32А сколько киловатт выдержит – Тарифы на сотовую связь
1551 пользователя считают данную страницу полезной.
Информация актуальна! Страница была обновлена 16.12.2019
Сколько киловатт выдержит автомат для силы тока 16 Ампер, на 25, 32, 40, 50, 63 Ампер?
Сколько киловатт нагрузки выдерживают автоматические выключатели для на 1, на 2, на 3, на 6, на 10, на 20 Ампер?
Те самые автоматы могут быть однополюсными, двухполюсными, трёхполюсными 4-х полюсными.
Виды подключения автоматов разные, напряжение в сети может быть и 220-ь Вольт и 380-т.
То есть в начале надо определиться с этими показателями.
Ампер, это единица измерения силы тока (электрического).
Достаточно Амперы умножить на Вольты чтобы выяснить сколько кВт выдерживает автомат.
Та самая мощность, это сила тока умноженная на напряжение.
Автомат 16-ь Ампер, напряжение в сети 220-ь Вольт, подключение однофазное, автомат однополюсной:
Выдержит нагрузку 16 х 220 = 3520 Ватт, округляем в меньшую сторону и получаем 3,5 кВт.
Автомат 25 Ампер, 25 х 220 = 5 500-т Ватт, округляем 5,5 кВт.
32-а Ампера 7040 Ватт, или 7-ь кВт.
50-т Ампер 11000-ь Ватт, или 11 кВт (киловатт).
Или можно воспользоваться специальными таблицами (при выборе автоматов) с учётом мощности и вида подключения, вот одна из них, для ознакомления.
Сколько киловатт выдерживают электроавтоматы для разных значений силы тока?
Сила тока указанная на автомате в Амперах, означает что тепловой расцепитель разомкнет цепь если ток в цепи станет больше этого значения -10 Ампер, 16 Ампер, 25 Ампер, 32 Ампера и т.д.
Для однофазной сети в основном используются однополюсные и двухполюсные автоматические выключатели, номиналом от 1 до 50 Ампер (последние являются вводными на квартиру или дом) За редким исключением, по согласованию с энергоснабжающей организацией, и при технической возможности, на частные домовладения (дома, коттеджи) могут ставится автоматы и большего номинала, но чаще домашние мастера сталкиваются с автоматами имеющими ток отсечки от 1 до 50 Ампер, вот их возможности и рассмотрим.
Автоматический выключатель на 1 Ампер выдерживает 200 Ватт. (0.2 кВт)
Автоматический выключатель на 2 Ампера выдерживает 400 Ватт. (0.4 кВт)
Автоматический выключатель на 3 Ампера выдерживает 700 Ватт. (0.7 кВт)
Автоматический выключатель на 6 Ампер выдерживает 1300 Ватт (1.3 кВт)
Автоматический выключатель на 10 Ампер выдерживает 2200 Ватт (2.2 кВт)
Автоматический выключатель на 16 Ампер выдерживает 3500 Ватт (3.5 кВт)
Автоматический выключатель на 20 Ампер выдерживает 4400 Ватт (4.4 кВт)
Автоматический выключатель на 25 Ампер выдерживает 5500 Ватт (5.5 кВт)
Автоматический выключатель на 32 Ампера выдерживает 7000 Ватт (7.0 кВт)
Автоматический выключатель на 40 Ампер выдерживает 8800 Ватт (8.8 кВт)
Автоматический выключатель на 50 Ампер выдерживает 11000 Ватт (11кВт)
Но это продолжительная нагрузка, при привышении которой автомат должен отключится. При коротком же замыкании автомат отключится и при гораздо меньшей мощности потребителя. За это отвечает уже электромагнитный расцепитель.
Значения мощности в киловаттах одинаковы и для однополюсных и для двухполюсных автоматов рассчитанных на одинаковую силу тока используемых в однофазной сети 220 вольт.
Сколько киловатт выдержит автомат для силы тока 16 Ампер, на 25, 32, 40, 50, 63 Ампер?
Сколько киловатт нагрузки выдерживают автоматические выключатели для на 1, на 2, на 3, на 6, на 10, на 20 Ампер?
Те самые автоматы могут быть однополюсными, двухполюсными, трёхполюсными 4-х полюсными.
Виды подключения автоматов разные, напряжение в сети может быть и 220-ь Вольт и 380-т.
То есть в начале надо определиться с этими показателями.
Ампер, это единица измерения силы тока (электрического).
Достаточно Амперы умножить на Вольты чтобы выяснить сколько кВт выдерживает автомат.
Та самая мощность, это сила тока умноженная на напряжение.
Автомат 16-ь Ампер, напряжение в сети 220-ь Вольт, подключение однофазное, автомат однополюсной:
Выдержит нагрузку 16 х 220 = 3520 Ватт, округляем в меньшую сторону и получаем 3,5 кВт.
Автомат 25 Ампер, 25 х 220 = 5 500-т Ватт, округляем 5,5 кВт.
32-а Ампера 7040 Ватт, или 7-ь кВт.
50-т Ампер 11000-ь Ватт, или 11 кВт (киловатт).
Или можно воспользоваться специальными таблицами (при выборе автоматов) с учётом мощности и вида подключения, вот одна из них, для ознакомления.
Сколько киловатт выдерживают электроавтоматы для разных значений силы тока?
Сила тока указанная на автомате в Амперах, означает что тепловой расцепитель разомкнет цепь если ток в цепи станет больше этого значения -10 Ампер, 16 Ампер, 25 Ампер, 32 Ампера и т.д.
Для однофазной сети в основном используются однополюсные и двухполюсные автоматические выключатели, номиналом от 1 до 50 Ампер (последние являются вводными на квартиру или дом) За редким исключением, по согласованию с энергоснабжающей организацией, и при технической возможности, на частные домовладения (дома, коттеджи) могут ставится автоматы и большего номинала, но чаще домашние мастера сталкиваются с автоматами имеющими ток отсечки от 1 до 50 Ампер, вот их возможности и рассмотрим.
Автоматический выключатель на 1 Ампер выдерживает 200 Ватт. (0.2 кВт)
Автоматический выключатель на 2 Ампера выдерживает 400 Ватт. (0.4 кВт)
Автоматический выключатель на 3 Ампера выдерживает 700 Ватт. (0.7 кВт)
Автоматический выключатель на 6 Ампер выдерживает 1300 Ватт (1.3 кВт)
Автоматический выключатель на 10 Ампер выдерживает 2200 Ватт (2.2 кВт)
Автоматический выключатель на 16 Ампер выдерживает 3500 Ватт (3.5 кВт)
Автоматический выключатель на 20 Ампер выдерживает 4400 Ватт (4.4 кВт)
Автоматический выключатель на 25 Ампер выдерживает 5500 Ватт (5.5 кВт)
Автоматический выключатель на 32 Ампера выдерживает 7000 Ватт (7.0 кВт)
Автоматический выключатель на 40 Ампер выдерживает 8800 Ватт (8.8 кВт)
Автоматический выключатель на 50 Ампер выдерживает 11000 Ватт (11кВт)
Но это продолжительная нагрузка, при привышении которой автомат должен отключится. При коротком же замыкании автомат отключится и при гораздо меньшей мощности потребителя. За это отвечает уже электромагнитный расцепитель.
Значения мощности в киловаттах одинаковы и для однополюсных и для двухполюсных автоматов рассчитанных на одинаковую силу тока используемых в однофазной сети 220 вольт.
Электромонтажные работы проводимые нами всегда качественные и доступные.
Мы сможем помочь в расчете мощности автоматов (автоматических выключателей) и в их монтаже.
Как выбрать автомат?
Что нужно учитывать?
- первое, при выборе автомата его мощность,
определяется суммарная мощность подключаемых на постоянной основе к защищаемой автоматом проводке/сети нагрузок. Полученная суммарная мощность увеличивается на коэффициент потребления, определяющий возможное временное превышение потребляемой мощности за счет подключения других, первоначально неучтенных электроприборов.
Пример того как можно просчитать нагрузку в кухни
- электрочайник (1,5кВт),
- микроволновки (1кВт),
- холодильника (500 Ватт),
- вытяжки (100 ватт).
Суммарная потребляемая мощность составит 3,1 кВт. Для защиты такой цепи можно применить автомат 16А с номинальной мощностью 3,5кВт. Теперь представим, что на кухню поставили кофе машину (1,5 кВт) и подключили к этой же электропроводке.
Суммарная мощность снимаемая с проводки при подключении всех указанных электроприборов в этом случае составит 4,6кВт, что больше мощности 16 Амперного авто выключателя, который, при включении всех приборов просто отключится по превышению мощности и оставит все приборы без электропитания, Включая холодильник.
Выбор автоматов по мощности и подключению
Вид подключения | Однофазное | Однофазн. вводный | Трехфзн. треуг-ом | Трехфазн. звездой | |
Полюсность автомата | Однополюсный автомат | Двухполюсный автомат | Трехполюсный автомат | Четырех-сный автомат | |
Напряжение питания | 220 Вольт | 220 Вольт | 380 Вольт | 220 Вольт | |
V | V | V | V | ||
Автомат 1А | 0.2 кВт | 0.2 кВт | 1.1 кВт | 0.7 кВт | |
Автомат 2А | 0.4 кВт | 0.4 кВт | 2.3 кВт | 1.3 кВт | |
Автомат 3А | 0.7 кВт | 0.7 кВт | 3.4 кВт | 2.0 кВт | |
Автомат 6А | 1.3 кВт | 1.3 кВт | 6.8 кВт | 4.0 кВт | |
Автомат 10А | 2.2 кВт | 2.2 кВт | 11.4 кВт | 6.6 кВт | |
Автомат 16А | 3.5 кВт | 3.5 кВт | 18.2 кВт | 10.6 кВт | |
Автомат 20А | 4.4 кВт | 4.4 кВт | 22.8 кВт | 13.2 кВт | |
Автомат 25А | 5.5 кВт | 5.5 кВт | 28.5 кВт | 16.5 кВт | |
Автомат 32А | 7.0 кВт | 7.0 кВт | 36.5 кВт | 21.1 кВт | |
Автомат 40А | 8.8 кВт | 8.8 кВт | 45.6 кВт | 26.4 кВт | |
Автомат 50А | 11 кВт | 11 кВт | 57 кВт | 33 кВт | |
Автомат 63А | 13.9 кВт | 13.9 кВт | 71.8 кВт | 41.6 кВт |
Лучше обратится к специалистам чем допустить ошибку
На все виды услуг мы предоставляем гарантию.
Вызов электрика в городе Черкассы, все виды электромонтажа.
тел. (067)473-66-78
тел. (093)251-57-61
тел. (0472)50-19-75
Станьте нашим клиентом и вы убедитесь в качестве наших услуг.
Автомат 16а трехфазный сколько киловатт
Многие люди, решая, какой поставить автоматический выключатель, задумываются о количестве киловатт, потребляемых самым обычным электрооборудованием. Сколько киловатт выдерживает 16 амперный автомат, какую имеет мощность устройство, для чего он нужен и для какой фазы подходит? Об этом далее.
Емкость автомата и показатель мощности
В ответ на вопрос, 16 ампер сколько киловатт, стоит указать, что подобный автоматический выключатель может выдержать нагрузку на 3,5 кВт в однофазной сети и 18,2 кВт в трехфазной сети. Прибор на 32А — 7 и 36,5 кВт, устройство на 40А — 8,8 и 45,6 кВт, аппарат на 63А — 13,9 и 71,8 кВт соответственно. При этом напряжение питания в розетке в первом случае должно составлять не более 220 вольт, а во втором случае — не более 380 вольт.
Мощность или сила нагрузки — количество потребляемой энергии всеми электроприборами, которые подключены к одной линии. Чтобы рассчитывать это число, нужно взять токовую нагрузку и выбрать больший токовый номинал или равный получившемуся значению.
Обратите внимание! Мощность аппарата 16А равна 3520 Вт, 32А — 7040 Вт, 40А — 8800 Вт, 63А — 13860 Вт в однофазной цепи. Мощность аппарата 16А равна 6080 Вт, 32А — 12160 Вт, 40А — 15200 Вт, 63А — 23940 Вт в трехфазной цепи. Перевод в киловатты представлен в выше.
Характеристики автомата на 16 ампер
Имеет на своем корпусе маркировку номинального тока, коммутационной способности, класса токоограничения, номинальной отключающей способности и время-токовой характеристики срабатывания расщепительной системы. Значение номинального тока равно 16 ампер, что может быть понижено или увеличено при изменении температуры в соответствующую сторону. Показатель коммутационной способности равен 4500 и 6000 ампер для бытового агрегата, а токоограничения — 10 миллисекунд.
Назначение
Автоматический выключатель 25 ампер — устройство, основная задача которого обеспечивать безопасность электрической сети от действия сверхтока, то есть от короткого замыкания с перегрузкой. Главное предназначение аппарата заключается в обеспечении безопасности самого пользователя при использовании сети и электроприборов.
Подобное оборудование включается и выключается от электрической цепи. Чаще всего его используют, чтобы защитить электрическую плиту или другие кухонные нагревательные приборы.
Обратите внимание! Также он может быть использован, чтобы уберечь систему освещения, двигатель, трансформатор и электронный электроприбор.
Принцип действия
Главным элементом устройства является электромагнитный с тепловым расцепители. Первый гарантирует защиту от замыкания, второй — от перенапряжения. Электромагнитный прибор это катушка с сердечником, которая поставлена на специальной пружине и при нормальном режиме создает электромагнитный вид поля, притягивающий катушечный сердечник. В момент короткого замыкания электроток повышается и превышает номинально заявленный по техническим характеристикам. Этот ток проходит по катушке расцепителя и увеличивает поле. В результате цепь обесточивается.
Автоматический выключатель — прибор, благодаря которому исправно работает все электрическое оборудование в доме и в сети. Чтобы сделать расчет, сколько киловатт выдерживает автомат на 16, 32, 40 и 63 ампер, а также посмотреть их мощность, достаточно воспользоваться приведенной выше таблицей.
Для расчета мощности номинала трехфазного автомата необходимо суммировать всю мощность электроприборов, которые будут подключены через него. Например, нагрузка по фазам одинакова:
L1 5000 W + L2 5000 kW + L3 5000W = 15000 W
Полученные ваты переводим в киловатты:
15000 W / 1000 = 15 kW
Полученное число умножаем на 1,52 и получаем рабочий ток А.
15 kW * 1,52 = 22,8 А.
Номинальный ток автомата должен быть больше рабочего. В нашем случае рабочий ток 22,8 А, поэтому мы выбираем автомат 25 А.
Номинал автоматов по току: 6, 10, 16, 20, 25, 32, 40, 50, 63, 80, 100.
Уточняем сечение жил кабеля на соответствие нагрузке здесь.
Данная формула справедлива при одинаковой нагрузке по трем фазам. Если потребление по одной из фаз значительно больше, то номинал автомата подбирается по мощности этой фазы:
Например, нагрузка по фазам: L1 5000 W; L2 4000 W; L3 6000 W.
Ваты переводим в киловатты для чего 6000 W / 1000 = 6 kW.
Теперь определяем рабочий ток по этой фазе 6 kW * 4,55 = 27,3 А.
Номинальный ток автомата должен быть больше рабочего в нашем случае рабочий ток 27,3 А мы выбираем автомат 32 А.
В приведенных формулах 1,52 и 4,55 – коэффициенты пропорциональности для напряжений 380 и 220 В.
Материалы, близкие по теме:
Невозможно представить современный мир без электричества. В каждом доме работают различные приборы, и люди порой даже не задумываются о том, какую мощность потребляют все подключенные к электросети аппараты и устройства.
Бытовая техника настолько вошла в жизнь людей, что стоит какому-то прибору выйти из строя, как человек начинает нервничать, а некоторые даже впадают в панику.
Поскольку обычно в квартире или доме работает много различных приборов, то бесперебойная работа компьютера, холодильника или телевизора и других приборов часто приводит к превышению допустимых норм в электрических сетях, и в результате происходит короткое замыкание.
Назначение автоматических выключателей
Для того чтобы предотвратить такую ситуацию, и существуют выключатели автоматические. Наиболее распространенные и хорошо зарекомендовавшие себя — это выключатели фирмы АВВ. Внутри помещений обычно ставят автомат 16 ампер. Такие выключатели производятся в виде модулей, за счет чего их можно свободно монтировать в необходимом количестве и в нужном месте.
Лучше всего использовать специальные DIN-рейки, предназначенные для крепления на них выключателей. Любой человек, даже не слишком разбирающийся в электрике, сможет осуществить монтаж таких выключателей. Единственное, что нужно, это правильно подобрать номинал используемого прибора.
Помимо прочего, автоматические выключатели можно при необходимости дополнить различными датчиками дистанционного отключения, индикаторами срабатывания и пр., что в итоге сделает использование электроустановки более комфортным и долговечным.
Когда неожиданно в доме или квартире выключается электричество, то начинают искать причину. А она часто кроется в превышении допустимой нагрузки на сеть. Другими словами, в розетки включено намного больше электроприборов, чем было рассчитано при строительстве, либо чем было выделено на конкретного потребителя.
Так как же определить, какую нагрузку выдержит автомат на входе в дом или квартиру, либо на отдельно взятой группе потребления? Есть несколько несложных правил, и если следовать им, проблем с отключением электричества не должно возникнуть. И неважно, какой используется автомат, — 16 ампер или 25 и т.д.
Как ошибочно выбирают автоматы
На практике обычно выбирают автомат, особенно не задумываясь. Многие отталкиваются от необходимой нагрузки, а именно стараются поставить такой автомат, чтобы он попросту не отключался при большой нагрузке. Так, например, если требуется 5 кВт, то ставят автомат на 25А, если есть 3кВт нагрузка — автомат 16 ампер и так далее. Но этот подход совершенно не обдуман, поскльку приведет только к поломке оборудования или еще хуже — к возгоранию электропроводки либо даже пожару.
Автоматический выключатель для того и изобретен, чтобы защищать от перегрузки. Это коммутационный аппарат для защиты, а не украшение электрического щитка.
Принцип работы автоматического выключателя
АВ (автоматический выключатель) призван защитить от перегрузки все приборы, подключенные в электрической цепи непосредственно после него самого.
Если он выбран неправильно, то должным образом работать он не сможет. Так, например, если применить электрический кабель, который рассчитан на 4-5 ампер, и пустить по нему 20-30, то такой автомат не выключится сразу, а будет ждать, пока изоляция не оплавится и не случится короткое замыкание. Тогда он выключится. Но это не то, к чему должна привести правильная работа автоматического выключателя. Поэтому важно учитывать заранее, ставя автомат на 16 ампер, сколько кВт он выдержит при наличии проводов определенного сечения и максимальной рабочей нагрузки.
В идеале, он должен выключиться сразу, как только почувствовал перегрузку. Тогда и провода останутся в порядке, и подключенное оборудование не перегорит.
Выбираем автомат правильно
Как же понять, автомат 16 ампер сколько киловатт выдерживает на практике?
Наиболее распространенный правильный способ выбора автоматического выключателя таков:
- определить сечение провода
- по правилам устройства электроустановок найти ток, который допустим для такого сечения провода
- выбрать подходящий по этим параметрам автомат
Например, имеется медный провод сечением 1,5 кв.мм. Ток для него допустим максимум 18-19 ампер. Соответственно, согласно правилам, выбирать нужно подходящий автомат, но со смещением в меньшую сторону по таблице. И это получается 16 ампер. То есть можно ставить автомат 16 ампер.
Если же провод медный, а его сечение 2,5 кв.мм., то допустим только ток до 26-27 ампер. Поэтому максимально можно применить автомат на 25 ампер. Хотя из соображений надежности лучше установить автомат на 20 ампер.
Таким образом рассчитываются параметры необходимого автомата для остальных сечений проводов.
Совет по автоматам для алюминиевых проводов
При использовании алюминиевых проводов можно подбирать автоматы таким же образом, только увеличивать сечение не в меньшую, а в большую сторону.
Пример: для провода из алюминия, который имеет сечение 4 кв.мм., допустимый ток такой же, как и для провода медного с сечением 2,5 кв.мм. А для такого же провода, но из алюминия, — как для 10 мм кв. медного. У 6-мм — такой же, как у 4-мм из меди. Далее — аналогично.
Виды автоматов
Выбирая автоматический выключатель, очень важно изучить все характеристики прибора. Необходимо также внимательно посчитать общую мощность всех приборов, которые предполагается подключить на каждую группу автоматов. От этих факторов будет зависеть не только скорость срабатывания выключателя, но и качество его работы.
Наиболее часто и в быту, и в производстве встречаются автоматы на 16А. Обычно их устанавливают в электрических щитах. Поэтому всегда актуален вопрос о том, сколько выдерживает автомат на 16 ампер.
Особенности выключателей
Автоматические выключатели изготовлены из материалов, которые совершенно безвредны для здоровья человека. Самозатухающий термопласт используется при изготовлении корпуса прибора. Он способен выдерживать очень высокие температуры. Его контакты сделаны из медных пластинок, посеребренных для лучшего контакта и долговечности.
В конструкции автоматического выключателя присутствует специальное тепловое реле, которое срабатывает при превышении нормы проходящего тока, и электрическая цепь размыкается, не доводя до короткого замыкания. Чем выше показатель тока, тем быстрее скорость срабатывания автомата. Счет идет на доли секунды.
Сфера использования автоматических выключателей весьма обширна и распространяется от установки их во вводных электрических щитках до щитов распределения квартир или домов. Для использования автоматических выключателей выпускаются специальные распределительные щиты с уже установленными DIN-рейками на необходимое количество автоматов. Покупателю требуется только выбрать тот, который отвечает его пожеланиям, и установить щиток в квартире или в доме.
Несмотря на всю кажущуюся простоту использования автоматических выключателей, подключение автомата 16 ампер лучше доверить специалисту.
По номинальному току автоматические выключатели различаются как по силе тока (номинал от 1А до 6300А), так и по нагрузке на цепь (220В, 380 и 400В). Кроме того, выключатели принято различать по скорости срабатывания.
16 Амперный автомат какая нагрузка
Многие люди, решая, какой поставить автоматический выключатель, задумываются о количестве киловатт, потребляемых самым обычным электрооборудованием. Сколько киловатт выдерживает 16 амперный автомат, какую имеет мощность устройство, для чего он нужен и для какой фазы подходит? Об этом далее.
Емкость автомата и показатель мощности
В ответ на вопрос, 16 ампер сколько киловатт, стоит указать, что подобный автоматический выключатель может выдержать нагрузку на 3,5 кВт в однофазной сети и 18,2 кВт в трехфазной сети. Прибор на 32А — 7 и 36,5 кВт, устройство на 40А — 8,8 и 45,6 кВт, аппарат на 63А — 13,9 и 71,8 кВт соответственно. При этом напряжение питания в розетке в первом случае должно составлять не более 220 вольт, а во втором случае — не более 380 вольт.
Мощность или сила нагрузки — количество потребляемой энергии всеми электроприборами, которые подключены к одной линии. Чтобы рассчитывать это число, нужно взять токовую нагрузку и выбрать больший токовый номинал или равный получившемуся значению.
Обратите внимание! Мощность аппарата 16А равна 3520 Вт, 32А — 7040 Вт, 40А — 8800 Вт, 63А — 13860 Вт в однофазной цепи. Мощность аппарата 16А равна 6080 Вт, 32А — 12160 Вт, 40А — 15200 Вт, 63А — 23940 Вт в трехфазной цепи. Перевод в киловатты представлен в выше.
Характеристики автомата на 16 ампер
Имеет на своем корпусе маркировку номинального тока, коммутационной способности, класса токоограничения, номинальной отключающей способности и время-токовой характеристики срабатывания расщепительной системы. Значение номинального тока равно 16 ампер, что может быть понижено или увеличено при изменении температуры в соответствующую сторону. Показатель коммутационной способности равен 4500 и 6000 ампер для бытового агрегата, а токоограничения — 10 миллисекунд.
Назначение
Автоматический выключатель 25 ампер — устройство, основная задача которого обеспечивать безопасность электрической сети от действия сверхтока, то есть от короткого замыкания с перегрузкой. Главное предназначение аппарата заключается в обеспечении безопасности самого пользователя при использовании сети и электроприборов.
Подобное оборудование включается и выключается от электрической цепи. Чаще всего его используют, чтобы защитить электрическую плиту или другие кухонные нагревательные приборы.
Обратите внимание! Также он может быть использован, чтобы уберечь систему освещения, двигатель, трансформатор и электронный электроприбор.
Принцип действия
Главным элементом устройства является электромагнитный с тепловым расцепители. Первый гарантирует защиту от замыкания, второй — от перенапряжения. Электромагнитный прибор это катушка с сердечником, которая поставлена на специальной пружине и при нормальном режиме создает электромагнитный вид поля, притягивающий катушечный сердечник. В момент короткого замыкания электроток повышается и превышает номинально заявленный по техническим характеристикам. Этот ток проходит по катушке расцепителя и увеличивает поле. В результате цепь обесточивается.
Автоматический выключатель — прибор, благодаря которому исправно работает все электрическое оборудование в доме и в сети. Чтобы сделать расчет, сколько киловатт выдерживает автомат на 16, 32, 40 и 63 ампер, а также посмотреть их мощность, достаточно воспользоваться приведенной выше таблицей.
Невозможно представить современный мир без электричества. В каждом доме работают различные приборы, и люди порой даже не задумываются о том, какую мощность потребляют все подключенные к электросети аппараты и устройства.
Бытовая техника настолько вошла в жизнь людей, что стоит какому-то прибору выйти из строя, как человек начинает нервничать, а некоторые даже впадают в панику.
Поскольку обычно в квартире или доме работает много различных приборов, то бесперебойная работа компьютера, холодильника или телевизора и других приборов часто приводит к превышению допустимых норм в электрических сетях, и в результате происходит короткое замыкание.
Назначение автоматических выключателей
Для того чтобы предотвратить такую ситуацию, и существуют выключатели автоматические. Наиболее распространенные и хорошо зарекомендовавшие себя — это выключатели фирмы АВВ. Внутри помещений обычно ставят автомат 16 ампер. Такие выключатели производятся в виде модулей, за счет чего их можно свободно монтировать в необходимом количестве и в нужном месте.
Лучше всего использовать специальные DIN-рейки, предназначенные для крепления на них выключателей. Любой человек, даже не слишком разбирающийся в электрике, сможет осуществить монтаж таких выключателей. Единственное, что нужно, это правильно подобрать номинал используемого прибора.
Помимо прочего, автоматические выключатели можно при необходимости дополнить различными датчиками дистанционного отключения, индикаторами срабатывания и пр., что в итоге сделает использование электроустановки более комфортным и долговечным.
Когда неожиданно в доме или квартире выключается электричество, то начинают искать причину. А она часто кроется в превышении допустимой нагрузки на сеть. Другими словами, в розетки включено намного больше электроприборов, чем было рассчитано при строительстве, либо чем было выделено на конкретного потребителя.
Так как же определить, какую нагрузку выдержит автомат на входе в дом или квартиру, либо на отдельно взятой группе потребления? Есть несколько несложных правил, и если следовать им, проблем с отключением электричества не должно возникнуть. И неважно, какой используется автомат, — 16 ампер или 25 и т.д.
Как ошибочно выбирают автоматы
На практике обычно выбирают автомат, особенно не задумываясь. Многие отталкиваются от необходимой нагрузки, а именно стараются поставить такой автомат, чтобы он попросту не отключался при большой нагрузке. Так, например, если требуется 5 кВт, то ставят автомат на 25А, если есть 3кВт нагрузка — автомат 16 ампер и так далее. Но этот подход совершенно не обдуман, поскльку приведет только к поломке оборудования или еще хуже — к возгоранию электропроводки либо даже пожару.
Автоматический выключатель для того и изобретен, чтобы защищать от перегрузки. Это коммутационный аппарат для защиты, а не украшение электрического щитка.
Принцип работы автоматического выключателя
АВ (автоматический выключатель) призван защитить от перегрузки все приборы, подключенные в электрической цепи непосредственно после него самого.
Если он выбран неправильно, то должным образом работать он не сможет. Так, например, если применить электрический кабель, который рассчитан на 4-5 ампер, и пустить по нему 20-30, то такой автомат не выключится сразу, а будет ждать, пока изоляция не оплавится и не случится короткое замыкание. Тогда он выключится. Но это не то, к чему должна привести правильная работа автоматического выключателя. Поэтому важно учитывать заранее, ставя автомат на 16 ампер, сколько кВт он выдержит при наличии проводов определенного сечения и максимальной рабочей нагрузки.
В идеале, он должен выключиться сразу, как только почувствовал перегрузку. Тогда и провода останутся в порядке, и подключенное оборудование не перегорит.
Выбираем автомат правильно
Как же понять, автомат 16 ампер сколько киловатт выдерживает на практике?
Наиболее распространенный правильный способ выбора автоматического выключателя таков:
- определить сечение провода
- по правилам устройства электроустановок найти ток, который допустим для такого сечения провода
- выбрать подходящий по этим параметрам автомат
Например, имеется медный провод сечением 1,5 кв.мм. Ток для него допустим максимум 18-19 ампер. Соответственно, согласно правилам, выбирать нужно подходящий автомат, но со смещением в меньшую сторону по таблице. И это получается 16 ампер. То есть можно ставить автомат 16 ампер.
Если же провод медный, а его сечение 2,5 кв.мм., то допустим только ток до 26-27 ампер. Поэтому максимально можно применить автомат на 25 ампер. Хотя из соображений надежности лучше установить автомат на 20 ампер.
Таким образом рассчитываются параметры необходимого автомата для остальных сечений проводов.
Совет по автоматам для алюминиевых проводов
При использовании алюминиевых проводов можно подбирать автоматы таким же образом, только увеличивать сечение не в меньшую, а в большую сторону.
Пример: для провода из алюминия, который имеет сечение 4 кв.мм., допустимый ток такой же, как и для провода медного с сечением 2,5 кв.мм. А для такого же провода, но из алюминия, — как для 10 мм кв. медного. У 6-мм — такой же, как у 4-мм из меди. Далее — аналогично.
Виды автоматов
Выбирая автоматический выключатель, очень важно изучить все характеристики прибора. Необходимо также внимательно посчитать общую мощность всех приборов, которые предполагается подключить на каждую группу автоматов. От этих факторов будет зависеть не только скорость срабатывания выключателя, но и качество его работы.
Наиболее часто и в быту, и в производстве встречаются автоматы на 16А. Обычно их устанавливают в электрических щитах. Поэтому всегда актуален вопрос о том, сколько выдерживает автомат на 16 ампер.
Особенности выключателей
Автоматические выключатели изготовлены из материалов, которые совершенно безвредны для здоровья человека. Самозатухающий термопласт используется при изготовлении корпуса прибора. Он способен выдерживать очень высокие температуры. Его контакты сделаны из медных пластинок, посеребренных для лучшего контакта и долговечности.
В конструкции автоматического выключателя присутствует специальное тепловое реле, которое срабатывает при превышении нормы проходящего тока, и электрическая цепь размыкается, не доводя до короткого замыкания. Чем выше показатель тока, тем быстрее скорость срабатывания автомата. Счет идет на доли секунды.
Сфера использования автоматических выключателей весьма обширна и распространяется от установки их во вводных электрических щитках до щитов распределения квартир или домов. Для использования автоматических выключателей выпускаются специальные распределительные щиты с уже установленными DIN-рейками на необходимое количество автоматов. Покупателю требуется только выбрать тот, который отвечает его пожеланиям, и установить щиток в квартире или в доме.
Несмотря на всю кажущуюся простоту использования автоматических выключателей, подключение автомата 16 ампер лучше доверить специалисту.
По номинальному току автоматические выключатели различаются как по силе тока (номинал от 1А до 6300А), так и по нагрузке на цепь (220В, 380 и 400В). Кроме того, выключатели принято различать по скорости срабатывания.
Как то писал про проводку для варочной плиты, что тянул новую и т.д. Тогда я реально «лохонулся» с кабелем – не ожидал, что индукционная плита будет расходовать 7,5 кВт. И ее не включить в обычную розетку в 16A (Ампер). Прошло какое-то время, и мне написал парень, что он также врезает варочную поверхность, и хочет подключить ее в обычную розетку в 16А? Вопрос был примерно таким – а выдержит ли розетка напряжение от плиты? И 16A это сколько киловатт? Просто ужас! Парня я светить не стал, но такое подключение может спалить вам квартиру! Обязательно читайте дальше …
Ребята если сами не знаете, что и как рассчитывается! Если в школе с физикой, а особенно с электрикой было плохо! То лучше вам не лезть в подключение электрических плит! Вызывайте понимающего человека!
А теперь давайте о напряжении и силе тока!
Для начала отвечу на вопрос – 16A сколько киловатт (кВт)?Все очень просто – напряжение в домашней электрической сети 220В (Вольт), чтобы узнать сколько может выдержать розетка в 16А достаточно – 220 Х 16 = 3520 Ватт, а как мы знаем в 1кВт – 1000 Вт, то получается – 3,52кВт
Если формула из школьной физики P= I * U, где P (мощность), I (сила тока), U (напряжение)
Простыми словами розетка в 16A в цепи 220В, может максимально выдержать 3,5кВТ!
Индукционная плита и розеткаИндукционная плита потребляет 7,5кВт энергии, при всех включенных 4 конфорках. Если разделить в обратном порядке, то получается 7,5кВт (7500Вт)/220В = 34,09А
Как видите потребление 34А, ваша розетка в 16А просто расплавится!
Ну хорошо думаете вы …Тогда поставлю розетку в 32 – 40 А и подключу плиту! А не тут то было, нужно знать какой провод у вас заложен в стене, а также на какой автомат все выведено в щитке!
Все дело в том, что провода также имеют максимальный порог мощности! Так если у вас заложен провод в 2,5 мм сечением, то он может выдержать всего 5,9кВт!
Также и автомат нужно ставить на 32A, а лучше на 40A. Еще раз рекомендую эту статью! Там более подробно!
Так что рассчитывайте правильно! Иначе ваша розетка – проводка расплавится от высоко напряжения и запросто может возникнуть пожар!
- Дмитрий 19 сентября 2015 18:48
ересь, формула представленная в статье подходит для постоянного напряжения, а в быту используется переменное, то есть присутствует коэффициент Fi.
Дмитрий, для обычных бытовых розеток это именно так!
По хорошему приведенная формула подходит только для постоянного напряжения. Для переменного (как в розетке) это позволит примерно оценит мощность прибора. В принципе для бытового применения будет достаточно.
Розетка оплавится не от высокого напряжения, а от высокого (для нее) тока. Разогревает (проводник) именно ток. А от напряжения зависит изоляция. Грубо говоря — чем выше напряжение, тем толще изоляция.
Все-таки ток важнее учитывать. Сечение жилы больше, больше ток. Медь или алюминий. Внешняя изоляция выдерживает ток и напряжение. Учитывать только напряжение, будет неправильно.
Скажите пожалуйста, а можно ли проложить многожильный провод в стене и какого сечения для тока в 16 Ампер?, не хочу брать одножильный кабель.
Алекс, что за кабель? На сколько ампер рассчитан
Алекс, заложить то можно, НО обязательно в гофре, вот только смысл? 16 Амперный провод, это вообще ни о чем! Нужно рассчитывать хотя бы Ампер на 30 — 40, берите медный сечением в 2,5 мм!
Розетка сгорает не от повышенного напряжения- напряжение одно и то же= 220в ) И это Admin именно- опечатался. Во вторых, сечение провода подбирать можно исходя из того, что Алюминий 1 квадрат имеет пропускную способность 7 ампер, Медь 1 квадрат — 10 ампер. Вывод= медный кабель сечением 2,5 квадрата рассчитан на 25 ампер. Всё это «рассчитывание»на уровне бытовом но вполне годно. Если вам требуется запитать прибор на 8 кВт, то это в среднем 40А а значит нужен медный провод сечением 4 квадрата. ТЕПЕРЬ О ВТОРОСТЕПЕННОМ )) -Выше писали про косинус фи,поясню- если на приборе написана вольтамперная характеристика «ВА» то тут Да-нужно учитывать коофицент фи. Например стабилизатор тока на 8000 ВА — это НЕ НА потребитель 8кВт. для быта и бытовых приборов принят усреднённый коэффициент 0,8 а значит 8000 ВА умножаем на 0,8 и получаем в среднем максимальную допустимую нагрузку на стабилизатор. Для нагревательных приборов типа «тэн» (например в старых электроплитах или в чайниках, но НЕ для индукционной плиты) коэффициент фи равен единице. Тоесть в данном случае стабилизатор с 8000 ВА потянет старую электроплиту мощностью 8кВт, но не потянет кучу разных электроприборов (или индукционную плиту) с общей мощностью 8кВт, так как для кучи прибороф коэффициент уже не 1 а 0,8
На счет розеток- лучше и проще использовать соединение «клемник». Розетка на 40 ампер- это нонсес ) Обычные бытовые розетки расчитаны на 6а, а предел их 10-16а (они греются) на а если ток выше-они плавятся и горят. Есть старые советские розетки для электроплит и современные варианты этих розеток, у них три штекера, но они так же не на 40а.. Зачем вам розетка на стационарную плиту? Вывели провода в клемную коробку,(за плитой у стены) соединили болтовым клемником или лучше скруткой запаянной паяльником, и собственно псё, забыли об этом ))
Такие вещи запитываются лучше всего прямым кабелем с щитовой. В коробе проложить. Короба уже есть красивые, под дерево, в любом цвете. И не болтовое соединение делать, а снять крышку с плиты и на клемы внутри уже подключить. Ну или терминалы поставить. Это если по уму уже делать)
Если общий автомат на 16 ампер, то выходящий с счетчика тоже ставить не более 16 ампер?
подскажите пожалуйста,если мне на частный дом ввели 16А и 1фазу, могу я оставить те же 16А но только перевестись на 3 фазы.Это ведь облегчит нагрузку.А то наш электрик морочит мне голову, а я боюсь что у меня будет постоянно выбивать автомат. В доме водонагреватель ,эл.плита, микроволновка, сплит система и другие мелочи. Заранее спасибо
Рекомендуем к прочтению
C25 автомат на какую мощность
Ни одно электрическое устройство, ни один электроприбор, не должны использоваться без защитной автоматики. Автоматический выключатель (АВ) устанавливается для конкретного устройства, или для группы потребителей подключаемых к одной линии. Для того чтобы правильно ответить на вопрос, какая мощность соответствует, например, автомату с номиналом 25А, стоит сначала познакомиться с устройством автоматического выключателя и типами защитных устройств.
Конструктивно АВ объединяет механический, тепловой и электромагнитный расцепители, работающие независимо друг от друга.
Механический расцепитель
Предназначен для включения/выключения автомата вручную. Позволяет использовать его как коммутационное устройство. Применяется при ремонтных работах для обесточивания сети.
Тепловой расцепитель (ТР)
Эта часть автоматического выключателя защищает цепь от перегрузки. Ток проходит по биметаллической пластине, нагревая ее. Тепловая защита инерционна, и может кратковременно пропускать токи, превышающие порог срабатывания (In). Если ток длительное время превышает номинальный, пластина нагревается настолько, что деформируется и отключает АВ. После остывания биметаллической пластины (и устранения причины перегрузки), автомат включается вручную. В автомате на 25А, цифра 25 обозначает порог срабатывания ТР.
Электромагнитный расцепитель (ЭР)
Разрывает электрическую цепь при коротком замыкании. Образующиеся при КЗ сверхтоки требуют мгновенной реакции защитного аппарата, поэтому, в отличие от теплового, электромагнитный расцепитель срабатывает моментально, за доли секунды. Отключение происходит за счет прохождения тока через обмотку соленоида с подвижным стальным сердечником. Соленоид, срабатывая, преодолевает сопротивление пружины и отключает подвижный контакт автоматического выключателя. Для отключения по КЗ, требуются токи превышающие In от трех до пятидесяти раз, в зависимости от типа АВ.
Типы АВ по токо-временной характеристике
Обойдем вниманием аппараты защиты промышленной электроники и двигателей со встроенными тепловыми реле, и рассмотрим наиболее распространенные типы автоматов:
- Характеристика В – при трехкратном превышении In, ТР срабатывает через 4-5с. Срабатывание ЭР при превышении In от трех до пяти раз. Применяются в осветительных сетях или при подключении большого количества маломощных потребителей.
- Характеристика С – наиболее распространенный тип АВ. ТР срабатывает за 1,5с при пятикратном превышении In, срабатывание ЭР при 5-10-кратном превышении. Применяются для смешанных сетей, включающих приборы разного типа, в том числе с небольшими пусковыми токами. Основной тип автоматических выключателей для жилых и административных зданий.
- Характеристика D – автоматы с наибольшей перегрузочной способностью. Используются для защиты электродвигателей, энергопотребителей с большими пусковыми токами.
Соотношение номиналов АВ и мощностей потребителей
Чтобы определить, сколько киловатт можно подключить через автоматический выключатель определенной мощности, воспользуйтесь таблицей:
автомат 220v, А | мощность, кВт | |
---|---|---|
однофазный | трехфазный | |
2 | 0,4 | 1,3 |
6 | 1,3 | 3,9 |
10 | 2,2 | 6,6 |
16 | 3,5 | 10,5 |
20 | 4,4 | 13,2 |
25 | 5,5 | 16,4 |
32 | 7,0 | 21,1 |
40 | 8,8 | 26,3 |
50 | 11,0 | 32,9 |
63 | 13,9 | 41,4 |
Для расчета мощности вводного автомата дома, используйте коэффициент 0,7 от общей мощности потребителей.
При определении нагрузочной способности автоматического выключателя, важно учитывать не только его номинал, но и перегрузочную характеристику. Это поможет избежать ложных срабатываний во время пуска мощных электроприборов.
Если у вас часто срабатывает автоматический выключатель на 16-20 А и обесточивает квартиру, не верьте тем, кто говорит, что нужно просто поставить автомат номиналом побольше. Новый автомат реагировать на перегрузки перестанет, но начнут гореть розетки.
Зачем менять автомат?
Любой электрик скажет: «При наличии отсутствия острой необходимости лучше в электропроводку дома своими руками не лезть». Последствия могут быть печальными. Когда же возникает такая необходимость?
Для того чтобы поменять розетку, нужно знать физику за 8-9 классы. С прочей электрической начинкой все немного сложнее. Если в квартире регулярно срабатывает автомат (автоматический выключатель в щитке) и пропадает свет, пора его менять.
Вероятно, автоматический выключатель выработал свой ресурс, даже несмотря на то, что срок, указанный в паспорте, еще не истек. Изношенный аппарат на 16 А может срабатывать при слабой нагрузке на сеть (10 А), а может не срабатывать при экстремальных значениях (произойдет спаивание контактов, дальше – пожар).
Напомним на всякий случай некоторые сведения из школьной программы:
- Мощность = Напряжение х Ток.
- Ток = Мощность Напряжение.
Напряжение в розетке – 220 В. На кофеварке указано 1200 Вт, значит, потребляемый ток будет 1200220=5,45 (А).
Если вам удалось сложить мощность всех домашних электроприборов и рассчитать общую силу тока, можете считать себя электриком второго уровня.
Как работает автомат и от чего он защищает
Внешне автоматический выключатель представляет собой пластиковый коробок с клеммами для подсоединения проводки, плюс тумблер. Лезть внутрь не обязательно. Для нас важно, что в нем установлены контакты, тепловой и электромагнитный расцепители, которые отвечают за обесточивание сети при повышенной и экстремальной нагрузке.
Как расшифровать маркировку на автоматическом выключателе:
- Буква (A, B, C, D) – это класс автомата, она означает предел тока мгновенного срабатывания, то есть напряжения, когда автомат сразу же обесточивает сеть в квартире. В большинстве случаев в жилых домах будет стоять автомат с буквой C. Он будет моментально срабатывать при 5-10 кратном увеличении силы тока от номинала. То есть автомат с номиналом 10 А вырубит сеть без задержки при значении силы тока 50-100 А. Автомат с B-характеристикой (3-5 кратное превышение) тоже самое сделает при значении 30-50 А.
- Цифра указывает на номинальный ток, то есть значение, до которого автомат будет работать в штатном режиме, ничего не выключая. Тот же автомат на 10 А при превышении силы тока до 11,5 сработает лишь через два часа. При 14,5 подождет минуту, если перенапряжение сети не исчезнет, обесточит квартиру. И так далее, до пиковых значений, обозначенных буквой, когда сеть упадет без задержки.
- Рядом меньшим шрифтом будет стоять другая цифра (в тысячах ампер), обозначающая максимальное значение силы тока, при котором автомат сработает, не получив повреждений.
В чем здесь фокус, почему нельзя сразу отключить сеть, если превышено номинальное значение? Автомат учитывает кратковременные токи, возникающие в сети на доли секунды при включении электрооборудования. Когда вы включаете стиральную машину, пусковой ток может быть выше номинального в 2-3 раза.
Основная функция автоматического выключателя – защищать сеть от короткого замыкания и перегрузки. Когда по линии течет слишком большой ток, проводка нагревается. Если это происходит слишком долго – провод может загореться.
Автомату по большому счету все равно на ваши электроприборы, он их, вопреки расхожему мнению, не защищает от скачков напряжения. Но потерять микроволновку или чайник, подключенные к розетке, это одно, а перегоревшая проводка в стене или в люстре – другое.
Важно понимать, что и от удара током человека при случайном касании токоведущих участков и заземленных предметов автомат тоже не убережет. Для этого существуют устройства защитного отключения (УЗО). Советуют ставить одно общее после вводного автомата и на группы, где есть риск поражения током.
Как выбрать автомат для электропроводки
Для того чтобы правильно выбрать автоматический выключатель, нужно прикинуть максимально допустимую токовую нагрузку сети (суммировать все приборы). Номинал автомата (цифра после буквы) не должен превышать этого значения.
Для обычной квартиры, где нет «серьезных» потребителей питания типа кондиционера, водонагревателя, подойдет автомат класса B. Такая сеть считается слабонагруженной. Ставить высоконагруженный автомат (класса D) для сети, которая питает лампочки опасно. Он не будет воспринимать скачки напряжения в ней как вредные и может пропустить даже короткое замыкание.
Слабонагруженный прибор в сети с большой нагрузкой в штатном режиме наоборот, будет срабатывать не по делу и часто.
Да, чуть не пропустили: автоматы различаются по количеству фаз (полюсов). Число полюсов автомата указывает, с каким из типов сетей он может работать.В квартиру можно также поставить один входной выключатель класса C и по одному однофазному для обеспечения отдельных участков (кухня, комната, отдельно на кондиционер, если предусмотрен). Если нет желания все усложнять, в двухкомнатной квартире можно вполне обойтись одним автоматическим выключателем B с номиналом 16.
Мы почти разобрались, как выбрать автоматический выключатель по току и мощности. Но, если учесть только нагрузку потребителей, можно нарваться на неприятности. Выбор автомата напрямую зависит от типа проводки, кабеля. На слабой проводке мощный автомат при перегрузках не справится со своими задачами. То есть всегда нужно принимать во внимание сечение провода и его пропускную способность.
В домах до 2001-2003 годов с большой долей вероятности будет алюминиевая проводка в однослойной изоляции. Скорее всего, она свое уже отслужила (номинально она может выдержать 20 лет при идеальных условиях, без перегрузок). Ставить на нее новый автомат, учитывая лишь суммарную мощность потребителей, категорически не рекомендуется. Автомат часто срабатывать перестанет, а проблема перегрева останется.
Варианта, по сути, два:
- Менять проводку на медную.
- К мощным потребителям (стиральная машина, бойлер, кондиционер) провести отдельную линию от щитка и поставить на нее отдельный автомат.
Медный провод пропускает больший ток, чем алюминиевый. Но и здесь важно, кроме материала, учитывать его сечение. Оно дает понять, сколько ампер можно пропустить через кабель, не опасаясь повреждения и перегрева.
- Алюминиевый провод сечением 2,5 мм2 безопасно работает с токами до 16-24 А.
- Медный провод сечением 2,5 мм2 безопасно работает с токами 21-30 А.
Это означает, что при нагрузке в 23 А, автомат с номиналом 16 А обесточит проводку через минуту. Вполне достаточно, чтобы медный провод не перегрелся. Если поставить автомат 25 А, до отключения кабель будет пропускать ток за пределами своей нормальной нагрузки, он перегреется, изоляция быстрее износится, розетка со временем перегорит. Для алюминиевой проводки, соответственно, эти значения ниже.
Для простоты понимания предлагаем таблицу выбора автоматического выключателя, исходя из сечения кабеля.
Последний совет: на своей безопасности не следует экономить. Лучше брать автоматы в специализированных магазинах, выбирать производителей с проверенной репутацией. Менеджеры на месте ответят на вопросы, которые мы могли упустить в этой статье.
Сколько киловатт выдержит автомат для силы тока 16 Ампер, на 25, 32, 40, 50, 63 Ампер?
Сколько киловатт нагрузки выдерживают автоматические выключатели для на 1, на 2, на 3, на 6, на 10, на 20 Ампер?
Те самые автоматы могут быть однополюсными, двухполюсными, трёхполюсными 4-х полюсными.
Виды подключения автоматов разные, напряжение в сети может быть и 220-ь Вольт и 380-т.
То есть в начале надо определиться с этими показателями.
Ампер, это единица измерения силы тока (электрического).
Достаточно Амперы умножить на Вольты чтобы выяснить сколько кВт выдерживает автомат.
Та самая мощность, это сила тока умноженная на напряжение.
Автомат 16-ь Ампер, напряжение в сети 220-ь Вольт, подключение однофазное, автомат однополюсной:
Выдержит нагрузку 16 х 220 = 3520 Ватт, округляем в меньшую сторону и получаем 3,5 кВт.
Автомат 25 Ампер, 25 х 220 = 5 500-т Ватт, округляем 5,5 кВт.
32-а Ампера 7040 Ватт, или 7-ь кВт.
50-т Ампер 11000-ь Ватт, или 11 кВт (киловатт).
Или можно воспользоваться специальными таблицами (при выборе автоматов) с учётом мощности и вида подключения, вот одна из них, для ознакомления.
Сколько киловатт выдерживают электроавтоматы для разных значений силы тока?
Сила тока указанная на автомате в Амперах, означает что тепловой расцепитель разомкнет цепь если ток в цепи станет больше этого значения -10 Ампер, 16 Ампер, 25 Ампер, 32 Ампера и т.д.
Для однофазной сети в основном используются однополюсные и двухполюсные автоматические выключатели, номиналом от 1 до 50 Ампер (последние являются вводными на квартиру или дом) За редким исключением, по согласованию с энергоснабжающей организацией, и при технической возможности, на частные домовладения (дома, коттеджи) могут ставится автоматы и большего номинала, но чаще домашние мастера сталкиваются с автоматами имеющими ток отсечки от 1 до 50 Ампер, вот их возможности и рассмотрим.
Автоматический выключатель на 1 Ампер выдерживает 200 Ватт. (0.2 кВт)
Автоматический выключатель на 2 Ампера выдерживает 400 Ватт. (0.4 кВт)
Автоматический выключатель на 3 Ампера выдерживает 700 Ватт. (0.7 кВт)
Автоматический выключатель на 6 Ампер выдерживает 1300 Ватт (1.3 кВт)
Автоматический выключатель на 10 Ампер выдерживает 2200 Ватт (2.2 кВт)
Автоматический выключатель на 16 Ампер выдерживает 3500 Ватт (3.5 кВт)
Автоматический выключатель на 20 Ампер выдерживает 4400 Ватт (4.4 кВт)
Автоматический выключатель на 25 Ампер выдерживает 5500 Ватт (5.5 кВт)
Автоматический выключатель на 32 Ампера выдерживает 7000 Ватт (7.0 кВт)
Автоматический выключатель на 40 Ампер выдерживает 8800 Ватт (8.8 кВт)
Автоматический выключатель на 50 Ампер выдерживает 11000 Ватт (11кВт)
Но это продолжительная нагрузка, при привышении которой автомат должен отключится. При коротком же замыкании автомат отключится и при гораздо меньшей мощности потребителя. За это отвечает уже электромагнитный расцепитель.
Значения мощности в киловаттах одинаковы и для однополюсных и для двухполюсных автоматов рассчитанных на одинаковую силу тока используемых в однофазной сети 220 вольт.
Как подобрать трехфазный автомат
Расчеты электропроводки выполняются еще на стадии проектирования. Прежде всего рассчитывается сила тока в цепях, исходя из этого подбираются автоматические защитные устройства, сечение проводов и кабелей. Особое значение имеет расчет автомата по мощности 380, защищающий от перегрузок и коротких замыканий.
Слишком большой номинал может привести к выходу из строя оборудования, поскольку устройство не успеет сработать. Низкий номинальный ток автомата приведет к тому, что защита будет срабатывать даже при незначительных перегрузках в часы пик. Правильно выполненные расчеты помогут выбрать наиболее оптимальный вариант для конкретных условий эксплуатации.
Как рассчитать мощность электротока
В соответствии с законом Ома, сила тока (I) находится в прямой пропорции с напряжением (U) и в обратной пропорции с сопротивлением (R). Расчет мощности (Р) осуществляется путем умножения силы тока на напряжение. Таким образом, для участка цепи образуется следующая формула, по которой рассчитывается ток: I = P/U.
С учетом реальных условий, к данной формуле прибавляется еще один компонент и при расчетах однофазной сети получается следующий вид: I = P/(U х cos φ).
Трехфазная сеть рассчитывается немного по-другому. Для этого используется следующая формула: I = P/(1,73 х U х cos φ), в которой напряжение U условно составляет 380 вольт, cos φ является коэффициентом мощности, посредством которого активная и реактивная составляющие сопротивления нагрузки соотносятся между собой.
Современные блоки питания обладают незначительной реактивной компонентой, поэтому значение cos φ принимается за 0,95. Это не касается трансформаторов и электродвигателей с высокой мощностью, обладающих большим индуктивным сопротивлением. Расчет сетей, где могут подключаться такие устройства, выполняется с коэффициентом cos φ, эквивалентным 0,8. В других случаях используется стандартная методика расчетов с последующим применением повышающего коэффициента 1,19, получающегося из соотношения 0,95/0,8.
При использовании в формулах известных параметров напряжения 220 и 380 В, а также коэффициента мощности 0,95, в результате получается сила тока для однофазной сети – I = P/209, а для трехфазной – I = P/624. Таким образом, при наличии одной и той же нагрузки, сила тока в трехфазной сети будет в три раза ниже. Это связано с наличием трех проводов отдельных фаз, на каждую из которых равномерно распределяется общая нагрузка. Напряжение между каждой фазой и рабочим нулем составляет 220 вольт, поэтому известная формула может выглядеть следующим образом: I = P/(3 х 220 х cos φ).
Выбор автомата по номинальному току
Рассмотренные формулы широко применяются в расчетах вводного автоматического выключателя. Применяя одну из них – I = P/209 при нагрузке Р в 1 кВт, получается сила тока для однофазной сети 1000 Вт/209 = 4,78 А. Результат можно округлить в большую сторону до 5 А, поскольку реальное напряжение в сети не всегда соответствует 220 В.
Таким образом, получилась сила тока в 5 А на 1 кВт нагрузки. То есть, устройство мощностью более 1 кВт нельзя подключать, например, в удлинитель с маркировкой 5 А, поскольку он не рассчитан на более высокие токи.
Автоматические выключатели обладают собственным номиналом по току. Исходя из этого, легко определить нагрузку, которую они способны выдержать. Для упрощения вычислений существует таблица. Автомат номиналом 6 А соответствует мощности 1,2 кВт, 8 А – 1,6 кВт, 10 А – 2 кВт, 16 А – 3,2 кВт, 20 А – 4 кВт, 25 А – 5 кВт, 32 А – 6,4 кВт, 40 А – 8 кВт, 50 А – 10 кВт, 63 А – 12,6 кВт, 80 А – 16 кВт, 100 А – 20 кВт. Исходя из этих же номиналов проводятся расчеты автомата по мощности на 380в.
Метод 5 А на 1 кВт может использоваться и для определения силы тока, возникающей в сети, когда в нее подключаются какие-либо бытовые приборы и оборудование. В расчетах нужно пользоваться максимальной потребляемой мощностью во время пиковых нагрузок. Для этого применяются технические характеристики оборудования, взятые из паспортных данных. При их отсутствии можно взять ориентировочные параметры стандартных электроприборов.
Отдельно рассчитывается группа освещения. Как правило, мощность приборов освещения оценивается в пределах 1,5-2 кВт, поэтому для них будет достаточно отдельного автомата номиналом 10 А.
Если сложить все имеющиеся мощности, получается довольно высокий суммарный показатель. Однако на практике полная мощность никогда не используется, поскольку существуют ограничения на выделяемую электрическую мощность для каждой квартиры. В современном жилом доме, при наличии электроплит, она составляет от 10 до 12 кВт. Поэтому на вводе устанавливается автомат с номинальным током 50 А. Точно так же выполняется расчет мощности трехфазных автоматов.
Полученные 12 кВт распределяются по всей квартире с учетом размещения мощных и обычных потребителей. Особое внимание следует обратить на кухню и ванную комнату, где устанавливаются электроплиты, водонагреватели, стиральные машины и другое энергоемкое оборудование. Как правило, они подводятся к отдельным автоматическим выключателям соответствующего номинала, а сечение кабелей для подключения также рассчитывается в индивидуальном порядке.
Мощные бытовые агрегаты подключаются не только к автоматам, но и к устройствам защитного отключения. Часть общей мощности следует оставить для освещения и розеток, установленных в помещениях. Правильно выполненные расчеты позволят качественно смонтировать проводку и выбрать нужный выключатель. В этом случае эксплуатация оборудования будет безопасной и долговечной.
Расчет мощности онлайн-калькулятором
В первую очередь необходимо ввести исходные данные в соответствующие графы. На калькуляторе эти показатели включают количество фаз, напряжение сети и мощность нагрузки. Первые два пункта известны заранее, а вычисления мощности приборов и оборудования осуществляются вручную.
Напряжение для однофазной сети выставляется 220 вольт, для трехфазной – 380 В и выше. После ввода параметров остается лишь нажать на кнопку «Рассчитать» и получить требуемый результат. В соответствующем окне появятся данные о номинальном токе автоматического выключателя, наиболее подходящего для данной сети.
Для предотвращения короткого замыкания и перегрузки электросети применяется трехфазный автомат. Коммутационное устройство можно использовать для линии с постоянным и переменным током. Конструкция стандартной модели представлена расширителями с переключением в зависимости от частоты цепи.
Какой автомат подойдет на 15 кВт
Назначение 3-фазного автомата – защита от сверхтоков и перегрузок. Модификация на 15 кВт работает в сети с напряжением 380 В, то есть на ввод понадобится прибор на 25А. При выборе нужно учитывать, что в условиях коротких замыканий сила тока повышается и может стать причиной возгорания электропроводки.
Подбирая модель автомата на 15 кВт для трехфазной нагрузки, понадобится учесть параметры допустимого напряжения и тока при коротком замыкании. Стоит ориентироваться на вычисленные показатели тока кабеля с минимальным сечением, который защищает выключатель и номинальный ток приемника.
При расчетах вводного коммутационного автомата по параметрам мощности в сети 380 В учитывают:
- электрическую мощность – фактическую и добавочную;
- интенсивность загрузки кабеля;
- наличие свободной мощности в проектном показателе жилого дома;
- удаленность хозяйственных построек и нежилых помещений от точки ввода кабеля.
В сети на 15 киловатт при добавочной мощности устанавливается прибор ВРУ.
Функции трехфазных автоматов
Перед тем как подобрать автоматический коммутатор, следует разобраться с его функционалом. Пользователи часто заблуждаются, думая, что устройство защищает бытовую технику. На ее электропоказатели автомат не реагирует, срабатывая исключительно при коротком замыкании либо перегрузке. К функциям трехфазника относятся:
- одновременное обслуживание нескольких однофазных зон цепи;
- предотвращение образования сверхтоков на линии;
- совместная работа с выпрямителями сети переменного тока;
- защита высокомощного оборудования;
- повышенная мощность за счет установки специального преобразователя;
- быстрое срабатывание в режиме КЗ на линии с большим количеством потребителей;
- возможность отключения в ручном режиме при помощи рубильника или выключателя;
- совместимость с дополнительными защитными клеммами.
Без дифавтомата повышаются риски возгорания кабеля.
Принцип работы и предназначение защитного автомата
Трехфазный автоматический выключатель в случаях замыкания на линии активируется при помощи электромагнитного расщепителя. Принцип работы элемента заключается в нагреве биметаллической пластины в момент повышения номинала тока и выключении напряжения.
Предохранитель не дает КЗ и сверхтоку с показателями выше расчетных воздействовать на проводку. Без него кабельные жилы нагреваются до температуры плавления, что приводит к воспламенению изоляционного слоя. По этой причине важно знать, сможет ли сеть выдержать напряжение.
Соответствие проводов нагрузке
Проблема характерна для домов старой застройки, в которых на существующую линию ставятся новые автоматы, счетчик, УЗО. Автоматы подбираются под общую мощность техники, но иногда они не срабатывают – кабель дымиться или горит.
К примеру, у жил старого кабеля с сечением 1,5 мм2 токовый предел составляет 19 А. При единовременном включении оборудования с суммарным током 22,7 А защиту обеспечит только модификация на 25 Ампер.
Провода нагреются, но коммутатор останется включенным до момента оплавления изоляции. Предотвратить пожар может полная замена проводки на медный кабель с сечением 2,5 мм2.
Защита самого слабого участка кабельной проводки
На основании п. 3.1.4 ПУЭ задачей автоматического устройства является предотвращение перегрузки на самом слабом звене электроцепи. Его номинальный ток подбирается по току подсоединенных бытовых приборов.
Если автомат выбран неправильно, незащищенный участок станет причиной возгорания.
Принципы расчета автомата по сечению кабеля
Вычисления 3-фазного дифавтомата осуществляются на основании сечения кабеля. Для модели на 25 А понадобится обратиться к таблице.
Сечение провода, мм2 | Допустимый ток нагрузки по материалу кабеля | |
Медь | Алюминий | |
0,75 | 11 | 8 |
1 | 15 | 11 |
1,5 | 17 | 13 |
2,5 | 25 | 19 |
4 | 35 | 28 |
Модификацию на 25 Ампер можно применять для защиты проводки или установить на ввод.
Например, для проводки используется медный провод с сечением 1,5 мм2 с допустимым током нагрузки 19 А. Чтобы кабель не нагревался, понадобится выбрать меньшее значение – 16 А.
Определение зависимости мощности от сечения по формуле
Если сечение кабеля неизвестно, можно использовать формулу:
- Iрасч – расчетный ток,
- P – мощность приборов,
- Uном – номинал напряжения.
В качестве примера можно рассчитать, автомат, который понадобится ставить на бойлер с нагрузкой 3 кВт и напряжением сети 220 В:
- Перевести 3 кВт в Ватты – 3х1000=3000.
- Разделить величину на напряжение: 3000/220=13,636.
- Округлить расчетный ток до 14 А.
В зависимости от условий окружающей среды и способу прокладки кабеля нужно учесть поправочный коэффициент для сети 220 В. Среднее значение равно 5 А. Его понадобится прибавить к расчетному показателю тока Iрасч=14 +5=19 А. Далее по таблице ПУЭ выбирается сечение медного провода.
Сечение, мм2 | Ток нагрузки, А | |||||
Одножильный кабель | Двухжильный кабель | Трехжильный кабель | ||||
Одинарный провод | 2 провода вместе | 3 провода вместе | 4 провода вместе | Одиночная укладка | Одиночная укладка | |
1 | 17 | 16 | 15 | 14 | 15 | 14 |
1,5 | 23 | 19 | 17 | 16 | 18 | 15 |
2,5 | 30 | 27 | 25 | 25 | 25 | 21 |
4 | 41 | 38 | 35 | 30 | 32 | 27 |
6 | 50 | 46 | 42 | 40 | 40 | 34 |
Подбор автоматического коммутатора по мощности
Подобрать защитный переключатель поможет вычисление суммарной мощности бытовой техники. Понадобится посмотреть значение в паспорте устройства. Например, на кухне в розетку включаются:
- кофеварка – 1000 Вт;
- электродуховка – 2000 Вт;
- печка СВЧ – 2000 Вт;
- электрический чайник – 1000 Вт;
- холодильник – 500 Вт.
Суммируя показатели, получаем 6500 Вт или 6,5 киловатт. Далее понадобится обратиться к таблице автоматов в зависимости от мощности подключения.
Однофазное подключение 220 В | Трехфазное подключение | Мощность автомата | |
Схема «треугольник» 380 В | Схема звезда, 220 В | ||
3,5 кВт | 18,2 кВт | 10,6 кВт | 16 А |
4,4 кВт | 22,8 кВт | 13,2 кВт | 20 А |
5,5 кВт | 28,5 кВт | 16,5 кВт | 25 А |
7 кВт | 36,5 кВт | 21,1 кВт | 32 А |
8,8 кВт | 45,6 кВт | 26,4 кВт | 40 А |
На основании таблицы для проводки со стандартным напряжением можно подобрать прибор на 32 А, который подходит для суммарной мощности 7 кВт.
Если планируется подключение дополнительной техники, используется коэффициент повышения. Среднее значение 1,5 умножается на мощность, полученную при вычислениях. Понижающий коэффициент применяется при невозможности одновременной эксплуатации нескольких электроприборов. Он равен 1 или минус 1.
Выбор автомата в зависимости от мощности нагрузки
Для квартир и домов с новой электропроводкой выбор автомата производится на основании расчетного тока нагрузки.
Рассчитать прибор трехфазного типа можно по номинальному току нагрузки или по скорости срабатывания в условиях превышения токового значения. Для вычислений требуется сложить мощность всех потребителей и вычислить ток, проходящий через линию. Работы выполняются по формуле:
- Р – суммарная мощность всей бытовой техники;
- U – напряжение сети.
К примеру, мощность равняется 7,2 кВт, вычислена по формуле 7200/220=32,72 А. В таблице указаны номиналы 16, 20, 32, 25 и 40 А. Величину 32,72 А с учетом срабатывания устройства при значении в 1,13 раз больше номинала, умножаем: 32х1,13=36,1 А. По таблице видно, что лучше поставить модель на 40 А.
Способы подбора дифавтомата
Для примера рассмотрим кухню, где подключается большое количество оборудования. Вначале требуется установить номинал общей мощности для помещения с холодильником (500 Вт), микроволновкой (1000 Вт), чайником (1500 Вт) и вытяжкой (100 Вт). Общий показатель мощности – 3,1 кВт. На его основании применяются различные способы выбора автомата на 3 фазы.
Табличный метод
На основании таблицы устройств по мощности подключения выбирается однофазный или трехфазный прибор. Но величина в расчетах может не совпадать с табличными данными. Для участка сети на 3,1 кВт понадобится модель на 16 А – ближайший по значению показатель равняется 3,5 кВт.
Графический метод
Технология подбора не отличается от табличной – понадобится найти график в интернете. На рисунке стандартно по горизонтали находятся переключатели с их токовой нагрузкой, по вертикали – мощность потребления на одном участке цепи.
Для установления мощности устройства понадобится провести линию по горизонтали до точки с номинальным током. Суммарной нагрузке на сеть 3,1 кВт соответствует переключатель на 16 А.
Критерии выбора трехфазного коммутатора
Перед покупкой стоит учесть все параметры, которые будет иметь входной аппарат.
Фаза и напряжение
Однофазные модели на 220 В подключаются к одной клемме, трехфазные на 380 В – к трем.
Ток утечки
На корпусе имеется маркировка – греческая буква «дельта». Токовая утечка частного дома составляет около 350 мА, отдельной группы приборов – 30 мА, светильников и розеток – 30 мА, одиночных звеньев – 15 мА, бойлера – 10 мА.
Разновидности по току
На автомате имеются индексы А (срабатывание при утечке постоянного тока) и АС (срабатывание при утечке переменного тока).
Количество полюсов
В зависимости от количества полюсов можно приобрести трехфазный выключатель:
- однополюсный тип аппаратов для защиты одного кабеля и одной фазы;
- двухполюсный, представленный двумя приборами с общим рубильником – выключение происходит в момент превышения допустимого значения одного из них, одновременно обрываются нейтраль и фаза в однофазной сети;
- трехполюсный аппарат, обеспечивающий разрыв и защиту фазной цепи – являются тремя приборами с общей рукояткой активации/деактивации;
- четырехполюсный прибор, который монтируется только на ввод трехфазного РУ – разрывает все три фазы и рабочий ноль. Разрыв заземления защиты недопустим.
Вне зависимости от количества полюсов время отключения устройства не должно превышать 0,3 сек.
Место установки
Для бытового использования предназначен электрический автомат на 3 фазы с маркировкой С на 25 А. На вводе в этом случае лучше устанавливать изделия С50, С65, С85, С95. Для розеток или иных точек – С 25 и С 15, для освещения – С 12 или С 17, для электроплиты – С 40. Они будут срабатывать, когда показатели тока в 5-10 раз превышают номинал.
Нюансы, которые нужно учитывать
Точно знать, какие бытовые приборы будут в доме или квартире, не может никто. По этой причине следует:
- повысить суммарную расчетную мощность трехфазного дифавтомата на 50 %, или применять коэффициент повышения 1,5;
- понижающий коэффициент учитывается, когда в помещении не хватает розеток для одновременного подключения техники;
- для простоты расчетов нагрузку стоит разделить на группы;
- мощные приборы стоит подключить отдельно с учетом маломощной нагрузки;
- для вычисления маломощной нагрузки мощность понадобится разделить на напряжение;
- проводка – основной фактор, на который ориентируются при выборе автоматического 3-фазного выключателя; старые алюминиевые провода выдерживают 10 А, но если их взять для розеток на 16 А, могут расплавиться;
- в бытовых условиях чаще всего применяются модели с токовым номиналом 6, 16, 25, 32 и 40 А.
При покупке трехфазного дифференциального автомата нужно учитывать, что основные маркировки есть на корпусе или в паспорте. Использование формул и таблиц поможет подобрать модель в соответствии с проводкой в квартире и мощностью бытовой техники.
Для расчета мощности номинала трехфазного автомата необходимо суммировать всю мощность электроприборов, которые будут подключены через него. Например, нагрузка по фазам одинакова:
L1 5000 W + L2 5000 kW + L3 5000W = 15000 W
Полученные ваты переводим в киловатты:
15000 W / 1000 = 15 kW
Полученное число умножаем на 1,52 и получаем рабочий ток А.
15 kW * 1,52 = 22,8 А.
Номинальный ток автомата должен быть больше рабочего. В нашем случае рабочий ток 22,8 А, поэтому мы выбираем автомат 25 А.
Номинал автоматов по току: 6, 10, 16, 20, 25, 32, 40, 50, 63, 80, 100.
Уточняем сечение жил кабеля на соответствие нагрузке здесь.
Данная формула справедлива при одинаковой нагрузке по трем фазам. Если потребление по одной из фаз значительно больше, то номинал автомата подбирается по мощности этой фазы:
Например, нагрузка по фазам: L1 5000 W; L2 4000 W; L3 6000 W.
Ваты переводим в киловатты для чего 6000 W / 1000 = 6 kW.
Теперь определяем рабочий ток по этой фазе 6 kW * 4,55 = 27,3 А.
Номинальный ток автомата должен быть больше рабочего в нашем случае рабочий ток 27,3 А мы выбираем автомат 32 А.
В приведенных формулах 1,52 и 4,55 – коэффициенты пропорциональности для напряжений 380 и 220 В.
Материалы, близкие по теме:
Сколько держит 16 амперный автомат
Невозможно представить современный мир без электричества. В каждом доме работают различные приборы, и люди порой даже не задумываются о том, какую мощность потребляют все подключенные к электросети аппараты и устройства.
Бытовая техника настолько вошла в жизнь людей, что стоит какому-то прибору выйти из строя, как человек начинает нервничать, а некоторые даже впадают в панику.
Поскольку обычно в квартире или доме работает много различных приборов, то бесперебойная работа компьютера, холодильника или телевизора и других приборов часто приводит к превышению допустимых норм в электрических сетях, и в результате происходит короткое замыкание.
Назначение автоматических выключателей
Для того чтобы предотвратить такую ситуацию, и существуют выключатели автоматические. Наиболее распространенные и хорошо зарекомендовавшие себя – это выключатели фирмы АВВ. Внутри помещений обычно ставят автомат 16 ампер. Такие выключатели производятся в виде модулей, за счет чего их можно свободно монтировать в необходимом количестве и в нужном месте.
Лучше всего использовать специальные DIN-рейки, предназначенные для крепления на них выключателей. Любой человек, даже не слишком разбирающийся в электрике, сможет осуществить монтаж таких выключателей. Единственное, что нужно, это правильно подобрать номинал используемого прибора.
Помимо прочего, автоматические выключатели можно при необходимости дополнить различными датчиками дистанционного отключения, индикаторами срабатывания и пр., что в итоге сделает использование электроустановки более комфортным и долговечным.
Когда неожиданно в доме или квартире выключается электричество, то начинают искать причину. А она часто кроется в превышении допустимой нагрузки на сеть. Другими словами, в розетки включено намного больше электроприборов, чем было рассчитано при строительстве, либо чем было выделено на конкретного потребителя.
Так как же определить, какую нагрузку выдержит автомат на входе в дом или квартиру, либо на отдельно взятой группе потребления? Есть несколько несложных правил, и если следовать им, проблем с отключением электричества не должно возникнуть. И неважно, какой используется автомат, – 16 ампер или 25 и т.д.
Как ошибочно выбирают автоматы
На практике обычно выбирают автомат, особенно не задумываясь. Многие отталкиваются от необходимой нагрузки, а именно стараются поставить такой автомат, чтобы он попросту не отключался при большой нагрузке. Так, например, если требуется 5 кВт, то ставят автомат на 25А, если есть 3кВт нагрузка – автомат 16 ампер и так далее. Но этот подход совершенно не обдуман, поскльку приведет только к поломке оборудования или еще хуже – к возгоранию электропроводки либо даже пожару.
Автоматический выключатель для того и изобретен, чтобы защищать от перегрузки. Это коммутационный аппарат для защиты, а не украшение электрического щитка.
Принцип работы автоматического выключателя
АВ (автоматический выключатель) призван защитить от перегрузки все приборы, подключенные в электрической цепи непосредственно после него самого.
Если он выбран неправильно, то должным образом работать он не сможет. Так, например, если применить электрический кабель, который рассчитан на 4-5 ампер, и пустить по нему 20-30, то такой автомат не выключится сразу, а будет ждать, пока изоляция не оплавится и не случится короткое замыкание. Тогда он выключится. Но это не то, к чему должна привести правильная работа автоматического выключателя. Поэтому важно учитывать заранее, ставя автомат на 16 ампер, сколько кВт он выдержит при наличии проводов определенного сечения и максимальной рабочей нагрузки.
В идеале, он должен выключиться сразу, как только почувствовал перегрузку. Тогда и провода останутся в порядке, и подключенное оборудование не перегорит.
Выбираем автомат правильно
Как же понять, автомат 16 ампер сколько киловатт выдерживает на практике?
Наиболее распространенный правильный способ выбора автоматического выключателя таков:
- определить сечение провода
- по правилам устройства электроустановок найти ток, который допустим для такого сечения провода
- выбрать подходящий по этим параметрам автомат
Например, имеется медный провод сечением 1,5 кв.мм. Ток для него допустим максимум 18-19 ампер. Соответственно, согласно правилам, выбирать нужно подходящий автомат, но со смещением в меньшую сторону по таблице. И это получается 16 ампер. То есть можно ставить автомат 16 ампер.
Если же провод медный, а его сечение 2,5 кв.мм., то допустим только ток до 26-27 ампер. Поэтому максимально можно применить автомат на 25 ампер. Хотя из соображений надежности лучше установить автомат на 20 ампер.
Таким образом рассчитываются параметры необходимого автомата для остальных сечений проводов.
Совет по автоматам для алюминиевых проводов
При использовании алюминиевых проводов можно подбирать автоматы таким же образом, только увеличивать сечение не в меньшую, а в большую сторону.
Пример: для провода из алюминия, который имеет сечение 4 кв.мм., допустимый ток такой же, как и для провода медного с сечением 2,5 кв.мм. А для такого же провода, но из алюминия, – как для 10 мм кв. медного. У 6-мм – такой же, как у 4-мм из меди. Далее – аналогично.
Виды автоматов
Выбирая автоматический выключатель, очень важно изучить все характеристики прибора. Необходимо также внимательно посчитать общую мощность всех приборов, которые предполагается подключить на каждую группу автоматов. От этих факторов будет зависеть не только скорость срабатывания выключателя, но и качество его работы.
Наиболее часто и в быту, и в производстве встречаются автоматы на 16А. Обычно их устанавливают в электрических щитах. Поэтому всегда актуален вопрос о том, сколько выдерживает автомат на 16 ампер.
Особенности выключателей
Автоматические выключатели изготовлены из материалов, которые совершенно безвредны для здоровья человека. Самозатухающий термопласт используется при изготовлении корпуса прибора. Он способен выдерживать очень высокие температуры. Его контакты сделаны из медных пластинок, посеребренных для лучшего контакта и долговечности.
В конструкции автоматического выключателя присутствует специальное тепловое реле, которое срабатывает при превышении нормы проходящего тока, и электрическая цепь размыкается, не доводя до короткого замыкания. Чем выше показатель тока, тем быстрее скорость срабатывания автомата. Счет идет на доли секунды.
Сфера использования автоматических выключателей весьма обширна и распространяется от установки их во вводных электрических щитках до щитов распределения квартир или домов. Для использования автоматических выключателей выпускаются специальные распределительные щиты с уже установленными DIN-рейками на необходимое количество автоматов. Покупателю требуется только выбрать тот, который отвечает его пожеланиям, и установить щиток в квартире или в доме.
Несмотря на всю кажущуюся простоту использования автоматических выключателей, подключение автомата 16 ампер лучше доверить специалисту.
По номинальному току автоматические выключатели различаются как по силе тока (номинал от 1А до 6300А), так и по нагрузке на цепь (220В, 380 и 400В). Кроме того, выключатели принято различать по скорости срабатывания.
Многие люди, решая, какой поставить автоматический выключатель, задумываются о количестве киловатт, потребляемых самым обычным электрооборудованием. Сколько киловатт выдерживает 16 амперный автомат, какую имеет мощность устройство, для чего он нужен и для какой фазы подходит? Об этом далее.
Емкость автомата и показатель мощности
В ответ на вопрос, 16 ампер сколько киловатт, стоит указать, что подобный автоматический выключатель может выдержать нагрузку на 3,5 кВт в однофазной сети и 18,2 кВт в трехфазной сети. Прибор на 32А — 7 и 36,5 кВт, устройство на 40А — 8,8 и 45,6 кВт, аппарат на 63А — 13,9 и 71,8 кВт соответственно. При этом напряжение питания в розетке в первом случае должно составлять не более 220 вольт, а во втором случае — не более 380 вольт.
Мощность или сила нагрузки — количество потребляемой энергии всеми электроприборами, которые подключены к одной линии. Чтобы рассчитывать это число, нужно взять токовую нагрузку и выбрать больший токовый номинал или равный получившемуся значению.
Обратите внимание! Мощность аппарата 16А равна 3520 Вт, 32А — 7040 Вт, 40А — 8800 Вт, 63А — 13860 Вт в однофазной цепи. Мощность аппарата 16А равна 6080 Вт, 32А — 12160 Вт, 40А — 15200 Вт, 63А — 23940 Вт в трехфазной цепи. Перевод в киловатты представлен в выше.
Характеристики автомата на 16 ампер
Имеет на своем корпусе маркировку номинального тока, коммутационной способности, класса токоограничения, номинальной отключающей способности и время-токовой характеристики срабатывания расщепительной системы. Значение номинального тока равно 16 ампер, что может быть понижено или увеличено при изменении температуры в соответствующую сторону. Показатель коммутационной способности равен 4500 и 6000 ампер для бытового агрегата, а токоограничения — 10 миллисекунд.
Назначение
Автоматический выключатель 25 ампер — устройство, основная задача которого обеспечивать безопасность электрической сети от действия сверхтока, то есть от короткого замыкания с перегрузкой. Главное предназначение аппарата заключается в обеспечении безопасности самого пользователя при использовании сети и электроприборов.
Подобное оборудование включается и выключается от электрической цепи. Чаще всего его используют, чтобы защитить электрическую плиту или другие кухонные нагревательные приборы.
Обратите внимание! Также он может быть использован, чтобы уберечь систему освещения, двигатель, трансформатор и электронный электроприбор.
Принцип действия
Главным элементом устройства является электромагнитный с тепловым расцепители. Первый гарантирует защиту от замыкания, второй — от перенапряжения. Электромагнитный прибор это катушка с сердечником, которая поставлена на специальной пружине и при нормальном режиме создает электромагнитный вид поля, притягивающий катушечный сердечник. В момент короткого замыкания электроток повышается и превышает номинально заявленный по техническим характеристикам. Этот ток проходит по катушке расцепителя и увеличивает поле. В результате цепь обесточивается.
Автоматический выключатель — прибор, благодаря которому исправно работает все электрическое оборудование в доме и в сети. Чтобы сделать расчет, сколько киловатт выдерживает автомат на 16, 32, 40 и 63 ампер, а также посмотреть их мощность, достаточно воспользоваться приведенной выше таблицей.
Существование современного человека уже невозможно без электричества. Каждый дом, квартира, производство оснащены разным оборудованием. Редко владельцы помещений задумываются на тем, какое количество электроэнергии расходуется в общем – расчет осуществляется только при первоначальной укладке электропроводки. Но если напряжение сети будет превышено, произойдет короткое замыкание и сбой сети. Для предотвращения подобных ситуаций используется автоматический выключатель. Для бытовых нужд это автомат 16 ампер.
Модульный автомат С16
Устройство предназначено для защиты сетей электропитания и подключенного оборудования от перегрузок, сбоев, перепадов напряжения. Автомат 16А можно приобрести в любом электротехническом магазине, цены разные – зависят от основных характеристик прибора, числа рабочих полюсов, узнаваемости производителя. Главный показатель стоимости – значение отключающей способности аппарата и его коммутационная величина.
Автомат С16 называется модульным, благодаря определенным качествам. Каждый из полюсов аппарата представлен в виде отдельного модуля стандартного образца, то есть многополярные устройства изготавливаются из нескольких отдельных одиночных блоков (модулей). Соответственно, такой автомат на 16 ампер имеет другое строение корпуса и формат сборки. Например, в литой коробке прибор представляется как единое монолитное устройство – разобрать его не получится, в отличие от других моделей.
Общие характеристики автоматического выключателя С16 и маркировка
Дифавтомат 16А независимо от числа рабочих полюсов определяется несколькими общими характеристиками. Узнать, какими показателями обладает прибор, можно из маркировки. Обозначения наносятся на корпус изделия в следующем порядке:
- номинальный ток;
- времятоковые ограничения, в рамках которых срабатывает механизм;
- номинальная способность к отключению;
- токоограничительный класс модели.
По указанным данным определяется мощность в кВт автомата С16, производительность, скорость и другие параметры.
Номинальный ток
Узнать условное значение пропускающего тока автомата 16А можно из названия аппарата – 16 Ампер. Это означает, что механизм будет продолжать бесперебойно работать пока сила проходящего тока не превысит 16А.
Не менее важным критерием является температура окружающей среды. Для нормальной работы она не должна быть выше 30° по Цельсию. В противном случае автомат отключится при меньшем напряжении. Если воздух будет холодным, номинальное значение наоборот увеличится.
Коммутационная или отключающая способность
Данная характеристика позволяет понять, при каком силе короткого замыкания сработает автоматический выключатель 16А однополюсный и многополюсный. При отключении устройство должно оставаться работоспособным – при переключении в начальное положение, аппарат снова можно использовать. Допустимая сила тока отмечается в рамке прямоугольного типа на корпусе механизма. На серийных моделях иногда оставляют без рамки и помещают отдельно.
Обозначение состоит из нескольких цифр и буквы «А». для бытовых нужд подойдут аппараты класса 4500 или 6000 А. Для производственных нужд используют более мощные. Чем выше значение, тем больше цена изделия и надежность.
Класс токоограничения
Данная характеристика дифференциального автомата 16А показывает время, за которое осуществляется гашение дуги в полном объеме. Существует три класса токоограничения автоматических выключателей. Третий класс показывает, что дуга гасится за 3-5 миллисекунд. В свою очередь, при втором классе гашение дуги происходит за 5-10 миллисекунд. На первый класс ограничения не установлены, гашение происходит за 10 миллисекунд и более.
Обозначение располагается на корпусе – рамка в форме квадрата, внутри цифра 2 или 3. Обычно находится под маркировкой коммутационной способности механизма либо рядом (зависит от модели). Если нет никаких отметок, значит автомат 16А первого класса токоограничения.
Времятоковые характеристики
Каждый автомат на 16А имеет два разных расцепителя – металлическая пластина (тепловой вариант) и реле предельного токового значения (электромагнитный вариант). Благодаря данным элементам и происходит разрыв электрической цепи. Первый предназначен для ситуаций, при которых происходит превышения нагрузки подачи электроэнергии. Второй – при коротких замыканиях. Если происходит наоборот, значит автоматический выключатель С16 подобран некорректно. Требуется переоценка мощности электрической сети и возможностей аппарата для предотвращения аварийных ситуаций.
Времятоковые характеристики – это соотношение силы тока и времени, при которых происходит автоматическое отключение и разъединение цепи. Маркируется в названии устройства буквой «С» (в данном случае перед цифрой 16).
Чем больше проходящий ток, тем выше нагрузка автомата на 16А. Чрезмерные значения приводят к повреждениям кабелей, проводов, электротехнических элементов. Поэтому задача подобных автоматов состоит в том, чтобы отключиться от цепи электропитания до того момента, когда мощность превысит допустимый предел и повредит оборудование (в большинстве случаев необратимо).
Времятоковые характеристики теплового расцепителя для дифавтомата С16 составляют интервал от 1,13 до 1,45 In. При прохождении через тепловой расцепитель автомата C16 тока, равному 1,13 от номинального, выключение происходит за час и более. Во время прохождения тока 1,45 от номинального выключится – менее, чем за 60 минут.
При повышении силы тока более чем на 23,2 Ампер время отключения автомата уменьшится. Если сила тока достигнет значений, достаточных для отключения электромагнитного расцепителя, отключать автомат будет уже этот расцепитель.
Для электромагнитного контакта действует специальное правило – отключение происходит, когда мощность электроэнергии, проходящей через автомат, увеличивается в 5 раз единовременно (например, перепад напряжения). Время – чуть больше 0,1 сек. Если скачок отразился на превышении проходящего тока в 10 раз, автомат сработает быстрее 0,1 сек.
Сечение кабеля для автомата С16
Размер диаметра провода для автомата С16 зависит от того, на какую мощность он рассчитан, и установленных времятоковых характеристик. Например, если в течение часа устройство пропускает 18 Ампер, сечение не должно быть меньше 0,25 сантиметров в квадрате. Материал – медь. Если используется алюминий, необходимо брать кабели с большим сечением при той же нагрузке. В плохих условиях подобный провод может выдержать до 25 Ампер.
Токопроводимость кабеля и совместимость с однополюсным или многополюсным автоматом на 16А зависит от количества жил, изоляционной прокладки и условий, в которых осуществляется закладка провода и эксплуатация.
Через автомат c16 в течение часа может протекать ток 23,2 Ампер. Такой ток при неблагоприятных обстоятельствах приближается к опасному для медного проводника сечением 2,5 мм² пределу. Это вредно для кабеля. Однако кратковременно такой ток проводник выдержать сможет. Подобное повышение тока не должно быть частым явлением.
Не надо перегружать автомат и кабель подключением слишком большой нагрузки, иначе от постоянного перегрева кабель быстро выйдет из работоспособного положения.
Другие характеристики
Отдельные параметры меняются в зависимости от числа фаз токопроводящей схемы и электропроводки – предельное напряжение и мощность пропускаемой нагрузки. Для однофазной сети, где используются однополюсные или двухполюсные автоматы C16, характеристики имеют определенные значения. Для трехфазной сети, где используются трехполюсные или четырехполюсные автоматы C16, эти характеристики будут другими. Изменяется и схема подключения оборудования.
Однополюсные и двухполюсные устройства применяются в однофазных электросетях. Трехполюсные и четырехполюсные – в трехфазных. Иногда двухполюсные используются в сетях на две фазы. В быту они обычно отсутствуют. Исключением могут быть признаны незаземленные выходы однофазного генератора и разделительного трансформатора.
Однополюсные и трехполюсные автоматы отключают фазные проводники, а нулевой оставляют целым. Двухполюсные и четырехполюсные автоматы размыкают и фазные, и нулевой проводник единовременно.
Существуют две разновидности двухполюсных автоматов – 2п и 1п+n. Двухполюсные 2п автоматы состоят из двух одинаковых однополюсных устройств, соединенных механически. В этом случае оба полюса имеют защиту.
Двухполюсные 1п+n состоят из однополюсного механизма и однополюсного рубильника, также механически соединенных, то есть полюс, размыкающий нулевой проводник, не содержит автоматических расцепителей, а только механизм, размыкающий контакты. Микроконтакты разделяются с помощью механического привода при отключении автомата, размыкающего фазный проводник, а полюс n защиты не имеет.
Четырехполюсные аппараты 4п состоят из четырех полноценных однофазных автоматов 16А, а устройства 3п+n – из трех однополюсных и такого же рубильника.
Где применяют автомат С16
При бытовом использовании аппарат подходит как вводное устройство, устанавливаемое перед счетчиком. При этом число полюсов зависит от количества фаз и требований, которые разработаны управляющей энергетической организацией.
Для отдельных электротехнических приборов допустимо устанавливать автоматы на один полюс.
Необходимо учитывать сколько киловатт держит 16-амперный автомат и сколько потребляет устройство. Лучше выбирать защиту с показателями выше, чем у оборудования.
Схема подключения
Согласно ПУЭ, питающий проводник подключается к неподвижному микроконтакту. Это означает подключение сверху (могут быть и исключения). Нужно смотреть схему подключения, расположенную на корпусе устройства. Обозначения следующие:
- символ 1 на схеме показывает, куда подключается вход первого фазного проводника;
- 2 – показывает выход первого фазного проводника;
- 3 – вход;
- 4 – выход у двухполюсного аппарата;
- 5 – вход;
- 6 – выход у трехполюсного;
- 7 – вход;
- 8 – выход у четырехполюсного.
Если кроме цифр на схеме и контактах есть обозначение буквы N, здесь подключается нулевой проводник. Когда такого символа нет, ноль подключается на клеммы, обозначенные максимальными цифрами. Если фазные проводники подключаются сверху, то и ноль тоже. Если фазные проводники подключаются снизу, нулевой, соответственно, тоже снизу.
Автомат c16 очень редко используется в быту в качестве вводного. Бывают подобные требования от электроснабжающих фирм. При подключении невозможно соблюсти селективность даже по тепловому расцепителю, значит при любой аварийной ситуации будет отключаться вводный автомат или оба сразу.
Компании производители
Модульный автомат зарубежных брендов бытовой серии удовлетворяет нормам, предъявляемым к автоматам в быту. Но промышленные качественнее, надежнее и удобнее для монтажа. К наиболее известным относят:
- зарубежные – ABB, Schneider Electric, Legrand;
- российские – КЭАЗ, IEK, EKF.
Модульные аппараты отечественных фирм сделаны в Китае, хотя это не признак их ненадежности. Качество немного хуже бытовых серий зарубежных производителей. Стоят дешевле. Также удовлетворяют нормам для бытовых автоматов. Обычно не имеют серий, похожих на промышленные комплексы зарубежных компаний.
УЗО и дополнительные приспособления
Не стоит рассматривать автомат отдельно от других компонентов электрощита. Покупая устройство, нужно понимать, что оно будет монтироваться вместе с УЗО. Применять УЗО лучше одного производителя с автоматом и из одной серии. При этом можно быть точно уверенным в наилучшем их взаимодействии.
УЗО отечественных производителей уступают по качеству зарубежным. Часто не имеют в серии электромеханических УЗО, но имеют меньшее разнообразие в характеристиках.
Чтобы определить, какой именно автомат следует устанавливать, необходимо учитывать множество разных параметров. Автомат С16 – один из наиболее часто используемых в быту. Мощность позволит защитить оборудование, небольшое число стандартных приборов.
50 квт сколько ампер 3 фазной линии. Как производится расчет автоматического выключателя
На приведенном упрощенном графике, по горизонтальной шкале указаны номиналы тока автоматов, по вертикальной шкале, значение активной мощности при однофазном питании 220 Вольтрассчет для напряжение 380 Вольт и/или трехфазного питания будет значительно отличаться и приведенный график для других, кроме 220 Вольт и однофазное электропитание, мощностей недействителен. . Для выбора подходящего для выбранной рассчетной мощности автомата, достаточно провести горизонталь от выбранной слева мощности до пересечения с зеленым столбиком, посмотрев в основание которого можно выбрать номинал автомата для указанной мощности. Нужную время токовую характеристику и количество полюсов можно выбрать, перейдя по картинке на таблицу выбора автоматов кривой C, как наиболее универсальной и часто применяемой характеристики.
Таблица выбора автоматов по мощности
Расширенная таблица выбора автоматов по мощности, включая трехфазное подключение звездой и треугольником позволяет подобрать соответствующий потребляемой мощности автоматический выключатель. Для работы с таблицей, то есть для выбора автомата, соответствующей мощности, достаточно, зная эту мощность , выбрать в таблице значение большее или равное этой мощности значение. В левой крайней колонке вы увидете номинальный ток автомата, соответствующего выбранной мощности. Вверху, над выбранной мощностью, вы увидете тип подключения автомата, количество полюсов и использумое напряжение. В случае, если выбранной мощности соответствуют несколько значений мощности в таблиценапример мощность 6,5 кВт может быть получена однофазным подключением автомата 32А, подключением трехполюсного автомата 6А трехфазным треузольником и подключением четырехполюсного автомата 10А трехфазной звездой , следует выбрать доступный вам способ подключения. То есть выбирая автомат для мощности 6,5 кВт при отсутствии трехфазного электропитания, нужно выбирать только из однофазного подключения, где будут доступны однополюсный и двухполюсный автомат 32А. Переход по ссылке в таблице для определенной, соответствующей возможностям подключения, мощности осуществляется на соответствующий по номинальному току и количеству полюсов автоматический выключатель с время токовой характеристикой C. В том случае, если нужна друга характеристика отсечки, можно выбрать автомат другой характеристики, ссылки на которые находятся на странице каждого автомата.Выбор автоматов по мощности и подключению
Вид подключения => | ОднофазноеОднофазное вводный | Трехфазное треугольником | Трехфазное звездой | ||
Полюсность автомата => | Однополюсный автомат | Двухполюсный автомат | Трехполюсный автомат | Четырехполюсный автомат | |
Напряжение питания => | 220 Вольт | 220 Вольт | 380 Вольт | 220 Вольт | |
V | V | V | V | ||
Автомат 1А > | 0.2 кВт | 0.2 кВт | 1.1 кВт | 0.7 кВт | |
Автомат 2А > | 0.4 кВт | 0.4 кВт | 2.3 кВт | 1.3 кВт | |
Автомат 3А > | 0.7 кВт | 0.7 кВт | 3.4 кВт | 2.0 кВт | |
Автомат 6А > | 1.3 кВт | 1.3 кВт | 6.8 кВт | 4.0 кВт | |
Автомат 10А > | 2.2 кВт | 2.2 кВт | 11.4 кВт | 6.6 кВт | |
Автомат 16А > | 3.5 кВт | 3.5 кВт | 18.2 кВт | 10.6 кВт | |
Автомат 20А > | 4.4 кВт | 4.4 кВт | 22.8 кВт | 13.2 кВт | |
Автомат 25А > | 5.5 кВт | 5.5 кВт | 28.5 кВт | 16.5 кВт | |
Автомат 32А > | 7.0 кВт | 7.0 кВт | 36.5 кВт | 21.1 кВт | |
Автомат 40А > | 8.8 кВт | 8.8 кВт | 45.6 кВт | 26.4 кВт | |
Автомат 50А > | 11 кВт | 11 кВт | 57 кВт | 33 кВт | |
Автомат 63А > | 13.9 кВт | 13.9 кВт | 71.8 кВт | 41.6 кВт |
Пример подбора автомата по мощности
Одним из способов выбора автоматического выключателя, является выбор автомата по мощности нагрузки. Первым шагом, при выборе автомата по мощности , определяется суммарная мощность подключаемых на постоянной основе к защищаемой автоматом проводке/сети нагрузок. Полученная суммарная мощность увеличивается на коэффициент потребления, определяющий возможное временное превышение потребляемой мощности за счет подключения других, первоначально неучтенных электроприборов.Как пример можно привести кухонную электропроводку, рассчитанную на подключение электрочайника (1,5кВт), микроволновки (1кВт), холодильника (500 Ватт) и вытяжки (100 ватт). Суммарная потребляемая мощность составит 3,1 кВт. Для защиты такой цепи можно применить автомат 16А с номинальной мощностью 3,5кВт. Теперь представим, что на кухню поставили кофемашину (1,5 кВт) и подключили к этой же электропроводке. Суммарная мощность снимаемая с проводки при подключении всех указанных электроприборов в этом случае составит 4,6кВт, что больше мощности 16 Амперного автовыключателя, который, при включении всех приборов просто отключится по превышению мощности и оставит все приборы без электропитания, Включая холодильник. Для снижения вероятности возникновения таких ситуаций и применяется повышающий коэффициент потребления. В нашем случае, при подключении кофемашины мощность увеличилась на 1,5кВт, а коэффициент потребления стал 1,48 (округляем до 1,5). То есть для возможности подключения дополнительного прибора мощностью 1,5кВт рассчетную мощность сети надо умножить на коэффициент 1,5 получив 4,65кВт возможной к получению с проводки мощности.
При выборе автомата по мощности возможно так же применение понижающего коэффициента потребления. Этот коэффициент определяет отличие потребляемой мощности, в сторону снижения, от суммарной рассчетной в связи с неиспользованием одновременно всех, заложенных в рассчет электроприборов. В ранее рассмотренном примере кухонной проводки с мощностью 3,1кВт, понижающий коэффициент будет равен 1, так как чайник, микроволновка, холодильник и вытяжка могут быть включены одновременно, а в случае рассмотрения проводки с мощностью 4,6кВт (включая кофемашину), понижающий коэффициент может быть равен 0,67, если одновременное включение электрочайника и кофемашины невозможно (например, всего одна розетка на оба прибора и в доме нет тройников)
Таким образом, при первом шаге определяется рассчетная мощность защищаемой проводки, и определяются повышающий (увеличение мощности при подключении новых электроприборов) и понижающий (невозможность одновременного подключения некоторых электроприборов) коэффициенты. Для выбора автомата предпочтительно использовать мощность, полученную умножением повышающего коэффициента на рассчетную мощность, при этом естественно учитывая возможности электропроводки (сечение провода должно быть достаточным для передачи такой мощности).
Номинальная мощность автомата
Номинальная мощность автомата, то есть мощность, потребление которой в защищаемой автоматическим выключателем проводке не приведет к отключению автомата рассчитывается в общем случае по формуле , что можно описать фразой => «Мощность = Напряжение умноженное на Силу тока умноженное на косинус Фи», где напряжение это переменное напряжение электросети в Вольтах, сила тока это ток, протекающий через автомат в Амперах и косинус фи — это значение тригонометрической функции Косинус для угла фи (угол фи — это угол сдвига между фазами напряжения и тока). Так как в большинстве случаев выбор автомата по мощности производится для бытового применения, где сдвига между фазами тока и напряжения, вызываемого реактивными нагрузками типа электродвигателей, практически нет, то косинус близок 1 и мощность можно приближенно рассчитать как напряжение умноженное на ток.Так как мощность уже определена, то из формулы мы получаем ток, а именно ток, который соответствует рассчетной мощности путем деления мощности в Ваттах на напряжение сети, то есть на 220 Вольт. В наше примере с мощностью 3,1кВт (3100 Ватт) получается ток равный 14 Ампер (3100Ватт/220Вольт = 14,09 Ампер). Это значит, что при подключении всех указанных приборов с суммой мощности 3,1кВт через автомат защиты будет протекать ток примерно равный 14-и Амперам.
После определения силы тока по потребляемой мощности, следующим шагом в выборе автоматического выключателя является выбор автомата по току
Для выбора автомата по мощности трехфазной нагрузки применяется та же самая формула, с учетом того, что сдвиг между фазами напряжения и тока в трехфазной нагрузке может достигать больших значений и соответственно, необходимо учитывать значение косинуса. В большом количестве случаев, трехфазная нагрузка имеет маркировку указывающую значение косинуса сдвига фаз, например на маркировочной табличке электродвигателя можно увидеть , являющимся именно тем, участвующем в рассчете косинусом угла сдвига фаз. Соответственно, при рассчете трехфазной нагрузки мощность, допустим указанная на шильдике подключаемого трехфазного, на 380 Вольт, электродвигателя мощность равна 7кВт, ток рассчитывается как 7000/380/0,6=30,07
Полученный ток, является суммой токов по всем трем фазам, то есть на одну фазу (на один полюс автомата) приходится 30,07/3~10 Ампер, что соответсвует выбору трехполюсного автомата D10 3P . Характеристика D в данном примере выбрана в связи с тем, что при пуске электродвигателя, пока раскручивается ротор двигателя, токи значительно превышают номинальные значения, что может привести с выключению автоматического выключателя с характеристикой B и характеристикой C .
Максимальная мощность автоматического выключателя
Максимальная мощность автомата, то есть та мощность и соответственно ток, который автомат может через себя пропустить и не отключиться, зависит от отношения протекающего по автомату тока и номинального тока автомата, указанного в технических данных автоматического выключателя. Это отношение можно назвать приведенным током, являющимся безразмерным коэффициентом, уже не связанным с номинальным током автомата. Максимальная мощность автомата зависит от время-токовой характеристики, приведенного тока и продолжительности протекания приведенного тока через автомат, что описано в разделе Время-токовые характеристики автоматических выключателей .Максимальная кратковременная мощность автомата
Максимальная кратковременная мощность автомата может в несколько раз превышать номинальную мощность, но только на короткое время. Величина превышения и время, которое автомат не выключит нагрузку при таком превышении описывается характеристиками (кривыми срабатывания) обозначаемыми латинской буквой , или , указываемыми в маркировке автомата переж цифрой, обозначающей номинальный ток автоматического выключателя.Для выбора автомата по мощности нагрузки необходимо рассчитать ток нагрузки, и подобрать номинал автоматического выключателя больше или равному полученному значению. Значение тока, выраженное в амперах в однофазной сети 220 В., обычно превышает значение мощности нагрузки, выраженное в киловаттах в 5 раз, т.е. если мощность электроприемника (стиральной машины, лампочки, холодильника) равна 1,2 кВт., то ток, который будет протекать в проводе или кабеле равен 2,4 А(1,2 кВт*5=6,0 А). В расчете на 380 В., в трехфазных сетях, все аналогично, только величина тока превышает мощность нагрузки в 2 раза.
Коэффициент мощности — безразмерная физическая величина, характеризующая потребителя переменного электрического тока с точки зрения наличия в нагрузке реактивной составляющей. Коэффициент мощности показывает, насколько сдвигается по фазе переменный ток, протекающий через нагрузку, относительно приложенного к ней напряжения.
Численно коэффициент мощности равен косинусу этого фазового сдвига или cos φ
Косинус фи возьмем из таблицы 6.12 нормативного документа СП 31-110-2003 «Проектирование и монтаж электроустановок жилых и общественных зданий»
Таблица 1. Значение Cos φ в зависимости от типа электроприемника
Примем наш электроприемник мощностью 1,2 кВт. как бытовой однофазный холодильник на 220В, cos φ примем из таблицы 0,75 как двигатель от 1 до 4 кВт.
Рассчитаем ток I=1200 Вт / 220В * 0,75 = 4,09 А.
Теперь самый правильный способ определения тока электроприемника — взять величину тока с шильдика, паспорта или инструкции по эксплуатации. Шильдик с характеристиками есть почти на всех электроприборах.
Общий ток в линии(к примеру розеточной сети) определяется суммированием тока всех электроприемников. По рассчитанному току выбираем ближайший номинал автоматического автомата в большую сторону. В нашем примере для тока 4,09А это будет автомат на 6А.
Очень важно отметить, что выбирать автоматический выключатель только по мощности нагрузки является грубым нарушением требований пожарной безопасности и может привести к возгоранию изоляции кабеля или провода и как следствие к возникновению пожара. Необходимо при выборе учитывать еще и сечение провода или кабеля.
По мощности нагрузки более правильно выбирать сечение проводника. Требования по выбору изложены в основном нормативном документе для электриков под названием ПУЭ (Правила Устройства Электроустановок), а точнее в главе 1.3.В нашем случае, для домашней электросети, достаточно рассчитать ток нагрузки, как указано выше, и в таблице ниже выбрать сечение проводника, при условии что полученное значение ниже длительно допустимого тока соответствующего его сечению.
Выбор автомата по сечению кабеля
Рассмотрим проблему выбора автоматических выключателей для домашней электропроводки более подробно с учетом требований пожарной безопасности.Необходимые требования изложены главе 3.1 «Защита электрических сетей до 1 кВ.», так как напряжение сети в частных домах, квартирах, дачах равно 220 или 380В.
Напряжение 220В. — однофазная сеть используется в основном для розеток и освещения.
380В. — это в основном сети распределительные — линии электропередач проходящие по улицам, от которых ответвлением подключаются дома.
Согласно требованиям вышеуказанной главы, внутренние сети жилых и общественных зданий должны быть защищены от токов КЗ и перегрузки. Для выполнения этих требований и были изобретены аппараты защиты под названием автоматические выключатели(автоматы).
Автоматический выключатель «автомат» — это механический коммутационный аппарат, способный включать, проводить токи при нормальном состоянии цепи, а также включать, проводить в течение заданного времени и автоматически отключать токи в указанном аномальном состоянии цепи, таких, как токи короткого замыкания и перегрузки.
Короткое замыкание (КЗ) — электрическое соединение двух точек электрической цепи с различными значениями потенциала, не предусмотренное конструкцией устройства и нарушающее его нормальную работу. Короткое замыкание может возникать в результате нарушения изоляции токоведущих элементов или механического соприкосновения неизолированных элементов. Также, коротким замыканием называют состояние, когда сопротивление нагрузки меньше внутреннего сопротивления источника питания.
Ток перегрузки — превышающий нормированное значение длительно допустимого тока и вызывающий перегрев проводника.Защита от токов КЗ и перегрева необходима для пожарной безопасности, для предотвращения возгорания проводов и кабелей, и как следствие пожара в доме.
Длительно допустимый ток — величина тока, постоянно протекающего по проводнику, и не вызывающего чрезмерного нагрева провода или кабеля.
Величина длительно допустимого тока для проводников разного сечения и материала представлена ниже.Таблица представляет собой совмещенный и упрощенный вариант применимый для бытовых сетей электроснабжения, таблиц № 1.3.6 и 1.3.7 ПУЭ.
Выбор автомата по току короткого замыкания КЗ
Выбор автоматического выключателя для защиты от КЗ (короткого замыкания) осуществляется на основании расчетного значения тока КЗ в конце линии. Расчет относительно сложен, величина зависит от мощности трансформаторной подстанции, сечении проводника и длинны проводника и т.п.
Из опыта проведения расчетов и проектирования электрических сетей, наиболее влияющим параметром является длинна линии, в нашем случае длинна кабеля от щитка до розетки или люстры.
Т.к. в квартирах и частных домах эта длинна минимальна, то такими расчетами обычно пренебрегают и выбирают автоматические выключатели с характеристикой «C», можно конечно использовать «В», но только для освещения внутри квартиры или дома, т.к. такие маломощные светильники не вызывают высокого значения пускового тока, а уже в сети для кухонной техники имеющей электродвигатели, использование автоматов с характеристикой В не рекомендуется, т.к. возможно срабатывание автомата при включении холодильника или блендера из-за скача пускового тока.
Выбор автомата по длительно допустимому току(ДДТ) проводника.
Выбор автоматического выключателя для защиты от перегрузки или от перегрева проводника осуществляется на основании величины ДДТ для защищаемого участка провода или кабеля. Номинал автомата должен быть меньше или равен величине ДДТ проводника, указанного в таблице выше. Этим обеспечивается автоматическое отключение автомата при превышении ДДТ в сети, т.е. часть проводки от автомата до последнего электроприемника защищена от перегрева, и как следствие от возникновения пожара.
Пример выбора автоматического выключателя
Имеем группу от щитка к которой планируется подключить посудомоечную машину -1,2 кВт, кофеварку — 0,6 кВт и электрочайник — 2,0 кВт.
Считаем общую нагрузку и вычисляем ток.
Нагрузка = 0,6+1,6+2,0=4,2 кВт. Ток = 4,2*5=21А.
Смотрим таблицу выше, под рассчитанный нами ток подходят все сечения проводников кроме 1,5мм2 для меди и 1,5 и 2,5 по алюминию.
Выбираем медный кабель с жилами сечением 2,5мм2, т.к. покупать кабель большего сечения по меди не имеет смысла, а алюминиевые проводники не рекомендуются к применению, а может и уже запрещены.
Смотрим шкалу номиналов выпускаемых автоматов — 0.5; 1.6; 2.5; 1; 2; 3; 4; 5; 6; 8; 10; 13; 16; 20; 25; 32; 40; 50; 63.
Автоматический выключатель для нашей сети подойдет на 25А, так как на 16А не подходит потому что рассчитанный ток (21А.) превышает номинал автомата 16А, что вызовет его срабатывание, при включении всех трех электроприемников сразу. Автомат на 32А не подойдет потому что превышает ДДТ выбранного нами кабеля 25А., что может вызвать, перегрев проводника и как следствие пожар.
Сводная таблица для выбора автоматического выключателя для однофазной сети 220 В.
Номинальный ток автоматического выключателя, А. | Мощность, кВт. | Ток,1 фаза, 220В. | Сечение жил кабеля, мм2. |
16 | 0-2,8 | 0-15,0 | 1,5 |
25 | 2,9-4,5 | 15,5-24,1 | 2,5 |
32 | 4,6-5,8 | 24,6-31,0 | 4 |
40 | 5,9-7,3 | 31,6-39,0 | 6 |
50 | 7,4-9,1 | 39,6-48,7 | 10 |
63 | 9,2-11,4 | 49,2-61,0 | 16 |
80 | 11,5-14,6 | 61,5-78,1 | 25 |
100 | 14,7-18,0 | 78,6-96,3 | 35 |
125 | 18,1-22,5 | 96,8-120,3 | 50 |
160 | 22,6-28,5 | 120,9-152,4 | 70 |
200 | 28,6-35,1 | 152,9-187,7 | 95 |
250 | 36,1-45,1 | 193,0-241,2 | 120 |
315 | 46,1-55,1 | 246,5-294,7 | 185 |
Сводная таблица для выбора автоматического выключателя для трехфазной сети 380 В.
Номинальный ток автоматического выключателя, А. | Мощность, кВт. | Ток, 1 фаза 220В. | Сечение жил кабеля, мм2. |
16 | 0-7,9 | 0-15 | 1,5 |
25 | 8,3-12,7 | 15,8-24,1 | 2,5 |
32 | 13,1-16,3 | 24,9-31,0 | 4 |
40 | 16,7-20,3 | 31,8-38,6 | 6 |
50 | 20,7-25,5 | 39,4-48,5 | 10 |
63 | 25,9-32,3 | 49,2-61,4 | 16 |
80 | 32,7-40,3 | 62,2-76,6 | 25 |
100 | 40,7-50,3 | 77,4-95,6 | 35 |
125 | 50,7-64,7 | 96,4-123,0 | 50 |
160 | 65,1-81,1 | 123,8-124,2 | 70 |
200 | 81,5-102,7 | 155,0-195,3 | 95 |
250 | 103,1-127,9 | 196,0-243,2 | 120 |
315 | 128,3-163,1 | 244,0-310,1 | 185 |
400 | 163,5-207,1 | 310,9-393,8 | 2х95* |
500 | 207,5-259,1 | 394,5-492,7 | 2х120* |
630 | 260,1-327,1 | 494,6-622,0 | 2х185* |
800 | 328,1-416,1 | 623,9-791,2 | 3х150* |
Давно прошло время керамических пробок, которые вкручивались в домашние электрические щитки. В настоящее время широкое распространение получили различные типы автоматических выключателей, выполняющих защитные функции. Данные устройства очень эффективны при коротких замыканиях и перегрузках. Очень многие потребители еще не до конца освоили эти приборы, поэтому нередко возникает вопрос, какой автомат нужно поставить на 15 кВт. От выбора автомата полностью зависит надежная и долговечная работа электрических сетей, приборов и оборудования в доме или квартире.
Основные функции автоматов
Перед выбором автоматического защитного устройства, необходимо разобраться с принципами его работы и возможностями. Многие считают главной функцией автомата защиту бытовых приборов. Однако, это суждение абсолютно неверно. Автомат никак не реагирует на приборы, подключаемые к сети, он срабатывает лишь при коротких замыканиях или перегрузках.Эти критические состояния приводят к резкому возрастанию силы тока, вызывающему перегрев и даже возгорание кабелей.
Особый рост силы тока наблюдается во время короткого замыкания. В этот момент его величина возрастает до нескольких тысяч и кабели просто не в состоянии выдержать подобную нагрузку, особенно, если его сечение 2,5 мм2. При таком сечении наступает мгновенное возгорание провода.
Поэтому от правильного выбора автомата зависит очень многое. Точные расчеты, в том числе и по , дают возможность надежно защитить электрическую сеть.
Параметры расчетов автомата
Каждый автоматический выключатель в первую очередь защищает проводку, подключенную после него. Основные расчеты данных устройств проводятся по номинальному току нагрузки. Расчеты по мощности осуществляются в том случае, когда вся длина провода рассчитана на нагрузку, в соответствии с номинальным током.
Окончательный выбор номинального тока для автомата зависит от сечения провода. Только после этого можно рассчитывать величину нагрузки. Максимальный ток, допустимый для провода с определенным сечением должен быть больше . Таким образом, при выборе защитного устройства используется минимальное сечение провода, присутствующее в электрической сети.
Когда у потребителей возникает вопрос, какой автомат нужно поставить на 15 кВт, таблица учитывает и трехфазную электрическую сеть. Для подобных расчетов существует своя методика. В этих случаях номинальная мощность трехфазного автомата определяется как сумма мощностей всех электроприборов, планируемых к подключению через автоматический выключатель.
Например, если нагрузка каждой из трех фаз составляет 5 кВт, то величина рабочего тока определяется умножением суммы мощностей всех фаз на коэффициент 1,52. Таким образом, получается 5х3х1,52=22,8 ампера. Номинальный ток автомата должен превышать рабочий ток. В связи с этим, наиболее подходящим будет защитное устройство, номиналом 25 А. Наиболее распространенными номиналами автоматов являются 6, 10, 16, 20, 25, 32, 40, 50, 63, 80 и 100 ампер. Одновременно уточняется соответствие жил кабеля заявленным нагрузкам.
Данной методикой можно пользоваться лишь в тех случаях, когда нагрузка одинаковая на все три фазы. Если же одна из фаз потребляет больше мощности, чем все остальные, то номинал автоматического выключателя рассчитывается по мощности именно этой фазы. В этом случае используется только максимальное значение мощности, умножаемое на коэффициент 4,55. Эти расчеты позволяют выбрать автомат не только по таблице, но и по максимально точным полученным данным.
Ампер в кВт — преобразователь Ампер в киловатт
Ампер в кВт — это преобразователь электроэнергии. Он помогает преобразовывать амперы в киловатты для постоянного (DC) и переменного тока (AC). Вам необходимо выбрать тип преобразования переменного или постоянного тока. Введите значение в амперах, нажмите «Рассчитать», чтобы получить примерно равное значение переменного или постоянного тока.
Ампер — единица измерения электрического тока. Ампер обозначается буквой «А». Киловатт — это единица измерения электрической энергии.Ватты используются для измерения небольшой электрической энергии и рассчитываются из ватта. Киловатты — это единицы измерения высокой электрической энергии. Киловатт в 1000 раз превышает мощность ватта. Все современное оборудование и гаджеты откалиброваны в киловаттах.
Мы знаем, что мощность равна напряжению, умноженному на ток.
P = V x I
Для преобразования ампер постоянного тока в кВт формула преобразования:
Мощность постоянного тока равна току I в амперах, умноженному на напряжение V в вольтах, деленному на 1000.
P (кВт) = V x I / 1000
Где
P = Мощность в киловаттах.
В = напряжение.
I = ток.
Для преобразования однофазного переменного тока используются разные формулы. Для преобразования переменного тока в однофазный нужно использовать коэффициент мощности.
Формула преобразования однофазных ампер переменного тока в кВт:
Мощность переменного тока равна току I в амперах, умноженному на напряжение V в вольтах, умноженному на коэффициент мощности, деленный на 1000.
Коэффициент мощности — это отношение реальной мощности к полной мощности.
P (кВт) = V x I x PF / 1000
Где
P = Мощность в киловаттах
В = напряжение.
I = ток.
PF = коэффициент мощности.
Формула преобразования трехфазного тока переменного тока в кВт:
Формула преобразованиятрехфазных ампер переменного тока в кВт аналогична однофазному переменному току, но значение коэффициента мощности изменено. Здесь, в трехфазном переменном токе, мы умножаем коэффициент мощности на √3.
P (кВт) = √3 x PF x V x I / 1000
Где
P = Мощность в киловаттах
В = напряжение.
I = ток.
PF = коэффициент мощности.
Типовой коэффициент мощности бытовой техники:
Ссылка // Летнее исследование ACEEE по энергоэффективности в зданиях, 2014 г. / electric-installation.com
Типовой коэффициент мощности в различных конструкциях:
Ссылка // IEEE Std 141-1993 (Красная книга IEEE)
Ссылка// criticalpowergroup.com
Справочник// Коэффициент мощности в управлении электроэнергией-А. Бхатия, BE-2012 Требования к коэффициенту мощности для электронных нагрузок в Калифорнии — Брайан Фортенбери, 2014 г. http://www.engineeringtoolbox.com
Эквивалентные амперы и киловатты при 120 В переменного тока
Эквивалентные значения в амперах и киловаттах при напряжении 240 В.
Ампер в кВт — Преобразование, формулы, диаграммы, преобразование и калькулятор бесплатно.
С помощью этого калькулятора вы можете в режиме онлайн автоматически, легко, быстро и бесплатно переводить Ампера в кВт или кВт в Ампера.
Чтобы облегчить расчет, мы объясняем, какая формула используется, как рассчитать всего за 2 шага, а также таблицу и примеры преобразования ампера в кВт.
Мы также показываем типичные коэффициенты мощности для различных конструкций, устройств и двигателей.
Формула расчета ампер на кВт:- кВт = киловатт или киловатт.
- В LN = напряжение между фазой и нейтралью.
- В LL = Напряжение между фазами.
- I AC1Ø = ток / однофазный ток.
- I AC2Ø = ток / двухфазный ток.
- I AC3Ø = ток / трехфазный ток.
- FP = Коэффициент мощности нагрузки.
Как преобразовать амперы в кВт за 2 шага.
Шаг 1:
Умножьте соответствующее напряжение согласно формуле на коэффициент мощности, ток и корень из трех. Например, если у вас холодильник 220В (Linea-Line) с коэффициентом мощности 0.8 и ток 5 А, умножьте 220 × 0,8x√3 × 5 и получите 1524,20. 220 × 0,8x√3 × 5) = 1524,20.
Шаг 2:
Разделите шаг 1 на 1000, взяв предыдущий пример, мы получим: (220 × 0,8x√3 × 5) / 1000 = 1,52 кВт.
Примеры преобразования ампер в кВт:
Пример 1:
Есть ли мельница с нагрузкой 50 А, трехфазная, в линию 220 В, с коэффициентом мощности 0,85 и напряжением фаза-нейтраль? 127V, какая будет мощность мельницы в кВт?
Rta: // Чтобы найти результат, мы должны умножить силу тока, линейное напряжение, коэффициент мощности и корень из трех следующим образом: 50Ax220Vx0,85x√3 = 16194, затем мы просто разделим предыдущий результат на 1000, что даст силу тока 16.1 кВт
Пример 2:
У нас есть фен, однофазный, 1Ф, с силой тока 12 А, напряжением 120 В, линейно-нейтраль и коэффициентом мощности 0,88, какая мощность в кВт у фена. ?
Rta: // Принимая во внимание формулу для однофазной силы тока, мы должны умножить силу тока на напряжение и коэффициент мощности, чтобы окончательно разделить предыдущее значение на 1000, как мы можем видеть ниже: (12Ax120Vx0,88) / 1000 = 1,27кВт.
Пример 3:
У нас есть двухфазная печь на 30 А, с напряжением 240 В между фазами и 127 фазами с нейтралью, с коэффициентом мощности 0.99, какая будет мощность печи в кВт?
Rta: // Чтобы узнать ответ, вы должны умножить силу тока 30 А на напряжение линии до нейтрали 127 В, на коэффициент мощности и на 2, а затем разделить предыдущее значение на 1000 следующим образом: (30Ax127Vx0,99 × 2) / 1000, что дает: 7,54 кВт
Ампер в кВт, таблица эквивалентности, преобразование и преобразование (Fp = 0,8, напряжение = 220 В, переменный ток, 3F):
Сколько ампер: | Эквивалент в кВт |
1 амп. | эквивалентно 0,30 кВт |
2 амп. | 0,61 кВт |
3 амп. | 0,91 кВт |
4 амп. | 1,22 кВт |
5 амп. | 1,52 кВт |
6 амп. | 1,83 кВт |
7 амп. | 2,13 кВт |
8 амп. | 2,44 кВт |
9 амп. | 2,74 кВт |
10 ампер. | 3,05 кВт |
20 ампер. | 6,10 кВт |
30 ампер. | 9,15 кВт |
40 ампер. | 12,19 кВт |
50 ампер. | 15,24 кВт |
60 ампер. | 18,29 кВт |
70 Амп. | 21,34 кВт |
80 Амп. | 24,39 кВт |
90 ампер. | 27,44 кВт |
100 ампер. | 30,48 кВт |
200 Ампер. | 60,97 кВт |
300 ампер. | 91,45 кВт |
400 ампер. | 121,94 кВт |
500 Ампер. | 152,42 кВт |
600 ампер. | 182,90 кВт |
700 Ампер. | 213,39 кВт |
800 Амп. | 243,87 кВт |
900 Ампер. | 274,36 кВт |
1000 Ампер. | 304,84 кВт |
1100 амп. | 335,33 кВт |
1200 Ампер. | 365,81 кВт |
1300 Ампер. | 396,29 кВт |
1400 Амп. | 426,78 кВт |
1500 Ампер. | 457,26 кВт |
1600 Ампер. | 487,75 кВт |
Примечание: Преобразования в предыдущей таблице были выполнены с учетом коэффициента мощности 0.8, напряжение 220 В при трехфазном питании переменного тока, для различных переменных необходимо использовать калькулятор, который появляется в начале.
Типовой коэффициент мощности для двигателей, конструкций и устройств.
Типичный неулучшенный коэффициент мощности по отрасли:Промышленность | Коэффициент мощности | |||||||||||||||||||||||||||||||
Автозапчасти | 0,75-0,80 | |||||||||||||||||||||||||||||||
Пивоваренный завод | . 0 0||||||||||||||||||||||||||||||||
Цемент | 0.80-0,85 | |||||||||||||||||||||||||||||||
Химическая промышленность | 0,65-0,75 | |||||||||||||||||||||||||||||||
Угольная шахта | 0,65-0,80 | |||||||||||||||||||||||||||||||
Одежда | 0,35-0,60 | |||||||||||||||||||||||||||||||
0,75-0,80 | ||||||||||||||||||||||||||||||||
Ковка | 0,70-0,80 | |||||||||||||||||||||||||||||||
Больница | 0,75-0,80 | |||||||||||||||||||||||||||||||
Машиностроение | 0,60-0,65 | |||||||||||||||||||||||||||||||
Офисное здание | 0,80-0,90 | |||||||||||||||||||||||||||||||
Нефтяное месторождение Насосное | 0,40-0,60 | |||||||||||||||||||||||||||||||
Производство красок | 0,65-0,70 | |||||||||||||||||||||||||||||||
Пластик | Штамповка | 0,60–0,70 | ||||||||||||||||||||||||||||||
Металлургический завод | 0,65–0,80 | |||||||||||||||||||||||||||||||
Инструмент, штампы, кондукторы для промышленности | 0,65–0,75 |
Мощность | Скорость | Коэффициент мощности | ||||||
(л.с.) | (об / мин) | 1/2 нагрузки | 3/4 нагрузки | полная нагрузка | ||||
0-5 | 1800 | 0.72 | 0,82 | 0,84 | ||||
5-20 | 1800 | 0,74 | 0,84 | 0,86 | ||||
20-100 | 1800 | 0,79 | 1800 | 0,79 | — 3001800 | 0,81 | 0,88 | 0,91 |
Ссылка // Коэффициент мощности в управлении электрической энергией-A. Bhatia, B.E.-2012
Требования к коэффициенту мощности для электронных нагрузок в Калифорнии — Брайан Фортенбери, 2014
http: // www.engineeringtoolbox.com
Как использовать калькулятор ампер в кВт:
Это очень просто, сначала введите силу тока для преобразования, затем выберите тип переменного или постоянного тока, в соответствии с выбранным током, запрашиваются различные параметры, чтобы вы необходимо помнить о полях слева в калькуляторе, затем выберите количество фаз 1, 2 или 3, этот параметр применяется только тогда, когда вы выбираете переменный ток, затем введите коэффициент мощности, если вы не знаете, какой коэффициент мощности нагрузка вы можете увидеть здесь.
Продолжайте вводить напряжение, этот раздел очень важен, вы должны ввести напряжение, указанное в таблице слева (линейное напряжение или линейное напряжение нейтрали), в противном случае результат может быть неверным, и, наконец, вы дадите «Рассчитать », А затем, если вы хотите выполнить еще один расчет« перезапуска ».
Калькулятор номинальных значений из ампер в кВт: [kkstarratings]
Калькулятор из ампер в кВт
Ампер в Киловатт Калькулятор преобразования
Это калькулятор преобразования, который изменяет ток в амперах (A) и напряжение в вольтах (V) на результаты измерения мощности в киловаттах (кВт).Первый шаг — выбрать текущий тип. Это может быть постоянный ток, обозначенный как (DC), или переменный ток (AC). Следующее текстовое поле дает вам возможность ввести ток в амперах, в то время как другое требует, чтобы вы вводили напряжение в вольтах.
Процедура проста, и вы можете нажать кнопку «Рассчитать», которая выполняет расчет одним щелчком мыши. Кнопка «Сброс» стирает все в текстовых полях и может использоваться, когда вы хотите выполнить другие вычисления.
Например, если у вас есть 100 ампер и 80 вольт при постоянном токе, то результат вашей мощности в киловаттах будет 8 кВт.Если тип тока был AC-однофазный, вы можете ввести 100 ампер и 80 вольт в требуемые ячейки.
Затем вы можете ввести коэффициент мощности, который должен находиться в диапазоне от 0 до 1. например. 0,567. Нажав на кнопку «Рассчитать», вы получите результат мощности в киловаттах, равный 4,536 кВт. AC-трехфазный шире и потребует от вас выбора типа напряжения. Возможные варианты — линейное напряжение и линейное напряжение нейтрали.
Если у вас 100 ампер, 80 вольт, коэффициент мощности 0,567, а линейный ток является вашим типом энергии, тогда мощность в киловаттах будет равна 7.8565824631 (кВт).
Есть способы, которыми калькулятор выполняет вычисления;
Оценка усилителей постоянного тока в киловаттах
P (кВт) = I (A) x V (V) / 1000, что означает, что мощность в киловаттах рассчитывается путем умножения тока в амперах на напряжение в вольтах и деления результата на 1000.Расчет однофазного переменного тока до (кВт)
P (кВт) = PF x I (A) x V (V) / 1000, что означает, что мощность в киловаттах рассчитывается путем умножения коэффициента мощности на фазный ток в амперах, умноженного на действующее значение напряжения в вольтах, после деления результатов на 1000. .Расчет трехфазного переменного тока в киловаттах
Линейное напряжениеP (кВт) = √3 x PF x I (A) x V LL (V) / 1000, что означает, что мощность в киловаттах рассчитывается как квадратный корень из трех, умноженный на коэффициент мощности, умноженный на фазный ток в амперах, на линейное напряжение RMS. Затем результаты делятся на 1000.
Линия к нейтрали Напряжение
P (кВт) = 3 x PF x I (A) x V LN (V) / 1000, что означает, что мощность в киловаттах рассчитывается путем умножения трех на коэффициент мощности, умноженный на фазный ток в амперах на линию к нейтрали. действующее значение напряжения, разделив результаты на 1000.
Ампер в Киловатт | Преобразователь ампер в кВт
Киловатт и ампер — это два разных количества электричества. В то время как первый количественно определяет количество мощности, потребляемой нагрузкой в любой момент времени, последний количественно определяет количество тока, потребляемого нагрузкой. Вы можете использовать следующий калькулятор для расчета киловатт из ампер. Введите амперы, напряжение, , тип напряжения, и коэффициент мощности для расчета.
Конвертер ампер в киловатт
Как перевести киловатт в ампер?
Поскольку ампер (А или амперы) является мерой силы тока, а киловатты (кВт) — киловаттами, ампер не может быть напрямую преобразован в киловатты или наоборот.Ниже приведены формулы, используемые для преобразования ампер в киловатт.
Один киловатт = 1000 Вт
DC — расчет кВт
Для любой цепи постоянного тока Мощность в киловаттах = В постоянного тока x Idc / 1000
Где Vdc — приложенное постоянное напряжение, а Idc — ток.
Следовательно, киловатты можно рассчитать в амперах, умножив приложенное напряжение на ток и разделив произведение на 1000.
Однофазный переменный ток — расчет кВт
Для любой однофазной цепи переменного тока Мощность, кВт = (В переменного тока x P.F. x Iac) / 1000
Где Vac — это среднеквадратичное значение приложенного переменного напряжения, а P.F. коэффициент мощности нагрузки.
Следовательно, для расчета кВт в однофазном переменном токе, разделите произведение действующего значения приложенного переменного напряжения, тока и коэффициента мощности на 1000.
Трехфазный переменный ток — от кВт до А
Для трехфазной цепи переменного тока: , если известно линейное напряжение , киловатты можно рассчитать в амперах по следующей формуле.
Для любой трехфазной цепи переменного тока Мощность кВт = (√3 x V L x P.F. x I L ) / 1000
Где V L и I L — среднеквадратичное значение приложенного линейного напряжения и линейного тока соответственно, а коэффициент полезного действия. коэффициент мощности нагрузки
Следовательно, кВт можно рассчитать делением произведения √3, действующего значения приложенного сетевого напряжения, коэффициента мощности и тока на 1000.
Для трехфазной цепи переменного тока: , если известно фазное напряжение , кВт можно рассчитать по следующей формуле.
Для любой трехфазной цепи переменного тока Мощность, кВт = (3 x В, ф. x P.F. x I L ) / 1000
Где V фаза и I L — среднеквадратичное значение приложенного фазного напряжения и линейного тока соответственно, а коэффициент мощности (P.F.) коэффициент мощности нагрузки
Следовательно, кВт можно рассчитать, разделив 3-кратное произведение действующего значения приложенного сетевого напряжения, коэффициента мощности и тока на 1000.
Другой калькулятор
Single vs.Трехфазный переменный ток
В однофазной системе переменного тока присутствует только одно синусоидальное напряжение.
Большая часть мощности переменного тока производится и распределяется как трехфазная мощность с тремя синусоидальными напряжениями, сдвинутыми по фазе на 120 градусов друг к другу.
Приведенные ниже диаграмма и таблица могут использоваться для преобразования силы тока между однофазным и трехфазным оборудованием и наоборот.
Загрузите и распечатайте схему однофазного и трехфазного переменного тока
Пример — Электропитание электрического нагревателя
10 кВт Для электрического нагревателя требуется мощности.Доступный источник питания: 230 В, однофазный или трехфазный. Из приведенной выше диаграммы мы можем оценить ток в двух вариантах примерно как
- 43 A с одной фазой 230 В
- 25 A с тремя фазами 230 В
Полная мощность — это подаваемая мощность в электрическую цепь — обычно от поставщика энергии до сети — для покрытия реальной и реактивной мощности, потребляемой нагрузками.Для чисто резистивных нагрузок полная мощность равна реальной мощности и 1 ВА = 1 Вт .
Для полного стола с трехфазной сбалансированной нагрузкой — поверните экран!
Полная мощность (ВА) | Ток (ампер) | |||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Однофазный (вольт) | Трехфазная сбалансированная нагрузка 75 | | 75 120821 (вольт) | 208 | 230 | 240 | 208 | 230 | 240 | 277 | 347 | 380 | 400 | 415 | 480 | 05 | 415 | 480 | 05 | 90830,48 | 0,43 | 0,42 | 0,28 | 0,25 | 0,24 | 0,21 | 0,17 | 0,15 | 0,14 | 0,17 | 9017 9017 9017 90170,72 | 0,65 | 0,63 | 0,42 | 0,38 | 0,36 | 0,31 | 0,25 | 0,23 | 0.22 | 0,21 | 0,18 | 0,14 |
200 | 1,7 | 1,0 | 0,87 | 0,83 | 0,56 | 0,50 | 0,48 9017 | 0177 9017 | 0,28 | 0,24 | 0,19 | |||||||||||||||||||||
250 | 2,1 | 1,2 | 1,1 | 1,0 | 0,69 | 0.63 | 0,60 | 0,52 | 0,42 | 0,38 | 0,36 | 0,35 | 0,30 | 0,24 | ||||||||||||||||||
300 | 2,5 | 1,4 | 2,5 | 1,4 | 2,5 | 1,4 | 0,72 | 0,63 | 0,50 | 0,46 | 0,43 | 0,42 | 0,36 | 0,29 | ||||||||||||||||||
350 | 2.9 | 1,7 | 1,5 | 1,5 | 1,0 | 0,88 | 0,84 | 0,73 | 0,58 | 0,53 | 0,51 | 0,49 | 0,480 | 0,49 | 0,480 9018 9018 | 1,9 | 1,7 | 1,7 | 1,1 | 1,0 | 1,0 | 0,83 | 0,67 | 0,61 | 0,58 | 0.56 | 0,48 | 0,38 | ||||
450 | 3,8 | 2,2 | 2,0 | 1,9 | 1,2 | 1,1 | 1,1 | 0,67 9017 9017 | 1,1 | 0,67 9017 | 0,54 | 0,43 | ||||||||||||||||||||
500 | 4,2 | 2,4 | 2,2 | 2,1 | 1,4 | 1,3 | 1.2 | 1,0 | 0,83 | 0,76 | 0,72 | 0,70 | 0,60 | 0,48 | ||||||||||||||||||
550 | 4,6 | 2,6 | 2,4 9017 | 2,6 | 2,4 | 1,1 | 0,92 | 0,84 | 0,79 | 0,77 | 0,66 | 0,53 | ||||||||||||||||||||
600 | 5,0 | 2,9 | 2.6 | 2,5 | 1,7 | 1,5 | 1,4 | 1,3 | 1,0 | 0,91 | 0,87 | 0,83 | 0,72 | 0,58 | 650 9017 | |||||||||||||||||
2,7 | 1,8 | 1,6 | 1,6 | 1,4 | 1,1 | 1,0 | 0,94 | 0,90 | 0,78 | 0.63 | ||||||||||||||||||||||
700 | 5,8 | 3,4 | 3,0 | 2,9 | 1,9 | 1,8 | 1,7 | 1,5 | 1,2 | 1,1 | 1,080 | 1,080 | 1,1 | 1,080 | ||||||||||||||||||
750 | 6,3 | 3,6 | 3,3 | 3,1 | 2,1 | 1,9 | 1,8 | 1,6 | 1,2 | 1.1 | 1,1 | 1,0 | 0,90 | 0,72 | ||||||||||||||||||
800 | 6,7 | 3,8 | 3,5 | 3,3 | 2,2 | 2,0 | 2,2 | 2,0 | 1,2 | 1,1 | 1,0 | 0,77 | ||||||||||||||||||||
850 | 7,1 | 4,1 | 3,7 | 3,5 | 2,4 | 2.1 | 2,0 | 1,8 | 1,4 | 1,3 | 1,2 | 1,2 | 1,0 | 0,82 | ||||||||||||||||||
900 | 7,5 | 4,3 | 910 3,9 | 2,2 | 1,9 | 1,5 | 1,4 | 1,3 | 1,3 | 1,1 | 0,87 | |||||||||||||||||||||
950 | 7,9 | 4.6 | 4,1 | 4,0 | 2,6 | 2,4 | 2,3 | 2,0 | 1,6 | 1,4 | 1,4 | 1,3 | 1,1 | 0,91 | 8,3 | 4,3 | 4,2 | 2,8 | 2,5 | 2,4 | 2,1 | 1,7 | 1,5 | 1,4 | 1,4 | 1,2 | 1.0 | |||||
1100 | 9,2 | 5,3 | 4,8 | 4,6 | 3,1 | 2,8 | 2,6 | 2,3 | 1,8 | 1,7 | 1,6 | 1,6 | ||||||||||||||||||||
1200 | 10 | 5,8 | 5,2 | 5,0 | 3,3 | 3,0 | 2,9 | 2,5 | 2,0 | 1.8 | 1,7 | 1,7 | 1,4 | 1,2 | ||||||||||||||||||
1300 | 11 | 6,3 | 5,7 | 5,4 | 3,6 | 3,7 | 3,3 | 3,1 | 1,9 | 1,8 | 1,6 | 1,3 | ||||||||||||||||||||
1400 | 12 | 6,7 | 6,1 | 5,8 | 3,9 | 3.5 | 3,4 | 2,9 | 2,3 | 2,1 | 2,0 | 1,9 | 1,7 | 1,3 | ||||||||||||||||||
1500 | 13 | 7,2 | 6,580 | 7,2 | 6,580 | 3,6 | 3,1 | 2,5 | 2,3 | 2,2 | 2,1 | 1,8 | 1,4 | |||||||||||||||||||
1600 | 13 | 7.7 | 7,0 | 6,7 | 4,4 | 4,0 | 3,8 | 3,3 | 2,7 | 2,4 | 2,3 | 2,2 | 1,9 | 1,5 | 9017 9017 9017 9017 | 7,4 | 7,1 | 4,7 | 4,3 | 4,1 | 3,5 | 2,8 | 2,6 | 2,5 | 2,4 | 2,0 | 1.6 | |||||
1800 | 15 | 8,7 | 7,8 | 7,5 | 5,0 | 4,5 | 4,3 | 3,8 | 3,0 | 2,7 | 2,6 | 3,0 | 2,7 | |||||||||||||||||||
1900 | 16 | 9,1 | 8,3 | 7,9 | 5,3 | 4,8 | 4,6 | 4,0 | 3,2 | 2.9 | 2,7 | 2,6 | 2,3 | 1,8 | ||||||||||||||||||
2000 | 17 | 9,6 | 8,7 | 8,3 | 5,6 | 5,0 | 4,8 | 4,2 | 5,0 | 4,8 | 2,9 | 2,8 | 2,4 | 1,9 | ||||||||||||||||||
2500 | 21 | 12 | 11 | 10 | 6,9 | 6.3 | 6,0 | 5,2 | 4,2 | 3,8 | 3,6 | 3,5 | 3,0 | 2,4 | ||||||||||||||||||
3000 | 25 | 14 | 13 0 8,3 7,2 | 6,3 | 5,0 | 4,6 | 4,3 | 4,2 | 3,6 | 2,9 | | |||||||||||||||||||||
3500 | 29 | 17 | 15 | 9107 15 9107 158,8 | 8,4 | 7,3 | 5,8 | 5,3 | 5,1 | 4,9 | 4,2 | 3,4 | ||||||||||||||||||||
4000 | 33 | 19 17 | 33 | 19 17 | 10 | 9,6 | 8,3 | 6,7 | 6,1 | 5,8 | 5,6 | 4,8 | 3,8 | |||||||||||||||||||
4500 | 38 | 22 19 | 80 | 11 | 9.4 | 7,5 | 6,8 | 6,5 | 6,3 | 5,4 | 4,3 | |||||||||||||||||||||
5000 | 42 | 24 | 22 | 21 | 1480 | 8,3 | 7,6 | 7,2 | 7,0 | 6,0 | 4,8 | |||||||||||||||||||||
5500 | 46 | 26 | 24 | 23 | 15 | 14 | 15 | .28,4 | 7,9 | 7,7 | 6,6 | 5,3 | ||||||||||||||||||||
6000 | 50 | 29 | 26 | 25 | 17 | 9017 9017 9017 9017 9017 9017 9017 9017 9017 | 9,1 | 8,7 | 8,3 | 7,2 | 5,8 | |||||||||||||||||||||
6500 | 54 | 31 | 28 | 27 | 18 | 16801 | 18 | 16801 | .99,4 | 9,0 | 7,8 | 6,3 | ||||||||||||||||||||
7000 | 58 | 34 | 30 | 29 | 19 | 18 17 | 10 | 9,7 | 8,4 | 6,7 | ||||||||||||||||||||||
7500 | 63 | 36 | 33 | 31 | 21 | 19 | 9017 11 | 10 | 9.0 | 7,2 | ||||||||||||||||||||||
8000 | 67 | 38 | 35 | 33 | 22 | 20 | 19 | 17 | 13 | 12 | 7,7 | |||||||||||||||||||||
8500 | 71 | 41 | 37 | 35 | 24 | 21 | 20 | 18 | 14 | 13 12 | 13 12 | .2 | ||||||||||||||||||||
9000 | 75 | 43 | 39 | 38 | 25 | 23 | 22 | 19 | 15 | 14 | ||||||||||||||||||||||
9500 | 79 | 46 | 41 | 40 | 26 | 24 | 23 | 20 | 16 | 14 | 14 | 14 | 14 | 1 | ||||||||||||||||||
10000 | 83 | 48 | 43 | 42 | 28 | 25 | 24 | 21 | 17 | 15 | 14 901 |
Номограмма электрической мощности
Номограмму ниже можно использовать для оценки зависимости мощности от напряжения и силы тока.
Скачайте и распечатайте номограмму зависимости электроэнергии от вольт и ампер!
Трехфазный ток — простой расчет
Расчет тока в трехфазной системе был поднят в отзывах на нашем сайте, и это обсуждение, в которое я, кажется, время от времени участвую.Хотя некоторые коллеги предпочитают запоминать формулы или факторы, я предпочитаю решать проблему шаг за шагом, используя базовые принципы. Я подумал, что неплохо было бы написать, как я делаю эти расчеты. Надеюсь, это может оказаться полезным для кого-то еще.
Трехфазная мощность и токМощность, потребляемая цепью (одно- или трехфазной), измеряется в ваттах Вт (или кВт). Произведение напряжения и тока представляет собой полную мощность, измеряемую в ВА (или кВА).Соотношение между кВА и кВт — это коэффициент мощности (pf):
что также может быть выражено как:
Однофазная система — с этим проще всего иметь дело. Учитывая кВт и коэффициент мощности, можно легко рассчитать кВА. Сила тока — это просто кВА, деленная на напряжение. В качестве примера рассмотрим нагрузку, потребляющую 23 кВт мощности при 230 В и коэффициенте мощности 0,86:
.
Примечание: вы можете выполнять эти уравнения в ВА, В и А или в кВА, кВ и кА в зависимости от величины параметров, с которыми вы имеете дело.Чтобы преобразовать ВА в кВА, просто разделите на 1000.
Трехфазная система — Основное различие между трехфазной системой и однофазной системой — это напряжение. В трехфазной системе линейное напряжение (V LL ) и фазное напряжение (V LN ) связаны соотношением:
«Введение в трехфазную электрическую мощность».
или как вариант:
чтобы лучше понять это или получить больше информации, вы можете прочитать статью
Для меня самый простой способ решить трехфазные проблемы — это преобразовать их в однофазную.Возьмем трехфазный двигатель (с тремя одинаковыми обмотками), потребляющий заданную кВт. Мощность в кВт на обмотку (одна фаза) должна быть разделена на 3. Точно так же трансформатор (с тремя обмотками, каждая из которых идентична), питающий данную кВА, будет иметь каждую обмотку, обеспечивающую треть общей мощности. Чтобы преобразовать трехфазную задачу в однофазную, возьмите общую мощность в кВт (или кВА) и разделите ее на три.
В качестве примера рассмотрим сбалансированную трехфазную нагрузку, потребляющую 36 кВт при коэффициенте мощности 0.86 и линейное напряжение 400 В (V LL ):
линия на нейтраль (фаза) напряжение В LN = 400 / √3 = 230 В
трехфазная мощность 36 кВт, однофазная мощность = 36/3 = 12 кВт
теперь просто следуйте описанному выше однофазному методу
Достаточно просто. Чтобы найти мощность при заданном токе, умножьте его на напряжение, а затем на коэффициент мощности, чтобы преобразовать его в W. Для трехфазной системы умножьте на три, чтобы получить общую мощность.
Использование формулЛичная записка по методу
Как правило, я запоминаю методику (а не формулы) и переделываю ее каждый раз, когда делаю расчет. Когда я пытаюсь запомнить формулы, я всегда быстро их забываю или неуверен, правильно ли я их запоминаю. Мой совет — всегда старайтесь запоминать метод, а не просто запоминать формулы. Конечно, если у вас есть суперспособность запоминать формулы, вы всегда можете придерживаться этого подхода.
Вывод формулы — пример
Сбалансированная трехфазная система с общей мощностью P (Вт), коэффициентом мощности pf и линейным напряжением В LL
Преобразование в однофазную проблему:
P1ph = P3
Полная мощность одной фазы S 1 фаза (ВА):
S1ph = P1phpf = P3 × pf
Фазный ток I (A) — полная однофазная мощность, деленная на напряжение между фазой и нейтралью (с учетом В LN = В LL / √3):
I = S1phVLN = P3 × pf3VLL
Упрощение (и с 3 = √3 x √3):
I = P3 × pf × VLL
Приведенный выше метод основан на запоминании нескольких простых принципов и манипулировании проблемой, чтобы дать ответ.
Для получения того же результата можно использовать более традиционные формулы. Их можно легко вывести из вышеприведенного, например:
I = W3 × pf × VLL, в А
Несбалансированные трехфазные системыВышеупомянутое относится к сбалансированным трехфазным системам. То есть ток в каждой фазе одинаковый, и каждая фаза обеспечивает или потребляет одинаковое количество энергии. Это типично для систем передачи энергии, электродвигателей и аналогичного оборудования.
Часто, когда задействованы однофазные нагрузки, например, в жилых и коммерческих помещениях, система может быть несбалансированной, так как каждая фаза имеет разный ток и доставляет или потребляет разное количество энергии.
Сбалансированные напряжения
К счастью, на практике напряжения имеют тенденцию быть фиксированными или очень небольшими. В этой ситуации, немного подумав, можно распространить вышеупомянутый тип расчета на трехфазные системы с несимметричным током.Ключом к этому является то, что сумма мощности в каждой фазе равна общей мощности системы.
Например, возьмем трехфазную систему 400 В (V LL ) со следующими нагрузками: фаза 1 = 80 A, фаза 2 = 70 A, фаза 3 = 82 A
линия на нейтраль (фаза) напряжение В LN = 400 / √3 = 230 В
Полная мощность фазы 1 = 80 x 230 = 18400 ВА = 18,4 кВА
Полная мощность фазы 2 = 70 x 230 = 16100 ВА = 16,1 кВА
Полная мощность фазы 3 = 82 x 230 = 18 860 ВА = 18.86 кВА
Общая трехфазная мощность = 18,4 + 16,1 + 18,86 = 53,36 кВА
Аналогично, учитывая мощность в каждой фазе, вы можете легко найти фазные токи. Если вам также известен коэффициент мощности, вы можете преобразовать его из кВА в кВт, как показано ранее.
Несбалансированные напряжения
Если напряжения становятся несимметричными или есть другие соображения (например, несбалансированный фазовый сдвиг), то необходимо вернуться к более традиционному анализу сети.Системные напряжения и токи можно найти, подробно изобразив схему и используя законы Кирхгофа и другие сетевые теоремы.
КПД и реактивная мощностьСетевой анализ не является целью данной заметки. Если вас интересует введение, вы можете просмотреть наш пост: Теория сети — Введение и обзор
Другие факторы, которые следует учитывать при проведении расчетов, могут включать эффективность оборудования.Зная, что эффективность энергопотребляющего оборудования — это выходная мощность, деленная на входную, опять же, это легко подсчитать. Реактивная мощность не обсуждается в статье, а более подробную информацию можно найти в других примечаниях (просто воспользуйтесь поиском на сайте).
СводкаПомня, что трехфазная мощность (кВт или кВА) просто в три раза больше однофазной мощности, любую трехфазную задачу можно упростить. Разделите кВт на коэффициент мощности, чтобы получить кВА. ВА — это просто ток, умноженный на напряжение, поэтому знание этого и напряжения может дать ток.При расчете тока используйте фазное напряжение, которое связано с линейным напряжением квадратным корнем из трех. Используя эти правила, можно решить любую трехфазную задачу без необходимости запоминать и / или прибегать к формулам.
Развертывание мощных стоек для ИТ-оборудования
Скачать PDF
Обзор
Многие менеджеры центров обработки данных хорошо справляются с энергосбережением — снижая эффективность использования энергии (PUE), повышая температуру центра обработки данных, используя экономайзеры на стороне воздуха для снижения энергопотребления для охлаждения — но среднее энергопотребление в стойке все еще растет.
Фактически, повышение эффективности означает, что серверы получают больше мощности для поддержки роста центра обработки данных. Центры обработки данных обнаруживают, что им необходимо использовать все больше и больше мощности.
Тенденции в развертывании мощности центров обработки данных.
Максимальная удельная мощность (в кВт) на стойку в центре обработки данных.
Источник: © Liebert Corporation, 2010 г., «Специальный отчет группы пользователей центра обработки данных».
Менеджеры центров обработки данных все больше и больше подключают к стойкам ИТ-оборудования, чтобы не отставать от энергоемких устройств.Как видно из диаграммы ниже, почти половина (49%) опрошенных менеджеров центров обработки данных имели максимальную удельную мощность стойки 12 кВт или меньше.
Они ожидали, что два года спустя только одна треть (33%) будет иметь максимальную удельную мощность стойки 12 кВт или меньше. В некоторых центрах обработки данных сегодня есть стойки, подключенные к электросети, чтобы обеспечить мощность до 30 кВА.
Драйверы для стоек высокой мощности
Требования к высокой мощности стоек центра обработки данных обусловлены несколькими факторами, такими как высокая плотность стоек, заполненных серверами типа «коробка для пиццы» высотой 1U.Есть компании, которые сейчас развертывают серверы 1U в стойках 54U.
Другой пример — сетевое оборудование, такое как системы Cisco® Nexus серии 7000. Также в одной стойке можно установить блейд-серверы, например несколько шасси HP® c7000.
И сетевые устройства хранения, такие как корпус Dell ™ Compellent ™ Storage Center FC, который потребляет 450 Вт на каждое устройство 2U.
Ниже приведена диаграмма ASHRAE, показывающая прогнозируемую тепловую нагрузку, которая также является потребляемой мощностью, поскольку каждый ватт энергии, потребляемой ИТ-оборудованием, преобразуется в один ватт тепла.Обратите внимание, что вертикальный масштаб диаграммы является логарифмическим, поэтому требования к мощности не выравниваются, а резко увеличиваются.
Распределение электроэнергии центров обработки данных по всему миру
Тенденции в области электропитания оборудования Datacom
Источник: © 2005 ASHRAE TC 9.9 Тенденции в области электропитания оборудования Datacom и приложения для охлаждения.
Типичное напряжение в Северной Америке составляет 120 В и 208 В. Некоторые типичные международные напряжения составляют 100 В (Япония), 230 В (Европа) и 240 В (Австралия). Поскольку поставщики ИТ-оборудования хотят иметь возможность продавать свою продукцию по всему миру, практически все ИТ-оборудование оснащено источниками питания, которые автоматически настраиваются на напряжение до 240 В.
По стойкам можно распределить как однофазные, так и трехфазные цепи. В Северной Америке трехфазные цепи обычно составляют 208 В, хотя 400 В становится все более распространенным. Для остального мира трехфазное распределение электроэнергии составляет 400 В (Европа и большая часть Азии) и 415 В (Австралия). Поскольку максимальное напряжение, принимаемое обычным ИТ-оборудованием, составляет 240 В, задача стойки или распределительного устройства шкафа — принять входное напряжение 400 В и преобразовать его в 230 В или 240 В на выходах PDU.
Во многих частях мира электрические цепи имеют номинальный ток 16 или 32 А.Это фактический ток, который могут безопасно переносить эти электрические устройства. В Северной Америке электрическое оборудование обычно указывается как 15A, 20A, 30A и т. Д. Однако Национальный электрический кодекс (NEC) требует, чтобы эти значения были «понижены» на 20%, чтобы обеспечить некоторый запас. Таким образом, в Северной Америке электрическое устройство, указанное как 20A, фактически рассчитано на 16A (20A x 80%).
Вт (Вт) используется для указания фактической потребляемой мощности (активной мощности). Вольт-амперы (ВА) используются для определения доступной мощности (полной мощности).Считайте полную мощность проектной спецификацией. Например, у вас может быть стойка с проводом на 5,0 кВА, которая фактически потребляет всего 4,2 кВт. В этом техническом документе будет следовать этому соглашению, но термины кВт и кВА часто используются как синонимы.
Что такое высокая мощность?
Высокое энергопотребление в стойке может проявляться в виде нескольких устройств, каждое из которых потребляет много энергии, например, блейд-серверов и блейд-шасси, требующих 5 кВт или более на шасси, или множества устройств с умеренным энергопотреблением, таких как Стойка 42U, заполненная 42 серверами «коробки для пиццы» высотой 1U, каждый из которых требует 200–300 Вт.В этих сценариях есть несколько способов развертывания питания, и подход, который работает для ситуации с высокой плотностью розеток, может также работать в ситуации, когда требуется развернуть большую мощность для нескольких источников питания.
Некоторые менеджеры центров обработки данных добавляют мощность, управляя дополнительными цепями. Но, как правило, не имеет смысла прокладывать несколько шнуров (силовых кабелей) к устройствам с несколькими источниками питания, таким как блейд-серверы. Проще и экономичнее подключить два мощных блока питания, подключаемых под полом или через потолочную систему, к паре высокомощных стоечных PDU.От высокомощных стоечных блоков распределения питания короткие кабели могут быть проложены к источникам питания, что обеспечивает гораздо более чистую, например, меньшую засоренность воздухом под полом и более удобное развертывание. Экономика также улучшается за счет экономии затрат на медь и компоненты.
При рассмотрении потребности в мощности важно определить и спроектировать с учетом пикового фактического потребления. При проектировании с учетом паспортных данных оборудования ИТ чрезмерно высоки. Расчет на среднее энергопотребление может оказаться недостаточным для периодов пикового спроса.
Высокая мощность, высокая плотность розеток
В случае большого количества устройств, каждое из которых требует умеренной мощности, на стоечном PDU потребуется множество розеток.
Типичное плотное развертывание «коробки для пиццы» будет включать два стоечных PDU для резервного питания, где каждый PDU загружен до 40%, так что в случае отказа одного источника питания другой канал не превысит требования NEC в 80% (для Северной Америка).
Типичными розетками для серверов «коробок для пиццы» являются IEC C-13 (до 250 В, 10 А международный, 15 А UL) и NEMA 5-20R (до 125 В, 20 А, 16 А).В этом приложении нередко можно увидеть трехфазный стоечный БРП на 208 В, 50 А, имеющий до 54 розеток, обеспечивающий мощность до 14,4 кВт на стойку.
Однофазный 208 В по сравнению с трехфазным 208 В
Если каждый сервер потребляет в среднем 200 Вт, то общая потребляемая мощность составит 42 x 200 Вт = 8,4 кВт. Полностью заполненная стойка в этом случае требует 8,4 кВт. Следовательно, при выборе размера стоечного БРП для поддержки этой нагрузки вам нужно будет искать что-то, что поддерживает мощность более 8,4 кВт. Хотя на рынке рекламируются стоечные БРП с определенным напряжением, фазой и силой тока, номинальная мощность в кВт для стоечных БРП обычно уже учитывает требование NEC о 80% нагрузке.
Поскольку для трехфазного питания синусоидальные волны сдвинуты по фазе на 120 градусов, вычисление VA немного сложнее, чем для однофазного, потому что нам нужно включить квадратный корень из 3, который равен 1,732. Формула полной мощности для трех фаз: V x Derated A x 1,732 = VA. Трехфазное развертывание Delta обеспечивает три отдельные цепи и более чем на 70% больше общей мощности, чем сопоставимая однофазная одиночная цепь.
Например, трехфазный стоечный БРП 30 А 208 В будет поддерживать 8.6кВт.
Математика работает следующим образом:
24A (80% рейтинг 30A) * 208V * sq. Rt. 3 (или 1,73) = 8,6 кВт
НЕ 30A * 208 В * 1,73 = 10,8 кВт
В качестве альтернативы, если однофазные цепи подключаются к стойке, то для поддержки нагрузки 8,4 кВт на стойке вы должны нужен стоечный БРП с током не менее 60 А.
Математика работает следующим образом:
48A (80% рейтинг 60A) * 208V = 10 кВт
Наконец, если вы считаете, что вам нужен дополнительный запас для роста для потенциального увеличения использования сервера, что приводит к энергопотреблению, превышающему в среднем 200 Вт , то соответствующий стоечный PDU может быть трехфазным на 50 А, 208 В, который будет поддерживать 14.4кВт.
Математика работает следующим образом:
40A (80% рейтинг 50A) * 208V * sq. Rt. 3 (или 1,73) = 14,4 кВт
Трехфазное питание — это способ для одного штыревого или стоечного БРП обеспечивать три цепи вместо одной. Гибкий шнур или входной шнур питания на стоечном БРП будет больше для трехфазного питания, потому что вместо трех проводов (горячий, нейтральный и заземляющий) трехфазный кабель будет иметь четыре (треугольник) или пять (звезда).
Трехфазные кабели могут быть немного больше однофазных, но важно помнить, что один трехфазный кабель чуть большей толщины будет значительно меньше и весит меньше трех однофазных кабелей для того же напряжения и силы тока.Кроме того, учтите также, что однофазный кабель при более высокой силе тока иногда может быть больше, чем трехфазный кабель при более низкой силе тока.
Трехфазное питание по схеме треугольник и звезда
Два варианта трехфазного тока — треугольник и звезда. Трехфазная система Delta будет иметь четыре провода: линия 1 (горячая), линия 2 (горячая), линия 3 (горячая) и защитное заземление. Индивидуальные схемы образуются путем объединения линий. Доступны три схемы L1 + L2, L2 + L3 и L1 + L3.
Трехфазная система «звезда» будет иметь пять проводов: линия 1 (горячая), линия 2 (горячая), линия 3 (горячая), нейтраль и заземление.Отдельные цепи образуются путем объединения линий и объединения линии с нейтралью. Например, трехфазный стоечный PDU на 208 В поддерживает три цепи 208 В (L1 + L2, L2 + L3, L1 + L3) и три цепи 120 В (L1 + N, L2 + N, L3 + N). Трехфазный треугольник и трехфазный треугольник имеют одинаковую полную мощность, но трехфазный треугольник может обеспечивать два разных напряжения, а трехфазный треугольник может обеспечивать только одно напряжение.
В Северной Америке могут требоваться розетки на 120 В, например NEMA 5-15R (120 В, 15 А, 12 А) или 5-20R (120 В, 20 А, 16 А).Они могут поддерживаться трехфазными блоками PDU типа «звезда» на 208 В, где проводка между линиями (L1, L2, L3), а также между линиями и нейтралью может обеспечивать питание как розеток 208 В, так и 120 В.
Независимо от того, используется ли трехфазная разводка треугольником или звездой, напряжение стоечного БРП всегда привязано к линейному напряжению, а не к межфазному напряжению. Это справедливо даже для примера трехфазного тока 400 В на стр. 7, где все розетки соединены проводом между фазой и нейтралью.
Так как разница между Delta и Wye заключается в том, есть ли нейтраль, многие центры обработки данных подключены к сети Wye и используют штыри с разъемами Wye, например NEMA L21-30R.Это означает, что центр обработки данных может использовать блоки PDU Wye, которые поддерживают 120 В / 208 В, или блоки распределения питания Delta, которые поддерживают только 208 В, без необходимости изменения проводки центра обработки данных.
Delta PDU будет использовать NEMA L21-30P (ответную вилку «звезда»), но не будет использовать нейтраль внутри PDU. Это вполне приемлемая практика. Например, центр обработки данных может развернуть Delta PDU в стойках, где требуется только 208 В, и Wye PDU, в стойки, где есть потребность как в 120 В, так и в 208 В.
См. Публикацию Раритана «Как рассчитать ток на трехфазном стоечном БРП на 208 В (удлинитель)», где вы сможете загрузить трехфазный калькулятор.
Высокая мощность, низкая плотность розеток
В случае высокого энергопотребления в стойке для нескольких устройств, каждое из которых потребляет много энергии, например, для блейд-серверов, требующих 5+ кВт на шасси блейд-сервера или сети центра обработки данных или запоминающих устройств, общее количество требуемой мощности может быть сравнимо или даже больше, чем в приведенном выше примере с высокой плотностью розеток, но количество и тип розеток могут быть разными.
Плотность таких устройств, как блейд-серверы, зависит от количества их блоков питания (часто от двух до шести для резервирования), от того, как сконфигурированы блоки питания (часто несколько блоков питания работают почти на максимум, в то время как другие простаивают, потому что блоки питания наиболее эффективны, когда они работают на максимуме) и сколько устройств будет размещено в стойке.
В случае небольшого количества устройств, требующих большой мощности, большое количество розеток может не потребоваться, но могут потребоваться розетки, способные обеспечивать значительную мощность. Типичными розетками для устройств с высокими требованиями, таких как блейд-серверы на 208 В или 230 В, являются IEC C-13 (до 250 В, 10 А международный, 15 А UL) или C-19 (до 250 В, 16 А международный, 20 А UL) или, что реже, Блокирующие розетки NEMA L6-20R (до 250 В, 20 А, 16 А) или L6-30R (до 250 В, 30 А, 24 А). В некоторых случаях производители блейд-серверов даже поставляли корпуса для блейд-серверов с возможностью подключения питания для трехфазных вилок / розеток на 30 А.
Одним из примеров такого стоечного БРП может быть трехфазный стоечный БРП 60 А, 208 В с 12 розетками IEC C-19. В этом сценарии можно поддерживать до трех блейд-шасси, каждое с шестью блоками питания и мощностью до 5,7 кВт, или четырех блейд-шасси, каждое с шестью блоками питания и мощностью до 4,3 кВт.
Математика работает следующим образом:
48A (80% рейтинг 60A) * 208V кв. 3 (или 1,73) = 17,3 кВт
17,3 кВт / 3 шасси = 5,7 кВт
17,3 кВт / 4 шасси = 4,3 кВт
400 В, трехфазный
Как показано в предыдущем примере 208 В / 120 В, трехфазный Соединение звездой — удобный способ понизить напряжение.Это особенно верно для мощности 400 В. Хорошая и общепринятая практика подачи большого количества энергии в плотно упакованные стойки — это трехфазные стоечные блоки распределения питания на 400 В. Проектировщик центра обработки данных может указать звёздочку на 400 В для стоечных БРП на 400 В.
Поскольку большая часть оборудования центра обработки данных работает с напряжением до 240 В, блок распределения питания Wye на 400 В может обеспечивать три цепи — L1 + N, L2 + N, L3 + N, каждая из которых обеспечивает питание 230 В (400 В / 1,732). Обратите внимание, что стоечные PDU на 400 В не подходят для поддержки розеток на 120 В, как стоечные PDU на 208 В.
480 В / 277 В, новый сценарий развертывания высокого напряжения
Facebook и OpenCompute пересмотрели центры обработки данных и оборудование, которое в них входит. Чтобы создать наиболее эффективные центры обработки данных, они рассмотрели трехфазное питание на 480 В, когда каждая линия подключена к нейтрали, поэтому розетки обеспечивают 277 В. Эта конфигурация «звезда» с проводами, подключенными к нейтрали, представляет собой ту же конфигурацию проводки, что и проводка 400/230 В, описанная выше.
Подход Facebook / OpenCompute повышает эффективность, но он сильно настраивается.Сегодня у большей части ИТ-оборудования нет источников питания на 277 В. Наиболее распространенными розетками для центров обработки данных являются IEC C-13 и C-19. Эти розетки не поддерживают 277V.
При использовании подхода Facebook / OpenCompute возможна экономия и эффективность (1–2% по сравнению с трехфазными системами 400/230 В), но для этого требуются индивидуальные тройные стойки, индивидуальные серверы с индивидуальными источниками питания, нестандартная батарея / ИБП и 480 В / 277V стоечные БРП.
Это отличная концепция, но поскольку в настоящее время она не является отраслевым стандартом, ее применение в более чем нескольких центрах обработки данных может быть проблематичным.
Защита параллельных цепей
С апреля 2003 года Underwriters Laboratories (UL) требует защиты параллельных цепей, будь то автоматические выключатели или предохранители, для PDU, у которых входной ток больше, чем выходной ток, например, 30A (24A). (номинальный) входная вилка, розетки на 20 А (номинальный ток 16 А). Стоечные БРП на 15 А и 20 А (12 А и 16 А) могут поставляться без прерывателей цепи ответвления, поскольку автоматические выключатели в вышестоящих панельных платах считаются обеспечивающими необходимую защиту.
Стоечные БРП с автоматами или предохранителями похожи на мини-субпанели. Например, трехфазный блок распределения питания на 208 В, 30 А (номинальный ток 24 А) имеет три цепи, и каждая цепь / набор розеток имеет автоматический выключатель на 20 А.
Автоматические выключатели: однополюсные, двух- и трехполюсные
Важным моментом является надежность и гибкость конфигурации выключателя ответвления. Обычно автоматические выключатели бывают одно-, двух- или трехполюсными. Дешевле использовать двухполюсные (или трехполюсные) выключатели для двух (или трех) цепей, но есть некоторые недостатки.
Двухполюсные выключатели сработают, если одна из двух цепей, которые они защищают, будет перегружена. Это означает, что двухполюсные выключатели менее надежны. Двухполюсные выключатели также ограничивают, потому что, если вы решите отключить цепь, например, для обслуживания, у вас нет другого выбора, кроме как отключить обе цепи. В качестве альтернативы некоторые стоечные PDU защищают каждую цепь однополюсным автоматическим выключателем. Это дороже, но однополюсные выключатели более надежны и менее ограничительны. Ищите стоечные блоки распределения питания, которые позволяют отключать питание только одной цепи для повышения надежности и гибкости.
Автоматический выключатель и измерение линии
Измерение автоматического выключателя — полезная функция на любом стоечном БРП с автоматическими выключателями ответвления, но это особенно важно при работе с высокой мощностью, потому что последствия отключения выключателя могут быть катастрофическими, если это означает потеря нескольких блейд-серверов. При измерении автоматического выключателя конечный пользователь устанавливает порог. Когда этот порог превышен, конечному пользователю доставляется предупреждение о том, что потребляемая мощность должна быть уменьшена или существует риск срабатывания автоматического выключателя.
Линейный счетчик, предназначенный для трехфазных стоечных PDU, очень полезен для балансировки мощности, потребляемой по каждой линии. Избыточное потребление мощности одной линии относительно другой приводит к потере доступной мощности, а несимметричные линии могут предъявлять чрезмерные требования к нейтрали в PDU с конфигурацией звездой.
Предохранители и автоматические выключатели
У предохранителей есть несколько недостатков по сравнению с автоматическими выключателями. Запасные предохранители должны храниться в инвентаре, во многих случаях предохранители должны устанавливаться лицензированным электриком, и для обеспечения надежности и защиты необходимо использовать правильный предохранитель.Однако, если необходимо защитить отдельные розетки, предохранители могут быть единственной практической альтернативой.
Другие особенности функций Intelligent Rack PDU
Удаленный мониторинг и измерение мощности
Удаленный мониторинг и измерение мощности должны включать всю необходимую информацию о мощности, а не только о потребляемом токе. Такой набор данных должен включать ток (в амперах), напряжение, мощность (кВА, кВт) и потребление энергии (кВтч). Поскольку кВтч является мерой для сравнения или выставления счетов за использование энергии, оно должно быть точным, например точность выставления счетов за кВтч согласно ISO / IEC +/- 1%.А поскольку оборудование для разных отделов или клиентов может находиться в одной стойке, в идеале должна быть выделенная микросхема измерения энергии на каждую розетку.
Для управления мощностью в стойке должна быть доступна информация о мощности от отдельных розеток, блоков, линий и автоматических выключателей с настраиваемой пользователем выборкой и буферизацией данных о мощности. Оповещения через SNMP, электронную почту, SMS-сообщения и системный журнал должны отправляться при превышении пороговых значений. Должно быть доступно переключение отдельных розеток и групп розеток в пределах стоечного PDU и между несколькими стоечными PDU.Настраиваемые пользователем задержки на уровне розеток позволяют менеджерам центров обработки данных подключать устройства для последовательного включения, чтобы снизить пусковые токи и установить логические последовательности загрузки.
Совместимость с программным обеспечением для управления энергопотреблением удобна, особенно при настройке многих стоечных PDU или агрегировании данных с них. Отчеты об использовании по отделам, местоположениям или устройствам; графики использования во времени и доступная мощность относительно фактического использования помогают менеджерам центров обработки данных выполнять свои операции более плавно и эффективно.
Гибкие и универсальные соединения
Для обеспечения возможности удаленного мониторинга, измерения и управления необходим безопасный удаленный доступ через Ethernet и последовательные соединения. Для обеспечения безопасности интеллектуальный стоечный PDU должен иметь надежное шифрование и пароли, а также расширенные параметры авторизации, включая разрешения, LDAP / S и Active Directory.
Соединения USB-A (хост) и USB-B (устройство) полезны для использования преимуществ многих USB-устройств, включая карты памяти, для загрузки микропрограмм и стандартных конфигураций, сбора зарегистрированных данных и подключения веб-камер.Интеллектуальные PDU могут иметь другие подключения для специальных функций, например порт для подключения датчиков или подключение к сети через Wi-Fi.
Датчики окружающей среды и максимальная рабочая температура
Для ИТ-оборудования каждый потребляемый ватт превращается в ватт тепла. Стойки, потребляющие большую мощность, должны иметь достаточное охлаждение, а оборудование в стойке должно выдерживать высокие температуры. Важно убедиться, что система охлаждения соответствует нагрузке IT в мощных стойках.Некоторые интеллектуальные стоечные БРП могут поддерживать внешние датчики для контроля холодного воздуха, поступающего в серверы, чтобы гарантировать, что система охлаждения может поддерживать, скажем, 25 ° C (78 ° F).
Но рассмотрим оборудование, расположенное в других частях стойки. В частности, стоечные PDU обычно располагаются в более горячем коридоре или в задней части стойки. Для стоек большей мощности температура выхлопа ИТ-оборудования будет намного выше. Вот почему некоторые интеллектуальные стоечные БРП сертифицированы для работы при 60 ° C (140 ° F).
Совместимость датчика Rack PDU с программным обеспечением для управления энергопотреблением очень удобна, особенно при агрегировании данных от нескольких различных датчиков, подключенных к нескольким стоечным PDU. Возможность наносить датчики на диаграмму относительной влажности и температуры охлаждения позволяет менеджерам центров обработки данных определять, все ли местоположения находятся в пределах ASHRAE, поставщика оборудования или корпоративной среды. Также полезно построить график условий окружающей среды с течением времени, чтобы определить, повлияли ли изменения оборудования или процесса на температуру, воздушный поток или давление воздуха в одном или нескольких местах.
Преимущества более высокого напряжения для мощных стоек
Использование более высоких напряжений при более низких токах означает, что кабели меньшего размера, в которых используется меньше меди, меньше весят, занимают меньше места и стоят меньше. Использование трехфазного питания вместо однофазного означает меньшее количество кабелей, что упрощает развертывание, а также дает меньшее количество меди, меньший вес и меньшую стоимость.
Вилки и розетки дешевле при более высоком напряжении и более низком номинальном токе. Например, трехфазная звезда на 30 А, 400 В (16.6 кВА) вилка (Hubbell NEMA L22-30P) стоит 32 доллара, а розетка стоит 41 доллар. Трехфазная вилка Delta (17,3 кВА) на 60 А, 208 В (Mennekes IEC309 460P9W) стоит 166 долларов, а розетка — 216 долларов. Комбинация вилка / розетка стоит 73 доллара против 382 доллара соответственно.
У более высоких напряжений есть и другие преимущества. Исключая трансформации напряжения, мощность 400 В снижает затраты на электроэнергию примерно на 2–3% по сравнению с распределением 208 В и примерно на 4–5% по сравнению с распределением 120 В.
Варианты использования более высоких напряжений в центрах обработки данных
Северная Америка: 208 В vs.Плотность мощности блока распределения питания 400 В
Европа и Азия: плотность мощности блока распределения питания 230 В по сравнению с 400 В
Объединение центров обработки данных может снизить общее энергопотребление в целом, но сконцентрировать потребность в энергии в одном центре обработки данных или одном наборе стоек высокой плотности. Глядя на примеры из приведенной выше таблицы для Северной Америки, менеджер центра обработки данных может увеличить мощность стойки с ИТ-оборудованием, которое может работать с напряжением до 240 В, путем перехода с однофазного питания 30 А, 208 В, которое обеспечивает 5,0 кВА. Оставаясь на уровне 30 А, но замена однофазного питания 208 В на трехфазное питание 208 В дает увеличение мощности более чем на 70% до 8.6кВА. Если есть еще более значительный спрос на мощность в стойке, переход на трехфазное питание 400 В при сохранении 30 А увеличивает мощность до 16,6 кВА, что более чем на 90% больше по сравнению с трехфазным напряжением 208 В и более чем в три раза превышает мощность по сравнению с к исходному однофазному питанию 208 В.
Размер кабелей будет несколько увеличиваться из-за перехода от однофазного питания к трехфазному, но, поскольку сила тока поддерживалась на уровне 30 А, физический размер кабелей увеличится лишь незначительно, чтобы приспособить дополнительные фазы, в то время как мощность, доступная для стоек, значительно увеличивается.
Чтобы достичь аналогичного увеличения мощности, оставаясь при однофазном питании 208 В, сила тока должна быть увеличена до 50 А, чтобы приблизиться к мощности, доступной при трехфазном развертывании 208 В, и до 100 А, чтобы соответствовать трехфазному развертыванию 400 В. Эти кабели будут значительно больше, чем кабели на 30 А, их будет в три раза больше, и центр обработки данных не сможет реализовать эффективность, связанную с более высокими напряжениями.
Пришло время для большей власти?
Независимо от того, работаете ли вы в большом, среднем или даже небольшом центре обработки данных, возможно, вам пора подумать о развертывании высокой мощности хотя бы на некоторых из ваших стоек.Хорошими кандидатами являются стойки, которые будут заполнены серверами 1U, стойки с блейд-серверами и стойки с сетями центров обработки данных или устройствами хранения. И есть побочные преимущества. Переход на более высокое напряжение, будь то однофазное или трехфазное, снижает потери при передаче, что приводит к экономии энергии.
Более высокие напряжения, особенно при использовании в качестве трехфазного источника питания, являются хорошим способом увеличения мощности стойки без увеличения количества кабелей и блокировки охлаждающего воздуха в помещениях под полом.Стойки высокой мощности в сочетании с внутренним или верхним локальным охлаждением также исключают потери энергии из-за перемещения воздуха по комнате, поскольку охлаждение теперь локализовано.
Есть несколько вариантов высокой мощности, из которых можно выбрать. В этом техническом документе представлено несколько репрезентативных примеров. Лучшая альтернатива для вас зависит от вашей текущей ситуации и планов на будущее. Но развертывания с высоким энергопотреблением, даже с трехфазным напряжением 400 В, становятся все более распространенными и приемлемыми, и они должны быть в вашем кратком списке вариантов развертывания.
Стойки высокой плотности могут быть развернуты в малых, средних или крупных центрах обработки данных. Даже в нашем собственном небольшом центре обработки данных мы увеличили заданные значения температуры до уровня, при котором наша охлаждающая способность увеличилась, чтобы выдерживать нагрузку на стойку с более высокой плотностью.
Общее энергопотребление небольшого центра обработки данных может быть невелико, но могут быть стойки с несколькими блейд-серверами или плотно упакованные серверы 1U, которые потребляют столько же энергии, как и аналогичные стойки в многомегаваттном центре обработки данных.
О Raritan
Raritan, торговая марка Legrand, является надежным поставщиком блоков распределения питания для стоек, мониторов ответвлений, переключателей, датчиков окружающей среды, переключателей KVM-over-IP, серверов с последовательной консолью и аудио / видео решений для дата-центры и ИТ-специалисты.Основанная в 1985 году и базирующаяся в Сомерсете, штат Нью-Джерси, компания Raritan имеет офисы по всему миру, обслуживающие клиентов в 76 странах. В более чем 50 000 местоположений отмеченные наградами аппаратные решения Raritan помогают малым, средним, корпоративным центрам обработки данных и центрам обработки данных для совместной работы повысить эффективность, надежность и производительность.