Автоматические регуляторы температуры в системах отопления: Страница не найдена — Инженерные системы

Содержание

Страница не найдена — Инженерные системы

Дом

Содержание1 Схема отопления двухэтажного дома — 3 варианта подключения отопительной сети1.1 Какая лучше схема

Системы

Содержание1 Норма температуры батарей в квартире в 2019 году1.1 Температурные нормы системы отопления в

Системы

Содержание1 Теплоноситель для системы отопления загородного дома: критерии выбора1.1 Теплоноситель для системы отопления загородного

Системы

Содержание1 Как устранить или выгнать воздух из системы отопления1.1 Причины появления в магистралях1.2 Способы

Системы

Содержание1 Циркуляционный насос для отопления дома: как выбрать1.1 Основные типы и назначение насосов1.2 Как

Дом

Содержание1 Сравнение пеллет отопления с газом/дровами/углем и другими видами1.1 2. Дрова1.2 3. Сжиженный газ1.3

Страница не найдена — Инженерные системы

Дом

Содержание1 Схема отопления двухэтажного дома — 3 варианта подключения отопительной сети1.1 Какая лучше схема

Системы

Содержание1 Норма температуры батарей в квартире в 2019 году1.1 Температурные нормы системы отопления в

Системы

Содержание1 Теплоноситель для системы отопления загородного дома: критерии выбора1.1 Теплоноситель для системы отопления загородного

Системы

Содержание1 Как устранить или выгнать воздух из системы отопления1.1 Причины появления в магистралях1.2 Способы

Системы

Содержание1 Циркуляционный насос для отопления дома: как выбрать1.1 Основные типы и назначение насосов1.2 Как

Дом

Содержание1 Сравнение пеллет отопления с газом/дровами/углем и другими видами1.1 2. Дрова1.2 3. Сжиженный газ1.3

Страница не найдена — Инженерные системы

Дом

Содержание1 Схема отопления двухэтажного дома — 3 варианта подключения отопительной сети1.1 Какая лучше схема

Системы

Содержание1 Норма температуры батарей в квартире в 2019 году1.1 Температурные нормы системы отопления в

Системы

Содержание1 Теплоноситель для системы отопления загородного дома: критерии выбора1.1 Теплоноситель для системы отопления загородного

Системы

Содержание1 Как устранить или выгнать воздух из системы отопления1.1 Причины появления в магистралях1.2 Способы

Системы

Содержание1 Циркуляционный насос для отопления дома: как выбрать1.1 Основные типы и назначение насосов1.2 Как

Дом

Содержание1 Сравнение пеллет отопления с газом/дровами/углем и другими видами1.1 2. Дрова1.2 3. Сжиженный газ1.3

устройство и конструкция, принцип действия, сфера применения автоматического терморегулятора для радиаторов

Поддержание оптимальной температуры в помещение – это и есть благотворный микроклимат, к которому сегодня многие стремятся. Отсутствие перепадов от жары, когда хочется открыть окно, к прохладе и желанию укутаться в плед обеспечивает регулятор температуры прямого действия.

Назначение регулятора прямого действия

Это устройство относится к трубопроводной арматуре, основной задачей которой является постоянная автоматическая поддержка заданных параметров температуры воды. Особенность прибора в том, что ему не требуется дополнительный источник питания. Автоматический регулятор температуры использует для работы энергию, которая вырабатывается во время расширения рабочей среды в условиях замкнутого пространства.

Основная сфера применения термостата прямого действия в системах, где требуется обеспечение равномерного нагрева воды и поддержания ее в заданных температурных параметрах. Как правило, это система горячего водоснабжения, где необходимо управление расходом нагретого теплоносителя в зависимости от того, сколько его нужно в условиях постоянного изменения потребности в нем.

Среди основных достоинств устройства:

  • доступная цена;
  • простая схема прибора;
  • высокая надежность;
  • легкая настройка параметров;
  • не нуждается в дополнительном источнике питания.

Кроме плюсов, автоматические регуляторы температуры в системах отопления имеют ряд минусов:

  • Им требуется теплоноситель хорошего качества.
  • Все настройки производятся вручную, что неудобно, если в помещении в течение суток происходят существенные изменения температурных параметров.
  • Приборы с выносным датчиком ограничены длиной связывающей их трубки.
  • Ограниченный диапазон параметров.
  • Не всегда обеспечивается точность настройки.

Как правило, в советские времена именно такие устройства, только большего размера, предохраняли потребителей от того, чтобы в их краны с горячей водой не попадал опасный для жизни кипяток. Сегодня автоматический терморегулятор для радиатора берет на себя контроль над безопасностью теплоснабжения и поддержания микроклимата в помещении.

Устройство прибора

Регулятор прямого действия имеет достаточно простую конструкцию, состоящую из трех элементов:

  • Температурный датчик представляет собой колбу, внутри которой находится жидкостная или газообразная рабочая среда. Под воздействием разницы температур содержимое датчика способно расширяться или сужаться. В продаже можно встретить устройства с накладным, погружным или встроенным датчиком. В первом случае он крепится прямо на трубу отопительного контура и не требует особых усилий при монтаже. У погружных датчиков более сложная установка, так как они встраиваются вовнутрь трубы, для чего требуются сварочные работы. Встроенный датчик соединен с корпусом устройства и не нуждается в отдельном монтаже.
  • Термостатический элемент – это сильфон, в котором содержится та же рабочая среда, что и в температурном датчике.
  • В обязанности клапана терморегулятора входит открывать и закрывать путь теплоносителю по мере нагрева воздуха в помещении.

Как правило, эти проборы настолько же просты в исполнении, как и в монтаже. Выбор модели напрямую зависит от отопительной системы и места расположения радиаторов.

Как работает автоматический регулятор температуры

В основе работы данного типа устройств лежит физический закон расширения жидкостей и газов под воздействием высоких температур, и их сжатия при охлаждении.

Рабочая среда, которая находится в колбе температурного датчика и в сильфоне, очень чувствительна к изменениям нагрева либо воздуха, либо теплоносителя в отопительной системе. В качестве наполнителя используется парафин, газ, жидкость или природная газожидкостная смесь.

Когда нагрев воды или воздуха повышается, среда внутри температурного датчика расширяется, идет по импульсной трубке к сильфону, содержимое которого так же увеличивается в объеме. Этот процесс изменяет давление, которое вынуждает сильфон растягиваться и давить на шток, который, в свою очередь, меняет положение клапана и закрывает доступ теплоносителя в радиатор.

Когда батарея остывает, а заодно вместе с ней и воздух в комнате, происходит обратная работа. В этом весь рабочий процесс регулятора прямого действия.

Установка и настройка устройства

Обычно, регулятор температуры горячей воды прямого действия легко монтируется, если только он не с погружным датчиком. Достаточно следовать инструкции, которая к нему прилагается:

  • Монтировать устройство нужно исключительно на горизонтальной трубе так, чтобы термопривод «смотрел» вниз.
  • Необходимо оставить 5 см до и 10 см после регулятора прямого участка трубы. Это позволит сохранить пропускную способность устройства.
  • Нельзя монтировать регулятор температуры возле изгибов трубы.
  • Для сохранности устройства перед ним рекомендуется поставить сетчатый фильтр, который будет очищать теплоноситель от взвесей.

После того, как прибор установлен и проверен на герметичность с отопительной системой, можно приступать к его настройке.

На температурном датчике есть шкала и настроечная ручка, поэтому достаточно провернуть ее до нужного показателя температуры, чтобы прибор начал свою работу. Проверить правильность установки и реакцию на изменения температуры воды можно, подавая ее то горячей, то охлажденной.

Устанавливая автоматический регулятор температуры, следует помнить, что выставленные на шкале датчика параметры могут не соответствовать реальному нагреву теплоносителя. Поэтому рекомендуется проверять нагрев батарей специальным инфракрасным термометром и в случае большого отклонения, корректировать прибор.

Заключение

Когда требуется недорогое, но надежное устройство, которое будет «следить» за качеством обогрева помещения и работы радиаторов, регулятор температуры прямого действия подойдет как нельзя лучше. Его можно монтировать самостоятельно, он не требует ухода за собой, прост в настройках и способен сохранять необходимый микроклимат в помещении.

Автоматические регуляторы температуры в системах отопления – Tokzamer

Системы автоматического регулирования

Выбираете энергоэффективные решения?

Обратите внимание на геотермальные тепловые насосы FORUMHOUSE

Геотермальный тепловой насос EU (старт/стоп)

Геотермальный тепловой насос IQ (псевдоинвертор)

Геотермальный тепловой насос IQ (инвертор)

Даже в достаточно «теплых» регионах нашей страны отопительный сезон составляет не менее семи месяцев, а где и все девять, и залог комфортного проживания в квартире или доме — эффективная система отопления. И в это понятие входит не только надежность оборудования и его достаточная мощность, но и экономичность, а этот параметр в большой степени зависит от управления отоплением. Сравнительно недавно не было альтернативы ручному управлению и регулированию, сегодня же активно применяются системы автоматического регулирования, что гораздо удобнее и выгоднее. В этой части курса Академии FORUMHOUSE при помощи специалиста компании REHAU, рассмотрим:

  • Преимущества автоматического управления отопительными системами
  • Функционал и компоновка автоматических систем управления
  • Особенности систем управляющей автоматики

Преимущества автоматического управления отопительными системами

Современные отопительные системы преимущественно панельного, либо панельно-лучистого типа. Это радиаторы, комбинация теплого водяного пола с радиаторами или только теплый пол. Настроить и поддерживать желаемые параметры отопления можно вручную – с помощью встроенных насосно-смесительных узлов. Особенно, если напольный подогрев частичный. Ручная регулировка по собственным ощущениям температуры в помещениях и степени нагрева отопительных элементов обеспечивает нормальную работу системы. Но полностью раскрыть ее потенциал такой способ управления не способен. Необходимо учитывать и высокую тепловую инерционность теплого пола, из-за которой выход на заданный режим происходит медленнее, чем в радиаторных системах, что дополнительно снижает удобство ручной балансировки.

Тогда как автоматическая настройка и управление обладает рядом преимуществ.

Автоматические системы управления отоплением (охлаждением) обеспечивают точную настройку рабочих параметров с учетом потребностей владельцев и поддержание заданного режима в течение всего периода использования. Они позволяют полностью задействовать функционал оборудования, повысить уровень комфорта и значительно сократить затраты на отопление. По сравнению с ручной настройкой экономия составит до 20%.

Еще одним достоинством автоматики является защита напольных покрытий – система не допустит повышения температуры теплоносителя выше ограничения. Превышение рекомендованной температуры на поверхности пола может вызвать порчу напольного покрытия. Контролируя работу системы напольного обогрева можно не только создать комфортные условия, но и надолго сохранить отличное состояние отделочных материалов.

Функционал и компоновка автоматических систем управления

Автоматическая регулировка в контурах осуществляется посредством повышения или снижения интенсивности работы отопительного оборудования, что позволяет оптимизировать энергопотребление. Помимо повышения энергоэффективности подобные системы предоставляют повышенный комфорт для пользователей.

Базовая система компонуется всего несколькими элементами.

  • Комнатный терморегулятор – контроль и поддержание температуры.
  • Клеммная колодка – коммутация системы.
  • Сервопривод – управление регулирующими клапанами.

Подключение к терморегулятору выносного датчика температуры позволяет контролировать температуру пола или строительной конструкции. Также выносной датчик температуры может использоваться в качестве замены встроенного датчика температуры воздуха.

Внутри большинства терморегуляторов установлен датчик температуры. При отклонении от заданного значения температуры, терморегулятор формирует сигнал на исполнительный механизм (сервопривод). Исходя из пожеланий, пользователь может выбрать терморегулятор не только с базовыми функциями (управление обогревом), но и с расширенными: управление также и охлаждением, переключение режимов работы по таймеру. По желанию в разных помещениях могут быть установлены разные модификации терморегуляторов. При необходимости систему можно дополнительно упростить – соединить терморегуляторы с сервоприводами (до пяти) напрямую, без использования клеммной колодки.

Базовая система оптимальна для применения в квартирах или частных домах. Она эффективно контролирует отопление (охлаждение) и адаптирует режим под запросы домочадцев.

Если же речь идет не только об отоплении, но и о другом климатическом оборудовании (кондиционирование, вентиляция, осушение/увлажнение), для комплексного контроля выпускается специализированная система автоматики.

Элементы системы климатического контроля в помещении взаимодействуют по тому же принципу, что и в системе автоматического управления отоплением (охлаждением). С той разницей, что вычислительные процессы, позволяющие оптимизировать работу подключенного оборудования, происходят не в терморегуляторе, а в базовой станции. А компоновка системы помимо стандартного оборудования включает также модули расширения.

Для большинства частных домов и коттеджей достаточно системы с одной базовой станцией, которая рассчитана на управление температурно-влажностным режимом в восьми помещениях. Но при необходимости управления климатом в большем количестве комнат можно объединить до пяти базовых станций.

Особенности систем управляющей автоматики

Наряду с проводными системами управляющей автоматики, элементы которых соединяются кабелем, также существуют системы с беспроводными соединениями. Их установка не требует штрабления стен, что особенно актуально, если монтаж выполняется в доме с уже готовой чистовой отделкой. Независимо от вида систем, все оборудование характеризуется привлекательным дизайном, а интерфейс терморегуляторов интуитивно понятен.

Удаленный доступ осуществляется посредством подключения системы к сети «Интернет», с использованием браузеров или мобильного приложения, что значительно расширяет возможности пользователей. Контролировать температурный режим или климат в помещении в целом, можно из любой точки мира и в любое время. Мониторинг в режиме реального времени позволяет поддерживать оптимальные параметры инженерных систем в отсутствие владельцев и подготавливать дом к их возвращению.

Системы автоматического управления отоплением и охлаждением удобны, практичны и экономичны. Круглый год в доме будет поддерживаться оптимальный микроклимат, не требующий постоянной ручной регулировки. С управляющей автоматикой даже резкое похолодание в отсутствии хозяев не влечет последствий в виде выстывшего дома или повреждений систем отопления.

Как выбрать регулятор температуры воды в системе отопления

Электронные или механические регуляторы температуры воды в системе отопления позволяют существенно повысить комфорт проживания в частном доме, сокращая расходы домовладельца на обогрев помещения. Используемая автоматика отличается универсальностью, подходит для теплового оборудования различного типа, позволяет в автономном режиме корректировать работу котлов, поддерживая температуру в помещении.

  • 1. Основное назначение и принцип работы
  • 2. Виды терморегуляторов
  • 3. Жидкостные и газонаполненные термостаты
  • 4. Монтаж автоматических регуляторов
  • 5. Способы настройки механических клапанов

Температурный регулятор отопления представляет собой простейшее устройство, которое в зависимости от интенсивности нагрева воды в контуре или воздуха в помещении могут перекрывать ток жидкости в радиаторе отопления. Наличие таких механических и электрических клапанов позволяет автоматизировать работу отопительного оборудования.

С помощью регуляторов отопления поддерживают оптимальную температуру в различных комнатах. Например, в спальне можно установить термостат на уровне 16−18 градусов, на кухне — 20−22, в детской — 24−25, а в ванной комнате — 26−28 градусов. Автоматические регуляторы позволяют упростить отопление помещения, при этом имеется возможность тонкой настройки работы модуля управления, который будет отвечать за создание оптимального микроклимата в помещении.

Наличие терморегулятора позволяет решить следующие проблемы:

  1. 1. В помещении создается оптимальный температурный режим.
  2. 2. Уменьшается расход тепловой электроэнергии.
  3. 3. Имеется возможность аварийного отключения батареи без обесточивания всего стояка.
  4. 4. С одинаковым успехом такие регуляторы могут использоваться в квартирах в многоэтажках, так и в частных домах, где работают автономные отопительные установки.

Принцип работы регуляторов чрезвычайно прост. В механических устройствах внутри корпуса располагается термоактивная жидкость или газ. В зависимости от положения рычага термостата активное вещество в регуляторе будет перекрывать поток теплоносителя, изменяя тем самым интенсивность нагрева радиатора.

В автоматических устройствах встроены различные механические датчики, которые следят за температурой и при необходимости изменяют положение задвижки в трубе, уменьшая или увеличивая количество попадающего в радиатор теплоносителя. Электрорегулятор температуры отопления способен управлять не только батареями, но и контролирует смесители, насосы, котлы.

В автономных системах используются различные типы терморегуляторов, которые отличаются своей конструкцией и принципом работы. Распространение получили три вида устройств:

  • механические;
  • электронные;
  • полуавтоматические.

Простейшие механические терморегуляторы отличаются надежной конструкцией, позволяя выполнять ручную настройку количества подаваемого внутрь батареи теплоносителя. К преимуществам этого типа приборов можно отнести их простоту, доступную стоимость, четкость и легкость настройки. Они полностью энергонезависимы, поэтому для работы таких устройств не требуется дополнительное подключение к электричеству или использование различных небольших батареек. К недостаткам механических терморегуляторов принято относить отсутствие разметки, поэтому настройку агрегата выполняют исключительно опытным путем.

Электронные термостаты отличаются сложной конструкцией, включают программируемый микропроцессор, который анализирует данные от многочисленных датчиков, посылая сигналы исполнительным устройствам на открытие или закрытие радиаторов, что позволяет оперативно изменять температуру в помещении.

Электронные терморегуляторы в системах отопления принято разделять на два типа:

  1. 1. Закрытые модели не способны автоматически определять температуру, поэтому требуется их ручная настройка. После завершения регулировки устройство будет в автономном режиме поддерживать микроклимат в помещении.
  2. 2. Открытые автоматические регуляторы температуры в системах отопления отличаются расширенной логикой. Имеется возможность тонкой настройки термостата, в том числе установка таймера, порога срабатывания устройства на минимальную и максимальную температуру.

Полуавтоматические модели сочетают преимущества электронных и механических терморегуляторов. Они имеют доступную стоимость, поэтому идеально подходят для применения в бытовых целях. Наличие у полуэлектрического регулятора небольшого цифрового дисплея позволяет существенно упростить их настройку и последующее использование.

В качестве термостатического элемента у регулятора может использоваться вещество в жидком или газообразном состоянии. Соответственно, все устройства принято делить на жидкостные и газонаполненные. Каждый из таких типов регуляторов имеет свои преимущества и недостатки.

Газонаполненные регуляторы отличаются длительным сроком службы, при этом они обеспечивают максимально возможную точность работы. Благодаря использованию газообразного термостатического элемента достигается четкая и плавная регулировка температуры нагрева радиаторов. У электромеханических приборов в комплекте поставки имеются датчики, определяющие температуру воздуха в помещении, что обеспечивает максимальную точность управления системой отопления.

Из преимуществ жидкостных моделей отмечают их высокую точность при передаче давления на внутренние подвижные механизмы. Такие регуляторы обеспечивают максимально точную работу радиаторов отопления в соответствии с заданной предварительно программой. В зависимости от своей модификации жидкостные регуляторы могут иметь дистанционные и встроенные датчики. Приборы, оснащенные внутренним блоком для измерения температуры, устанавливают строго горизонтально.

Регуляторы с дистанционными датчиками могут использоваться в следующих случаях:

  • радиаторы установлены в нише;
  • термостат расположен в вертикальном положении;
  • батарея закрыта плотными воздухонепроницаемыми шторами.

Во всех случаях встроенный в прибор внутренний датчик работает некорректно, поэтому для правильного определения температуры воздуха в помещении используются выносные термометры. В последующем передача данных осуществляется по небольшому кабелю или беспроводной связи.

Установка термостата не представляет особой сложности, поэтому всю работу можно выполнить самостоятельно, не обращаясь к профессиональным сантехникам. В то же время необходимо в обязательном порядке изучить инструкцию к конкретной модели регулятора, где будут подробно расписаны действия при установке устройства.

При монтаже автоматического регулятора отопления необходимо слить из батареи всю воду, для чего потребуется запирающий шаровой кран. После слива воды с батареи откручивают клапан, предварительно перекрыв все краны.

На радиаторе меняют адаптер. Для его снятия потребуется два разводных ключа, которыми фиксируют и откручивают гайки на подающей трубе и батарее. После замены адаптера аналогичную процедуру следует выполнить с воротником на радиаторе.

Непосредственно к установленному новому воротнику крепят терморегулятор. На корпусе термостата имеются соответствующие стрелки, позволяющие правильно смонтировать прибор, клапан которого фиксируется разводным ключом, после чего затягивают герметично гайку с дополнительной гидроизоляцией паклей и аналогичными материалами.

Всё что останется сделать, это открыть вентиль, полностью заполнить батарею водой, убедиться в отсутствии протечек, после чего можно приступать к настройке регулятора.

Если с настройкой полностью автоматических устройств не возникает каких-либо сложностей, то правильно отрегулировать работу механических клапанов бывает затруднительно. Необходимо измерять не только температуру теплоносителя, но и воздуха в помещении. В комнате закрывают все двери и окна, что позволяет свести теплопотери к минимуму.

Измеряют температуру воздуха в помещении, записывают полученные данные, после чего до упора отворачивают клапан термостата. Теплоноситель заполнит батарею полностью, а показатель теплоотдачи у прибора будет максимальным. Через час выполняют повторное измерение температуры и сравнивают ее с предварительными данными.

Головку регулятора до упора поворачивают в обратную сторону. Как только температура воздуха в комнате достигнет оптимальных значений, клапан вновь открывают до тех пор, пока из батареи не будет слышен шум текущей воды, а сам радиатор не начнет быстро нагреваться. В этот момент вращение регулятора прекращают, фиксируя зажимом его положение.

Алгоритм действий при установке терморегуляторов может существенно различаться, поэтому перед началом монтажа прибора следует ознакомиться с инструкцией.

В конструкции регуляторов отопления имеются хрупкие детали, которые можно повредить при неосторожном обращении, поэтому во время монтажа следует соблюдать внимательность, действуя предельно аккуратно, не пережимая газовыми ключами и другими фиксаторами пластиковые элементы термостата.

Устанавливать клапан необходимо таким образом, чтобы после фиксации термостат имел горизонтальное положение. В противном случае в регулятор будет поступать теплый воздух от батареи, что может отрицательно сказаться на точности его работы.

При установке термостата на однотрубные радиаторы возможен дополнительный монтаж байпаса в патрубок, что позволяет существенно упростить последующую эксплуатацию системы отопления.

На корпусе регулятора будут указаны стрелки, показывающие направление воды на входе в радиатор отопления. При установке теплоклапанов следует учитывать направление движения теплоносителя.

При использовании электрических термостатов выносные датчики должны располагаться на удалении от клапанов 2−8 см. Это позволит обеспечить необходимую точность измерений, оптимизируя работу всей системы отопления в доме.

Использование регуляторов температуры в системах отопления позволяет повысить эффективность обогрева помещения, создает оптимальные условия в каждой из комнат, сокращает расходы домовладельца на оплату коммунальных услуг. В настоящее время в продаже можно найти механические, полуавтоматические и автоматические термостаты, отличающиеся своим принципом работы. Наибольшее распространение получили полуавтоматы, которые сочетают функциональность и удобство использования. Все монтажные работы можно провести самостоятельно, что позволит сэкономить на услугах профессиональных сантехников.

Терморегулятор для радиатора отопления – принцип работы, технические характеристики, типы, как выбрать и установить

В отопительный сезон зачастую батареи в квартирах греют так, что приходится постоянно открывать форточки. При этом жильцам становится более комфортно, но по сути они отапливают улицу за свой счет. Терморегулятор для радиатора отопления поможет улучшить температурный режим в помещении, а также снизить расходы на обогрев, если счета за отопление выставляются по приборам учета.

В рамках государственной программы “Энергосбережение” установка регулирующей трубопроводной арматуры является неотъемлемой частью индивидуального и массового строительства. Терморегуляторы могут использоваться как в одно-, так и в двухтрубных системах отопления в домах любой этажности, возраста и назначения.

Единственное ограничение — чугунные батареи. Они обладают тепловой инерцией — долго разогреваются и остывают. Поэтому терморегулятор не может работать так же эффективно, как на биметаллических или стальных отопительных приборах.

Предназначение терморегулятора для радиатора отопления

В частных домах с индивидуальной котельной можно увеличить или уменьшить температуру теплоносителя по своему усмотрению. В квартирах с центральным отоплением данное действие к сожалению невозможно. В системе циркулирует нагретый теплоноситель, температура которого практически не зависит от желания жильцов. Это нормативная величина, ее обеспечивают ТЭЦ и бойлерные, обслуживающие несколько домов или кварталов.

Какие радиаторы отопления лучше ставить в квартире – на какие аспекты обращаем внимание во время выбора, ТОП – 17 батарей.

Тепловое оборудование не может чутко реагировать на температурные колебания на улице, поэтому при оттепелях или раннем приходе весны возможен перегрев помещений. Это неблагоприятно отражается на самочувствии жильцов, а также приводит к перерасходу недешевых энергоносителей.

Но сделать температуру воздуха в комнате комфортной и поддерживать ее в стабильном состоянии, несмотря на изменения погоды, вполне реально.

Для этого на радиаторы устанавливаются терморегуляторы, с помощью которых можно задать необходимую теплоотдачу каждого отопительного прибора или целых групп батарей.

По нормативам СанПиН 2.1.2.2645-10 комфортными считаются температуры:

  • в жилых комнатах — 20-22°С;
  • на кухне — 19-21°С;
  • в ванной и совмещенном санузле — 22-24°С.

Установка необходимого уровня обогрева с помощью терморегулятора — наиболее простой способ поддерживать заданный температурный режим в каждом помещении. А благодаря автономной настройке сделать это можно не вмешиваясь в работу всей отопительной системы.

Принцип работы

Терморегулятор для радиатора отопления — трубопроводная арматура, которая может изменять количество проходящего через просвет трубы теплоносителя, обеспечивая нужную тепловую мощность. При этом увеличить теплоотдачу он не способен, только уменьшить. Если батареи греют плохо, то смысл производить установку терморегулятора нет.

Температурные регуляторы устанавливаются, как правило, на подачу. Режим выставляется в зависимости от желаемой температуры воздуха. Регулировка производится механическим поворотом ручки с градуированной шкалой или при помощи программного блока.

При нагревании терморегулятора выше заданного регистра происходит срабатывание чувствительного температурного клапана. Подача теплоносителя снижается, и радиатор остывает. При обратном процессе, когда температура упала ниже установленной нормы, клапан открывается. Теплоноситель начинает поступать в батарею более интенсивно, воздух в помещении нагревается. Таким образом, постоянные комфортные условия поддерживается практически без участия человека.

Технические характеристики

Для терморегуляторов, не использующих электроэнергию, разработан нормативный документ — ГОСТ 30815-2002. Он устанавливает предельные характеристики с учетом номинальных параметров сетей отопления, принятых на территории нашей страны:

  • максимальная температура теплоносителя — 120°С;
  • избыточное давление — 1,0 МПа;
  • температура воздуха в помещении — 5-45°С;
  • влажность — 30-80%;
  • время срабатывания — не более 40 мин.

Направление потока теплоносителя в термостате радиатора отопления обозначается на корпусе. Обратная установка не допускается.

Термостат – это прибор, позволяющий поддерживать температуру в заданных параметрах за счет использования терморегулятора. Устройство применяется в холодильниках, отопительных приборах и пр.

Терморегулятор должен отвечать требованиям надежности:

  • при опрессовке выдерживать давление не менее 1,5 МПа без утечек;
  • допускать замену штока без спуска теплоносителя из системы;
  • терморегулятор должен не трескаться и не раскалываться при изгибающих нагрузках на корпус.

Рукоятка должна быть прочной, уплотнение штока герметичным. Чтобы регулировка производилась без больших усилий, при вращении ручки крутящий момент не должен превышать 2,0 Нм.

В технической документации на свою продукцию изготовитель обязан указать:

  1. Диапазон настройки;
  2. Минимальное давление теплоносителя в системе;
  3. Минимальный перепад давления на клапане;
  4. Номинальный поток;
  5. Гидравлические характеристики клапана;
  6. Функции защитного колпачка.

В случае, когда терморегулятор предусматривает предварительную настройку, должна указываться индикация и соответствующая ей величина потока.

Материалы для изготовления терморегуляторов

Поверхности, которые соприкасаются с нагретым теплоносителем, испытывают большие разрушающие нагрузки. Они изготавливаются из устойчивых к коррозии сплавов — бронзы или латуни.

Уплотнительные элементы терморегуляторов производятся из фторопластов, выдерживающих нагрев без деформаций. Рукоятки — из полиамида, полипропилена, полистирола. Внутри должны предусматриваться стальные закладные детали для прочного соединения со шпинделем. ГОСТ разрешает применение и других материалов, характеристики которых отвечают необходимым требованиям по надежности и долговечности.

Конструкция терморегулятора для батареи отопления

Терморегулятор на батарею представляет собой двухходовой регулирующий клапан. Его преимущество перед обычным шаровым краном — возможность не только перекрывать движение теплоносителя по трубе, но и плавно изменять его интенсивность. В конструкции предусмотрено 2 части:

  • съемная термостатическая головка;
  • термоклапан, который устанавливается непосредственно в просвет трубы.

Термостатическая головка — это герметичный цилиндр с пластиковой рукояткой и встроенным сильфоном — упругой оболочкой, наполненной рабочим веществом. Таким веществом может выступать жидкость или газ с высоким температурным расширением — ацетон, толуол, газоконденсат. Они чрезвычайно чувствительны к нагреву, реагируя резким увеличением объема.

Термоголовки производятся съемными. Поэтому их можно устанавливать вместе с различными клапанами, которые подходят для конкретной отопительной системы. В качестве теплоносителя должны использоваться незамерзающие жидкости или специально очищенная вода, поскольку устройства чрезвычайно чувствительны к загрязнению.

Типы регуляторов температуры

Согласно ГОСТ 30815-2002 терморегуляторы классифицируются на 4 группы:

  • встроенный датчик и регулятор температуры;
  • встроенный только регулятор, а датчик дистанционный;
  • дистанционный и регулятор, и датчик;
  • регулятор расположен отдельно, датчик дистанционный.

Преимущества встроенных датчиков — компактность, простая установка. Недостаток — влияние на эффективность работы окружающих предметов. Если датчик на трубе отопления стоит вертикально, или рядом висит плотная штора, чувствительный элемент быстро разогревается, и клапан срабатывает раньше времени.

Также датчик может некорректно функционировать, если вместе с радиатором он расположен в нише или вблизи подоконника. Как правильно подключить терморегулятор со встроенным датчиком всегда указывается в инструкции производятеля, которой нужно строго придерживаться.

Дистанционные датчики не испытывают непосредственного воздействия радиатора, что приводит к более точному поддержанию установленного режима. Закрепить радиаторный термодатчик можно на расстояние до 8-10 м для измерения градусов в любой точке помещения. Соединяется он с термоклапаном капиллярной трубкой, которая передает подвижному штоку давление от чувствительного элемента датчика.

Термоклапан: устройство, виды, способы установки

Термоклапан — это исполнительный механизм, работа которого осуществляется от воздействия с термостатической головки. По конструкции он бывает угловой, проходной и трехосевой правый или левый. Для изготовления используется латунь или бронза. Для дополнительной защиты от коррозии применяется хромирование или никелирование. Снаружи запорный вентиль может быть покрыт эмалью, что придает ему более эстетичный и благородный вид.

Для однотрубных и двухтрубных систем выпускаются разные клапана. Они различаются гидравлическими характеристиками, поскольку для одноконтурных трубопроводов требуется арматура повышенного проходного сечения.

Для однотрубного отопления, которое постепенно заменяются более экономичным и комфортным двухтрубным, ассортимент термоклапанов совсем небольшой, всего около 2-3 моделей. Основной объем продаж — 97-99% — это арматура для двухтрубных систем отопления.

Термоголовка: виды, способы регулировки, преимущества и недостатки

Главная функция термоголовки — считывать информацию о температуре окружающей среды и регулировать работу термоклапана. За первую часть задачи отвечает термодатчик, вторая решается разными способами.

Помощь в выборе

Отопительный прибор (например, радиатор) системы водяного отопления должен подавать в помещение тепло в строгом соответствии с текущей потребностью. Зимой требуемый уровень тепла выше, весной – ниже, поэтому температура теплоносителя в системе отопления должна меняться.

Регулирование температуры должна осуществлять автоматика индивидуального генератора тепла (котла), который является источником тепловой энергии в доме.

Однако не все котлы оснащаются подобными устройствами: часто автоматика лишь поддерживает температуру воды на постоянном уровне, либо отсутствует вовсе. В результате в помещениях становится то жарко, то холодно. Даже если регулирование на котле все-таки есть, нередко бывает сложно добиться баланса: теневая сторона дома холоднее, солнечная – теплее, поэтому приходится открывать форточки и выпускать уже оплаченное потребителем тепло наружу. Как лучше поступить в данной ситуации?

На радиаторах можно установить вентили или шаровые краны. С их помощью легко уменьшается подача горячей воды в приборы отопления. Сложно представить, чтобы у радиатора постоянно будет дежурить человек и закрывать кран, когда выйдет солнце, затопят камин или придут гости, а потом вновь открывать его, когда станет холоднее.

Такую работу берет на себя автоматический радиаторный терморегулятор. Устройство не только помогает поддерживать постоянную комфортную температуру в помещении без участия человека, но и экономит тепло и деньги на его оплату: счета становятся на 20% ниже. Для отопления используется «бесплатное» солнечное тепло, теплопоступления от людей, электроприборов и т.д. Кроме того, воздух вокруг вашего дома станет чище за счет сокращения выбросов дымовых газов от сжигания лишнего топлива.

Строительные нормы не случайно предписывают установку регулирующих устройств перед отопительными приборами, а в жилых зданиях – именно автоматических радиаторных терморегуляторов.

Устройство и принцип работы радиаторного терморегулятора

Радиаторный терморегулятор состоит из двух основных частей: термостатической головки (термоголовки) и регулирующего клапана.

Регулирующий клапан устанавливается на входе теплоносителя в радиатор. Под воздействием термоголовки он изменяет количество горячей воды, проходящей через прибор.

Термоголовка – главный элемент автоматического регулирования. С помощью соединительной гайки она закрепляется на регулирующем клапане и, реагируя на отклонения температуры воздуха в помещении от заданного значения, перемещает затвор регулирующего клапана.

Внутри термоголовки находится гофрированная, заполненная термочувствительной жидкостью емкость (сильфон), иногда в сочетании с ее парами. Через настроечную пружину сильфон связан с нажимным штоком, а тот в свою очередь – со штоком и затвором регулирующего клапана.

Когда температура воздуха в помещении становится выше заданного значения, жидкость в сильфоне расширяется, он сжимается и перемещает шток и затвор клапана в сторону уменьшения протока воды. Радиатор остывает, температура в помещении снижается. При падении температуры на улице происходит обратный процесс: жидкость уменьшается в объеме, сильфон растягивается, высвобождая шток клапана, который под воздействием возвратной пружины поднимается. Проток воды через радиатор увеличивается и, вслед за этим, температура в помещении восстанавливается.

Изменяя силу сжатия настроечной пружины простым поворотом рукоятки термоголовки, можно установить любую желаемую температуру. Терморегулятор будет поддерживать ее без вашего участия. Для этого на корпусе термоголовки нанесена шкала, цифры которой соответствуют температуре настройки.

Как видно, диапазон настройки температуры широк и, в зависимости от типа термоголовки, составляет от 2 до 29 о С. Однако следует помнить, что если радиатор изначально рассчитан на поддержание 22 о С, то терморегулятор в любом случае не сможет обеспечить более высокую температуру. Для этого радиатор должен иметь определенный запас.

При необходимости диапазон настройки может быть ограничен с обеих сторон – для этого в комплекте поставляются специальные штифты.

Термоголовки бывают трех разновидностей: со встроенным температурным датчиком, с выносным датчиком и головка дистанционного управления.

  • Первый тип применяется, когда радиатор располагается открыто под окном, и воздух помещения свободно омывает термочувствительный элемент термоголовки.
  • Если радиатор завешен глухими шторами или заставлен мебелью, температура вокруг обычной термоголовки будет выше, чем в помещении – регулятор может работать некорректно. В этом случае используется термоголовка с выносным датчиком, который должен располагаться на свободной стене примерно на высоте 1,5 м от пола, а сама головка – на клапане терморегулятора.
  • Термоголовка дистанционного управления представляет собой обычную головку, размещаемую на стене по тому же принципу, что и выносной датчик. Она связана с клапаном терморегулятора через капиллярную трубку гидропривода. Такая термоголовка применяется для удаленного управления температурой в помещении, когда доступа к радиатору и клапану терморегулятора нет вовсе.

Регулирующий клапан – исполнительное устройство терморегулятора, которое устанавливается на входе теплоносителя в радиатор и изменяет количество горячей воды, проходящей через отопительный прибор.

Клапан терморегулятора нормально открытый нажимного действия (закрывается под воздействием термоголовки, открывается за счет возвратной пружины).

Правильный выбор радиатора и терморегулятора поможет поддерживать в вашем доме комфортную температуру и сделает жизнь удобней и проще.

Термостаты и терморегуляторы

Выберете интересующий вас тип:
  • Терморегуляторы для теплого пола
  • Электронные термостаты
  • Термостаты для котлов
  • Накладные термостаты
  • Беспроводные термостаты
  • WiFi терморегуляторы
  • Проводные комнатные термостаты
  • Терморегуляторы на батарею
  • Терморегуляторы в розетку
  • Механические термостаты
  • Регуляторы насосов
  • Терморегуляторы с выносным датчиком
  • Погружные термостаты
  • GSM термостаты
  • Цифровые термостаты
  • Сенсорные терморегуляторы
  • Встраиваемые термостаты
Воспользуйтесь фильтрами, что бы сделать ваш поиск более точным и быстрым:

Термостат и терморегулятор, регулятор температуры и теплорегулятор – это названия одного и того же устройства, задачей которого является удержание постоянной температуры, заданной пользователем. Терморегулятор для отопления имеет ключевую роль, ведь именно он обеспечивает возможность автономной работы отопительной системы. Также такие устройства часто используются в составе вентиляционных систем, в кондиционировании, в автомобильных двигателях и так далее.

Виды терморегуляторов для отопления.

Многообразие регуляторов температуры отопления и охлаждения не имеет границ. В нашем интернет-магазине Teploregulyator.ru Вы увидите большое разнообразие этих приборов регулирования.

Но принципиальное отличие у этих приборов регулирования все-таки существует. По принципу работы друг от друга их можно разделить на 2 вида – механические и электронные.

Среди первых распространение получили капиллярные и биметаллические термостаты. В первом случае управление температурой осуществляется за счет расширения жидкости при росте и сужении при падении температуры. Во втором случае вместо жидкости используется биметаллический диск.

Электронные термостаты для отопления классифицируются на электромеханические и полностью электрические. В первых используется все тот же принцип работы, что и в механических биметаллических терморегуляторах для радиаторов отопления или для других устройств. Однако они характеризуются повышенной точностью регулировки, и их не требуется сбрасывать вручную. Электронные приборы оценивают изменение внешней температуры при помощи датчиков.

Механические устройства.

Такие регуляторы температуры отопительных систем появились первыми, весьма активно используются по сей день. Управление осуществляется при помощи вращающегося колесика на фронтальной панели устройства. Во время вращения пользователь задает температуру, при которой происходит срабатывание прибора. Его плюсы:

  • высокая надежность – только механические детали;
  • устойчивость к резким перепадам напряжения тока;
  • работоспособность при очень низких температурах;
  • простое управление, с которым не надо разбираться;
  • продолжительный срок эксплуатации – до 30-40 лет.

К минусам механических комнатных термостатов относится низкая точность регулировки температуры и ограниченный функционал. Однако низкая цена, простота применения и надежность нивелируют эти недостатки.

Электромеханические приборы.

К этой категории относятся более точные и функциональные устройства по сравнению с сугубо механическими. Это обусловлено применением более совершенного способа отслеживания внешней температуры. Два подхода:

  • Биметаллическая пластина. При нагревании до определенной температуры пластина из двух металлов гибко деформируется настолько сильно, что размыкает контакты питания отопительного прибора. Когда температура падает до установленного пользователем значения, пластина вновь замыкает эти контакты.
  • Капиллярная трубка с газом. Приборы, основанные на расширении газа, часто устанавливаются в котлы, бойлеры, масляные обогреватели и прочие нагревательные устройства. Трубка с газом помещена в воду, которая разогревается под действием внешнего тепла. При заданном значении газ размыкает контакты.

Электромеханические термостаты для газовых котлов, для отопления и иных устройств хороши тем, что у них есть функция автоматического подключения подогрева при падении температуры ниже установленной. Также они отличаются высокой герметичностью, приемлемой точностью, небольшой ценой. Но электронные устройства все равно более точные.

Электронные термостаты для отопления.

Электронные комнатные термостаты стремительно набирают популярность за счет высокой точности, большой функциональности и безопасной эксплуатации. Конструкция таких терморегуляторов для отопления включает контроллер для управления контактами, электронный ключ и выносной термодатчик. Внешний датчик следит за температурой, отсылает сигналы контроллеру, он дает команды контактной группе в зависимости от настроек.

  • С закрытой логикой. Имеют только встроенные заводские режимы без возможности их редактирования.
  • С открытой логикой. Дают пользователю возможность создавать свои режимы и алгоритмы управления.

Электронные регуляторы температуры отопления помимо функциональности и точности имеют массу других не менее важных достоинств. Это эффективность, стильный внешний вид, большой диапазон регулировок. Минус – более высокая цена по сравнению с механическими и электромеханическими приборами. Но это оправдано.

Купить комнатный термостат для отопления.

Рекомендуем вам купить терморегулятор для отопления или купить термостат для газового котла, чтобы наладить домашнюю автоматизацию в рамках управления отопительной системой. Это подарит комфорт, обеспечит безопасность эксплуатации обогревателей, уменьшит расходы энергии на работу нагревательных устройств. Установка регулятора обязательно окупится. Лучший выбор – надежные электронные термостаты. В продаже представлен большой ассортимент таких приборов. Цена на регулятор температуры отопления разнообразна. В нашем интернет-магазине Teploregulyator . ru имеется большой выбор приборов для управления климатом от различных мировых производителей. Мы доставляем продукцию по всей России и странам ближнего зарубежья.

Купить регулятор включения насоса очень просто! Позвоните нам по телефону +7 (495) 665-29-20 получите консультацию в выборе продукции, а также помощь в оформлении заказа.

Влияние автоматических регуляторов на гидравлический режим систем водяного отопления

В статье исследуется влияние регулирующей арматуры в совокупности с циркуляционным насосом на распределение теплоносителя в системе отопления с помощью компьютерного моделирования. Дана оценка воздействию балансировочных клапанов и терморегуляторов на гидравлику системы отопления в целом и ее отдельных участков с учетом их конструктивных особенностей.

Современный рынок оборудования для систем отопления наполнен широким ассортиментом арматуры. В отечественной практике стали чаще использоваться балансировочные клапаны, терморегуляторы, узлы регулирования, регуляторы перепада давления и расхода различных конструкций. Встает вопрос о том, какую регулирующую арматуру необходимо устанавливать в системах отопления, в каком количестве и на каких участках.

Важным элементом, предназначенным для регулирования системы, а значит, и для достижения максимально комфортных условий для пребывания людей в помещении, является терморегулятор. Он позволяет не только обеспечить необходимое количество теплоты, отдаваемое отопительным прибором, но и воздействовать на всю систему отопления в целом, непроизвольно изменяя гидравлический режим ее работы.

Конечной целью расчета системы отопления и подбора оборудования для нее является обеспечение необходимого значения теплового потока от каждого отопительного прибора для компенсации теплопотерь помещений здания в целом и достижения комфортных условий для пребывания людей в здании на протяжении всего отопительного сезона. Для соблюдения этих условий применяются два метода. Первый заключается в максимально возможном увязывании колец системы диаметрами отдельных трубных участков системы и установки наименьшего количества регулирующей арматуры. Второй метод пришел в отечественную практику вместе с новыми видами арматуры из Западной Европы. Он заключается в установке наибольшего количества арматуры на стояках, в тепловых пунктах и на ответвлениях для увязки циркуляционных колец непосредственно самой арматурой.

Оба метода имеют свои преимущества и недостатки.

Для подбора терморегуляторов, регуляторов расхода и балансировочных клапанов в современной практике используется характеристика, называемая пропускной способностью. Ее определяют как объемный расход воды в м 3 /ч с плотностью 1000 кг/м 3 , проходящей через клапан при перепаде давления 10 5 Па (1 бар). Размерность его (м 3 /ч)/бар 0,5 или, пренебрегая физическим смыслом, в каталогах часто пишут просто – м 3 /ч.

За счет изменения kv на клапанах происходит изменение двух параметров: расхода теплоносителя через клапан G и перепада давления на клапане ∆P. Это влияет не только на гидравлику отдельных участков, но и на систему отопления в целом. Это важный фактор, который должен учитываться проектировщиками.

Клапан отопительного прибора способен автоматически изменять свою пропускную способность в зависимости от температуры воздуха в помещении за счет термостатической головки, датчиков внутреннего воздуха или же за счет ручного регулирования потребителем.

Важно также заметить, что необходим тщательный подбор термоклапанов у отопительных приборов, потому что зависимость их теплоотдачи от расхода теплоносителя нелинейная. Также и у клапанов. Они бывают различного конструктивного исполнения, и зависимость хода штока от пропускной способности имеет свои особенности. Сопоставляя эти две характеристики, мы получим общую характеристику регулируемого участка [1].

Однако изменения характеристик регулируемого участка может привести к разрегулировке всей системы. Под разрегулировкой будем понимать несоответствие расходов теплоносителя в отопительных приборах относительно расчетных или необходимых, вследствие чего произойдет недостаток или избыток теплоподачи в помещения.

В системе отопления факторами разрегулировки являются:

  • отключение ветвей, стояков, отопительных приборов и других элементов системы в связи с аварией или за ненадобностью;
  • изменение расчетного расхода теплоносителя в отопительном приборе с целью поддержания необходимой температуры или минимальной температуры помещения из-за временного его неиспользования;
  • изменения схемы или элементов системы отопления после реконструкции и ремонта.

Циркуляционный насос системы отопления тоже имеет различные изменяющиеся характеристики, которые должны учитываться при регулировке системы. В данном исследовании был применен стандартный (современный бесфундаментный) насос. Ошибочно убеждение современных проектировщиков в том, что для качественной и «беспроигрышной» увязки гидравлических колец необходимо подбирать циркуляционный насос с большим запасом по располагаемому давлению. Это приводит к неоправданно завышенным стоимости системы и расходу электроэнергии.

Современные конструкции насосов позволяют более экономно расходовать электроэнергию и более точно поддерживать заданное располагаемое давление и расход в системе (насосы с электрическим управлением). При увеличенных капитальных затратах на эти насосы можно выиграть в пониженных эксплуатационных затратах на электроэнергию.

Однако, ориентируясь на новые технологии, в ходе конструирования системы отопления необходимо комплексно подходить к возможным гидравлическим и, соответственно, тепловым разрегулировкам при эксплуатации системы.

На примере конкретных схем систем отопления рассмотрим достоинства и недостатки двух методов конструирования системы отопления, о которых говорилось ранее. Анализ схем проводился с помощью компьютерного моделирования.

Система отопления без применения балансировочного клапана

На рис. 1 приведена схема без применения балансировочного клапана.

Схемы системы отопления без применения балансировочных клапанов

1 – оборудование теплового пункта; 2 – циркуляционный насос; 3 – отопительный прибор;
4 – отключающий шаровой кран; 5 – термоклапан

Для начала был выполнен стандартный гидравлический расчет по методу удельных линейных потерь давления для подбора диаметров. Клапаны были подобраны по каталогам фирмы-производителя, после чего была задана их установочная характеристика (пропускная способность, перепад давления и положение установки). Затем методом гидравлического расчета по характеристикам сопротивления определены коэффициенты затекания в каждый стояк и в каждый прибор.

В первом случае из регулирующей арматуры имеются только клапаны у отопительных приборов. Для анализа системы отключим один прибор на верхнем этаже первого стояка. Характеристика сопротивления увеличится и на графике (рис. 2) примет положение S1, а необходимый расход теплоносителя понизится на величину расчетного расхода в отключенном приборе (до 288,3 кг/ч). В самом начале отопительные приборы начнут получать больше теплоты, что приведет к перегреву помещений. Термостатические головки, электроника или же потребители вручную, реагируя на это, начнут воздействовать на клапан, который будет опускать шток клапана, уменьшая тем самым свою пропускную способность и увеличивая сопротивление всей системы. Каждый клапан будет опускать шток ровно на столько, на сколько расход теплоносителя должен измениться в отопительном прибое. В конце концов, установится стационарный режим, когда температура в помещениях стабилизируется, и штоки клапанов перестанут двигаться.

Характеристика насоса и системы отопления без использования балансировочных клапанов
S, ΔP, G – характеристика сопротивления, потери давления и расход теплоносителя в системе отопления соответственно; значения индексов этих параметров: «расч» – в исходном (расчетном) режиме; «1» – при отключении верхнего прибора первого стояка; «2» – при отключении первого стояка

Чтобы описать физику процесса, использовано понятие коэффициента затекания [2]. Для начала он был определен для всех стояков системы, чтобы получить требуемую характеристику сопротивления на каждом участке стояков, тем самым, определив, какую пропускную способность будет иметь клапан у отопительных приборов в данном конкретном состоянии системы.

Важно заметить, что клапан имеет определенные рамки изменения величины пропускной способности. Для данного случая он был ограничен пределами 0,04…0,54 (м 3 /ч)/бар 0,5 . Верхний предел является величиной при полном (максимальном) открытии клапана. Так же нормируется перепад давления на клапане. На клапане он не должен превышать 0,5 бар или примерно 5000 Па. В случае превышения максимального перепада давлений возможно некорректное регулирование температуры.

В процессе расчета системы и определения величин затекания участков было выявлено, что при расчетном режиме работы системы пропускная способность колеблется в пределах от 0,23 до 0,44 (м 3 /ч)/бар 0,5 , а перепад давления – от 1020 до 2497 Па. Данные значения полностью удовлетворяют требованиям, принятым ранее.

Если отключается первый прибор первого стояка, то после автоматического регулирования и установившегося стационарного теплового режима в помещениях пропускные способности клапанов уменьшаются и находятся в пределах значений 0,19…0,53 (м 3 /ч)/бар 0,5 . Перепады давления, соответственно,– 700…3551 Па. Это тоже вполне удовлетворяет требованиям.

Аналогичная ситуация и при отключении первого стояка. Пропускные способности клапанов уменьшаются и находятся в пределах значений 0,16…0,25 (м 3 /ч)/бар 0,5 . Перепады давления – 3186…3714 Па. Характеристика сети принимает положение S2 на графике (рис. 2)

Видно, что при различном разрегулировочном воздействии на систему отопления происходит изменение характеристики сопротивления системы. Однако клапаны вполне могут «отрегулировать» системы так, чтобы в каждый прибор поступало необходимое количество теплоносителя.

Стоит заметить, что такое регулирование имеет определенные рамки, связанные с перепадом давлений на клапане и фиксированным диапазоном его пропускной способности. К примеру, если бы каждый стояк состоял не из трех, а из 10 приборов и был отключен бы первый стояк, то, возможно, пропускная способность клапанов второго стояка должна была упасть до минимальных значений. При этом резко повысился бы перепад давления на них. Но этот факт необходимо доказать расчетом для конкретной системы. Если таких стояков было бы не три, а 20, то отключение одного стояка слабо бы воздействовало на гидравлику всей системы отопления. Этот фактор также обусловлен характеристикой насоса.

Литература

  1. Пырков В.В. Гидравлическое регулирование систем отопления и охлаждения. Теория и практика. Киев, 2005.
  2. Сканави А.Н., Махов Л.М. Отопление: Учебник для вузов.М., 2008.

Окончание статьи читайте в следующем номере

Автоматические регуляторы расхода SANEXT

1. Регулятор перепада давления
Регулятор перепада давления является центральным элементом в конструкции комбинированного клапана. Постоянный перепад давления на седле клапана обеспечивает требуемый расход и полный авторитет клапана при регулировании расхода. Давление на входе в клапан Р1 передается на вернюю часть мембраны, а давление на выходе Р3 на нижнюю ее часть. Перепад давления между точками Р2 и Р3 поддерживается постоянным. При повышении давления в точке Р1 относительно точки Р3, мембрана прогибается и закрывает шток (А), перекрывая седло клапана (В), что приводит к снижению рабочего перепада давления. При снижении давления в точке Р1 относительно точки Р3, мембрана выгибается и поднимает шток (А), открывает седло клапана (В), что приводит к повышению рабочего перепада давления. Действие диафрагмы направлено в противоположную сторону от направления движения пружины, с целью выровнять перепад давления и предотвратить колебание мембраны.

2. Регулирующий клапан 
Расход воды через клапан зависит от площади проходного сечения и перепада давления на седле клапана. Благодаря встроенному элементу регулятора перепада давления, разница давлений между точками Р2-Р3 остается постоянной, что делает характеристику расхода зависимой только от проходного сечения клапана. Клапан также позволяет установить и поддерживать постоянным требуемое значение расхода. Регулирующий элемент клапана обеспечивает прямопропорциональную характеристику управления.

3. Ручка с шкалой преднастройки
Максимальное значение расхода можно установить, изменяя проходное сечение регулирующего клапана, путем вращения ручки с шкаолой настройки. Значение в процентах, указанное на шкале настройки, соотносится с максимальным пропускным значением расхода клапана. Значение расхода можно изменить путем вращения ручки (соотнося значение настройки в процентах с требуемым расходом). Механизм фиксации настройки предотвращает нежелательное изменение расхода на клапане.

В.Л. Кодкин, А.С. Аникин, А.А. Балденков, А.Ю. Качалин

Электронные регуляторы ECL Comfort 110

Техническое описание Электронные регуляторы ECL Comfort 110 Область применения ECL Comfort 110 — это универсальный 1-контурный электронный регулятор для использования в тепловых пунктах и системах теплоснабжения.

Подробнее

Регулятор температуры ECL Comfort 110

Описание и область применения ECL Comfort 110 универсальный 1-контурный регулятор для использования в тепловых пунктах и системах централизованного теплоснабжения, а также в системах с котлом. Электронный

Подробнее

СИСТЕМЫ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ, МОЛОДЕЖИ И СПОРТА УКРАИНЫ ГОСУДАРСТВЕННО ВЫСШЕЕ УЧЕБНОЕ ЗАВЕДЕНИЕ ДОНЕЦКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ В.А. Резников И.А. Тарасова И.В. Дорохов СИСТЕМЫ АВТОМАТИЧЕСКОГО

Подробнее

ТЕРМОРЕГУЛЯТОР PLAST ПИД

ТЕРМОРЕГУЛЯТОР PLAST ПИД Назначение Терморегулятор предназначен для автоматического регулирования температуры объекта методом ПИД и методом двухпозиционного регулирования. Прибор предназначен для работы

Подробнее

Регулятор температуры ECL Comfort 110

Техническое описание Описание и область применения Так же возможна перенастройка на новые прикладные задачи с помощью чипов и средств связи. Регулятор просто монтировать один кабель, один соединитель.

Подробнее

1.1. ECL Comfort :

Регуляторы температуры электронные типа ECL Comfort 110 ПАСПОРТ Продукция сертифицирована в системе сертификации ГОСТ Р и имеет официальное заключение ЦГСЭН о гигиенической оценке. АИ0 Содержание Паспорта

Подробнее

Регулятор температуры ECL Comfort 110

Описание и область применения ECL Comfort 110 специализированный электронный цифровой регулятор температуры, предназначенный для применения в одноконтурных технологических схемах (приложениях) систем отопления

Подробнее

Прайс-лист 2. Содержание прайс-листа:

Россия, 129344, г. Москва, Верхоянская ул. 18 корп.2 Тел./Факс: (495) 780-98-04, 780-98-10 (многоканальный) Прайс-лист 2 (автоматика теплоснабжения) цены указаны в рублях без учета НДС Содержание прайс-листа:

Подробнее

..,.. ( ),..,..,..,.. ( )…, — -.,,, — -. -, — — -,. 16 Во многих случаях выбор того или иного закона управления ТП зависит как от динамических и статических характеристик этого процесса, так и в значительной

Подробнее

Электроприводы редукторные типа AMV

Электроприводы редукторные типа AMV ПАСПОРТ Продукция сертифицирована ГОССТАНДАРТом России в системе сертификации ГОСТ Р и имеет официальное заключение ЦГСЭН о гигиенической оценке. Содержание Паспорта

Подробнее

Вестник науки Сибири (1)

Вестник науки Сибири 20 () htt://sjsturu Зражевский Роман Александрович, магистрант кафедры автоматики и компьютерных систем Института кибернетики ТУ E-mail: zrazhevskiyroman@ sibmailcom имитационное моделирование

Подробнее

ECL Comfort 210 / 296 / 310

Руководство пользователя ECL Comfort 210 / 296 / 310 Pусская версия www.danfoss.com Примечания по технике безопасности Установка, запуск и поддержание устройства должны производиться официальными квалифицированными

Подробнее

Вестник науки Сибири (1)

УДК 68.5.4 Скороспешкин Максим Владимирович канд. техн. наук доцент кафедры автоматики и компьютерных систем Института кибернетики ТПУ. E-mail: [email protected] адаптивные системы управления корректирующие

Подробнее

ECL Comfort 210 / 310

MAKING MODERN LIVING POSSIBLE *087H9010* *VIKTY150* Более подробная документация к моделям ECL Comfort 210 и 310, модулям и дополнительным принадлежностям доступна по адресу: http://den.danfoss.com/ ECL

Подробнее

Семь секунд из жизни ПИД регулятора.

Семь секунд из жизни ПИД регулятора. Пид регулятор довольно древняя разработка, когда о транзисторах еще ничего не знали, не то, что о контролерах. На кафедре автоматики видел механический ПИД — регулятор,

Подробнее

ОГЛАВЛЕНИЕ. Предисловие… 11

ОГЛАВЛЕНИЕ Предисловие… 11 ЧАСТЬ 1. ОБЩИЕ СВЕДЕНИЯ О СИСТЕМАХ И ТЕОРИИ УПРАВЛЕНИЯ.15.Глава 1. Основные понятия теории управления… 15 1.1.Понятия об управлении и системах управления… 15 1.2.Объекты

Подробнее

6М Автоматизаци и управление

6М07000 -Автоматизаци и управление «Элементы и устройства автоматики».устройство и принцип действия двигателей постоянного тока.. Основные характеристики трехфазного асинхронного двигателя с фазным ротором.

Подробнее

РЕГУЛЯТОР ТЕМПЕРАТУРЫ РТ-2010 КЛЯБ ПС

РЕГУЛЯТОР ТЕМПЕРАТУРЫ РТ2 КЛЯБ.428. ПС ПАСПОРТ г. Новолукомль 2 г. Настоящий паспорт распространяется на одно и двухконтурный регулятор температуры РТ2 (далее по тексту регулятор ). Основные технические

Подробнее

Что такое контроль температуры?

Введение в системы контроля температуры

Контроллер температуры — это инструмент, используемый для управления температурой, вычисляя разницу между заданным значением и измеренной температурой. Контроллер принимает входные данные от датчик температуры и имеет выход, который подключен к элементу управления, например, нагревателю или вентилятору.

Для точного контроля температуры технологического процесса без активного участия оператора система контроля температуры полагается на контроллер, который принимает датчик температуры, такой как термопара или RTD, в качестве входа. Он сравнивает фактическую температуру с желаемой контрольной температурой, или заданное значение, и обеспечивает вывод на элемент управления. Регулятор температуры или термостат — это одна часть всей системы управления, и вся система следует проанализировать при выборе подходящего оборудования.

Какие существуют типы контроллеров температуры и как они работают?

Существует три основных типа контроллеров: двухпозиционные, пропорциональные и ПИД-регуляторы. В зависимости от управляемой системы оператор сможет использовать тот или иной тип для управления процессом.

Контроль температуры вкл / выкл

Как правильно выбрать цифровой регулятор температуры?

  1. Тип входного датчика (термопара, RTD) и диапазон температур
  2. Требуемый тип выхода (электромеханический реле, SSR, аналоговый выход)
  3. Необходим алгоритм управления (вкл / выкл, пропорциональный, PID)
  4. Количество и тип выходов (тепло, охлаждение, сигнализация, предел)
Двухпозиционный регулятор температуры — это простейшая форма устройства управления.Выход из устройства либо включен, либо выключен, без среднего состояния.

Двухпозиционное управляющее устройство переключает выход только тогда, когда температура пересекает заданное значение. Для управления нагревом выход включен, когда температура ниже заданного значения, и выключен выше заданного значения. Поскольку температура пересекает заданное значение, чтобы изменить состояние выхода, температура процесса будет постоянно меняться, переходя от нижнего заданного значения к верхнему и обратно ниже.

В случаях, когда этот цикл происходит быстро и для предотвращения повреждения контакторов и клапанов, к операциям контроллера добавляется двухпозиционный дифференциал или «гистерезис».Этот дифференциал требует, чтобы температура превышала заданное значение на определенную величину, прежде чем выход выключится или снова включится. Дифференциал включения-выключения предотвращает «дребезжание» выхода или быстрое постоянное переключение, если циклическое переключение выше и ниже уставки происходит очень быстро.

Двухпозиционный регулятор температуры обычно используется там, где нет необходимости в точном регулировании, в системах, которые не могут справиться с частым включением и выключением энергии, где масса системы настолько велика, что температура изменяется очень медленно, или в течение длительного периода времени. температурная сигнализация.

Один особый тип двухпозиционного управления, используемый для сигнализации, — это ограничительный контроллер. В этом контроллере используется фиксирующее реле, которое необходимо вручную сбросить, и которое используется для остановки процесса при достижении определенной температуры.

Пропорциональный контроль температуры

Пропорциональные регуляторы температуры предназначены для исключения цикличности, связанной с двухпозиционным регулированием. Пропорциональный контроллер снижает среднюю мощность, подаваемую на нагреватель, по мере приближения температуры к заданному значению.

Это замедляет работу нагревателя, чтобы он не превышал заданное значение, но приближался к заданному значению и поддерживал стабильную температуру. Это действие дозирования может быть выполнено путем включения и выключения выхода на короткие промежутки времени. Это «пропорциональное время» изменяет отношение времени «включения» к времени «выключения» для контроля температуры. Действие дозирования происходит в «зоне пропорциональности» вокруг заданной температуры. За пределами этого диапазона контроллер функционирует как двухпозиционный блок, при этом выход либо полностью включен (ниже диапазона), либо полностью выключен (выше диапазона).Однако в пределах диапазона выход включается и выключается пропорционально разнице измерения от заданного значения.

При заданном значении (средняя точка зоны пропорциональности) соотношение включения / выключения выхода составляет 1: 1; то есть время включения и выключения равны. если температура дальше от заданного значения, время включения и выключения изменяется пропорционально разнице температур. Если температура ниже уставки, выход будет работать дольше; если температура будет слишком высокой, выход будет отключен дольше.

ПИД-регулятор температуры

Третий тип регулятора температуры обеспечивает пропорциональное с интегральным и производным регулированием или ПИД-регулирование. Этот цифровой регулятор температуры сочетает в себе пропорциональное регулирование с двумя дополнительными регулировками, что помогает устройству автоматически компенсировать изменения в системе.

Эти корректировки, интегральные и производные, выражены в единицах измерения, основанных на времени; они также обозначаются их обратными значениями, СБРОС и СТАВКА, соответственно.Пропорциональные, интегральные и производные члены должны индивидуально корректироваться или «настраиваться» на конкретную систему методом проб и ошибок. Он обеспечивает наиболее точное и стабильное управление из трех типов контроллеров и лучше всего используется в системах с относительно небольшой массой, которые быстро реагируют на изменения энергии, добавляемой к процессу.

В этом техническом документе объясняется введение в настройку ПИД-регулятора температуры.

Рекомендуется в системах, где нагрузка часто меняется, и ожидается, что цифровой контроллер будет автоматически компенсировать частые изменения уставки, количества доступной энергии или массы, которую необходимо контролировать.OMEGA предлагает ряд контроллеров, которые настраиваются автоматически. Они известны как контроллеры автонастройки. Однако в настоящее время некоторые цифровые контроллеры вводят нечеткую логику, чтобы повысить производительность контроллеров температуры.

Как работает регулятор температуры?

Чтобы обеспечить точный контроль температуры технологического процесса без активного участия оператора, система контроля температуры полагается на контроллер, который принимает датчик, такой как термопара или RTD, в качестве входного сигнала.Он сравнивает фактическую температуру с желаемой температурой или заданным значением и выдает выходной сигнал на элемент управления.

Регулятор температуры является частью всей системы управления, и для выбора подходящего регулятора необходимо проанализировать всю систему. При выборе контроллера следует учитывать следующие факторы:

  1. Тип входного датчика (термопара, RTD) и диапазон температур
  2. Требуемый тип выхода (электромеханическое реле, SSR, аналоговый выход)
  3. Необходим алгоритм управления (вкл / выкл, пропорциональный, ПИД)
  4. Количество и тип выходов (нагрев, охлаждение, аварийный сигнал, ограничение)

Какие типы выходов доступны для контроллеров?


Выходные данные контроллера процесса или температуры могут иметь одну из нескольких форм.Наиболее распространенными формами являются пропорциональные по времени и аналоговые пропорциональные. Пропорциональный по времени выход подает мощность на нагрузку в течение процента от фиксированного времени цикла. Например, при длительности цикла 10 секунд, если выход контроллера был установлен на 60%, реле будет активировано (замкнуто, подано питание) на 6 секунд и обесточено (разомкнуто, питание не подано) на 4 секунды. Пропорциональные по времени выходы доступны в трех различных формах: электромеханическое реле, симистор или твердотельное реле переменного тока или импульс постоянного напряжения (для управления внешним твердотельным реле).Электромеханическое реле обычно является наиболее экономичным типом и обычно выбирается в системах с длительностью цикла более 10 секунд и относительно небольшими нагрузками.

Для надежности выбраны твердотельные реле переменного тока или импульс постоянного напряжения, поскольку они не содержат движущихся частей. Рекомендуются для процессов, требующих короткого времени цикла, они нуждаются в дополнительном реле, внешнем по отношению к регулятору температуры, для управления типичной нагрузкой, необходимой для нагревательного элемента. Эти внешние твердотельные реле обычно используются с управляющим сигналом переменного тока для выходных контроллеров твердотельных реле переменного тока или с управляющим сигналом постоянного тока для контроллеров выходных импульсов постоянного напряжения.

Аналоговый пропорциональный выход обычно представляет собой аналоговое напряжение (от 0 до 5 В постоянного тока) или ток (от 4 до 20 мА). Уровень выходного сигнала этого типа выхода также устанавливается контроллером; если бы выход был установлен на 60%, выходной уровень был бы 60% от 5 В или 3 В. При выходе 4-20 мА (диапазон 16 мА) 60% равно (0,6 x 16) + 4 , или 13,6 мА. Эти контроллеры обычно используются с пропорциональными клапанами или контроллерами мощности.

Как выбрать цифровой регулятор температуры для моего приложения?


Когда вы выбираете терморегулятор, в первую очередь следует учитывать необходимую точность регулирования и то, насколько сложно контролировать процесс.Для облегчения настройки и минимальных начальных затрат следует выбрать самый простой контроллер, который даст желаемые результаты.

В простых процессах с хорошо подобранным нагревателем (не слишком маленького размера) и без быстрой смены циклов можно использовать двухпозиционные регуляторы температуры. Для систем, подверженных циклическим нагрузкам или с непревзойденным нагревателем (либо большего, либо меньшего размера), необходим пропорциональный контроллер.

ПИД-регуляторы | Сопутствующие товары

↓ Посмотреть эту страницу на другом языке или регионе ↓

Что такое регуляторы температуры? Типы контроллеров процесса

Как следует из названия, контроллер температуры — это прибор, используемый для управления температурой, в основном без значительного участия оператора.Контроллер в системе контроля температуры принимает датчик температуры, такой как термопара или RTD, в качестве входного сигнала и сравнивает фактическую температуру с желаемой контрольной температурой или уставкой. Затем он предоставит вывод для элемента управления.

Хорошим примером может служить приложение, в котором контроллер принимает входной сигнал от датчика температуры и имеет выход, подключенный к элементу управления, например, нагревателю или вентилятору. Контроллер обычно является лишь частью системы контроля температуры, и вся система должна быть проанализирована и рассмотрена при выборе подходящего контроллера.

Подробнее о цифровых контроллерах

Какие существуют типы контроллеров процесса или температуры и как они работают?
Существует три основных типа контроллеров процесса: двухпозиционные, пропорциональные и ПИД-регуляторы. В зависимости от управляемой системы оператор сможет использовать тот или иной тип для управления процессом.

Двухпозиционный регулятор температуры
Двухпозиционный регулятор температуры — это простейшая форма устройства управления.Выход из устройства либо включен, либо выключен, без среднего состояния. Двухпозиционный контроллер переключает выход только тогда, когда температура пересекает заданное значение. Для управления нагревом выход включен, когда температура ниже заданного значения, и выключен выше заданного значения.

Поскольку температура пересекает заданное значение для изменения состояния выхода, температура процесса будет непрерывно меняться, переходя от нижнего заданного значения к верхнему и обратно ниже. В случаях, когда этот цикл происходит быстро и для предотвращения повреждения контакторов и клапанов, к операциям контроллера добавляется дифференциал включения-выключения или «гистерезис».

Этот дифференциал требует, чтобы температура превышала заданное значение на определенную величину, прежде чем выход выключится или снова включится. Дифференциал включения-выключения предотвращает «дребезжание» выхода или быстрое постоянное переключение, если циклическое переключение выше и ниже уставки происходит очень быстро. Двухпозиционное управление обычно используется там, где нет необходимости в точном управлении, в системах, которые не могут справиться с частым включением и выключением энергии, где масса системы настолько велика, что температура изменяется очень медленно, или для температурной сигнализации.Один особый тип двухпозиционного управления, используемый для сигнализации, — это ограничительный контроллер. В этом контроллере используется фиксирующее реле, которое необходимо вручную сбросить, и которое используется для остановки процесса при достижении определенной температуры.

Пропорциональное управление
Пропорциональное управление предназначено для исключения цикличности, связанной с двухпозиционным управлением. Пропорциональный контроллер снижает среднюю мощность, подаваемую на нагреватель, по мере приближения температуры к заданному значению.

Это замедляет работу нагревателя, чтобы он не превышал заданное значение, но приближался к заданному значению и поддерживал стабильную температуру.Это действие дозирования может быть выполнено путем включения и выключения выхода на короткие промежутки времени. Это «пропорциональное время» изменяет отношение времени «включения» к времени «выключения» для контроля температуры. Действие дозирования происходит в «зоне пропорциональности» вокруг заданной температуры.

За пределами этого диапазона регулятор температуры функционирует как двухпозиционный блок, при этом выход либо полностью включен (ниже диапазона), либо полностью выключен (выше диапазона). Однако в пределах диапазона выход включается и выключается пропорционально разнице измерения от заданного значения.При заданном значении (средняя точка диапазона пропорциональности) соотношение включения / выключения выхода составляет 1: 1; то есть время включения и выключения равны. Если температура дальше от заданного значения, время включения и выключения изменяется пропорционально разнице температур. Если температура ниже уставки, выход будет работать дольше; если температура будет слишком высокой, выход будет отключен дольше.

ПИД-регулирование
Третий тип регулятора обеспечивает пропорциональное с интегральным и производным регулированием или ПИД-регулирование.Этот контроллер сочетает в себе пропорциональное управление с двумя дополнительными регулировками, что помогает устройству автоматически компенсировать изменения в системе.

Эти корректировки, интегральные и производные, выражаются в единицах измерения, основанных на времени; они также обозначаются их обратными значениями, СБРОС и СТАВКА, соответственно. Пропорциональные, интегральные и производные члены должны индивидуально корректироваться или «настраиваться» на конкретную систему методом проб и ошибок. Он обеспечивает наиболее точное и стабильное управление из трех типов контроллеров и лучше всего используется в системах с относительно небольшой массой, которые быстро реагируют на изменения энергии, добавляемой к процессу.

В этой другой статье более подробно рассматривается настройка ПИД-регулятора.

Рекомендуется в системах, где нагрузка часто меняется, и ожидается, что контроллер будет автоматически компенсировать частые изменения уставки, количества доступной энергии или массы, которую необходимо контролировать. OMEGA предлагает ряд контроллеров, которые настраиваются автоматически. Они известны как контроллеры автонастройки.

Стандартные размеры
Поскольку регуляторы температуры обычно монтируются внутри приборной панели, панель необходимо обрезать для размещения регулятора температуры.Чтобы обеспечить взаимозаменяемость между контроллерами температуры, большинство контроллеров температуры разработаны в соответствии со стандартными размерами DIN. Наиболее распространенные размеры DIN показаны ниже.

Выберите регулятор температуры для вашего приложения

Двухпозиционные контроллеры Двухпозиционные контроллеры процесса
представляют собой простейший тип контроллеров с двухпозиционным управляющим действием, предназначенный для обеспечения функциональности ПИД-контроллеров общего назначения, но по цене, подходящей для двухпозиционных приложений.

Учить больше

ПИД-регуляторы с автонастройкой ПИД-регуляторы
обеспечивают очень жесткий контроль, но алгоритм ПИД-регулирования требует настройки. Контроллеры автонастройки обеспечивают эту функцию.

Учить больше

Многоконтурные контроллеры
Каждый контур управления обычно состоит из одного входа и как минимум одного выхода. OMEGA предлагает множество контроллеров с несколькими контурами, которые могут обрабатывать более одного контура управления. OMEGA CS8DPT может обрабатывать до 6 контуров управления.

Учить больше

Контроллеры пределов безопасности
Контроллеры пределов безопасности — это выключенный контроллер с выходом с фиксацией. Когда выход меняет состояние, для его возврата требуется ручной сброс. Контроллеры пределов безопасности обычно используются в качестве резервных контроллеров для остановки процесса при достижении нежелательных пределов.

Учить больше

Реле температуры
Регулируемое реле температуры подходит для применений, требующих экономичного решения для регулирования температуры.Реле температуры обычно проще и проще в настройке, чем более сложные электронные элементы управления.

Учить больше

Часто задаваемые вопросы

Как выбрать контроллер процесса или температуры?
Контроллер является частью всей системы управления, и для выбора подходящего контроллера необходимо проанализировать всю систему. При выборе контроллера следует учитывать следующие моменты:

1. Тип входного датчика (термопара, RTD) и диапазон температур
2.Тип требуемого выхода (электромеханическое реле, SSR, аналоговый выход)
3. Необходимый алгоритм управления (вкл. / Выкл., Пропорциональный, ПИД-регулятор)
4. Количество и тип выходов (нагрев, охлаждение, аварийный сигнал, предел)

Техническое обучение Техническое обучение Просмотреть эту страницу на другом языке или в другом регионе

Что такое система контроля температуры?

Система контроля температуры

Существует множество коммерческих процессов, которые могут требовать, чтобы температура материала контролировалась для получения приемлемого продукта.Этот контроль может выполняться вручную или автоматически.

Ручное регулирование температуры

При ручном управлении оператор периодически считывает температуру технологического процесса и регулирует подачу тепла или холода вверх или вниз в таком направлении, чтобы довести температуру до желаемого значения. Ручное управление может использоваться в некритических приложениях, где небольшие изменения в управляемой переменной заставляют процессы изменяться медленно и на небольшую величину.

Этот процесс показан на рисунке 1.1.

Это практично, только если есть несколько процессов с редкими сбоями в процессе. Ручное регулирование температуры требует значительных ресурсов, так как для того, чтобы это сработало, оператор должен иметь достаточно времени для внесения коррекции до того, как температура процесса превысит допустимый допуск.

Когда точность является обязательной, когда задействовано несколько процессов или изменения температуры слишком быстрые для исправления оператора, рекомендуется использование автоматической системы управления.Обычно в наши дни возможность упростить процессы и повысить эффективность означает, что большинство систем контроля температуры являются автоматическими.

Система автоматического контроля температуры

Управляемая переменная, в данном случае «температура», измеряется подходящим датчиком, таким как термопара, RTD, термистор или инфракрасный пирометр, и преобразуется в сигнал, приемлемый для контроллера.

Контроллер сравнивает сигнал температуры с желаемой температурой (уставкой) и включает конечное устройство управления.Конечное устройство управления изменяет управляемую переменную, чтобы изменить количество тепла, добавляемого или отбираемого из процесса. Общие управляемые переменные в процессах с регулируемой температурой — это воздух, вода, пар, электричество, нефть и газ.

Схема обобщенной системы автоматического регулирования температуры показана на рисунке 1.2.

Другие устройства контроля температуры

Конечные устройства контроля — это контакторы, нагнетатели, электродвигатели или пневматические заслонки и клапаны, вариаторы с электроприводом, пропорциональные по времени или фазовые SCR и реакторы с насыщаемым сердечником.

Существует несколько типов автоматических регуляторов температуры, которые можно использовать для любого данного процесса, однако достижение приемлемого контроля температуры зависит от

  • Характеристики процесса
  • Определение допустимого отклонения температуры от заданного значения и при каких условиях (запуск, работа, холостой ход)
  • Выбор оптимального типа контроллера и его правильная настройка

Что такое регулятор температуры и как он работает?

Q: Что такое регулятор температуры и как он работает?

A: Контроллер температуры — это устройство, которое используется для контроля температуры.Для этого сначала измеряется температура ( переменная процесса, ), а затем она сравнивается с желаемым значением ( заданное значение ). Разница между этими значениями называется ошибкой (отклонением). Контроллеры температуры используют эту ошибку, чтобы решить, сколько нагрева или охлаждения требуется, чтобы вернуть температуру процесса к желаемому значению. Как только этот расчет будет завершен, контроллер выдаст выходной сигнал, который влияет на требуемое изменение. Этот выходной сигнал известен как ( управляемое значение) и обычно подключается к нагревателю, регулирующему клапану, вентилятору или другому «конечному элементу управления», который фактически вводит или отводит тепло из процесса.

Регуляторы температуры образуют одну из четырех частей системы контроля температуры. Чтобы наглядно представить это, мы рассмотрим печь. Четыре части будут:

1 Духовка
2. Нагреватель
3. Термометр (или термопара)
4. Контроллер

Роль регулятора температуры заключается в измерении температуры на термопаре, сравнении ее с заданным значением и в вычислении времени, в течение которого нагреватель должен оставаться включенным для поддержания постоянной температуры.

Многие факторы изменяют время, в течение которого нагреватель должен работать, чтобы поддерживать температуру процесса. Например, размер нагревателя, размер духовки, количество изоляции вокруг духовки и температура окружающей среды — все это изменяет скорость, с которой духовка будет нагреваться или охлаждаться. Другие факторы, такие как циркуляция воздуха в духовке, влажность воздуха. Масса продукта, помещенного в духовку, и многое другое подробно описано на сайте http: // newton.ex.ac.uk/teaching/CDHW/Feedback/OvSimForm-gen.html

В конце концов, регулятор температуры заменяет функцию человека, чья должностная инструкция будет выглядеть примерно так: —

Смотри, что термометр
Поддерживайте стабильную температуру на уровне 80 ° C
Если вам нужно больше тепла, включите обогреватель.

Важным моментом является то, что регулятор температуры имеет один вход, один выход и одну уставку.

Fuji Electric поддерживает свою продукцию по всему миру через крупную торговую сеть.Coulton Instrumentation с гордостью представляет это семейство продуктов в Соединенном Королевстве и Республике Ирландия. Если вам нужна помощь по этому ассортименту продуктов или у вас есть более общие вопросы по управлению и КИП, почему бы не отправить нам свои вопросы во флаконе [email protected]?

3 типа регуляторов температуры

Регулируя температуру в различных типах промышленных систем, регуляторы температуры имеют решающее значение для предотвращения повреждения компонентов и обеспечения безопасной и эффективной работы.Если уровни нагрева выходят за пределы установленного рабочего диапазона, в конечном итоге может произойти сбой системы, что приведет к длительному простою, потребностям в дополнительной рабочей силе и дополнительным расходам.

Доступен широкий спектр контроллеров, которые помогут избежать этих проблем и удовлетворить потребности конкретных приложений.

  • Микроконтроллеры температуры — эти небольшие, легкие и компактные контроллеры идеально подходят для приложений, требующих ограниченного пространства. Микроконтроллеры не требуют дополнительных элементов управления и могут быть адаптированы к существующим приложениям без изменения схемотехники.Добавить функции обогрева в существующие приложения можно быстро и легко. Эти контроллеры температуры имеют метод контроля температуры включения / выключения и настройки временного интервала с более чем 10 000 спецификациями. Их можно использовать с ультратонкими гибкими нагревателями и с продуктами с ограниченным пространством.

Четырехфазные регуляторы температуры — В четырехфазной линии есть две серии, как показано ниже.

  • Серия DTC-S имеет четыре настройки времени и мощности. Настройки времени могут быть установлены с интервалом в один, два, четыре или восемь часов, а настройки мощности могут быть установлены с интервалами ввода 25%, 50%, 75% и 100%.Эта серия также совместима с напряжением как переменного, так и постоянного тока и отличается легким и элегантным дизайном. Контроллеры DTC-S автоматически запоминают предыдущие настройки и подходят как для переменного тока (110 В / 220 В), так и для постоянного тока (12 В ~ 24 В). Их также можно использовать с различными типами обогревателей.
  • В то же время серия DTC-N использует широтно-импульсную модуляцию (ШИМ) для управления потребляемой мощностью. В отличие от DTC, эти контроллеры имеют четыре определенных настройки температуры — 40 ° C, 45 ° C, 50 ° C и 55 °. В этой серии в качестве датчика температуры используется NTC, а уровень точности составляет от 20 ° C до 60 ° C ± 1 °. С.Серия DTC-N позволяет легко управлять настройками времени и мощности и предлагает легкое решение для контроля температуры. Этот контроллер может запоминать предыдущие настройки и подходит как для переменного (110 В / 220 В), так и для постоянного (12 ~ 24 В) напряжений.

Цифровые контроллеры температуры — Доступны два типа цифровых контроллеров, как указано ниже.

  • Серия DTC-A разработана с учетом точного нагрева. Температуру можно контролировать в пределах 1 ° C от заданной температуры, и внешние реле не требуются.Контроллеры могут быть настроены на временные интервалы от 30 минут до 24 часов. Простые в использовании контроллеры DTC-A автоматически запоминают предыдущие настройки времени и температуры, и доступны как предварительно подключенные устройства, так и устройства с самоподключением. Эти модели могут использоваться с ультратонкими гибкими нагревателями и другими типами нагревателей для лабораторных испытаний, отопления помещений и контроля температуры конечного продукта.
  • Серия DTC-T предлагает цифровой контроль и управление напряжением как переменного, так и постоянного тока.Эти контроллеры имеют низкое напряжение и низкий уровень электромагнитных волн и оснащены встроенными адаптерами, позволяющими настраивать индивидуальные настройки времени и температуры. Эта серия также автоматически запоминает предыдущие настройки времени и температуры. Контроллеры DTC-T, совместимые с рядом других нагревательных приборов, имеют компактную, легкую конструкцию и просты в использовании и управлении. Эта серия не требует дополнительных элементов управления или схемотехники, и доступно более 10 000 спецификаций.Предусмотрены четыре настройки мощности — вход 25%, 50%, 75% и 100%.

Приложения для регуляторов температуры

Контроллеры температуры используются в промышленных, коммерческих и жилых помещениях. Во всех этих ситуациях они служат одной и той же цели: измерять и контролировать уровни температуры в помещении для достижения желаемых условий. Эта способность особенно важна для промышленных процессов, где точные и точные уровни температуры необходимы для достижения и поддержания безопасных операций.Примеры типичного применения регуляторов температуры в промышленном секторе:

  • Центры исследований и разработок
  • Лаборатории
  • Обрабатывающие предприятия

Обычное промышленное применение регуляторов температуры

В промышленном секторе регуляторы температуры находят применение в широком спектре приложений и процессов. Например:

  • В сфере термообработки, встраиваются в котлы, печи, теплообменники и печи для контроля температуры во время термообработки и других операций с использованием печи.
  • В упаковочной промышленности, они используются для регулирования уровней температуры в термоупаковочном оборудовании, например, в системах нанесения клея, термоклея, запечатывания и упаковки в термоусадочную пленку.
  • В пластмассовой промышленности, они используются в оборудовании для производства пластмассы, таком как бункеры, формовочные и экструзионные системы, охладители и сушилки, чтобы гарантировать, что готовая продукция соответствует спецификациям клиентов и отраслевым стандартам.
  • В сфере здравоохранения они используются для обеспечения того, чтобы лабораторное и испытательное оборудование, такое как автоклавы, камеры кристаллизации, инкубаторы и холодильники, поддерживало надлежащую температуру для хранения и / или обработки образцов и образцов.

В пищевой промышленности и производстве напитков используются в технологическом и производственном оборудовании, таком как пивовары, блендеры, печи и стерилизаторы, где они регулируют температуру и / или время обработки.

Свяжитесь с экспертами PTI сегодня

Регуляторы температуры играют решающую роль во многих отраслях промышленности и промышленных приложениях. Гарантируя, что температурные условия находятся в соответствующем диапазоне, они позволяют профессионалам отрасли лучше контролировать качество своих процессов и / или продукции.

Если вам нужны терморегуляторы для вашего предприятия, обратитесь к специалистам PTI. Мы можем помочь вам разработать или выбрать регулятор температуры, который наилучшим образом соответствует вашим потребностям. Чтобы узнать больше о наших продуктах для регуляторов температуры или обсудить требования к вашему применению с одним из наших представителей, свяжитесь с нами или запросите ценовое предложение сегодня.

ОСНОВЫ РЕГУЛЯТОРА ТЕМПЕРАТУРЫ — Электроника длины волны

Источник тока регулятора температуры: Одной из ключевых частей регулятора температуры является регулируемый двунаправленный источник тока.Его также можно назвать выходным каскадом. Эта секция отвечает за секцию системы управления, управляя током на исполнительный механизм температуры (термоэлектрический или резистивный нагреватель). Направление тока имеет решающее значение для термоэлектриков. На блок-схеме термоэлектрический элемент подключен между двумя выводами на контроллере. Для резистивного нагревателя может потребоваться специальная проводка, чтобы ограничить ток через резистивный нагреватель только в одном направлении.

Система управления : Пользовательские входы включают предельную уставку (в терминах максимального тока, разрешенного для термоэлектрического или резистивного нагревателя) и рабочую уставку.Кроме того, если требуется удаленная уставка, обычно доступен вход удаленной уставки.

  • Уставка : аналоговое напряжение в системе. Его можно создать путем сочетания регулировки бортового триммера и ввода удаленной уставки. В некоторых случаях эти входы суммируются. Некоторые действуют самостоятельно.
  • Прецизионный источник тока смещения датчика: Этот источник тока управляет датчиком температуры на известном уровне, делая фактическое напряжение датчика стабильным и точным.Напряжение на датчике определяется законом Ома: V = I * R, где V — напряжение, I — ток, а R — сопротивление датчика. Напряжение ограничено максимумом и минимумом (указанным в таблице данных контроллера температуры). Следует использовать минимально возможный ток, чтобы свести к минимуму эффекты самонагрева. Термистор нагревается при более высоких уровнях тока и ложно сообщает о более высокой температуре.
  • Генерация ошибки : Чтобы узнать, как работает система, фактическая температура сравнивается с заданной температурой.Эти два напряжения вычитаются, и результат называется «Ошибка». Выходной сигнал регулируемого источника тока будет изменяться, чтобы сигнал обратной связи по температуре оставался неизменным.
  • Система ПИД-управления : Преобразует сигнал ошибки в сигнал управления для регулируемого источника тока. Более подробное обсуждение ПИД-регулирования можно найти в Техническом примечании TN-TC01
  • .
  • Предельная цепь: Один из способов повредить термоэлектрик — пропустить через него слишком большой ток.В каждом техническом описании привода указывается максимальный рабочий ток. Превышение этого тока приведет к повреждению устройства. Чтобы этого избежать, в терморегулятор включен ограничительный контур. Пользователь определяет максимальную настройку, и выходной ток не должен превышать этот уровень. Большинство цепей ограничения ограничивают ток на максимальном уровне и продолжают работать.
  • Функции безопасности : Термоэлектрики и резистивные нагреватели чувствительны к избыточной мощности, но они устойчивы к быстрым изменениям тока или напряжения.Функции безопасности могут включать индикатор состояния «теплового разгона». Температурные пределы — как высокие, так и низкие — также могут быть доступны для включения индикаторов или отключения выходного тока.

Питание : питание должно подаваться на управляющую электронику и источник тока. Это может быть источник питания постоянного тока (некоторые драйверы используют входы с одним источником питания, другие используют два источника питания) или входной разъем переменного тока и кабель. В некоторых случаях, когда требуется более высокое напряжение для термоэлектрического или резистивного нагревателя, могут быть доступны отдельные входы источника питания постоянного тока для питания управляющей электроники от источника низкого напряжения +5 В и термоэлектрического элемента от источника более высокого напряжения.

В чем разница между инструментом, модулем и компонентом?

Обычно цена, набор функций и размер. Прибор обычно имеет переднюю панель с ручками и кнопками для регулировки, а также какой-либо дисплей для отслеживания датчика. Все они могут быть автоматизированы с помощью компьютерного управления через USB, RS-232, RS-485 или GPIB. Инструмент обычно питается от сети переменного тока, а не от источника постоянного тока. По нашему определению, модуль не включает в себя дисплей или источник питания и имеет минимально необходимые настройки.Для контроля состояния вольтметр измеряет напряжение, а в таблице данных модуля предусмотрена передаточная функция для преобразования напряжения в фактическое сопротивление датчика. В паспорте датчика сопротивление датчика преобразуется в температуру. Некоторые устройства выделяют память для калибровки отклика датчика. Компонент дополнительно урезан, без движущихся частей. Внешние резисторы или конденсаторы задают рабочие параметры. Функции безопасности являются общими для всех трех форм. Обычно модули можно разместить на столе или интегрировать в систему с помощью кабелей.Компоненты монтируются непосредственно на печатную плату (PCB) с помощью выводов для сквозного монтажа или поверхностного монтажа (SMT). Два ряда выводов называются DIP-упаковкой (двухрядный), а один ряд выводов называется SIP-упаковкой (одинарный ряд).

Разнообразные стандартные контроллеры доступны как в приборной, так и в OEM-упаковке. Некоторые производители стирают границы, например, предлагая USB-управление компонентами в качестве мини-инструментов.

Упаковка компонентов и модулей включает надлежащий теплоотвод элементов схемы (или инструкции о том, как устройство должно быть теплоотводом) и обычно включает соответствующие кабели для термоэлектрического элемента, датчика и источника питания.Инструменты включают шнур питания, и доступ пользователя внутрь корпуса не требуется.

Типовая терминология:

Термоэлектрик: Это устройство, состоящее из двух керамических пластин, которые скрепляют металлические соединения двух разнородных металлов. Если ток протекает через соединение разнородных металлов, тепло генерируется с одной стороны, а поглощается с другой. Пропуская ток через термоэлектрик, тепло передается от одной керамической пластины к другой.Направление тока определяет, какая пластина станет «горячей», а какая — «холодной» относительно друг друга. Изменение направления тока немедленно меняет эффект. Контроллер температуры работает, оптимально контролируя величину и направление тока через переход, чтобы поддерживать фиксированную температуру устройства, подключенного к «холодной» стороне. Термоэлектрики можно накладывать друг на друга, чтобы создать более широкий температурный перепад. Их называют многоступенчатыми или каскадными термоэлектриками. Термоэлектрик также может преобразовывать перепад температур в электричество.Это называется эффектом Зеебека. Термоэлектрик также известен как термоэлектрический охладитель, устройство Пельтье или твердотельный тепловой насос.

Q MAX: Спецификация термоэлектрика. Это максимальная мощность, которую он может поглотить холодной пластиной.

Delta T MAX: Спецификация термоэлектрика. Это максимальный перепад температур, который может создать термоэлектрик между своими пластинами. Он указан в IMAX и VMAX и для определенной температуры «горячей» пластины.

I MAX и V MAX: Максимальные характеристики тока и напряжения термоэлектрика соответственно. Не превышайте эти условия эксплуатации.

Резистивный нагреватель: Обычно эти нагреватели гибкие с резистивным элементом, зажатым между двумя изоляторами. Материалы резистивного элемента и изоляторов сильно различаются в зависимости от области применения. Некоторым требуется питание переменного тока, а не постоянного тока, который вырабатывается обычным контроллером температуры. В резистивном нагревателе при протекании тока в любом направлении выделяется тепло; следовательно, активная функция охлаждения отсутствует.Охлаждение достигается за счет снижения тока до нуля и рассеивания тепла в окружающую среду. Стабильность обычно не так хороша, как та, которая достигается с помощью термоэлектрика, если только рабочая температура не превышает температуру окружающей среды.

Температура окружающей среды: Обычно это температура воздуха / условий окружающей среды вокруг нагрузки.

Отключить: Когда выходной ток отключен, все механизмы безопасности обычно устанавливаются на начальное состояние включения, и на термоэлектрический элемент подается только остаточный ток утечки.

DVM: Цифровой вольтметр, измеритель напряжения.

Амперметр: Измеритель, контролирующий ток.

ESD: Электростатический разряд. «Взрыв», который возникает при переходе по ковру и прикосновении к металлической ручке двери, является наиболее распространенным примером электростатического разряда. Лазерные диоды чувствительны к электростатическому разряду. «Взрыва», которого не чувствует человек, по-прежнему достаточно, чтобы повредить лазерный диод. При обращении с лазерным диодом или другим чувствительным к электростатическому разряду электронным оборудованием следует соблюдать соответствующие меры предосторожности.

Внутреннее рассеивание мощности: При линейном источнике тока часть мощности, передаваемой источником питания, идет на термоэлектрический или резистивный нагреватель, а часть используется в контроллере температуры. Максимальное внутреннее рассеивание мощности контроллера — это предел, при превышении которого возможно тепловое повреждение внутренних электронных компонентов. Проектирование системы контроля температуры включает выбор напряжения питания. Если для управления термоэлектриком с напряжением 6 В выбрано питание 28 В, на выходном каскаде регулятора температуры (или источнике тока) будет падать 22 В.Если драйвер работает на 1 А, внутренне рассеиваемая мощность будет V * I или 22 * ​​1 = 22 Вт. Если внутренняя мощность рассеивания составляет 9 Вт, компоненты источника тока будут перегреваться и необратимо повредятся. Wavelength предоставляет онлайн-калькуляторы безопасной рабочей зоны для всех компонентов и модулей, чтобы упростить выбор конструкции.

Соответствие напряжению: Источник тока имеет соответствующее падение напряжения на нем. Соответствующее напряжение — это напряжение источника питания за вычетом этого внутреннего падения напряжения.Это максимальное напряжение, которое может подаваться на термоэлектрический или резистивный нагреватель. Обычно указывается при полном токе.

Предел тока: В технических характеристиках термоэлектрического или резистивного нагревателя максимальный ток будет указан при температуре окружающей среды. Выше этого тока устройство может выйти из строя. При более высоких температурах это максимальное значение будет уменьшаться. Current Limit — это максимальный ток, который будет подавать источник тока. Предел тока можно установить ниже максимального термоэлектрического тока и использовать в качестве инструмента для минимизации внутреннего рассеивания мощности терморегулятора.При более высоком пределе тока термоэлектрик будет быстрее передавать больше тепла, поэтому время достижения температуры может быть уменьшено (если система управления оптимизирована, чтобы избежать перерегулирования и звона).

Нагрузка: Для регулятора температуры нагрузка состоит из регулятора температуры (термоэлектрического или резистивного нагревателя) и датчика температуры.

ACTUAL TEMP MON: Это аналоговое напряжение, пропорциональное сопротивлению датчика температуры. Функции перехода к сопротивлению представлены в отдельных таблицах данных на контроллеры.Для преобразования сопротивления в температуру используются передаточные функции из таблицы данных датчика. Его также можно назвать монитором ACT T или монитором температуры.

VSET: Это общий термин, используемый для обозначения входного сигнала удаленной уставки. V указывает на сигнал напряжения, в то время как SET указывает его цель: заданное значение системы управления. Его также можно назвать MOD, MOD IN или ANALOG IN.

Каковы типичные спецификации и как их интерпретировать для моего приложения?

В настоящее время каждый производитель проводит собственное тестирование, и стандарта для измерения не существует.После того, как вы определите решение для своего приложения, критически важно протестировать продукт в своем приложении, чтобы проверить его работу. Вот некоторые из определений, которые использует длина волны, и способы интерпретации спецификаций в вашем дизайне.

Входное сопротивление: Это указано для аналоговых входов напряжения, таких как VSET или MOD IN. Он используется для расчета силы тока, которую должен выдавать внешний генератор сигналов. Например, если VSET управляется цифро-аналоговым преобразователем с максимальным напряжением 5 В и входным сопротивлением 20 кОм, цифро-аналоговый преобразователь должен выдавать не менее 5 В / 20000 Ом или 0 Ом.25 мА.

Стабильность: Для регулятора температуры, насколько стабильной может быть система, обычно является критическим параметром. Испытания на длину волны с использованием термисторов, поскольку они обеспечивают максимальное изменение сопротивления на градус C. Испытательная нагрузка также хорошо спроектирована, с датчиком, расположенным рядом с управляемым устройством, и термоэлектрическим датчиком, теплоотводом надлежащего размера и компонентами, соединенными с помощью высококачественной термопастой, чтобы минимизировать тепловое сопротивление между ними. Стабильность указывается в градусах Кельвина или Цельсия.Типичная стабильность может достигать 0,001 ° C. Более подробное техническое примечание TN-TC02, описывающее тестирование, доступно в Интернете.

Диапазон рабочих температур: Электроника предназначена для правильной работы в указанном диапазоне температур. За пределами минимальной и максимальной температуры может произойти повреждение или измениться поведение. Рабочий диапазон, который определяет длина волны, связан со спецификацией максимального внутреннего рассеивания мощности. Выше определенной температуры окружающей среды (обычно 35 ° C или 50 ° C) максимальное внутреннее рассеивание мощности снижается до нуля при максимальной рабочей температуре.

Диапазон рабочего напряжения: В некоторых регуляторах температуры можно использовать два напряжения питания — одно для питания управляющей электроники (VDD), а второе для обеспечения более высокого напряжения согласования для термоэлектрического или резистивного нагревателя (VS). Обычно управляющая электроника работает при более низких напряжениях: от 3,3 до 5,5 В. Превышение этого напряжения может повредить элементы в секциях управления или питания. Источник тока (или выходной каскад) разработан для более высоких напряжений (например, 30 В для контроллеров температуры семейства PTC).Эту спецификацию необходимо рассматривать в сочетании с приводным током и мощностью, подаваемой на нагрузку, чтобы гарантировать, что конструкция не превышает спецификацию максимального внутреннего рассеивания мощности. Например, PTC5K-CH рассчитан на работу до 5 А и может принимать входное напряжение 30 В. Максимальная внутренняя рассеиваемая мощность составляет 60 Вт. Если 28 В используется для питания термоэлектрика, который падает на 4 В, 24 В будет падать на PTC5K-CH. При 24 В максимальный ток в пределах безопасного рабочего диапазона составляет менее 60/24 или 2.5 ампер. Использование большего значения тока приведет к перегреву компонентов выходного каскада и необратимому повреждению контроллера. Максимальные характеристики тока и напряжения связаны, а не достижимы независимо.

Монитор относительно фактической погрешности: Сигнал ACT T MON представляет собой аналоговое напряжение, пропорциональное сопротивлению датчика. Точность фактического сопротивления по отношению к измеренным значениям указана в отдельных технических паспортах драйвера. Для обеспечения этой точности в длине волны используется откалиброванное оборудование, отслеживаемое NIST.

Отдельное заземление монитора и питания: Одно заземление высокой мощности предназначено для подключения к источнику питания на любом контроллере температуры. Несколько слаботочных заземлений расположены среди сигналов монитора, чтобы минимизировать смещения и неточности. Несмотря на то, что заземления с высоким и низким током связаны внутри, для достижения наилучших результатов используйте заземление с низким током с любым монитором.

Линейные или импульсные блоки питания для компонентов и модулей: Линейные блоки питания относительно неэффективны и имеют большие размеры по сравнению с импульсными блоками питания.Однако они малошумные. Если шум критичен для вашей системы, вы можете попробовать импульсный источник питания, чтобы увидеть, влияет ли частота переключения на производительность в любом месте системы.

Thermal Runaway: Если термоэлектрик отводит тепло от устройства (охлаждает его до температуры ниже окружающей), это тепло должно отводиться из системы. Дополнительное тепло из-за неэффективности термоэлектрика также должно рассеиваться. Если конструкция радиатора подходящая, удаляется достаточно тепла, чтобы устройство могло работать при температуре ниже окружающей среды.Однако, если конструкция является предельной, тепло остается в нагрузке, а температура датчика повышается вместо того, чтобы оставаться на желаемой температуре. Система управления реагирует, пропуская больше охлаждающего тока через термоэлектрический элемент. Это приводит к увеличению количества тепла, выделяемого нагрузкой, и продолжающемуся повышению температуры датчика. Это называется «тепловым разгоном». Температура системы не контролируется, но определяется недостаточным отводом тепла в окружающую среду.

Wavelength разрабатывает регуляторы температуры и производит их на предприятии в Бозмане, штат Монтана, США.Чтобы просмотреть список текущих вариантов регуляторов температуры, щелкните здесь.

Полезных сайтов:

Что такое термоэлектрик?

Что такое термистор?

Внешние ссылки предназначены для справочных целей. Wavelength Electronics не несет ответственности за содержание внешних сайтов.

Что такое регуляторы температуры?

Регуляторы температуры являются одними из наиболее распространенных форм лабораторного оборудования с почти безграничным потенциалом для поддержки экспериментов в различных областях исследований.Их основная функция — контролировать тепловые условия образцов и поддерживать уровни в пределах заранее определенных или динамических температурных параметров. Этот процесс часто требует интеграции с различными видами оборудования, такими как датчики термопар, которые присоединяют регулятор температуры к внешнему нагревательному или охлаждающему элементу.

Несколько уровней лабораторного оборудования широко классифицируются под термином «контроль температуры», включая ручное управление с циферблатом и интуитивно понятные прецизионные регуляторы температуры.Каждый из них оборудован для выполнения процессов теплового мониторинга для различных приоритетных факторов.

В этой статье более подробно рассматриваются некоторые из доступных в настоящее время вариантов регуляторов температуры:

Ручные регуляторы температуры

Ручное управление температурой обычно компактно и надежно, занимая сравнительно небольшую площадь по сравнению с более продвинутыми элементами управления. Образцы резистивной нагрузки обычно измеряются с помощью ручных регуляторов температуры из-за легкого регулирования входных напряжений с помощью простого интерфейса циферблатов.Теплота образца напрямую зависит от входного напряжения, что позволяет исследователям соответственно контролировать температуру.

В то время как ручные регуляторы температуры редко подходят для приложений, где требуется малая степень точности для нескольких процессов, экономическая эффективность ручных регуляторов температуры не имеет себе равных.

Glas-Col предлагает широкий спектр ручных регуляторов температуры, включая блоки с таймером, которые работают с выходным напряжением до 240 В в повторяющихся циклах.

Базовые регуляторы температуры

Базовые регуляторы температуры обеспечивают уровень автоматизации процесса регулирования температуры без чрезмерного увеличения стоимости устройств. Эти приборы оснащены входами для термопар, что позволяет автоматически регулировать температуру до заданных параметров. Непосредственным преимуществом этих контроллеров является точный сбор тепловых данных по сравнению с расчетным измерением, основанным на входном напряжении.

Регуляторы температуры

Basic подходят для широкого спектра применений, уменьшая необходимость в микроуправлении экспериментами.Однако они обычно не рекомендуются для критических по температуре процессов.

Glas-Col предлагает установленный ассортимент базовых регуляторов температуры и аксессуаров для сборки индивидуальных систем контроля на месте.

Прецизионные регуляторы температуры

Прецизионные регуляторы температуры

обеспечивают высочайшую точность регулирования благодаря удобным цифровым дисплеям и чувствительным термодатчикам, способным контролировать температуру с точностью до +/- 1,0 ° C. Они имеют автоматическое отображение заданных значений температуры и процессов, чтобы обеспечить автоматический контроль температуры с исключительной степенью точности.

Прецизионные регуляторы

являются эталоном для современных регуляторов температуры, обеспечивая беспрецедентный уровень точности и простоту использования. Естественно, это еще и самый дорогой вариант.

Glas-Col предлагает широкий спектр прецизионных контроллеров температуры для различных спецификаций, включая несколько дисплеев и управляющих выходов.

Регуляторы температуры от Glas-Col

Glas-Col — ведущий поставщик лабораторного оборудования, призванного сделать научные процессы проще, безопаснее и точнее, чем когда-либо прежде.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *