Батарея какая: Какая батарея в смартфоне лучше?

Содержание

Какая батарея в смартфоне лучше?


На данный момент, производители выпускают смартфоны с Li-pol (литий-полимерный) или с Li-ion (литий-ионный) аккумулятором. По своей сути, для конечного потребителя смартфона, никаких различий между этими типами аккумуляторов нет. Они имеют одинаковый жизненный цикл, условия хранения или заряда.

Однако, на заре развития мобильной связи, широко использовались Ni-MH (никель-металлогидридный) аккумуляторы. Именно этот тип аккумулятора имел большую разницу с современными батареями при использовании телефона. Такая батарея имела особенности эксплуатации и требовала регулярного заряда-разряда батареи. При несоблюдении же правил заряда, батарея имела своеобразный «эффект памяти», сокращая рабочую ёмкость и, тем самым, сокращая часы эксплуатации смартфона.

К счастью, современные Li-pol / Li-ion батареи не имеют таких особенностей. Им не требуется полная разрядка ни при покупке, ни при дальнейшей эксплуатации. Заряжать телефоны с такими батареями можно в любой момент. А, из рекомендаций, можно отметить, что лучше не допускать частого и полного разряда батареи, также, как и не допускать перезаряда батареи, что увеличит её жизненный цикл.

При этом, в смартфонах последнего поколения, обладающих огромным количеством функций, способностей, качественными экранами, действительно важно иметь батарею большой ёмкости. К примеру, бренд Хайскрин всегда имеет в ассортименте мобильные телефоны с большой батареей. В 2020 можно обратить внимание на Highscreen Power Five Max 2 с батареей на 5000 мАч и на более функциональный смартфон Хайскрин Макс 3.

Именно от ёмкости аккумулятора зависит насколько часто пользователю нужно заряжать смартфон. А, так как гаджеты нуждаются в большом количестве энергии, то, аппараты с маленькой ёмкостью обычно работают не более суток. Смартфоны с большой батареей действительно объективная потребность нашего времени. Быть на связи очень важно, поэтому иметь гаджет с хорошей батареей очень актуально.

Официальный магазин мобильных телефонов Хайскрин
Каталог смартфонов Highscreen

Информация об аккумуляторных батареях ASUS

Жизненный цикл батареи

  1. Из-за химических свойств ионов лития емкость батареи постепенно уменьшается с течением времени. Это нормальное явление.
  2. Срок службы литий-ионной батареи составляет примерно 300-500 циклов. При нормальных условиях использования и температуре окружающей среды (25 ℃) литий-ионный аккумулятор должен нормально разряжаться и заряжаться в течение 300 циклов (или около одного года). После этого емкость аккумулятора падает до 80% от первоначальной.
  3. Снижение срока службы батареи зависит от конструкции системы, модели, энергопотребления системы, потребления программ и операционного программного обеспечения, а также настроек управления питанием. Высокие / низкие рабочие температуры и ненормальная работа могут привести к быстрому сокращению срока службы батареи на 60% или более за короткое время.

  1.  Скорость разряда аккумулятора зависит от программного обеспечения ноутбука или планшета и настроек управления питанием. Например, выполнение требовательных к вычислениям программ, таких как графическое программное обеспечение, игровое программное обеспечение и воспроизведение видео, потребляет больше энергии, чем выполнение обычного программного обеспечения для обработки текстов. Когда ноутбук с заряженным аккумулятором подключается к дополнительным устройствам USB или Thunderbolt извне, аккумулятор также разряжается быстрее.

 

 

Механизмы защиты аккумулятора

  1. Частая зарядка аккумулятора под высоким напряжением ускоряет ее старение. Чтобы продлить срок службы батареи, батарея поддерживает уровень заряда 90% -100% после полной зарядки, в этом диапазоне система может не заряжаться из-за механизмов защиты батареи.

*Емкость инициирования заряда батареи (%) обычно устанавливается между 90% -99%. Фактическое значение будет отличаться в зависимости от модели.

  1. Аккумуляторы, заряженные или хранящиеся при высоких температурах окружающей среды, могут повредиться и ускорить сокращение срока службы батареи. Когда температура батареи слишком высокая и аккумулятор перегревается, зарядная емкость батареи будет ограничена или прекращена совсем. Это часть механизмов защиты батареи системы.
  2. Несмотря на то, что устройство было выключено, а адаптер переменного тока удален, системе по-прежнему требуется небольшое энергопотребление, поэтому это нормальный сценарий, когда уровень заряда батареи все еще падает.

 

Износ аккумулятора

  1. Батареи по сути это расходные материалы. Литий-ионные аккумуляторы с непрерывными химическими реакциями естественным образом разряжаются и теряют емкость.
  2. После использования аккумулятора в течение некоторого времени, при определенных условиях аккумулятор может незначительно вздуться. Это не создаст проблем безопасности.
  3. Вздутые батареи должны быть заменены и выброшены должным образом, даже если они не влияют на безопасность. При замене вздувшихся батарей не выбрасывайте старую батарею в бытовые отходы. Обратитесь в местную службу поддержки ASUS для утилизации батарей.

 

Стандартный уход за аккумулятором

  1. Если ноутбук, мобильный телефон или планшет не будут использоваться в течение длительного времени, зарядите аккумулятор до 50%, выключите устройство и отсоедините источник питания переменного тока (адаптер). Подзаряжайте аккумулятор каждые три месяца до 50%, чтобы предотвратить повреждение аккумулятора из-за чрезмерной разрядки из-за длительного хранения без использования.
  2. Когда источник питания переменного тока постоянно используется для ноутбука, мобильных телефонов или планшетов, пользователь должен разряжать аккумулятор до 50% не реже одного раза в две недели, чтобы освободить аккумулятор от постоянного высокого напряжения, что может сократить срок его службы. Пользователи ноутбуков могут продлить срок службы батареи с помощью программного обеспечения ASUS Battery Health Charging.
  3. Наилучшими условиями хранения аккумуляторов являются температура окружающей среды от 10 до 35 ° C, поддержание заряда на уровне 50% и увеличение срока службы батареи с помощью программного обеспечения ASUS Battery Health Charging.
  4. Избегайте хранения батарей во влажной среде, которая может привести к увеличению скорости разряда батареи. Среда с более низкой температурой будет вредить внутренним химическим веществам батареи, в то время как батареи, хранящиеся при более высокой температуре, подвергаются риску взрыва.
  5. Не размещайте компьютер, мобильный телефон или аккумулятор рядом с радиаторами, каминами, печами, электронагревателями или другими источниками тепла выше 60 ℃ (140 ° F). Перегрев аккумулятора может привести к его взрыву или протечке, что может привести к возгоранию.
  6. Поскольку в ноутбуках используется встроенный аккумулятор, аккумулятор не будут получать питания, если компьютер не использовался или не заряжался, а затем время и настройки BIOS вернутся к значениям по умолчанию. Если вы не собираетесь использовать компьютер в течение длительного времени, заряжайте аккумулятор раз в месяц.

 

Оптимальные настройки Батареи

Держа адаптеры переменного тока подключенными к ноутбукам, сотовым телефонам или планшетам во время использования, аккумуляторы остаются слишком заряженными, что может сократить срок их службы. Чтобы защитить аккумулятор при таком использовании, пользователи ноутбука могут продлить срок его службы с помощью программного обеспечения ASUS Battery Health Charging.

Введение ASUS Battery Health Charging

https://www.asus.com/ru/support/FAQ/1032726/

Поставки моделей с 4 квартала 2017 содержат это приложение.

 

Условия гарантии на аккумуляторы ASUS

  1. ASUS заменит новую аккумуляторную батарею в следующих случаях (применяются условия гарантии https://www.asus.com/ru/support/Article/606/):
    • (a) батарея не заряжается;
    • (b) батарея вызывает самопроизвольное включение/выключение/перезагрузку ноутбука;
    • (c) батарея быстро разряжается;
    • (d) батарея не определяется системой;
    • (e) система неоднократно предупреждает пользователя о необходимости замены батареи;
    • (f) индикатор зарядки батареи работает некорректно;

 

Обзор аккумуляторов ASUS

Литий-ионные батареи

Преимущества литий-ионных аккумуляторов включают высокую плотность энергии, большую емкость, малый вес, длительный срок службы, отсутствие эффекта памяти и быструю зарядку. Они широко используются в потребительских товарах, таких как мобильные телефоны, ноутбуки и планшеты.

Как определить оставшийся срок службы (остаточный ресурс) аккумуляторной батареи (АКБ)?

Чтобы система бесперебойного питания не подвела в самый неподходящий момент, необходимо, чтобы все аккумуляторные батареи были в рабочем состоянии. Но как их проверить? Как убедиться, что установленные АКБ ещё не исчерпали свой остаточный ресурс? Как правильно оценить их оставшийся срок службы?

Строго говоря, самый правильный ответ вопрос, поставленный в такой форме – «никак». Ни один из приборов и методов не позволяет дать точный прогноз того, сколько еще проработает батарея и в какой именно момент она выйдет из строя. Причем касается это как обслуживаемых батарей (хотя в их отношении диапазон принимаемых мер несколько шире), так и необслуживаемых. При этом по всему миру обслуживаемые батареи используются все меньше, в то время как популярность необслуживаемых АКБ растет практически во всех областях применения.

Методом полного заряда/разряда батареи можно определить остаточную емкость аккумулятора в ампер-часах. Это достоверный метод, но даже он при однократном проведении не даст информации о том, сколько еще проработает батарея. Составить прогноз «времени дожития» можно только в том случае, если измерения проводятся на регулярной основе, их результаты сопоставляются между собой – т. е. оценивается

динамика изменений. Однако полный заряд/разряд – процедура весьма продолжительная, и проводить ее регулярно (особенно при значительном количестве батарей) вряд ли возможно.

Однократный краткосрочный тест тем более не дает достоверной информации об остаточном ресурсе. Говорить о точном определении остаточной емкости в этом случае вообще не приходится – слишком разные существуют варианты аккумуляторов, чтобы существовала единая методика определения этого параметра. Можно измерить напряжение, но как сделать выводы на основе этих показаний, если уже частично деградировавший элемент выдает такое же напряжение, что и соседние? Возникает вопрос, можно ли вообще что-либо сказать о текущем состоянии АКБ при помощи быстрых измерений, или остается примириться с тем, что со временем, неизвестно в какой момент батарея выйдет из строя и ее придется менять? А ведь последствия такого события могут оказаться очень тяжелыми. Для ряда объектов: ЦОДов, подстанций, аэропортов, предприятий нефтегазовой отрасли, энергетики, медицинских учреждений и других, работа которых должна быть бесперебойной – подобные аварии просто неприемлемы, их необходимо предотвращать, а не устранять последствия.

Существует несколько базовых стратегий в работе с АКБ:

  1. Менять батарею только тогда, когда она выйдет из строя или полностью утратит емкость. Средства на проверку состояния батарей не затрачиваются, однако весь риск неблагоприятных последствий в случае сбоя ложится на владельца объекта или предприятия. Потери от одного сбоя могут многократно превысить всю «экономию» на тестировании батарей.

  2. Менять батареи по истечении определенного времени эксплуатации, независимо от их состояния. Средства на проверочные мероприятия также не затрачиваются, однако остается риск сбоя, если батарея утратит рабочие свойства раньше ожидаемого срока. Кроме того, качественные батареи часто могут работать продолжительное время и после того, как заявленный производителем срок службы (гарантийный период) истек. При таком подходе даже исправные батареи будут изыматься из эксплуатации, вызывая неоправданный рост расходов.

  3. Проводить регулярное тестирование АКБ, идентифицируя батареи, которые демонстрируют начало деградации. Им заблаговременно заказывается замена, она производится тогда, когда скорость деградации увеличится, но до наступления сбоя дело не доходит.

Наиболее экономически целесообразный подход, используемый сегодня в Европе и США состоит в том, чтобы при помощи тестов, не занимающих много времени и не требующих больших затрат, регулярно (раз в квартал, полгода, год) измерять доступные параметры, документировать результаты, сопоставлять их и отслеживать ситуацию в динамике – каждый блок, каждую батарею. В этом случае по любой из батарей можно заметить момент, когда началась деградация. Пока процесс развивается медленно, за ним можно просто следить, продолжая эксплуатацию, и заменить АКБ тогда, когда свой основной ресурс она выработала, но еще не пришла в полную негодность. Фактически, это скорее организационные меры, чем технические – комплекс мероприятий, нацеленный на максимально полное использование ресурса батарей, при том, что риск аварий и, соответственно, негативных последствий минимизируется.

Как определить оставшийся срок службы АКБ исходя из внутреннего сопротивления?

Деградации подвержены любые батареи. Причины могут быть разными (повышенные температуры, истечение электролита, сульфатация в результате многократных перезарядок, понижение нагрузки и сеточная коррозия – в зависимости от типа и модели АКБ), но в любом случае это отражается на внутреннем сопротивлении элементов батареи. У штатно работающих батарей со временем из-за естественного износа внутреннее сопротивление начинает расти. Когда отклонение от базового уровня превышает 25%, батарею пора заменить (у некоторых батарей пороговый уровень выше – отклонение порядка 50% – но лучше проверить это значение по спецификациям производителя батареи). Существенное отклонение об нормы в меньшую сторону свидетельствует о явной неисправности, такую батарею необходимо заменить независимо от срока ее использования.

Строго говоря, полный импеданс включает в себя внутреннее сопротивление, индуктивную и реактивную составляющую. Однако с технологической точки зрения для оценки АКБ достаточно измерять только активную составляющую – внутреннее сопротивление адекватно отражает рабочее состояние батареи. Это вполне надежный индикатор деградации, к тому же на его измерение требуется всего несколько секунд. Подобные тесты не требуют лабораторной точности, но важно проводить их регулярно и сопоставлять результаты, полученные в разное время. По этому критерию можно быстро определить, годна батарея к дальнейшему использованию или нет. Для подобных измерений существует не так много приборов. Одни из самых популярных – семейство тестеров аккумуляторных батарей Fluke BT500 (модели BT510, BT520 и BT521).

Чтобы измерить внутреннее сопротивление тут используется 2 щупа. Приборы подают малый переменный ток, имеющий частоту 1000 Гц. Сила тока настолько мала, а частота подобрана таким образом, что измерение можно проводить прямо в ходе нагрузки, на запитываемое оборудование это никак не повлияет. Можно проводить тесты и без нагрузки. Прибор проводит измерение напряжения, производит расчет сопротивления и выводит результат на экран.

Поскольку внутреннее сопротивление исчисляется в миллиомах, для измерения используется 4-проводное подключение Кельвина, в отечественной электротехнической литературе более известное под названием двойного измерительного моста Томсона. 4 точки подключения обеспечиваются за счет конструкции щупов: каждый из них имеет двухконтактный наконечник, центральный контакт подпружинен и при надавливании утапливается внутрь. В результате каждый щуп соприкасается с поверхностью двумя контактами, реализуя 4-проводную схему подключения и обеспечивая более точное измерение внутреннего сопротивления батареи.

В зависимости от модели прибора и доступных аксессуаров возможно одновременное определение температуры на отрицательной клемме аккумуляторной батареи – для этого используется выносной щуп BTL21 со встроенным ИК-датчиком (см. таблицу «Функции и аксессуары», комплектация зависит от модели прибора). Все измерение занимает 4 секунды. Результаты выводятся на ЖК-дисплей тестера, сохраняются в памяти для последующей загрузки на ПК через порт USB и подготовки отчета при помощи входящего в комплект программного обеспечения.

Тесты проводятся быстро не только за счет скорости измерения самого прибора, но и благодаря наличию удобных щупов, к которым предусмотрены удлинители различного размера. Результаты можно не просто сохранять (в том числе автоматически), но и подразделять на группы в соответствии с количеством блоков и батарей в них, чтобы информация была представлена в четко структурированном виде. Скриншот показывает экран прибора при последовательном измерении: три батареи из 32 уже протестированы, их результаты сохранены, по четвертой выполняются измерения (результаты на экране) и будут сохранены по нажатию кнопки Save, остальные ячейки пусты для последующих измерений.

Затраты времени на измерительные процедуры для всех 100% аккумуляторных батарей на объекте не выходят за рамки разумного, в результате сопоставление полученных в разное время данных позволит определить, в каких батареях деградация только началась, а в каких достигла уровня, когда их необходимо заменить, не дожидаясь фатального сбоя.

При массовых измерениях наконечники щупов изнашиваются, но все компоненты и измерительные провода могут быть своевременно заменены на аналогичные. Можно заменять только наконечники с подпружиненными контактами. При замене тестового щупа необходимо провести калибровку нуля прибора, для этого в комплекте предусмотрена калибровочная пластина (кассета сопротивлений). Операция выполняется самим пользователем (в отличие от поверки, которая выполняется в сертифицированной организации. Приборы Fluke BT500 внесены в Государственный реестр средств измерений, на них есть методика поверки и сертификаты установленного образца. Межповерочный интервал – 1 год).
 

Можно изначально держать в запасе дополнительный комплект щупов, а также измерительные провода для режима мультиметра и (в зависимости от модели) токовые клещи. Эти аксессуары позволят дополнить измерения внутреннего сопротивления другими тестовыми функциями. Возможна оценка тока пульсации (присутствие переменной составляющей в постоянном напряжении более 5% может служить симптомом – высокое значение пульсации приводит к перегреву и потере энергии). Можно отслеживать падение напряжения при разряде (измерения проводятся многократно в ходе процесса разрядки).

Сравнительные возможности тестеров АКБ серии Fluke BT 500

 

Функции и аксессуары

Fluke BT510

Fluke BT520

Fluke BT521

Измерение внутреннего сопротивления (активной составляющей, мОм)

Измерение напряжения батареи

Многократное измерение напряжения в ходе разрядки

Измерение пульсирующего напряжения (переменная составляющая в постоянном напряжении)

Температура отрицательного полюса АКБ

 

 

Режим мультиметра

Режим однократных и последовательных измерений

Задание пороговых значений

Функция автоматического сохранения измерений

Просмотр памяти

Беспроводная связь

 

 

Интерактивный тестовый зонд BTL20 с ЖК-дисплеем и динамиком, длинные и короткие удлинители, без датчика температуры

 

 

Интерактивный тестовый зонд BTL21 с ЖК-дисплеем и динамиком, длинные и короткие удлинители, ИК-датчик температуры

 

 

Токовые клещи i420 переменного и постоянного тока

 

 

Калибровочная пластина (кассета сопротивлений)

Необходимо подчеркнуть – приборы Fluke BT500 не дают информацию об остаточной емкости батарей, в результатах не фигурируют ампер-часы. Принципиальная позиция производителя состоит в том, что точно определить емкость можно только при полном заряде/разряде АКБ, а при быстром измерении точно сделать это нельзя в принципе, поскольку конструкции батарей и проходящие в них физико-химические процессы неодинаковы. Внутреннее сопротивление напрямую от остаточной емкости не зависит. Однако оно служит надежным критерием, позволяющим отличить батареи, годные к дальнейшему использованию, от тех, которые необходимо заменить. При регулярном тестировании риск сбоя сводится к минимуму, а на объекте обеспечивается бесперебойное функционирование систем, в которых используются АКБ.

Стандарты проверки аккумуляторных батарей

Существует несколько стандартов, регламентирующих процедуры проверки АКБ в зависимости от их типа (IEEE 450 и IEEE 1188 для стационарных свинцово-кислотных батарей, IEEE 1106 для никель-кадмиевых, есть и другие), но в основных положениях они сходятся:

  1. При первоначальной установке батарей необходимо произвести испытания на разряд (проверка емкости батарей). Их может выполнять изготовитель на производственной площадке, предоставляя затем заказчику документацию, либо приемочные испытания проводятся на объекте. Чем детальнее предоставит информацию по батареям производитель, тем лучше – с этими данными можно будет сопоставлять результаты измерений, проведенных на различных этапах эксплуатации.

  2. В тот же период первоначальной установки проводится тестирование внутреннего сопротивления батарей, чтобы определить их базовые параметры. Данные фиксируются для каждой батареи, в каждом блоке, и хранятся в виде сводных отчетов для будущего сопоставления.

  3. Процедуры 1 и 2 необходимо повторять не реже 1 раза в 2 года для большинства систем, охватываемых гарантией – как правило, это одно из условий для продолжения действия гарантии.

  4. Для большинства АКБ тестирование внутреннего сопротивления следует проводить не реже, чем раз в квартал. В некоторых случаях, если так предусмотрено производителем, батареи проверяются по годичному циклу, но для большинства моделей и типов проверка имеет квартальный график. На объектах, работа которых особо критична, может быть принят свой внутренний регламент, предусматривающий тестирование чаще, каждые 1-2 месяца.

  5. В графике проверок учитывается заявленный производителем полный срок службы батарей: измерения должны проводиться как минимум по истечении каждых 25% срока службы АКБ.

  1. Если батарея выработала 85% от ожидаемого срока службы, необходимо не реже раза в год подвергать ее испытанию на остаточную емкость. С такой же периодичностью тест необходимо проводить, если емкость упала ниже 90% от заявленного производителем уровня (или разница в показаниях между предыдущими измерениями составила более 10%).

  2. Если проверка внутреннего сопротивления продемонстрировала большое расхождение с предыдущими результатами измерений, рекомендуется провести проверку остаточной емкости. При резком падении внутреннего сопротивления или превышении базового значения более чем на 25% батарею следует заменить.

  3. Результаты измерений необходимо сохранять в четком, упорядоченном виде. По отчетам отслеживается состояние каждой батареи, и если на протяжении последних измерений она демонстрирует признаки ускоряющейся деградации, АКБ подлежит замене. Грамотное ведение отчетов позволяет заранее заказать нужные наименования в нужном количестве, чтобы произвести замену вовремя.

Выводы

За состоянием аккумуляторных батарей необходимо следить. Делать это быстро и при этом получать содержательную информацию об остаточном ресурсе АКБ помогут специальные приборы, способные измерять внутреннее сопротивление, такие как семейство тестеров Fluke BT500.

См. также:

Материал подготовлен
техническими специалистами компании “СвязКомплект”.

Сведения об оригинальных аккумуляторах iPhone

Если вам необходимо заменить аккумулятор iPhone, важно, чтобы ремонт осуществлял сертифицированный технический специалист с применением оригинального аккумулятора Apple. Литий-ионные аккумуляторы — чувствительные компоненты, которые следует изготавливать и обслуживать с особым вниманием.

Замену аккумулятора должны осуществлять только технические специалисты, прошедшие обучение обслуживанию продукции Apple, которые используют оригинальные запасные части и инструменты Apple. Такие услуги предлагают авторизованные сервисные центры компании Apple и независимые поставщики услуг по ремонту, использующие оригинальные запасные части Apple. Не пытайтесь заменить аккумулятор iPhone самостоятельно. Необученные технические специалисты могут не соблюдать надлежащие процедуры ремонта и техники безопасности, что может стать причиной неправильной замены или ремонта. В результате аккумулятор может быть поврежден, а это вызовет его перегрев и может стать причиной травм.

В зависимости от своего местоположения вы можете заменить аккумулятор iPhone (по гарантии или без) в магазине Apple Store или авторизованном сервисном центре компании Apple, кроме того, можно отправить iPhone в ремонтный центр Apple. Независимые поставщики услуг ремонта* также предлагают оригинальные запасные части для негарантийной замены аккумулятора, выполняемой обученными техническими специалистами.

Обратитесь за обслуживанием аккумулятора.

Кроме того, если поставщик услуг использует неоригинальные аккумуляторы, есть вероятность, что:

  • установленный аккумулятор плохо спроектирован или изготовлен;
  • установлен ранее использованный аккумулятор;
  • установлен поврежденный аккумулятор;
  • установлен не подходящий для этой модели iPhone аккумулятор.

Любой из указанных выше случаев может стать причиной недостаточной емкости аккумулятора, ненадлежащей установки или проблем с производительностью. Использование неоригинальных аккумуляторов также может привести к неожиданному поведению после установки, обновления программного обеспечения устройства или во время зарядки. Использование неоригинальных аккумуляторов также может вызвать проблемы безопасности.

Оригинальные аккумуляторы спроектированы для работы с ОС iOS, включая предоставление сведений об уровне заряда и состоянии аккумулятора. Поэтому после ремонта с использованием неоригинального аккумулятора вы не сможете получать сведения о состоянии аккумулятора.

* Независимые поставщики услуг ремонта предлагают негарантийный ремонт iPhone и Mac. У них есть доступ к оригинальным запасным частям Apple, инструментам, программам обучения, руководствам по обслуживанию, средствам диагностики и ресурсам.

Какая батарейка стоит на материнской плате и как ее заменить — 4 нюанса

В ПК, а точнее, на материнке, есть специальная батарейка, что поддерживает работу CMOS-памяти ПК. Она редко выходит из строя, но такое иногда бывает. Сменить ее нетрудно: в статье есть инструкция.

Внимание! На заключительном этапе замены понадобится настраивать BIOS. Если опыта мало, лучше сразу обратиться к мастеру, чтобы ничего не испортить.

Для чего нужна батарейка в материнской плате

Батарейка для биоса (компьютерной подсистемы, которая располагается в материнке) нужна, чтобы запоминать параметры BIOS, даже если они меняются. Такое устройство отвечает за сохранность всех настроек даже при выключенном компе. Объем СМОС-памяти — всего 256 байт, поэтому она затрачивает минимум энергии: для питания ей хватает и одной батареечки.

Как выглядит батарейка

Внешне она похожа на монету или серебряную таблетку. Перепутать ее с другими элементами компьютера практически невозможно. Она стоит в специальном разъеме платы и надежно прижата фиксатором в виде защелки.

Читайте также: Что такое материнская плата в компьютере и на что она влияет: 5 поясняющих разделов

Как заменить батарейку

Зачем это нужно? Хотя на хранение настроек БИОСа уходит мало энергии, бывает, что батарейка садится. Выход — поменять ее. Иногда достать «кружочек» необходимо, чтобы сбросить параметры подсистемы.

Позаботиться о покупке нового элемента питания стоит заранее, как только появляются первые тревожные сигналы — сбивается время, дата или же всплывают сообщения об ошибках CMOS.

Совет: поскольку для нормального функционирования системы нужна идентичная батарейка, следует запомнить, сфотографировать или взять в магазин старый девайс.

Узнайте: Какую материнскую плату выбрать — 8 ключевых критериев

Необходимые инструменты

Запасаться комплектом разных приспособлений, чтобы заменить батарейку, не понадобится. Всего-то нужно:

  • новое питающее устройство;
  • пинцет или отвертка.

Также понадобится электростатический браслет или перчатки: даже небольшой разряд тока может повредить комплектующие.

Интересно: Какие разъемы есть на материнской плате и какие у них названия: ликбез в 4 разделах

Разборка корпуса

Как делать:

  1. обесточить системный блок, вытащив кабель из розетки;
  2. отключить БП, переведя кнопку в положение «OFF»;
  3. подождать минут десять, пока накопленное электричество рассеется, и приступать к этапу замены.

Расположено устройство на плате, как правило, внизу. Впрочем, место может отличаться на разных моделях. Но это не страшно: найти батарейку нетрудно, а другие компоненты отсоединять от «матери» и доставать из ПК не нужно.

Замена батарейки

Основная работа проделана. Перед извлечением батареи лучше записать настройки BIOS: если они случайно сбросятся, параметры будет легко восстановить. Теперь можно спокойно поменять питающий девайс:

  • Найти батарейку на материнском устройстве.
  • Нажать на фиксатор или отодвинуть защелку: все зависит от модели платы.
  • Снять старый «кругляшок».
  • Установить новый.
  • Собрать корпус, включить системник в сеть и запустить ПК.
  • Нажать клавишу для входа в БИОС, пока PC включается, и установить дату и время.

Примечание: если успеть заменить девайс за 5-7 сек, BIOS вряд ли собьется.

  • Если настройки слетели, нужно все вернуть обратно. Как уже было сказано выше, для этого надо предварительно переписать параметры.

Пригодится: Совместимость процессора и материнской платы — как подобрать комплектующие: гайд в 3 разделах

Какая батарейка в компьютере на материнской плате

В платы устанавливают марганцево-диоксидные литиевые модели диаметром 20 мм. Их основные отличия — емкость и толщина. Какие бывают питающие элементы — в таблице.

Для всех них нужно определенное напряжение. Диапазон составляет 2,75-3,3 Вольт. Батарейки способны служить от двух до пяти лет. Особого значения производитель девайса не имеет, поскольку на работу системы это не влияет.

Инструкция: Установка процессора на материнскую плату: 3 шага

Как видно, сменить батарейку — несложно. Надо только подобрать подходящую замену, подготовить инструменты и записать параметры БИОСа. Дальше — легко: вставить питающий компонент, настроить подсистему. Надо только действовать аккуратно.

Батареи-аккумуляторы для ноутбуков, нетбуков и ультрабуков

Москва+7 (495) 987-47-10
С-Петербург+7 (812) 363-48-68
Регионы РФ+7 (812) 363-48-68

аксессуары для:

весь каталог товаров (558 Кб)

Поиск по оригинальному номеру товара:

Оригинальный номер обозначается как: «P/N», «Part N», «TYPE», «Model NO» Результаты поиска

Поиск по модели ноутбука

Аккумуляторы для ноутбуков

  • Код товара: BT-005

    товар ожидается к поступлению

    2290

    **

    *

  • Код товара: P301.00007

    товар ожидается к поступлению

    840

    **

    *

  • Код товара: BT-1835

    товар ожидается к поступлению

    3790

    **

    *

  • Код товара: BT-2405

    5290

    товар в наличии

    **

    *

  • Код товара: TPB-135

    товар ожидается к поступлению

    3390

    **

    *

  • Код товара: BT-1557

    товар ожидается к поступлению

    5190

    **

    *

  • Код товара: BT-2921

    4390

    товар в наличии

    **

    *

  • Код товара: BT-926

    товар ожидается к поступлению

    3190

    **

    *

  • Код товара: BT-1946

    2890

    товар в наличии

    **

    *

  • Код товара: BT-500

    4690

    товар в наличии

    **

    *

  • Код товара: BT-511

    товар ожидается к поступлению

    2190

    **

    *

  • Код товара: BT-521

    2190

    товар в наличии

    **

    *

  • Код товара: BT-990

    2690

    товар в наличии

    **

    *

  • Код товара: BT-990H

    товар ожидается к поступлению

    3490

    **

    *

  • Код товара: BT-997

    2490

    товар в наличии

    **

    *

  • Код товара: BT-1903

    товар ожидается к поступлению

    2290

    **

    *

  • Код товара: BT-905

    2690

    товар в наличии

    **

    *

  • Батарея-аккумулятор 0C52863, 0C52864, 45N1145, 45N1147, 45N1151 для Lenovo ThinkPad L440, L540, T440p, T540p, W540, W541, усиленная (6600mAh)

    Код товара: BT-905H

    3590

    товар в наличии

    **

    *

  • Батарея-аккумулятор 0C52863, 0C52864, 45N1145, 45N1147, 45N1151 для Lenovo ThinkPad L440, L540, T440p, T540p, W540, W541, усиленная (7800mAh)

    Код товара: BT-905HH

    4190

    товар в наличии

    **

    *

  • Код товара: BT-1952

    5090

    товар в наличии

    **

    *

вход в магазин

выход

  • ОТДЕЛ ТОВАРОВ ДЛЯ НОУТБУКОВ

    Аккумуляторы
  • ОТДЕЛ ТОВАРОВ ДЛЯ НОУТБУКОВ

    Блоки питания
  • ОТДЕЛ ТОВАРОВ ДЛЯ НОУТБУКОВ

    Автоадаптеры
  • ОТДЕЛ ТОВАРОВ ДЛЯ НОУТБУКОВ

    Универсальные аккумуляторы
  • ОТДЕЛ ТОВАРОВ ДЛЯ НОУТБУКОВ

    Универсальные блоки питания
  • ОТДЕЛ ТОВАРОВ ДЛЯ НОУТБУКОВ

    ЖК матрицы
  • ОТДЕЛ ТОВАРОВ ДЛЯ НОУТБУКОВ

    Клавиатуры
  • ОТДЕЛ ТОВАРОВ ДЛЯ СМАРТФОНОВ / КПК / IPHONE

    Аккумуляторы
  • ОТДЕЛ ТОВАРОВ ДЛЯ СМАРТФОНОВ / КПК / IPHONE

    Зарядные устройства
  • ОТДЕЛ ТОВАРОВ ДЛЯ СМАРТФОНОВ / КПК / IPHONE

    Автоадаптеры
  • ОТДЕЛ ТОВАРОВ ДЛЯ СМАРТФОНОВ / КПК / IPHONE

    Универсальные аккумуляторы
  • ОТДЕЛ ТОВАРОВ ДЛЯ ПЛАНШЕТОВ / IPAD

    Зарядные устройства
  • ОТДЕЛ ТОВАРОВ ДЛЯ ПЛАНШЕТОВ / IPAD

    Автоадаптеры
  • ОТДЕЛ ТОВАРОВ ДЛЯ ФОТО- И ВИДЕОТЕХНИКИ

    Аккумуляторы
  • ОТДЕЛ ТОВАРОВ ДЛЯ ФОТО- И ВИДЕОТЕХНИКИ

    Зарядные устройства
  • ОТДЕЛ ТОВАРОВ ДЛЯ ИГРОВЫХ КОНСОЛЕЙ

    Зарядные устройства
  • ОТДЕЛ ТОВАРОВ ДЛЯ ИГРОВЫХ КОНСОЛЕЙ

    Автоадаптеры
  • ОТДЕЛ ТОВАРОВ ДЛЯ ЭЛЕКТРОИНСТРУМЕНТОВ

    Аккумуляторы
  • ОТДЕЛ ТОВАРОВ ДЛЯ ЭЛЕКТРОИНСТРУМЕНТОВ

    Зарядные устройства
  • ОТДЕЛ ТОВАРОВ ДЛЯ ЖК МОНИТОРОВ

    Блоки питания
  • ОТДЕЛ ТОВАРОВ ДЛЯ АВТОМОБИЛЕЙ

    Инверторы

ОТДЕЛ ТОВАРОВ ДЛЯ НОУТБУКОВ

Автоадаптеры

Заряжать или не заряжать? Как продлить жизнь батареи вашего ноутбука

  • Испаноязычная служба Би-би-си
  • Mundo

Автор фото, Getty Images

Почти все пользователи ноутбуков время от времени задаются вопросом: как продлить жизнь батареям своих компьютеров или по меньшей мере избежать их преждевременной разрядки?

Конечно, любая батарея рано или поздно приходит в негодность, однако многие из нас задумывались о том, как следует пользоваться ноутбуком, чтобы его батарея как можно дольше могла сохранять энергию и подпитывать любимый компьютер.

Нужно ли держать батареи все время заряженными на 100% или же подключать и отключать по мере изменения уровня заряда?

Несколько экспертов, опрошенных Испаноязычной службой Би-би-си Mundo, дали свои советы по использованию батарей, большинство из которых сделаны из лития.

Здоровый заряд

«Технология батарей улучшается с каждым новым поколением. Еще 10 лет назад эффективность батарей ноутбуков начинала падать после пары сотен циклов подзарядки», — говорит глава технологического отдела компании Lenovo в Ирландии и Великобритании Эшли Рольф.

Сегодня же срок жизни батарей составляет в среднем от трех до пяти лет, и за это время можно совершить от 500 до 1000 циклов подзарядки.

«Мы привыкли, чтобы батарея давала максимальное количество энергии после каждой подзарядки и при этом работала от трех до пяти лет», — говорит исследователь технологий из Северо-Западного университета в Чикаго Кент Гриффит.

Как же достичь такого баланса?

Держать ноутбуки все время на 100% заряженными — это нормальная и безопасная практика, отмечает Рольф. Однако это не самый оптимальный режим.

Автор фото, Getty Images

Подпись к фото,

Многие предпочитают постоянно держать ноутбук подключенным к сети

Ноутбуки Lenovo и других компаний используют сенсоры и другие контрольные функции, чтобы уберечь батарею от перенапряжения и перегрева, объясняет эксперт, при этом отмечая, что постоянное удержание батареи заряженной на 100% несколько уменьшает срок ее жизни.

С этим соглашается и главный инженер Lenovo Фил Джейкс. «Мы обнаружили, что в последнее время из-за более высокой плотности энергии батареи приходят в негодность намного быстрее, если они остаются полностью заряженными, особенно при более высоких температурах», — говорит он.

Автор фото, Getty Images

Подпись к фото,

Эксперты советуют ограничивать заряд ноутбука до 80%

«Стопроцентный заряд — это самое тяжелое состояние батареи, поскольку она находится под максимальным напряжением», — объясняет Кент Гриффит.

Компания HP также не рекомендует постоянно оставлять портативные электронные устройства подключенными к переменному току.

«Большинство современных батарей построены по технологии, которая позволяет им избегать перегрузки, когда уровень заряда достигает 100%», — объясняют в компании.

Однако эта же технология не уберегает от того, что высокий уровень заряда создает в батарее дополнительное напряжение, которое со временем может снизить срок ее службы, предупреждают эксперты HP.

По словам Гриффита, если держать батарею заряженной не на 100%, то она точно прослужит дольше.

Эксперты сходятся во мнении, что необходимо ограничивать время, в течение которого ваш ноутбук полностью заряжен, или же заряжать его не на 100%, а на 80%.

«С технической точки зрения батареи чувствуют себя более «здоровыми» при 50-процентной зарядке, в то время как при 0% и при 100% они находятся под максимальным напряжением. Специалисты советуют держать их на уровне от 20% до 80%», — говорит Рольф.

Хотя ограничение заряда до 80% является наилучшим для жизни батареи, почти столь же эффективным будет лимит в 90 или 95%, советует Джейкс.

Компания Microsoft также предупреждает на своем сайте, что у ноутбуков модели Surface батареи с постоянно высоким уровнем заряда быстрее теряют свою энергию.

«Вы можете увеличить срок эксплуатации батареи, если не будете держать ваш ноутбук подключенным к току в течение долгого времени. Если же вы постоянно держите устройство подключенным, то рекомендуем вам использовать режим ограничения заряда батареи», — советуют в Microsoft.

Автор фото, Getty Images

Подпись к фото,

Если у вас нет доступа к розеткам, то лучше заранее зарядить ноутбук на 100%

Аналогичные рекомендации дают и компании Lenovo и HP.

«Если вы хотите, чтобы батарея прожила дольше, то сделайте так, чтобы каждый цикл подзарядки давал вам чуть меньше энергии (80%, а не 100%), и таким образом ваша батарея сможет пережить больше циклов подзарядки», — резюмирует Гриффит.

В целом речь идет о том, чтобы установить баланс между тем, сколько времени работает батарея после подзарядки, и тем, сколько циклов она сможет выдержать, говорит эксперт.

Режим для ноутбука

Все эти рекомендации, однако, не обязательно означают, что вы всегда должны отключать ноутбук от сети сразу после достижения стопроцентного заряда.

«Все ноутбуки имеют контрольный механизм для защиты батарей от перенапряжения. Однако можно увеличить срок их службы, сохраняя заряд на 80%», — говорит Рольф. Но в то же время, по его словам, сегодня батареи работают так долго, что большинству пользователей вообще не стоит волноваться.

«Современные батареи настолько хороши, что зачастую они работают дольше, чем сам ноутбук», — отмечает эксперт.

Наконец, Рольф рекомендует подумать о том, как вы используете свой ноутбук: будет ли он постоянно подключен к розетке или же вам придется подолгу обходиться без подзарядки. Во втором случае рекомендуется носить его полностью заряженным.

«Если вы большую часть времени сидите в своем кабинете, то установите лимит на зарядку, — советует он. — Однако если вы постоянно находитесь в разъездах, то заряжайте его на 100% и не беспокойтесь об этом!»

Как работает аккумулятор — Любопытно

Представьте себе мир без батарей. Все те портативные устройства, от которых мы так зависим, были бы настолько ограничены! Мы сможем доставить наши ноутбуки и телефоны настолько далеко, насколько это досягаемо для их кабелей, что сделает это новое работающее приложение, которое вы только что загрузили на свой телефон, практически бесполезным.

К счастью, у нас есть батарейки. Еще в 150 г. до н.э. в Месопотамии парфянская культура использовала устройство, известное как багдадская батарея, сделанное из медных и железных электродов с уксусом или лимонной кислотой.Археологи считают, что на самом деле это не батареи, а в основном они использовались для религиозных церемоний.

Изобретение батареи в том виде, в котором мы ее знаем, приписывают итальянскому ученому Алессандро Вольта, который собрал первую батарею, чтобы доказать свою точку зрения другому итальянскому ученому, Луиджи Гальвани. В 1780 году Гальвани показал, что лапы лягушек, подвешенных на железных или латунных крючках, подергиваются при прикосновении к зонду из другого металла. Он считал, что это было вызвано электричеством из тканей лягушек, и называл это «животным электричеством».

Луиджи Гальвани обнаружил, что лапы лягушек, подвешенных на латунных крючках, дергались, когда их ткнули зондом из другого металла. Он думал, что эта реакция была вызвана «животным электричеством» внутри лягушки. Источник изображения: Луиджи Гальвани / Wikimedia Commons.

Вольта, первоначально впечатленный открытиями Гальвани, пришел к выводу, что электрический ток исходит от двух разных типов металла (крючки, на которых висели лягушки, и другой металл зонда) и просто передается через них, а не через них. из тканей лягушек.Он экспериментировал со стопками слоев серебра и цинка, перемежаемых слоями ткани или бумаги, пропитанной соленой водой, и обнаружил, что электрический ток действительно течет через провод, приложенный к обоим концам стопки.

Батарея Алессандро Вольта: куча цинковых и серебряных листов, перемеженных тканью или бумагой, пропитанной соленой водой. Представьте, что вы используете это для питания вашего телефона. Источник изображения: Луиджи Кьеза / Wikimedia Commons.

Volta также обнаружил, что, используя различные металлы в сваях, можно увеличить количество напряжения.Он описал свои открытия в письме Джозефу Бэнксу, тогдашнему президенту Лондонского королевского общества, в 1800 году. Это было довольно большое дело (Наполеон был весьма впечатлен!), И его изобретение принесло ему устойчивое признание в честь «вольта». ‘(мера электрического потенциала), названная в его честь.

Я сам, шутя в сторону, поражен тем, как мои старые и новые открытия … чистого и простого электричества, вызванного контактом металлов, могли вызвать такое волнение. Алессандро Вольта

Так что же именно происходило с этими слоями цинка и серебра и с дрожащими лягушачьими лапами?

Химия батареи

Батарея — это устройство, которое накапливает химическую энергию и преобразует ее в электричество.Это известно как электрохимия, а система, лежащая в основе батареи, называется электрохимическим элементом. Батарея может состоять из одной или нескольких (как в оригинальной кучке Вольты) электрохимических ячеек. Каждая электрохимическая ячейка состоит из двух электродов, разделенных электролитом.

Итак, откуда электрохимический элемент получает электричество? Чтобы ответить на этот вопрос, нам нужно знать, что такое электричество. Проще говоря, электричество — это тип энергии, производимый потоком электронов.В электрохимической ячейке электроны образуются в результате химической реакции, которая происходит на одном электроде (подробнее об электродах ниже!), А затем они перетекают на другой электрод, где расходуются. Чтобы понять это должным образом, нам нужно внимательнее изучить компоненты клетки и то, как они собраны вместе.

Электроды

Чтобы создать поток электронов, вам нужно где-то, чтобы электроны текли с из , и где-то электроны текли с по .Это электроды ячейки. Электроны текут от одного электрода, называемого анодом (или отрицательным электродом), к другому электроду, называемому катодом (положительный электрод). Обычно это разные типы металлов или другие химические соединения.

В котле Вольта анодом служил цинк, от которого электроны текли по проволоке (при подключении) к серебру, которое было катодом батареи. Он сложил много этих ячеек вместе, чтобы получилась общая куча, и поднял напряжение.

Но откуда анод вообще берет все эти электроны? И почему они так счастливы, что их отправили в веселый путь к катоду? Все сводится к химии, происходящей внутри клетки.

Нам нужно понять несколько химических реакций. На аноде электрод вступает в реакцию с электролитом, в результате чего образуются электроны. Эти электроны накапливаются на аноде. Между тем, на катоде одновременно происходит другая химическая реакция, которая позволяет этому электроду принимать электроны.

Технический химический термин, обозначающий реакцию, которая включает обмен электронами, — это реакция окисления-восстановления, обычно называемая окислительно-восстановительной реакцией. Вся реакция может быть разделена на две половинные реакции, и в случае электрохимической ячейки одна полуреакция происходит на аноде, а другая — на катоде. Уменьшение — это усиление электронов, и это то, что происходит на катоде; мы говорим, что катод восстанавливается во время реакции. Окисление — это потеря электронов, поэтому мы говорим, что анод окисляется.

Каждая из этих реакций имеет определенный стандартный потенциал. Думайте об этой характеристике как о способности / эффективности реакции либо производить, либо поглощать электроны — ее силу в электронном перетягивании каната.

  • Стандартные потенциалы для полуреакций

    Ниже приведен список половинных реакций, которые включают высвобождение электронов из чистого элемента или химического соединения. Рядом с реакцией указано число (E 0 ), которое сравнивает силу электрохимического потенциала реакции с силой готовности водорода расстаться со своим электроном (если вы посмотрите вниз по списку, вы увидите, что водородная полуреакция имеет нулевое значение E 0 ).E 0 измеряется в вольтах.

    Причина, по которой этот список настолько интересен, заключается в том, что если вы выберете две реакции из списка и объедините их в электрохимическую ячейку, значения E 0 скажут вам, в каком направлении будет протекать общая реакция: реакция с более отрицательной реакцией. Значение E 0 отдает свои электроны другой реакции, и это определяет анод и катод вашей ячейки. Разница между двумя значениями E 0 говорит вам об электрохимическом потенциале вашей ячейки, который в основном представляет собой напряжение ячейки.

    Итак, если вы возьмете литий и фторид и сумеете объединить их, чтобы сделать элемент батареи, у вас будет самое высокое напряжение, теоретически достижимое для электрохимического элемента. Этот список также объясняет, почему в котле Вольта цинк был анодом, а серебро — катодом: полуреакция цинка имеет более низкое (более отрицательное) значение E 0 (-0,7618), чем полуреакция серебра (0,7996). .

    Источник: UC Davis ChemWiki

Любые два проводящих материала, которые вступают в реакцию с разными стандартными потенциалами, могут образовывать электрохимическую ячейку, потому что более сильный из них сможет забирать электроны у более слабого.Но идеальным выбором для анода был бы материал, который вызывает реакцию со значительно более низким (более отрицательным) стандартным потенциалом, чем материал, который вы выбираете для своего катода. В итоге мы получаем электроны, притягивающиеся к катоду от анода (и анод не очень сильно пытается бороться), и, когда у нас есть легкий путь, чтобы добраться туда — проводящий провод, мы можем использовать их энергию для обеспечения электрического питание нашего фонарика, телефона или чего-то еще.

Разница в стандартном потенциале между электродами как бы равна силе, с которой электроны перемещаются между двумя электродами.Это известно как общий электрохимический потенциал ячейки, и он определяет напряжение ячейки. Чем больше разница, тем больше электрохимический потенциал и выше напряжение.

Чтобы увеличить напряжение аккумулятора, у нас есть два варианта. Мы могли бы выбрать для наших электродов другие материалы, которые придадут ячейке больший электрохимический потенциал. Или мы можем сложить несколько ячеек вместе. Когда элементы объединяются определенным образом (последовательно), это оказывает аддитивное влияние на напряжение батареи.По сути, силу, с которой электроны движутся через батарею, можно рассматривать как общую силу, когда они движутся от анода первого элемента на всем пути, сколько бы ячеек ни содержала батарея, к катоду последнего элемента.

Когда элементы объединяются другим способом (параллельно), это увеличивает возможный ток батареи, который можно рассматривать как общее количество электронов, протекающих через элементы, но не ее напряжение.

Электролит

Но электроды — это всего лишь часть батареи.Помните обрывки бумаги Вольты, пропитанные соленой водой? Соленая вода была электролитом, еще одной важной частью картины. Электролит может быть жидкостью, гелем или твердым веществом, но он должен обеспечивать движение заряженных ионов.

Электронов имеют отрицательный заряд, и поскольку мы посылаем поток отрицательных электронов по нашей цепи, нам нужен способ уравновесить это движение заряда. Электролит обеспечивает среду, через которую могут протекать положительные ионы, уравновешивающие заряд.

Поскольку химическая реакция на аноде производит электроны, для поддержания баланса нейтрального заряда на электроде также производится соответствующее количество положительно заряженных ионов. Они не проходят по внешнему проводу (только для электронов!), А попадают в электролит.

В то же время катод должен также уравновешивать отрицательный заряд электронов, которые он принимает, поэтому реакция, которая здесь происходит, должна втягивать положительно заряженные ионы из электролита (альтернативно, он также может высвобождать отрицательно заряженные ионы из электрода в электролит. электролит).

Итак, в то время как внешний провод обеспечивает путь для потока отрицательно заряженных электронов, электролит обеспечивает путь для переноса положительно заряженных ионов, чтобы уравновесить отрицательный поток. Этот поток положительно заряженных ионов так же важен, как и электроны, обеспечивающие электрический ток во внешней цепи, которую мы используем для питания наших устройств. Роль балансировки заряда, которую они выполняют, необходима для поддержания протекания всей реакции.

Так вот, если бы все ионы, высвобожденные в электролит, могли полностью свободно перемещаться через электролит, они в конечном итоге покрыли бы поверхности электродов и забили бы всю систему.Таким образом, в клетке обычно есть какой-то барьер, чтобы этого не произошло.

При использовании батареи возникает ситуация, когда происходит непрерывный поток электронов (через внешнюю цепь) и положительно заряженных ионов (через электролит). Если этот непрерывный поток остановлен — если цепь разомкнута, например, когда ваш фонарик выключен — поток электронов остановлен. Заряды будут накапливаться, и химические реакции, приводящие в движение аккумулятор, прекратятся.

По мере использования батареи и протекания реакций на обоих электродах возникают новые химические продукты.Эти продукты реакции могут создавать своего рода сопротивление, которое может помешать продолжению реакции с такой же эффективностью. Когда это сопротивление становится слишком большим, реакция замедляется. Электронное перетягивание каната между катодом и анодом также теряет свою силу, и электроны перестают течь. Аккумулятор медленно разряжается.

Зарядка аккумулятора

Некоторые распространенные батареи предназначены только для одноразового использования (так называемые первичные или одноразовые батареи).Электроны перемещаются от анода к катоду в одну сторону. Либо их электроды истощаются по мере того, как они выделяют свои положительные или отрицательные ионы в электролит, либо накопление продуктов реакции на электродах препятствует продолжению реакции, и это делается и вытирается пыль. Батарея оказывается в мусорном ведре (или, надеюсь, на переработку, но это уже другая тема Nova).

Но. Изящная вещь в этом потоке ионов и электронов, который имеет место в некоторых типах батарей с соответствующими материалами электродов, заключается в том, что он также может двигаться в обратном направлении, возвращая нашу батарею в исходную точку и давая ей совершенно новую жизнь. .Подобно тому, как батареи изменили способ использования различных электрических устройств, аккумуляторные батареи еще больше изменили полезность этих устройств и их продолжительность жизни.

Когда мы подключаем почти разряженную батарею к внешнему источнику электричества и отправляем энергию обратно в батарею, происходит обратная химическая реакция, которая произошла во время разряда. Это отправляет положительные ионы, выпущенные из анода, в электролит, обратно к аноду, а электроны, которые катод принимает, также обратно к аноду.Возврат как положительных ионов, так и электронов обратно в анод подготавливает систему, так что она снова готова к работе: ваша батарея заряжена.

Однако процесс не идеален. Замена отрицательных и положительных ионов электролита обратно на соответствующий электрод при перезарядке батареи не такая аккуратная и не такая хорошо структурированная, как электрод вначале. Каждый цикл зарядки приводит к еще большему ухудшению состояния электродов, а это означает, что аккумулятор со временем теряет производительность, поэтому даже аккумуляторные батареи не работают вечно.

В течение нескольких циклов зарядки и разрядки форма кристаллов аккумулятора становится менее упорядоченной. Это усугубляется, когда аккумулятор разряжается / заряжается с высокой скоростью — например, если вы едете на электромобиле с большой скоростью, а не с постоянной скоростью. Высокоскоростное переключение приводит к тому, что кристаллическая структура становится более неупорядоченной, что приводит к менее эффективной батарее.

Эффект памяти и саморазряд

Почти, но не полностью обратимые реакции разряда и перезарядки также способствуют так называемому «эффекту памяти».Когда вы перезаряжаете некоторые типы аккумуляторных батарей, не разрядив их сначала, они «запоминают», где находились в предыдущих циклах разрядки, и не перезаряжаются должным образом.

В некоторых элементах это вызвано тем, как металл и электролит реагируют с образованием соли (и тем, как эта соль затем снова растворяется и металл заменяется на электродах при перезарядке). Мы хотим, чтобы наши клетки имели красивые, однородные, маленькие кристаллы соли, покрывающие идеальную металлическую поверхность, но это не то, что мы получаем в реальном мире! Некоторые кристаллы образуются очень сложно, а некоторые металлы откладываются во время перезарядки, поэтому некоторые типы батарей имеют больший эффект памяти, чем другие.Дефекты в основном зависят от первоначального состояния заряда батареи, температуры, напряжения заряда и тока зарядки. Со временем недостатки в одном цикле зарядки могут вызвать то же самое в следующем цикле зарядки и так далее, и наша батарея накапливает некоторые плохие воспоминания. Эффект памяти силен для некоторых типов элементов, таких как батареи на никелевой основе. Другие типы, такие как литий-ионные, не страдают этой проблемой.

Другой аспект аккумуляторных батарей заключается в том, что химический состав, делающий их перезаряжаемыми, также означает, что они имеют более высокую тенденцию к саморазряду.Это когда внутренние реакции происходят внутри аккумуляторного элемента, даже когда электроды не подключены через внешнюю цепь. Это приводит к тому, что клетка со временем теряет часть своей химической энергии. Высокая скорость саморазряда серьезно ограничивает срок службы аккумуляторов — и приводит к их разрядке во время хранения.

Литий-ионные аккумуляторы в наших мобильных телефонах имеют довольно хорошую скорость саморазряда около 2–3 процентов в месяц, и наши свинцово-кислотные автомобильные аккумуляторы также довольно разумны — они, как правило, теряют 4–6 процентов. месяц.Никелевые батареи теряют около 10–15 процентов своего заряда в месяц, что не очень хорошо, если вы планируете хранить фонарик в течение всего сезона, когда он вам не нужен! Неперезаряжаемая щелочная батарея теряет около 2–3% своего заряда в год.

Напряжение, ток, мощность, емкость… в чем разница?

Все эти слова в основном описывают мощность батареи, не так ли? Ну вроде как.Но все они несколько разные.

Напряжение = сила, при которой реакция, приводящая в движение аккумулятор, проталкивает электроны через элемент. Это также известно как электрический потенциал и зависит от разницы потенциалов между реакциями, которые происходят на каждом из электродов, то есть от того, насколько сильно катод оттянет электроны (через цепь) от анода. Чем выше напряжение, тем больше работы может совершить то же количество электронов.

Ток = количество электронов, которые проходят через любую точку цепи в данный момент времени.Чем выше ток, тем больше работы он может выполнять при том же напряжении. Внутри ячейки ток можно также рассматривать как количество ионов, проходящих через электролит, умноженное на заряд этих ионов.

Мощность = напряжение x ток. Чем выше мощность, тем быстрее батарея может работать — это соотношение показывает, как напряжение и ток важны для определения того, для чего подходит батарея.

Емкость = мощность батареи как функция времени, которая используется для описания продолжительности времени, в течение которого батарея может обеспечивать питание устройства.Аккумулятор большой емкости сможет проработать более длительный период, прежде чем разрядится / разрядится. У некоторых батарей есть небольшая печальная особенность — если вы слишком быстро попытаетесь извлечь из них слишком много энергии, химические реакции не успеют поспеть, и емкость станет меньше! Итак, мы всегда должны быть осторожны, когда говорим о емкости аккумулятора, и помнить, для чего он будет использоваться.

Еще один популярный термин — «плотность энергии». Это количество энергии, которое устройство может удерживать на единицу объема, другими словами, сколько энергии вы получите за свои деньги с точки зрения мощности по сравнению сразмер. В случае с батареей, как правило, чем выше плотность энергии, тем лучше, поскольку это означает, что батарея может быть меньше и компактнее, что всегда является плюсом, когда вам нужно заряжать то, что вы хотите держать в кармане. Для электромобилей это даже плюс — аккумулятор должен как-то влезать в машину!

Для некоторых приложений, таких как хранение электроэнергии на возобновляемых электростанциях, таких как ветряная или солнечная электростанция, высокая плотность энергии не является большой проблемой, поскольку в них, скорее всего, будет достаточно места для хранения батарей.Основная цель такого использования — просто хранить как можно больше электроэнергии, как можно безопаснее и дешевле.

Почему так много типов?

Ряд материалов (раньше это были просто металлы) можно использовать в качестве электродов в батарее. За прошедшие годы было опробовано много-много различных комбинаций, но лишь немногие из них действительно прошли дистанцию.Но зачем вообще использовать разные комбинации металлов? Если у вас есть пара металлов, которые хорошо работают вместе в качестве электродов, зачем возиться с другими?

Различные материалы имеют разные электрохимические свойства, поэтому они дают разные результаты, когда вы соединяете их в аккумуляторном элементе. Например, некоторые комбинации будут производить высокое напряжение очень быстро, но затем быстро падают, не в состоянии поддерживать это напряжение в течение длительного времени. Это хорошо, если вам нужно произвести, скажем, внезапную вспышку света, такую ​​как вспышка фотоаппарата.

Другие комбинации будут производить только тонкую струйку тока, но они будут поддерживать эту струю на века. Например, нам не нужен большой ток для питания детектора дыма, но мы хотим, чтобы наши детекторы дыма работали долгое время.

Еще одна причина для использования различных комбинаций металлов заключается в том, что часто два или более аккумуляторных элемента необходимо уложить в стопку для получения необходимого напряжения, и оказывается, что некоторые комбинации электродов складываются вместе намного удобнее, чем другие комбинации.Например, литий-железо-фосфатные батареи (тип литий-ионных аккумуляторов), используемые в электромобилях, складываются вместе для создания систем высокого напряжения (100 или даже более вольт), но вы никогда не сделаете этого с теми батареями NiCad Walkman, которые имеют горячий!

Наши различные потребности с течением времени привели к разработке огромного количества типов батарей. Чтобы узнать больше о них и о том, что ждет аккумулятор в будущем, ознакомьтесь с другими нашими темами о Nova.

Эта тема является частью нашей серии из четырех статей об аккумуляторах.Для дальнейшего чтения ознакомьтесь с типами аккумуляторов, литий-ионных аккумуляторов и аккумуляторов будущего.

Типы аккумуляторов — Любопытные

Наши старые друзья

Свинцово-кислотный

Когда в последний раз вам приходилось вытаскивать кривошипную рукоятку, вставлять ее в коленчатый вал вашего автомобиля и провернуть, чтобы двигатель заработал? Никогда? Это потому, что у нас есть свинцово-кислотные аккумуляторные батареи, подключенные к двигателям наших автомобилей, которые обеспечивают ту мощность, которая необходима двигателю для запуска.Их изобрел Гастон Планте в 1859 году.

Свинцово-кислотные аккумуляторы обычно используются для запуска автомобильных двигателей. Источник изображения: Стив Рейнуотер / Flickr.

Как следует из названия, в этих батареях содержится немного свинца. Фактически, оба электрода (проводники, через которые электричество входит или выходит из батареи) содержат некоторое количество свинца — анод (положительно измененный электрод) сделан из металлического свинца (Pb), а катод (отрицательно заряженный электрод) — из диоксида свинца (PbO 2 ). Электроды помещают в раствор серной кислоты (H 2 SO 4 ), который состоит из ионов водорода (H + ) и бисульфат-ионов (HSO 4 ).

Свинец на аноде реагирует с бисульфатом электролита, высвобождая некоторые электроны и образуя сульфат свинца, который образует кристаллы на аноде, и ионы водорода, которые переходят в электролит. Электроны перемещаются к катоду через внешнюю цепь, где они вместе с бисульфатом и ионами водорода из электролита вступают в реакцию с катодом из диоксида свинца. При этом также образуется сульфат свинца, который снова образует кристаллы, на этот раз на катоде.

Свинцово-кислотные батареи можно перезаряжать — те, что в наших автомобилях, заряжаются с помощью небольшого генератора, подключенного к двигателю, который называется генератором переменного тока.Вот почему, когда вы оставили включенным автомобильный свет, а аккумулятор разряжен, рекомендуется некоторое время покататься вокруг после запуска, чтобы дать аккумулятору время для повторной зарядки.

По мере зарядки аккумулятора описанные выше химические реакции, производящие электричество, возвращаются в обратном направлении. Покрытия из сульфата свинца растворяются и возвращаются в электролит в виде ионов Pb2 + и SO 4 2-. Затем ионы Pb 2+ захватывают два электрона и повторно наносятся на анод как нейтральный Pb.

На катоде ионы Pb 2+ отдают два электрона для образования молекул воды (H 2 O) и реагируют с ними с образованием нейтрального диоксида свинца на катоде и некоторых ионов бисульфата, которые возвращаются в раствор электролита.

Однако, если свинцово-кислотный аккумулятор слишком сильно разряжен или оставлен слишком долго перед подзарядкой, покрытия из сульфата свинца образуют твердые кристаллы, которые невозможно удалить в процессе зарядки. — \ to \ text {PbSO} _4 + \ text { 2H} _2 \ text {O} $$

Суммарная реакция:

$$ \ text {Pb} + \ text {PbO} _2 + \ text {2H} _2 \ text {SO} _4 \ to \ text {2PbSO} _4 + \ text {2H} _2 \ text {O} $$

Ультра аккумулятор

Разработанный в CSIRO аккумулятор Ultrabattery представляет собой усовершенствованную версию традиционной свинцово-кислотной аккумуляторной батареи.Он сочетает в себе стандартную свинцово-кислотную аккумуляторную батарею с суперконденсатором. Когда нормальная свинцово-кислотная батарея разряжается, реакция, которая запускает ее, приводит к образованию кристаллов сульфата свинца как на аноде, так и на катоде. В процессе зарядки эти покрытия удаляются, но электроды (и, следовательно, аккумулятор) со временем изнашиваются. Кроме того, аккумулятор не любит работать в частичном состоянии заряда — состоянии, при котором аккумулятор подвергается повторяющимся коротким циклам разрядки и перезарядки без полного разряда аккумулятора или его полной зарядки.Это частичное состояние заряда особенно важно для транспортных средств.

UltraBattery использует суперконденсатор для компенсации проблемных реакций свинцовых электродов в свинцово-кислотной батарее, увеличивая срок ее службы. Поскольку суперконденсатор может очень быстро принимать и накапливать заряд, он может поглощать доступную мощность, а затем подавать ее в батарею с нужной скоростью. Ему удается уменьшить накопление сульфатов в результате процесса разрядки-перезарядки в стандартной свинцово-кислотной батарее.

UltraBattery также сравнительно дешев в производстве, примерно на 70 процентов дешевле, чем литий-ионные батареи, которые в настоящее время используются в гибридных электромобилях. Еще одно потенциальное применение UltraBattery — на электростанциях для хранения и «сглаживания» энергии, производимой возобновляемыми источниками, такими как солнце и ветер. В крупномасштабных испытаниях ветряных электростанций в Австралии UltraBattery превзошел обычные свинцово-кислотные батареи.

  • Что такое суперконденсатор?

    Конденсатор похож на батарею… но не совсем.Энергия батареи возникает в результате химической реакции между ее компонентами. Электричество генерируется потоком электронов в окислительно-восстановительной реакции между анодом и катодом.

    Конденсатор также дает энергию, но не в результате химической реакции. Конденсаторы состоят из двух проводящих пластин, между которыми находится диэлектрик или изолятор (вещество, не проводящее электричество). Когда эти пластины подключены к электрическому току, ток течет в них; одна пластина хранит отрицательный заряд на своих поверхностных атомах, а другая — положительный заряд, опять же на поверхностных атомах.Поскольку эти по-разному заряженные пластины разделены непроводящим диэлектриком, создается электрическое поле, в котором накапливается электрическая энергия. Когда конденсатор подключен к другой цепи, он высвобождает (разряжает) электрическую энергию.

    Конденсаторы обычно очень быстро высвобождают свою энергию — они обеспечивают быстрые выбросы энергии. Это делает их полезными для довольно специфических задач, таких как включение вспышки на камере. Вспышка быстро расходует много энергии для создания яркого света, а затем конденсатор перезаряжается от аккумулятора камеры, чтобы его можно было снова использовать для следующей фотографии.

    Облако — это конденсатор: когда маленькие частицы льда в облаке сталкиваются друг с другом и с другими частицами влаги, электроны могут отлетать. Эти электроны имеют тенденцию накапливаться в нижних частях облака. Маленькие, а теперь положительно заряженные частицы поднимаются к вершине облака. Это означает, что в облаке происходит разделение зарядов и электрическое поле. По мере того, как отрицательный заряд в нижней части облака увеличивается в силе, он отталкивает от него другие отрицательные заряды — он толкает электроны на поверхности Земли глубже в землю, а это означает, что на поверхности накапливается положительный заряд.В итоге мы получаем отрицательно заряженную область (нижнюю часть облака), отделенную от положительно заряженной области (земли) плохим проводником электричества (воздухом). Когда электрическое поле в облаке становится достаточно сильным, оно может «разбивать» окружающий воздух на ионизированные (заряженные) частицы, превращая его из непроводящего изолятора в проводник. Электрическая энергия, хранящаяся в облаке, мгновенно высвобождается во вспышке молнии.

    Суперконденсаторы

    — это просто сверхмощные конденсаторы с большей емкостью.Это означает, что они способны хранить гораздо больше электроэнергии, чем обычные конденсаторы.

Никель-кадмиевый

Никель-кадмиевые (никель-кадмиевые) батареи стали первыми перезаряжаемыми батареями, которые использовались в электроинструментах, фонариках и других портативных устройствах. Эти люди работали в наших мобильных телефонах до того, как их вытеснили литий-ионные аккумуляторы. Иногда их все еще находят в виде старых перезаряжаемых батареек АА для фонарей и игрушек. Подобно свинцово-кислотной батарее, эта химия элементов существует уже давно — первые никель-кадмиевые батареи поступили в продажу в 1910 году!

Никель-кадмиевые батареи были первыми перезаряжаемыми батареями, которые использовались в электроинструментах, фонариках и других портативных устройствах.Источник изображения: цифровой интернет / Flickr.

Анод изготовлен из кадмия (Cd), а их катоды — из гидроксида оксида никеля (NiO (OH) 2 ), обычно с электролитом из гидроксида калия (КОН).

Гидроксид никеля является очень хорошим электродом, так как он может иметь большую площадь поверхности, и это увеличивает активную площадь, доступную для реакции. Кроме того, он не реагирует с электролитом во время реакции, что сохраняет раствор электролита красивым и чистым и помогает элементу прослужить (относительно) долгое время, прежде чем надоедливые побочные реакции приведут к его разложению.-

$

Полная реакция при разряде аккумулятора:

$$ \ text {2NiO (OH)} + \ text {Cd} + \ text {2H} _2 \ text {O} \ to \ text {2Ni (OH)} _ 2 + \ text {Cd (OH)} _ 2

$

Никель-кадмиевые батареи имели несколько недостатков. Во-первых, они были склонны к так называемому «эффекту памяти», когда батареи «запоминали» предыдущие уровни разряда и не заряжались должным образом. Это было вызвано образованием крупных, а не мелких кристаллов кадмия в процессе перезарядки.Проверка правильной разрядки аккумулятора перед подзарядкой в ​​некоторой степени способствовала предотвращению этой проблемы. Но нужно было быть осторожным — полная разрядка никель-кадмиевой батареи также повредила ее.

Во-вторых, скорость саморазряда никель-кадмиевых батарей составляет около 15–20 процентов в месяц. Это означает, что если они просидели на полке несколько месяцев, они потеряли большую часть своего заряда.

В-третьих, кадмий — это дорогой и токсичный тяжелый металл, а это означает, что утилизация батарей вредна для окружающей среды.

Никель-металлогидрид (NiMH)

Эти проблемы с никель-кадмиевыми батареями привели к замене кадмиевого анода на интерметаллический сплав, поглощающий водород (комбинация металлов с определенной кристаллической структурой), который может поглощать до 7 процентов водорода по весу. По сути, анод — это водород; металлический сплав просто служит для него резервуаром для хранения.

Наиболее распространенная комбинация металлов для этого сплава — это те, которые обладают сильной гидридообразующей способностью наряду со слабым гидридообразующим металлом.

Еще одно соображение при сборке металлического сплава заключается в том, что когда некоторые металлы поглощают водород, в результате реакции выделяется тепло — это экзотермический эффект. Другие поглощают тепло в результате эндотермической реакции. Нам действительно не нужна батарея, которая либо выделяет, либо поглощает тепло при разряде, поэтому, наряду с сочетанием сильного и слабого гидридообразующего соединения, из которого также сделан сплав, нам нужна комбинация экзотермических и эндотермических металлов.

Чаще всего электрод представляет собой комбинацию редкоземельного элемента, такого как лантан (La), церий (Ce), неодим (Nd) или празеодим (Pr), смешанный с никелем (Ni), кобальтом (Co), марганцем ( Mn) или алюминия (Al).

Электроны, производящие электрический ток батареи, возникают в результате окисления атомов водорода, которые превращаются в протоны. —

$

Полная реакция при разряде аккумулятора:

$$ \ text {NiO (OH)} + \ text {MH} \ to \ text {M} + \ text {Ni (OH)} _ 2 + \ text {H} _2 \ text {O} $$

Никель-металлогидридные батареи очень похожи на никель-кадмиевые батареи с точки зрения напряжения, емкости и применения.Эффект памяти — меньшая проблема, чем у никель-кадмиевых аккумуляторов, и они имеют более высокую плотность энергии. Они по-прежнему используются в качестве стандарта для аккумуляторных батарей AA.

Щелочной

Щелочные батарейки используются в игрушках, электронике, портативных проигрывателях компакт-дисков, которые мы использовали в девяностых годах, и в Walkmans, которые были популярны в восьмидесятых. На их долю приходится большая часть аккумуляторов, которые производятся сегодня, хотя их место на вершине, вероятно, скоро будет оспорено литий-ионными аккумуляторами в наших телефонах, ноутбуках и все большем количестве других гаджетов.

Щелочные батареи бывают разных форм и размеров, и на их долю приходится большая часть батарей, производимых сегодня. Источник изображения: Pulpolux / Flickr.

Они популярны, потому что имеют низкую скорость саморазряда, что обеспечивает длительный срок хранения и не содержат токсичных тяжелых металлов, таких как свинец или кадмий. Хотя перезаряжаемые щелочные батареи были разработаны, эти ребята, как правило, предназначены только для одноразового использования. Когда они выходят из строя, они отправляются на склад для вторичной переработки (или, чаще, на свалку, поскольку их не так много мест, где их перерабатывают).

Эти батареи имеют цинк в качестве анода и диоксид марганца (MnO 2 ) в качестве катода. Однако их название происходит от щелочного раствора, используемого в качестве электролита. Обычно это гидроксид калия (КОН), который может содержать большое количество растворенных ионов. Чем больше ионов может поглотить раствор электролита, тем дольше может продолжаться окислительно-восстановительная реакция, приводящая в движение аккумулятор.

Цинковый анод обычно бывает порошкообразным. Это дает ему большую площадь поверхности для реакции, а это означает, что клетка может довольно быстро высвобождать свою энергию.-

$

Mn начинается с +4 и становится +3, когда получает один электрон.

Полная окислительно-восстановительная реакция составляет:

$$ \ text {Zn (s)} + \ text {2MnO} _2 \ text {(s)} \ longleftrightarrow \ text {Mn} _2 \ text {O} _3 \ text {(s)} + \ text { ZnO (s)} $$

И это подводит нас к батареям, которыми сегодня питается большинство наших смартфонов и ноутбуков: литий-ионным батареям. Эти парни настолько важны, что мы хотели относиться к ним с уважением (и вниманием к деталям), которого они заслуживают, поэтому вы можете прочитать о них в их собственной статье о Nova.

Новички

Редокс-поток

В проточной окислительно-восстановительной батарее нет реактивных электродов, и в ней используется раствор электролита для передачи электронов, создающих ток. Проточная батарея по-прежнему имеет анодную и катодную стороны, но вместо металлических электродов, которые отдают и принимают электроны, у нее есть две «емкости», заполненные растворами электролита, в которых растворяются активные химические вещества.Есть два типа растворов: анолит, который заменяет анод типичного элемента, и католит, который действует как катод. Эти растворы накачиваются вокруг батареи и встречаются в реакционной ячейке или «стопке». Здесь они разделены мембраной, поэтому они не смешиваются, хотя ионы и электроны могут обмениваться через барьер. Они также встречаются с электродами.

Ученые-исследователи IBM с батареей с окислительно-восстановительным потоком. Источник изображения: IBM Research / Flickr.

Поскольку раствор анолита содержит химические вещества с более высоким химическим потенциалом, чем те, которые содержатся в растворе католита, когда два раствора встречаются в реакционной ячейке, электроны из анолита направляются через ионопроницаемую мембрану в католит.Эти электроны перехватываются и отправляются делать свою полезную работу.

Опять же, это окислительно-восстановительная реакция, которая управляет генерацией электрического тока в батареях этого типа. Анолит окисляется, когда теряет электроны, а католит восстанавливается, когда он принимает электроны. Когда весь анолит окислился, то есть потерял все электроны, которые он должен был отдать, его емкость исчерпана, и его необходимо перезарядить.

В проточных батареях с окислительно-восстановительным потенциалом хорошо то, что их емкость зависит от размера резервуаров с раствором электролита — если вам нужна батарея, которая может работать дольше, вам просто нужно приобрести резервуары большего размера с большим количеством раствора в них.Однако это также означает, что они довольно громоздкие. В основном они используются в промышленных масштабах, например, для хранения энергии, производимой на ветряных или солнечных фермах. В вашем ноутбуке никогда не будет проточной батареи.

Еще одна интересная особенность проточных батарей заключается в том, что, поскольку у них нет твердых электродов, они не страдают от большинства способов, которыми аккумуляторные батареи со временем разлагаются. В принципе, это обеспечивает им очень долгий срок службы — идеально подходит для использования в солнечных или ветровых электростанциях, когда батареи заряжаются и разряжаются, по крайней мере, каждый день.

В батареях

Flow чаще всего используется ванадий (V). Поскольку этот элемент может успешно существовать в нескольких различных степенях окисления — состояниях с разными химическими / окислительно-восстановительными потенциалами — и анолит, и католит могут быть изготовлены из различных форм ванадия. Это решает любые проблемы перекрестного загрязнения растворов электролитов, состоящих из разных элементов.

Для подзарядки проточной батареи система работает в обратном порядке. Применяется внешнее напряжение, и электроны, которые оказались в католите при использовании батареи, выталкиваются обратно в анолит, а положительные ионы возвращаются обратно в католит.

Новое исследование привело к созданию проточной батареи, в которой используются ионы лития, и в основном она работает на тех же химических принципах, что и литий-ионные батареи в наших телефонах и ноутбуках. Аккумулятор содержит анолит диоксида титана (TiO 2 ) и католит фосфата лития-железа (LiFePO 4 ). Раньше проблемы с мембраной, разделяющей два раствора электролита, не позволяли успешно применять литий-ионную технологию в проточной батарее — они либо были слишком хрупкими, либо не позволяли эффективно течь литий-ионам.

Эта батарея имеет потенциальную плотность энергии в 10 раз большую, чем другие проточные батареи. Однако скорость, с которой он в настоящее время поставляет энергию, слишком мала для практического использования, поэтому исследователи ищут способы улучшить это.

Главный недостаток проточных батарей состоит в том, что их работа зависит от насосной системы для циркуляции растворов анолита и католита через реакционную ячейку. Это приводит к появлению ряда движущихся частей, которые необходимо регулярно обслуживать и обслуживать.

Литий-сера
Литий-серные батареи

обещают стать дешевой альтернативой дорогостоящим литий-ионным аккумуляторам. Сера дешевая, и ее много.

Анод литий-серной батареи представляет собой чрезвычайно тонкую (и легкую) полоску металлического лития. Катодом будет… как вы уже догадались… сера (ну, смесь серы и углерода). Эта комбинация имеет очень хорошее потенциальное напряжение, и оба электрода будут легче, чем в обычных литий-ионных батареях, в результате чего удельная энергия батареи до пяти раз выше.

Литий-серная батарея (слева) по сравнению с размером монеты. Литий-серные батареи перспективны, но пока не используются в промышленных масштабах. Источник изображения: Национальная лаборатория Ок-Ридж / Flickr.

Реакция, происходящая во время разряда, включает окисление лития на аноде и образование сульфида лития. В то же время высвобождаются электроны, обеспечивающие электрический ток. На катоде сера восстанавливается, а также вступает в реакцию с литием, образуя последовательный ряд соединений с различным содержанием серы в них (полисульфиды).

$$ \ text {S} _8 \ to \ text {Li} _2 \ text {S} _8 \ to \ text {Li} _2 \ text {S} _6 \ to \ text {Li} _2 \ text {S} _4 \ to \ text {Li} _2 \ text {S} _2 $$

Проблема в том, что этот аккумулятор не работает очень долго, так как серный катод не очень долговечен. Многие из полисульфидов легко растворяются в растворе электролита, а это означает, что во время каждого цикла разряда часть серы с катода безвозвратно теряется в растворе.

Другая проблема заключается в том, что, когда литий вступает в реакцию с серой катода, объем образовавшегося соединения лития и серы примерно на 80 процентов больше, чем объем серного катода до реакции.Это расширение вызывает износ катода.

Независимо от их состава, батареи незаменимы в нашей повседневной жизни и останутся таковыми в будущем. Они будут иметь решающее значение для обеспечения непрерывных достижений в области портативных технологий, обеспечения усовершенствования и повышения практичности электромобилей и обеспечения того, что часто называют «недостающим звеном» возобновляемой энергии — способности хранить избыточную электроэнергию, генерируемую ветром, солнечной и другой энергией. источники для дальнейшего использования.

Эта тема является частью нашей серии из четырех статей об аккумуляторах. Для дальнейшего чтения посмотрите, как работает аккумулятор, литий-ионные аккумуляторы и аккумуляторы будущего.

Батареи будущего — Любопытный

Батареи

существуют уже сотни лет, и они будут с нами еще какое-то время. Многочисленные и разнообразные применения аккумуляторов привели к многочисленным изменениям электрохимической ячейки на протяжении многих лет — для электродов использовались разные металлы и другие материалы, для электролитов использовались разные вещества, и были разные способы собрать все это вместе.Но что нас ждет в будущем?

Эта тема является частью нашей серии из четырех статей об аккумуляторах. Для дальнейшего чтения посмотрите, как работает батарея, типы батарей и литий-ионные батареи.

Новый химический состав аккумуляторов

Вариации на тему: новые литий-ионные технологии

Кремниевый анод
Кремний

(Si) обеспечивает значительное увеличение способности аккумулировать энергию при использовании в качестве анодного материала.По сравнению с традиционным графитовым электродом кремний дает теоретическое десятикратное увеличение емкости. Однако, хотя его решетчатая структура может включать ионы лития, необходимые для работы литий-ионной батареи, включение ионов лития приводит к значительному увеличению объема — более чем на 300 процентов. Когда батарея разряжается и ионы лития высвобождаются из кремниевого анода, кремний сжимается. Со временем в результате этого повторяющегося расширения и сжатия кремниевый анод разрушается и растрескивается, и срок службы батареи очень короткий.

Решение этой серьезной проблемы обещает создать батарею со значительно более высокой плотностью энергии, чем стандартная литий-ионная батарея с графитовым анодом. Один из исследуемых вариантов — покрытие кремния графеном (листы углерода толщиной в один атом), поскольку графеновые листы могут «скользить» друг относительно друга и компенсировать расширение и сжатие кремния. Это почти вдвое увеличивает удельную энергию батареи.

Шарики из аморфного кремния, которые используются для исследования изменений, которые претерпевает кремний при использовании в качестве анода в литий-ионной батарее.Источник изображения: Тихоокеанская Северо-Западная национальная лаборатория / Flickr.
Графеновый анод

Графен также может заменить графит в качестве анода литий-ионной батареи. Графен состоит из атомов углерода, соединенных вместе, чтобы образовать лист толщиной в один атом. Хотя графит по существу состоит из нескольких листов графена, уложенных друг на друга, преимущества возможности укладывать отдельные листы графена позволяют упростить и повысить эффективность вставка ионов лития.

Попытка быстро ввести ионы лития в графит, что необходимо для приложений с высокой мощностью или быстрой зарядкой, также приводит к разрушению анода.Листы графена могут использоваться для приложений с высокой мощностью, поскольку ионам лития не нужно туннелировать через кристалл графита, чтобы добраться до мест их вставки, поскольку эти места уже открыты для электролита, содержащего литий-ионный ион. Из этого нового материала многие ученые во всем мире пытаются превратить его в новый материал электрода батареи.

Графен состоит из отдельных листов атомов углерода, связанных вместе в сотовую структуру. Источник изображения: UCL Mathematical and Physical Sciences / Flickr.
Воздушно-литиевый

Что, если бы батарея могла вытягивать энергию из воздуха? Литий-воздушная батарея сделает это, используя кислород из окружающей атмосферы в качестве материала катода. Это, очевидно, сделало бы аккумулятор чрезвычайно легким, что дало бы ему плотность энергии в 10 раз лучше, чем у стандартных литий-ионных аккумуляторов — плотность энергии, которая могла бы конкурировать с бензином.

Однако химия лития и воздуха создает несколько проблем. Во-первых, в своей чистой металлической форме литий чрезвычайно реакционноспособен, и трудно сохранить стабильный анод, сделанный из лития.Поиск материалов электролита, которые могут поддерживать стабильность анода, а также предотвращать его реакцию с кислородом воздуха, является сложной задачей.

Существует множество исследований электролитов, направленных на решение этой проблемы, в том числе с использованием полимеров, ионных жидкостей и смесей растворителей с высокой концентрацией солей. Предотвратить реакцию с воздухом можно также путем покрытия электрода твердым электролитом, таким как стекло или керамика. Другая проблема заключается в том, что восстановление кислорода приводит к образованию пероксида лития (Li 2 O 2 ).Это может затем покрыть поверхность электродов и подавить реакцию, посредством которой высвобождаются ионы и электроны лития, что снижает мощность батареи. Поскольку элемент подвергается воздействию воздуха, из которого он отбирает кислород для катодной реакции, он также подвергается воздействию водяного пара и углекислого газа, которые могут повлиять на химический состав элемента, приводя к образованию других непроводящих и неактивных материалов, таких как как Li 2 CO 3 .

В недавних разработках исследователи из Кембриджского университета использовали высокопористый графен в качестве катода и добавили йодид лития (LiI) и воду (H 2 O) в смесь электролитов.Это предотвратило образование пероксида лития, вместо этого взяв немного водорода из воды, чтобы получить гидроксид лития (LiOH). Йодид действует как «посредник», облегчающий эту реакцию. Кристаллы гидроксида лития хорошо вписываются в поры графенового катода, но они не покрывают всю его поверхность, оставляя углерод, необходимый для запуска реакции генерации электричества в батарее, открытым и доступным для продолжения реакции.

Когда аккумулятор перезаряжается, йодид снова вступает в действие.Он окисляется до трииодид-иона (I 3-). Трииодид реагирует с кристаллами гидроксида лития, образуя ионы лития (Li + ), кислород (O 2 ) и воду (H 2 O). Это полностью удаляет кристаллы гидроксида лития с катода, оставляя его доступным для реакции восстановления кислорода, которая происходит во время разряда батареи. Между тем, ионы лития проходят через электролит и повторно осаждаются на аноде в виде металлического лития, готовые снова отдать свои электроны при разрядке аккумулятора.- + \ text {2H} _2 \ text {O} + \ text {O} _2 \ uparrow $$

(стрелка вверх указывает, что кислород выделяется в виде газа)

Литий-воздушная технология еще далека от практической коммерциализации. По оценкам, на то, чтобы это воплотить в жизнь, потребуется около 10–20 лет. Описанные выше разработки работают в системе, использующей чистый кислород, поэтому исследователям также необходимо найти способ справиться с другими веществами, содержащимися в воздухе. Такие газы, как диоксид углерода и азот в воздухе, реагируют с металлическим литием в аноде с образованием карбонатов лития и нитратов лития, которые покрывают поверхность электрода и препятствуют его эффективной работе.

Ученый Цзе Сяо работает над разработкой литий-ионных и литий-воздушных батарей. Источник изображения: Тихоокеанская Северо-Западная национальная лаборатория / Flickr.

Литий-сера — еще один многообещающий химический состав батарей будущего. Подробнее об этом читайте в нашей теме Nova о типах аккумуляторов.

Алюминий-воздух

Поскольку алюминий является очень распространенным элементом земной коры, батарея из алюминиевого анода и кислородного катода обещает быть очень дешевой. Он также будет легким, с высокой плотностью энергии.Алюминиево-воздушная батарея потенциально могла бы обеспечить питание электромобиля в восемь раз больше, чем стандартная литий-ионная батарея на одном заряде.

Проблема в том, что химический состав этого элемента батареи приводит к коррозии алюминиевого анода. Взаимодействуя с электролитом, алюминиевый анод подвергается необратимой реакции с образованием гидратированного оксида алюминия (Al (OH) 3 ). Это означает, что аккумулятор не подлежит перезарядке, поэтому либо аноды, либо полностью отработанные батареи необходимо будет заменять через регулярные промежутки времени.-

$

Вся реакция

$$ \ text {4Al} + \ text {3O} _2 + \ text {6H} _2 \ text {O} \ to \ text {4Al (OH)} _ 3 $$

Химический состав алюминиево-воздушной батареи потенциально может быть улучшен за счет разработки более пористых трехмерных структур алюминиевого анода, которые увеличили бы площадь поверхности алюминия, которая может вступать в реакцию. Другая возможность — это разработка алюминиевых сплавов, в которые добавление совсем небольших количеств других элементов поможет предотвратить образование гидроксида алюминия, который разъедает анод.

Из-за трудностей с перезарядкой алюминиево-воздушных батарей маловероятно, что они станут реальной коммерческой перспективой в ближайшем будущем, однако текущие исследования могут все же привести нас к этому в долгосрочной перспективе. Однако несколько групп по всему миру ищут альтернативы, такие как воздушно-магниевые и воздушно-цинковые батареи. Однако в настоящее время воздушно-цинковые батареи используются в наших слуховых аппаратах и ​​кохлеарных ушных имплантатах. обратимость это проблема.

Натрий-ион

Натрий-ионные батареи работают аналогично литий-ионным батареям, но с ионами натрия вместо лития.Преимущества натрия в том, что его легко получить (подумайте только о морской воде) и дешево.

Хотя ионы натрия вряд ли в ближайшее время будут конкурировать с литий-ионными батареями для питания портативных устройств или автомобилей, некоторые компании — Aquion Energy, Faradion и Sharp Laboratories — уже производят их для использования в качестве накопителей энергии на ветряных и солнечных фермах. Модули меньшего размера теперь также производятся для хранения энергии в жилых помещениях.

Натрий дешев и его легко найти. Здесь изображены кристаллы поваренной соли, которая состоит из хлорида натрия.Источник изображения: Центр космических полетов им. Маршалла НАСА / Flickr.

Для изготовления электродов в натриево-ионных батареях используется несколько различных материалов. Углерод обычно используется для анода, но не в виде аккуратного графита, как в литий-ионной батарее. Будучи объединенными в единую структуру, большие ионы натрия застревают и не могут выйти снова, что делает реакцию клетки необратимой (а батарею нельзя перезаряжать). Что необходимо для предотвращения этого, так это правильный размер и распределение пор, а также большая площадь поверхности, поэтому в качестве анода используется «твердый углерод», обычно получаемый путем сжигания сахаров при высокой температуре.Температура имеет решающее значение для получения нужных свойств.

Возможный вариант — анод из слоев графена с вкраплениями слоев фосфора. Графен обеспечивает эластичность и электрическую проводимость электрода, а фосфорен изменяет структуру электрода, так что натрий может легко входить и выходить во время перезарядки и разряда.

Ряд различных материалов был опробован в качестве катодов для натриево-ионных батарей, но поиск лучшего кандидата продолжается.Недавно исследователи обнаружили, что соединение натрия, железа и сульфата является отличным хозяином для ионов натрия. Материал состоит из слоев натрия и железа с вкраплениями сульфатных структур, что обеспечивает хорошие пространства для размещения ионов натрия. Берлинская лазурь еще одно соединение, предпочтительное для катодов.

Попадаете в сферу научной фантастики?

Пьезоэлектрический

Пьезоэлектрические материалы могут генерировать электрический заряд при механическом воздействии.В основном, если вы сжимаете, сдавливаете или надавливаете на него, эта механическая энергия преобразуется в электрическую.

Шаговый

Исследователи разработали небольшое устройство, сделанное из литий-ионной батареи размером с монету, у которой вынутый сепаратор заменен на пьезоэлектрическую пленку. Его можно встроить в подошву обуви, например, в кроссовки для бега. Во время бега каждый раз, когда ваша ступня ударяется о землю, небольшое усилие давит на устройство, сжимая пьезоэлектрическую пленку в середине.Он генерирует заряд, который заставляет ионы лития перемещаться от катода к аноду — точно так же, как процесс перезарядки, который происходит, когда обычная литий-ионная батарея подключается к внешнему источнику электричества для подзарядки. Ионы лития, которые выталкиваются на анод, вступают в реакцию с материалом анода из оксида титана с образованием оксида лития-титана (LiTiO 2 ) и высвобождаются снова только тогда, когда для питания устройства требуется электричество. На данном этапе его мощности недостаточно для работы вашего телефона, но, возможно, достаточно для таких вещей, как устройства слежения GPS.Ключом к этой технологии является создание пьезоэлектрического заряда, чтобы его можно было подключать и к другим типам аккумуляторов.

По сути, этот процесс включает преобразование механической энергии в химическую энергию для зарядки батареи, а затем обычное химическое преобразование в электрическую энергию, когда батарея подключена к внешней цепи.

Батареи с шаговым питанием можно поместить внутрь вашей обуви или сделать частью тротуара, по которому мы ходим. Источник изображения: redonion_TEDx / Flickr.
Звуковой привод

Оксид цинка — пьезоэлектрический материал. Когда его крошечные наностержни подвергаются воздействию звуковых волн, они изгибаются, создавая физическое напряжение, которое производит электрический ток. Наностержни помещаются между металлическими листами, которые действуют как электрические контакты, отбирая ток, создаваемый изгибающимися наностержнями. Эти электрические контакты могут быть изготовлены из обычной старой алюминиевой фольги.

Первая попытка создания аккумуляторной батареи со звуковым питанием привела к созданию устройства, которое может генерировать 5 вольт — просто подавляя повседневный шум, такой как движение транспорта, разговоры или музыка.

Эти пластины из оксида цинка выращены, чтобы помочь исследователям понять свойства оксида цинка и то, как он может помочь в разработке новых типов батарей. Источник изображения: Тихоокеанская Северо-Западная национальная лаборатория / Flickr.
ерзание / с приводом от трения

Другой вариант в будущем может заключаться в использовании энергии, производимой людьми, когда они занимаются своими повседневными делами. Исследователи работают над наногенераторами — устройствами, которые могут использовать статическое электричество, генерируемое трением, возникающим при трении двух веществ друг о друга.

Устройство будет содержать лист металла, расположенный рядом с листом терефталатного пластика, и оба имеют наноразмерные структуры на поверхности. Когда они соприкасаются, генерируется электрический заряд, а затем течет ток, когда листы изгибаются или изгибаются. Наноструктуры на поверхности листов увеличивают площадь контакта.

Из него будет небольшая нашивка, которую можно носить как нарукавную повязку. Он будет поглощать энергию, производимую, когда мы ходим по дому, берем книгу или набираем электронное письмо.

На основе мочи

Батарея с питанием от мочи звучит нелепо! Очевидно нет.

Эта технология основана на микробных топливных элементах, которые используют химию процесса клеточного дыхания для производства электричества. В конце концов, химия, лежащая в основе клеточного дыхания, — это еще один набор окислительно-восстановительных реакций, подобных тем, которые необходимы для работы электрохимической ячейки.

Эти микробные топливные элементы содержат живые микробы, которые поедают мочу и расщепляют ее.Часть этого процесса включает в себя производство электронов, которые, конечно же, необходимы для генерации электрического тока. Идея состоит в том, чтобы взять мочу и скармливать ее микробам, питающимся мочой, и использовать производимые электроны для питания электронных устройств.

Объединив несколько микробных топливных элементов в серию, исследователи из Bristol Robotics Lab создали устройство, способное питать мобильный телефон, и надеются увеличить его до размера, способного обеспечить около 12 киловатт-часов. мощность в день.

Микробные топливные элементы обрабатывают сточные воды и вырабатывают электрический ток. Источник изображения: Penn State / Flickr.

Что эти батареи сделают для нас?

Развитие технологий, особенно электроники, изменило наш образ жизни. Какие изменения ждут наших детей и будущие поколения?

Возобновляемая энергия

Адекватное хранение энергии, производимой из возобновляемых источников, таких как солнце и ветер, рассматривается как «недостающее звено», необходимое для обеспечения будущего без зависимости от ископаемого топлива.

И мы приближаемся. Проточные окислительно-восстановительные батареи уже используются на рудниках, а также в отдаленных и сельских районах для хранения электроэнергии, вырабатываемой солнечными батареями. Их громоздкость компенсируется тем, что они дешевы и надежны. Испытания в Австралии показали, что эти батареи могут использоваться в жилых помещениях, например, в схеме сетей умного города, где 30 000 домов были подключены к возобновляемым источникам энергии в сочетании с проточными батареями.

По мере того, как большие литий-ионные батареи становятся более доступными, прогнозируется, что все больше и больше домашних хозяйств будут оснащены бытовыми батареями, что-то в масштабе примерно 6–10 кВтч.Эти батареи могут потреблять электроэнергию из сети в непиковые периоды, когда стоимость ниже, и хранить ее для использования в часы пик, тем самым снижая счета за электроэнергию домовладельцев.

Другой вариант заключается в том, что в домах с установленными солнечными батареями батареи будут накапливать всю электроэнергию, которая была произведена в течение дня, но не использовалась немедленно, для использования в ночное время. В сочетании с интеллектуальным программным обеспечением для управления домашнее хозяйство, использующее аккумулятор, может также подавать накопленную электроэнергию в сеть в часы пиковой нагрузки — и получать за это деньги.

Бытовые аккумуляторы обещают изменить правила игры не только в том, как домашние хозяйства используют и производят электроэнергию, но и в том, как национальная электросеть будет функционировать в будущем. Однако мы еще не совсем там. Несмотря на то, что аккумулятор Tesla Powerwall появился на сцене с огромным количеством ажиотажа и фанфар, это, конечно, не первая изобретенная батарея для бытовых нужд — различные типы существуют уже много лет. Проблема в том, что они были слишком дорогими для широкого распространения.

Обещание Tesla Powerwall и связанной с ним Tesla Gigafactory заключается в том, что он снизит затраты, что, безусловно, повысит ставки. В сочетании с прогнозируемым ростом цен на электроэнергию, мы почти наверняка увидим более широкое распространение аккумуляторных технологий в наших домах.

Еще одним претендентом может стать Oxis Energy из Великобритании. В настоящее время они тестируют литий-серные батареи, которые накапливают энергию от бытовой солнечной системы, и надеются, что скоро они появятся в продаже.Литий-серные батареи дешевле, чем литий-ионные, потому что сера дешевая и ее много. И здесь, в Австралии, Redflow намеревается вскоре предложить свои проточные окислительно-восстановительные батареи на основе бромида цинка в качестве вариантов для домашнего хранения.

Носимые батареи

Маленький, легкий и гибкий, способный извлекать энергию из механической энергии людей, которые его носят? Это обещание носимых аккумуляторных устройств.

Один, созданный CSIRO, использует ходьбу для выработки электроэнергии.Генератор, помещенный в рюкзак или одежду, преобразует механическую энергию, которую он испытывает во время ходьбы или бега, в электричество. Затем это электричество используется для зарядки гибкой батареи на тканевой основе. Использование проводящих тканей для соединения между всеми различными компонентами позволяет разрабатывать «гибкие» новые носимые технологии.

Хотя технология CSIRO была продемонстрирована в конфигурации рюкзака, используемую ткань можно разрезать и придать ей любую форму, просто разрезав ее ножницами, поэтому разнообразие возможных предметов одежды или аксессуаров велико.

Вывод

Кто бы мог подумать, что подергивание лягушачьих лапок, наблюдаемое более 200 лет назад, в конечном итоге приведет к появлению устройств, которые могут питать наши компьютеры, смартфоны, автомобили и, надеюсь, скоро, наши дома? Аккумуляторы прошли долгий путь за последние несколько сотен лет, и с учетом того, что так много ученых по всему миру исследуют новые технологии, вполне вероятно, что они уведут нас далеко-далеко в будущее.

Эта тема является частью нашей серии из четырех статей об аккумуляторах. Для дальнейшего чтения посмотрите, как работает батарея, типы батарей и литий-ионные батареи.

Что внутри батареи

Главная »Что внутри батареи?

Что внутри батареи?

Обычной батарее для выработки электричества необходимы 3 части:

  • Анод — минус АКБ
  • Катод — плюс батареи
  • Электролит — химическая паста, которая разделяет анод и катод и преобразует химическую энергию в электрическую.

Внутри каждой батареи есть восстанавливаемые ресурсы, независимо от ее типа

Возьмем, к примеру, одноразовую щелочную батарею.Это неперезаряжаемые батареи, которые бывают AAA, AA, C, D, 9 вольт и различных размеров кнопочных элементов.

В среднем батарея на 25% состоит из стали (корпуса). Знаете ли вы, что сталь можно перерабатывать бесконечно? Наш механический процесс позволяет восстановить 100% стали в каждой батарее для повторного использования.

Аккумулятор на 60% состоит из таких материалов, как цинк (анод), марганец (катод) и калий. Все эти материалы — элементы земли. Эта комбинация материалов на 100% восстанавливается и повторно используется в качестве питательных микроэлементов при производстве удобрений для выращивания кукурузы.

Остальные 15% по весу составляют бумага и пластик (этикетка и защитная крышка). Эти материалы отправляются на предприятие по переработке отходов для производства электроэнергии.

Утилизируя щелочные батареи в Raw Materials Company, вы можете быть уверены, что 100% каждой батареи используется повторно и никакие материалы не будут отправлены на свалку.

Вы живете в Онтарио, Канада?

Если да, то вы можете найти ближайший к вам магазин, который занимается переработкой батарей.Просто введите свой почтовый индекс или название города в наш инструмент поиска. Если вы живете за пределами Онтарио, обратитесь в местный муниципалитет, чтобы найти ближайший пункт переработки.


Спасибо

Мы получили ваше сообщение и вскоре ответим вам.

Быстрые ссылки

Для вашего удобства здесь приведены важные ссылки, связанные с этой страницей.


Знаете ли вы?

Цинк — один из наиболее часто используемых металлов в мире.Примерно 30% цинка сегодня поступает из переработанных источников. Компания Raw Materials Company может восстанавливать цинк из батарей, которые вы перерабатываете. Цинк, который мы получаем, затем повторно используется в качестве питательных микроэлементов в удобрениях для выращивания кукурузы для производства биотоплива.

Благодаря переработанным материалам RMC фермеры могут повысить урожайность более чем на 20 бушелей с акра. Это важно, учитывая наше растущее население и необходимость эффективного использования существующих сельскохозяйственных угодий.

Узнайте больше о нашей технологии и о том, как вместе мы превращаем отходы в ценный ресурс.

Определение батареи по Merriam-Webster

летучая мышь · тери | \ ˈBa-t (ə-) rē \ 1а : акт избиения кого-либо или чего-либо последовательными ударами : акт избиения (см. Бэттер, запись 1, смысл 1) б закон : оскорбительное прикосновение к человеку или применение силы без его согласия. доказательства, подтверждающие заряд батареи — сравните штурмовую запись 1 смысл 2а 2 [Среднефранцузский batterie , от battre to beat] военный

б : орудия военного корабля батарея правого борта

: комбинация аппаратов для создания единого электрического эффекта. батарея генераторов

б : Группа из двух или более ячеек (см. Сенсор ячейки 5), соединенных вместе для подачи электрического тока. также : одиночный элемент, вырабатывающий электрический ток. необходимо заменить батареи фонарика

c батареи во множественном числе : уровень энергии или энтузиазма нужен отпуск, чтобы подзарядить батарей

5а (1) : ряд аналогичных изделий, предметов или устройств, скомпонованных, соединенных или используемых вместе : набор, серия провел серию тестов, батарею картотек

(2) : серия клеток или отсеков для выращивания или откорма домашней птицы. — часто используется перед другим существительным аккумулятор цыплят

б : обычно впечатляющая или внушительная группа : массив батарея специалистов

6 : Положение готовности орудия к стрельбе. пушка не вернется в батарею — Infantry Journal

7 бейсбол : питчер и ловец команды одна из лучших батарей в истории бейсбола

DOE Объясняет…Батареи | Министерство энергетики

Батареи и аналогичные устройства принимают, хранят и отпускают электроэнергию по запросу. В батареях используется химия в форме химического потенциала для хранения энергии, как и во многих других повседневных источниках энергии. Например, бревна хранят энергию в своих химических связях, пока при горении энергия не преобразуется в тепло. Бензин — это запасенная химическая потенциальная энергия, пока она не преобразуется в механическую энергию в двигателе автомобиля. Точно так же, чтобы батареи работали, электричество должно быть преобразовано в форму химического потенциала, прежде чем оно может быть легко сохранено.Батареи состоят из двух электрических клемм, называемых катодом и анодом, разделенных химическим материалом, называемым электролитом. Чтобы принимать и высвобождать энергию, батарея подключается к внешней цепи. Электроны движутся по цепи, в то время как одновременно ионы (атомы или молекулы с электрическим зарядом) движутся через электролит. В перезаряжаемой батарее электроны и ионы могут двигаться в любом направлении через цепь и электролит. Когда электроны движутся от катода к аноду, они увеличивают химическую потенциальную энергию, заряжая таким образом аккумулятор; когда они движутся в другом направлении, они преобразуют эту химическую потенциальную энергию в электрическую цепь и разряжают батарею.Во время зарядки или разрядки противоположно заряженные ионы перемещаются внутри батареи через электролит, чтобы уравновесить заряд электронов, проходящих через внешнюю цепь, и создать устойчивую перезаряжаемую систему. После зарядки аккумулятор может быть отключен от цепи для хранения химической потенциальной энергии для последующего использования в качестве электричества.

Батареи были изобретены в 1800 году, но их химические процессы сложны. Ученые используют новые инструменты, чтобы лучше понять электрические и химические процессы в батареях, чтобы создать новое поколение высокоэффективных аккумуляторов электроэнергии.Например, они разрабатывают улучшенные материалы для анодов, катодов и электролитов в батареях. Ученые изучают процессы в аккумуляторных батареях, потому что они не полностью меняются, когда батарея заряжается и разряжается. Со временем отсутствие полной замены может изменить химический состав и структуру материалов батареи, что может снизить производительность и безопасность батареи.

Департамент науки и хранения электроэнергии Министерства энергетики США

Исследования, проведенные при поддержке Управления науки Министерства энергетики США и Управления фундаментальных энергетических наук (BES), привели к значительным улучшениям в хранении электроэнергии.Но мы все еще далеки от комплексных решений для хранения энергии следующего поколения с использованием совершенно новых материалов, которые могут значительно увеличить количество энергии, которое может хранить батарея. Это хранилище имеет решающее значение для интеграции возобновляемых источников энергии в нашу систему электроснабжения. Поскольку усовершенствование аккумуляторных технологий имеет важное значение для повсеместного использования подключаемых к электросети электромобилей, хранение также является ключом к уменьшению нашей зависимости от нефти при транспортировке.

BES поддерживает исследования отдельных ученых и в многопрофильных центрах.Самый крупный центр — Объединенный центр исследований в области накопления энергии (JCESR), центр энергетических инноваций Министерства энергетики США. Этот центр изучает электрохимические материалы и явления на атомном и молекулярном уровне и использует компьютеры для разработки новых материалов. Эти новые знания позволят ученым разработать более безопасные накопители энергии, которые служат дольше, заряжаются быстрее и обладают большей емкостью. По мере того, как ученые, поддерживаемые программой BES, достигают новых успехов в науке об аккумуляторах, эти достижения используются прикладными исследователями и промышленностью для продвижения приложений в области транспорта, электросетей, связи и безопасности.

Факты о хранении электрической энергии

  • Нобелевская премия по химии 2019 года была присуждена совместно Джону Б. Гуденафу, М. Стэнли Уиттингему и Акире Йошино «за разработку литий-ионных батарей».
  • Электролитный геном в JCESR создал вычислительную базу данных, содержащую более 26 000 молекул, которую можно использовать для расчета ключевых свойств электролита для новых, усовершенствованных аккумуляторов.

Ресурсы и связанные термины

Научные термины могут сбивать с толку.DOE Explains предлагает простые объяснения ключевых слов и концепций фундаментальной науки. В нем также описывается, как эти концепции применяются к работе, которую проводит Управление науки Министерства энергетики США, поскольку это помогает Соединенным Штатам преуспевать в исследованиях по всему научному спектру.

Все, что вам нужно знать об автомобильных аккумуляторах

Знания — это сила, когда речь идет об аккумуляторе и электросистеме вашего автомобиля. Фактически, это сердце и душа вашей поездки.Меньше всего вам хочется остаться с разряженной батареей. Чем больше вы знаете о своей батарее и электрической системе, тем меньше вероятность того, что вы застрянете. В Firestone Complete Auto Care мы здесь, чтобы помочь вам понять, что происходит с аккумуляторной батареей и электрической системой вашего автомобиля.

В среднем аккумулятора хватает на 3–5 лет, но привычки вождения и воздействие экстремальных погодных условий могут сократить срок службы автомобильного аккумулятора. В Firestone Complete Auto Care мы предлагаем бесплатную проверку аккумулятора при каждом посещении нашего магазина.Это быстрая диагностическая проверка, позволяющая оценить температуру, при которой аккумулятор может выйти из строя. Это также дает вам некоторое представление о том, сколько у вас осталось заряда батареи. Один небольшой тест покажет вам, в порядке ли ваша батарея.

Знания об аккумуляторах

Как именно работает автомобильный аккумулятор?

Автомобильный аккумулятор обеспечивает заряд электричества, необходимый для питания всех электрических компонентов вашего автомобиля.Поговорим о довольно большой ответственности. Без аккумулятора ваша машина, как вы, наверное, заметили, не заводится.

Давайте посмотрим, как работает эта мощная маленькая коробочка:

  • Химическая реакция приводит в действие ваш автомобиль: ваш аккумулятор преобразует химическую энергию в электрическую энергию, необходимую для питания вашего автомобиля, подавая напряжение на стартер.
  • Поддерживайте постоянный электрический ток: аккумулятор не только обеспечивает энергию, необходимую для запуска автомобиля, но и стабилизирует напряжение (это термин для источника энергии), чтобы двигатель работал.Многое зависит от батареи. Назовите это «маленькая коробочка, которая могла».

Автомобильный аккумулятор может быть небольшим, но мощность, которую он обеспечивает, огромна. Проверьте свою батарею прямо сейчас с помощью нашего виртуального тестера батареи.

Подберите аккумулятор, подходящий для вашего автомобиля, по разумной цене — прямо сейчас.

Симптомы и процедуры

Есть ли какие-либо предупреждающие знаки, которые могут указывать на то, что моя батарея разряжена?

«Если бы я только знал раньше.«Мы все бывали там раньше. К счастью, существуют различные признаки и симптомы того, что ваша батарея может нуждаться в замене:

  1. Медленный запуск двигателя: при попытке завести двигатель запуск двигателя происходит медленно, и запуск двигателя занимает больше времени, чем обычно. Лучше всего описать его как начальный шум «rur rur rur».
  2. Индикатор проверки двигателя: индикатор проверки двигателя иногда появляется, когда батарея разряжена. Странные световые индикаторы системы — например, «проверьте двигатель» и «низкий уровень охлаждающей жидкости» — могут означать, что проблема с аккумулятором.(Это также может означать, что вам нужно больше охлаждающей жидкости).
  3. Низкий уровень жидкости в аккумуляторной батарее: автомобильные аккумуляторы обычно имеют полупрозрачную часть корпуса, поэтому вы всегда можете следить за уровнем жидкости в аккумуляторе. Вы также можете осмотреть его, сняв красную и черную крышки, если они не запечатаны (большинство современных автомобильных аккумуляторов теперь постоянно закрывают эти части).
  4. Итог: Если уровень жидкости ниже свинцовых пластин (проводников энергии) внутри, пора протестировать аккумулятор и систему зарядки.Когда уровень жидкости падает, это обычно вызвано перезарядкой (нагревом).
  5. Набухший, раздутый корпус батареи: если корпус батареи выглядит так, как будто он съел очень много еды, это может указывать на то, что батарея вышла из строя. Вы можете обвинить чрезмерное тепло в том, что корпус аккумулятора разбухает, что сокращает срок службы аккумулятора.
  6. Фуу, неприятный запах тухлого яйца: вокруг батареи вы можете почувствовать резкий запах тухлого яйца (запах серы).Причина: течь в батарее. Утечка также вызывает коррозию вокруг стоек (где расположены + и — кабельные соединения). Возможно, потребуется удалить мусор, иначе ваш автомобиль может не завестись.
  7. Три года + срок службы батареи считается старым таймером: ваша батарея может прослужить значительно больше трех лет, но, по крайней мере, ее текущее состояние проверяется ежегодно, когда оно достигает трехлетней отметки. Срок службы батареи составляет от трех до пяти лет в зависимости от батареи. Однако привычки вождения, погода и частые короткие поездки (до 20 минут) могут значительно сократить фактический срок службы автомобильного аккумулятора.
  8. Как определить, не слишком ли старый аккумулятор?

    Во-первых, вы можете проверить четырех- или пятизначный код даты на крышке батарейного отсека. Первая часть кода является ключевой: ищите букву и цифру. Каждому месяцу назначается буква — например, A для января, B для февраля и так далее. Число, которое следует за годом, указывает на год, например 9 для 2009 года и 1 для 2011 года.Этот код сообщает вам, когда аккумулятор был отправлен с завода нашему местному оптовому дистрибьютору. Дополнительные цифры говорят о том, где был сделан аккумулятор. Автомобильные аккумуляторы служат в среднем от трех до пяти лет. Имейте в виду, что есть также признаки слабого заряда батареи, на которые следует обратить внимание, например, медленный запуск двигателя при низком уровне жидкости. Если аккумуляторный отсек раздулся или раздулся, от аккумулятора исходит вонючий запах тухлого яйца или загорается индикатор двигателя, проблема может быть не из-за изгиба. А если ему больше трех лет? Считайте, что пора внимательно следить.Вот для чего мы здесь.

  9. Просмотреть все симптомы и процедуры
  10. Электрические системы

    Может ли неисправный аккумулятор повредить систему зарядки или стартер?

    Вы делаете ставку. Если у вас слабая лодыжка, вы склонны чрезмерно компенсировать это и увеличивать вес — и нагрузку — на здоровую лодыжку.Та же концепция со слабой батареей. Когда у вас разряженная батарея, ваша машина в конечном итоге создает дополнительную нагрузку на здоровые части. Это может повлиять на систему зарядки, стартер или соленоид стартера.

    Эти детали могут работать со сбоями, потому что они потребляют чрезмерное напряжение, чтобы компенсировать недостаток заряда батареи. Оставьте эту проблему нерешенной, и вы можете заменить дорогостоящие электрические детали, как правило, без предупреждения.

    Совет: Наша проверка электрической системы гарантирует, что все необходимые детали получают правильное напряжение.Мы сразу узнаем, есть ли какие-либо слабые детали, которые могут потребовать немедленной замены. Не оставляйте мощность вашего автомобиля на волю случая, вы можете в конечном итоге заплатить за него позже.

    Как узнать, что генератор не выдает достаточно электроэнергии для батареи?

    Скажем так, мы ясновидящие.

    Шутки в сторону, начнем с очевидных симптомов:

    • Электросистема имеется.Странные мерцающие или предупреждающие огни, такие как «Check Engine», мигают, исчезают, а затем снова появляются. Все эти неисправности обычно возникают, когда автомобильный аккумулятор почти разряжен и изо всех сил пытается обеспечить питание. Если генератор неисправен, ваша батарея больше не будет получать заряд и будет в нескольких шагах от полной разрядки.
    • Медленный кривошип. Вы заводите машину, а она все крутится и крутится, в конце концов заводится — или нет. Это может означать, что ваш генератор не заряжает аккумулятор должным образом.Если вы тоже столкнетесь с зараженной электрической системой, зайдите в ближайший сервисный центр. Ваш автомобиль может находиться в нескольких шагах от разряженной батареи и генератора.

    Давайте рассмотрим: Все вышесказанное происходит, когда аккумулятор не получает заряд (из-за неисправного генератора). Ваша батарея будет продолжать разряжаться. Когда он полностью сливается… ну, все мы знаем, что будет дальше: бордюрная машина. И ни вы, ни мы не хотим, чтобы вы через это проходили.

    Совет: Чем раньше мы сможем осмотреть ваш автомобиль, тем меньше вероятность того, что вы столкнетесь с самым большим страхом каждого водителя — автомобилем, который не заводится.Управляйте спокойствием.

  11. Узнайте больше об электросистеме вашего автомобиля
  12. Наши услуги

    Это правда, что вы предоставляете бесплатные тесты автомобильных аккумуляторов?

    Вы делаете ставку. Просто попросите его во время любого технического обслуживания автомобиля, и мы проведем для вашей батареи максимальный тест на производительность с помощью нашего анализатора раннего обнаружения.В свою очередь, вы получите душевное спокойствие, зная, сколько заряда осталось в вашем аккумуляторе и рекомендуется ли его замена. Мы также подскажем, как продлить срок службы аккумулятора, если он находится в «хорошем» рабочем состоянии. Узнайте больше о нашем «Анализаторе раннего обнаружения».

    Если вы хотите получить фору, вы можете измерить уровень заряда батареи прямо сейчас с помощью нашего онлайн-тестера Virtual Battery Tester.

    Почему так много людей используют Firestone Complete Auto Care для замены автомобильных аккумуляторов?

    У нас есть навыки, и мы работаем с качественными аккумуляторами.Мы предлагаем бесплатную проверку аккумулятора во время каждого посещения, а также определяем состояние аккумулятора и потенциальный сбой, чтобы у вас было меньше догадок.

    Толчок, необходимый для езды по

    Управление вашей поездкой — дело сложное. Но вот очевидный факт: чтобы он работал, вам нужен исправный аккумулятор. В конце концов, без аккумулятора ваша машина не заведется. Автомобильный аккумулятор обеспечивает заряд электричества, необходимый для работы электрических компонентов.Он также преобразует химическую энергию в электрическую энергию, которая питает ваш автомобиль и подает напряжение на его стартер. И он стабилизирует напряжение (также известное как источник энергии), которое поддерживает работу вашего двигателя. Действительно, важно.

  13. Остановитесь для полной проверки электрооборудования.
  14. Ознакомьтесь с нашими текущими предложениями по аккумуляторным батареям и специальными предложениями.
  15. Проверьте срок службы автомобильного аккумулятора с помощью нашего виртуального тестера аккумулятора.
  16. Подберите аккумулятор, подходящий именно для вашего автомобиля, по разумной цене.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *