15*(22+15)= 4,63 кВт/час.

На втором этапе рассчитываются теплопотери вентиляционной системы. Известно, что объем дома равен 490 м³, а плотность воздуха составляет 1,24 кг/м³. Это позволяет узнать его массу — 608 кг. На протяжении суток в помещении воздух обновляется в среднем 5 раз. После этого можно выполнить расчет теплопотерь вентиляционной системы — (490*45*5)/24= 4593 кДж, что соответствует 1,27 кВт/час. Остается определить общие тепловые потери строения, сложив имеющиеся результаты, — 4,63+1,27=5,9 кВт/час.

Результат будет максимально точным, если учитывать потери через пол и крышу. Сложные вычисления здесь проводить необязательно, допускается использование уточняющего коэффициента. Процесс расчетов теплонагрузки на систему обогрева отличается высокой сложностью. Однако его можно упростить с помощью программы VALTEC.

Как оптимизировать затраты на отопление? Эта задача решается только комплексным подходом, учитывающим все параметры системы, здания и климатические особенности региона. При этом важнейшей составляющей является тепловая нагрузка на отопление: расчет часовых и годовых показателей входят в систему вычислений КПД системы.

Зачем нужно знать этот параметр

Что же представляет собой расчет тепловой нагрузки на отопление? Он определяет оптимальное количество тепловой энергии для каждого помещения и здания в целом. Переменными величинами являются мощность отопительного оборудования – котла, радиаторов и трубопроводов. Также учитываются тепловые потери дома.

В идеале тепловая мощность отопительной системы должна компенсировать все тепловые потери и при этом поддерживать комфортный уровень температуры. Поэтому прежде чем выполнить расчет годовой нагрузки на отопление, нужно определиться с основными факторами, влияющими на нее:

  • Характеристика конструктивных элементов дома. Наружные стены, окна, двери, вентиляционная система сказываются на уровне тепловых потерь;
  • Размеры дома. Логично предположить, что чем больше помещение – тем интенсивнее должна работать система отопления. Немаловажным фактором при этом является не только общий объем каждой комнаты, но и площадь наружных стен и оконных конструкций;
  • Климат в регионе. При относительно небольших снижениях температуры на улице нужно малое количество энергии для компенсации тепловых потерь. Т.е. максимальная часовая нагрузка на отопление напрямую зависит от степени снижения температуры в определенный период времени и среднегодовое значение для отопительного сезона.

Учитывая эти факторы составляется оптимальный тепловой режим работы системы отопления. Резюмируя все вышесказанное можно сказать, что определение тепловой нагрузки на отопление необходимо для уменьшения расхода энергоносителя и соблюдения оптимального уровня нагрева в помещениях дома.

Для расчета оптимальной нагрузки на отопление по укрупненным показателям нужно знать точный объем здания. Важно помнить, что эта методика разрабатывалась для больших сооружений, поэтому погрешность вычислений будет велика.

Выбор методики расчета

Перед тем, как выполнить расчет нагрузки на отопление по укрупненным показателям или с более высокой точностью необходимо узнать рекомендуемые температурные режимы для жилого здания.

Во время расчета характеристик отопления нужно руководствоваться нормами СанПиН 2.1.2.2645-10. Исходя из данных таблицы, в каждой комнате дома необходимо обеспечить оптимальный температурный режим работы отопления.

Методики, по которым осуществляется расчет часовой нагрузки на отопление, могут иметь различную степень точности. В некоторых случаях рекомендуется использовать достаточно сложные вычисления, в результате чего погрешность будет минимальна. Если же оптимизация затрат на энергоносители не является приоритетной задачей при проектировании отопления – можно применять менее точные схемы.

Во время расчета почасовой нагрузки на отопление нужно учитывать суточную смену уличной температуры. Для улучшения точности вычисления нужно знать технические характеристики здания.

Простые способы вычисления тепловой нагрузки

Любой расчет тепловой нагрузки нужен для оптимизации параметров системы отопления или улучшения теплоизоляционных характеристик дома. После его выполнения выбираются определенные способы регулирования тепловой нагрузки отопления. Рассмотрим нетрудоемкие методики вычисления этого параметра системы отопления.

Зависимость мощности отопления от площади

Для дома со стандартными размерами комнат, высотой потолков и хорошей теплоизоляцией можно применить известное соотношение площади помещения к требуемой тепловой мощности. В таком случае на 10 м² потребуется генерировать 1 кВт тепла. К полученному результату нужно применить поправочный коэффициент, зависящий от климатической зоны.

Предположим, что дом находится в Московской области. Его общая площадь составлять 150 м². В таком случае часовая тепловая нагрузка на отопление будет равна:

15*1=15 кВт/час

Главным недостатком этого метода является большая погрешность. Расчет не учитывает изменение погодных факторов, а также особенности здания – сопротивление теплопередачи стен, окон. Поэтому на практике его использовать не рекомендуется.

Укрупненный расчет тепловой нагрузки здания

Укрупненный расчет нагрузки на отопление характеризуется более точными результатами. Изначально он применялся для предварительного расчета этого параметра при невозможности определить точные характеристики здания. Общая формула для определения тепловой нагрузки на отопление представлена ниже:

Где – удельная тепловая характеристика строения. Значения нужно брать из соответствующей таблицы, а – поправочный коэффициент, о котором говорилось выше, – наружный объем строения, м³, Tвн и Tнро – значения температуры внутри дома и на улице.

Предположим, что необходимо рассчитать максимальную часовую нагрузку на отопление в доме с объемом по наружным стенам 480 м³ (площадь 160 м², двухэтажный дом). В этом случае тепловая характеристика будет равна 0,49 Вт/м³*С. Поправочный коэффициент а = 1 (для Московской области). Оптимальная температура внутри жилого помещения (Твн ) должна составлять +22°С. Температура на улице при этом будет равна -15°С. Воспользуемся формулой для расчета часовой нагрузки на отопление:

Q=0.49*1*480(22+15)= 9,408 кВт

По сравнению с предыдущим расчетом полученная величина меньше. Однако она учитывает важные факторы – температуру внутри помещения, на улице, общий объем здания. Подобные вычисления можно сделать для каждой комнаты. Методика расчета нагрузки на отопление по укрупненным показателям дает возможность определить оптимальную мощность для каждого радиатора в отдельно взятом помещении. Для более точного вычисления нужно знать среднетемпературные значения для конкретного региона.

Такой метод расчета можно применять для вычисления часовой тепловой нагрузки на отопление. Но полученные результаты не дадут оптимально точную величину тепловых потерь здания.

Точные расчеты тепловой нагрузки

Но все же этот расчет оптимальной тепловой нагрузки на отопление не дает требуемую точность вычисления. Он не учитывает важнейший параметр – характеристики здания. Главной из них является сопротивление теплопередачи материал изготовления отдельных элементов дома – стен, окон, потолка и пола. Именно они определяют степень сохранения тепловой энергии, полученной от теплоносителя системы отопления.

Что же такое сопротивление теплопередачи (R)? Это величина, обратная теплопроводности (λ) – возможности структуры материала передавать тепловую энергию. Т.е. чем больше значение теплопроводности – тем выше тепловые потери. Для расчета годовой нагрузки на отопление воспользоваться этой величиной нельзя, так как она не учитывает толщину материала (d). Поэтому специалисты используют параметр сопротивление теплопередачи, который вычисляется по следующей формуле:

R=d/λ

Расчет по стенам и окнам

Существуют нормированные значения сопротивления теплопередачи стен, которые напрямую зависят от региона, где расположен дом.

В отличие от укрупненного расчета нагрузки на отопление сначала нужно вычислить сопротивление теплопередачи для наружных стен, окон, пола первого этажа и чердака. Возьмем за основу следующие характеристики дома:

  • Площадь стен – 280 м². В нее включены окна – 40 м²;
  • Материал изготовления стен – полнотелый кирпич (λ=0.56). Толщина наружных стен – 0,36 м. Исходя из этого рассчитываем сопротивление телепередачи – R=0.36/0.56= 0,64 м²*С/Вт;
  • Для улучшения теплоизоляционных свойств был установлен наружный утеплитель – пенополистирол толщиной 100 мм. Для него λ=0,036. Соответственно R=0,1/0,036= 2,72 м²*С/Вт;
  • Общее значение R для наружных стен равно 0,64+2,72= 3,36 что является очень хорошим показателем теплоизоляции дома;
  • Сопротивление теплопередачи окон – 0,75 м²*С/Вт (двойной стеклопакет с заполнением аргоном).

Фактически тепловые потери через стены составят:

(1/3,36)*240+(1/0.75)*40= 124 Вт при разнице температуры в 1°С

Температурные показатели возьмем такие же, как и для укрупненного вычисления нагрузки на отопление +22°С в помещении и -15°С на улице. Дальнейший расчет необходимо делать по следующей формуле:

124*(22+15)= 4,96 кВт/час

Расчет по вентиляции

Затем необходимо вычислить потери через вентиляцию. Общий объем воздуха в здании составляет 480 м³. При этом его плотность примерно равна 1,24 кг/м³. Т.е. его масса равна 595 кг. В среднем за сутки (24 часа) происходит пятикратное обновление воздуха. В таком случае для вычисления максимальной часовой нагрузки для отопления нужно рассчитать тепловые потери на вентиляцию:

(480*40*5)/24= 4000 кДж или 1,11 кВт/час

Суммируя все полученные показатели можно найти общие тепловые потери дом:

4,96+1,11=6,07 кВт/час

Таким образом определяется точная максимальная тепловая нагрузка на отопление. Полученная величина напрямую зависит от температуры на улице. Поэтому для расчета годовой нагрузки на отопительную систему нужно учитывать изменение погодных условий. Если средняя температура в течение отопительного сезона составляет -7°С, то итоговая нагрузка на отопление будет равна:

(124*(22+7)+((480*(22+7)*5)/24))/3600)*24*150(дней отопительного сезона)=15843 кВт

Меняя температурные значения можно сделать точный расчет тепловой нагрузки для любой системы отопления.

К полученным результатам нужно прибавить значение тепловых потерь через крышу и пол. Это можно сделать поправочным коэффициентом 1,2 – 6,07*1,2=7,3 кВт/ч.

Полученная величина указывает на фактические затраты энергоносителя при работе системы. Существует несколько способов регулирования тепловой нагрузки отопления. Наиболее действенный из них – уменьшение температуры в комнатах, где нет постоянного присутствия жильцов. Это можно осуществить с помощью терморегуляторов и установленных датчиков температуры. Но при этом в здании должна быть установлена двухтрубная система отопления.

Для вычисления точного значения тепловых потерь можно воспользоваться специализированной программой Valtec. В видеоматериале показа пример работы с ней.

Расчет тепловой нагрузки на отопление

Как рассчитать тепловую нагрузку

Спросите у любого специалиста, как правильно организовать систему отопления в здании. При этом не важно — жилой это объект или промышленный. И профессионал ответит, что главное — это точно составить расчеты и грамотно выполнить проектирование. Речь, в частности, идет о расчете тепловой нагрузки на отопление. От этого показателя зависит объем потребления тепловой энергии, а значит, и топлива. То есть экономические показатели стоят рядом с техническими характеристиками.

Выполнение точных расчетов позволяет получить не только полный список необходимой для проведения монтажных работ документации, но и подобрать нужное оборудование, дополнительные узлы и материалы.

Тепловые нагрузки — определение и характеристики

Что обычно подразумевают под термином «тепловая нагрузка на отопление»? Это количество теплоты, которое отдают все приборы отопления, установленные в здании. Чтобы избежать лишних трат на производство работ, а также покупку ненужных приборов и материалов, и необходим предварительный расчет. С его помощью можно отрегулировать правила установки и распределения теплоты по всем помещениям, причем сделать это можно экономично и равномерно.

Но и это еще не все. Очень часто специалисты проводят расчеты, полагаясь на точные показатели. Они касаются размеров дома и нюансов строительства, где учитывается разнообразие элементов здания и их соответствие требованиям теплоизоляции и прочего. Именно точные показатели дают возможность правильно сделать расчеты и, соответственно, получить максимально приближенные к идеалу варианты распределения тепловой энергии по помещениям.

Но нередко случаются ошибки в расчетах, что приводит к неэффективной работе отопления в целом. Подчас приходится переделывать в ходе эксплуатации не только схемы, но и участки системы, что приводит к дополнительным расходам.

Какие же параметры влияют на расчет тепловой нагрузки в целом? Здесь необходимо разделить нагрузку на несколько позиций, куда входят:

  • Система центрального отопления.
  • Система теплый пол, если таковой установлен в доме.
  • Система вентиляции — как принудительной, так и естественной.
  • Горячее водоснабжение здания.
  • Ответвления на дополнительные бытовые нужды. К примеру, на сауну или баню, на бассейн или душ.

Основные характеристики

Профессионалы не упускают из виду ни одну мелочь, которая может повлиять на правильность расчета. Отсюда и достаточно больший список характеристик системы отопления, которые следует принимать во внимание. Вот только некоторые из них:

  1. Назначение объекта недвижимости или его тип. Это может быть жилое здание или промышленное. У поставщиков тепловой энергии есть нормы, которые распределяются по типу зданий. Именно они часто становятся основополагающими при проведении расчетов.
  2. Архитектурная часть здания. Сюда можно включить ограждающие элементы (стены, кровля, перекрытия, полы), их габаритные размеры, толщину. Обязательно учитываются всевозможные проемы — балконы, окна, двери и прочее. Очень важно принять во внимание наличие подвалов и чердаков.
  3. Температурный режим для каждого помещения в отдельности. Это очень важно, потому что общие требования к температуре в доме не дают точной картины распределения тепла.
  4. Назначение помещений. В основном это относится к производственным цехам, в которых необходимо более строгое соблюдение температурного режима.
  5. Наличие специальных помещений. К примеру, в жилых частных домах это могут быть бани или сауны.
  6. Степень технического оснащения. Учитывается наличие системы вентиляции и кондиционирования, горячего водоснабжения, тип используемого отопления.
  7. Количество точек, через которые проводится отбор горячей воды. И чем больше таких точек, тем большей тепловой нагрузке подвергается система отопления.
  8. Количество находящихся на объекте людей. От этого показателя зависят такие критерии, как влажность внутри помещений и температура.
  9. Дополнительные показатели. В жилых помещениях можно выделить количество санузлов, отдельных комнат, балконов. В промышленных зданиях — количество смен работающих, число дней в году, когда работает сам цех в технологической цепочке.

Что включают в расчет нагрузок

Схема отопления

Расчет тепловых нагрузок на отопление проводят еще на стадии проектирования здания. Но при этом обязательно учитывают нормы и требования различных стандартов.

К примеру, теплопотери ограждающих элементов здания. Причем в расчет берутся все помещения в отдельности. Далее, это мощность, которая необходима для нагрева теплоносителя. Приплюсуем сюда количество тепловой энергии, требующейся для нагрева приточной вентиляции. Без этого расчет будет не очень точным. Прибавим также энергию, которая затрачивается на обогрев воды для бани или бассейна. Специалисты обязательно принимают во внимание и дальнейшее развитие теплосистемы. Вдруг через несколько лет вам вздумается устроить в собственном частном доме турецкий хамам. Поэтому необходимо прибавить к нагрузкам несколько процентов — обычно до 10%.

Рекомендация! Рассчитывать тепловые нагрузки с «запасом» необходимо для загородных домов. Именно запас позволит в будущем избежать дополнительных финансовых затрат, которые часто определяются суммами в несколько нулей.

Особенности расчета тепловой нагрузки

Параметры воздуха, а точнее, его температура берутся из ГОСТов и СНиПов. Здесь же подбираются коэффициенты теплопередачи. Кстати, паспортные данные всех видов оборудования (котлы, радиаторы отопления и прочее) берутся в расчет обязательно.

Что обычно включают в традиционный расчет нагрузки тепла?

  • Во-первых, максимальный поток тепловой энергии, исходящей от приборов отопления (радиаторов).
  • Во-вторых, максимальный расход тепла за 1 час эксплуатации отопительной системы.
  • В-третьих, общие тепловые затраты за определенный период времени. Обычно подсчитывают сезонный период.

Если все эти расчеты соизмерить и сопоставить с площадью теплоотдачи системы в целом, то получится достаточно точный показатель эффективности обогрева дома. Но придется учитывать и небольшие отклонения. К примеру, снижение потребления тепла в ночное время. Для промышленных объектов также придется учитывать выходные и праздничные дни.

Методы определения тепловых нагрузок

Проектирование теплого пола

В настоящее время специалисты пользуются тремя основными способами расчета тепловых нагрузок:

  1. Расчет основных теплопотерь, где учитываются только укрупненные показатели.
  2. Учитываются показатели, основанные на параметрах ограждающих конструкций. Сюда обычно добавляются потери на нагрев внутреннего воздуха.
  3. Производится расчет всех систем, которые входят в отопительные сети. Это и отопление, и вентиляция.

Есть еще один вариант, который называется укрупненным расчетом. Его обычно применяют в том случае, когда отсутствуют какие-либо основные показатели и параметры здания, необходимые для стандартного расчета. То есть фактические характеристики могут отличаться от проектных.

Для этого специалисты используют очень простую формулу:

Q max от.=α x V x q0 x (tв-tн.р.) x 10 -6

α — это поправочный коэффициент, зависящий от региона строительства (табличная величина)
V — объем здания по наружным плоскостям
q0 — характеристика отопительной системы по удельному показателю, обычно определяется по самым холодным дням в году

Виды тепловых нагрузок

Тепловые нагрузки, которые используются в расчетах системы отопления и подборе оборудования, имеют несколько разновидностей. К примеру, сезонные нагрузки, для которых присущи следующие особенности:

  1. Изменение температуры снаружи помещений в течение всего отопительного сезона.
  2. Метеорологические особенности региона, где построен дом.
  3. Скачки нагрузки на систему отопления в течение суток. Этот показатель обычно проходит по категории «незначительные нагрузки», потому что ограждающие элементы предотвращают большое давление на отопление в целом.
  4. Все, что касается тепловой энергии, связанной с системой вентиляции здания.
  5. Тепловые нагрузки, которые определяются в течение всего года. Например, потребление горячей воды в летней сезон снижается всего лишь на 30-40%, если сравнивать его с зимним временем года.
  6. Сухое тепло. Эта особенность присуща именно отечественным отопительным системам, где учитывается достаточно большой ряд показателей. К примеру, количество оконных и дверных проемов, количество проживающих или находящихся постоянно в доме людей, вентиляция, воздухообмен через всевозможные щели и зазоры. Для определения этой величины используют сухой термометр.
  7. Скрытая тепловая энергия. Существует и такой термин, который определяется испарениями, конденсацией и так далее. Для определения показателя используют влажный термометр.

Регуляторы тепловых нагрузок

Программируемый контроллер, диапазон температур — 5-50 C

Современные отопительные агрегаты и приборы обеспечиваются комплектом разных регуляторов, с помощью которых можно изменять тепловые нагрузки, чтобы тем самым избежать провалов и скачков тепловой энергии в системе. Практика показала, что с помощью регуляторов можно не только снизить нагрузки, но и привести систему отопления к рациональному использованию топлива. А это уже чисто экономическая сторона вопроса. Особенно это относится к промышленным объектам, где за перерасход топлива приходится выплачивать достаточно большие штрафы.

Если же вы не уверены в правильности своих расчетов, то воспользуйтесь услугами специалистов.

Давайте рассмотрим еще пару формул, которые касаются разных систем. К примеру, системы вентиляции и горячего водоснабжения. Здесь вам потребуются две формулы:

Qв.=qв.V(tн.-tв.) — это касается вентиляции.
Здесь:
tн. и tв — температура воздуха снаружи и внутри
qв. — удельный показатель
V — внешний объем здания

Qгвс.=0,042rв(tг.-tх.)Пgср — для горячего водоснабжения, где

tг.-tх — температура горячей и холодной воды
r — плотность воды
в — отношение максимальной нагрузки к средней, которая определяется ГОСТами
П — количество потребителей
Gср — средний показатель расхода горячей воды

Комплексный расчет

В комплексе с расчетными вопросами обязательно проводят исследования теплотехнического порядка. Для этого применяют различные приборы, которые выдают точные показатели для расчетов. К примеру, для этого обследуют оконные и дверные проемы, перекрытия, стены и так далее.

Именно такое обследование помогает определить нюансы и факторы, которые могут оказать существенное влияние на теплопотери. К примеру, тепловизорная диагностика точно покажет температурный перепад при прохождении определенного количества тепловой энергии через 1 квадратный метр ограждающей конструкции.

Так что практические измерения незаменимы при проведении расчетов. Особенно это касается узких мест в конструкции здания. В этом плане теория не сможет точно показать, где и что не так. А практика укажет, где необходимо применить разные методы защиты от теплопотерь. Да и сами расчеты в этом плане становятся точнее.

Заключение по теме

Расчетная тепловая нагрузка — очень важный показатель, получаемый в процессе проектирования системы отопления дома. Если подойти к делу с умом и провести все необходимые расчеты грамотно, то можно гарантировать, что отопительная система будет работать отлично. И при этом можно будет сэкономить на перегревах и прочих затратах, которых можно просто избежать.

Расчет тепловой нагрузки (мощности) для системы отопления помещения

Установка системы автономного отопления для частного дома или городской квартиры всегда начинается с создания проекта. Одной из главных задач, стоящих перед специалистами на этой стадии, является определение полной потребности имеющихся площадей в энергии нагретого теплоносителя для нужд отопления и, если необходимо, горячего водоснабжения.

Пример системы отопления частного дома

Для этого обычно выполняется расчет величины тепловых нагрузок или теплотехнический расчёт помещения. [contents]

Зачем нужен расчет тепловых нагрузок

Расчёт тепловой энергии на отопление необходим для правильного определения характеристик системы с учетом индивидуальных особенностей объекта: тип и назначение здания, количество проживающих людей, материал и конфигурация каждого помещения, географическое положение и многие другие. Вычисление размера тепловой нагрузки является отправной точкой для дальнейших расчетов параметров оборудования отопления:

  • Подбор мощности котла. Это самый важный фактор, определяющий эффективность системы отопления в целом. Производительность котла должна обеспечивать бесперебойную работу всех потребителей в любых условиях, в том числе и при наиболее низких температурах (в самую холодную пятидневку). Вместе с тем при избыточной мощности котла часть вырабатываемой энергии, а следовательно, и денег хозяев будет в буквальном смысле вылетать в трубу;
  • Согласование подключения к газовой сети. Для того чтобы получить разрешение на присоединение к газотранспортной магистрали, необходимо разработать ТУ на подключение. В заявке обязательно указывается планируемый годовой расход газа и оценка суммарной тепловой мощности всех потребителей;
  • Расчет периферийного оборудования. Тип и характеристики батарей, длина и сечение труб, производительность циркуляционного насоса и многие другие параметры также определяются в результате расчета тепловых нагрузок.

Приблизительные методики оценки

Точный расчет отопления помещения – это сложная инженерная задача, которая требует определенной квалификации и наличия специальных знаний. Именно поэтому ее чаще всего поручают специалистам.

Однако, как и в некоторых других случаях, существуют более простые способы, которые дают приблизительную оценку величины необходимой тепловой энергии и могут быть выполнены самостоятельно.

Можно выделить следующие методы определения тепловой нагрузки:

  • Расчёт по площади помещения. Существует мнение, что строительство жилых домов обычно производится по проектам, которые уже учитывают климатические особенности конкретного региона и предполагают использование материалов, обеспечивающих необходимый тепловой баланс. Поэтому при устройстве системы отопления с достаточной долей точности можно использовать коэффициент удельной мощности, который не зависит от конкретных особенностей здания.

    Для Москвы и области этот коэффициент обычно берется равным 100–150 Вт/м2, а полная нагрузка вычисляется его умножением на общую площадь помещения.

  • Учет объема и температуры. Немного более сложный алгоритм позволяет принять во внимание высоту потолков, уровень комфорта в зоне отопления, а также, очень приблизительно, учесть особенности самого здания.

    Тепловая нагрузка вычисляется по формуле: Q = V*ΔT*K/860. Здесь V – объем (произведение длины, ширины и высоты помещения), ΔT – разница температур внутри и снаружи, К – коэффициент потерь энергии тепла.

    Именно с помощью коэффициента К в расчет и закладываются конструктивные особенности здания. Например, для сооружений из двойной кирпичной кладки с обычной кровлей значение К берется из диапазона 1,0–1,9, а для упрощенных деревянных конструкций оно может достигать 3,0–4,0.

  • Метод укрупненных показателей. Этот метод похож на предыдущий, но используется для определения тепловой нагрузки при устройстве системы отопления больших объектов, например, многоквартирных зданий.

Несмотря на простоту и доступность, указанные методы дают лишь примерную оценку тепловой нагрузки вашего дома или квартиры. Результаты, полученные с их помощью, могут отличаться от реальных как в большую, так и в меньшую сторону. Недостатки устройства маломощной системы отопления очевидны, но и сознательно закладывать необоснованный запас по мощности также нежелательно. Использование более производительного, чем требуется, оборудования приведет к его быстрому износу, перерасходу электрической энергии и топлива.

Применять приведенные выше формулы на практике рекомендуется с большой долей осторожности. Такие расчеты могут быть оправданы в самых простых случаях, например, при выборе циркуляционного насоса для имеющегося котла или для получения грубых оценок величины затрат на отопление.

Точный расчет тепловой нагрузки

Эффективность теплоизоляции любого помещения зависит от его конструктивных особенностей. Известно, что основная часть тепловых потерь (до 40%) приходится на наружные стены, 20% – на оконные системы, по 10% – на крышу и пол. Остальное тепло уходит через двери и вентиляцию. Очевидно, что расчёт величины нагрузки на отопление обязательно должен учитывать эти особенности распределения тепловой энергии. Для этого используются соответствующие коэффициенты:

  • К1 – учитывает тип окон. Для двухкамерных стеклопакетов его значение равно 1, для трехкамерных – 0,85, для обычного остекления – 1, 27;
  • К2 – теплоизоляция стен. Может изменяться от 1 для пенобетона с улучшенной теплопроводностью до 1,5 для кладки в полтора кирпича или бетонных блоков;
  • К3 – конфигурация помещения (соотношение площади окон и пола). Естественно, чем больше окон, тем больше тепловой энергии уходит на улицу. При размерах остекления в 20% от площади пола этот коэффициент равен единице, при увеличении доли окон до 50% он также возрастает до 1,5;
  • К4 – минимальная уличная температура в течение всего сезона. Здесь логика также очевидна – чем холоднее на улице, тем большие коррективы необходимо вносить в расчет тепловых нагрузок. За единицу берется температура -20 °C, далее прибавляется или вычитается по 0,1 на каждые 5 °C;
  • К5 – количество наружных стен. Для одной стены коэффициент равен 1, для двух и трех – 1,2, для четырех – 1,33;
  • К6 – тип помещения над рассматриваемой комнатой. Если сверху жилой этаж – то 0,82, если теплый чердак – 0,91, для холодного чердака значение коэффициента равно 1,0;
  • К7 – учитывает высоту потолков. Чаще всего это 1,0 для высоты 2,5 м или 1,05 – для 3 м.

Определив все поправочные коэффициенты, можно рассчитать тепловые нагрузки для каждого помещения:

Qi=q*Si*K1*K2*K3*K4*K5*K6*K7,

где q =100 Вт/м2, а Si – площадь помещения. Из формулы видно, что каждый из указанных коэффициентов увеличивает расчетную величину теплопотерь, если его значение больше единицы, и уменьшает ее в противном случае.

Просуммировав теплопотери всех помещений, получаем общую величину мощности системы отопления:

Q=Σ Qi, i = 1…N,

где N – количество помещений в доме. Эту величину обычно увеличивают на 15–20% для создания запаса тепловой энергии на непредвиденные случаи: очень сильные морозы, нарушение теплоизоляции, разбитое окно и т. д.

Практический пример расчёта

В качестве примера рассмотрим расчет мощности оборудования, необходимой для отопления помещений брусового дома площадью 150 м2, имеющего теплый чердак, три внешние стены и окна из двойных стеклопакетов. Площадь остекления – 25%, высота стен 2,5 м. Температуру на улице в самую холодную пятидневку будем считать равной -28 °C.

Определяем поправочные коэффициенты:

  • К1=1,0 (двухкамерный стеклопакет).
  • К2=1,25 (материал стен – брус).
  • К3=1,1 (для площади остекления 21 – 29%).
  • К4=1,16 (считаем методом интерполяции для крайних значений: 1,1 при -25 °C и 1,2 при -30 °C).
  • К5=1,22 – три наружные стены.
  • К6=0,91 – наверху теплый чердак.
  • К7=1,0 – высота потолков 2,5 м.

Считаем полную тепловую нагрузку:

Q=100 Вт/м2*135 м2*1,0*1,25*1,1*1,16*1,22*0,91*1,0 = 23,9 кВт.

Теперь определяем мощность системы отопления: W=Q*1,2 = 28,7 кВт.

Отметим, что если бы для расчета мы использовали упрощенную методику, основанную на учете только площади помещения, то получили 15­–22,5 кВт (100–150 Вт х 150 м2). Система работала бы на пределе, без запаса по мощности. Таким образом, данный пример еще раз подчеркивает важность применения точных методик определения тепловых нагрузок на отопление.

Расчет тепловых нагрузок на отопление, горячее водоснабжение, вентиляцию

«Алтайский центр энергосбережения» производит расчет тепловых нагрузок на отопление, горячее водоснабжение, вентиляцию.

Актуальность выполнения расчетов тепловых нагрузок обусловлена высокой стоимостью тепловой энергии и постоянно растущими тарифами. К тому же, необходимо отметить, что тепловая нагрузка, закрепленная за зданиями и сооружениями, построенными в советское время, принята на основании укрупненных показателей 50-х годов и не отвечает действительности.

Фактическое потребление, как правило, меньше рассчитанного по проекту, поэтому обоснованность оплаты тепловой энергии, полученной потребителями,  во многом зависит от точности измерений и расчетов расхода тепла и теплоносителя, определения тепловых нагрузок и их распределение по группам потребителей.

Определение тепловой нагрузки здания необходимо при заключении договора с теплогенерирующей компанией при строительстве нового объекта, реконструкции существующего строения, а так же смене назначения отдельных помещений или в целом всего здания.

Необходимость проведения подобного рода расчетов обуславливается и при использовании автономного отопления. В этом случае при определении производительности теплогенерирующих установок определяется максимальная тепловая нагрузка на нужды систем инженерного оборудования (отопления, вентиляции и горячего водоснабжения).

Все расчеты выполняются в соответствии с требованиями, предъявляемыми теплогенерирующей компанией. Необходимо отметить, что в большинстве случаев данные расчеты, выполнение с учетом фактических теплозащитных качеств здания, показывают более низкие показатели, отличающиеся от договорных значений, полученных по укрупненным данным.

Расчет тепловых нагрузок осуществляется согласно требованиям СНиП.

При выполнении теплового расчета учитывается большой перечень характеристик объекта:

• Тип объекта ( жилое / нежилое здание, этажность, административное здание, квартира и пр.)
• Архитектурная часть: Размеры наружных ограждений (полы, стены, крыша), размеры проемов (окна, двери, балконы, лоджии).
• Значение температуры в каждом помещении
• Конструкции наружных ограждений (стен, полов, крыши): толщина, тип применяемых материалов и утепляющих прослоек.)
• Назначение помещений.
• Наличие и характеристики специальных или отдельно-стоящих помещений: бассейн, баня, и т.д.
• Число точек разбора горячей воды, количество человек, постоянно находящихся в здании.
• Другие данные ( в зависимости от назначения объекта). Например, количество работающих в смену, число рабочих дней в году, число рабочих смен необходимо знать для расчета теплопотребления рабочего цеха.

Помимо документального расчета тепловых нагрузок возможно проведение комплексного теплотехнического обследования, включающего в себя термографирование всех ограждающих конструкций. Тепловизионная диагностика позволит выявить и зафиксировать факторы, влияющие на теплопотери здания.

Для подтверждения данных полученных тепловизионным способом проводиться расчет сопротивления теплопередаче ограждающих конструкций. Сопротивление теплопередаче покажет, каков будет реальный перепад температур при прохождении определенного количества тепла через 1м² конкретной ограждающей конструкции, а также сколько тепла уйдет через 1м² при определенном перепаде температур.

По итогу комплексного теплотехнического обследования локализуются участки с пониженной теплозащитой и рассчитываются общие, основные и добавочные потери теплоты.

Полученные данные позволят провести повышение теплозащитных качеств только тех участков ограждающих конструкций, которые в этом действительно нуждаются.

Выборочное повышение теплозащитных свойств ограждающих конструкций зарекомендовало себя как экономически эффективный метод энергосбережения.

По результатам расчета тепловых нагрузок выдается заключение, согласованное с энергоснабжающими организациями и имеющее основания для пересмотра договорных отношений с ними.

 

Вы можете оставить заявку на расчет тепловых нагрузок для Вашего здания. После получения заявки наш специалист свяжется с Вами и предоставит всю необходимую информацию.

 

Отправить заявку

Теплотехнический расчет конструкции здания

Основой для определения тепловой нагрузки систем отопления является процедура проведения теплотехнического расчета конструкций здания с учетом всех конструктивных особенностей используемых строительных материалов и их теплоизоляционных свойств. В расчетах также учитывается ориентация здания по сторонам света, наличие естественной или механической систем вентиляции и многие другие факторы теплового баланса помещений.

Методы расчета тепловой нагрузки системы отопления

  1. Расчет потерь тепла по площади помещений.
  2. Определение величины теплопотерь исходя из наружного объема здания.
  3. Точный теплотехнический расчет всех конструкций жилого дома с учетом теплофизических коэффициентов материалов.

Расчет потерь тепла по площади помещений

Первым методом расчета тепловой нагрузки системы отопления пользуются для укрупненного определения мощности системы отопления всего дома и общего понимания количества и типа радиаторов, а также мощности котельного оборудования. Так как метод не учитывает регион строительства (расчетную наружную температуру зимой), количество потерь тепла через фундаменты, крыши или нестандартное остекление, то количество потерь тепла, рассчитанное укрупненным методом исходя из площади помещения, может быть как больше, так и меньше фактических значений.

Источники теплопотерь здания

А при использовании современных теплоизоляционных материалов мощность котельного оборудования может быть определена с большим запасом. Таким образом, при устройстве систем отопления возникнет большой перерасход материалов и будет приобретено более дорогостоящее оборудование. Поддержание комфортной температуры в помещениях будет возможно только при условии, что будет установлена современная автоматика, которая не допустит перегрева помещений выше комфортных температур.

В худшем случае, мощность системы отопления может быть занижена и дом в самые холодные дни не будет прогрет.

Тем не менее, этим способом определения мощности систем отопления пользуются достаточно часто. Следует только понимать, в каких случаях такие укрупненные расчеты приближены к реальности.

Итак, формула для укрупненного определения количества теплопотерь выглядит следующим образом:

Q=S*100 Вт (150 Вт),

Q — требуемое количество тепла, необходимое для обогрева всего помещения, Вт

S — отапливаемая площадь помещения, м?

Значение 100-150 Ватт является удельным показателем количества тепловой энергии, приходящейся для обогрева 1 м?.

При использовании первого метода для укрупненного метода расчета тепловой мощности следует ориентироваться на следующие рекомендации:

  • В случае, когда в расчетном помещении из наружных ограждающих конструкций имеются одно окно и одна наружная стена, а высота потолков менее трех метров, то на 1м2 отапливаемой площади приходится 100 Вт тепловой энергии.
  • При расчете углового помещения с двумя оконными конструкциями или балконными блоками либо помещение высотой более трех метров, то в диапазон удельной тепловой энергии на 1 м2 составляет от 120 до 150 Вт.
  • Если же прибор отопления в будущем планируется устанавливать под окном в нише либо декорировать защитными экранами, поверхность радиаторов и, следовательно, их мощность необходимо увеличить на 20-30%. Это обусловлено тем, что тепловая мощность радиаторов будет частично тратиться на прогрев дополнительных конструкций.

Расчет тепловой мощности исходя из объема помещения

Этот метод определения тепловой нагрузки на системы отопления наименее универсален, чем первый, так как предназначен для расчетов помещений с высокими потолками, но при этом не учитывает, что воздух под потолком всегда теплее, чем в нижней части комнаты и, следовательно, количество потерь тепла будет различаться зонально.

Тепловая мощность системы отопления для здания или помещения с потолками выше стандартных рассчитывается исходя из следующего условия:

Q=V*41 Вт (34 Вт),

где V – наружный объем помещения в м?,

А 41 Вт – удельное количество тепла, необходимое для обогрева одного кубометра здания стандартной постройки (в панельном доме). Если строительство ведется с применением современных строительных материалов, то удельный показатель теплопотерь принято включать в расчеты со значением 34 Ватт.

При использовании первого или второго метода расчета теплопотерь здания укрупненным методом можно пользоваться поправочными коэффициентами, которые в некоторой степени отражают реальность и зависимость потерь тепла зданием в зависимости от различных факторов.

  1. Тип остекления:
  • тройной пакет 0,85,
  • двойной 1,0,
  • двойной переплет 1,27.
  1. Наличие окон и входных дверей увеличивает величину потерь тепла дома на 100 и 200 Ватт соответственно.
  2. Теплоизоляционные характеристики наружных стен и их воздухопроницаемость:
  • современные теплоизоляционные материалы 0,85
  • стандарт (два кирпича и утеплитель) 1,0,
  • низкие теплоизоляционные свойства или незначительная толщина стен 1,27-1,35.
  1. Процентное отношение площади окон к площади помещения: 10%-0,8, 20%—0,9, 30%—1,0, 40%—1,1, 50%—1,2.
  2. Расчет для индивидуального жилого дома должен производиться с поправочным коэффициентом порядка 1,5 в зависимости от типа и характеристик используемых конструкций пола и кровли.
  3. Расчетная температура наружного воздуха в зимний период (для каждого региона своя, определяется нормативами): -10 градусов 0,7, -15 градусов 0,9, -20 градусов 1,10, -25 градусов 1,30, -35 градусов 1,5.
  4. Тепловые потери так же растут в зависимости от увеличения количества наружных стен по следующей зависимости: одна стена – плюс 10% от тепловой мощности.

Но, тем не менее, определить какой метод даст точный и действительно верный результат тепловой мощности отопительного оборудования можно лишь после выполнения точного и полного теплотехнического расчета здания.

Теплотехнический расчет индивидуального жилого дома

Приведенные выше методики укрупненных расчетов больше всего ориентированы на продавцов или покупателей радиаторов систем отопления, устанавливаемых в типовых многоэтажных жилых домах. Но когда речь идет о подборе дорогостоящего котельного оборудования, о планировании системы отопления загородного дома, в котором кроме радиаторов будут установлены системы напольного отопления, горячего водоснабжения и вентиляции, пользоваться этими методиками крайне не рекомендуется.

Каждый владелец индивидуального жилого дома или коттеджа еще на стадии строительства достаточно скрупулезно подходит к разработке строительной документации, в которой учитываются все современные тенденции использования строительных материалов и конструкций дома. Они обязательно должны не быть типовыми или морально устаревшими, а изготовлены с учетом современных энергоэффективных технологий. Следовательно, и тепловая мощность системы отопления должна быть пропорционально ниже, а суммарные затраты на устройство системы обогрева дома значительно дешевле. Эти мероприятия позволяют в дальнейшем при использовании отопительного оборудования снижать затраты на потребление энергоресурсов.

Расчет теплопотерь выполняется в специализированных программах либо с использованием основных формул и коэффициентов теплопроводности конструкций, учитывается влияние инфильтрации воздуха, наличие или отсутствие систем вентиляции в здании. Расчет заглубленных цокольных помещений, а также крайних этажей производится по отличной от основных расчетов методике, которая учитывает неравномерность остывания горизонтальных конструкций, то есть потери тепла через крышу и пол. Выше приведенные методики этот показатель не учитывают.

Теплотехнический расчет выполняется, как правило, квалифицированными специалистами в составе проекта на систему отопления в результате которого производится дальнейший расчет количества и мощность приборов отопления, мощность отдельного оборудования, подбор насосов и другого сопутствующего оборудования.

В качестве наглядного примера выполним расчет теплопотерь в специализированной программе для трех домов, построенных по одной технологии, но с различной толщиной теплоизоляции наружных стен: 100 мм, 150 мм и 200 мм. Расчет ведется для угловой жилой комнаты с одним окном, площадью 8,12 м?. Регион строительства Московская область.

Исходные данные:

  • Помещение с обмером по наружным габаритам 3000х3000;
  • Окно размерами 1200х1000.

Целью расчета является определение удельной мощности системы отопления, необходимой для нагрева 1м?.

Результат:

  • Qуд при т/изоляции 100 мм составляет 103 Вт/м?
  • Qуд при т/изоляции 150 мм составляет 81 Вт/м?
  • Qуд при т/изоляции 200 мм составляет 70 Вт/м?

Как видно из расчета, наибольшие потери тепла составляют для жилого дома с наименьшей толщиной изоляции, следовательно, мощность котельного оборудования и радиаторов будет выше на 47% чем при строительстве дома с теплоизоляцией в 200 мм.

Инфильтрация воздуха или вентиляция зданий

Все здания в особенности жилые имеют свойство «дышать», то есть проветриваться различными способами. Это обусловлено созданием разряженного воздуха в помещениях за счет устройства вытяжных каналов в конструкциях дома либо дымоходов. Как известно, вентиляционные каналы создаются в зонах с повышенными выделениями загрязнений, таких как, кухни, ванные комнаты и санузлы.

Таким образом, при работе системы вентиляции или при проветривании соблюдается главное правило создания благоприятной среды воздуха в жилых зданиях: направление движения свежего воздуха должно быть организовано из помещений с постоянным пребыванием людей в направлении помещений с максимальным уровнем загрязнения.

То есть при правильном воздухообмене приточный воздух поступает в помещение через окно, вентиляционный клапан или приточную решетку и удаляется в кухнях и санузлах.

При расчете теплопотерь знания имеет принципиальное значение, какой способ вентиляции жилых помещений будет выбран:

  • Устройство механической вентиляции с подогревом приточного воздуха.
  • Инфильтрация — неорганизованный воздухообмен через неплотности в стенах, при открывании окон или при использовании заранее установленных воздушных клапанов в конструкции стен или оконных стеклопакетах.

В случае применения в жилом здании сбалансированной системы вентиляции (когда объем приточного воздуха больше или равен вытяжному, то есть исключаются любые прорывания холодного воздуха в жилые помещения) воздух, поступающий в жилые помещения, предварительно прогревается в вентиляционной установке. При этом мощность, необходимая для нагрева вентиляции, учитывается в расчете мощности котельного оборудования.

Расчет вентиляционной тепловой нагрузки производится по формуле:

Qвент= c*p*L*(t1-t2)

где, Q – количество тепла, необходимое для нагрева приточного воздуха, Вт;

с – теплоемкость воздуха, Дж/кг*град

p - плотность воздуха, кг/м3

L – расход приточного воздуха, м3/час

t1 и t2 – начальная и конечная температуры воздуха, град.

Если в жилых помещениях отсутствует организованный воздухообмен, то при расчете теплопотерь здания производится учет тепла, затрачиваемого системой отопления на нагрев инфильтрационного воздуха. При этом обогрев воздуха, поступающего в помещения осуществляется радиаторами систем отопления, то есть учитывается в их тепловой нагрузке.

Если в помещениях установлены герметичные стеклопакеты без встроенных воздушных клапанов, то потери тепла на нагрев воздуха, тем не менее учитываются. Это обусловлено тем, что в случае кратковременного проветривания, поступивший холодный воздух все равно требуется нагревать.

Для более комфортной вентиляции встраивается приточный стеновой клапан.

 

Учет количества инфильтрационной тепловой энергии производится по нескольким методикам, а в тепловом балансе здания в расчет принимается наибольшее из значений.

Например, количество тепла на нагрев воздуха, проникающего в помещения для компенсации естественной вытяжки, определяется по формуле:

Qинф=0,28*L*p*c*(tнар-tпом),

где, с – теплоемкость воздуха, Дж/кг*град

p - плотность воздуха, кг/м?

tнар – температура наружного воздуха, град,

tпом – расчетная температура помещения, град,

L – количество инфильтрационного воздуха, м?/час.

Количество воздуха, поступающего в зимний период в жилые помещения, как правило, обусловлено работой естественных вытяжных систем, поэтому в одном случае принимается равным объему вытягиваемого воздуха.

Количество вытяжки в жилых помещениях определяется согласно СНиП 41-01-2003 по нормативным показателям удаления воздуха от плит и санитарных приборов.

  • От кухонной плиты – электрической 60 м?/час или газовой 90 м?/час;
  • Из ванны и санузлов по 25 м?/час

Во втором случае данный показатель инфильтрации определяется исходя из санитарной нормы свежего наружного воздуха, который должен поступать в помещение для обеспечения оптимального и качественного состава воздушной среды в жилых помещениях. Этот показатель определяется по удельной характеристике: 3 м?/час на 1м? жилой площади.

За расчетное значение принимается наибольший расход воздуха и соответственно большее количество теплопотерь на инфильтрацию.

Пример: Так как здание, рассматриваемое в примере, построено по каркасному типу с установкой окон в деревянных переплетах, то при создании вытяжной вентиляции на кухне и в санузлах объем инфильтрации будет достаточно высок. Дома такого типа, как правило, являются наиболее «дышащими».

Инфильтрационная составляющая определяется согласно выше приведенным методикам. Расчет производится для всего жилого дома при условии, что на кухне установлена электроплита, на первом этаже находится санузел и ванная.

То есть объем вытяжного воздуха по первой методике составляет Lвыт=60+25+25=110 м?/ч,

а по второй методике санитарная норма приточного воздуха Lприт=3м?/ч*62м?(жилая площадь)=186 м3/час.

К расчету принимаем максимальное количество воздуха.

Qинф=0,28*186*1,2*1,005*(22+28)=3 140 Вт, что составляет 44Вт/м?.

% PDF-1.7 % 2553 0 объект > эндобдж xref 2553 87 0000000016 00000 н. 0000003771 00000 н. 0000004094 00000 н. 0000004148 00000 п. 0000004278 00000 н. 0000004623 00000 н. 0000005297 00000 н. 0000005336 00000 п. 0000005451 00000 п. 0000005722 00000 н. 0000006384 00000 п. 0000007047 00000 н. 0000007606 00000 н. 0000007863 00000 н. 0000008471 00000 п. 0000009024 00000 н. 0000009275 00000 п. 0000009876 00000 н. 0000010239 00000 п. 0000055144 00000 п. 0000081857 00000 п. 0000111042 00000 н. 0000113693 00000 н. 0000123521 00000 н. 0000123779 00000 п. 0000124128 00000 н. 0000189671 00000 н. 0000189746 00000 н. 0000189834 00000 н. 0000189992 00000 н. 00001

00000 н. 00001

00000 н. 00001

00000 н. 00001

00000 н. 00001

00000 н. 0000190631 00000 н. 0000190688 00000 н. 0000190847 00000 н. 0000190903 00000 н. 0000191065 00000 н. 0000191181 00000 н. 0000191370 00000 н. 0000191426 00000 н. 0000191580 00000 н. 0000191706 00000 н. 0000191861 00000 н. 0000191917 00000 н. 0000192025 00000 н. 0000192149 00000 н. 0000192287 00000 н. 0000192343 00000 п. 0000192455 00000 н. 0000192511 00000 н. 0000192633 00000 н. 0000192689 00000 н. 0000192799 00000 н. 0000192855 00000 н. 0000192971 00000 н. 0000193027 00000 н. 0000193145 00000 н. 0000193201 00000 н. 0000193257 00000 н. 0000193449 00000 н.

Расчет тепловой нагрузки: важность при проектировании HVAC

Расчет тепловой нагрузки является фундаментальным навыком для проектировщиков и консультантов HVAC.Учтите, что охлаждение помещений — одна из самых высоких затрат энергии в зданиях, особенно летом. Однако, чтобы правильно рассчитать систему охлаждения помещения, сначала мы должны знать количество тепла, которое должно быть отведено — это как раз и является целью расчета тепловой нагрузки.

Тепло в зданиях может исходить от внутренних источников, таких как электрические приборы, или от внешних источников, таких как солнце. При расчете тепловой нагрузки учитываются все имеющиеся источники и определяется их общий эффект.

Обзор основных источников тепла

Несмотря на то, что существует много способов, которыми может производиться тепло, прямо или косвенно, ниже приведены некоторые из основных источников тепла внутри зданий:

1) Прирост солнечного тепла: Существует три различных способа, которыми солнечное тепло может достигать внутренних помещений — теплопроводность, конвекция и излучение. Электропроводность возникает через стены и крыши, поскольку они подвергаются разнице температур между внутренними помещениями здания и более теплой внешней средой.Конвекция относится к передаче тепла из-за массового движения горячего наружного воздуха или движения воздуха в помещении между поверхностями при разных температурах. Наконец, излучение — это прямая форма передачи тепла, которая происходит, когда солнечный свет проникает в здания через окна или другие прозрачные поверхности. И излучение, и конвекция могут взаимодействовать с теплопроводностью на поверхностях стен и крыш. Для многих зданий солнце является самым большим источником тепла.

Прирост солнечного тепла для конкретной комнаты во многом зависит от ее направления или расположения — учтите, что положение солнца на небе меняется в течение дня.По утрам стены и окна, выходящие на восток, попадают под прямые солнечные лучи. Поверхности, обращенные на юг, подвергаются воздействию прямых солнечных лучей в полдень, а поверхности, обращенные на запад, — во второй половине дня. Стены, выходящие на север, получают наименьшее количество солнечного тепла.

В зависимости от того, как происходит поступление солнечного тепла, его эффекты могут ощущаться немедленно или через определенный период времени. Например, солнечное тепло, проникающее через стеклянные окна (излучение), дает немедленный эффект. С другой стороны, когда теплопроводность происходит через стены, сами стены накапливают тепло, и в ночное время оно продолжает выделяться в помещении.

2) Тепло от людей: Жильцы также являются основным источником тепла внутри зданий. Учтите, что человек ежедневно потребляет сотни калорий в виде пищи, и часть этой энергии выделяется в виде тепла во время метаболических процессов. Тепло, выделяемое людьми, еще выше во время интенсивных физических нагрузок из-за потоотделения (потоотделения).

Учтите, что тепловое воздействие людей также увеличивается в зависимости от плотности населения. В результате человеческий вклад в общую тепловую нагрузку может быть особенно высоким в больших помещениях с кондиционированием воздуха, таких как холлы, аудитории, театры, кинотеатры и аэропорты.

3) Нагрев наружного воздуха: Более теплый воздух за пределами кондиционируемых помещений называется наружным воздухом или атмосферным воздухом. Из-за более высокой температуры наружный воздух имеет тенденцию повышать среднюю температуру в помещении, когда попадает в помещения.

Хотя некоторый воздухообмен является нормальным, когда двери и окна открыты, наружный воздух также может попадать в кондиционируемые помещения через утечки вокруг дверей, окон и других элементов ограждающих конструкций здания. Тепло, удерживаемое наружным воздухом, в значительной степени исходит от солнца, но оно также может исходить от транспортных средств или других зданий.

4) Тепло от электрических и электронных устройств: Внутренние помещения заполнены электрическими и электронными приборами, такими как осветительные приборы, телевизоры, кофеварки, водонагреватели и т. Д. Эти приборы потребляют электроэнергию и выделяют некоторое количество тепла в помещениях с кондиционированием воздуха. . Используйте энергоэффективные приборы, чтобы свести к минимуму их нагревательный эффект.


Ищете инженера-проектировщика HVAC?


Процедура расчета тепловой нагрузки

Для расчета тепловой нагрузки необходимо провести обследование всех помещений в здании и определить все имеющиеся источники тепла.Затем, исходя из рассчитанной тепловой нагрузки, проектировщик HVAC рекомендует тип системы кондиционирования воздуха, подходящий для данной области применения, и ее требуемую мощность. Такой подход помогает владельцам собственности избегать крупногабаритных систем с более высокими начальными и текущими затратами, чем необходимо, а также систем меньшего размера, которые обеспечивают недостаточное охлаждение.

Расчет тепловой нагрузки — это узкоспециализированная, трудоемкая и сложная задача, которую может выполнить только квалифицированный специалист по HVAC. Это также очень важный шаг для достижения оптимальных характеристик здания, который дает основу для выбора системы кондиционирования воздуха надлежащего типа и мощности для конкретного применения: жилое здание, холл, аудитория, театр, кинотеатр, аэропорт и т. Д.

Если вы владелец недвижимости, учтите, что специалисты по HVAC обычно запрашивают дополнительную информацию, например, архитектурные планы здания. Процедура расчета начинается после того, как будут собраны все необходимые данные. Существует два возможных метода расчета тепловой нагрузки: вручную или с помощью программного обеспечения.

Ручной процесс: Данные, собранные в результате обследования здания и дополнительной документации, анализируются с использованием предварительно определенных уравнений и табличных параметров.Точные уравнения и значения таблиц для использования определяются на основе геометрии здания, строительных материалов, а также приборов и строительных систем, находящихся внутри. Основываясь на этих расчетах, проектировщик HVAC рекомендует систему кондиционирования воздуха подходящего типа и вместимости.

Использование программного обеспечения: В настоящее время большинство проектировщиков систем отопления, вентиляции и кондиционирования воздуха используют программное обеспечение, такое как Trace 700 и HAP (программа почасового анализа), для выполнения расчетов тепловой нагрузки. Это по-прежнему требует обширных технических знаний, но многие повторяющиеся и трудоемкие задачи автоматизированы.Все, что вам нужно сделать, это ввести данные, полученные в результате обследования здания, архитектурных планов и другой соответствующей собранной документации. Программа автоматически выполняет расчеты тепловой нагрузки, а также рекомендует требуемую мощность системы кондиционирования, что упрощает и ускоряет процесс.

Расчет тепловой нагрузки выполняется для всех участков здания, а также определяется общая нагрузка на здание. На основе этих расчетов проектировщики и консультанты HVAC могут предоставить технические рекомендации для достижения максимальной производительности.

Заключительные рекомендации

Услуги профессионального дизайна могут показаться расходом, но на самом деле это инвестиции. Хорошо спроектированная система HVAC соответствует охлаждающей нагрузке здания, которое она обслуживает, при оптимальной стоимости владения. Работа с профессионалами также гарантирует соблюдение кодекса и ускоряет оформление документов, что может занять очень много времени в Нью-Йорке.

Если у вашей собственности есть большая площадь на крыше, рассмотрите возможность использования солнечной энергии. В Нью-Йорке есть отличные программы скидок, и вы можете уменьшить эффект солнечного нагрева, получая при этом чистый источник электроэнергии.

Примечание редактора: этот пост был первоначально опубликован в 2017 году и был переработан и обновлен для обеспечения точности и полноты.

Расчет нагрузки

, руководство по правильному определению размеров системы отопления, вентиляции и кондиционирования воздуха

Расчет нагрузки — это процесс определения надлежащего размера печи и / или кондиционер для дома.

На заре развития отрасли компании, занимающиеся отоплением, вентиляции и кондиционирования воздуха сделали обоснованное предположение о том, определить приток и потери тепла для дома.Предположение было основано почти исключительно на квадрате кадры дома и даже близко не были точными. Основная забота климатической компании было чтобы убедиться, что блок достаточно велик, чтобы на них не подавали в суд. Поэтому обычно устанавливали Ед. изм это было намного больше, чем требовалось.

Позже организация под названием Air Conditioning Contractors Of America (АССА) была создана. Они разработали стандарты и метод более точного определения тепла в доме. прирост и потеря.Он включал в себя множество сложных математических уравнений и требовал много времени для выполнения. Поэтому большинство подрядчиков эту систему не использовали.

С возрастом компьютеров этот процесс стал еще более точным и требует меньше времени. Программное обеспечение компьютера учитывает каждую деталь конструкции дома и как это влияет на приток и отвод тепла. Программное обеспечение довольно дорогое, поэтому многие подрядчики все еще гадают и надеются на лучшее.

Один из основных законов термодинамики заключается в том, что тепло перемещается из более теплой области в более холодный район. Когда на улице холоднее, чем внутри дома, тепло распространяется наружу. В нагревать выходящий наружу называется потерей тепла. При этом в дом добавляется тепло постоянно такими вещами, как бытовая техника, солнце, сияющее в окне, или людьми. Если тепло добавляется те источников меньше, чем выделяемое тепло, то необходимо добавить тепло от другого источника для поддержания желаемая температура.Количество тепла, которое необходимо добавить, называется тепловой нагрузкой.

Когда снаружи жарче, чем внутри, тепло извне передается в внутри дома. Это тепло плюс тепло от внутренних источников, упомянутых выше, называется в качестве поступления тепла в дома. Для поддержания заданной температуры необходимо отводить полученное тепло. В количество, которое необходимо удалить, называется охлаждающей нагрузкой.

Расчет нагрузки — это метод, используемый для определения этих нагрева и охлаждения. нагрузки.

Почему так важен правильный размер?

Кондиционер неподходящего размера может стоить вам по нескольким причинам. Уровень комфорта вашего дома будет система неправильного размера может нанести вред. Если система слишком мала, вы не будете способный для адекватного отвода явного тепла. (Вы не получите желаемую температуру в доме. заданного значения.) Если система слишком велика, установка не будет работать достаточно долго, чтобы адекватно удалить скрытые нагревать.(Воздух в доме будет иметь такое липкое ощущение, потому что уровень влажности воздуха будет оставаться слишком высокой.) Если ваша печь слишком мала, в вашем доме будет слишком холодно в самые холодные ночи. год. Если печь слишком большая, у вас, вероятно, будут горячие и прохладные точки по всей ее поверхности. дом.

Еще одна причина, по которой система неправильного размера будет стоить вам, — это закупочная цена оборудования. В основном, чем больше размер единицы (в тоннах или британских тепловых единицах в час), тем больше она будет стоить.Поэтому с негабаритный устройства, вы приобретете избыточную охлаждающую и / или тепловую мощность, которую никогда не будете использовать.

Негабаритная установка также будет стоить вам дороже в эксплуатации. Это происходит из-за эффективности системы. В рейтинг эффективности (SEER) дан для блока в расчетных условиях и в установившемся режиме работы. Обычно кондиционер примерно на 10% менее эффективен от запуска до установившегося режима существовать. Это устойчивое состояние не достигается, пока блок не проработает достаточно долго, чтобы покрыть внутреннюю поверхность. катушка (испаритель) с конденсацией.Обычно это может занять от пяти до пятнадцати минут.

Типы расчетов нагрузки

Расчет базовой нагрузки, называемый блочной нагрузкой, используется только для определения требуемого размера агрегата. Это выглядит по дому в целом и дает общую нагрузку.

На это влияет несколько факторов, например:


  • тип фундамента
  • тип и цвет крыши
  • значения теплоизоляции стен, полов и потолков
  • тип, расположение и количество окон
  • Тип, расположение и количество входных дверей
  • желаемая температура
  • район, в котором вы проживаете
  • Размер дома

Для более продвинутой версии расчета нагрузки требуется дополнительная информация, например, отдельная комната измерения.Это называется комнатой в расчете на комнату, и он дает вам не только размер оборудования. но также проектирует систему воздуховодов с учетом потребностей каждой комнаты.

Важно знать, какая доля кондиционированного воздуха требуется в каждой комнате.

** ПРИМЕЧАНИЕ ** Во многих случаях требуемая пропорция будет меняться между нагревом и сезоны похолодания.

Как только вы узнаете, сколько воздуха требуется в каждой комнате, заслонки в системе воздуховодов можно отрегулировать, чтобы правильный воздушный поток через каждый регистр.Этот процесс обычно называют балансировкой воздуха, и он помогает к исключить большие перепады температур от комнаты к комнате в доме. Это приводит к более высокому уровню из комфорт.

** ГОРЯЧИЙ НАКОНЕЧНИК ** Правильная балансировка воздушного потока может сэкономить деньги на работе системы.

Расчет нагрузки на комнату по комнатам имеет решающее значение для домов с более чем одним этажом. Если этого не сделать, результатом может стать большая разница температур полов в доме.

Вы устали от возмутительных счетов за электричество, газ или другую энергию? Наше энергосбережение Анализ проведет вас за руку для осмотра дома. Вы сможете найти много Это проекты, которые могут снизить ваши счета за электроэнергию.

Другой тип расчета называется рейтингом энергопотребления дома. Этот используется в сфере недвижимости, чтобы предоставить потенциальным покупателям жилья сравнение относительных эффективность разные дома.

Калькулятор нагрузки

HVAC — Оцените размер вашей системы отопления / охлаждения (в БТЕ)

Калькулятор ОВК

Этот калькулятор нагрузки HVAC (также известный как калькулятор BTU) обеспечивает точную оценку реальной тепловой нагрузки для как для обогрева, так и для охлаждения . Кроме того, он дает рекомендации по оборудованию (тип системы отопления / охлаждения, подходящий для вашего дома) и рассчитывает стоимость установки оборудования, включая труд и материалы!

Мы используем собственный алгоритм расчета BTU, который НЕ ЗАВЕРШАЕТ переоценку единичной мощности.Большинство онлайн-инструментов дают вам более высокую оценку тепловой нагрузки, чем вам на самом деле нужно для вашего дома, чтобы продать вам более дорогое оборудование.

Оценить нагрузку системы HVAC сейчас:

Расчетная нагрузка Охлаждение / нагрев: 0 БТЕ

Рекомендуемое оборудование Рассчитайте, чтобы увидеть результаты

Посмотреть цены в вашем районе Начните здесь — введите свой почтовый индекс

Как пользоваться калькулятором тепловой нагрузки

МАССИВНОЕ ОБНОВЛЕНИЕ (24 июня 2020 г.): Мы выпустили обширное обновление калькулятора, на разработку которого ушло более 150 часов, и теперь оно содержит более 900 строк кода! В этом новом выпуске представлены расчеты цен . и HVAC Equipment. Алгоритм рекомендаций , который предлагает рекомендации, основанные на вашем климатическом регионе, размере вашего дома, наличии (или отсутствии) воздуховодов и / или радиаторов плинтуса в вашем доме.

Хотя расчет тепловой нагрузки в BTU производился до этого обновления, многие домовладельцы не знали, какая система отопления и охлаждения им лучше всего подходит. Именно здесь наш новый алгоритм может дать разумную рекомендацию, которая включает как мощность системы (для отопления и охлаждения), соответствующий тип системы, так и затраты на энергию / топливо.

СОВЕТ ОТ ПРОФЕССИОНАЛА: Улучшение теплоизоляции дома (стен и чердака) и герметизация / изоляция воздуховодов окажет значительное влияние на нагрузку в БТЕ вашей системы охлаждения / обогрева.Экономия затрат на энергию для охлаждение и отопление может достигать 15-25%!

Мы также рекомендуем, ЕСЛИ вы планируете использовать результаты этого расчета тепловой нагрузки для принятия решений о покупке, вам СЛЕДУЕТ проверить результаты с помощью этого подробного онлайн-оценщика Manual J.

Несколько систем отопления / охлаждения: Еще одна важная новая функция — это расчет стоимости нескольких систем отопления / охлаждения, устанавливаемых в больших домах (более 3000 кв.футов), и указав систему (ы) HVAC с наибольшей возможной величиной в БТЕ, а затем систему наименьшего размера для оставшейся части общей нагрузки в БТЕ.

Например, если ваша тепловая нагрузка составляет 150 000 БТЕ, а максимальный размер центрального кондиционера в жилых помещениях составляет 60 000 БТЕ (5 тонн), тогда вам понадобятся два компрессора 60 000 БТЕ и система 30 000 (2,5 тонны). Алгоритм калькулятора выберет полноразмерную систему (ы) и систему наименьшего размера, чтобы покрыть остальную требуемую нагрузку в БТЕ, чтобы дать вам наиболее экономичную оценку.

Оценка стоимости установки: инструмент оценит общую стоимость установки для вашей новой системы HVAC, которая основывается на стоимости оборудования, а также в среднем по стране на оплату труда + накладные расходы + прибыль, которые сантехники / подрядчики HVAC взимают за каждый тип системы.

Запланированные новые функции: Теперь, когда механизм рекомендаций по оборудованию и расчет стоимости полностью функциональны, мы планируем добавить две последние функции:

1) Ориентировочная стоимость установки новых воздуховодов (при необходимости).
2) Оценка стоимости установки нового плинтуса или настенных радиаторов ИЛИ теплых полов (при необходимости).

Как рассчитать нагрузку HVAC


Важно, чтобы вы вводили точные / соответствующие данные в калькулятор БТЕ.Этот инструмент максимально приближает вас к сложной ручной оценке J. В противном случае вы можете получить слишком большую или слишком маленькую систему.

Шаг 1 (климатический регион): Выберите свой климатический регион, используя карту региона в верхней части калькулятора. Например, если вы живете в Нью-Йорке или Нью-Джерси, выберите Регион 3 (желтый). Если вы живете в Техасе, выберите регион 5 (красный) и т. Д.

Шаг 2 (Размер площади): Введите квадратные метры для вашего дома / здания или определенной площади, для которой вы выполняете расчеты.

Этот шаг Критический для точной оценки годовых нагрузок на отопление / охлаждение ваших систем HVAC! Если вы оставите все настройки по умолчанию и измените только регион с 1 на 5 и обратно, вы увидите огромное изменение нагрузки охлаждения / нагрева в БТЕ.

Шаг 3 (Помещения / Зоны): Введите количество Помещений / Зон, в которых вы хотите установить новую систему отопления / охлаждения.

Если вы планируете использовать центральную систему кондиционирования + воздушную печь (канальную) или центральный котел для отопления, количество зон не очень важно с точки зрения оценки тепловой нагрузки.

Это значение наиболее полезно для определения того, какой тип системы Ductless Mini-Split использовать.

Кроме того, в нашем руководстве по самостоятельной установке Mini Split мы обсуждаем плюсы и минусы использования многозонного по сравнению с установкой нескольких однозонных систем с тепловым насосом без воздуховода.

Шаг 4 (Высота помещения): Выберите среднюю высоту потолка вашего дома. В большинстве случаев это значение должно быть равно 8 футам. Однако, если у вас высокие потолки или соборные / сводчатые потолки, ОБЪЕМ вашего пространства будет выше.

Для соборных / сводчатых потолков сложите наименьшую высоту стены + высоту пика и разделите на 2, чтобы получить среднее значение. Например:

Ваша внешняя стена имеет высоту 8 футов, а самая высокая точка на потолке — 12 футов. В этом случае средняя высота потолка составляет 10 футов:
(12 + 8) / 2 = 10

.

Шаг 5 (класс изоляции): Большинство домов в США, построенных между 1978 и 2000 годами, будут иметь 4-дюймовые стойки с изоляцией стен R-13 и изоляцию крыши / чердака R-38.Если это соответствует вашему дому, оставьте это значение по умолчанию (Средняя изоляция стен R-13).

Если у вас новый дом с 6-дюймовыми шпильками, у вас будет изоляция R-18. В этом случае выберите значение «Больше среднего».

В большинстве случаев вам не следует использовать значение «Очень хорошо изолировано», если только у вас нет дома с «супер изоляцией».

Если у вас дом частично изолирован, выберите «Менее среднего» или «Плохо изолирован».

Эти два значения являются наиболее важными с точки зрения отопления, где потери тепла будут самыми высокими.Если ваша основная причина для установки новой системы отопления, вентиляции и кондиционирования воздуха — охлаждение, мы рекомендуем использовать значение «Меньше среднего», чтобы не перегружать ваше охлаждающее оборудование.

Шаг 6 (Windows): Выберите среднее количество окон в вашем доме. Если у вас ~ 1 окно или меньше, на каждые 8 ​​футов длины внешней стены выберите «Среднее количество».

Если у вас более 1 окна, на каждые 8 ​​футов длины внешней стены выберите «Больше среднего»

Шаг 6 (Герметичность окон / дверей): Выберите соответствующий уровень изоляции окон / дверей.В большинстве случаев оставьте это значение по умолчанию «Среднее».

Понимание результатов расчета нагрузки HVAC

В отличие от других онлайн-калькуляторов HVAC, мы предоставляем расчетную тепловую нагрузку (размер системы в БТЕ / ч) для как для отопления, так и для охлаждения , а также рекомендуемый тип и размер оборудования HVAC!

Вы получите ДВА результата:

1) Нагрузка на охлаждение и обогрев в БТЕ — это фактическое расчетное количество БТЕ в час и Тонны, необходимые для обогрева / охлаждения вашего помещения.
2) Тип оборудования для обогрева / охлаждения, наиболее подходящего для ваших нужд.

1) Расчетная тепловая нагрузка

Вы получите приблизительную нагрузку в БТЕ / тонны для вашего дома на основе информации, введенной вами в калькулятор, и вашего региона. Результаты по отоплению и охлаждению в БТЕ рассчитываются с использованием нашего оптимизированного алгоритма расчета в БТЕ, который является более «консервативным», чем может дать вам большинство подрядчиков по ОВКВ и продавцов оборудования.

В среднем эти значения будут на 20-30% ниже, чем «оценка подрядчика».Однако мы рекомендуем использовать меньшие числа по причинам, описанным выше.

2) Рекомендация по оборудованию HVAC

Наш калькулятор пытается предоставить наилучшее соответствие / рекомендации для оборудования, подходящего для вашей конкретной ситуации, на основе вашего климатического региона и других исходных данных.

Оборудование Рекомендация нуждается в дополнительных разъяснениях, поскольку ситуация каждого человека индивидуальна. В идеале этот калькулятор идеально подходит для нового строящегося дома, где у вас есть полный контроль над дизайном и спецификациями типа оборудования HVAC, которое будет использоваться.Однако большинство домовладельцев в США имеют дело с уже существующими домами, что накладывает определенные ограничения.

Прежде всего, если у вас есть система воздуховодов в вашем доме, центральная печь горячего воздуха AC + будет для вас наиболее рентабельной системой. В очень жарком климате печь можно заменить электронагревательной спиралью, которая будет обеспечивать теплый воздух в редкие холодные дни / ночи.

Если у вас нет воздуховодов и вы живете в климатических зонах 1, 2 или 3, лучшая система для отопления — это водогрейный котел с принудительной подачей воды (с плинтусами, настенными радиаторами или лучистым напольным отоплением), а лучшая система охлаждения — это многоступенчатая система отопления. -зональные бесканальные (мини-сплит) кондиционеры, которые экономичны и чрезвычайно эффективны.

В регионах 3, 4 и 5 очень редко бывает очень холодно. В этих областях зимы очень мягкие, а средняя низкая температура выше 0 градусов по Фаренгейту. Следовательно, высокоэффективная бесканальная (мини-сплит) система с тепловым насосом может (и должна) использоваться как для отопления, так и для охлаждения. Это наиболее экономичный * тип обогрева / охлаждения, который вы можете получить.

Тепловые насосы

Ductless могут как обогревать, так и охлаждать ваш дом при температуре окружающей среды до -15 градусов по Фаренгейту, и они довольно хорошо справляются с обоими задачами. Поскольку они могут обеспечивать отопление и делают это с использованием довольно небольшого количества электроэнергии (в 3-4 раза меньше, чем у электрических обогревателей), вам может не потребоваться установка дополнительной системы отопления, будь то печь или бойлер, что сэкономит вам около 7000-12000 долларов США + на установку.

Однако они не должны быть вашим ЕДИНСТВЕННЫМ источником тепла в климатической зоне 1 и 2, где зимой очень низкие температуры и часты перебои в подаче электроэнергии, поскольку бесканальные тепловые насосы работают на электричестве. Если у вас есть резервная система отопления (например, старый котел или газовая печь / печь на гранулах, и которая может проработать несколько дней без электричества в случае отключения электроэнергии, то вы можете использовать тепловые насосы в качестве основного источника отопления даже в более холодных регионах.

Большим преимуществом является то, что бесканальные системы являются «модульными» и работают на уровне зоны.Так что, если вы проводите большую часть дня в гостиной, нет необходимости охлаждать или обогревать весь дом! Вам нужно всего лишь запустить 1 зону. Ночью можно отключить зону гостиной и включить зоны в спальне (ах).

Более того, бесканальные системы также примерно в 2 раза более эффективны, чем даже современные высокоэффективные системы центрального кондиционирования, а это означает, что ваши счета за электроэнергию будут в 2 раза меньше! Фактически даже больше, чем в 2 раза, из-за зонирования, которое практически невозможно сделать с центральными системами кондиционирования воздуха.

* В то время как в большинстве южных штатов затраты на электроэнергию очень низкие (около 0,10–0,13 долларов США за кВтч), в таких местах, как Калифорния, затраты на электроэнергию часто превышают 0,30 доллара США за кВтч, а цены на PEAK могут достигать 0,50 доллара США за кВтч, a Бесканальная система кондиционирования / отопления идеальна, поскольку они часто в 2 раза более эффективны, чем центральная система кондиционирования, и вы можете кондиционировать только те части вашего дома, где вам действительно нужен прохладный или теплый воздух, вместо охлаждения / обогрева всего дома, в то время как вы сидите в гостиной!

Профессиональный совет: Если в вашем доме в настоящее время нет воздуховодов, а ваш дом одноуровневый (ранчо / мыс), то на чердаке можно установить воздуховоды и печь AC +, используя гибкие изолированные воздуховоды.Это намного дешевле, чем традиционные воздуховоды из листового металла, которые нужно устанавливать из подвала и распространять на все ваши комнаты, особенно если ваш дом состоит из нескольких уровней.

В этом случае установка Central AIR значительно дешевле, чем бесканальные тепловые насосы. Однако из-за огромной разницы в эффективности бесканальная система быстро покроет начальную разницу в расходах, сэкономив в среднем 40% эксплуатационных расходов!

Руководство по выбору размеров HVAC

Выбор системы HVAC подходящего размера для вашего дома / здания необходим для обеспечения достаточной мощности для обогрева или охлаждения вашего жилого пространства.Если ваша система отопления или охлаждения слишком мала, вы не получите достаточного количества БТЕ, и пространство не будет комфортным.

Если вы приобретете слишком большую систему, вы будете переплачивать за дополнительную емкость: Большая система = более высокая стоимость установки. Вы также будете слишком много платить за эксплуатационные расходы (будь то газ, электричество или нефть) в будущем.

Большинство подрядчиков по отоплению, вентиляции и кондиционированию воздуха / сантехнике не хотят тратить время на правильный расчет (с использованием ручного метода J) тепловую нагрузку и теплопотери вашего дома (или отдельных комнат).Таким образом, вместо того, чтобы прикрыть свои «основы», 99% профессионалов указывают на негабаритные системы (которые, как объяснялось выше, стоят дороже в установке и эксплуатации).

ПРИМЕЧАНИЕ. Большинство подрядчиков и дистрибьюторов оборудования используют НАДУТАННЫЕ значения БТЕ / ч при расчете тепловой нагрузки и размера агрегата (в тоннах / БТЕ), в первую очередь, чтобы прикрыть свою спину.

В нашем калькуляторе используются более низкие значения БТЕ / ч как для обогрева, так и для охлаждения, чтобы получить более «реальную» оценку тепловой нагрузки. Тем не менее, мы настоятельно рекомендуем , чтобы вы (или ваш подрядчик) выполнили ручной расчет тепловой нагрузки J вашего дома или определенной области, прежде чем принимать какие-либо решения о покупке!

Этот калькулятор предназначен для использования только в информационных целях!

Стоимость установки ОВК

Стоимость установки

HVAC варьируется в зависимости от региона и зависит от прожиточного минимума.Однако цены на оборудование в большинстве штатов примерно одинаковы. Вот типичные цены на системы центрального кондиционирования (центральный кондиционер + печь с горячим воздухом), водогрейные котлы или бесканальные системы Mini-Split.

Обратите внимание, , что центральная печь переменного тока и печь горячего воздуха могут быть установлены вместе или по отдельности. Однако, если у вас есть только центральный кондиционер, вам также понадобится система отопления. Поскольку система кондиционирования воздуха и печь штабелируются, они отлично работают вместе друг с другом.

Мы используем дом размером 2300 кв. Футов (в среднем по США для существующих односемейных домов) для оценки стоимости.

  • ЦЕНТРАЛЬНАЯ СТОИМОСТЬ AC: 4-тонная, 14 SEER Central Air стоит от $ 5 595 до $ 7 837 . Система оснащена электронагревателем. Включает удаление старого центрального конденсатора переменного тока и змеевика, а также повторное использование существующих медных линий и электрических соединений. Обновление до 16 SEER обойдется примерно в 800-1200 долларов.
  • ЦЕНТРАЛЬНЫЙ ВОЗДУХ (кондиционер + ПЕЧЬ): Комбинированная система центрального воздуха стоит от $ 7 976 до $ 11 171 за 4-тонный центральный кондиционер на 14 SEER с газовой печью 80 тыс. БТЕ и КПД 96%.Включает удаление старого центрального конденсатора переменного тока и змеевика, а также повторное использование существующих медных линий и электрических соединений.
  • КОТЛ (лучистое тепло): Котлы с принудительной подачей горячей воды, запуск 4683–6 130 долларов за обычный газовый / масляный котел ИЛИ 6934–10623 долларов за конденсационный котел со встроенным безбаквальным водонагревателем, например Navien, Bosch, Viessmann. Включает удаление старого котла и повторное использование существующих радиаторов / водопроводов.
  • БЕСПРОВОДНЫЕ ТЕПЛОВЫЕ НАСОСЫ: Мини-сплит-система для всего дома на 4-5 зон будет стоить 13 876–18 058 долларов.Эти системы могут очень эффективно обогревать и охлаждать ваш дом. Включает установку новых медных линий хладагента и электрическое соединение 240 В с 1 внешним компрессором и 4-5 внутренних «настенных агрегатов». Напольные, тонкие воздуховоды, потолочные кассетные внутренние блоки будут стоить 300-400 долларов за каждую зону. Оцените мини-сплит-стоимость в вашем районе.

Если вы хотите получить расценки на HVAC в вашем районе, позвоните некоторым местным установщикам HVAC, которых вы знаете, или ваша семья / друзья могут порекомендовать или запросить бесплатные оценки через нашу реферальную программу.

Выбор лучшей системы HVAC для вашего дома

Используйте следующие рекомендации, чтобы выбрать лучшую систему отопления / охлаждения для вашего дома.

Как упоминалось выше, если вы живете в северных климатических регионах, мы рекомендуем газовый котел для отопления и бесканальный (мини-сплит) кондиционер для охлаждения. Если у вас уже есть воздуховоды, в краткосрочной перспективе будет дешевле использовать центральную печь переменного тока + горячего воздуха.

Однако в некоторых случаях вы получите рекомендацию Mini Split как для охлаждения, так и для нагрева, но размер BTU будет другим.

Мы знаем, что эта часть сбивает с толку. Итак, давайте посмотрим на это подробнее:

Большинство мини-сплит-секций рассчитаны на основе их ХОЛОДИЛЬНОЙ способности. Мини-сплит 12000 БТЕ (1 тонна) будет иметь номинальную мощность около 12000 БТЕ / ч. Однако эти же агрегаты могут также НАГРЕВАТЬСЯ! И большинство более дорогих устройств Mini Split будут иметь гораздо более высокую теплопроизводительность!

Пример: 9000 БТЕ Fujitsu RLS3H (одна зона) имеет максимальную мощность нагрева 21000 БТЕ ! Поэтому, если вы живете в зонах 3, 4 и 5 и планируете установить бесканальную систему для всего дома, используйте размер ОХЛАЖДЕНИЯ при выборе оборудования.В большинстве случаев тепловых единиц будет более чем достаточно!

В регионах 1 и 2 вам необходимо внимательнее изучить технические характеристики вашего устройства. Однако в большинстве случаев в более крупных системах (2-8 многозонных установок) разница в BTU для нагрева и охлаждения не такая большая, как в приведенном выше примере. Следовательно, вам придется либо немного увеличить размер, либо установить несколько однозонных блоков по всему дому, чтобы получить максимальную эффективность и доступную мощность.

Если вы не уверены, какой тип системы отопления или охлаждения установить в вашем доме, получите 3–4 бесплатных оценки от местных профессионалов в области HVAC.

Мини-колена для холодного климата: хорошо ли греют?

Многие домовладельцы, желающие добавить эффективную систему отопления, которую можно было бы использовать в холодные месяцы года, очень скептически относятся к установке мини-сплит-теплового насоса. В конце концов, они в первую очередь используются для охлаждения. Однако реальность такова, что если вы приобретете мини-сплит-тепловой насос, РАЗРАБОТАННЫЙ для холодной погоды, он будет нагревать ваше пространство так, что вас удивит — вам будет очень тепло и приятно!

Вместо того, чтобы перечислять все «за» и «против», а также возможные сценарии, я приведу пример.Пять лет назад начальная школа Нью-Брук в Ньюфане, штат Вермонт, установила бесконтактные тепловые насосы + солнечные панели для ОТОПЛЕНИЯ и охлаждения здания с резервным пропановым котлом (только в те дни, когда температура ниже -4F). Это был беспрецедентный выбор отопления для школьного здания в этом районе, и многие люди были против. Однако обновление было окончательно одобрено и работает очень эффективно по сей день.

Это означает, что тепловые насосы могут производить достаточно тепла в холодном климате и быть экономичными! Соедините это с солнечной батареей на крыше, и вы получите бесплатное отопление через 5-8 лет.

Однако, если у вас пропадет электричество, вы можете остаться без тепла! Поэтому важно иметь запасной план, если вы живете в северном климате и хотите использовать для отопления мини-сплит-тепловые насосы!



Как рассчитать допустимую нагрузку на системы HVAC для больших домов

Расчет допустимой нагрузки для систем HVAC не всегда так прост, как вы думаете. Хотя общие квадратные метры — это обычно первое, о чем думают люди, важно, чтобы вы учитывали общие кубические футы при расчетах грузоподъемности системы отопления, вентиляции и кондиционирования воздуха.

Также необходимо, чтобы домовладельцы принимали во внимание тот факт, что каждый дом индивидуален. Региональные погодные условия, изоляция, воздушный поток, марка и модель оборудования и другие факторы, в конечном итоге, влияют на то, сколько кубических футов способна обработать система HVAC.

Если вы живете в Ричмонде, штат Вирджиния, и хотите получить точную оценку того, сколько блоков HVAC нужно установить в вашем доме, обратитесь к техническому специалисту Howell, чтобы получить точное измерение.

Как рассчитать кубические футы в большом доме

Вычислить кубические футы внутри вашего дома довольно просто.Общее практическое правило — умножать квадратные футы на высоту потолка. Если у вас есть чердак, сводчатые потолки или особенно высокие потолки, возможно, придется прибегнуть к другим расчетам. Но вы должны иметь приблизительное представление о кубических футах в вашем доме, используя этот базовый расчет.

Для расчета кубического пространства в комнате со сводчатыми потолками рассчитайте пространство до точки, в которой начинается свод. Затем, в зависимости от угла свода, умножьте квадратные футы комнаты на высоту сводчатой ​​области, а затем разделите полученное значение пополам.Добавьте пространство в сводчатой ​​области к пространству под сводчатой ​​областью, и вы получите приблизительную оценку кубических футов в комнате со сводчатым потолком.

Если вы живете в доме площадью 5 000 квадратных футов и имеете потолки высотой 10 футов на всех этажах, в вашем доме, вероятно, будет примерно 50 000 кубических футов воздушного пространства. Чем выше потолок, тем больше кубических футов воздуха будет в вашем доме.

Вот ссылка на очень простой калькулятор объема, который позволит вам рассчитать кубические футы для каждой комнаты.

Почему имеет значение грузоподъемность системы отопления, вентиляции и кондиционирования воздуха

Если вы живете в большом доме и подумываете надстроить надстройку, первое, что вам следует сделать, — это связаться с компанией, занимающейся HVAC. Важно выяснить, сможет ли ваша система справиться с лишним пространством. В противном случае вам может потребоваться добавить мощности к вашей системе отопления, вентиляции и кондиционирования воздуха в дополнение к любому проекту по благоустройству дома, который вы планируете.

Система отопления, вентиляции и кондиционирования воздуха и домашний ремонт

Если вы не учитываете мощность HVAC при планировании или запуске проекта ремонта, вы, скорее всего, столкнетесь с некоторыми проблемами HVAC, которые часто возникают в больших домах.Вы также можете столкнуться с неожиданными и дорогостоящими расходами в самом конце проекта ремонта.

Нет ничего хуже, чем узнать постфактум, что ваша система HVAC нуждается в добавлении еще одного блока, чтобы иметь возможность справиться с лишним пространством. Если вы не планировали соответственно, вы можете найти это на собственном опыте, потому что ваша текущая система внезапно больше не способна эффективно нагревать и охлаждать дом. Или вы можете начать ощущать холодные и горячие точки в различных частях вашего дома.

Или ваши счета за электроэнергию могут внезапно резко возрасти, потому что система перенапрягает себя, чтобы учесть добавленное пространство. В любом случае, это то, что вы должны планировать в самом начале любого проекта ремонта.

Если вы думаете о мощности HVAC для проекта ремонта большого дома в Ричмонде, свяжитесь с одним из наших специалистов по HVAC, чтобы он дал вам профессиональную оценку.

Практическое правило для расчета мощности HVAC

Если вы живете в Ричмонде, штат Вирджиния, мы находимся в зоне 7 по погоде и температуре.Нам повезло, что мы живем в зоне с умеренным климатом, поэтому здесь обычно не бывает слишком жарко или слишком холодно в течение длительного времени. Ваша зона имеет огромное влияние на то, сколько тонн мощности HVAC потребуется вашей системе.

В общих чертах, вы можете оценить потребность в 1 тонне системы отопления, вентиляции и кондиционирования воздуха на каждые 400–800 квадратных футов пространства. Однако эту приблизительную оценку ни в коем случае нельзя использовать в качестве окончательного расчета. Каждый дом индивидуален. Получите профессиональное мнение, прежде чем принимать какие-либо решения относительно вашей системы HVAC.

Если у вас есть такая возможность, вы захотите иметь больше емкости, чем вам нужно, а не меньше. Это поможет вашей системе не перенапрягаться в нормальных условиях и учесть любую потерю емкости, которая происходит с течением времени. Тепловые насосы серии York Affinity оснащены системами Energy Star мощностью от 2 до 5 тонн.

Не пытайтесь самостоятельно определить допустимую нагрузку на систему отопления, вентиляции и кондиционирования воздуха

Легко попасть в ловушку, пытаясь самостоятельно вычислить допустимую нагрузку на систему отопления, вентиляции и кондиционирования воздуха.Сделайте себе одолжение и обратитесь за помощью к профессионалу. Подумайте о том, чтобы получить оценки от нескольких уважаемых HVAC-компаний в Ричмонде, штат Вирджиния.

Свяжитесь с Howell’s Heating & Air, чтобы узнать больше о допустимой нагрузке HVAC для больших домов или получить оценку способности системы расширяться в результате ремонта дома. Мы те, кто позвонит, если вам нужны надежные услуги HVAC в Глен-Аллене или где-либо еще в этом районе. Свяжитесь с нами сегодня!

Практическое правило тепловой нагрузки

Определение размеров системы отопления или охлаждения следует начинать с оценки нагрузки на отопление или охлаждение.В настоящее время мы знаем физику, лежащую в основе теплопередачи, поэтому можем сделать довольно точные прогнозы того, сколько отопления и охлаждения потребуется зданию еще до его постройки. В 1800-х годах все было по-другому. У них не было кондиционирования воздуха (во всяком случае, в том виде, в каком мы его знаем сегодня), и инженерия систем отопления не была так хорошо развита.

Конечно, то, что мы, , можем точно рассчитать нагрузки, не означает, что это происходит так часто. Чертовски много домов рассчитывают свои системы HVAC на основе практических правил.Часто это всего лишь тонна мощности обогрева или охлаждения для некоторой площади пола в доме. Обычно здесь, на юго-востоке США, для кондиционирования воздуха используется одна тонна мощности на каждые 500 квадратных футов кондиционируемой площади пола.

Правило Миллса

Вчера я открыл свой еженедельный информационный бюллетень с сайта HeatingHelp.com и узнал о практическом методе расчета тепловых нагрузок, который на самом деле работает очень хорошо. Это называется правилом Миллса, и оно имеет гораздо больший смысл, чем современное правило 500 квадратных футов на тонну.Правило Миллса было названо правилом 2-20-200 из-за задействованных вычислений, и Дэн Холохан отлично справляется с рассказом истории в своем подкасте Dead Men Tales. (Я настоятельно рекомендую войти в их список рассылки или подписаться на подкаст, если вас интересует HVAC, прошлое и настоящее.)

  • Общая площадь остекления (окна) разделить на 2
  • Разделите общую площадь холодной поверхности (пол, стена, потолок) на 20
  • Разделите общий объем воздуха в здании на 200
Джон Миллс разработал правило 2-20-200 для тепловых нагрузок в зданиях XIX века.Щелкните изображение, чтобы прочитать о нем на сайте HeatingHelp.com.

Сложите эти три числа вместе, и вы получите эквивалентное прямое излучение (EDR) в квадратных футах. Для типичных условий отопления в этих зданиях XIX века каждый квадратный фут EDR обеспечивал здание 240 БТЕ тепла.

Обратите внимание, что это неверный расчет нагрузки, потому что он не использует фактические уравнения теплопередачи. На самом деле это просто практическое правило. Но он работал достаточно хорошо для тех старых зданий, потому что Миллс вычислил факторы (2, 20 и 200), которые привели к хорошему приближению тепловой нагрузки.На самом деле, я должен сказать, что это привело к хорошему приближению мощности пара тепла, которое им было необходимо в этих зданиях.

Почему современные эмпирические правила настолько плохи?

Я ничего не делаю с паровым обогревом, но эта история интересна в отличие от общего правила, основанного только на площади пола. Миллс учел всю площадь ограждающих конструкций здания, и именно здесь происходят теплопотери и приток тепла. Он также различал то, что Руководство J называет «непрозрачными панелями» и остеклением, потому что значения R этих компонентов были разными.А потом он учел инфильтрацию.

Нагрузка на охлаждение в этом доме с множеством окон с одной стороны может варьироваться на 50% и более только в зависимости от ориентации.

Сравните это с 500 квадратных футов на тонну. Единственная используемая площадь — это кондиционированная площадь пола. Что касается охлаждающих нагрузок, это меньше всего вас беспокоит. Дом получает намного больше тепла через стены и потолок. А часть кондиционированной площади в многоэтажном доме не будет иметь охлаждающей нагрузки. И площадь пола вообще ничего не говорит о проникновении.

Современное эмпирическое правило ничего не касается и с окнами, и они могут иметь огромное влияние на охлаждающую нагрузку. Например, дом на фотографии выше будет иметь значительно более высокую нагрузку, если сторона с окнами обращена на запад, а не на север.

У нас есть компьютеры и программное обеспечение, а также хорошие протоколы расчета нагрузки, такие как Manual J, поэтому я не призываю к лучшим практическим правилам. Я?

Эллисон Бейлс из Атланты, штат Джорджия, является спикером, писателем, консультантом по строительным наукам и основателем Energy Vanguard.Он также является автором блога Energy Vanguard и пишет книгу. Вы можете следить за ним в Твиттере по адресу @EnergyVanguard .

Статьи по теме

Тепло — вещь лишняя!

Есть инструкция J? Не думайте, что это правильно

Как читать вручную отчеты о вычислении нагрузки J

Почему отрасль HVAC не работает правильно?

ПРИМЕЧАНИЕ: Комментарии модерируются.Ваш комментарий не появится ниже, пока не будет одобрен.

Что такое расчет нагрузки HVAC?

При инвестировании в новую систему отопления, вентиляции и кондиционирования воздуха для дома в округе Пинеллас, Флорида, вы можете услышать термин «расчет нагрузки» и задаться вопросом, что он означает. При расчете нагрузки учитывается множество факторов, влияющих на температуру, от площади до окон и бытовой техники, чтобы определить, какой размер системы HVAC лучше всего подходит для вашего дома.

Расчет нагрузки

Расчет нагрузки — это то, как специалисты по HVAC определяют правильный размер оборудования HVAC в вашем доме, независимо от того, строите ли вы новый дом или устанавливаете новое оборудование HVAC.При расчете нагрузки учитываются многие факторы и получаются числа, которые представляют общие потребности вашего дома в отоплении и охлаждении. Раньше расчет нагрузки зависел только от площади в квадратных футах, но в последние годы формула стала более сложной и точной.

Факторы, влияющие на потребности дома в отоплении и охлаждении

Площадь в футах — это только один из аспектов расчета нагрузки. К другим факторам относятся приборы, выделяющие тепло, такие как печи и стиральные машины, фундамент вашего дома, тип кровли, размер окон и их расположение, а также общие потери тепла в вашем доме.Когда профессионалы рассчитывают нагрузку на отопление и охлаждение вашего дома, они рассчитывают нагрузку не только для дома в целом, но и для каждой комнаты.

Почему важен правильный расчет нагрузки

Ваше оборудование HVAC должно быть подходящего размера, чтобы выполнять свою работу. Слишком маленький кондиционер не сможет охладить ваш дом, а слишком маленькая печь не согреет зимой. Если ваш кондиционер слишком большой, он остынет слишком быстро, чтобы удалить всю влагу из воздуха. А слишком большая печь будет нагреваться слишком быстро, что приведет к неравномерной температуре по всему дому.Вы получите более высокие счета за электроэнергию из-за того, как часто вам придется запускать свою систему отопления, вентиляции и кондиционирования воздуха.

Чтобы получить наиболее точный расчет нагрузки и рекомендации по системе, свяжитесь с Seneca Air Conditioning. Когда вы будете готовы купить и установить новую систему HVAC, у нас есть системы Carrier подходящего размера, идеально подходящие для вас.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *