по площади, по объему, в зависимости от температурного режима, материалов и размеров
Для расчета количества радиаторов существует несколько методик, но суть их одна: узнать максимальные теплопотери помещения, а затем рассчитать количество отопительных приборов, необходимое для их компенсации.
Методы расчета есть разные. Самые простые дают приблизительные результаты. Тем не менее, их можно использовать, если помещения стандартные или применить коэффициенты, которые позволяют учесть имеющиеся «нестандартные» условия каждого конкретного помещения (угловая комната, выход на балкон, окно во всю стену и т.п.). Есть более сложный расчет по формулам. Но по сути это те же коэффициенты, только собранные в одну формулу.
Есть еще один метод. Он определяет фактические потери. Специальное устройство — тепловизор — определяет реальные потери тепла. И на основании этих данных рассчитывают сколько нужно радиаторов для их компенсации. Чем еще хорош этот метод, так это тем, что на снимке тепловизора точно видно, где тепло уходит активнее всего. Это может быть брак в работе или в строительных материалах, трещина и т.д. Так что заодно можно выправить положение.
Расчет радиаторов отопления по площади
Самый простой способ. Посчитать требуемое на обогрев количество тепла, исходя из площади помещения, в котором будут устанавливаться радиаторы. Площадь каждой комнаты вы знаете, а потребность тепла можно определить по строительным нормам СНиПа:
- для средней климатической полосы на отопление 1м2 жилого помещения требуется 60-100Вт;
- для областей выше 60о требуется 150-200Вт.
Исходя из этих норм, можно посчитать, сколько тепла потребует ваша комната. Если квартира/дом находятся в средней климатической полосе, для отопления площади 16м
Запас по мощности в отоплении нужен, но не очень большой: с увеличением количества требуемой мощности возрастает количество радиаторов. А чем больше радиаторов, тем больше теплоносителя в системе. Если для тех, кто подключен к центральному отоплению это некритично, то для тех у кого стоит или планируется индивидуальное отопление, большой объем системы означает большие (лишние) затраты на обогрев теплоносителя и большую инерционность системы (менее точно поддерживается заданная температура). И возникает закономерный вопрос: «Зачем платить больше?»
Рассчитав потребность помещения в тепле, можем узнать, сколько потребуется секций. Каждый из отопительных приборов выделять может определенное количество тепла, которое указывается в паспорте. Берут найденную потребность в тепле и делят на мощность радиатора. Результат — необходимое количество секций, для восполнения потерь.
Посчитаем количество радиаторов для того же помещения. Мы определили, что требуется выделить 1600Вт. Пусть мощность одной секции 170Вт. Получается 1600/170=9,411шт. Округлять можно в большую или меньшую сторону на ваше усмотрение. В меньшую можно округлить, например, в кухне — там хватает дополнительных источников тепла, а в большую — лучше в комнате с балконом, большим окном или в угловой комнате.
Система проста, но недостатки очевидны: высота потолков может быть разной, материал стен, окна, утепление и еще целый ряд факторов не учитывается. Так что расчет количества секций радиаторов отопления по СНиП — ориентировочный. Для точного результата нужно внести корректировки.
Как посчитать секции радиатора по объему помещения
При таком расчете учитывается не только площадь, но и высота потолков, ведь нагревать нужно весь воздух в помещении. Так что такой подход оправдан. И в этом случае методика аналогична. Определяем объем помещения, а затем по нормам узнаем, сколько нужно тепла на его обогрев:
Рассчитаем все для того же помещения площадью 16м2 и сравним результаты. Пусть высота потолков 2,7м. Объем: 16*2,7=43,2м3.
Дальше посчитаем для вариантов в панельном и кирпичном доме:
- В панельном доме. Требуемое на отопление тепло 43,2м3*41В=1771,2Вт. Если брать все те же секции мощностью 170Вт, получаем: 1771Вт/170Вт=10,418шт (11шт).
- В кирпичном доме. Тепла нужно 43,2м3*34Вт=1468,8Вт. Считаем радиаторы: 1468,8Вт/170Вт=8,64шт (9шт).
Как видно, разница получается довольно большая: 11шт и 9шт. Причем при расчете по площади получили среднее значение (если округлять в ту же сторону) — 10шт.
Корректировка результатов
Для того чтобы получить более точный расчет нужно учесть как можно больше факторов, которые уменьшают или увеличивают потери тепла. Это то, из чего с деланы стены и как хорошо они утеплены, насколько большие окна, и какое на них остекление, сколько стен в комнате выходит на улицу и т.п. Для этого существуют коэффициенты, на которые нужно умножить найденные значения теплопотерь помещения.
Количество радиаторов зависит от величины потерь теплаОкна
На окна приходится от 15% до 35% потерь тепла. Конкретная цифра зависит от размеров окна и от того, насколько хорошо оно утеплено. Потому имеются два соответствующих коэффициента:
- соотношение площади окна к площади пола:
- 10% — 0,8
- 20% — 0,9
- 30% — 1,0
- 40% — 1,1
- 50% — 1,2
- остекление:
- трехкамерный стеклопакет или аргон в двухкамерном стеклопакете — 0,85
- обычный двухкамерный стеклопакет — 1,0
- обычные двойные рамы — 1,27.
Стены и кровля
Для учета потерь важен материал стен, степень теплоизоляции, количество стен, выходящих на улицу. Вот коэффициенты для этих факторов.
Степень теплоизоляции:
- кирпичные стены толщиной в два кирпича считаются нормой — 1,0
- недостаточная (отсутствует) — 1,27
- хорошая — 0,8
Наличие наружных стен:
- внутреннее помещение — без потерь, коэффициент 1,0
- одна — 1,1
- две — 1,2
- три — 1,3
На величину теплопотерь оказывает влияние отапливаемое или нет помещение находится сверху. Если сверху обитаемое отапливаемое помещение (второй этаж дома, другая квартира и т.п.), коэффициент уменьшающий — 0,7, если отапливаемый чердак — 0,9. Принято считать, что неотапливаемый чердак никак не влияет на температуру в и (коэффициент 1,0).
Нужно учесть особенности помещений и климата чтобы правильно рассчитать количество секций радиатораЕсли расчет проводили по площади, а высота потолков нестандартная (за стандарт принимают высоту 2,7м), то используют пропорциональное увеличение/уменьшение при помощи коэффициента. Считается он легко. Для этого реальную высоту потолков в помещении делите на стандарт 2,7м. Получаете искомый коэффициент.
Посчитаем для примера: пусть высота потолков 3,0м. Получаем: 3,0м/2,7м=1,1. Значит количество секций радиатора, которое рассчитали по площади для данного помещения нужно умножить на 1,1.
Все эти нормы и коэффициенты определялись для квартир. Чтобы учесть теплопотери дома через кровлю и подвал/фундамент, нужно увеличить результат на 50%, то есть коэффициент для частного дома 1,5.
Климатические факторы
Можно внести корректировки в зависимости от средних температур зимой:
- -10оС и выше — 0,7
- -15оС — 0,9
- -20оС — 1,1
- -25оС — 1,3
- -30оС — 1,5
Внеся все требуемые корректировки, получите более точное количество требуемых на обогрев комнаты радиаторов с учетом параметров помещений. Но это еще не все критерии, которые оказывают влияние на мощность теплового излучения. Есть еще технические тонкости, о которых расскажем ниже.
Расчет разных типов радиаторов
Если вы собрались ставить секционные радиаторы стандартного размера (с осевым расстоянием 50 см высоты) и уже выбрали материал, модель и нужный размер, никаких сложностей с расчетом их количества быть не должно. У большинства солидных фирм, поставляющих хорошее отопительное оборудование, на сайте указаны технические данные всех модификаций, среди которых есть и тепловая мощность. Если указана не мощность, а расход теплоносителя, то перевести в мощность просто: расход теплоносителя в 1 л/мин примерно равен мощности в 1 кВт (1000 Вт).
Осевое расстояние радиатора определяется по высоте между центрами отверстий для подачи/отведения теплоносителя.
Чтобы облегчить жизнь покупателям на многих сайтах устанавливают специально разработанную программу-калькулятор. Тогда расчет секций радиаторов отопления сводится к внесению данных по вашему помещению в соответствующие поля. А на выходе вы имеете готовый результат: количество секций данной модели в штуках.
Осевое расстояние определяют между центрами отверстий для теплоносителяЧтобы считать было проще, есть усредненные данные, по которым можно ориентироваться. Для одной секции радиатора с осевым расстоянием 50см приняты такие значения мощностей:
- алюминиевые — 190Вт
- биметаллические — 185Вт
- чугунные — 145Вт.
Если вы пока только прикидываете, какой из материалов выбрать, можете воспользоваться этими данными. Для наглядности приведем самый простой расчет секций биметаллических радиаторов отопления, в котором учитывается только площадь помещения.
При определении количества отопительных приборов из биметалла стандартного размера (межосевое расстояние 50см) принимается, что одна секция может обогреть 1,8м2 площади. Тогда на помещение 16м2 нужно: 16м2/1,8м2=8,88шт. Округляем — нужны 9 секций.
Аналогично считаем для чугунные или стальные баратери. Нужны только нормы:
- биметаллический радиатор — 1,8м2
- алюминиевый — 1,9-2,0м2
- чугунный — 1,4-1,5м2.
Это данные для секций с межосевым расстоянием 50см. Сегодня же в продаже есть модели с самой разной высоты: от 60см до 20см и даже еще ниже. Модели 20см и ниже называют бордюрными. Естественно, их мощность отличается от указанного стандарта, и, если вы планируете использовать «нестандарт», придется вносить коррективы. Или ищите паспортные данные, или считайте сами. Исходим из того, что теплоотдача теплового прибора напрямую зависит от его площади. С уменьшением высоты уменьшается площадь прибора, а, значит, и мощность уменьшается пропорционально. То есть, нужно найти соотношение высот выбранного радиатора со стандартом, а потом при помощи этого коэффициента откорректировать результат.
Расчет чугунных радиаторов отопления. Считать может по площади или объему помещенияДля наглядности сделаем расчет алюминиевых радиаторов по площади. Помещение то же: 16м2. Считаем количество секций стандартного размера: 16м2/2м2=8шт. Но использовать хотим маломерные секции высотой 40см. Находим отношение радиаторов выбранного размера к стандартным: 50см/40см=1,25. И теперь корректируем количество: 8шт*1,25=10шт.
Корректировка в зависимости от режима отопительной системы
Производители в паспортных данных указывают максимальную мощность радиаторов: при высокотемпературном режиме использования — температура теплоносителя в подаче 90оС, в обратке — 70оС (обозначается 90/70) в помещении при этом должно быть 20оС. Но в таком режиме современные системы отопления работают очень редко. Обычно используется режим средних мощностей 75/65/20 или даже низкотемпературный с параметрами 55/45/20. Понятно, что требуется расчет откорректировать.
Для учета режима работы системы нужно определить температурный напор системы. Температурный напор — это разница между температурой воздуха и отопительных приборов. При этом температура отопительных приборов считается как среднее арифметическое между значениями подачи и обратки.
Нужно учесть особенности помещений и климата чтобы правильно рассчитать количество секций радиатораЧтобы было понятнее произведем расчет чугунных радиаторов отопления для двух режимов: высокотемпературного и низкотемпературного, секции стандартного размера (50см). Помещение то же: 16м2. Одна чугунная секция в высокотемпературном режиме 90/70/20 обогревает 1,5м2. Потому нам потребуется 16м2/1,5м2=10,6шт. Округляем — 11шт. В системе планируется использовать низкотемпературный режим 55/45/20. Теперь найдем температурный напор для каждой из систем:
- высокотемпературная 90/70/20- (90+70)/2-20=60оС;
- низкотемпературный 55/45/20 — (55+45)/2-20=30оС.
То есть если будет использоваться низкотемпературный режим работы, понадобится в два раза больше секций для обеспечения помещения теплом. Для нашего примера на комнату 16м2 требуется 22 секции чугунных радиаторов. Большая получается батарея. Это, кстати, одна из причин, почему этот вид отопительных приборов не рекомендуют использовать в сетях с низкими температурами.
При таком расчете можно принять во внимание и желаемую температуру воздуха. Если вы хотите, чтобы в помещении было не 20оС а, например, 25оС просто рассчитайте тепловой напор для этого случая и найдите нужный коэффициент. Сделаем расчет все для тех же чугунных радиаторов: параметры получатся 90/70/25. Считаем температурный напор для этого случая (90+70)/2-25=55оС. Теперь находим соотношение 60оС/55оС=1,1. Чтобы обеспечить температуру в 25оС нужно 11шт*1,1=12,1шт.
Зависимость мощности радиаторов от подключения и места расположения
Кроме всех описанных выше параметров теплоотдача радиатора изменяется в зависимости от типа подключения. Оптимальным считается диагональное подключение с подачей сверху, в таком случае потерь тепловой мощности нет. Самые большие потери наблюдаются при боковом подключении — 22%. Все остальные — средние по эффективности. Приблизительно величины потерь в процентах указаны на рисунке.
Потери тепла на радиаторах в зависимости от подключенияУменьшается фактическая мощность радиатора и при наличии заграждающих элементов. Например, если сверху нависает подоконник, теплоотдача падает на 7-8%, если он не полностью перекрывает радиатор, то потери 3-5%. При установке сетчатого экрана, который не доходит до пола, потери примерно такие же, как и в случае с нависающим подоконником: 7-8%. А вот если экран закрывает полностью весь отопительный прибор, его теплоотдача уменьшается на 20-25%.
Количество тепла зависит и от установкиКоличество тепла зависит и от места установкиОпределение количества радиаторов для однотрубных систем
Есть еще один очень важный момент: все вышеизложенное справедливо для двухтрубной системы отопления, когда на вход каждого из радиаторов поступает теплоноситель с одинаковой температурой. Однотрубная система считается намного сложнее: там на каждый последующий отопительный прибор вода поступает все более холодная. И если хотите рассчитать количество радиаторов для однотрубной системы, нужно каждый раз пересчитывать температуру, а это сложно и долго. Какой выход? Одна из возможностей — определить мощность радиаторов как для двухтрубной системы, а потом пропорционально падению тепловой мощности добавлять секции для увеличения теплоотдачи батареи в целом.
В однотрубной системе вода на каждый радиатор поступает все более холоднаяПоясним на примере. На схеме изображена однотрубная система отопления с шестью радиаторами. Количество батарей определили для двухтрубной разводки. Теперь нужно внести корректировку. Для первого отопительного прибора все остается по-прежнему. На второй поступает уже теплоноситель с меньшей температурой. Определяем % падения мощности и на соответствующее значение увеличиваем количество секций. На картинке получается так: 15кВт-3кВт=12кВт. Находим процентное соотношение: падение температуры составляет 20%. Соответственно для компенсации увеличиваем количество радиаторов: если нужно было 8шт, будет на 20% больше — 9 или 10шт. Вот тут и пригодится вам знание помещения: если это спальня или детская, округлите в большую сторону, если гостиная или другое подобное помещение, округляете в меньшую. Принимаете во внимание и расположение относительно сторон света: в северных округляете в большую, в южных — в меньшую.
В однотрубных системах нужно в расположенных дальше по ветке радиаторах добавлять секцииЭтот метод явно не идеален: ведь получится, что последняя в ветке батарея должна будет иметь просто огромные размеры: судя по схеме на ее вход подается теплоноситель с удельной теплоемкостью равной ее мощности, а снять все 100% на практике нереально. Потому обычно при определении мощности котла для однотрубных систем берут некоторый запас, ставят запорную арматуру и подключают радиаторы через байпас, чтобы можно было отрегулировать теплоотдачу, и таким образом компенсировать падение температуры теплоносителя. Из всего этого следует одно: количество или/и размеры радиаторов в однотрубной системе нужно увеличивать, и по мере удаления от начала ветки ставить все больше секций.
Итоги
Приблизительный расчет количества секций радиаторов отопления дело несложное и быстрое. А вот уточнение в зависимости от всех особенностей помещений, размеров, типа подключения и расположения требует внимания и времени. Зато вы точно сможете определиться с количеством отопительных приборов для создания комфортной атмосферы зимой.
Возможно, вам интересно будет прочитать про расчет мощности котла или определение диаметра труб для системы отопления.
как рассчитать мощность самостоятельно, фото и видео подсказки
Содержание:
Каждого владельца квартиры или дома интересует, какое минимальное количество секций радиатора требуется для полноценного обогрева жилых и подсобных помещений, исходя из их площади. Чтобы получить ответ на данный вопрос, необходимо знать, как рассчитать мощность батареи отопления. Существуют как простые варианты вычислений, так и сложные формулы расчетов.
Особенности самостоятельного расчета мощности батарей отопления
Нижеприведенные способы, как рассчитать мощность радиаторов отопления, предназначаются для хозяев частных домовладений и жильцов квартир, а не для специалистов в сфере теплотехники. Поэтому инструкция будет по возможности простой и понятной, чтобы в ней мог разобраться каждый человек, который планирует монтировать отопительную конструкцию своими руками.Чем проще расчет мощности батарей, тем большей будет величина погрешности. Но с другой стороны для потребителей главной целью является обеспечение достаточной тепловой мощности. Ничего нет плохого в том, что в сильнейший зимний мороз данный параметр окажется больше, чем требуется.
В квартирах, жильцы которых платят за отопление в зависимости от площади, тепло не бывает лишним. А в домах, где имеются счетчики потребляемой тепловой энергии, несложно установить регулировочные дроссели и регуляторы температурного режима, приобрести которые можно в любой момент. Читайте также: «Счетчики тепловой энергии для квартиры».Что касается частных домов, то при наличии собственного котла излишняя мощность не приведет к финансовым потерям, поскольку все современные газовые и электрические теплоагрегаты оснащены термостатами, регулирующими теплоотдачу в соответствии с температурой в помещении (подробнее: «Тепловой расчет помещения и здания целиком, формула тепловых потерь»).
Даже в том случае, когда при проведении самостоятельных расчетов будет допущена серьезная ошибка, но в большую сторону, владельцу жилья она будет стоить нескольких излишне купленных секций батареи. Согласно последним данным, раз в несколько лет на отечественных просторах зимой сотрудники гидрометцентров фиксируют экстремально низкие температуры. По мнению специалистов, подобные явления в связи с изменением климата на планете будут происходить все чаще. По этой причине, делая расчет мощности батарей отопления, не следует опасаться ошибок в большую сторону.
Порядок расчета мощности радиаторов
Способ выполнения вычислений, как правило, зависит от того, какое оборудование планируется использовать. Если это электрические отопительные приборы, то у них имеются сопроводительные документы, в которых производители указывают их эффективную тепловую мощность.
При отсутствии паспорта на продукцию соответствующая информация имеется на сайте изготовителя. Нередко там же может находиться калькулятор, с помощью которого можно сделать расчет батарей отопления для конкретного объема помещения, а также определить основные параметры будущей отопительной конструкции.
Но при этом следует учитывать такой нюанс: практически всегда производители закладывают в компьютерную программу по вычислению величины теплоотдачи радиатора (конвектора или батареи) определенную разницу температур между помещением и теплоносителем — обычно на уровне 70 градусов Цельсия. К сожалению, для российских систем теплообеспечения такой параметр пока является недосягаемым.
В конце концов, потребители могут воспользоваться простым, правда, не очень точным расчетом, позволяющим узнать мощность батарей отопления с учетом количества секций.
Биметаллические отопительные радиаторы
В качестве примера взяты данные, имеющиеся на сайте завода «Большевик»:
- для секций, у которых межосевое расстояние составляет 500 миллиметров, теплоотдача находится на уровне 165 ватт;
- для 400-миллиметровых секций — 143 ватта;
- для 300-миллиметровых секций — 120 ватт;
- для 250-миллиметровых секций — 102 ватта.
Алюминиевые отопительные радиаторы
Чтобы ознакомиться с величиной мощности алюминиевых отопительных радиаторов, взяты данные для изделий ТМ Calidor и Solar от итальянских производителей:
- секция, имеющая межосевое расстояние 500 миллиметров, отдает максимум 182 ватта;
- 350-миллиметровые секции имеют теплоотдачу 145-150 ватт.
Стальные пластинчатые отопительные радиаторы
Как узнать мощность батареи отопления, если это стальные радиаторы пластинчатого типа, ведь у них отсутствуют секции? В данном случае при проведении расчетов учитывают длину стального пластинчатого радиатора отопления и межосевое расстояние. Помимо этого, производители рекомендуют обращать внимание на способ подключения батареи. Дело в том, что вариант врезки в отопительную систему влияет на тепловую мощность в процессе эксплуатации радиатора.Все, кого интересует величина теплоотдачи стальных пластинчатых батарей, могут посмотреть таблицу модельного ряда продукции ТМ Korad, изображенную на фото.
Чугунные отопительные радиаторы
С данными отопительными приборами все гораздо проще, поскольку у всех отечественных (российских) чугунных радиаторов межосевое расстояние подводок стандартно и составляет 500 миллиметров. Мощность чугунных радиаторов отопления при стандартной разнице температур, равной 70 градусам, равна 180 ватт на одну секцию.
Порядок расчета тепловой мощности
Знание тепловой мощности одной секции позволит узнать необходимое их количество, но как вычислить этот параметр.
В данной статье будут рассмотрено несколько вариантов, как сделать необходимые расчеты в зависимости от разных переменных:
Расчет мощности по площади
В его основе лежат санитарные нормы, согласно которым на 10 «квадратов» помещения должен приходиться 1 киловатт тепловой энергии (100 ватт на м²). При проведении расчета необходимо учитывать поправочный коэффициент, соответствующий определенному региону России. Например, для Якутии и Чукотки он равен 2, для Дальнего Востока составляет 1,6, а для южных областей и республик находится в пределе от 0,7 до 0,9 (прочитайте также: «Как рассчитать батареи отопления — количество и размер»).Разумеется, что подобный метод не может обеспечить абсолютную точность, поскольку:
- панорамный способ остекления в одну нитку значительно увеличивает потерю тепла по сравнению с тем, когда стена сплошная;
- несмотря на то, что расположение квартир внутри здания не учитывают, при наличии теплых стен при одинаковом количестве батарей в них будет намного теплее, чем в угловом помещении, имеющем стену, соприкасающуюся с улицей;
- расчет верен только в том случае, когда высота потолков не превышает 2,5 — 2,7 метра (стандартный параметр для квартир, построенных в советское время). Уточненных вычислений требуют помещения в сталинках, у которых трехметровые потолки. Кроме этого, в начале 20-го века во многих строящихся домах высота потолков достигала 4 — 4,5 метра.
В качестве примера будет приведен расчет количества секций чугунных батарей для комнаты размером 3 на 5 метров, которая расположена в доме, находящемся в Краснодарском крае.
Порядок действий следующий:
- сначала определяют площадь 3х5=15м²;
- потом вычисляют требуемую тепловую мощность отопления — 15м² х100Вт х0,7= 1050 ватт. 0,7 – региональный коэффициент;
- если мощность каждой секции составляет 180 ватт, тогда потребуется 1050: 180 = 5,83 секции. После округления до целых значений получается 6 секций.
Простые вычисления мощности по объему
Поскольку расчет мощности батареи отопления в зависимости от объема воздуха в помещении учитывает высоту потолка, он является более точным. На один кубометр требуется 40 ватт мощности отопительного оборудования.
Расчет производится для той же комнаты в Краснодарском крае при том, что ее построили с высотой потолков, равной 3,1 метра:
- прежде всего, вычисляют объем помещения 3х5х 3,1 = 46,5 кубометра;
- радиаторы должны обладать мощностью 46,5х 40 = 1860 ватт, а с учетом регионального коэффициента 1860х0,7 = 1302 ватта или 8 чугунных секций (1302: 180 =7,23).
Уточненные вычисления мощности по объему
Более точный расчет мощности батарей отопления производят c учетом разных переменных:
- количества окон и дверей. В среднем теплопотери по причине наличия одного окна стандартного размера составляют 100 ватт, а одной двери – 200 ватт;
- если помещение располагается в углу здания или в его торце, используют коэффициент 1,1 – 1,3, который зависит от толщины стен и материала их изготовления;
- для частных домовладений применяют коэффициент 1,5, так как в них отмечаются повышенные теплопотери через крышу и пол, поскольку снизу и сверху нет теплых квартир.
Теперь расчет мощности тепла для радиаторов отопления будет выполнен для помещения аналогичного по площади (как в Краснодарском крае), но находящегося в углу частного домовладения в Оймяконе, где средняя температура в январе опускается до — 54 градусов, а температурный минимум за все время наблюдений достигал 82 градусов мороза. Особо неприятный момент заключается в том, что дверь выходит на улицу и имеется окно.
Последовательность вычислений такая:
- поскольку известна базовая мощность, равная 1860 ватт, к ней прибавляют 300 ватт (окно плюс дверь) и получают 2160 ватт;
- так как дом частный, происходит потеря тепла за счет холодного пола и крыши — 2160х1,5 = 3240 ватт;
- угол дома вынуждает использовать коэффициент 1,3 и в итоге получится – 3240х1,3 = 4212 ватт;
- Оймяконский климат требует применения регионального коэффициента, равного 2 — 4212х2 = 8424 ватта.
Если радиаторы будут чугунными, то количество секций должно быть равным 8424: 180 = 46,8, а с округлением – 47. Поскольку длина секции составляет 93 миллиметра, то батарея растянется на 4,4 метра.
Видео о стандартах расчетов мощности батарей отопления:
Расчет мощности радиаторов: как рассчитать радиаторы отопления
Радиаторы отопления настолько привычные и настолько же важные элементы системы отопления, что без них невозможно представить современное жилье. Делая замену старых радиаторов на новые, либо устанавливая радиаторы другого типа мы сталкиваемся с рядом вопросов – как правильно рассчитать мощность, количество секций и выполнить монтаж радиаторов отопления? Безусловно лучше специалиста это не сделает никто, но хотя бы быть немножко информированным в этом вопросе, понимать и уметь выполнить расчет самому никогда не будет лишним, тем более ничего сложного в этом нет.
Главная задача любых радиаторов – это компенсация своей теплопередачей теплопотерь отапливаемого помещения.
Итак, произведем расчет мощности радиаторов двумя простыми способами.
Расчет мощности радиаторов (упрощенный способ)
(в расчет заложена средняя высота помещения 3 метра)
Компенсацию теплопотерь можно выразить так – каждые 10 м² обогреваемой площади помещения соответствует 1 кВт мощности радиатора (или 1 м2 =100 Вт). Данный показатель необходимо умножить на коэффициент 1,45 (в него заложены возможные утечки тепла через окна, не утепленные стены и т. д.) – для быстрого просчета данная формула вполне подходит.
Произведем расчет мощности радиаторов на примере комнаты и размером (5м * 4 м).
(5м * 4 м)=20 м2
20м2 *100 Вт = 2000 Вт.
2000Вт *1,45 = 2900 Вт.
Расчет мощности радиаторов (продвинутый способ)
(более точный учитывается фактическая высота помещения)
Произведем расчет мощности радиаторов на предыдущем примере.
1. Вычисляем объем помещения (V), перемножая длину, ширину и высоту (в метрах).
5м*4м*3м = 60м3 – получаем V помещения в м3.
2. Для нагрева одного кубометра в доме стандартной планировки (с деревянными окнами с не утепленными стенами и т. д.) в климатической зоне европейской части России, Украины и Беларуси, требуется 41Вт на 1м3 тепловой мощности.
Вычислим, какая мощность потребуется, для этого перемножим объем V и цифру 41:
V * 41=60м3 *41Вт = 2460 Вт.
3. Вычисленную мощность необходимо умножить на коэффициент теплопотерь, который составляет 1,2.
2460 Вт*1,2= 2952 Вт
Вычисленная цифра – это мощность теплоотдачи, которая должна быть у радиаторов, чтобы обогреть комнату.
Определяем количество радиаторов
Количество радиаторов должно соответствовать количеству окон в помещении.
В нашем примере, если вкомнате два окна, то нужны два радиатора мощностью
2952Вт х 2 = 1476 Вт
У каждого производителя радиаторов мощность теплопередачи разная, поэтому нужно исходить из конкретных цифр.
Если устанавливаются чугунные радиаторы (мощность каждой секции для радиатора МС- 140 составляет 160 Вт), то необходимо
1476/160=9.225 секций
два радиатора по 9 секций
Точно также можно рассчитать количество секций для алюминиевых и биметаллических радиаторов.
Если устанавливаются стальные панельные радиаторы 22-го типа, то данной мощности соответствует радиатор размером 500*800 мм. – т.е. нужны два радиатора таких размеров. Если в помещении одно окно, нужен один панельный радиатор 22-го типа размером 500*1600 мм.
Следует также учитывать важный момент – устанавливая более мощные радиаторы, мы снижаем нагрузку на котел отопления, поэтому лучше поставить радиатор с количеством секций на одну больше, а у панельных на один размер больше (обычно у стальных панельных радиаторов размеры идут с шагом 100 мм.).
Расчет мощности радиаторов, как рассчитать радиаторы отопления на inbud.ru
Расчет радиаторов отопления, как рассчитать количество секций радиаторы калукулятор
Главный критерий при расчете мощности радиаторов отопления — площадь помещения. Чем просторнее помещение, тем мощнее необходима теплоотдача. Расчет нужен для безошибочного измерения оптимальной теплоотдачи данного помещения. Отопление может использоваться как основное или дополняющее. Чтобы правильно рассчитать мощность нужны следующие вводные данные: площадь помещения, этаж, зональность, параметры ниши, высоту потолка, другие отопительные приборы. Радиаторы отопления обычно монтируются под всеми окнами, для предотвращения тепловых потерь и образования конденсата. Для угловых комнат стоит рассматривать более мощные модели, добавив 1-2 секции «про запас». Для высоких потолков (более 3 м), требуется добавочная тепловая энергия, учитывающаяся при расчетах. Немаловажно при расчете мощности батареи отопления учитывать наличие/отсутствие стеклопакетов и качество общей теплоизоляции помещения. Все эти характеристики необходимо учитывать при выборе оборудования.Формула, помогающая рассчитать должную тепловую мощность радиаторов в помещении с высотой потолков не более 3 м:
S пом. * 100 Вт / ∆T
где:/
S пом. — площадь помещения,
∆T — тепловой поток от одной секции.
Для основной отопительной системы (без дополнительных источников тепла) следует умножить всю площадь помещения на 100 Вт и разделить на тепло отдачу одной секции. Формула, по которой можно рассчитать мощность батарей в помещении с высотой потолков не менее 3 м :
S пом.* h * 40 / ∆T
где:
Sпом. — площадь помещ.,
∆T — отдача тепла одной секцией прибора,
H — высота потолка.
Есть и более простая формула: в помещении с единственной наружной стеной и одним стандартным окном 1 кВт мощности отопительного оборудования хватит для поддержания нормальной температуры на 10 кв.м.
Если же в помещ. 2 внешние стены — вам потребуется уже 1,3 кВт мощности на каждые 10 м2.
Стоит также заранее решить, где устанавливать радиатор, измерить высоту и длину подоконника, размеры ниши. После чего, подбирать тип, подходящий не только по мощности, но и по размерам.
Что такое межосевое расстояние радиаторов? Межосевое расстояние радиатора — это промежуток между серединой отверстий вход. и выход. коллекторов и прилагающимися соответствующими по размеру батарее трубами. Чаще всего встречается 2 размера — 500 мм либо 300 мм.
Оптимальные параметры монтажа:
а) промежуток от стояка до соединения с радиатором — от 30 сантиметров;
б) промежуток от пола до низа радиатора — от 15 сантиметров;
Как провести расчет мощности радиаторов отопления
Расчет мощности отопленияПри строительстве частного дома или капитальном ремонте квартиры всегда продумывается вопрос системы отопления и комплектующего его оборудования. Для комфортного проживания микроклимат помещения напрямую зависит от расчета количества радиаторов при определенной мощности системы отопления. Чтобы провести этот расчет, можно воспользоваться традиционными методами. Они, конечно же, близки к реальности, но дают определенную погрешность. Наиболее точным и удобным для многих стал расчет мощности радиаторов отопления калькулятором онлайн.
Базовые данные
Точный теплотехнический расчет довольно сложен, и его делают специалисты при проектировании системы отопления. Если заказать его проблематично, то простой расчет можно сделать самостоятельно.
Для его выполнения необходимо иметь базовую информацию:
- Изначально нужно знать размеры помещения, где будут устанавливаться радиаторы отопления:
- Длину.
- Ширину.
- Высоту.
- Затем нужно определиться с выбором батарей:
- стальные пластинчатые;
- чугунные;
- биметаллические;
- алюминиевые.
- В технической документации на каждый радиатор в характеристиках от завода-изготовителя значится тепловая мощность прибора. Это то количество тепла в ваттах, которое может выделить 1 модульный элемент секции за 1 час.
Для справки — один ватт равнозначен 0,86 калорий тепла.
- Чтобы рассчитать мощность радиаторов, необходимо воспользоваться нормативными значениями теплоотдачи каждой секции, а именно:
- Для чугунных батарей советского производства — 160 Вт.
- Алюминиевых с межосевой высотой в 500 мм — 200 Вт.
- Стальных панельных неразборных при длине 500 и 800 мм соответственно 700 и 1500 Вт.
Как провести расчет?
Разные климатические зоны нашей страны для обогрева квартир по типовым строительным нормам и правилам имеют свои значения. В зоне средней полосы на широте Москвы или Московской области для обогрева 1 квадратного метра жилой площади с высотой потолков до 3 метров потребуется 100 Ватт тепловой мощности.
К примеру, для обогрева комнаты в 20 квадратных метров нужно будет затратить 20×100 =2000 Ватт тепловой энергии. Если одна секция чугунной батареи имеет теплоотдачу в 160 ватт, то расчет количества секций будет выглядеть так: 2000:160=12,5. Значит, округляя, 12 секций или две батареи по 6 секций.
Аналогичные расчеты можно провести и для других типов радиаторов:
- алюминиевых;
- биметаллических;
- стальных.
Недостатки упрощенного расчета
Расчеты проводятся на основе формулУпрощенный расчет предполагает идеальные условия герметизации наших квартир. Однако здесь нужно учесть специфические особенности зимнего периода, а именно:
- Через оконные проемы может улетучиться до 50% поступаемого в квартиру тепла. Поэтому установка современных стеклопакетов значительно снизит теплопотери.
- Угловые квартиры требуют для обогрева больше тепла, так как их две стены обращены на улицу.
- В отопительный сезон система центрального отопления не всегда работает, как часы. Иногда возникают колебания температуры теплоносителя, экстремальные заморозки, незапланированные порывы или другие технические форс-мажорные ситуации. Установленные по расчету батареи не обеспечат свою полную мощность теплоотдачи. Поэтому при установке радиаторов их количество должно быть на 20% выше расчетного.
Онлайн-калькулятор
Расчет радиаторов отопленияОбратите внимание! Сегодня возможности интернета позволяют с помощью компьютера рассчитать мощность радиаторов отопления, учитывая все инновационные строительные технологии.
Формула онлайн-расчета аналогична стандартной, но немного видоизменена с учетом корректировочных коэффициентов. Они устанавливаются:
- На пластиковые окна, которые уменьшают потери тепла.
- На наружные стены — чем их больше, тем выше коэффициент.
- На высоту помещения. Если оно более 2,5 метров, то коэффициент увеличивается.
В базовом онлайн-расчете за основу взяты средние значения по каждому типу отопительных батарей, межосевое расстояние которых равно 500 мм. По теплоотдаче в стандартный расчет приняты данные:
- Для чугунных радиаторов — 145 Вт.
- Для биметаллических — 185 Вт.
- Для алюминиевых — 190 Вт.
Чтобы провести расчет, необходимо в компьютерную базу ввести все запрашиваемые данные:
- Площадь и высоту комнаты.
- Количество окон и наружных стен.
- Тип помещения и выбранного радиатора.
- Состояние и материал стен.
- Минимальную температуру на улице.
После заполнения полей онлайн-формы нужно нажать только опцию «Выполнить расчет», и через несколько секунд компьютер выдаст результат. Это очень просто и удобно. Онлайн-калькулятор можно найти на сайте производителя радиаторов.
Заключение
Упрощенный расчет мощности радиаторов системы отопления не учитывает множество внешних факторов, влияющих на потребность помещения в тепле. Для более точного расчета всегда можно обратиться к онлайн-калькулятору.
Чтобы не беспокоиться о своем здоровье и здоровье близких людей, нужно вовремя провести теплоизоляцию квартиры, поставить пластиковые окна и увеличить количество секций батарей на 20% от расчетного. Тогда морозы за окном точно не отразятся на температуре в вашем доме.
Расчет мощности радиаторов отопления
При планировании капитального ремонта в вашем доме или же квартире, а так же при планировке постройки нового дома необходимо произвести расчет мощности радиаторов отопления. Это позволит вам определить количество радиаторов, способных обеспечить теплом ваш дом в самые лютые морозы. Для проведения расчетов необходимо узнать необходимые параметры, такие как размер помещений и мощность радиатора, заявленной производителем в прилагаемой технической документации. Форма радиатора, материал из которого он выполнен, и уровень теплоотдачи в данных расчетах не учитываются. Зачастую количество радиаторов равно количеству оконных проемов в помещении, поэтому, рассчитываемая мощность разделяется на общее количество оконных проемов, так можно определить величину одного радиатора.
Следует помнить, что не нужно производить расчет для всей квартиры, ведь каждая комната имеет свою отопительную систему и требует к себе индивидуальный подход. Так если у вас угловая комната, то к полученной величине мощности необходимо прибавить еще около двадцати процентов. Такое же количество нужно прибавить, если ваша система отопления работает с перебоями или имеет другие недостатки эффективности.
Расчет мощности радиаторов отопления
- Чтобы узнать необходимую мощность умножьте площадь комнаты на 100 Вт
- Если в комнате радиатор расположен в глубокой открытой нише, то мощьность надо увеличить на 5%
- Если в комнате окно выходит на север и северо-восток, то мощьность надо увеличить на 10%
- Если в комнате батарея закрыта спложной панелью с горизонтальными щелами, то мощьность надо увеличить на 15%
- Если в комнате 1 окно и 2 наружные стены, то мощьность надо увеличить на 20%
- Если в комнате 2 окна и 2 наружные стены, то мощьность надо увеличить на 30%
Согласно строительным нормами и другими правилами необходимо затрачивать 100 Вт мощности вашего радиатора на 1 м2 жилплощади. В таком случае необходимые расчеты производятся при использовании формулы:
K = \frac {C * 100} {P}
P — Мощность (Вт)
К — Мощность одной секции радиаторной батареи (Вт)
С — Площадь помещения (м2)
Пример
Комната имеет 4 метра в длину и 3.5 в ширину. В таком случае площадь комнаты равна: 4 * 3.5 = 14 м2.
Мощность одной секции батареи заявлена производителем в 160 Вт.
Получаем: 14 * 100 / 160 = 8.75.
Полученную цифру необходимо округлить и получается, что для такого помещения потребуется 9 секций радиатора отопления.
Если же это угловая комната, то 9 * 1.2 = 10.8, округляется до 11. Если система теплоснабжения недостаточно эффективна, то добавляем 20% от первоначального числа: 9 * 20 / 100 = 1.8 округляется до 2.
Итого: 11 + 2 = 13. Для угловой комнаты площадью 14 м2, если система отопления работает с кратковременными перебоями понадобиться приобрести 13 секций батарей.
Точный тепловой расчет производится специалистам по специальным методикам, однако приближенный расчет необходимой тепловой мощности для средней полосы России, можно расчитать по приведенной ниже фотмуле:
P = (\frac {L_h*L_l*H_h} {2.7})/10
P — Мощность (кВт)
Lh — Длина помещения (метры)
Ll — Ширина помещения (метры)
Hh — Высота потолков помещения (метры)
1 кВт = 1000 Вт
Подбор размера радиатора можно производить в помощью приведенной ниже таблицы (см. колонку с желаемой температурой в комнате):
700С (750С / 650С) Теплоотдача на 1 погонный мерт радиатора (Вт) | ||||||||
---|---|---|---|---|---|---|---|---|
Температура комнаты | ||||||||
Тип радиатора | Высота радиатора | 100С | 120С | 150С | 180С | 200С | 220С | 240С |
РК 11 | 300 | 660 | 636 | 593 | 549 | 521 | 497 | 466 |
500 | 1005 | 968 | 901 | 835 | 793 | 755 | 709 | |
РКР 21 | 300 | 963 | 927 | 864 | 801 | 761 | 725 | 679 |
500 | 1457 | 1404 | 1308 | 1212 | 1151 | 1097 | 1028 | |
РККР 22 | 300 | 1234 | 1189 | 1108 | 1027 | 975 | 929 | 870 |
500 | 1861 | 1793 | 1670 | 1548 | 1470 | 1400 | 1312 | |
РККРКР 33 | 300 | 1748 | 1684 | 1569 | 1454 | 1381 | 1315 | 1233 |
500 | 2637 | 2540 | 3267 | 2192 | 2083 | 1983 | 1860 |
Расшифровка обозначения радиаторов
Например 333C/300-500 или 33V/300-500
Где: 33 — тип радиатора в миллиметрах; С — боковое подключение; V — нижнее подключение;
300 — высота радиатора в миллиметрах; 500 — длинна радиатора в миллиметрах.
Он базируется на том, что радиаторы отопления при серийном производстве имеют определенные размеры. Если помещение имеет высоту потолка равную 2.5 метра, то на площадь в 1.8 метров квадратных потребуется лишь одна секция радиатора.
Подсчет количества секций радиатора для комнаты с площадью в 14 метров квадратных равен:
14/1.8=7.8, округляется до 8. Так для помещения с высотой до потолка в 2.5м понадобится восемь секций радиатора. Следует учитывать, что этот способ не подходит, если у отопительного прибора малая мощность (менее 60Вт) ввиду большой погрешности.
Такой расчет применяется для помещений с высокими или очень низкими потолками. Здесь расчет ведется из данных о том, что для обогрева одного метра кубического помещения необходима мощность в 41ВТ. Для этого применяется формула:
К=О*41, где:
К- необходимое количество секций радиатора,
О-объем помещения, он равен произведению высоты на ширину и на длину комнаты.
Если комната имеет высоту-3.0м; длину – 4.0м и ширину – 3.5м, то объем помещения равен:
3.0*4.0*3.5=42 метра кубических.
Расчитывается общая потребность в тепловой энергии данной комнаты:
42*41=1722Вт, учитывая, сто мощность одной секции составляет 160Вт,можно расчитать необходимое их количество путем деления общей потребности в мощности на мощность одной секции: 1722/160=10.8, округляется до 11 секций.
Примерный растчет количества секций радиаторов для типового помещения:
N = \frac {S} {P} * 100
N — Количество секций
S — Площадь комнаты (м2)
P — Теплоотача (Вт)
— дробная часть округляется по правилам математического окруления
Если выбраны радиаторы, которые не делятся на секции, от общее число нужно поделить на мощность одного радиатора.
Обновлено:
Расчет реальной мощности радиатора отопления для дома
Информация о материале
1389
Каждый прибор отопления (радиатор, конвектор) обладает теплоотдачей – основным свойством, которое определяет возможность его использования для обогрева помещения (комнаты) в доме или квартире. Характеристика теплоотдачи зависит от конструкции и габаритов прибора, а указывается в технической документации (паспорте устройства) в Ваттах (Вт).
Например, для стального панельного радиатора Kermi FTV 22/500/1400 (тип 22, высотой 500мм, длиной 1400мм) указана паспортная теплоотдача 2702 Вт. Можно ли этот показатель использовать для подбора радиатора для обогрева помещения, у которого теплопотери 2700 Вт? По паспортным показателям – вроде бы подходит, бери и ставь. Так часто поступают продавцы техники для отопления, подбирающие покупателю радиаторы отопления по средним теплопотерям, бытовое значение которых принимается 100 Вт/м.кв. Т.е., для комнаты площадью 27 м.кв., покупателю порекомендуют радиатор отопления мощностью 2700 Вт, например, тот же рассмотренный Kermi FTV 22/500/1400. Насколько корректен такой подход с точки зрения современных методик расчета отопления? Ответу на этот вопрос и посвящена данная статья.
Прежде всего, нужно знать, что теплоотдача прибора отопления (кроме конструкции и габаритов) зависит от 3-х температур – подачи, обратки (для современных двухтрубных систем отопления) и температуре воздуха в помещении. Для расчета теплоотдачи радиатора отопления существуют специальные формулы, которые использовать в «прямом» виде уже нет необходимости, поскольку они уже учтены в современных автоматизированных программах тепловых расчетов. Поэтому, для упрощения рассмотрения, будем использовать данные одной из таких программ — Oventrop OZC, которой пользуются наши специалисты при выполнении проектов отопления для частных домов.
Паспортная теплоотдача большинства радиаторов и конвекторов отопления указывается для следующих параметров системы отопления:
— температура теплоносителя подающей линии (подача) +90 град.С;
— температура теплоносителя обратной линии (обратка) +70 град.С;
— температура в помещении +20 град.С.
Кратко эти параметры обозначаются 90/70/20. Т.е., для рассматриваемого радиатора Kermi FTV 22/500/1400, теплоотдача 2702 Вт указана для параметров 90/70/20 (не путать с 90/60/90 :).
Если в системе отопления, в которой будет работать этот радиатор, параметры такие, как указано, то его можно использовать в «чистом» виде, без термовентиля (об этом – ниже).
Для частных домов такие параметры теплоносителя не могут быть установлены, поскольку современные теплогенераторы (котлы отопления) – все низкотемпературные, с температурой подачи максимум +80 град.С (обратка +60 град.С). Расчетная температура в помещении обычно принимается более комфортная для человека — от +22 град.С до +24 град.С (по опыту запросов наших клиентов).
Т.е., теплоотдача радиатора отопления для комнаты в частном доме должна быть определена на параметры 80/60/22. Кроме того, на радиаторы обычно устанавливаются терморегуляторы (термоголовки) для поддержания постоянной температуры в помещении. Терморегуляторы ставятся на термовентиль, который может быть установлен отдельно или встроен в радиатор (обычно встраиваются в радиаторы с нижним подключением). Все эти условия, очевидно, повлияют на характеристики теплоотдачи радиатора, рассмотрим характеристики этого влияния на примере теплотехнического расчета в программе Oventrop OZC.
Параметры теплоносителя устанавливаются в общих данных рассчитываемой системы отопления:
На этой же вкладке программы устанавливается величина увеличения мощности отопительного прибора с терморегулирующим вентилем (в процентах), по умолчанию – это 15%. Т.е., при использовании комнатного регулятора отопления, мощность прибора отопления должна подбираться на 15% выше полученного номинального значения (далее программа делает это автоматически).
Расчетная температура воздуха в помещении указывается в соответствующей вкладке для каждого помещения отдельно:
После расчета теплопотерь для помещения (по введенным параметрам ограждающих конструкций – стен/полов/кровли/окон/дверей) программой подбираются приборы отопления (с заданными ограничениями по габаритам, чтобы помещались в габариты окон или других мест установки):
Как видно из примера, для помещения с теплопотерями 1650 Вт, подобран прибор отопления – стальной панельный радиатор Kermi FTV 22/500/1400, расчетная теплоотдача (по простому – мощность) которого указана 1662 Вт.
Таким образом, от паспортной теплоотдачи радиатора 2702 Вт осталось всего 1662 Вт – для помещения условно стандартного частного дома с параметрами теплоносителя 80/60, расчетной температуре в помещении +22 град.С и с «термоголовкой» на радиаторе. Разница между паспортной и реальной теплоотдачей составила 38%, что весьма существенная величина.
Приведенная расчетная теплоотдача радиатора получена при размещении его на наружной стене, под окном, открыто (без экрана, которым иногда декорируют радиаторы). При проведении расчетов, программа также позволяет учесть степень конвекции при размещении радиатора за экраном, под глубоким подоконником, как показано на вкладке.
При размещении радиатора в нише, уже понадобится Kermi FTV 22/500/1800 с той же теплоотдачей, а по паспорту у этого радиатора — 3474 Вт. Разница – больше половины – 52%.
Методика расчета учитывает размещение радиатора в других местах – на внутренней стене или под перекрытием. Так, при размещении на внутренней стене, понадобится радиатор Kermi FTV 22/500/1600 (при размещении его открыто), теплоотдача которого по паспорту 3088 Вт, т.е., больше расчетной на 44%.
1. Паспортной теплоотдачей для целей подбора радиатора отопления можно пользоваться для многоквартирного жилья, с параметрами теплоносителя 90/70 и планируемой температуре в помещении +20 град.С, а если планируется установка комнатного регулятора, то мощность радиатора должна подбираться на 15% выше требуемой.
2. Для частного дома паспортные параметры радиаторов отопления неприменимы в принципе, поскольку параметры теплоносителя 90/70 недостижимы. Наилучшим способом подбора радиаторов для помещений частного дома является выполнение проектных расчетов (т.е., выполнение проекта отопления). Если подбирать «на глаз», то нужно выбирать радиаторы с теплоотдачей, выше требуемой, минимум, на треть. Т.е., если для помещения нужен радиатор 2500 Вт, то подбирать нужно с паспортной теплоотдачей от 3325 Вт.
3. При размещении радиатора отопления открыто на стене, реальная теплоотдача радиатора для стандартного частного дома – на 38% ниже паспортной, при размещении на внутренней стене – на 44% ниже паспортной, если закрыть радиатор «экраном» — его теплоотдача будет вдвое ниже паспортной.
Как подобрать радиаторы для помещений | Руководства по дому
Радиаторы — это один из способов обогрева комнаты, в которой нет камина, центрального отопления или обогревателя плинтуса. Но они должны иметь правильный размер для наиболее эффективного использования энергии. Если радиатор слишком мал, он не сможет согреть людей в комнате. Если он слишком большой, он будет чаще включаться и выключаться, потребляя больше энергии.
Измерьте длину, ширину и высоту комнаты в футах. Умножьте все три значения, чтобы определить кубический размер пространства.Например, если у вас есть комната размером 12 футов в длину, 10 футов в ширину и 7 футов в высоту, умножение 12 на 10 на 7 дает 840 кубических футов.
Умножьте результат на 5 для радиаторов в гостиной и столовой, на 4 для спален или на 3 для кухонь и других помещений дома. Например, если умножить 840 кубических футов от спальни на 3, получится 2520.
Добавьте 15 процентов к результату, если комната выходит на север. Если в нем французские двери, добавьте 20 процентов, а если окна со стеклопакетами, вычтите 10 процентов.Например, поскольку спальня для радиатора выходит на север, вы добавляете 15 процентов к 2520, чтобы получить 2898, что является количеством БТЕ или британских тепловых единиц, которое ваш радиатор должен производить в час для адекватного обогрева комнаты.
Преобразуйте расчет BTU в ватты, потому что в спецификациях большинства радиаторов их тепловая мощность указывается в ваттах. Преобразование неточно, потому что БТЕ — это единицы тепла, а ватты — это единицы мощности.
Разделите количество БТЕ на 3,41. Например, если вы разделите 2898 БТЕ на 3.41, результат составляет около 850 Вт. Радиатор на 850 Вт необходим для выработки 2898 БТЕ в час, необходимых для помещения размером 12 на 10 на 7 футов, использованного в примере.
Ссылки
Писатель Биография
Аурелио Локсин профессионально пишет с 1982 года. Он опубликовал свою первую книгу в 1996 году и является частым автором многих онлайн-изданий, специализирующихся на потребительских, деловых и технических темах. Локсин имеет степень бакалавра искусств в области научных и технических коммуникаций Вашингтонского университета.
что нужно, чтобы согреться?
С наступлением холодов наступает сезон включения отопления, и, в зависимости от типа жилья, нам, возможно, придется прибегать к электрическим радиаторам для обогрева дома и комнат. Чтобы помочь вам выбрать необходимую мощность радиатора, ниже вы найдете калькулятор, который даст вам результат в зависимости от типа изоляции дома, квадратных метров, климата и помещения.
Имейте в виду, что значение мощности радиатора, показываемое калькулятором, будет минимальным, необходимым для предотвращения холода.
Рекомендуемая температура для вашего дома
Многие люди зимой злоупотребляют температурой, и это вызывает экспоненциальное увеличение стоимости счета за электричество, если у нас есть электрические радиаторы, печи, тепловые излучатели или любой другой тип отопления, работающий на электричестве.
Вот несколько рекомендаций по температуре, которым вы должны следовать, чтобы избежать резкого роста счетов за электричество в течение дня:
- Комфортная температура в гостиной: максимум 21 ° C или 22 ° C.
- Спальни: 20ºC
- Комфортная температура в коридорах и местах общего пользования: 18ºC 0 19ºC.
С наступлением ночи мы можем выключить отопление, если климат города, в котором мы живем, не очень холодный, а изоляция дома хорошая. В противном случае рекомендуется отрегулировать температуру нагрева до следующих значений:
- Спальни (пока мы спим): 17ºC
- Гостиная: 18ºC
- Коридоры и места общего пользования: 18ºC
Выполнение этих шагов предотвратит охлаждение дома ночью, а днем нам придется использовать гораздо больше энергии для его обогрева.
Как рассчитать мощность электрорадиаторов
При расчете мощности, необходимой для использования электрических радиаторов, мы должны принять во внимание ряд факторов, которые заставят нас нуждаться в большей или меньшей мощности. Ниже мы увидим, что это такое:
квадратных метров
Чем больше площадь помещения, тем больше мощность для нагрева объема холодного воздуха в помещении.
Тип климата
В зависимости от местности, где мы живем, зима будет более или менее суровой.Зима в Рейносе не такая, как в Малаге, поэтому вам придется это учитывать. Вот значения, которые мы будем использовать позже в формуле для расчета мощности радиаторов:
- Экстремальный холод: 20
- Очень холодно: 16
- Холодно: 15
- Мягкий: 13
Если вы не знаете, какой климат в местности, где вы живете, карта над этими линиями поможет вам узнать.
Остаться
Как мы видели ранее, в зависимости от типа помещения нам потребуется более или менее температура.Обычно до 20 ° C отапливают комнаты, в которых мы проводим больше времени, например, гостиную или спальни.
С другой стороны, необязательно так сильно обогревать проходы, такие как холл или коридоры, хотя не рекомендуется иметь большую разницу в температуре по сравнению с комнатами или каждый раз, когда мы переезжаем из одной комнаты в другую. другой мы заметим большой контраст в температуре. В идеале, поставить их на 19ºC
Вот значения, которые мы будем использовать в формуле в зависимости от комнаты:
- Гостиная, санузел: 1.1
- Спальня: 1
- Кухня, холл или коридоры: 0,9
Изоляция
Хорошая изоляция необходима для отопления дома зимой. Если у нас есть протечки в окнах и дверях, часть тепла, излучаемого системой отопления, будет потеряна, и нам потребуется гораздо больше энергии для обогрева дома.
Это значения, которые будут использоваться в формуле в зависимости от типа изоляции обогреваемой площади:
- Без изоляции: 12
- Регулярный: 14
- Хорошая изоляция: 12
Формула для расчета мощности электрорадиаторов
Теперь да, формула для расчета мощности электрорадиаторов:
Вт = ((Изоляция + Тип микроклимата) x Опора x м 2 x 250) / 86
Например, представим, что мы живем в Вальядолиде и хотим отапливать 10-метровую комнату. 2 , который хорошо изолирован. Формула будет выглядеть так:
Вт = ((12 +16) x 1 x 10 м 2 x 250) / 86 = 814 Вт
То есть нам понадобится радиатор или термоэмиттер как минимум такой мощности. Если вы купите 800 Вт, вы можете обогреть комнату, но вы никогда не достигнете желаемой температуры, потому что мощность будет ниже.
Если вы купите его мощностью от 900 Вт и выше, вы нагреете комнату раньше, и она также достигнет желаемой температуры, поэтому термостат радиатора автоматически выключит его, и вы в конечном итоге будете потреблять меньше электроэнергии, поскольку не будете постоянно работать максимум.
Ниже у вас есть несколько таблиц с уже рассчитанным коэффициентом Вт / м2, поэтому вам нужно только умножить его значение на квадратные метры помещения, которое нужно отапливать.
Корпус с теплоизоляцией:
Корпус без надлежащей теплоизоляции:
Виды электрообогрева
На сегодняшнем рынке существует множество продуктов для обогрева дома с помощью электричества. Ниже мы расскажем вам, что они из себя представляют, а также о плюсах и минусах каждого из них:
Излучатели тепловые
Тепловые излучатели — это алюминиевые радиаторы, в которых есть нагревательный элемент, который нагревается и почти сразу же излучает большое количество тепла, поэтому, если у нас есть одна из правильных мощностей, он нагреет комнату за короткое время.
Потребляют «мало» и цена у них средняя, так как это не самый дешевый вариант, но и не самый дорогой. Хоть они и стоят немного дороже, но мы сэкономим на счетах за электроэнергию в короткие сроки.
Это наиболее рекомендуемый вариант для непрерывного использования. Кроме того, у них обычно есть дисплей и кнопки для управления температурой или даже программирования мощности каждый час на каждый день недели, поэтому после программирования мы полностью забудем об этом и сэкономим еще больше.
Купить — Излучатели тепловые
Маслоохладители
Масляные радиаторы довольно тяжелые, потому что внутри находится масло высокой плотности, которое мы должны нагреть. Это имеет тот недостаток, что потребуется много времени, чтобы начать замечать, что он излучает тепло, а также требует гораздо больше энергии, чем в случае тепловых излучателей.
Преимущества масляных радиаторов в том, что они очень дешевы и что после их выключения, так как масло горячее, оно будет выделять тепло в течение нескольких часов без потери электроэнергии.
Мы рекомендуем этот тип радиатора только в том случае, если вы не хотите тратить много денег и должны использовать его для обогрева отдельной комнаты.
Купить — Маслоохладители
Нагреватель
Обогреватель обычно очень недорогой и имеет высокую мощность для немедленного обогрева небольших помещений, таких как ванная, что идеально подходит для использования во время принятия душа.
Хотя он быстро нагревается, он не очень эффективен, поэтому рекомендуется использовать его только в течение коротких периодов времени, поэтому он идеально подходит для ванных комнат или комнат, где нам нужно заниматься чем-то в течение нескольких часов.
Кроме того, поскольку они очень малы, их можно легко транспортировать и хранить.
Купить — Обогреватели
Тепловой насос
Тепловые насосы также известны как кондиционеры или сплит-кондиционеры. Несмотря на то, что они работают с электричеством, они очень эффективны, поскольку обладают большой теплопроизводительностью (в зависимости от качества каждой модели), а благодаря инверторной технологии они потребляют энергию умеренно, что позволяет без проблем обогревать большие помещения. .
В качестве единственного недостатка тепловой насос имеет высокую цену (от 300 евро за базовые модели с несколькими холодильниками) и требует установки, что является еще одной добавленной стоимостью. В качестве преимущества, помимо использования его для обогрева зимой, мы также можем использовать его летом, чтобы поддерживать прохладу в комнате, осушать или использовать его только в режиме вентилятора.
Если ваш бюджет позволяет, это один из наиболее рекомендуемых вариантов для постоянного использования.
Это наиболее распространенные типы электрического отопления.Если электричество вам не подходит, мы рекомендуем вам поискать альтернативы, такие как голубое пламя, каталитические или даже керосиновые печи.
Советы по экономии электроэнергии
В силу жизненных обстоятельств мне пришлось перейти на электрическое отопление в трехэтажном двухквартирном доме, в котором мы будем использовать только следующие комнаты:
- 2 офиса (второй этаж)
- Спальня (второй этаж)
- Санузел (второй этаж)
- Кухня (второй этаж)
Остальная часть дома остается закрытой, как на уровне ставен, так и на уровне дверей.Таким образом мы избегаем того, чтобы холод, который они имеют, передавался в горячую часть дома, и радиаторы теряли свою эффективность.
Что касается электрического отопления, мы выбрали следующую конфигурацию:
- Кабинет: 1 радиатор 800Вт
- Офис 2: 1 радиатор 500Вт
- Спальня: 800Вт
- Плита: 1300 Вт
- Вестибюль: 1 радиатор мощностью 500Вт
Всего имеется 5 радиаторов, суммарная мощность которых составляет 3900 Вт и равномерно обогревает дом.Кроме того, по мере повышения температуры чердак нагревается без необходимости какого-либо обогрева, в то время как первый этаж, который является самым холодным, поддерживается теплым с помощью комбинации из двух радиаторов мощностью 1300 Вт + 500 Вт.
С точки зрения электричества это может быть разорение, но из-за необходимости менять газовую установку и обновлять котел было невыгодно вкладывать более 2000 евро за один раз, чтобы провести одну зиму, поэтому решением было использовать электричество.
Чтобы сэкономить как можно больше, я заключил тариф с почасовой дискриминацией, в котором я получаю 8 часов в день по очень низкой цене в кВт / ч.В частности, я перешел с 0,15 евроцента за кВт / час на 0,08 евроцента, так что экономия значительная.
Эти 8 часов распределяются следующим образом:
- С 9:00 до 15:00: обогреваем дом радиаторами на полную мощность и температурой 24ºC, так как стоимость электроэнергии намного ниже.
- С 15:00 до 17:00: переводим радиаторы в режим ECO и температуру 21ºC. Так как в предыдущий период мы достигли 24ºC, они почти не включатся, и у нас будет комфортная температура.
- С 17:00 до 19:00: мы использовали оставшиеся два часа дешевой электроэнергии, чтобы снова прогреть дом и восстановить температуру на случай, если она упала.
- С 19 часов у нас тариф 0,16 евро за кВт / ч, но опять же, радиаторы будут работать в режиме ECO, поэтому они вряд ли включатся, и мы приедем ночью с нужной температурой.
Мы также пользуемся теплом, выделяемым бытовой техникой. Простое использование посудомоечной машины уже является хорошим нагревом, поскольку в течение часа она работает при постоянной температуре 50ºC, а затем оставляет остаточное тепло, которое сохраняется в течение нескольких часов, так что все это складывается.
В долгосрочной перспективе очевидно, что природный газ был бы более экономичным вариантом, но не в краткосрочной перспективе. Кроме того, мы всегда можем продать радиаторы после окончания зимы, чтобы вы окупили большую часть вложенных средств.
Расчет необходимой мощности для комнаты
Энергия 29 июн 2020Было бы полезно знать волшебную формулу, которая даст нам количество тепла, необходимое для обогрева отдельной комнаты или всего дома.К счастью, есть несколько формул, позволяющих приблизиться к фактическому результату, но они допускают некоторую погрешность. Почему предел погрешности? Это связано с тем, что не все дома одинаковы.
Чтобы рассчитать необходимое отопление, мы должны учитывать размер и объем дома, ориентацию, размер и количество окон, тип изоляции стен и крыши и т. Д.
ДВЕ ПОЛЕЗНЫЕ ФОРМУЛЫ
Обычно мощность, необходимая для электрического обогрева, рассчитывается в ваттах.
Мощность: умножьте площадь в футах на 10. Для комнаты 20 футов на 20 футов мы получим 400 квадратных футов, умноженные на 10, чтобы получить 4000 ватт. Количество ватт = площадь x 10.
Этот результат действителен для домов, в которых есть комнаты с высотой потолков 8 футов. В случае современных домов с потолками выше 8 футов, практическое правило расчета составляет 1,25 Вт на кубический фут. Принимая во внимание предыдущий пример, высота потолка 9 футов составит 400 кв.футов x 9 x 1,25 = 4500 Вт. Количество ватт = площадь x высота x 1,25.
Если вы подозреваете, что стены или потолок имеют дефекты теплоизоляции, вы можете добавить несколько процентных пунктов к расчету. То же самое можно сказать и о стенах с большими окнами. После выполнения расчетов для существующего дома нам может потребоваться добавить дополнительные обогреватели, такие как конвекторы или приточно-вытяжные устройства.
И наоборот, если комната имеет окна и хорошо ориентирована на солнце, мы можем придерживаться обычного расчета.
Наилучшая оценка потребностей дома в отоплении будет сделана сложением результатов для каждой комнаты.
В Северной Америке до сих пор можно встретить использование БТЕ / час в качестве меры мощности при обогреве. Формула для преобразования БТЕ в кВт следующая: P (кВт) = P (БТЕ / ч) / 3412,14.
Если в качестве источника тепла мы полагаемся исключительно на электрические плинтусы, их обычно устанавливают у основания окон, чтобы обеспечить наилучшее распределение тепла. В этом случае не стесняйтесь разделить общую требуемую мощность на количество окон в каждой комнате.
Для получения дополнительной информации о типе отопительного оборудования для конкретной комнаты или всего дома посетите следующую страницу.
Как рассчитать текущие расходы на отопление
Понимание и расчет ваших затрат на электроэнергию может быть сложной задачей. Для действительно точного анализа затрат в игру вступает целый ряд переменных, таких как качество вашей изоляции, местоположение вашей собственности, энергопотребление вашей энергосистемы и тариф вашего поставщика.Во время исследования легко заблудиться в этом лабиринте технического жаргона, но в большинстве случаев среднему человеку не нужно вдаваться в подробности при проведении расчетов. Если вы хотите узнать, как рассчитать текущие расходы на отопление, мы составили простые инструкции, которые легко применить на практике и которые могут помочь вам сделать более осознанную покупку вашего следующего прибора.
Расчет, который мы собираемся использовать, даст вам приблизительную стоимость эксплуатации электрического нагревательного прибора.Он не принимает во внимание какие-либо другие условия, такие как размер комнаты, изоляцию или степень вентиляции, но все же может предоставить вам среднюю цифру, которая поможет при сравнении продуктов. Для начала вам понадобится мощность прибора, которую вы хотите рассчитать. Для нашего примера предположим, что мы рассчитываем, сколько будет стоить эксплуатация электрического радиатора мощностью 1000 Вт в течение 1 дня.
1. Перевести ватты в кВт
Чтобы рассчитать текущие расходы, вам нужно преобразовать мощность прибора в киловатты; это можно сделать, просто разделив вашу мощность на 1000.В нашем примере мы делим радиатор мощностью 1000 Вт на 1000, чтобы получить 1 кВт.
Если бы мы использовали радиатор мощностью 1800 Вт, это было бы 1800/1000 = 1,8 кВт, или если бы мы использовали радиатор мощностью 450 Вт, это было бы 450/1000 = 0,45 кВт.
2. Умножить на количество часов использования
Затем вам нужно будет умножить значение в кВт на то, сколько часов, по вашему мнению, обогреватель будет использоваться каждый день. Скорее всего, это будет сильно отличаться в зависимости от сезона, но предположим, что мы планируем использовать наш радиатор мощностью 1 кВт в течение 6 часов в день, потому что сейчас зима и, вероятно, будет довольно холодно по утрам и вечерам.Умножив наш радиатор мощностью 1 кВт на 6, мы получим 6 кВт · ч (киловатт-часов) — это то количество энергии, которое он, как ожидается, будет использовать в течение дня.
Если бы мы планировали использовать радиатор мощностью 1,8 кВт в течение 4,5 часов, мы получили бы 1,8 x 4,5 = 8,1 кВт · ч. Или, если бы мы хотели использовать радиатор мощностью 0,45 кВт в течение 7 часов, мы получили бы 0,45 x 7 = 3,15 кВт · ч.
3. Умножить на пенс за кВтч
Здесь действительно может начаться различие, поскольку следующий шаг зависит от цен на электроэнергию, установленных вашим поставщиком. По данным Energy Saving Trust, по состоянию на март 2016 года средняя цена на электроэнергию составляла 13.86 пенсов за кВтч, поэтому для нашего примера мы округлим это значение до 14 пенсов. Эта информация обычно отображается в вашем счете за электроэнергию, поэтому вы можете легко подставить в уравнение ставки своего поставщика. Умножив ожидаемую цифру в кВтч на пенс вашего поставщика за кВтч, вы узнаете, сколько будет стоить эксплуатация вашего устройства. В нашем случае это будет 6 кВт · ч x 14 = 84 пенсов или 0,84 фунта стерлингов.
Стоимость работы радиатора мощностью 1,8 кВт в течение 4,5 часов составит 8,1 x 14 = 113 пенсов или 1,13 фунта стерлингов, а стоимость эксплуатации 0.Радиатор мощностью 45 кВт на 7 часов будет 3,15 x 14 = 44 пенсов или 0,44 фунта стерлингов.
4. Умножьте количество дней
Так как это дает вам приблизительные текущие расходы на один день, вы можете затем умножить это число на 7, чтобы получить ориентировочную стоимость за одну неделю, на 30 для среднего месяца или на 365 для годовой суммы. Мы установили, что радиатор мощностью 1000 Вт / 1 кВт стоит 84 пенни за 6 часов в день по тарифу 14 пенсов за кВт · ч. Приведенные ниже расчеты дают ориентировочную стоимость устройства за неделю, месяц и год, исходя из предположения, что он будет использоваться в течение 6 часов каждый день.
84 x 7 ÷ 100 = 5,88 £ в неделю
84 x 30 ÷ 100 = 25,20 £ в месяц
84 x 365 ÷ 100 = 306,60 £ в год
5. Создайте более реалистичную фигуру
Приведенные выше прогнозируемые затраты могут показаться выше, чем вы думаете, но они отражают нереалистичный, наихудший сценарий, предполагающий, что устройство работает с максимальной производительностью в течение всего часа работы, что абсолютно не соответствует действительности. Другие электрические устройства, такие как телевизоры и компьютеры, будут постоянно использовать электричество до тех пор, пока они не будут выключены, но такие приборы, как холодильники или обогреватели, имеют высокоточные термостаты, которые будут включать и выключать их в зависимости от температуры окружающей среды в комнате.На самом деле электрический радиатор, который мы использовали в нашем примере, может потреблять только около трети энергии, по оценкам, для того, чтобы время от времени поддерживать и повышать его температурный уровень.
Допустим, наш радиатор потребляет электроэнергию только треть времени, поэтому мы можем разделить эти цифры на 3.
(84 x 7 ÷ 100) ÷ 3 = 1,96 £ в неделю
(84 x 30 ÷ 100) ÷ 3 = 8,40 £ в месяц
(84 x 365 ÷ 100) ÷ 3 = 102,20 фунта стерлингов в год
Эти цифры более репрезентативны для расчета стоимости радиатора, но имейте в виду, что ваш радиатор может потреблять электроэнергию чаще, если он пытается поддерживать уровень тепла в комнатах с открытой планировкой или в плохо изолированных помещениях.
Что следует учитывать при расчете текущих расходов
Как только вы поняли, как рассчитать текущие расходы на отопление, вы можете использовать эти цифры в качестве основы для сравнения между другими электрическими нагревательными приборами в вашем доме, чтобы получить приблизительное представление о потенциальных расходах. Тем не менее, к этим расчетам рекомендуется относиться с недоверием по разным причинам, а именно из-за того, что вам нужно сделать так много предположений в процессе. Например, мы предположили, что будем включать обогреватель по 6 часов в день каждый день в году.Такой регламентированный образ жизни крайне редок! Продолжительность обогрева во многом зависит от погодных условий и смены сезонов, поэтому вы можете провести отдельные расчеты для более теплых месяцев, чтобы получить более точную цифру затрат. Может быть легче придерживаться меньших временных рамок, таких как дни или недели, которые намного проще сравнивать бок о бок, чем обобщать по месяцам и годам.
Если вы изучаете потенциальные эксплуатационные расходы на бытовую технику и обнаруживаете, что они довольно высоки, первым делом вам следует поискать поставщика энергии, который предлагает более низкую ставку.Это может иметь огромное значение: сравнивая с цифрами из шага 4, если бы вы работали с одним и тем же радиатором мощностью 1 кВт в течение 6 часов по тарифу 12 пенсов за кВт · ч, он стоил бы 72 пенсов за один день или 263 фунта стерлингов в год.
Все электрические обогреватели, которые мы храним в компании Electric Radiators Direct, отображают их мощность, так что вы можете сделать свои собственные прогнозы потенциальных затрат, если захотите. Не слишком зацикливайтесь на подсчете текущих расходов — если вы выберете радиатор с недостаточной мощностью для своего дома, вы можете в конечном итоге потратить еще больше на энергию, поскольку ваш обогреватель изо всех сил пытается обогреть комнату, для которой он не подходит.Воспользуйтесь нашим удобным калькулятором радиаторов, чтобы подобрать мощность, подходящую для вашего дома. По сравнению с традиционным центральным отоплением электрические радиаторы не требуют особого ухода и могут быть установлены своими руками, что исключает необходимость дорогостоящих звонков и затрат на установку. Если учесть, насколько энергоэффективны наши электрические радиаторы и как мало электричества им требуется для поддержания уровня тепла, вы можете сэкономить больше денег, чем вы думаете.
Space Calc (Калькуляторы) — Ян Маллет
Есть два эффекта, которые следует учитывать, когда мы работаем с капельными излучателями вместо обычных панельных излучателей: взаимное поглощение и взаимное отражение.В первом случае свет поглощается, преобразуется в тепло и переизлучается в виде теплового излучения. Во втором случае свет просто отражается прямо.
Это уже сложно, но проблема дополнительно усложняется тем фактом, что, когда происходит поглощение, энергия направляется по закону Стефана – Больцмана (см. Выше), который вводит четвертую степень температуры в геометрическую сумму, которую иначе можно трактовать. .
Чтобы решить эту проблему, мы используем симметрию в радиометрической величине яркости: поскольку каждая капля является «средней» и поскольку яркость не зависит от расстояния, приходящая яркость к данной капле от других капель должна быть такой же, как яркость, которая эта же капля испускает другие капли.
По определению, излучаемая яркость (\ (L_o \), «o» для «out») должна быть равна сумме излучаемого света (\ (L_e \), «e» для «испускаемого») и отраженного света. (\ (L_r \), «r» означает «отраженный»):
\ [ L_o = L_e + L_r \]Между тем, \ (L_r \) сам по себе — это просто доля (\ (1- \ epsilon \)) входящего излучения (\ (L_i \), «i» для «входящего»), которое отражает:
\ [ L_r = (1- \ epsilon) L_i \]Но теперь самое умное: хотя наша капля может излучать в другую каплю, эта другая капля также излучается обратно.Поскольку каждая капля является «средней», обе капли имеют одинаковую температуру, яркость и т. Д. В частности, входящее излучение от закрывающей капли на равно исходящему излучению, которое наша капля посылает обратно, то есть когда входящая направление — от закрывающей капли, \ (L_i = L_o \). Когда это не так, мы используем окружающее сияние пространства (\ (L_i = L_s \), «s» для «пространства»).
Назовите долю закрытых направлений «\ (f \)». В \ (f \) направлений наша капля перекрывается другой каплей, испускающей \ (L_o \).В \ ((1-f) \) направлений мы видим \ (L_s \). Следовательно, падающая на нашу каплю яркость в среднем составляет:
\ [ L_i = f \ cdot L_o + (1-f) L_s \]Мы можем заменить все это вместе и решить \ (L_o \):
\ begin {align} L_o & = L_e + L_r \\ & = L_e + (1- \ epsilon) L_i \\ & = L_e + (1- \ epsilon) (f \ cdot L_o + (1-f) L_s) \\ (1 — (1- \ epsilon) f) L_o & = L_e + (1- \ epsilon) (1-f) L_s \\ L_o & = \ left (\ frac {L_e + (1- \ epsilon) (1-f) L_s} {1 — (1- \ epsilon) f} \ right) \ end {align}Однако, что нас на самом деле будет интересовать, так это net radiance (\ (L_n \), «n» для «net»), разница между входящим и исходящим сиянием:
\ begin {align} L_n & = L_i — L_o \\ & = f \ cdot L_o + (1-f) L_s — L_o \\ & = (1-е) (Л_с — Л_о) \\ & = (1-f) \ left (L_s — \ frac {L_e + (1- \ epsilon) (1-f) L_s} {1 — (1- \ epsilon) f} \ right) \\ & = \ frac {1-f} {1- (1- \ epsilon) f} (\ epsilon L_s — L_e) \ end {align}Вспомните вышеупомянутый закон Стефана – Больцмана сверху (с \ (A_d \) и \ (r \) площадью поверхности и радиусом капли):
\ begin {align} \ Phi_e & = A_d \ cdot \ epsilon \ cdot \ sigma_ {sb} \ cdot T ^ 4 \\ & = 4 \ pi r ^ 2 \ cdot \ epsilon \ cdot \ sigma_ {sb} \ cdot T ^ 4 \\ \ end {align}Нам также нужно связать силу излучения капли с ее сиянием.3 \]
Поскольку мощность является производной энергии по времени, теперь мы можем объединить это уравнение с формулой из предыдущего раздела и проинтегрировать, чтобы получить энергию (или температуру) за время.
К сожалению, интеграция оказывается ужасной из-за члена \ (L_s \). Хотя это можно сделать в закрытой форме, результат плохой: все логарифмы и арктангенсы — и даже не определены в важных местах. Тогда это должно быть , инвертированное для \ (J (t) \).2} \]
Поскольку полная энергия, излучаемая единственной каплей за один проход за время \ (\ Delta t \), равна \ (J (0) -J (\ Delta t) \), полная энергия, излучаемая всеми каплями в течение того же времени \ (\ Delta t \) — это просто произведение уменьшения энергии капли и количества капель. (Если это не очевидно, попробуйте представить себе одну каплю в одной линии тока. Ее соседние капли не летают для всего \ (\ Delta t \), а капельки, которые будут выбрасываться во время \ (\ Delta t \) точно заполнит ту часть, для которой они не испускали.{-4/3} \]
Эффективность излучателя в случае отсутствия окклюзии может быть рассчитана при \ (t = 0 \) как:
\ [ \ text {Эффективность} = \ frac {\ Phi_ {n, f> 0} (0)} {\ Phi_ {n, f = 0} (0)} = \ frac {1-f} {1- (1- \ epsilon) f} \]Примечание: исходная, менее полная и менее правильная версия этого анализа была размещена здесь.
Важность дельты Т при расчете тепловой мощности
Если вы не знаете, как работает ваша система центрального отопления, Delta T особенно важна для того, чтобы помочь вам рассчитать, сколько энергии вам нужно будет произвести для обогрева дома.Delta T или Δt помогут вам с первого раза выбрать правильные радиаторы для вашего дома. Мы расскажем вам, что означает Delta T и его важность при расчете потребности в отоплении комнаты или вашего дома.
Что такое Δt (Delta T)?
Delta T или Δt относится к разнице температуры воды, циркулирующей в вашей системе центрального отопления, и комнатной температуры. При замене радиаторов в доме важно использовать правильный Delta T.Это связано с тем, что одни и те же радиаторы могут иметь разную мощность при разной температуре воды из-за используемого вами источника тепла.
Главное, что нужно помнить при попытке определить дельту Т, — это следующее уравнение:
Средняя температура радиатора минус заданная температура в помещении = Delta T
Δt50 против Δt60
Мощность радиатора обычно выражается в ваттах, а мощность вашего радиатора зависит от вероятной рабочей температуры системы.Выходной сигнал будет выражен как Дельта 60 (Δt60) или Дельта 50 (Δt50). Delta 50 — это стандарт Великобритании для всех бытовых газовых котлов. Если вы ищете новые, более возобновляемые системы отопления, вы также можете приобрести радиаторы с более низкой мощностью. Delta 30 и Delta 40 хорошо подходят для систем с более низкой температурой воды.
Почему стоит обратить внимание на низкотемпературное отопление?
Поскольку наши дома становятся все лучше изолированными, люди теперь переходят на низкотемпературные системы отопления. Эти новые, более возобновляемые системы отопления используют выходы Delta 30 и Delta 40, чтобы создать более экологичный нагревательный элемент.
Низкотемпературное отопление позволяет обогревать ваш дом более равномерно и с более постоянной скоростью. Кроме того, он бережно обращается с завязками кошелька! В то время как в традиционных системах отопления используется температура подачи от 75 ° C до 85 ° C, низкотемпературный нагрев может составлять от 35 ° C до 55 ° C.
Преимущества низкотемпературного нагрева
- Более рентабельно: в хорошо изолированном доме использование низкотемпературного отопления снизит потребление энергии.
- Меньше холодных углов: вся ваша комната будет нагреваться более равномерно с помощью низкотемпературной системы отопления.
- Практично: использование низкотемпературного обогрева означает, что вам не нужно выключать термостат на ночь. Это означает, что единственный раз, когда вам нужно будет отрегулировать термостат, — это когда вы отсутствуете на длительное время.
- Очиститель воздуха: при использовании низкотемпературной системы обогрева образуется меньше пыли. Это хорошая новость для всех, кто страдает аллергией, так как вы избежите ожогов, оставленных частицами пыли. Следовательно, это уменьшит раздражение чувствительных дыхательных путей.
Если вам нравится звук низкотемпературной системы отопления, обязательно обсудите этот вариант со своим сантехником. Сантехнические системы, в которых используются современные конденсационные котлы, обычно работают с Delta 50, поэтому вам нужно будет указать более низкую Delta T, если вы хотите создать более экологичную систему отопления.
Вы хотите перейти на «зеленую» систему отопления? Дайте нам знать в комментариях ниже.
Временные ряды потребности в тепле и эффективности теплового насоса для моделирования энергосистемы
В этом разделе описывается методология, лежащая в основе набора данных When2Heat.Сначала вводятся данные, которые служат входными данными для расчета потребности в тепле и временного ряда COP. Далее подробно представлены процедуры, применяемые для подготовки временных рядов потребности в тепле и временных рядов COP, соответственно. Наконец, указывается доступность кода.
Входные данные
Временные ряды настоящего набора данных основаны на данных о погоде из архива ERA-Interim, глобального атмосферного реанализа Европейского центра среднесрочных прогнозов погоды (ECMWF) 11 .Используются следующие параметры:
Температурные параметры извлекаются за период с 2008 по 2018 год с шестичасовым временным разрешением, а данные скорости ветра за все доступные годы (1979–2018 годы) извлекаются с месячным разрешением. Все параметры имеют пространственную сетку 0,75 × 0,75 °, что эквивалентно прибл. 28 × 17 км. Что касается скорости ветра, то для каждого местоположения определяется среднее значение всех отопительных периодов с октября по апрель с 1979 по 2018 год, что позволяет классифицировать их на «нормальные» и «ветреные» в следующих местах.
Для их пространственного агрегирования местные временные ряды взвешиваются с использованием геоданных населения из набора данных Eurostat GEOSTAT (http://ec.europa.eu/eurostat/web/gisco/geodata/reference-data/population-distribution-demography/geostat ). Эти данные изначально имеют разрешение 1 км² и, таким образом, изначально отображаются в сетке 0,75 × 0,75 ° данных ERA-Interim. Для окончательного масштабирования профилей спроса годовые данные о конечном потреблении энергии для отопления помещений и нагрева воды в жилых и нежилых зданиях извлекаются из базы данных ЕС по зданиям (http: // ec.europa.eu/energy/en/eu-buildings-database).
Временной ряд потребности в тепле
Временные профили потребности в тепле определяются тремя факторами: погодными условиями, свойствами здания и поведением людей. Его расчет может осуществляться либо статистическими методами, включая стандартные и эталонные профили нагрузки, либо физическими подходами (для обзора см. Fischer et al . 12 ). Для набора данных When2Heat была выбрана немецкая статистическая методология расчета стандартных профилей нагрузки газа, которая постоянно используется поставщиками газа для потребителей, не измеряющих ежедневные дозировки.Профили явно относятся к обогреву помещений и воды, и предполагается, что (1) работа газового котла соответствует первоначальной потребности в тепле и (2) здания с газовым отоплением являются репрезентативными для всего строительного фонда.
Методология стандартного профиля нагрузки газа была представлена BGW 7 и обновлена BDEW 8 . Хотя расчет дневных эталонных температур в равной степени включен в обе ссылки, расчет дневной потребности был уточнен в BDEW 8 , а расчет средней скорости ветра (для назначения различных профилей) и расчет почасовая потребность описана исключительно в BGW 7 .{amb}} {1 + 0,5 + 0,25 + 0,125} $$
(1)
Коэффициенты суточной потребности выводятся из эталонных температур с использованием функций профиля. Эти факторы спроса, f d, l , можно интерпретировать как немасштабированный дневной спрос, который нормируется следующим образом. {\ circ} C + {b} _ {вода} \ end {array} \ right \}, $$
(2)
с T 0 = 40 ° C .BDEW 8 представляет наборы параметров функции профиля, A, B, C, D , м пространство , b пространство , м вода , вода , для различных типов зданий, а именно для односемейных домов, многоквартирных домов и коммерческих зданий. Параметры для более или менее чувствительных к температуре профилей предоставляются для различных региональных погодных условий, которые связаны с местной скоростью ветра 7 .Таким образом, все местоположения группируются на основе усредненных данных скорости ветра ERA-Interim: для средних значений выше 4,4 м / с применяются сигмовидные функции для «ветреных» местоположений. В противном случае локации относятся к «нормальной» категории. На рис. 4 показан набор функций результирующего профиля.
Рис. 4Коэффициенты суточной потребности в тепле в зависимости от эталонной температуры. Примерные функции профиля для односемейных домов (SFH), многоквартирных домов (MFH) и коммерческих зданий (COM), а также для односемейных домов в ветреных местах (SFH_windy).Кроме того, отображаются коэффициенты суточной потребности в отоплении воды для частных домов (SFH_water).
Временные ряды почасовой потребности выводятся для каждого местоположения из дневных значений с помощью почасовых факторов спроса. BGW 7 представляет эти коэффициенты для различных типов зданий, десяти различных диапазонов температур и — в случае коммерческих зданий — различных дней недели (см. Стр. 55 для односемейных и многоквартирных домов и стр. 85–86 для коммерческих зданий). . Обратите внимание, что разные классы различаются по доле старых зданий и типу торговли, но здесь учитывается средний показатель по Германии.Эти факторы спроса можно интерпретировать как почасовые доли ежедневного спроса, то есть они составляют 100% в день. Для коммерческих зданий BGW 7 дополнительно выводит коэффициенты дня недели, которые масштабируют дневную потребность в соответствии с днем недели. На рисунке 5 показан выбор почасовых факторов спроса, в которые уже включены факторы буднего дня, то есть почасовые факторы каждого дня суммируются с фактором буднего дня в случае коммерческих зданий.
Рис. 5Коэффициенты почасовой нагрузки при различных диапазонах температур.Примеры функций для односемейных домов (SFH), многоквартирных домов (MFH) и коммерческих зданий (COM). Обратите внимание, что только факторы коммерческих построек зависят от дня недели.
Отдельные временные ряды для отопления помещений и воды представляют интерес, например, чтобы учесть их различные уровни температуры для расчета COP. В BDEW 8 независимый от температуры компонент сигмоидной функции, параметр D , и линейная функция для нагрева воды, \ ({m} _ {water} \ cdot {T} _ {d, l} ^ { ref} + {b} _ {water} \), связаны с расходом газа на нагрев воды.{\ circ} C \ end {array} \ right. $$
(3)
Что касается почасовых факторов спроса, то в BGW 7 нет такого явного различия между обогревом помещения и водой. Однако, если предположить, что при высоких температурах окружающего воздуха обогрев помещений не происходит, почасовые коэффициенты потребления для самого высокого диапазона температур (выше 25 ° C) связаны с нагревом воды. Следовательно, суточные коэффициенты нагрева воды умножаются на коэффициенты почасовой потребности при высоких температурах (включая коэффициенты рабочих дней для коммерческих зданий) для расчета временных рядов потребности в нагреве воды для каждого типа здания.Потребность в отоплении помещения рассчитывается как разница между общей потребностью в тепле и потребностью в нагреве воды. Таким образом, летом при почасовом разрешении возникают некоторые отрицательные значения, которые установлены на ноль.
Наконец, результирующие временные ряды пространственного спроса взвешиваются с использованием геоданных Евростата по населению, агрегируются по странам и нормализуются к среднему годовому спросу в один ТВт-час. Таким образом, погодные изменения за год приводят к тому, что точная годовая сумма нормализованного временного ряда колеблется около одного ТВт-ч.Для 2008–2013 годов, данные по которым доступны из базы данных ЕС по зданиям, профили дополнительно масштабируются с учетом годового конечного потребления энергии для отопления. Для жилого сектора временные ряды спроса на одно- и многоквартирные дома агрегированы с учетом соотношения 70:30. После масштабирования временные ряды для жилого и нежилого секторов агрегируются отдельно для отопления помещений и нагрева воды. Затем конечное потребление энергии для отопления преобразуется в полезную потребность в тепле, предполагая, что средняя эффективность преобразования равна 0.9, а временные ряды скорректированы с учетом перехода на летнее время и разных часовых поясов. Временные ряды по отоплению помещений и водонагревателям в конечном итоге агрегируются, но в набор данных также включаются отдельные временные ряды.
Временной ряд COP
COP тепловых насосов обычно зависит от температуры и условий теплопередачи в источнике тепла и на радиаторе, которые, в свою очередь, связаны с техническими характеристиками и изменяющимися погодными условиями.
Температурная зависимость COP для термодинамически идеального процесса описывается КПД Карно, который может быть уменьшен с коэффициентом качества для моделирования реальных процессов теплового насоса 13 .{2}, & WSHP \ end {array} \ right. $$
(4)
Для простоты ASHP с регулируемой скоростью не учитывались в регрессии, то есть включены только двухпозиционные модулирующие тепловые насосы. Обратите внимание, что эта лабораторная параметризация COP скорректирована с учетом реальной неэффективности в следующем.
Рис. 6Расчет кривых COP. Квадратичные регрессии выполняются по данным производителя 9 , различая тепловые насосы с воздушным источником (ASHP), тепловые насосы с грунтовым источником (GSHP) и тепловые насосы с грунтовыми водами (WSHP).{источник}. $$
(5)
В зависимости от температуры источника различают разные типы тепловых насосов. Для ASHP напрямую используется температура окружающего воздуха из набора данных ERA-Interim. Для GSHP данные производителя относятся к температуре рассола, а не к температуре грунта. Чтобы учесть передачу тепла от земли к рассолу, разница температур в 5 K вычитается из температуры грунта ERA-Interim. Для WSHP учитываются постоянная температура 10 ° C и разница температур 5 K для возможных промежуточных теплообменников.{amb}, & пол \, отопление \ end {array} \ right. $$
(6)
В случае водяного отопления предполагается постоянная температура радиатора 50 ° C в соответствии с немецкими полевыми измерениями 10 .
Рис. 7Расчет кривых нагрева. Собственные предположения сравниваются с литературными данными из Fischer et al . 14 и Набе и др. . 15 , различая радиаторы и системы теплого пола.HT: высокотемпературный; LT: низкотемпературный.
С помощью этих средних кривых нагрева вычисляются нереалистично малые перепады температур при относительно высоких температурах наружного воздуха. {- 1}, $$
(7)
где \ ({\ dot {Q}} _ {h, l} \) и \ ({\ dot {Q}} _ {h, c} \) обозначают пространственные и национальные временные ряды спроса на тепло, которые рассчитывается, как описано выше. P h, c — национальное потребление электроэнергии тепловыми насосами. Для простоты временные ряды COP не различают разные типы зданий, и здесь используется сумма нормализованных временных рядов потребности в тепле для разных типов зданий. Временные ряды COP для систем напольного и радиаторного отопления пространственно агрегированы относительно временных рядов потребности в отоплении помещений, тогда как временные ряды COP для водяного отопления пространственно агрегированы с использованием временных рядов потребности в водяном отоплении.
Постоянный поправочный коэффициент применяется ко всем временным рядам COP для учета таких реальных эффектов. Как показано в разделе «Техническая проверка», полученные временные ряды COP значительно отличаются от полевых измерений.