Амперы в киловатты формула: Таблица перевода Амперы в Ваты – Блог Elektrovoz

Содержание

Перевести амперы (А) в киловатты (кВт): онлайн-калькулятор, формула

Инструкция по использованию: Чтобы перевести амперы (А) в киловатты (кВт), введите значения силы тока I в амперах (A), напряжения U в вольтах (В), выберите коэффициент мощности PF от 0,1 до 1 (если требуется), затем нажмите кнопку “Рассчитать”. Таким образом будет получена мощность P в кВт. Чтобы сбросить введенные данные, нажмите соответствующую кнопку.

Калькулятор А в кВт (1 фаза, постоянный ток)

Формула для перевода А в кВт

Мощность P в киловаттах (кВт) однофазной сети с постоянным током равняется произведению силы тока I в амперах (А) и напряжения U в вольтах (В), деленному на 1000.

Калькулятор А в кВт (1 фаза, переменный ток)

Формула для перевода А в кВт

Мощность P в киловаттах (кВт) однофазной сети с переменным током равняется силе тока I в амперах (А), умноженной на напряжение U в вольтах (В), коэффициент мощности PF и деленной на 1000.

Калькулятор А в кВт (3 фазы, переменный ток, линейное напряжение)

Формула для перевода А в кВт

Мощность P в киловаттах (кВт) трехфазной сети с переменным током и линейным напряжением равняется силе тока I в амперах (А), умноженной на напряжение U в вольтах (В), коэффициент мощности PF, квадратный корень из трех (√3) и деленной на 1000.

Калькулятор А в кВт (3 фазы, переменный ток, фазное напряжение)

Формула для перевода А в кВт

Мощность P в киловаттах (кВт) трехфазной сети с переменным током и фазным напряжением равняется утроенному произведению силы тока I в амперах (А), напряжения U в вольтах (В) и коэффициента мощности PF, деленному на 1000.

Как перевести амперы в киловатты постоянный ток



Как перевести амперы в киловатты: принципы перевода и практические примеры с пояснениями

Амперы и киловатты – характеристики электроэнергии, потребляемой устройствами, подключенными к сети. Первую называют еще нагрузкой, а вторую – мощностью. Необходимость перевода возникает на стадии подбора защитных устройств, в маркировке которых чаще всего указывается лишь сила тока.

Все о том, как перевести Амперы в Киловатты, вы узнаете из предложенной нами статьи. Мы рассмотрим теорию, разберемся с основными принципами перевода, а затем поясним смысл этих действий на практических примерах. Следуя нашим советам, вы сможете самостоятельно выполнять такие вычисления.

Причины для выполнения перевода

Мощность и сила тока — ключевые характеристики, необходимые для грамотного подбора защитных устройств для оборудования, питающегося электроэнергией. Защита нужна для предотвращения оплавления изоляции проводки и поломки агрегатов.

Электропроводка, питающая освещение, электроплиту, кофе-машину должна защищаться индивидуально подобранными устройствами. Ведь каждый потребитель создает «свою» нагрузку – другими словами, потребляет определенный ток.

Кстати, кабели, провода, питающие перечисленные бытовые устройства, обладают определенной токонесущей способностью. Последняя диктуется сечением жил.

Каждое защитное устройство обязано срабатывать в момент скачка напряжения, опасного для защищаемого типа техники или группы технических устройств. Значит, подбирать УЗО и автоматы следует так, чтобы во время угрозы для маломощного прибора не отключалась полностью сеть, а только ветка, для которой этот скачек является критичным.

На корпусах предложенных торговой сетью автоматических выключателей проставлена цифра, обозначающая величину предельно допустимого тока. Естественно, указана она в Амперах.

А вот на электроприборах, которые обязаны защищать эти автоматы, обозначена потребляемая ими мощность. Тут и возникает необходимость в переводе. Несмотря на то, что разбираемые нами единицы принадлежат разным токовым характеристикам, связь между ними прямая и довольно тесная.

Напряжением именуют разность потенциалов, проще говоря, работу, вложенную в перемещение заряда от одной точки к другой. Выражается оно в Вольтах. Потенциал – это и есть энергия в каждой из точек, в которой находится/находился заряд.

Под силой тока подразумевается число Ампер, проходящих по проводнику в конкретную единицу времени. Суть мощности заключается в отражении скорости, с которой происходило перемещение заряда.

Мощность обозначают в Ваттах и Киловаттах. Ясно, что второй вариант используется, когда слишком внушительную четырех- или пятизначную цифру нужно сократить для простоты восприятия. Для этого ее значение просто делят на тысячу, а остаток округляют как обычно в большую сторону.

Для питания мощного оборудования нужна более высокая скорость потока энергии. Предельно допустимое напряжение для него больше, чем для маломощной техники. У подбираемых для него автоматов предел срабатывания должен быть выше. Следовательно, точный подбор по нагрузке с грамотно выполненным переводом единиц просто необходим.

Правила проведения перевода

Часто изучая инструкцию, прилагаемую к некоторым приборам, можно увидеть обозначение мощности в вольт-амперах. Специалисты знают разницу между ваттами (Вт) и вольт-амперами (ВА), но практически эти величины обозначают одно и то же, поэтому преобразовывать здесь ничего не нужно. А вот кВт/час и киловатты — понятия разные и путать их нельзя ни в коем случае.

Чтобы продемонстрировать, как выразить электрическую мощность через ток, нужно воспользоваться следующими инструментами:

  • тестером;
  • токоизмерительными клещами;
  • электротехническим справочником;
  • калькулятором.

При перерасчете ампер в кВт используют следующий алгоритм:

  1. Берут тестер напряжения и измеряют напряжение в электроцепи.
  2. Используя токоизмерительные ключи, замеряют силу тока.
  3. Производят перерасчет, используя формулу для постоянного напряжения в сети или переменного.

В результате мощность получают в ваттах. Чтобы преобразить их в киловатты, делят получившееся на 1000.

У нас на сайте также есть материал о правилах перевода Амперов в Ватты. Чтобы с ним ознакомиться, переходите, пожалуйста, по следующей ссылке.

Однофазная электрическая цепь

На однофазную цепь (220 В) рассчитано большинство бытовых приборов. Нагрузка здесь измеряется в киловаттах, а маркировка АВ содержит амперы.

Ключевым при переводе в этом случае является закон Ома, который гласит, что P, т.е. мощность, равна I (силе тока) умноженной на U (напряжение). Подробнее о расчете мощности, силы тока и напряжения, а также о взаимосвязи этих величин мы говорили в этой статье.

кВт = (1А х 1 В) / 1 0ᶾ

А как же это выглядит на практике? Чтобы разобраться, рассмотрим конкретный пример.

Допустим, автоматический предохранитель на счетчике старого типа рассчитан на 16 А. С целью определения мощности приборов, которые можно безболезненно включить в сеть одновременно, нужно осуществить перевод ампер в киловатты с применением вышеприведенной формулы.

220 х 16 х 1 = 3520 Вт = 3,5КВт

Как для постоянного, так и переменного тока применяется одна формула перевода, но справедлива она только для активных потребителей, таких как нагреватели лампы накаливания. При емкостной нагрузке обязательно возникает сдвиг фаз между током и напряжением.

Это и есть коэффициент мощности или cos φ. Тогда как при наличии только активной нагрузки этот параметр принимают за единицу, то при реактивной нагрузке его нужно принимать во внимание.

Если нагрузка смешанная, значение параметра колеблется в диапазоне 0,85. Чем меньше приходится на реактивную составляющую мощности, тем незначительней потери и тем выше коэффициент мощности. По этой причине последний параметр стремятся повысить. Обычно производители указывают значение коэффициента мощности на этикетке.

Трехфазная электрическая цепь

В случае переменного тока в трехфазной сети берут значение электрического тока одной фазы, затем умножают на напряжение этой же фазы. То, что получили, умножают на косинус фи.

После подсчета напряжения во всех фазах, полученные данные складывают. Сумма, полученная в результате этих действий, является мощностью электроустановки, подсоединенной к трехфазной сети.

Основные формулы имеют следующий вид:

Ватт = √3 Ампер х Вольт или P = √3 х U х I

Ампер = √3 х Вольт либо I= P/√3 х U

Следует иметь понятие о разнице между напряжением фазным и линейным, а также между токами линейными и фазными. Перевод ампер в киловатты в любом случае выполняют по одной и той же формуле. Исключение — соединение треугольником при расчете нагрузок, подключенных индивидуально.

На корпусах или упаковке последних моделей электроприборов указана и сила тока, и мощность. Обладая этими данными, можно считать вопрос, как быстро перевести амперы в киловатты, решенным.

Специалисты применяют для цепей с переменным током конфиденциальное правило: силу тока делят на два, если нужно примерно вычислить мощность в процессе подбора пускорегулирующей аппаратуры. Также поступают и при расчете диаметра проводников для таких цепей.

Примеры перевода ампер в киловатты

Преобразование ампер в киловатты — довольно простая математическая операция.

Существует также много онлайн – программ, где нужно всего-навсего ввести известные параметры и нажать соответствующую кнопку.

Пример №1 — перевод А в кВт в однофазной сети 220В

Перед нами стоит задача: определить предельную мощность, допустимую для автоматического выключателя однополюсного с номинальным током 25 А.

P = U х I

Подставив значения, которые известны, получим: P = 220 В х 25 А = 5 500 Вт = 5,5 кВт.

Это обозначает, что к этому автомату могут быть подключены потребители, общая мощность которых не выходит за пределы 5,5 кВт.

По такой же схеме можно решить вопрос подбора сечения провода для электрочайника, потребляющего 2 кВт.

В этом случае I = P : U= 2000 : 220 = 9 А.

Это совсем маленькое значение. Нужно серьезно подойти к выбору сечения провода и материалу. Если отдать предпочтение алюминиевому, он выдержит только слабые нагрузки, медный с такого же диаметра будет мощнее в два раза.

Подробнее о выборе нужного сечения провода для устройства домашней проводки, а также правила вычисления сечения кабеля по мощности и по диаметру мы разбирали в следующих статьях:

Пример №2 — обратный перевод в однофазной сети

Усложним задачу — продемонстрируем процесс перевода киловатт в амперы. Имеем какое-то число потребителей.

  • четыре лампы накаливания каждая по 100 Вт;
  • один обогреватель мощностью 3 кВт;
  • один ПК мощностью 0,5 кВт.

Определению суммарной мощности предшествует приведение величин всех потребителей к одному показателю, точнее — киловатты следует перевести в ватты.

Мощность обогревателя равна 3 кВт х 1000 = 3000 Вт. Мощность компьютера — 0,5 кВт х 1000 = 500 Вт. Лампы — 100 Вт х 4 шт. = 400 Вт.

Тогда обобщенная мощность: 400 Вт + 3000 Вт + 500 Вт = 3 900 Вт или 3,9 кВт.

Такой мощности соответствует сила тока I = P : U = 3900Вт : 220В = 17,7 А.

Из этого вытекает, что приобрести следует автомат, рассчитанный на номинальный ток не меньше, чем 17,7 А.

Наиболее соответствующим нагрузке мощностью 2,9 кВт является автомат стандартный однофазный 20 А.

Пример №3 — перевод ампер в кВт в трехфазной сети

Алгоритм перевода ампер в киловатты и в обратном направлении в трехфазной сети отличается от сети однофазной только формулой. Допустим, нужно высчитать, какую же наибольшую мощность выдержит АВ, номинальный ток которого 40 А.

В формулу подставляют известные данные и получают:

P = √3 х 380 В х 40 А = 26 296 Вт = 26,3кВт

Трехфазный АБ на 40 А гарантировано выдержит нагрузку 26,3 кВт.

Пример №4 — обратный перевод в трехфазной сети

Если мощность потребителя, подключаемого к трехфазной сети, известна, ток автомата вычислить легко. Допустим, имеется трехфазный потребитель мощностью 13,2 кВт.

В ваттах это будет: 13,2 кт х 1000 = 13 200 Вт

Далее, сила тока: I = 13200Вт : (√3 х 380) = 20,0 А

Получается, что этому электропотребителю нужен автомат номиналом 20 А.

Для однофазных аппаратов существует следующее правило: один киловатт соответствует 4,54 А. Один ампер — это 0,22 кВт или 220 В. Это утверждение — прямой результат, вытекающий из формул для напряжения 220 В.

Выводы и полезное видео по теме

О связи ватт, ампер и вольт:

Зависимость между амперами и киловольтами описывает закон Ома. Здесь наблюдается обратная пропорциональность силы электротока по отношению к сопротивлению. Что касается напряжения, то прослеживается прямая зависимость силы тока от этого параметра.

У вас остались вопросы по принципу перевода Амперов в Киловатты или хотите уточнить нюансы практического расчета? Задавайте свои вопросы нашим экспертам в блоке комментариев, расположенном ниже под статьей.

Если у вас есть полезная информация, дополняющая изложенный выше материал, или уточнения, поправки, пишите свои замечания и дополнения ниже.

Источник

Перевод ампер в киловатты и обратный расчет с практическими примерами

Амперы и киловатты являются основными характеристиками электроэнергии. Значение ампер еще называют нагрузкой, а киловатт – мощностью. Необходимость перевода этих единиц из одной в другую возникает, когда нужно понять, какое защитное реле можно установить в электрической цепи, чтобы не повредить подключенный к ней прибор.

В материале, который изложен ниже, даются конкретные примеры и формулы расчетов для разных типов электрических сетей и пояснения по проведению таких расчетов.

Если мы посмотрим на маркировку большинства устройств, которые работают от электросети, то в обозначениях характеристик прибора обычно указывается только сила тока, то есть значение в амперах. Но есть еще и мощность тока, которая измеряется в киловаттах. А этот показатель особенно важен, когда нужно подобрать защитное сетевое устройство, которое устанавливается в электрическую сеть. Правильный выбор автоматического реле позволяет обезопасить подключаемые к сети устройства от выхода из строя из-за пиковых нагрузок напряжения, а провода сети от возгорания. Теорию и примеры таких расчетов мы рассмотрим ниже.

Необходимость перевода ампер в киловатты

Мощность и сила тока две основные характеристики, которые необходимо знать, чтобы правильно установить защитные устройства при работе с электрическими приборами, подключаемыми к сети. Каждый подключенный к сети прибор должен быть защищен индивидуально подбираемыми защитными устройствами. В то же время, проводка электросети может оплавиться и загореться, если защитные устройства подобраны неправильно и не соответствуют техническим характеристикам сети. Ведь все электрические провода, которые используются, имеют собственную токонесущую способность, зависящую от сечения жилы провода, причем нужно учитывать материал, из которого эти жилы произведены.

Защитные устройства обычно срабатывают при скачках напряжения, которые могут вывести из строя приборы, включенные в сеть на этот момент. Чтобы этого не произошло, защита должна отключить ветку, к которой подключены маломощные приборы. Но на реле стоит только обозначение силы тока в амперах. А электроприборы, которые мы включаем в сеть, маркируются потребляемой мощностью в ваттах и киловаттах. Связь между мощностью и силой тока очень тесная.

Чтобы это понять, нужно разобраться в терминологии и принципах действия электрической сети.

  • Обычно рассматривают напряжение в сети, которое представляет собой разность потенциалов, то есть работу, которая происходит при перемещении электрического заряда от одной точки в электрической сети к другой. Напряжение в любой электрической сети обозначается в вольтах.
  • Силой тока, которая измеряется в амперах, называется число ампер, проходящих по проводнику за определенную единицу времени.
  • Мощностью тока называется скорость перемещения заряда по проводнику и измеряется она в ваттах или киловаттах.

Чтобы электрические приборы высокой мощности могли нормально работать в сети, она должна обладать высокой скоростью передачи энергии, проходящей через эту сеть, то есть в сети должен быть ток высокой мощности. Поэтому автоматы, которые срабатывают на увеличение нагрузки на прибор, должны иметь более высокий порог реакции на пиковую нагрузку, чем для менее мощных устройств, подключаемых к данной конкретной электрической сети. Для создания резерва безопасности работы таких автоматов и возникает необходимость расчета точной нагрузки.

Правила перевода единиц

В инструкциях ко многим приборам попадаются обозначения в вольт-амперах. Различие их необходимо только специалистам, которым эти нюансы важны в профессиональном плане, но для обычных потребителей это не так важно, потому что используемые в этом случае обозначения характеризуют почти одно и то же. Что же касается киловатт/час и просто киловатт, то это две различных величины, которые нельзя путать ни при каких условиях.

Чтобы определить электрическую мощность через показатель сетевого тока, можно использовать различные инструменты, с помощью которых производятся замеры и вычисления:

  • с помощью тестера;
  • используя токоизмерительные клещи;
  • производя вычисления на калькуляторе;
  • с помощью специальных справочников.

Применив тестер, мы измеряем напряжение в интересующей нас электросети, а после этого используем токоизмерительные клещи для определения силы тока. Получив нужные показатели, и применив существующую формулу расчета постоянного и переменного тока, можно рассчитать мощность. Имеющийся результат в ваттах при этом делим на 1000 и получаем количество киловатт.

Однофазная электрическая цепь

В основном все бытовые электросети относятся к сетям с одной фазой, в которых применяется напряжение на 220 вольт. Маркировка нагрузки для них записывается в киловаттах, а сила тока в амперах и обозначается как АВ.

Для перевода одних единиц в другие, применяется формула закона Ома, который гласит, что мощность (P) равна силе тока (I), умноженной на напряжение (U). То есть, расчет будет выглядеть так:

Вт = 1А х 1В

На практике такой расчет можно применить, например, к обозначениям на старых счетчиках учета расхода электроэнергии, где установленный автомат рассчитан на 12 А. Подставив в имеющуюся формулу цифровые значения, получаем:

12А х 220В = 2640 Вт = 2,6 КВт

Расчеты для электрической сети с постоянным и переменным током практически ничем не отличаются, но справедливы только при наличии активных приборов, которые потребляют энергию, например, электрические лампы накаливания. А когда в сеть включены приборы с емкостной нагрузкой, тогда появляется сдвиг фаз между током и напряжением, который является коэффициентом мощности, записываемым как cos φ. При наличии только активной нагрузки, этот параметр обычно равен 1, а вот при реактивной нагрузке в сети, его приходится учитывать.

В случаях, когда нагрузка в сети смешанная, значение этого параметра колеблется около 0,85. Уменьшение реактивной составляющей мощности, ведет к уменьшению потерь в сети, что повышает коэффициент мощности. Многие производители при маркировке прибора, указывают этот параметр на этикетке.

Трехфазная электрическая сеть

Если брать пример с трехфазной сетью, то здесь все обстоит несколько по-другому, так как задействовано три фазы. Производя расчеты, нужно взять значение электрического тока одной из фаз, которое умножается на величину напряжения в этой фазе, после чего полученный результат умножается на cos φ, то есть на сдвиг фаз.

Сосчитав, таким образом, напряжение в каждой фазе, складываем полученные результаты и получаем суммарную мощность прибора, который подключен к трехфазной сети. В формулах это выглядит так:

Ватт = √3 Ампер х Вольт или Р = √3 х U x I

Ампер = √3 Вольт или I = P/√3 x U

При этом нужно иметь в виду, что существует разница фазного и линейного напряжения и тока. Но формула расчета остается одной и то же, кроме случая, когда соединение сделано в виде треугольника, и нужно произвести расчет нагрузки индивидуального подключения.

Для цепей с переменным током существует негласное правило такого расчета: сила тока делится пополам, чтобы подобрать мощность защитных и пусковых реле. Это же правило применяется и когда рассчитывают диаметр проводника в таких электрических цепях.

Перевод ампер в киловатты

Сейчас в Интернете есть множество специальных программ, в которых прямо онлайн можно, подставив свои данные, произвести нужные расчеты. Но если по какой-то причине подключиться к Интернету невозможно, а сделать расчет необходимо в данный момент, достаточно произвести простые арифметические действия, чтобы получить искомый результат.

Пример 1 – перевод для однофазной сети 220 В

Чтобы рассчитать, например, предельную мощность автоматического однополюсного реле с номинальным током 16А, производим расчет по формуле:

P = U x I

Подставляя в формулу цифровые значения получаем:

Р = 220В х 16А = 3520Вт = 3,5КВт

То есть реле-автомат, который можно установить в эту электрическую цепь, должен выдерживать нагрузку подключенных приборов не ниже 3,5 КВт.

Так же можно подсчитать сечение провода, например, для тостера на 1,5 КВт:

I = P : U = 1500 : 220 = 7А

Но при этом достаточно важным фактором является то, что при подборе проводов нужно учитывать материал используемого проводника. Так, используя медный провод, необходимо знать, что он выдержит нагрузки вдвое большие, чем алюминиевый провод такого же сечения.

Пример 2 – обратный перевод в однофазной бытовой сети

Теперь рассмотрим усложненную задачу, когда в сети задействовано несколько подключенных электрических устройств, для которых нужно подобрать автоматическое реле, оптимально выдерживающее мощность подключенных приборов, например, когда одновременно подключены:

  • 2 лампы накаливания по 100 Вт;
  • бытовой обогреватель мощностью 2 кВт;
  • телевизор мощностью 0,5 кВт.

Чтобы подсчитать общую мощность подключенных к сети приборов, работающих одновременно, нужно их мощность в киловаттах перевести в ватты и суммировать данные:

100+100+2000+500= 2700Вт или 2,7кВт

Показатель силы тока в этом конкретном случае будет:

I = P : U = 2900Вт : 220В = 13,2А

То есть, в имеющемся примере расчета, необходимо установить автомат с номинальным током, который равен или превышает полученное значение. По расчетам, выбирая однофазное стандартное реле, вполне достаточно поставить сюда автомат на 16А.

Пример 3 – расчет для трехфазной сети ампер в киловатт

Делая расчет перевода одних единиц в другие, в этом примере меняется только формула расчета. Для примера возьмем автомат с номинальным током 20А и произведем расчет, какую мощность сети он выдержит:

Р = √3 х 380В х 20А = 13148 = 13,1 кВт

То есть, исходя из полученных данных, трехфазный автомат на 20А сможет выдержать нагрузку 13,1 КВт.

Пример 4 – обратный перевод в трехфазной сети

Когда мы знаем мощность прибора, подключенного к трехфазной сети, то вычислить оптимальный ток для автомата не составит особого труда. Возьмем прибор на 13кВт, что в ваттах составит 13000 Вт.

Сила тока составит I = 13000: (√3 х 380) = 20А

Получается, что для подключения такого трехфазного прибора нужен автомат не менее 20А.

Вывод

Если вернуться к однофазной сети на 220В, то существует правило, что 1 кВт равен 4,54А, то есть 1А = 0,22кВт или 220В.

Как видно из приведенных формул и вычислений, везде при расчетах используется закон Ома, где сила электротока является обратной сопротивлению. Зная теперь все необходимые для расчетов формулы, вы самостоятельно можете произвести необходимые действия, чтобы выбрать нужное для подключения автоматическое реле, которое можно включить в электрическую сеть с гарантией того, что все приборы, подключенные к ней, будут в безопасности.

Источник

Перевод ампер (А) в киловатты (кВт)

Инструкция по использованию: Чтобы перевести амперы (А) в киловатты (кВт), введите значения силы тока I в амперах (A), напряжения U в вольтах (В), выберите коэффициент мощности PF от 0,1 до 1 (если требуется), затем нажмите кнопку “Рассчитать”. Таким образом будет получена мощность P в кВт. Чтобы сбросить введенные данные, нажмите соответствующую кнопку.

  • Калькулятор А в кВт (1 фаза, постоянный ток)
  • Калькулятор А в кВт (1 фаза, переменный ток)
  • Калькулятор А в кВт (3 фазы, переменный ток, линейное напряжение)
  • Калькулятор А в кВт (3 фазы, переменный ток, фазное напряжение)

Калькулятор А в кВт (1 фаза, постоянный ток)

Формула для перевода А в кВт

Мощность P в киловаттах (кВт) однофазной сети с постоянным током равняется произведению силы тока I в амперах (А) и напряжения U в вольтах (В), деленному на 1000.

Калькулятор А в кВт (1 фаза, переменный ток)

Формула для перевода А в кВт

Мощность P в киловаттах (кВт) однофазной сети с переменным током равняется силе тока I в амперах (А), умноженной на напряжение U в вольтах (В), коэффициент мощности PF и деленной на 1000.

Калькулятор А в кВт (3 фазы, переменный ток, линейное напряжение)

Формула для перевода А в кВт

Мощность P в киловаттах (кВт) трехфазной сети с переменным током и линейным напряжением равняется силе тока I в амперах (А), умноженной на напряжение U в вольтах (В), коэффициент мощности PF, квадратный корень из трех (√3) и деленной на 1000.

Калькулятор А в кВт (3 фазы, переменный ток, фазное напряжение)

Формула для перевода А в кВт

Мощность P в киловаттах (кВт) трехфазной сети с переменным током и фазным напряжением равняется утроенному произведению силы тока I в амперах (А), напряжения U в вольтах (В) и коэффициента мощности PF, деленному на 1000.

Источник

Как перевести киловатты в амперы и наоборот

Автор: Николай Петрович

Наличие развитой электрической сети является таким же признаком современного объекта недвижимости как водопровод, канализация и система вентиляции.

Аналогично любой сложной технической системе, электрическая проводка как комплекс характеризуется определенными численными параметрами, среди которых чаще всего упоминаются амперы и киловатты.

Связано это с тем, что внутридомовая электрическая сеть имеет фиксированное напряжение (220 и 380 В), которое полностью определяется схемой, использованной при ее построении, тогда как амперы и киловатты меняются в широких пределах.

Даже при начальных знаниях в области электротехники, а также при первичном знакомстве с принципами построения и функционирования электрической проводки становится ясным, что указанные параметры взаимозависимы.

Поэтому сразу же возникает естественное стремление свести их к одной интегральной величине или, при нецелесообразности такого перехода, установить между ними простую взаимосвязь.

В чем состоит отличие ампер и киловатт

Фундаментальное отличие между единицами измерения параметров электрической сети, которые вынесены в заголовок этого раздела, состоит в том, что они представляют собой численную меру различных физических величин.

В данном случае:

  • амперы (сокращение А) показывают силу тока;
  • ватты и киловатты (сокращение Вт и кВт, соответственно) характеризуют активную (фактически полезную) мощность.

На практике используется также расширенное описание мощности с измерением ее в вольт-амперах и, соответственно киловольт-амперы, которые кратко обозначаются как ВА и кВА.

Они, в отличие от Вт и кВт, которыми описывается активная мощность, указывают на полную мощность.

В цепях постоянного тока полная и активная мощности совпадают. Аналогично, в сети переменного тока при небольшой мощности нагрузки на инженерном уровне строгости можно не учитывать различие между Вт (кВт) и ВА (кВА), т.е. работать только с двумя первыми единицами.

Для таких цепей действует следующее простое соотношение:

где W – (активная) мощность, задаваемая в Вт, U –напряжение, указываемое в вольтах, I – сила тока, измеряемая в амперах.

При увеличении мощности нагрузки до уровня тысяча ватт и выше для постоянного тока соотношение (1) не меняется, а для переменного тока его целесообразно записать как:

где cosφ – так называемый коэффициент мощности ли просто “косинус фи”, показывающий эффективность преобразования электрического тока в активную мощность.

По физическому смыслу φ представляет собой угол между векторами переменного тока и напряжения или угол фазового сдвига между напряжением и током.

Хорошим критерием необходимость учета данной особенности являются те случаи, когда в паспортных данных и/или на корпусных табличках-шильдиках электроприборов, преимущественно мощных, потреблением более 1 кВт, вместо кВт указывают ВА или кВА.

Обычно для бытовых электрических устройств с мощными электродвигателями (стиральные и посудомоечные машины, насосы и аналогичные им) можно положить cosφ = 0,85.

Это означает, что 85% потребляемой энергии является полезной, а 15% образует так называемую реактивную мощность, которая непрерывно переходит из сети в нагрузку и обратно до тех пор, пока в процессе этих переходов она не рассеется в виде тепла.

При этом сама сеть должна быть рассчитана именно на полную мощность, а не на полезную. Для указания этого факта ее указывают не в ваттах, а в вольт-амперах.

Как единица измерения ватт (воль-ампер) иногда оказывается слишком маленьким, что приводит к сложным для визуального восприятия числам с большим количеством знаков. С учетом этой особенности в ряде случаев мощность указывают в киловаттах и киловольт-амперах.

Для этих единиц справедливо:

1000 Вт = 1 кВт и 1000 ВА = 1кВА. (3).

Почему возникает необходимость перехода от ампер к киловаттам и обратно

Свести описание электрической сети только к одной единице не получается. Необходимость использования двух разных единиц измерения параметров возникает из-за того, что в подавляющем большинстве случаев конкретная проводка обслуживает несколько потребителей, каждый из которых вносит свой вклад в силу протекающего тока.

  • сечение проводов удобно рассчитывать по максимальной силе протекающего через них тока;
  • аналогичным образом подбираются автоматические выключатели, которые защищают приемники и провода от перегрузки и короткого замыкания;
  • основной же характеристикой любого подключаемого к розетке электрического устройства как токоприемника или нагрузки традиционно является его мощность.

Популярность указания мощности потребления, как одного из главных параметров электроприбора, определяется также тем, что оплата электроэнергии осуществляется по электросчетчику, который отградуирован в кВт*час.

Соответственно при известной стоимости одного кВт*час оплата электроэнергии определяется простым перемножение трех чисел: мощности, продолжительности работы и стоимости одного кВт*час.

С учетом особенности определения расходов на электроэнергию становится понятным преимущество применения для мощных устройств не полезной мощности, измеряемой в кВт, а полной мощности, которая определяется в кВА.

Оно выгодно тем, что дает возможность выполнять расчеты по единой методике без отдельного учета фактического фазового сдвига тока и напряжения.

Принцип идентичности расчетов при знании полной мощности распространяется также на расчет тока.

Сам пересчет из одной единицы в другую выполняется по представленным выше соотношениям (1) и (2) и из-за их простоты не составляет больших проблем.

В данном случае свою роль играет то, что напряжение U можно считать константой, которая меняется только от количества фаз проводки.

Далее приведем основные правила выполнения таких расчетов применительно к наиболее часто встречающихся на практике случаям.

Определение мощности по силе тока для однофазной сети

Необходимость выполнения этой процедуры чаще всего возникает при задании ограничений по максимальной мощности электроприбора, который можно подключить к конкретной розетке или их группе.

При нарушении данного ограничения возрастают риски пожара, а пластмассовые декоративные элементы розетки могут расплавиться из-за избытка выделяющегося тепла.

На основании определений, которые в математической форме описываются выражениями (1) и (2), для нахождения мощности следует просто умножить ток на напряжение.

Максимально допустимый ток выносится на маркировку розетки и для большинства комнатных бытовых изделий этой разновидности обычно составляет 6 А.

Напряжение, подаваемое от электросети на розетку, равно 220 – 230 В. Таким образом, максимальная мощность составляет 1,3 кВт.

Отдельно укажем на то, что риски повреждения розетки при подключении чрезмерно мощного устройства минимальны в правильно спроектированной бытовой проводке.

Это полезное свойство обеспечено:

  • установкой автоматов;
  • применением в мощных электроприборах вилок, которые физически не могут подключаться к обычным розеткам (механическая блокировка).

Своеобразным вариантом механической блокировки можно считать довольно популярное прямое соединение мощного стационарного устройства (кондиционер, бойлер) с сетью без использования розеток.

Пересчет мощности в ток для однофазной сети

Расчет тока выполняется обычно в процессе подбора автомата, обслуживающего мощный потребитель типа прямоточного водонагревателя.

На основании выражений (1) и (2) задача решается в одно действие. Для этого достаточно разделить мощность на напряжение.

Величина мощности приводится в техническом описании устройства или же указывается прямо на его корпусе. Напряжение принимается равным 220 В, что создает некоторый запас расчета.

Например, при мощности 3000 Вт в соответствии с приведенным правилом получаем ток в 3000/220 = 13,7 А, что указывает на необходимость применения 16-амперного защитного автомата.

При указании мощности в киловаттах в расчет добавляется одно действие: необходимо предварительно перевести киловатты в ватты с учетом формулы (3).

Например, нагреватель имеет мощность 2,8 кВт. Тогда расчет тока выполняется следующим образом:

  • W = 2,8*1000 = 2800 Вт;
  • I = W/220 = 12,7 А.

Если мощность указывается в ВА или кВА, то выкладка не меняется, т.е. 3000/220 = 13,7 А (во втором случае предварительно переводим кВА в простые ВА, т.е. 3 кВА = 3*1000 = 3000 ВА).

Главной особенностью в данном случае становится то, что с учетом типового для бытовых устройств cosφ = 0,85 полезную работу будет выполнять 11,6 А (т.е. 85% всего тока), тогда как оставшиеся 2,1 А являются реактивным током, который бесполезно расходуется на разогрев проводов.

Быстрая оценка токов и мощностей

Предельная простота исходных соотношений (1) и (2) позволяет заметно упростить выполнение текущих расчетов при дополнительном условии задания мощности в киловаттах.

В основу упрощения расчетов положен факт того, что с учетом примерного постоянства напряжения в бытовой однофазной 220-вольтовой сети пересчет мощности в ток можно выполнить умножением мощности на постоянный коэффициент.

Для определения такого коэффициента целесообразно воспользоваться тем, что при задании W в кВт имеем довольно точную оценку I = W*1000/220 = 4,5*W.

Например, при W = 2,8 кВт получаем 4,5*2,8= 12,6 А, т.е. выкладки выполняются быстрее и существенно удобнее по сравнению с “правильным” расчетом при незначительной потерей точности.

Аналогичным образом столь же легко показать, что W = 0,22*I кВт. Необходимо помнить о том, что ток I указывается в амперах.

Таким образом, получаем простые правила:

  • один кВт соответствует 4,5 А тока;
  • один ампер соответствует мощности 0,22 кВт.

Последнее правило часто закругляют до уровня один ампер эквивалентен 0,2 кВт.

Связь мощности и тока в трехфазной сети

Принцип расчета мощности и тока для трехфазных сетей остается прежним. Главное отличие заключается в незначительной модернизации расчетных формул, что позволяет полноценно учесть особенности построения этого вида проводки.

В качестве базового соотношения традиционно берется выражение:

причем U в данном случае представляет собой линейное напряжение, т.е. составляет U = 380 В.

Из выражения (4) вытекает выгодность применения в обоснованных случаях трехфазных сетей: при такой схеме построения проводки токовая нагрузка на отдельные провода падает в корень из трех раз при одновременном трехкратном увеличении отдаваемой в нагрузку мощности.

Для доказательства последнего факта достаточно заметить, что 380/220 = 1,73, а с учетом первого числового коэффициента получаем 1,73 * 1,73 = 3.

Приведенные выше правила связи токов и мощности для трехфазной сети формулируются в следующей форме:

  • один кВт соответствует 1,5 А потребляемого тока;
  • один ампер соответствует мощности 0,66 кВт.

Укажем на то, что все сказанное справедливо в отношении случая соединения нагрузки так называемой звездой, что наиболее часто встречается на практике.

Возможно еще соединение треугольником, которое меняет правила расчета, но оно встречается достаточно редко и в этой ситуации целесообразно обратиться к специалисту.

Особенности выполнения расчетов автоматов

Одной из наиболее часто встречающихся задач при проектировании электрической проводки в жилых помещениях является определение тока срабатывания автоматических выключателей.

Эти элементы обязательны для применения и защищают отдельные сети и подключенные к ним электрические приборы от выхода из строя и возгорания в случае превышения нагрузки, а саму линию от короткого замыкания.

Расчет представляет собой 4-шаговую процедуру, которая выполняется следующим образом:

  • формируют перечень всех устройств, которые будут получать электроснабжение от данной сети;
  • в технических данных этих устройств находят мощность;
  • с учетом того, что отдельные устройства подключаются параллельно, вычисляют общий ток в амперах по формуле I = W [Вт]/220;
  • по величине общего тока определяют номинал автомата.

Проиллюстрируем приведенную методику примером.

Пусть конкретно взятый провод обслуживает следующие потенциально одновременно включенные потребители:

  • настольную лампу мощностью 60 Вт;
  • торшер с двумя лампами по 60 Вт;
  • напольный кондиционер мощностью 1,7 кВт;
  • персональный компьютер с мощностью потребления 600 Вт.

Находим общую мощность потребления имеющейся техники. Предварительно переводим потребляемую мощность в общие единицы (в данном случае это ватты). Имеем 60 + 2*60 + 1,7*1000 + 600 = 2480 Вт.

Кондиционер является потребителем, мощность которого превышает 1 кВт. Для увеличения общей эксплуатационной надежности создаваемой проводки выполним оценку величины тока сверху, т.е. положим коэффициент мощности равным cosφ = 1.

Фактическое значение тока будет несколько меньше, разницу считаем запасом расчета.

Обычным мультиметром замеряем напряжение в сети, которое равно 230 В.

Тогда ожидаемый ток при одновременном функционировании всех приборов на основании формулы (1) составит:

I = 2280/230 = 10,8 А.

Если воспользоваться методом экспресс-оценки, то мощность вычисляем уже как 0,06 + 2*0,06 + 1,7*1 + 0,6 = 2,48 кВт и в соответствии с правилом 4,5 А/кВт получаем довольно близкое значение 11,2 А.

Как вывод можем констатировать, что данный участок электрической сети целесообразно защищать 16-амперным автоматом.

Понравилась статья? Оставляйте свои отзывы в комментариях.

Источник

Как перевести амперы в киловатты и обратно: формула расчета

Разделы статьи:

Как перевести амперы в киловатты и обратно: формула расчета

Когда нужно подобрать автоматический выключатель или рассчитать нагрузку на кабель, требуется произвести кое-какие расчеты. В первую очередь необходимо научиться переводить амперы в киловатты и обратно, что поможет рассчитать необходимую мощность.

В данной статье будет рассказано, как именно выполнить перевод. Также будет уделено внимание напряжению в электрической сети, от чего зависит формула для правильного расчета.

Что такое напряжение, ток и мощность

Три рассматриваемые в этой статье сайта elektrikinfo.ru величины, это — напряжение сети, амперы и киловатты. Чтобы не запутаться следует по порядку рассмотреть каждую из этих величин.

Напряжение сети — бывает 220 или 380 вольт. Электрическая сеть необходима для перемещения единичных зарядов, которые служат для передачи энергии.

Сила тока — измеряется в амперах и характеризует количество этих самых зарядов, которые могут пройти по сети за определённое количество времени.

Мощность — она измеряется в ваттах и выражается скоростью, с которой движутся эти самые заряды.

В 1 кВт — 1000 ватт, это необходимо для того, чтобы быстро перевести все необходимые расчеты. Конечно же, описанное все выше очень поверхностно, на практике всё намного сложней. Для получения мощности электроприборов следует использовать формулу следующего вида: P=I*U*cosФ.

Применяя данную формулу, стоит понимать, что для активной нагрузки cosФ (коэффициент мощности) равен 1. Под активной нагрузкой понимается работа таких электроприборов, которые имеют в своей конструкции ТЭН. Остальные приборы, в конструкции которых есть электродвигатель, имеют смешанный

тип нагрузки, в том числе и реактивную.

Как перевести амперы в киловатты и обратно

Чтобы перевести амперы в киловатты и узнать мощность, необходимо умножить напряжение сети, силу тока и cosФ, который равен 1. Например, в однофазной сети напряжение составляет 220 Вольт, а на счетчике установлен автоматический выключатель номиналом 16 Ампер.

Чтобы узнать, сколько выдержит автоматический выключатель, то есть, какую нагрузку по мощности всех электроприборов к нему можно подключать, достаточно 220х16х1 = 3520 Ватт. Таким образом, становится ясно, что автоматический выключатель рассчитан на нагрузку не более 3,5 кВт.

Таким же образом производится и перевод кВт в амперы, только с применением деления. Зная суммарную мощность электроприборов и напряжение сети, можно рассчитать количество ампер. Так выйдет более точно рассчитать, какой ставить автоматический выключатель для защиты электропроводки, с помощью которой подключены электроприборы в доме.

Допустим, есть чайник мощностью 2000 ватт. Для его работы нужно сетевое напряжение 220 вольт. Следует разделить мощность на напряжение, чтобы получить силу тока, то есть, амперы. В данном случае выходит порядка 9 ампер по току.

При этом всегда стоит помнить о том, что сами провода должны выдержать нагрузку от работы электроприборов. Это очень важно, чтобы номинал автоматического выключателя не был больше того значения, на которое не рассчитано сечение кабеля.

Поделиться статьей в социальных сетях

Как перевести кВт в Ампер

Формула расчета от кВт до ампера постоянного тока

I (A) = 1000 × P (кВт) / V (V)

Ток I в амперах (А) равен 1000, умноженному на мощность P в киловаттах (кВт), разделенную на напряжение В, в вольтах (В).

Итак,

А = 1000 × кВт / В
А = 1000 × кВт / В

Например:

Мощность (P) = 3 кВт
Напряжение (В) = 110 В

Ток (I) = 1000 x 3 кВт / 110 В = 27,27 А

Формула расчета киловатт в ампер однофазного переменного тока

I (A) = 1000 × P (кВт) / (PF × V (V) )

Фазный ток I в амперах (A) равен 1000, умноженному на мощность P в киловаттах (кВт), деленную на коэффициент мощности PF , умноженный на действующее значение напряжения V в вольтах ( V).

Итак,

A = 1000 × кВт / (PF x V)
A = 1000 × киловатт / (PF x вольт)

Например:

Мощность (P) = 3 кВт
Напряжение (В) = 110 В
PF = 0,7

Ток (I) = 1000 x 3 кВт / (0,7 x 110 В) = 38,96 A

Формула расчета мощности трехфазного переменного тока между кВт и током

Линейное напряжение

I (A) = 1000 × P (кВт) / (√3 × PF × V L-L (V) )

Фазный ток I в амперах (A) равен 1000, умноженному на мощность P в киловаттах (кВт), разделенному на квадратный корень из 3, умноженному на коэффициент мощности PF , умноженный на линию к линейному среднеквадратичному напряжению В LL в вольтах (В).

Итак,

A = 1000 × кВт / (√3 × PF x V)
A = 1000 × кВт / (√3 × PF x вольт)

Например:

Мощность (P) = 3 кВт
Напряжение (В) = 110 В
PF = 0,7

Ток (I) = 1000 x 3 кВт / (√3 × 0,7 x 110 В) = 22,49 A

Напряжение между фазой и нейтралью

I (A) = 1000 × P (кВт) / (3 × PF × V L-N (V) )

Фазный ток I в амперах (A) равен 1000, умноженному на мощность P в киловаттах (кВт), деленному на 3, умноженному на коэффициент мощности PF , умноженному на среднеквадратичное значение линии до нейтрали. напряжение В LN в вольтах (В).

Итак,

A = 1000 × кВт / (3 × PF x V)
А = 1000 × кВт / (3 × PF x вольт)

Например:

Мощность (P) = 3 кВт
Напряжение (В) = 110 В


PF = 0,7

Ток (I) = 1000 x 3 кВт / (3 × 0,7 x 110 В) = 12,99 A

1 А в Киловатт — преобразовать 1 А в кВт

Онлайн-калькуляторы> Электрические калькуляторы> От 1 ампер до киловатт

Калькулятор 1 А в Киловатт для преобразования 1 А в кВт.Чтобы вычислить, сколько кВт в 1 амперах, умножьте на вольты, а затем разделите на 1000.

Введите коэффициент мощности от 0 до 1.

Ампер кВт Вольт
1 кВт 0,12 ампер 120 вольт
1,01 кВт 0,1212 ампер 120 вольт
1,02 кВт 0.1224 ампер 120 вольт
1,03 кВт 0,1236 А 120 вольт
1,04 кВт 0,1248 ампер 120 вольт
1,05 кВт 0,126 ампер 120 вольт
1,06 кВт 0,1272 ампер 120 вольт
1,07 кВт 0.1284 ампер 120 вольт
1,08 кВт 0,1296 ампер 120 вольт
1,09 кВт 0,1308 ампер 120 вольт
1,1 кВт 0,132 ампер 120 вольт
1,11 кВт
0,1332 ампер 120 вольт
1,12 кВт 0.1344 ампер 120 вольт
1,13 кВт 0,1356 ампер 120 вольт
1,14 кВт 0,1368 ампер 120 вольт
1,15 кВт 0,138 ампер 120 вольт
1,16 кВт 0,1392 ампер 120 вольт
1,17 кВт 0.1404 ампер 120 вольт
1,18 кВт 0,1416 ампер 120 вольт
1,19 кВт 0,1428 ампер 120 вольт
1,2 кВт 0,144 ампер 120 вольт
1,21 кВт 0,1452 ампер 120 вольт
1,22 кВт 0.1464 ампер 120 вольт
1,23 кВт 0,1476 ампер 120 вольт
1,24 кВт 0,1488 ампер 120 вольт
1,25 кВт 0,15 ампер 120 вольт
1,26 кВт 0,1512 ампер 120 вольт
1,27 кВт 0.1524 ампер 120 вольт
1,28 кВт 0,1536 ампер 120 вольт
1,29 кВт 0,1548 ампер 120 вольт
1,3 кВт 0,156 ампер 120 вольт
1,31 кВт 0,1572 ампер 120 вольт
1,32 кВт 0.1584 ампер 120 вольт
1,33 кВт 0,1596 ампер 120 вольт
1,34 кВт 0,1608 ампер 120 вольт
1,35 кВт 0,162 ампер 120 вольт
1,36 кВт 0,1632 ампер 120 вольт
1,37 кВт 0.1644 ампер 120 вольт
1,38 кВт 0,1656 ампер 120 вольт
1,39 кВт 0,1668 ампер 120 вольт
1,4 кВт 0,168 ампер 120 вольт
1,41 кВт 0,1692 ампер 120 вольт
1,42 кВт 0.1704 ампер 120 вольт
1,43 кВт 0,1716 ампер 120 вольт
1,44 кВт 0,1728 ампер 120 вольт
1,45 кВт 0,174 ампер 120 вольт
1,46 кВт 0,1752 ампер 120 вольт
1,47 кВт 0.1764 ампер 120 вольт
1,48 кВт 0,1776 ампер 120 вольт
1,49 кВт 0,1788 ампер 120 вольт
1,5 кВт 0,18 ампер 120 вольт
1,51 кВт 0,1812 ампер 120 вольт
1,52 кВт 0.1824 ампер 120 вольт
1,53 кВт 0,1836 ампер 120 вольт
1,54 кВт 0,1848 ампер 120 вольт
1,55 кВт 0,186 ампер 120 вольт
1,56 кВт 0,1872 ампер 120 вольт
1,57 кВт 0.1884 ампер 120 вольт
1,58 кВт 0,1896 ампер 120 вольт
1,59 кВт 0,1908 ампер 120 вольт
1,6 кВт 0,192 ампер 120 вольт
1,61 кВт 0,1932 ампер 120 вольт
1,62 кВт 0.1944 амперы 120 вольт
1,63 кВт 0,1956 ампер 120 вольт
1,64 кВт 0,1968 ампер 120 вольт
1,65 кВт 0,198 ампер 120 вольт
1,66 кВт 0,1992 ампер 120 вольт
1,67 кВт 0.2004 амперы 120 вольт
1,68 кВт 0.2016 амперы 120 вольт
1,69 кВт 0,2028 ампер 120 вольт
1,7 кВт 0,204 ампер 120 вольт
1,71 кВт 0,2052 ампер 120 вольт
1,72 кВт 0.2064 ампер 120 вольт
1,73 кВт 0,2076 ампер 120 вольт
1,74 кВт 0,2088 ампер 120 вольт
1,75 кВт 0,21 ампер 120 вольт
1,76 кВт 0,2112 ампер 120 вольт
1,77 кВт 0.2124 ампер 120 вольт
1,78 кВт 0,2136 ампер 120 вольт
1,79 кВт 0,2148 ампер 120 вольт
1,8 кВт 0,216 ампер 120 вольт
1,81 кВт 0,2172 ампер 120 вольт
1,82 кВт 0.2184 ампер 120 вольт
1,83 кВт 0,2196 ампер 120 вольт
1,84 кВт 0,2208 ампер 120 вольт
1,85 кВт 0,222 ампер 120 вольт
1,86 кВт 0,2232 ампер 120 вольт
1,87 кВт 0.2244 ампер 120 вольт
1,88 кВт 0,2256 ампер 120 вольт
1,89 кВт 0,2268 ампер 120 вольт
1,9 кВт 0,228 ампер 120 вольт
1,91 кВт 0,2292 ампер 120 вольт
1,92 кВт 0.2304 ампер 120 вольт
1,93 кВт 0,2316 ампер 120 вольт
1,94 кВт 0,2328 ампер 120 вольт
1,95 кВт 0,234 ампер 120 вольт
1,96 кВт 0,2352 ампер 120 вольт
1,97 кВт 0.2364 ампер 120 вольт
1,98 кВт 0,2376 ампер 120 вольт
1,99 кВт 0,2388 ампер 120 вольт
от 2 ампер до кВт
Электрические калькуляторы
Калькуляторы недвижимости
Бухгалтерские калькуляторы
Бизнес-калькуляторы
Строительные калькуляторы
Спортивные калькуляторы

Финансовые калькуляторы
Калькулятор сложных процентов
Ипотечный калькулятор
Сколько я могу позволить себе дом
Кредитный калькулятор
Калькулятор акций
Инвестиционный калькулятор
Пенсионный калькулятор
401k Калькулятор
Калькулятор комиссий eBay
Калькулятор комиссий PayPal
Калькулятор комиссий Etsy
Калькулятор наценки
Калькулятор TVM
Калькулятор LTV
Калькулятор ренты
Сколько я зарабатываю в году

Математические калькуляторы
Смешанное число в десятичном формате
Усилитель отношения

Процентный калькулятор

Калькуляторы
Калькулятор ИМТ
Калькулятор потери веса

Преобразование
CM в футы и дюймы
MM в дюймы

Другое
Сколько мне лет
Выбор случайных имен
Генератор случайных чисел
Найти слово
Amor tization Расписание
Онлайн-будильник
Калькулятор времени
Калькулятор часов

кВт для калькулятора ампер — ElectricalSells

кВт для калькулятора ампер

Киловатты (кВт) и амперы (А) являются важными параметрами электрической цепи.Часто мы знаем номинальную мощность нагрузки в киловаттах, и нам требуется получить номинальную мощность в амперах. В этой статье мы узнаем, как рассчитать амперную нагрузку сети переменного тока из номинальной мощности в кВт. Кроме того, с помощью калькулятора кВт в ампер можно легко рассчитать ампер из кВт. Этот калькулятор также называл 3-фазный калькулятор мощности , кВт до ампер.

Вычисление киловатт в амперы однофазного переменного тока

Ватт — это параметр для расчета мощности, потребляемой нагрузкой, и мощности, которая может быть передана в цепь.Если для любой однофазной цепи переменного тока известна мощность в кВт, то, используя следующую формулу и расчет, мы можем легко вычислить силу тока, а также мы можем получить тот же результат из вышеуказанного кВт для калькулятора ампер.

P (кВт) = √3 * V LN * I * Cosθ / 1000

I = P (кВт) * 1000 / √3 * V LN * Cosθ

, где V = фазное напряжение;
P = мощность или нагрузка в кВт;
Cosθ = коэффициент мощности;
В L-N = межфазное напряжение;

Пример: для однофазной сети переменного тока мощностью 2 кВт и напряжения (фаза-нейтраль) = 230 В и коэффициента мощности = 0.9

I = P (кВт) * 1000 / √3 * V * Cosθ
I = 2 * 1000 / √3 * 230 * .9 = 9,66 AMP

Следовательно, 2KW = 9,66 AMP однофазное питание переменного тока ;

Расчет трехфазных киловатт переменного тока в амперы

Аналогичным образом, в случае трехфазного источника переменного тока, если известен ватт, то номинальный ток можно рассчитать следующим образом: тот же результат можно получить, используя приведенный выше калькулятор трехфазной мощности кВт до ампер :

P (кВт) = √3 * В LL * I * Cosθ / 1000
I = P (кВт) * 1000 / √3 * В LL * Cosθ В LL = напряжение сети
P = мощность или нагрузка в кВт;
Cosθ = коэффициент мощности;
В L-L = межфазное напряжение;

Пример: для трехфазной сети переменного тока мощностью 2 кВт и сетевого напряжения (между фазами) = 415 В и коэффициента мощности = 0.9

I = P (кВт) * 1000 / √3 * В L-L * Cosθ;
I = 2 * 1000 / √3 * 415 * 0,9 = 5,5 A
Следовательно 2 кВт = 3,09 А, трехфазный переменный ток

Трехфазное питание переменного тока с расчетом напряжения между фазой и нейтралью

В случае трехфазного переменного тока если известны ватт и напряжение между фазой и нейтралью, то номинальный ток можно рассчитать следующим образом:

P (кВт) = 3 * VL-N * I * Cosθ / 1000;
I = P (кВт) * 1000/3 * V L-N * Cosθ

P = Мощность или нагрузка в кВт;
Cosθ = коэффициент мощности;
В L-N = напряжение между фазой и нейтралью;

Пример: для трехфазной сети переменного тока мощностью 2 кВт и фазного напряжения (между фазой и нейтралью) = 230 В и коэффициента мощности = 0.9

I = P (кВт) * 1000/3 * V L-N * Cosθ;
I = 2 * 1000/3 * 230 * 0,9 = 3,21 Ампер;

DC, киловатты в амперы (диаграмма из кВт в амперы)

A 902 902 50,00 A0 кВт
KILO WATT AMPS AT 110V DC AMPS AT 220V DC
1,0 кВт
1,0 кВт
2,0 кВт 18,18 A 9,09 A
3.0 кВт 27,27 A 13,64 A
4,0 кВт 36,36 A 18,18 A
7,5 кВт 68,18 A 34,09 14 A
34,09 14
15,0 кВт 136,36 A 68,18 A
18,5 кВт 168,18 A 84,09 A
22,0 кВт 200,00 A00 A
30,0 кВт 272,73 A 136,36 A
37,0 кВт 336,36 A 168,18 A
45,014 45,014 A 902 500,00 A 250,00 A
75,0 кВт 681,82 A 340,91 A
90,0 кВт 818,18 A 409.09 A
1000,00 A 500,00 A


Однофазные киловатты в амперы (диаграмма из кВт в амперы) при P.F. из 0,95 52,63 A 73213 2000 кВ

34 3661 90,33 A ампер, фаза, 3 кВт / сек. ПФ 0,95
KILOWATT АМП при 120 В перем. тока АМП при 220 В перем. тока АМП при 230 В перем.
1,1 кВт 9,65 A 5.26 A 5,03 A
1,5 кВт 13,16 A 7,18 A 6,86 A
2,0 кВт 17,54 A 9,57 A 9,2 19,30 A 10,53 A 10,07 A
3,0 кВт 26,32 A 14,35 A 13,73 A
4,0 кВт 35.09 A 19214 35.09 A 19231 A
5,5 кВт 48,25 A 26,32 A 25,17 A
7,5 кВт 65,79 A 35,89 A 34,32 A
50,34 A
15,0 кВт 131,58 A 71,77 A 68,65 A
18,5 кВт 162,28 A 90.0 кВ
45,0 кВт 394,74 A 215,31 A 205,95 A
55,0 кВт 482,46 A 263,16 A 251,713 A

90.0 кВ
132,0 кВт 1157,89 A 631,58 A 604,12 A
160,0 кВт 1403,51 A 765,55 A
355,0 кВт 3114,04 A 1698,56 A 1624,71 A
400,0 кВт 3508,77 A 1913,88 A4 1830,6211 5000 квт
710,0 кВт 6228,07 A 3397,13 A 3249,43 A
800,0 кВт 7017,54 A 3827,75 A4 3661.0 кВт 7894,74 A 4306,22 A 4118,99 A
1000,0 кВт 8771,93 A 4784,69 A 4576,66 A
902 A 15,19 A 7.60 A

0 кВт 195,3231 A 90,01350 A.0 кВт 907 902 902 902 902 902 9014 902 9020 957 14 98010280 9 В статье «От кВт до Калькулятора Ампер » мы можем найти силу тока в киловаттах, если мы знаем напряжение в цепи, используя закон электрического Ватта. в котором указано, что ток = мощность ÷ напряжение. Согласно закону Ватта мощность измеряется в ваттах, а напряжение — в вольтах.Формула найдет ток в амперах.

Связанная статья-

Из

Ампер в киловатты (кВт) калькулятор преобразования

Калькулятор

Ампер (А) в киловатты (кВт).

Выберите тип тока, введите ток в амперах, напряжение в вольт, коэффициент мощности для цепи переменного тока и нажмите кнопку Рассчитать (DC = постоянный ток, AC = переменный ток):

* Используйте e для экспоненциального обозначения. Например: 5e3, 4e-8, 1.45e12

Калькулятор

кВт в ампер ►

Вычисление из ампер постоянного тока в киловатты

Мощность P в киловаттах (кВт) равна току I в амперах (А), умноженному на напряжение В в вольтах (В), деленное на 1000:

P (кВт) = I (A) × V (V) /1000

Расчет однофазных ампер переменного тока в киловатт

Мощность P в киловаттах (кВт) равна коэффициент мощности PF , умноженный на фазный ток I в амперах (A), умноженный на действующее значение напряжения В в вольтах (В), деленное на 1000:

P (кВт) = PF × I (A) × V (V) /1000

Расчет трехфазных ампер переменного тока в киловаттах

Расчет при линейном напряжении

Мощность P в киловаттах (кВт) равна квадратному корню из трехкратного коэффициент мощности PF , умноженный на фазный ток I в амперах (A), умноженный на действующее значение линейного напряжения В L-L в вольтах (В), деленное на 1000:

P (кВт) = 3 × PF × I (A) × V L-L (V) /1000

Расчет с линейным напряжением

Мощность P в киловаттах (кВт) в 3 раза больше коэффициент мощности PF , умноженный на фазный ток I в амперах (A), умноженный на действующее значение напряжения между фазой и нейтралью В L-N в вольтах (В), деленное на 1000:

P (кВт) = 3 × PF × I (A) × V L-N (V) /1000

Типичные значения коэффициента мощности

Не используйте типичные значения коэффициента мощности для точных расчетов.

КИЛО ВАТТ AMPS при 208 В перем. тока AMPS при 280 В перем. тока AMPS при 415 В перем.
1.0 кВт 2,76 A 2,17 A 1,46 A 1,38 A 0,88 A
1,1 кВт 3,04 A 2,39 A 1,61 A 1,52
1,5 кВт 4,14 A 3,26 A 2,20 A 2,07 A 1,32 A
2,0 кВт 5,53 A 4,34 A 902,13 902 902,13
2,2 кВт 6,08 A 4,78 A 3,22 A 3,04 A 1,94 A
3,0 кВт 8,29 A 6,513 A 902 4,1 2,64 A
4,0 кВт 11,05 A 8,68 A 5,86 A 5,53 A 3,52 A
5,5 кВт 15,19 A 4,84 A
7,5 кВт 20,72 A 16,28 A 10,98 A 10,36 A 6,61 A
11,014 30,314 A 11,014 30314 A 15,19 A 9,69 A
15,0 кВт 41,44 A 32,56 A 21,97 A 20,72 A 13,21 A
16 A 27,09 A 25,55 A 16,29 A
22,0 кВт 60,78 A 47,75 A 32,22 A 30,39 A 30,39 A 902 902

65,12 A 43,93 A 41,44 A 26,42 A
37,0 кВт 102,21 A 80,31 A 54,19 A 51.11 A 124,31 A 97,67 A 65,90 A 62,16 A 39,64 A
55,0 кВт 151,94 A 119,38 A
75,0 кВт 207,19 A 162,79 A 109,84 A 103,59 A 66,06 A
90,0 кВт 248,63 A 195,35 A 79,27 A
110,0 кВт 303,88 A 238,76 A 161,09 A 151,94 A 96,89 A
3 132,013
902,013 902,13 182,33 A 116,27 A
160,0 кВт 442,00 A 347,29 A 234,32 A 221,00 A 140,93 A 20013
434,11 A 292,89 A 276,25 A 176,16 A
250,0 кВт 690,63 A 542,64 A 366,2014 A 34213 366,12 A 345 кВт 870,19 A 683,72 A 461,31 A 435,10 A 277,45 A
355,0 кВт 980,70 A 770,55 A 535 A 312,69 A
400,0 кВт 1105,01 A 868,22 A 585,79 A 552,50 A 352,32 A
902,32
902,32 902,18 690,63 A 440,40 A
560,0 кВт 1547,01 A 1215,51 A 820,10 A 773,51 A 493,25 A
1740,39 A 1367,45 A 922,62 A 870,19 A 554,91 A
710,0 кВт 1961,39 A 154113 9 902,72
800,0 кВт 2210,02 A 1736,44 A 1171,58 A 1105,01 A 704,64 A
900,0 кВт 2486,27 A 195302 A 1243,14 A 792,72 A
1000,0 кВт 2762,52 A 2170,55 A 1464,47 A 1381,26 A 88010211
Устройство Типовой коэффициент мощности
Активная нагрузка 1
Люминесцентная лампа 0,95
Лампа накаливания 1
Асинхронный двигатель с полной нагрузкой 0,85
Асинхронный двигатель без нагрузки 0,35
Терморезистивная печь 1
Синхронный двигатель 0.9

Расчет ампер в кВт ►


См. Также

электрических формул — Центр электротехники

Здесь я обсуждаю некоторые важные электрические формулы. Все эти формулы полезны для основных расчетов в электротехнике, включая напряжение, ампер, мощность, КПД, коэффициент мощности и многое другое. Я надеюсь, что это поможет вам понять основы электрических расчетов.

Глоссарий: —

I = Ампер

E = Вольт

кВт = Киловатт

кВА = кило вольт-ампер

л.с. = л.с.

% эфф .= КПД в процентах

pf = Коэффициент мощности

Однофазный

НАЙТИ: —

  • Амперы при известной кВА -> I = кВА x 1000 / E
  • Ампер при известной мощности -> (л.с. x 746) / (E x% эфф. X pf)
  • Ампер, если известны киловатты -> (кВт x 1000) / (E x pf)
  • Киловатт -> (I x E x pf) / 1000
  • Киловольт-Ампер -> (I x E) / 1000
  • л.с. -> (I x E x% эфф.х пф) / 746
  • Вт -> E x I x pf
  • Энергоэффективность -> Мощность нагрузки x 746 / Потребляемая нагрузка, кВА x 1000
  • Коэффициент мощности при cos θ -> Потребляемая / полная мощность ( Вт / ВА) при (кВт / кВА )

Двухфазный

НАЙТИ: —

  • Амперы при известной кВА -> I = (кВА x 1000) / (E x 2)
  • Ампер при известной мощности -> (л.с. x 746) / (E x 2 x% эфф.х пф)
  • Ампер, если известны киловатты -> (кВт x 1000) / (E x 2 x pf)
  • Киловатт -> (I x E x 2 x pf) / 1000
  • Киловольт-Ампер -> (I x E x 2) / 1000
  • л.с. -> (I x E x 2 x% эфф. X pf) / 746
  • Вт -> E x I x 2 x pf
  • Энергоэффективность -> Мощность нагрузки x 746 / Потребляемая нагрузка, кВА x 1000
  • Коэффициент мощности при cos θ -> Потребляемая / полная мощность ( Вт / ВА) при (кВт / кВА )

Трехфазный

НАЙТИ: —

  • Амперы при известной кВА -> I = (кВА x 1000) / (E x 1.73)
  • Ампер при известной мощности -> (л.с. x 746) / (E x 1,73 x% эфф. X pf)
  • Ампер, если известны киловатты -> (кВт x 1000) / (E x 1,73 x пФ)
  • Киловатт -> (I x E x 1,73 x pf) / 1000
  • Киловольт-ампер -> (I x E x 1,73) / 1000
  • л.с. -> (I x E x 1,73 x% эфф. X пФ) / 746
  • Вт -> E x I x 1.73 х пф
  • Энергоэффективность -> Мощность нагрузки x 746 / Потребляемая нагрузка, кВА x 1000
  • Коэффициент мощности при cos θ -> Потребляемая / полная мощность ( Вт / ВА) при (кВт / кВА )

Прочие формулы

  • кВт = 0,746
  • л.с.
  • Крутящий момент, фунт-фут = л.с. x 5250 / об / мин
  • Синхронная скорость двигателя в об / мин = 120 x Гц / количество полюсов
  • Трехфазный ток полной нагрузки = л.с. x 0,746 / 1.73 x кВ x КПД x коэффициент мощности
  • Номинальная мощность двигателя, кВА = л.с. (0,746) / КПД x коэффициент мощности
  • кВт потери = л.с. (0,746) (1,0 — КПД) / КПД
  • кВА пусковой ток = процент пускового тока х номинальный кВА
  • Приблизительное падение напряжения (%) = бросок двигателя, кВА x полное сопротивление трансформатора / трансформатор, кВА
  • Накопленная кинетическая энергия в кВт-сек = 2,31 x (общая Wk2) x об / мин2 x 107
  • Константа инерции (H) в секундах = накопленная кинетическая энергия в кВт-секундах / л.с. (.746)
  • Коэффициенты преобразования: CV = (метрическая л.с.) = 735,5 Вт = 75 кг-м / сек Wk2 (фунт-фут) = 5,93 x GD2 (кг-м2)
  • Требования к вентиляционному воздуху: 100-125 кубических футов в минуту при температуре 400 ° C на 1/2 дюйма. давление воды на каждый кВт потери
  • градусов C = (градусы F-32) x 5/9
  • градусов F = [(градусов C) x 9/5] + 32

Какуляторы HVAC

Вт на BTU = Вт x 3,413

BTU в ватты = BTU / 3.413

Трехфазная резистивная мощность = (Ампер1 x Вольт1) + (A2 x V2) + (A3 x V3) / 1,732 (что является квадратным корнем из 3)

Однофазное резистивное сопротивление = вольт x ампер

Трехфазная индуктивная мощность (двигатели) = (Ампер1 x Вольт1) + (A2 x V2) + (A3 x V3) / 1,732 x коэффициент мощности

Однофазные индуктивные ватты (двигатели) = вольт x ампер x коэффициент мощности

Закон об омах: E / IR: Ом = вольт / ампер (R = E / I), ампер = вольт / ом (I = E / R), вольт = ампер x ом (E = IR)

Расчетная формула из киловатт в амперы постоянного тока

Ток I в амперах равен 1000-кратной мощности P в киловаттах, деленной на напряжение V в вольтах:
I (A) = 1000 × P (кВт) / V (V)

Таким образом, ампер равен 1000 киловатт, деленных на вольт
ампер = 1000 × киловатт / вольт

Формула для расчета киловатт в ампер однофазного переменного тока

Ток I в амперах равен 1000-кратной реальной мощности P в киловаттах, деленной на коэффициент мощности PF, умноженный на напряжение V в вольтах:
I = 1000 × P / (PF × V)

Таким образом, ток равен 1000 киловатт, умноженных на коэффициент мощности, умноженный на вольты.
ампер = 1000 × киловатт / (PF × вольт)

Формула для расчета трехфазных киловатт в амперы переменного тока

Ток I в амперах равен 1000-кратной реальной мощности P в киловаттах, деленной на квадратный корень из 3-кратного коэффициента мощности PF, умноженного на линейное среднеквадратичное напряжение VL-L в вольтах:
I = 1000 × П / (√3 × ПФ × ВЛ-Л)

Таким образом, ампер равен 1000 киловатт, умноженных на квадратный корень из 3-кратного коэффициента мощности, умноженного на вольты.
ампер = 1000 × киловатт / (√3 × PF × вольт)

Калькулятор

Вт в Ампер | Легко преобразовывать ватты в амперы

Этот калькулятор предназначен для преобразования ватт в электрической цепи в амперы. Ватт — единица электрической мощности .

С другой стороны, ампер — это основная единица электрического тока. Иногда электрику, инженеру-электрику или студенту, работающему над схемами, может потребоваться преобразовать ватт в ампер, если известно напряжение в цепи.

Если вы ищете какой-нибудь инструмент, который поможет вам в этом вопросе, не ищите дальше, наш калькулятор Вт / А вам поможет. В этой статье вы познакомитесь с понятиями ватт, ампер и напряжения, их расчетом и различными типами силы тока.

Понятия ватт, ампер и вольт:

Когда мы говорим об электричестве, всегда упоминаются эти три важных компонента. Вопрос в том, в чем разница между ними?

Давайте объясним это, используя аналогию.Если мы примем электричество как воду, текущую по трубе, это может помочь нам понять концепции ампер, ватт и вольт.

Ампер можно представить как объем и скорость воды, протекающей по трубопроводу. Напряжение — это давление, оказываемое водой на стенки трубы. Ватты будут изображаться как мощность, обеспечиваемая водой.

Теперь обсудим их определения.

Ампер:

Ампер — это единица измерения электричества.Это мера , с которой электроны проходят через проводник , например кабель или электрический провод. Ампер можно записать как ампер и обозначить буквой I.

Вт:

Ватт считается базовой единицей мощности в электрических системах. Это мера , сколько энергии выделяется в системе за секунду .

Обозначается буквой W или P. Мы можем вычислить ватты, умножив напряжение на амперы. Формула приведена ниже:

$$ W \; = \; V \; * \; I $$

Например, электрическая лампочка, имеющая напряжение 14 В при токе 2 А, будет иметь мощность 28 Вт.

Вольт:

Вольт — основная единица разности потенциалов или электродвижущей силы (напряжения). Определяется как разность электрических потенциалов между двумя точками проводника, когда электрический ток в 1 ампер рассеивается, мощность 1 ватт между этими двумя точками. В лице В.

Как перевести ватты в амперы?

Чтобы понять это, вам сначала нужно знать конкретный тип тока, с которым вы работаете. Мы можем выделить три основных вида силы тока:

  • AC-однофазный
  • AC-Трехфазный, который можно разделить, в зависимости от конфигурации установки, на следующие подтипы:
    • Линейное напряжение (VLL), также называемое соединением треугольником
    • Напряжение между фазой и нейтралью (VLN), также называемое звездой
  • Постоянный ток (DC)

После выбора конкретного типа тока есть специальные формулы для вычисления требуемых значений.

Формула в случае выражается как:

$$ I \; = \; \ frac {P} {V} $$

Выражение для однофазного переменного тока имеет следующий вид:

$$ I \; = \; \ frac {P} {V × PF} $$

Здесь PF представляет коэффициент мощности, он определяет соотношение между фактической мощностью, которая выполняет работу, и мощностью, подаваемой в цепь. Различается от 0 до 1.

Выражение для трехфазного переменного тока изменяется с постоянным коэффициентом, как показано ниже:

$$ I \; = \; \ frac {P} {\ sqrt 3 * \ text {V} × \ text {PF}} $$ для VLL или дельта-соединения.

$$ I \; = \; \ frac {P} {3 * \ text {V} × \ text {PF}} $$ для VLL или дельта-соединения.

Между фазами и нейтралью:

Трехфазный ток в основном используется в электрических цепях, подключенных к нашим домам.

Слово трехфазное говорит само за себя, что эта система состоит из трех отдельных проводов. Каждый провод передает один и тот же электрический сигнал в измененной фазе. Причем еще один провод нейтрального потенциала относится к земле.

Напряжение между любыми двумя проводами постоянно выше по сравнению с любым кабелем и нулевым проводом.Все эти провода соединены между собой на приемном конце.

Их расположение можно применить двумя способами; конфигурация дельта и звезда. Различия в концевом соединении приводят к разной выходной мощности.

Как работает наш калькулятор ватт в ампер?

Прежде чем мы продемонстрируем работу нашего калькулятора ватт-усилителя, давайте рассмотрим пример.

Предположим, что вам необходимо знать амперы трехфазного переменного тока, линейного напряжения, амплитуды 120 вольт и мощности 4000 ватт.Мы считаем, что коэффициент мощности равен 0,8.

  1. Сначала введите значения в ваттах в амперах по формуле для 3-фазного VLN: $$ I \; = \; \ frac {P} {3 × V × PF} $$
  2. Решите уравнение = 4000 / (3 * 120 * 0,8) = 14 ампер

Просто введите требуемые значения и в конкретную формулу, чтобы получить значение, или вы можете сделать это простым способом, используя наш онлайн-калькулятор ватт-ампер .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *