Что такое пиролиз — описание процесса пиролиза — Портал о ломе, отходах и экологии
Процессы термического разложения органических и неорганических соединений называют пиролизом. Особенностью сжигания при этом методе считается ограничение доступа кислорода. Данный способ утилизации считается безотходным/малоотходным и позволяет создавать циклический механизм переработки не только ТБО, но также нефтепродуктов, загрязненной почвы, прочего.
На выходе такого деструктивного разрушения становятся продукты, характер и природа которых зависит от применяемого конкретно метода, а также состава вторичного сырья.
Выделяют два основных результирующих направления: обезвреживание отходов и сбор сырьевой базы. Последний вариант на сегодня наиболее актуальный. Прежде всего из-за возможности воссоздавать нефтехимические продукты, природный ресурс которых, как известно, невосполним.
Кроме того, в результате переработки органических отходов получают сразу два вида продуктов – кокс и жидкие компоненты: смолы, пиролизный газ. При осаждении или фильтрации последнего получают углеводороды. Дополнительно к этому вызывает интерес получение ароматических соединений.
Оборудование для пиролиза резины
Виды пиролиза, причины их появления
Для реализации метода требуется дорогостоящее оборудование, необходима подготовка кадров. Несмотря на это заинтересованность в создании предприятий, занимающихся утилизацией ТБО по методу пиролиза есть.
- Во-первых, это эффективный метод использования вторичного сырья (фактически безотходный).
- Во-вторых, наблюдается заметный вклад в защиту экологической среды.
- В-третьих, не страдают жители территорий, прилегающих к заводам с таким методом переработки.
Появившись еще в 19 веке, пиролиз интенсивно развивался. Заинтересованные лица искали еще более приемлемые варианты для разложения отходов. Преследовались такие цели:
- сохранение безопасности для окружающей среды;
- сокращение расходов на переработку;
- создание условий для накопления результатов сжигания;
- получение экономической выгоды.
В итоге появились несколько видов метода, сосредоточимся на них. Формально их два: сухой и окислительный. Однако первый имеет собственные разновидности и характеристики.
к содержанию ↑Сухой пиролиз и его разновидности
Утилизация кислых гудронов пиролизом
Метод преследует такие основные цели: обезвреживание вторичного сырья, получение топлива, различных химических соединений, используемых в промышленности. Главный сохраняемый принцип, которому следует сухой пиролиз, – рациональное использование невосполнимых природных ресурсов.
Способ позволяет получать пиролизный газ, жидкий продукт, твердые углеродистые компоненты. Сухой пиролиз может протекать при трех режимах температур:
- Низких.
- Средних.
- Высоких.
Пиролиз при Т 450-550 градусов по Цельсию относится к низкотемпературному. Методу характерно получение полукоксов в больших количествах, максимальная температура выхода пиролизного газа при образовании его в минимальных объемах. Также наблюдается получение смол, которые в дальнейшем используются для производства каучука. Образующиеся полукоксы применяют в качестве топлива для промышленных и бытовых нужд.
Среднетемпературный пиролиз происходит при 800 градусах по Цельсию. В ходе сжигания выделяется большое количество газа и гораздо меньше, жидких смол и непосредственно кокса, чем в предыдущем случае.
Высокотемпературный пиролиз протекает при Т выше 900 градусов по Цельсию. Этот метод дает минимальное количество твердых и жидких отходов. Образующиеся газы впоследствии используют, как топливо для транспортировки.
к содержанию ↑Окислительный пиролиз
Это процесс частичного или полного сжигания промышленного вторичного сырья при его контакте с продуктами сгорания топлива. Используется для обезвреживания жидких нефтесодержащих отходов, а также пластмасс, резины, прочего.
Этот метод используют для сжигания сырья, находящегося в пастообразном, жидком или даже газообразном состоянии. Под обработку окислительным способом подходят измельченный пластик, резина, а также промышленные стоки.
к содержанию ↑Виды пиролиза по типу сжигаемого материала
Самодельная установка для пиролиза старых покрышек
Россия страна богатая древесиной. В ней сложилась одна из наиболее фундаментальных школ пиролиза этого вида сырья. Происходит процесс при низкотемпературном режиме. На выходе получают такие вещества: жидкие – метиловый спирт, уксусная кислота, ацетон, смола и др, твердые – древесный уголь.
Пиролиз метана производится при высоких температурах и получаемый в результате ацетилен, тут же отправляют на производство искусственного каучука. Такие сложности связаны с тем, что переработка метана для добычи конечного продукта ацетилена экономически невыгодна.
Между тем пиролиз метана имеет ряд уравнений для решения проблемы утилизации этого продукта. Для протекания реакций, кроме специфической температуры периодически требуются дополнительные вещества.
Например, тримеризация ацетилена протекает в низкотемпературном режиме, но обязательно с присутствием активированного угля. Более того, специфика данного процесса в его скорости: данный вид пиролиза относится к низкоскоростному, что подразумевает медленную подачу источника возгорания.
Предварительный этап получения ацетилена протекает наоборот при высоких температурах и в скоростном режиме. Формула реакции такова: 2СН4 = С2Н2 + 3Н2. Однако попутно протекает еще целый ряд побочных реакций.
Пиролиз и крекинг предельных углеводородов – это среднетемпературный процесс, в результате него получают: этилен, пропилен, бензол и ряд подобных продуктов. Нефтегазовое сырье перерабатывают по методу крекинга еще с 1877 года, автор идеи также россиянин, химик Александр Александрович Летним.
Пиролиз мусора и ТБО подразумевает в том числе переработку шин, пластмасс, прочего, о чем речь уже шла ранее. Поэтому стоит выделить лишь основные моменты или трудности, с которыми сталкиваются в ходе осуществления данного процесса.
Видео – Пиролиз или нефтехимия в деталях:
Необходимость в пиролизных установках
Главная проблема утилизации мусора и других отходов ТБО обсуждаемым методом, это найти эффективный и недорогостоящий способ для улавливания испарений, возникающих во время сжигания. При горении выделяются хлор, фосфор, сера. Более того, некоторые отдельно взятые случаи сжигания отличаются присутствием реакции взаимодействия хлора с другими продуктами сжигания, в результате чего могут образовываться просто ядовитые соединения.
Современные установки решают ряд описанных трудностей. Например, ограниченность доступа кислорода сокращает вероятность образования токсинов: фуран, бензапирен, прочих.
Возможность создания циклических комплексов переработки отходов ведет к почти безотходному производству. Достигается максимальная экономия энергетических ресурсов. Кроме того, образующийся в результате шлак идет на ремонт дорог, что дополнительно повышает экономическую значимость переработки.
Расширяется круг вероятных мест размещения заводов (даже на территории городов). Поскольку в идеале не должно быть выбросов в окружающую среду: отсутствие газообразных ядовитых испарений, исключение образования производственных стоков (все собирается и циклически перерабатывается).
Последнее преимущество, все перечисленные возможности выполняются на довольно компактном оборудовании, без огромных труб, высоких устрашающих зданий. Организовать производство вторичных отходов вполне реально в небольшом ангаре.
Видео – пиролизные установки для утилизации отходов:
Внедрение метода на бытовом уровне
Жить в пригороде становится все более популярно. Однако далеко не все горожане готовы к заготовке дров, а газификация поселков и дачных участков решается довольно туго.
Альтернативой традиционным способам утепления жилых помещений выступают бытовые пиролизные котлы. Сегодня они не просто становятся источником энергии практически из мусора, но оснащены современной электроникой и принудительной вентиляцией. Бытовые котлы «Пиролиз 43» – одна из популярных моделей, представленная рынке подобных товаров. Оборудование имеет два котла сжигания, что гарантирует дожег образующих паров, газов, прочего. Это делает их использование преимущественным во всех отношениях: экономично, безопасно, эффективно.
Причем для использования данной модели котла также подходят дрова, но специалисты подчеркивают: топливо в котлах скорее тлеет, чем горит, плюс дополнительный дожег, – обеспечивают существенную экономию ресурсов.
Зола почти не образуется, а значит владельцам не придется долго думать над очисткой оборудования в процессе эксплуатации. Последнее, что важно для бытовых пользователей – это возможность выбирать котел подходящего дизайна (в том числе и его цвет).
Духовой шкаф с пиролитической очисткой
Подобные возможности современного бытового оборудования лишний раз заставляют задуматься о целесообразности приобретения газовой или электрической плиты.
Реализация пиролитической очистки возможна только для последнего варианта. Эта технология значительно эффективней, чем гидролиз или электролиз, также находящие место для бытового применения.
Духовой шкаф с пиролитической очисткой
Система с пиролитической очисткой не требует смены никаких фильтров и сохраняет работоспособность на весь гарантийный срок духового шкафа. Если предельно просто описать процессы, происходящие при подобной очистке, все выглядит примерно так:
- загрязненный духовой шкаф разогревается до максимально возможных температур;
- далее происходит сжигание жиров, накипи, прочих наслоений на стенках оборудования;
- газ уходит по каналам вентилирования;
- на дне поддона образуется зола, которую можно просто выбросить.
Сегодня достаточно много форумов собирает аудиторию, заинтересованную данным вопросом. Поскольку такие блюда, как курочка-гриль или шашлычок в духовке, не приготовишь в кулинарном рукаве. С другой стороны, выпечка после такого использования печки получается просто ужасная. Вот и выходит, что многим действительно необходимы действенные, одновременно экономичные методы очистки, каковым и является пиролиз.
Пиролиз. Справка — РИА Новости, 11.06.2010
Виды пиролиза
Окислительный пиролиз – процесс термического разложения промышленных отходов при их частичном сжигании или непосредственном контакте с продуктами сгорания топлива. Данный метод применим для обезвреживания многих отходов, в том числе «неудобных» для сжигания или газификации: вязких, пастообразных отходов, влажных осадков, пластмасс, шламов с большим содержанием золы, загрязненную мазутом, маслами и другими соединениями землю, сильно пылящих отходов.
Кроме этого, окислительному пиролизу могут подвергаться отходы, содержащие металлы и их соли, которые плавятся и возгорают при нормальных температурах сжигания, отработанные шины, кабели в измельченном состоянии, автомобильный скрап и др.
Метод окислительного пиролиза является перспективным направлением ликвидации твердых промышленных отходов и сточных вод.
Сухой пиролиз. Этот метод термической обработки отходов обеспечивает их высокоэффективное обезвреживание и использование в качестве топлива и химического сырья, что способствует созданию малоотходных и безотходных технологий и рациональному использованию природных ресурсов.
Сухой пиролиз – процесс термического разложения без доступа кислорода. В результате образуется пиролизный газ с высокой теплотой сгорания, жидкий продукт и твердый углеродистый остаток. В зависимости от температуры, при которой протекает пиролиз, различается:
1. Низкотемпературный пиролиз или полукоксование (450–550 °С). Для данного вида пиролиза характерны максимальный выход жидких и твердых (полукокс) остатков и минимальный выход пиролизного газа с максимальной теплотой сгорания. Метод подходит для получения первичной смолы – ценного жидкого топлива, и для переработки некондиционного каучука в мономеры, являющиеся сырьем для вторичного создания каучука. Полукокс можно использовать в качестве энергетического и бытового топлива.
2. Среднетемпературный пиролиз или среднетемпературное коксование (до 800 °С) дает выход большего количества газа с меньшей теплотой сгорания и меньшего количества жидкого остатка и кокса.
3. Высокотемпературный пиролиз или коксование (900–1050° С). Здесь наблюдается минимальный выход жидких и твердых продуктов и максимальная выработка газа с минимальной теплотой сгорания – высококачественного горючего, годного для далеких транспортировок. В результате уменьшается количество смолы и содержание в ней ценных легких фракций.
Метод сухого пиролиза получает все большее распространение и является одним из самых перспективных способов утилизации твердых органических отходов и выделении ценных компонентов из них на современном этапе развития науки и техники.
Пиролиз углеводородов
Процесс пиролиза углеводородов (800 900°С) (газовых углеводородов, прямогонного бензина, атмосферного газойля) является основным источником получения этилена и одним из главных источников получения пропилена, дивинила, бензола и ряда других продуктов. Процесс пиролиза (крекинга) нефтегазового сырья был запатентован в 1877 году российским инженером химиком Александром Александровичем Летним.
Пиролиз древесины
При пиролизе древесины (450 500°С) образуется ряд веществ таких как: древесный уголь, метиловый спирт, уксусная кислота, ацетон, смола и др. Россия одна из самых богатых лесом стран. Поэтому в России сформировались и работали лучшие в мире школы по пиролизу древесины. Их вклад получил мировое признание.
Пиролиз мусора и отходов
Существуют проекты уничтожения бытового мусора с помощью пиролиза. Затруднения с организацией пиролиза шин, пластмасс и других органических отходов связаны не с технологией собственно пиролиза, которая не отличается от технологии термической переработки других твердых материалов.
Проблема состоит в том, что в большинстве отходов содержится фосфор, хлор и сера. Сера и фосфор в окисленной форме летучи и наносят вред окружающей среде. Хлор активно реагирует с органическими продуктами пиролиза с образованием стойких ядовитых соединений (например, диоксины).
Улавливание этих соединений из дыма – процесс не из дешевых и имеющий свои сложности. Проблема переработки изношенных автомобильных шин и вышедших из эксплуатации резинотехнических изделий имеет большое экологическое и экономическое значение для всех развитых стран мира. А невосполнимость природного нефтяного сырья диктует необходимость использования вторичных ресурсов с максимальной эффективностью.
Шины и полимеры представляют собой ценное сырье, в результате их переработки методом низкотемпературного пиролиза (до 500 °С) получаются жидкие фракции углеводородов (синтетическая нефть), углеродистый остаток (технический углерод), металлокорд и горючий газ. В то же время, если сжечь 1 т шин, то в атмосферу выделится 270 кг сажи и 450 кг токсичных газов.
Преимущества пиролизных установок:
1. Достигаются практически полная утилизация материально-энергетических ресурсов ТБО и энергоавтономность всего технологического цикла.
2. Поскольку термическое разложение происходит без доступа воздуха, нет условий для образования таких токсичных соединений, как диоксин, фуран, бензапирен и др.
3. Замкнутость схемы, компактность оборудования и экологическая чистота определяют возможность размещения такого предприятия в черте любого города.
4. Учитывая, что минеральная составляющая ТБО – экологически чистый после термообработки шлак – может использоваться для дорожных работ, такую технологию можно отнести к категории полностью безотходных.
5. Эти установки позволяют получать прибыль за счет реализации произведенной продукции (пар, электроэнергия) в отличие от действующих сегодня производств, где эксплуатационные затраты значительно превосходят доход от реализации, а рентабельность предприятий основывается на платежах населения за переработку мусора.
Для пиролизных установок нет необходимости строить капитальные сооружения и высокие дымовые трубы. Установки могут монтироваться под навесом или в ангарах легкого типа на бетонном основании.
Материал подготовлен на основе информации РИА Новости и открытых источников
Пиролиз: описание и виды пиролиза
По сути пиролиз – это распад материи на молекулярном уровне. Разложение органических и неорганических тканей при этом происходит благодаря сильному нагреву и полному отсутствию кислорода. В итоге сложные соединения распадаются на более простые, образуя новые элементы. Поэтому довольно часто данный процесс называют сухой перегонкой.
Описание процесса
Потребность в экологичном оборудовании для переработки химических отходов у нашего общества появилась уже давно. Первые пиролизные котлы стали запускать еще в конце позапрошлого века. А создание современных пиролизных агрегатов решило сразу несколько вопросов:
- экологическая составляющая;
- возможность накапливать результаты сжигания;
- экономическая выгода.
Впрочем, экономический аспект использования пиролиза рассчитан на перспективу. Пиролиз достаточно недешевое удовольствие. Он требует соответствующего оборудования и специально обученный кадровый состав.
Зато в работе пиролизные установки практически автономны. Агрегатам требуется электроэнергия только для запуска, дальнейшая работа котла осуществляется за счет производимых в процессе сжигания ресурсов. При этом избытки вырабатываемой энергии и пара можно использовать для бытовых целей, перенаправляя их коммунальные сети.
В России пиролиз только начинает набирать популярность, тогда как в Европе без установок для пиролиза не обходится ни одно крупное предприятие. Причин такой востребованности пиролиза довольно много:
- безотходный способ переработки мусора и всевозможных загрязнений промышленного характера;
- уровень КПД от пиролиза составляет 90 %;
- возможность получения новых соединений, вторсырья;
- создание невосполнимых ресурсов, таких как синтетическая нефть;
- получение углеводородов, органических кислот и других химических элементов;
- источник теплоснабжения предприятий.
Исходя из выбора сырья для переработки, пиролизная реакция может протекать при разных температурных режимах. Конечный результат при этом, также будет различаться по составу химических элементов.
В зависимости от температуры нагрева печи и дополнительным составляющим пиролиза, перегонку принято разделять на две разновидности: сухая и окислительная.
Окислительный пиролиз
Этот вид пиролиза можно назвать самым экологичным и продуктивным. Он применяется для обработки вторсырья. Реакция проходит при высоких температурах. Например, при пиролизе метана, он смешивается с кислородом, частичное сгорание вещества выделяет энергию, которая нагревает оставшееся сырье до температуры 16000 ºС.
Окислительный пиролиз используют для того, чтобы обезвредить промышленные отходы с повышенным содержанием нефти. А также для переработки пластика, резины и других материалов, не поддающихся естественному разложению в природной среде.
«Окислительный пиролиз позволяет перерабатывать сырье различных консистенций. В том числе материалов в жидком и газообразном состоянии».
Виды сухого пиролиза
Сухой пиролиз один из самых востребованных в промышленности. С его помощью получают топливо, различные химические соединения и обезвреживают вторсырье. Используя разные температурные режимы пиролиза получают газ, жидкие и твердые продукты сгорания.
Разогрев котла до максимальной температуры в 5500 ºС, считается низкотемпературным режимом. При таких температурах образования газов практически не происходит. Работа направлена на производство полукоксов (в промышленности их активно используют в качестве топлива) и смол, из которых в дальнейшем производят искусственный каучук.
Протекание пиролиза при температурах от 550 до 9000 ºС считается низкотемпературным, но фактически, учитывая технические возможности, принадлежит к среднему температурному режиму. Его использование целесообразно при необходимости производства пиролизного газа и твердых осадков. При этом исходное сырье может включать фракции неорганического происхождения.
Течение пиролиза при температуре выше 9000 ºС считают высокотемпературной реакцией. Работа котла при максимальной температуре в 9000 ºC позволяет получать твердые материалы (кокс, древесный уголь и другие) с низкой долей выделяемого газа.
Выгонка с использованием более высоких температурных режимов нужна для получения преимущественно газообразных веществ. Практическая польза от высокотемпературного режима заключается в том, что полученные газы можно использовать в качестве топлива.
«Высокотемпературный пиролиз не требователен к содержанию перерабатываемого сырья. При использовании низкотемпературного режима необходимо соблюдать все этапы подготовки, включая сушку и сортировку».
Пиролиз ТБО
Экологически чистая переработка мусора – одно из ключевых направлений использования пиролиза. Данные агрегаты позволяют в разы сократить негативное воздействие антропогенного фактора на окружающую среду.
В процессе пиролиза распадаются биоактивные вещества, не выплавляются тяжелые металлы. После термического распада в пиролизных котлах практически не остается невостребованных отходов, что позволяет значительно сократить площади, для их дальнейшего хранения.
Так, например, сжигая 1 тонну покрышек мы загрязняем атмосферу 300-ми кг сажи. Кроме того, в воздух поступает около 500 кг токсичных веществ. Переработка того же материала в пиролизных установках позволяет использовать резину в энергетических целях, получать вторсырье для дальнейшего производства и значительно сокращает вредные выбросы.
Снизить вредное воздействие на окружающую среду удается благодаря многоступенчатой системе переработки. В процессе пиролиза отходы проходят четыре этапа утилизации:
- первоначальную сушку;
- крекинг;
- дожигание остатков переработки в атмосфере;
- очистку полученных газообразных веществ в специальных поглотителях.
Пиролизные установки позволяют перерабатывать отходы:
- деревоперерабатывающих предприятий;
- фармацевтической отрасли;
- автопрома;
- электротехники.
Метод пиролиза успешно справляется с полимерами, отходами канализации и бытовым мусором. Нивелирует воздействие на природу нефтепродуктов. Отлично подходит для утилизации органических отходов.
Единственный минус пиролизных агрегатов обнаруживается при переработке сырья, содержащего хлор, серу, фосфор и другие ядовитые химикаты. Продукты полураспада этих элементов под действием температуры могут соединяться с другими веществами и образовывать токсичные сплавы.
Пиролиз метана
Пиролиз метана одна из самых сложных реакций, проходящих в разных температурных режимах. Проводя пиролиз на высокой температуре, можно получить ацетилен, из которого изготавливают каучук. Однако экономически эта процедура не оправдана.
Зато пиролизная переработка метана – отличный способ для его утилизации. К примеру, тримеризации, получаемого ацетилена, можно добиться добавив активированный уголь и запустив работу котла в низком температурном режиме.
Пиролиз древесины
Эту процедуру еще называют древесным крекингом, а зародилась она именно в России. Прообраз современного агрегата еще в незапамятных временах изобрели наши углежоги. Для получения древесного угля без доступа воздуха, они воспламеняли древесину под слоем земли.
Сегодня этот процесс гораздо совершеннее и проходит в несколько этапов. Начинается крекинг при разогреве до 2000 ºС. На этом этапе выделяется большое количество оксида углерода. Если продолжить его сжигание в атмосфере, то удастся получить огромное количество энергии.
Затем котел разогревается до 5000 ºС. В этом температурном режиме получают метанол, смолы, ацетон и уксусную кислоту. Кроме этого вырабатывается твердый углерод, больше известный, как древесный уголь.
Продукты пиролиза и перспективы его применения
Использование пиролизных агрегатов дает широкие возможности по изготовлению ценных сегодня продуктов химической промышленности. В их числе: бензин, дизтопливо, синтез-газ, древесный уголь. Но их выработка ставит перед российским обществом еще одну проблему – сортировка сырья.
Впрочем, на первых порах массового внедрения пиролизных установок, из них можно извлечь и другую пользу. Независимо от перерабатываемого сырья, пиролизные агрегаты способны вырабатывать электрическую и тепловую энергию.
Кроме того, благодаря наличию камер догорания и практически безотходному производству, пиролизные установки способны решить многие проблемы экологического характера.
Сегодня небольшие по размеру модели, такие как «Пиролиз 43», начинают пользоваться спросом в частной среде. Эти мини-печи с высоким уровнем КПД просто не заменимы для частных домовладений в пригороде и труднодоступных поселениях. Пиролизные установки легко решают проблему газификации и электрификации небольших сел и дачных кооперативов.
Установки для реализации пиролиза не до конца оценены современным обществом. Однако их бережное отношение к природе, способность производить необходимые цивилизованному обществу продукты из вторсырья еще завоюют внимание миллионов людей. Система пиролиза хороший способ сделать нашу планету чище, а отношение к ископаемым рациональней.
Оцените статью:Рейтинг: 0/5 — 0 голосов
Пиролиз от А до Я: технология пиролиза
Пиролиз: основы процесса и технологииПиролиз является достаточно изученной и эффективно применяемой в различных странах технологией переработки нефтесодержащего сырья в газообразные и жидкие продукты горения. Впервые он был применен в конце 19 века для получения осветительного газа из керосиновой фракции нефти. В частности, уже в 1877 году на нефтяной пиролиз был получен патент. Его автором стал химик-технолог из Петербурга Александр Александрович Летний, исследовавший процессы воздействия высоких температур на нефтепродукты.
Сейчас пиролиз начал использоваться для переработки твердых органических отходов, нефтешламов и продуктов бурения. В его основу положен процесс разложения органического сырья на низкомолекулярные составляющие при воздействии высоких температур. Процесс может протекать как в условиях отсутствия воздуха, так и при его ограниченном доступе.
Совершенствование технологии – неотъемлемая часть существования пиролиза. Основные модификации процесса относятся главным образом, к повышению эффективности пиролизных котлов, уменьшению объема образующихся вредных остатков и снижению себестоимости технологии. Это может осуществляться за счет изменения конструкции установок, введения/выведения в состав различных химических компонентов и корректировки условий протекания процесса.
Условия протекания пиролиза и его особенностиНезависимо от специфики процесса пиролиза, обязательным условием его протекания являются высокие температуры, которые должны быть в диапазоне 450-1050 °C. Их обеспечение сопровождается различными способами, которые зависят от стадии протекания процесса, его модификации, исходного сырья и желаемых продуктов разложения.
По температурам протекания процесса различают:
- низкотемпературный пиролиз – 450-550 °C
- среднетемпературный пиролиз – 550-800 °C
- высокотемпературный пиролиз – 900-1050 °C
Для обеспечения пиролиза особых условий к давлению не предъявляется. Оно может находиться в диапазоне, приближенном к атмосферному давлению. Время реакции составляет 0,1-0,5 секунд.
По видам реакций различают окислительный и сухой пиролиз. По исходному сырью современная химическая промышленность выделяет отдельно пиролиз нефтепродуктов, древесины, шин, пластмасс и отходов.
Пиролиз как химический процессПиролиз представляет собой совокупность элементарных реакций разложения (деструкции) органического вещества на продукты с меньшей молекулярной массой. Реакции протекают как последовательно, так и параллельно и при этом неразрывно связаны между собой. Тем не менее, условно выделяют первичную и вторичную стадии процесса:
- На первой стадии в области высоких температур осуществляется первичное расщепление вещества.
- На второй – образовавшиеся вещества подвергаются реакции дегидрирования для возможности последующего расщепления. Разделение полученных фракций происходит за счет конденсации паров или их изомеризации, полимеризации.
Прежде чем, понять, что может служить сырьем, важно выделить назначение пиролизной печи. Если это установка для утилизации, то первооснову составляет сырье – отходы, которые следует переработать. Установки термической деструкции позволяют перерабатывать:
- пластмассы и полимеры
- шины
- автомобильный скрап
- кабели
- нефтешламы
- отходы бурения
- отработанные масла
- загрязненную смолами и мазутами землю.
Рассматривая пиролиз, как способ получения газа, богатого непредельными углеводородами, то пиролизные установки могут использовать в качестве сырья древесину, нефтепродукты, уголь и т.п.
Пиролиз от А до Я (часть 2): пиролизные печи и установки термической деструкции
При использовании материала/любой его части ссылка на сайт (www.i-pec.ru) обязательна
Вернуться к спискуПиролиз нефтяного сырья| Нектон Сиа
Пиролиз нефтяного сырья
09.05.2014
Для получения углеводородного сырья для химической промышленности в настоящее время широко используется процесс пиролиза нефтяного сырья. Данный процесс является методом разложения органических соединений под воздействием высоких температур без доступа воздуха или при его ограниченном объёме. Он позволяет получать ненасыщенные и ароматические углеводороды в ходе термического крекинга. Основное назначение пиролизных установок – получение этилена и пропилена в первую очередь. Эти вещества являются основой для полимеров, используемых в дальнейшем при изготовлении пластмасс, синтетических волокон, каучука и многих других важных продуктов. Именно поэтому данные установки называют этиленовыми. Часто можно слышать, что процесс пиролиза нефтепродуктов называют «ароматизацией нефти». Это связано с тем, что в ходе данного процесса получают такие ароматические углеводороды как бензол и толуол.
Немного истории. Впервые процесс пиролиза начали использовать в России ещё в XII веке для получения древесной смолы, используемой в ходе пропитки канатов и смолении деревянных судов. В дальнейшем стали получать древесный уголь при сухой перегонке древесины. В промышленном масштабе данный процесс используется с XIX века. Применяли пиролиз для получения уксусной кислоты при сжигании древесины лиственных пород деревьев.
В семидесятых годах XIX века на территории России открываются первые заводы, на которых процессу пиролиза подвергают керосин с целью получения осветительного газа. Первым держателем патента на пиролиз нефтепродуктов был петербургский химик-технолог А. А. Летний. В дальнейшем В. Г. Шухов и З. А. Никифоров открывают возможность получения углеводородов ароматического ряда методом пиролиза. В ходе Первой мировой войны пиролитический процесс используют для выработки толуола, являющегося сырьём при производстве тринитротолуола (тротила).
В настоящее время во многих странах газ, получаемый в ходе пиролиза, используется в качестве источника энергии при выработке электрической энергии, горячей воды, тепловой энергии.
Высоко актуален вопрос получения этилена, пропилена, бутилена с учётом бурного развития нефтехимии. Эти газы при пиролитическом процессе образуются в большем объёме, нежели при коксовании, термическом или каталитическом крекинге.
Пиролиз нефтепродуктов используется и при ликвидации последствий загрязнения нефтепродуктами почвы.Широко применяют пиролитический метод в ходе переработки твёрдых органических отходов, шламов нефтепродуктов, продуктов бурения. Утилизация отходов крайне актуальна при решении вопросов сохранности окружающей среды.
Рассмотрим схематически превращения, происходящие с нефтяным сырьём в ходе проведения пиролиза. В начале процесса сырьё по трубам поступает в печь, где постоянно поддерживается температура от +450 °С до +1050 °С. В этой печи нефтяное сырьё преобразуется в газ. При выходе из печи данный газ закаляют путём впрыскивания воды, охлаждают, очищают и разделяют. Для этого используются ректификационные колонны. При разделении лёгкого масла получаются фракции бензольные, толуольные, ксилольные. Их подвергают повторной ректификации, в ходе которой получают в чистом виде бензол, толуол, ксилол и пиробензол. Пиробензол применяется в качестве авиационного топлива. Перегонка смолы и масел даёт масла зелёное и нафталиновое, а также пек, служащий в качестве беззольного кокса при производстве электродов.
Для проведения процесса пиролиза особых требований к давлению не предъявляется. Оно может приближаться к атмосферному. А вот температура, при которой проходит процесс, может различаться от +450 °С до +550 °С при низкотемпературном пиролизе, до +800 °С при среднетемпературном процессе и до +1050 °С при высокотемпературном пиролизе.
В зависимости от вида реакции выделяют пиролиз окислительный и сухой.
Исторически сложилось так, что на территории США бензин активно использовался как топливо для большого числа автомобилей, а в качестве сырья для пиролиза используются газообразные углеводородные вещества. В России и Европе для переработки используют масла и керосин, так как переработка нефтяных продуктов происходит по топливно-масляной схеме.
В настоящее время в процессе пиролиза нефтяного сырья вырабатывается 100% этилена, около 70% пропилена, 80% дивинила и около 40% бензола. При этом производительность пиролизных установок в пересчёте на этилен выросла с 50 тысяч тонн в среднем в пятидесятые годы прошлого столетия до 600 тысяч тонн в год в наши дни.
Крупнейшим производителем этилена в настоящее время являются США, которые вырабатывают 27653 тысячи тонн данного вещества в год. В России вырабатывается 2810 тысяч тонн этилена в год. Растут мощности пиролитических установок в России в настоящее время лишь за счёт проведения работ по реконструкции комплексов, построенных ещё во времена СССР. Существуют планы по строительству этиленовых комплексов в нашей стране, но будут ли они реализованы в жизнь неизвестно.
Неотъемлемой частью применения в современном мире пиролиза является дальнейшее совершенствование технологии. Основное внимание при этом уделяется росту эффективности газогенераторных пиролизных котлов, снижению количества вредных остаточных продуктов, снижению себестоимости производственного процесса. При этом постоянно совершенствуются конструкции пиролизных установок, меняется состав компонентов, включённых в химический процесс, меняются условия протекания пиролитического процесса.
Отметим, что важными направлениями исследований учёных являются пиролиз с применением катализаторов и пиролитический процесс с добавлением веществ, являющихся либо инициаторами процесса деструкции, либо ингибиторами протекания имеющихся побочных процессов. Активные исследования в области каталитического пиролиза проводят учёные в Японии. Сложности в ходе внедрения в жизнь разработок по второму направлению связаны, в основном, с проблемами дозирования, распределения веществ по потоку пара и сырья.
Интересны работы по применению в ходе пиролиза различных полей – акустических, электромагнитных. Воздействие данных физических полей на протекание процесса можно сравнить с воздействием катализаторов.
Интересны работы по применению низкотемпературной плазмы в ходе пиролиза. Её использование позволяет перерабатывать в качестве сырья малоценные и трудноперерабатываемые продукты. Данное направление приобретает большое значение на фоне уменьшения запасов нефти на планете и значительного роста цен на данное сырьё.
что это, его виды и практическое применение, получаемые продукты, перспективы развития метода
Что такое пиролиз – химическая реакция термического разложения исходного вещества. При этом полученная энергия температурного воздействия разрывает внутримолекулярные связи и эта же энергия позволяет получать новые соединения. Реакция идёт без второго реагента и поэтому её можно назвать реакцией термического разложения.
Виды и практическое применение пиролиза
В зависимости от процесса разложения пиролиз может идти при различных температурах. При этом полученные в конце процесса вещества будут отличаться по своему химическому составу. Различается:
- термическое разложение при низкой температуре;
- высокотемпературный пиролиз.
Пиролиз с температурой до 900 градусов считается низкотемпературным и при его проведении получают преимущественно вещества в твёрдом состоянии с небольшой массовой долей газов. При возгонке на высоких температурах, конечным продуктом в основном станут газы. С точки зрения протекания процесса, чем больше получено энергии, тем большей свободой связи обладают молекулы. А чем больше свободы, тем вещество легче, так как расстояния между молекулами увеличиваются.
Перерабатываемые продукты
Использование пиролиза широко. Так, получение продуктов нефтехимии возможно только с применением данного метода. Используемый в металлургии кокс является продуктом пиролиза. Разработаны полигоны бытовых отходов, где их уничтожение происходит с помощью термического разложения. Метод хорош тем, что является безотходным, это в условиях загрязнённой атмосферы Земли актуально.
Получение продуктов нефтехимии
Когда органические сложные соединения разлагаются под воздействием температуры, то происходит получение простых углеводородов. При таком процессе получают этилен и пропилен, а из них разнообразные производные. На их основе получают впоследствии различные ВМС методом полимеризации и синтеза. Крекинг в нефтехимии идёт при 800–900 градусах.
Древесный крекинг
Издавна известна профессия углежогов, которые сжигали древесину без доступа воздуха под землёй и получали древесный уголь. При температуре в 5000 происходит сухая возгонка, при которой получаются ценные продукты – ацетон, смола, уксусная кислота и метанол. При этом углерод остаётся в твёрдом состоянии и называется древесным углём. Такой продукт в дальнейшем используется как высококалорийное топливо или активатор химических процессов.
Начинается пиролиз при температуре в 200 градусов с выделения оксидов углерода. Необходимо отметить и то, что если продукты разложения в дальнейшем сжигать в атмосфере воздуха, то суммарная калорийность их сгорания будет гораздо выше, чем энергия, потраченная на пиролиз.
Химия древесины – наука, которая развивалась первоначально только в России и первые опыты крекинга принадлежат русским учёным.
Уничтожение бытового мусора
Использование пиролиза для уничтожения бытовых отходов и получения за счёт этого энергии перспективно. Главным препятствием является содержание в отходах ядовитых летучих составляющих – хлора, фосфора и серы. Это активные элементы, которые могут связываться с другими продуктами пиролиза и создавать опасные соединения. Переработка шин и полимерных материалов позволяет получить вторичные продукты и экономически оправдана.
Во время пиролиза в аппарате продукт переработки проходит следующие стадии:
- процесс сушки;
- крекинг;
- дожёг остатка в атмосфере;
- очистка газа в поглотителях.
При этом мусоросжигательный завод имеет разные режимы и установки, рассчитанные на тот или иной процесс.
Для полной переработки отходов газовые продукты направляются в специальные поглотительные установки, где происходит их очистка от токсинов. Полученный в результате пиролиза шлам представляет собой ценный продукт, так как содержит редкие элементы, которые используются для дальнейшей переработки.
При этом на мусороперерабатывающем предприятии можно получить:
- тепловую энергию;
- электрическую энергию;
- продукты переработки шин и полимеров.
Экономичным станет производство по утилизации при сортировке мусора. Пока же на полигоны вывозится всё, попадают даже ртутные отходы.
Перспективы в развитии пиролиза
При использовании катализаторов процесс крекинга резко увеличивается и выход продуктов повышается. При этом затруднение вызывает возникающий процесс коксования самих катализаторов. Научные разработки в этом направлении ведутся.
Использование активаторов процесса или ингибиторов, тормозящих вторичные реакции тоже находится в стадии экспериментальных установок. Но и этот способ оптимизации процесса затрудняется в связи с загрязнением выходящего продукта. В настоящее время разрабатываются методы физического ускорения пиролиза применением электромагнитных полей.
В быту распространение получают обогревательные печи на основе крекинга, состоящие из двух камер, в первой из которых происходит возгонка крекингом, а во второй собственно горение.
Пиролизные установки ФОРТАН и ФОРТАН-М
Мы производим и поставляем пиролизные установки ФОРТАН и ФОРТАН-М для переработки различных видов отходов.
Производительность ФОРТАН | 5,2 м3/сутки (до 4 тонн) |
Производительность ФОРТАН-М | 72 м3/сутки (до 50 тонн) |
Пиролизные установки ФОРТАН и ФОРТАН-М предназначены для переработки и утилизации любых углеродосодержащих отходов: шины, пластики, нефтешламы, нефтезагрязненные грунты, отработанные масла, мазут, битум, замасленная окалина, медицинские отходы и др. Полный список отходов включает более 900 наименований.
Пиролизные установки ФОРТАН производства нашей компании вошли в разработанный Минприроды РФ Справочник наилучших доступных технологий «Обезвреживание отходов термическим способом» 17 декабря 2015 г.
Для лучшего понимания процесса работы пиролизных установок ФОРТАН и ФОРТАН-М предлагаем Вам посмотреть короткое видео:
Пиролиз – это термический процесс разложения сырья на газообразные компоненты, без доступа кислорода. Переработка отходов в пиролизных установках ФОРТАН и ФОРТАН-М является экологически безопасным методом переработки ТБО и позволяет получить такие продукты:
Жидкое печное топливо | Используется как топливо в котельных установках. Перерабатывают на НПЗ для получения нефтяных фракций – бензиновой, дизельной и мазута. |
Технический углерод | Используется как твердое топливо, как сорбент в очистных сооружениях. Используется в производстве РТИ (шин, шлангов, кабеля и др.) |
Газ | Используется для поддержания технологического процесса пиролиза внутри печи и отопления помещений. |
Тепло | Тепловая энергия аккумулируется в котлах-утилизаторах для подогрева воды и отопления. |
Краткое описание работы пиролизных установок ФОРТАН и ФОРТАН-М
Отходы загружают в емкость из жаростойкого металла — реторту. Реторта — цилиндрическая, горизонтальная, вращающаяся вокруг продольной оси. Вращение реторты обеспечивает перемешивание сырья, необходимое для эффективного прогрева сырья с низкой теплопроводностью. Реторта размещается в модуле пиролиза. Модуль пиролиза футерован высокотемпературной теплоизоляцией на основе керамического волокна и огнеупорным бетоном — во время работы температура наружной стенки модуля безопасна для обслуживающего персонала.
Сырье не подвергается прямому воздействию огня, теплопередача осуществляется через стенки реторты. Предельные рабочие температуры – 450-520 oС. Крышка реторты изготавливается с затвором специальной конструкции, который обеспечивает полную герметизацию пространства внутри реторты и исключает вероятность дымления. Парогазовая смесь выходит из реторты по трубопроводу, охлаждается в конденсаторе-холодильнике, пары конденсируются, и полученная жидкость отделяется от неконденсирующихся газов.
Жидкость накапливается в сборнике жидкого продукта, газ используется для поддержания процесса пиролиза – направляется на горелку и сжигается в печи. Установки ФОРТАН и ФОРТАН-М предназначены для мобильного использования: имеют стандартные габариты для транспортировки любыми видами транспорта, фланцевые соединения во всей конструкции, благодаря чему процесс монтажа-демонтажа занимает минимум времени, и подставку для транспортировки.
Установки пиролиза ФОРТАН имеют все необходимые разрешительные документы и сертификаты
Преимущества пиролизных установок ФОРТАН
1. Лучшая цена среди производителей.
2. Реторта выполнена из нержавеющей жаропрочной стали.
3. Печь многотопливная: можно использовать любой вид твердого топлива, газа и жидкого топлива.
4. Футеровка изготовлена из огнеупорного волокна, защищенного слоем крепкого огнеупорного бетона, армированного нержавеющей сталью, обладает высокой стойкостью к механическим и химическим воздействиям, обеспечивает температуру наружной поверхности установки не выше 60C, что безопасно для операторов, которые обслуживают установку в течение всего процесса.
5. Простота конструкции. Надежность. Возможность модификации конструкции под определенные условия.
6. Средства взрывозащиты. Взрывозащитный клапан и система аварийного сброса давления газа обеспечивают безопасность операторов и оборудования в случае нарушения процесса.
7. Легко ремонтируемое оборудование.
8. Установка простая в работе и обслуживании, для операторов не требуется профессиональное образование, наша компания делает обучение для операторов.
9. Мобильность установки. Установки предназначены для мобильного использования: имеют стандартные размеры для транспортировки любым видом транспорта; фланцевые соединения во всей конструкции, за счет чего процесс монтажа-демонтажа не требует сварочных работ и занимает минимум время; фиксированная бетонная футеровка, поэтому демонтаж ее не требуется.
10. Низкий расход электроэнергии (10-14 кВт * час на каждую тонну) и низкий расход топлива (30-40 кг мазута на один процесс).
Мы предлагаем Вам полный спектр услуг при покупке нашего оборудования:
Гарантия 2 года | Шеф-монтаж |
Пуско-наладка | Обучение персонала |
Гарантийное и постгарантийное обслуживание | Вся необходимая техническая документация |
Полное техническое сопровождение, консультации | Организация доставки оборудования |
Проведение таможенных процедур для экспорта | Предоставление необходимых документов для импорта |
Что такое пиролиз? : USDA ARS
Что такое пиролиз? |
Введение Наши исследования Что такое пиролиз? Исследователи бионефти
Объекты Наши партнеры Публикации в новостях Ссылки
Что такое пиролиз?
Пиролиз — это нагревание органического материала, такого как биомасса , в отсутствие кислорода.Из-за отсутствия кислорода материал не воспламеняется, но химические соединения (например, целлюлоза, гемицеллюлоза и лигнин), составляющие этот материал, термически разлагаются на горючие газы и древесный уголь. Большинство этих горючих газов может конденсироваться в горючую жидкость, называемую пиролизным маслом (бионефть), хотя есть некоторые постоянные газы (CO 2 , CO, H 2 , легкие углеводороды). Таким образом, пиролиз биомассы дает три продукта: один жидкий, био-масло, , один твердый, биоуглерод, и один газообразный (синтез-газ).Доля этих продуктов зависит от нескольких факторов, включая состав сырья и параметры процесса. Однако при прочих равных, выход био-масла оптимизируется, когда температура пиролиза составляет около 500 ° C и скорость нагрева высока (т.е. 1000 ° C / с), то есть в условиях быстрого пиролиза. В этих условиях выход бионефти 60-70 мас.% Может быть достигнут из типичного исходного сырья биомассы с выходом биоуглерода 15-25 мас.%. Остальные 10-15 мас.% Составляют синтез-газ.Процессы, в которых используется более низкая скорость нагрева, называются медленным пиролизом, и биоуглерод обычно является основным продуктом таких процессов. Процесс пиролиза может быть самоподдерживающимся, поскольку сгорание синтез-газа и части бионефти или биогара может обеспечить всю необходимую энергию для запуска реакции.
Схема процесса быстрого пиролиза.
Bio-oil представляет собой плотную сложную смесь кислородсодержащих органических соединений.Его топливная ценность обычно составляет 50-70% от стоимости топлива на нефтяной основе, и его можно использовать в качестве котельного топлива или преобразовать в возобновляемые виды топлива для транспорта. Его плотность составляет> 1 кг. L -1 , что намного больше, чем у исходного сырья биомассы, что делает его более экономичным для транспортировки, чем биомасса. Поэтому мы представляем себе модель распределенной обработки, в которой многие мелкомасштабные пиролизеры (например, в масштабе фермы) скрывают биомассу в бионефть, которая затем транспортируется в централизованное место для очистки. Наши исследования показывают, что при использовании в распределенных системах «в масштабе фермы», питающих центральную газификационную установку (для производства жидкостей Fisher Tropsh), одной только экономии транспортных расходов достаточно, чтобы компенсировать более высокие эксплуатационные расходы и затраты на биомассу.
Распределенная переработка биомассы методом быстрого пиролиза.
Кроме того, произведенный биоуглерод можно использовать на ферме в качестве отличного средства для улучшения почвы, которое может связывать углерод.Биоуголь обладает высокой абсорбирующей способностью и, следовательно, увеличивает способность почвы удерживать воду, питательные вещества и сельскохозяйственные химикаты, предотвращая загрязнение воды и эрозию почвы. Внесение биоуголь в почву может улучшить как качество почвы, так и стать эффективным средством связывания большого количества углерода, тем самым помогая смягчить последствия глобального изменения климата за счет связывания углерода. Использование биогольца в качестве улучшения почвы устранит многие проблемы, связанные с удалением растительных остатков с земли.
Изоляция углерода путем внесения в почву биоуглерода.
Пиролиз — обзор | Темы ScienceDirect
5.4 Факторы, влияющие на процесс пиролиза
Температура пиролиза, скорость нагрева и время пребывания в значительной степени влияют на продукт пиролиза и качество пиролизного топлива. Morin et al. [33] исследовали влияние природы биомассы и условий пиролиза на реакционную способность полукокса и физико-химические свойства.В таблице 5.1 показано влияние свойств на продукт пиролиза.
Таблица 5.1. Влияние свойств на продукт пиролиза
Sl. № | Объект недвижимости | Влияние на доходность при увеличении стоимости объекта | Влияние на реакционную способность полукокса | Прочие комментарии |
---|---|---|---|---|
1 | Скорость нагрева | Уменьшить выход полукокса Увеличить газ и выход жидкости | Реакционная способность полукокса увеличивается из-за более высокой скорости нагрева | Более высокая скорость нагрева активирует содержание кислорода и водорода, а также увеличивает площадь поверхности и доступность активных центров |
2 | Температура пиролиза | Увеличивает выход газа; снижает выход полукокса | Уменьшает реакционную способность полукокса | CO 2 Концентрация уменьшается за счет повышения температуры пиролиза; Реакционная способность полукокса снижается из-за увеличения присутствия более крупного ароматического кольца и системной структурной упорядоченности полукокса за счет увеличения температуры пиролиза |
3 | Давление пиролиза | Повышает выход полукокса и CO 2 ; снижает выход CO, CH 4, и H 2 | Уменьшает реакционную способность полукокса | Снижение реакционной способности полукокса с давлением пиролиза происходит из-за повышения углеродистой структуры полукокса |
4 | Время пребывания | Увеличивает выход полукокса | Уменьшает реактивность полукокса | Продолжительный нагрев снижает реактивность при конечной температуре пиролиза, что улучшает потерю активных центров и структурную упорядоченность полукокса |
5 | Природа биомассы | Нет эффекта | Нет эффекта | Определяющим параметром является исходная биомасса, относящаяся к реакционной способности полукокса, а также его свойствам и структуре полукокса |
Процессы пиролиза были разделены на три подгруппы в зависимости от условий эксплуатации. параметры.Каждый параметр привел к разному составу продукта. Эти подгруппы — медленный пиролиз, быстрый пиролиз и мгновенный пиролиз. Параметрами, описывающими медленный пиролиз, являются температура 400 ° C, время пребывания более 30 мин и скорость нагрева (0,1–1 ° C / с). Выход композиции продукта для медленного пиролиза, как объяснили исследователи, составляет 35% биоугля (твердое вещество), 30% бионефти (жидкость) и 35% синтез-газа (газ) [34].
Медленный пиролиз имеет самый низкий выход жидких продуктов, что является предметом большинства экспериментов.Быстрый пиролиз — это второй объясненный тип пиролиза. Рабочими параметрами, описывающими быстрый пиролиз, являются температура 500 ° C, время пребывания около 10–20 с и скорость нагрева (1–200 ° C / с). Выход композиции продукта для быстрого пиролиза составляет 20% биоугля (твердый), 50% бионефти (жидкость) и 30% синтез-газа (газ) [34]. Выход биомасла в условиях быстрого пиролиза лучше, чем у медленного пиролиза. Третий рабочий параметр — мгновенный пиролиз, рабочие параметры которого включают время пребывания около 1 с, температуру 500 ° C и скорость нагрева более 1000 ° C / с.Выход продукта мгновенного пиролиза составляет 13% синтез-газа (газ), 2% биоугля (твердый) и 75% бионефти (жидкость) [35]. Таким образом, доказано, что быстрый и мгновенный пиролиз обеспечивает максимальную эффективность.
Miandad et al. [36] утверждает, что при пиролизе жидкого масла из отходов полистирола при 400 ° C и времени реакции 75 мин выход полукокса составлял 16% от массы, выход жидкого масла составлял 76% от массы, а выход газа составлял 8%. % масс. Повышение температуры до 450 ° C снизило производство полукокса до 6.2%, увеличил выход жидкой нефти до 80,8% по массе и увеличил добычу газа до 13% по массе. Время отклика и оптимальная температура составили 75 мин и 450 ° C. В оптимальных условиях жидкое масло имело абсолютную вязкость 1,77 мПа с, температуру застывания — 60 ° C, кинематическую вязкость 1,92 сСт, плотность 0,92 г / см 3 , температуру вспышки 30,2 ° C. , высокая теплотворная способность (HHV) 41,6 МДж / кг и температура замерзания — 64 ° C; это похоже на обычное дизельное топливо.
По сравнению с обычным электрическим пиролизом, микроволновый пиролиз имеет более высокую скорость нагрева и эффективность и обеспечивает равномерный объемный нагрев веществ.Пиролиз с помощью микроволн для увеличения добычи газа и уменьшения образования полукокса из-за образования горячих точек [37]. Лам и др. [11] сообщили, что пиролиз с помощью микроволнового излучения привел к получению 88 мас.% Конденсируемого пиролизного масла с топливными активами (теплотворная способность, плотность), практически идентичными обычным транспортным топливам. Проверка видов масел показала, что они содержат легкий алифатический углеводород. Элемент пиролизных масел, для которого показано, что превосходное восстановление (90%) количества энергии из избыточного моторного масла восстанавливается в пиролизном масле, и оно также не содержит примесей и содержит мало примесей серы, кислорода и опасных веществ. смеси ПАУ.Большой возврат пиролизного масла можно увидеть в пиролизе с помощью микроволнового излучения при соответствующем нагревании в инертной атмосфере. Этот обзор дополняет текущие открытия о влиянии ситуаций процесса пиролиза на общий выход и расположение рекуперированных масел, демонстрируя, что стимулируемая скорость добавления, скорость потока очищающего газа и источник нагрева влияют на фокус и атомный путь различных углеводородов. сформированный в пиролизных маслах.
Huang et al. [38] исследовали, можно ли с помощью метода микроволнового пиролиза превратить кукурузную солому, которая выделяется среди наиболее распространенных сельских месторождений в мире, в существенное биотопливо и биологические продукты.После отклика на уровне управления микроволнами 500 Вт в течение времени обработки 30 мин отклик, полученный в среде N 2 , был лучше, чем в среде CO 2 . Это может быть связано с лучшей абсорбирующей способностью частиц CO 2 при нагревании для уменьшения остроты пиролиза соломы. Более значительная часть импульсов оксидов металлов существенно расширила самую экстремальную пропорцию уменьшения температуры и массы; однако они снизили оценку теплотворной способности массивных отложений.Больше газа CO образовалось в атмосфере N 2 , но больше CO 2 образовалось в атмосфере CO 2 . Расширение катализатора снизило расположение полициклических ароматических углеводородов и, таким образом, сделало жидкие объекты менее опасными.
Лам и др. [39] исследовали пиролиз WEO с использованием металлического угольного катализатора для усиления гетерогенной реакции, такой как разложение метана, и быстрого достижения необходимой температуры. Кроме того, металлы превращаются в оксиды металлов и поглощают серу, содержащуюся в масле.Высоколетучие материалы Cd и Cr могут испаряться при температуре пиролиза, превышающей 400 ° C.
Пиролиз | химическая реакция | Британника
Полная статья
Пиролиз , химическое разложение органических (углеродных) материалов под воздействием тепла. Пиролиз, который также является первым этапом газификации и сжигания, происходит в отсутствие или почти в отсутствие кислорода, и, таким образом, он отличается от горения (сжигания), которое может иметь место только при наличии достаточного количества кислорода.Скорость пиролиза увеличивается с повышением температуры. В промышленных применениях часто используются температуры 430 ° C (около 800 ° F) или выше, тогда как в более мелкомасштабных операциях температура может быть намного ниже. Два хорошо известных продукта, создаваемых пиролизом, — это форма древесного угля под названием biochar, созданная при нагревании древесины, и кокс (который используется в качестве промышленного топлива и теплового экрана), созданный при нагревании угля. Пиролиз также производит конденсируемые жидкости (или деготь) и неконденсирующиеся газы.
Процесс
Пиролиз преобразует органические материалы в их газообразные компоненты, твердый остаток углерода и золы и жидкость, называемую пиролитическим маслом (или биомаслом).Пиролиз имеет два основных метода удаления загрязняющих веществ из вещества: разрушение и удаление. При разрушении органические загрязнители распадаются на соединения с более низкой молекулярной массой, тогда как в процессе удаления они не разрушаются, а отделяются от загрязненного материала. Пиролиз — это полезный процесс для обработки органических материалов, которые «трескаются» или разлагаются под воздействием тепла; примеры включают полихлорированные бифенилы (ПХД), диоксины и полициклические ароматические углеводороды (ПАУ).Хотя пиролиз неприменим для удаления или разрушения неорганических материалов, таких как металлы, его можно использовать в методах, которые делают эти материалы инертными.
Подробнее по этой теме
горючие сланцы: пиролиз
Технология получения нефти из горючего сланца основана на пиролизе горной породы. Подаваемое тепло разрывает различные химические связи …
Приложения
Пиролиз имеет множество приложений, представляющих интерес для экологически чистых технологий.Он полезен при извлечении материалов из таких товаров, как автомобильные шины, удалении органических загрязнителей из почвы и нефтесодержащих шламов, а также в создании биотоплива из сельскохозяйственных культур и отходов. Пиролиз может помочь разложить автомобильные шины на полезные компоненты, тем самым снизив нагрузку на окружающую среду, связанную с выбрасыванием шин. Шины являются важным компонентом мусорных свалок во многих областях, и при сгорании они выделяют в воздух ПАУ и тяжелые металлы. Однако, когда шины подвергаются пиролизу, они распадаются на газ и масло (используемые в качестве топлива) и технический углерод (используемый в качестве наполнителя в резиновых изделиях, включая новые шины, и в качестве активированного угля в фильтрах и топливных элементах).Кроме того, пиролиз может удалить органические загрязнители, такие как синтетические гормоны, из осадка сточных вод (полутвердые материалы, которые остаются после очистки сточных вод и снижения содержания воды) и сделать тяжелые металлы, оставшиеся в осадке, инертными, что позволяет безопасно использовать осадок. как удобрение.
Кроме того, пиролизирующая биомасса (биологические материалы, такие как древесина и сахарный тростник) имеет большие перспективы для производства источников энергии, которые могут дополнить или заменить энергию на основе нефти.Пиролиз заставляет целлюлозу, гемицеллюлозу и часть лигнина в биомассе распадаться на более мелкие молекулы в газообразной форме. При охлаждении эти газы конденсируются в жидкое состояние и становятся бионефтью, в то время как остальная часть исходной массы (в основном оставшийся лигнин) остается в виде твердого биоугля и неконденсируемых газов.
Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчас Сара Э. БослоУзнайте больше в этих связанных статьях Britannica:
горючие сланцы: пиролиз
Технология получения нефти из горючего сланца основана на пиролизе горной породы.Приложенное тепло разрывает различные химические связи макромолекул керогена, высвобождая небольшие молекулы жидких и газообразных углеводородов, а также соединений азота, серы и кислорода. Пиролиз банка…
древесина: продукты химической переработки
Пиролиз включает нагревание древесины до температуры 1000 ° C (около 1800 ° F) в отсутствие воздуха.Он включает карбонизацию, деструктивную перегонку и ожижение. Карбонизация осуществляется либо традиционным методом наращивания конусовидных штабелей древесины, которые затем покрываются …
карбен: Образование.
При фотолизе или пиролизе (обработка светом или теплом соответственно) диазосоединения расщепляются с образованием соответствующего карбена и свободной молекулы газообразного азота.Диазирины, которые представляют собой кольцевые или циклические соединения со структурой, аналогичной структуре диазосоединений, подвергаются той же реакции расщепления и…
Frontiers | Каталитический пиролиз пластиковых отходов: переход к биоперерабатывающим предприятиям на основе пиролиза
Введение
Производство и потребление пластиковых отходов растет тревожными темпами в связи с увеличением численности населения, быстрым экономическим ростом, постоянной урбанизацией и изменениями в образе жизни.Кроме того, короткий срок службы пластика ускоряет ежедневное производство пластиковых отходов. Мировое производство пластика оценивается примерно в 300 миллионов тонн в год и с каждым годом постоянно увеличивается (Miandad et al., 2016a; Ratnasari et al., 2017). Пластмассы состоят из нефтехимических углеводородов с добавками, такими как антипирены, стабилизаторы и окислители, которые затрудняют биоразложение (Ma et al., 2017). Переработка пластиковых отходов осуществляется по-разному, но в большинстве развивающихся стран открытая или свалка является обычной практикой управления пластиковыми отходами (Gandidi et al., 2018). Вывоз пластиковых отходов на свалки является местом обитания насекомых и грызунов, которые могут вызывать различные виды заболеваний (Alexandra, 2012). Кроме того, стоимость транспортировки, рабочей силы и технического обслуживания может увеличить стоимость проектов по переработке (Gandidi et al., 2018). Кроме того, из-за быстрой урбанизации сокращается количество земель, пригодных для свалки, особенно в городах. Пиролиз — это распространенный метод преобразования пластиковых отходов в энергию в виде твердого, жидкого и газообразного топлива.
Пиролиз — это термическое разложение пластиковых отходов при различных температурах (300–900 ° C) в отсутствие кислорода до полученной жидкой нефти (Rehan et al., 2017). Различные виды катализаторов используются для улучшения процесса пиролиза пластиковых отходов в целом и повышения эффективности процесса. Катализаторы играют очень важную роль в повышении эффективности процесса, нацеливании на конкретную реакцию и снижении температуры и времени процесса (Serrano et al., 2012; Ratnasari et al., 2017).В процессах пиролиза пластмасс использовался широкий спектр катализаторов, но наиболее широко применяемыми катализаторами являются ZSM-5, цеолит, Y-цеолит, FCC и MCM-41 (Ratnasari et al., 2017). Каталитическая реакция во время пиролиза пластиковых отходов на твердых кислотных катализаторах может включать реакции крекинга, олигомеризации, циклизации, ароматизации и изомеризации (Serrano et al., 2012).
В нескольких исследованиях сообщалось об использовании микропористых и мезопористых катализаторов для преобразования пластиковых отходов в жидкое масло и полукокс.Uemichi et al. (1998) провели каталитический пиролиз полиэтилена (ПЭ) с катализаторами HZSM-5. Использование ХЗСМ-5 увеличило добычу жидкой нефти с составом ароматических углеводородов и изоалкановых соединений. Gaca et al. (2008) провели пиролиз пластиковых отходов с модифицированными MCM-41 и HZSM-5 и сообщили, что использование HZSM-5 дает более легкие углеводороды (C 3 –C 4 ) с максимальным содержанием ароматических соединений. Lin et al. (2004) использовали различные типы катализаторов и сообщили, что даже смешивание HZSM-5 с мезопористым SiO 2 -Al 2 O 3 или MCM-41 привело к максимальной добыче жидкой нефти с минимальным выходом газа.Агуадо и др. (1997) сообщили о получении ароматических и алифатических соединений в результате каталитического пиролиза полиэтилена с HZSM-5, в то время как использование мезопористого MCM-41 снизило количество получаемых ароматических соединений из-за его низкой кислотной каталитической активности. Использование синтетических катализаторов улучшило общий процесс пиролиза и улучшило качество добываемой жидкой нефти. Однако использование синтетических катализаторов увеличивало стоимость процесса пиролиза.
Катализаторы NZ могут использоваться для решения экономических проблем каталитического пиролиза, который связан с использованием дорогих катализаторов.В последние годы Новая Зеландия привлекла к себе большое внимание своими потенциальными экологическими приложениями. Естественно, что NZ встречается в Японии, США, Кубе, Индонезии, Венгрии, Италии и Королевстве Саудовская Аравия (KSA) (Sriningsih et al., 2014; Nizami et al., 2016). Месторождение Новой Зеландии в КСА в основном находится в Харрат Шама и Джаббал Шама и в основном содержит минералы морденита с высокой термической стабильностью, что делает его пригодным в качестве катализатора при пиролизе пластиковых отходов. Sriningsih et al. (2014) модифицировали NZ из Сукабуми, Индонезия, отложив переходные металлы, такие как Ni, Co и Mo, и провели пиролиз полиэтилена низкой плотности (LDPE).Gandidi et al. (2018) использовали NZ из Лампунга, Индонезия, для каталитического пиролиза твердых бытовых отходов.
Это первое исследование по изучению влияния модифицированного саудовского природного цеолита на качество продукта и выход при каталитическом пиролизе пластиковых отходов. Саудовский природный цеолитный катализатор был модифицирован с помощью новой термической активации (TA-NZ) при 550 ° C и кислотной активации (AA-NZ) с помощью HNO 3 для улучшения его каталитических свойств. Каталитический пиролиз различных типов пластиковых отходов (ПС, ПЭ, ПП и ПЭТ) в виде отдельных или смешанных в различных соотношениях в присутствии модифицированных природных цеолитных (NZ) катализаторов в небольшом экспериментальном реакторе пиролиза проводился для первый раз.Были изучены качество и выход таких продуктов пиролиза, как жидкая нефть, газ и полукокс. Химический состав жидкой нефти анализировали с помощью ГХ-МС. Кроме того, были обсуждены возможности и проблемы биоперерабатывающих заводов на основе пиролиза.
Материалы и методы
Подготовка сырья и запуск реактора
Пластиковые отходы, используемые в качестве сырья в процессе каталитического пиролиза, были собраны в Джидде и включали продуктовые пакеты, одноразовые чашки и тарелки для сока и бутылки для питьевой воды, которые состоят из полиэтилена (PE), полипропилена (PP), полистирола (PS), и полиэтилентерефталатные (ПЭТ) пластмассы соответственно.Выбор этих пластиковых материалов был сделан на основании того факта, что они являются основным источником пластиковых отходов, производимых в КСА. Для получения однородной смеси все образцы отходов измельчали на более мелкие кусочки размером около 2 см 2 . Каталитический пиролиз проводился с использованием отдельных или смеси этих пластиковых отходов в различных соотношениях (таблица 1). Использовали 1000 г сырья, по 100 г катализатора в каждом эксперименте. Саудовский природный цеолит (Новая Зеландия), собранный в Харрат-Шама, расположенном на северо-западе города Джидда, штат Южная Австралия (Nizami et al., 2016), был модифицирован термической и кислотной обработкой и использован в этих экспериментах по каталитическому пиролизу. NZ был измельчен в порошок (<100 нм) в шаровой мельнице (Retsch MM 480) в течение 3 часов при частоте 20 Гц / с перед модификацией и использованием в пиролизе. Для термической активации (ТА) NZ нагревали в муфельной печи при 550 ° C в течение 5 часов, а для кислотной активации (AA) NZ вымачивали в 0,1 М растворе азотной кислоты (HNO 3 ) в течение 48 часов и непрерывно встряхивают с помощью цифрового шейкера IKA HS 501 со скоростью 50 об / мин.После этого образец промывали деионизированной водой до получения нормального pH.
Таблица 1 . Схема эксперимента.
Эксперименты проводились в небольшом пилотном реакторе пиролиза при 450 ° C, при скорости нагрева 10 ° C / мин и времени реакции 75 мин (рис. 1). Полученный выход каждого продукта пиролиза рассчитывали по массе после завершения каждого эксперимента. Характеристика добываемой жидкой нефти была проведена для исследования влияния состава сырья на качество жидкой нефти, полученной в присутствии модифицированного NZ.ТГА проводили на сырье для получения оптимальных условий процесса, таких как температура и время реакции (75 мин) в контролируемых условиях. В TGA брали 10 мкг каждого типа пластиковых отходов и нагревали со скоростью 10 ° C от 25 до 900 ° C в непрерывном потоке азота (50 мл / мин). Авторы этого исследования недавно опубликовали работу о влиянии состава сырья и природных и синтетических цеолитных катализаторов без модификации катализатора на различные типы пластиковых отходов (Miandad et al., 2017b; Rehan et al., 2017).
Экспериментальная установка
Небольшой пилотный реактор может использоваться как для термического, так и для каталитического пиролиза с использованием различного сырья, такого как пластмассы и биомасса (рис. 1). В этом исследовании модифицированные катализаторы NZ были добавлены в реактор с сырьем. Реактор пиролиза может вместить до 20 л сырья, а максимальная безопасная рабочая температура до 600 ° C может быть достигнута при желаемых скоростях нагрева.Подробные параметры реактора пиролиза были опубликованы ранее (Miandad et al., 2016b, 2017b). При повышении температуры выше определенных значений пластиковые отходы (органические полимеры) превращаются в мономеры, которые переносятся в конденсатор, где эти пары конденсируются в жидкое масло. Для обеспечения температуры конденсации ниже 10 ° C и максимальной конденсации пара в жидкое масло использовалась система непрерывной конденсации с использованием водяной бани и охлаждающей жидкости ACDelco Classic.Добываемая жидкая нефть была собрана из резервуара для сбора нефти, и была проведена дальнейшая характеристика, чтобы раскрыть ее химический состав и характеристики для других потенциальных применений.
Аналитические методы
Пиролизное масло охарактеризовано с использованием различных методов, таких как газовая хроматография в сочетании с масс-спектрофотометрией (ГХ-МС), инфракрасная спектроскопия с преобразованием Фурье (FT-IR),
Бомбовый калориметри TGA (Mettler Toledo TGA / SDTA851) с применением стандартных методов ASTM.Функциональные группы в пиролизном масле анализировали с помощью прибора FT-IR, Perkin Elmer’s, UK. Анализ FT-IR проводился с использованием минимум 32 сканирований со средним значением 4 см -1 ИК-сигналов в диапазоне частот 500-4000 см -1 .
Химический состав нефти изучался с помощью ГХ-МС (Shimadzu QP-Plus 2010) с детектором FI. Использовали капиллярную колонку GC длиной 30 м и шириной 0,25 мм, покрытую пленкой 5% фенилметилполисилоксана (HP-5) толщиной 0,25 мкм.Духовку устанавливали на 50 ° C на 2 минуты, а затем увеличивали до 290 ° C, используя скорость нагрева 5 ° C / мин. Температура источника ионов и линии передачи поддерживалась на уровне 230 и 300 ° C, а инжекция без деления потока применялась при 290 ° C. Библиотеку масс-спектральных данных NIST08s использовали для идентификации хроматографических пиков, и процентное содержание пиков оценивалось по их общей площади пика ионной хроматограммы (TIC). Высокая теплотворная способность (HHV) добытой жидкой нефти, полученной из различных типов пластиковых отходов, была измерена в соответствии со стандартным методом ASTM D 240 с помощью прибора Bomb Calorimeter (Parr 6200 Calorimeter), в то время как производство газа оценивалось с использованием стандартной формулы баланса масс. , учитывая разницу в весе жидкого масла и полукокса.
Результаты и обсуждение
ТГА-анализ сырья
ТГА был проведен для каждого типа пластиковых отходов на индивидуальной основе, чтобы определить оптимальную температуру для термического разложения. Все типы пластиковых отходов демонстрируют сходное поведение при разложении с быстрой потерей веса углеводородов в узком диапазоне температур (150–250 ° C) (рис. 2). Максимальная деградация для каждого типа пластиковых отходов была достигнута в пределах 420–490 ° C. ПС и ПП показали одностадийное разложение, в то время как ПЭ и ПЭТ показали двухступенчатое разложение в контролируемых условиях.Одностадийное разложение соответствует присутствию углерод-углеродной связи, которая способствует механизму случайного разрыва с повышением температуры (Kim et al., 2006). Разложение полипропилена начинается при очень низкой температуре (240 ° C) по сравнению с другим сырьем. Половина углерода, присутствующего в цепи полипропилена, состоит из третичного углерода, который способствует образованию карбокатиона в процессе его термического разложения (Jung et al., 2010). Вероятно, это причина достижения максимальной деградации полипропилена при более низкой температуре.Начальная деградация PS началась при 330 ° C, а максимальная деградация была достигнута при 470 ° C. PS имеет циклическую структуру, и его деградация в тепловых условиях включает как случайную цепь, так и разрыв концевой цепи, что усиливает процесс его деградации (Demirbas, 2004; Lee, 2012).
Рисунок 2 . Термогравиметрический анализ (ТГА) пластиковых отходов ПС, ПЭ, ПП и ПЭТ.
PE и PET показали двухэтапный процесс разложения; начальная деградация началась при более низких температурах, а затем другая стадия разложения при более высокой температуре.Первоначальная деградация ПЭ началась при 270 ° C и медленно, но постепенно распространялась, пока температура не достигла 385 ° C. После этой температуры наблюдалась резкая деградация, и была достигнута 95% -ная деградация с дальнейшим повышением примерно на 100 ° C. Аналогичная двухэтапная картина разрушения наблюдалась для пластика ПЭТФ, и первоначальное разложение начиналось при 400 ° C с резким снижением потери веса. Однако вторая деградация началась при несколько более высокой температуре (550 ° C). Первоначальное разложение ПЭ и ПЭТ может быть связано с присутствием некоторых летучих примесей, таких как добавка-наполнитель, используемая во время синтеза пластика (Димитров и др., 2013).
Различные исследователи сообщают, что деградация ПЭ и ПЭТ требует более высоких температур по сравнению с другими пластиками (Димитров и др., 2013; Риццарелли и др., 2016). Lee (2012) сообщил, что PE имеет длинноцепочечную разветвленную структуру и что его разложение происходит посредством разрыва случайной цепи, что требует более высокой температуры, в то время как разложение PET следует за случайным разрывом сложноэфирных звеньев, что приводит к образованию олигомеров (Dziecioł and Trzeszczynski, 2000). ; Lecomte and Liggat, 2006).Первоначальная деградация ПЭТ, возможно, была связана с присутствием некоторых летучих примесей, таких как диэтиленгликоль (Димитров и др., 2013). В литературе сообщается, что присутствие этих летучих примесей дополнительно способствует процессу разложения полимеров (McNeill and Bounekhel, 1991; Dziecioł and Trzeszczynski, 2000). Различие в кривых ТГА различных типов пластиков может быть связано с их мезопористой структурой (Chandrasekaran et al., 2015). Кроме того, Lopez et al. (2011) сообщили, что использование катализаторов снижает температуру процесса.Следовательно, 450 ° C можно было бы принять в качестве оптимальной температуры в присутствии активированного NZ для каталитического пиролиза вышеупомянутых пластиковых отходов.
Влияние сырья и катализаторов на выход продуктов пиролиза
Было исследовано влияние термической и кислотной активации NZ на выход продукта процесса пиролиза (рис. 3). Каталитический пиролиз индивидуального ПС-пластика с использованием катализаторов TA-NZ и AA-NZ показал самый высокий выход жидкого масла 70 и 60%, соответственно, по сравнению со всеми другими изученными типами индивидуальных и комбинированных пластиковых отходов.О высоком выходе жидкой нефти при каталитическом пиролизе ПС сообщалось и в нескольких других исследованиях (Siddiqui, Redhwi, 2009; Lee, 2012; Rehan et al., 2017). Сиддики и Редхви (2009) сообщили, что ПС имеет циклическую структуру, что приводит к высокому выходу жидкой нефти при каталитическом пиролизе. Ли (2012) сообщил, что деградация полистирола происходит за счет разрывов как случайных цепей, так и концевых цепей, что приводит к образованию стабильной структуры бензольного кольца, которая усиливает дальнейший крекинг и может увеличивать добычу жидкой нефти.Более того, в присутствии кислотных катализаторов разложение PS происходит по карбениевому механизму, который далее подвергается гидрированию (меж / внутримолекулярный перенос водорода) и β-расщеплению (Serrano et al., 2000). Кроме того, разложение PS происходило при более низкой температуре по сравнению с другими пластиками, такими как PE, из-за его циклической структуры (Wu et al., 2014). С другой стороны, каталитический пиролиз PS дает более высокое количество полукокса (24,6%) с катализатором AA-NZ, чем с катализатором TA-NZ (15,8%).Ma et al. (2017) также сообщили о высоком производстве полукокса при каталитическом пиролизе полистирола с кислотным цеолитным (Hβ) катализатором. Высокие показатели образования полукокса были обусловлены высокой кислотностью катализатора, которая способствует образованию полукокса за счет интенсивных вторичных реакций поперечного сшивания (Serrano et al., 2000).
Рисунок 3 . Влияние TA-NZ и AA-NZ на выход продуктов пиролиза.
Каталитический пиролиз ПП дает более высокое содержание жидкого масла (54%) с катализатором AA-NZ, чем с катализатором TA-NZ (40%) (рис. 3).С другой стороны, катализатор TA-NZ дает большое количество газа (41,1%), что может быть связано с более низкой каталитической активностью катализатора TA-NZ. По данным Kim et al. (2002) катализатор с низкой кислотностью и участки поверхности по БЭТ с микропористой структурой способствуют начальному разложению полипропилена, что может привести к максимальному выделению газов. Обали и др. (2012) провели пиролиз полипропилена с катализатором, содержащим оксид алюминия, и сообщили о максимальной добыче газа. Более того, образование карбокатиона во время разложения полипропилена из-за присутствия третичного углерода в его углеродной цепи также может способствовать образованию газа (Jung et al., 2010). Syamsiro et al. (2014) также сообщили, что каталитический пиролиз PP и PS с активированным кислотой (HCL) природным цеолитным катализатором дает больше газов, чем процесс с термически активированным природным цеолитным катализатором, из-за его высокой кислотности и площади поверхности по БЭТ.
Каталитический пиролиз полиэтилена с катализаторами TA-NZ и AA-NZ дает аналогичные количества жидкого масла (40 и 42%). Однако наибольшее количество газов (50,8 и 47,0%) было произведено из полиэтилена при использовании AA-NZ и TA-NZ соответственно, по сравнению со всеми другими изученными типами пластмасс.Производство полукокса было самым низким в этом случае, 7,2 и 13,0% с AA-NZ и TA-NZ, соответственно. В различных исследованиях также сообщалось о более низком производстве полукокса при каталитическом пиролизе полиэтилена (Xue et al., 2017). Lopez et al. (2011) сообщили, что катализаторы с высокой кислотностью усиливают крекинг полимеров во время каталитического пиролиза. Увеличение крекинга в присутствии высококислотного катализатора способствует образованию газов (Miandad et al., 2016b, 2017a). Zeaiter (2014) провел каталитический пиролиз полиэтилена с цеолитом HBeta и сообщил о 95.7% выход газа из-за высокой кислотности катализатора. Batool et al. (2016) также сообщили о максимальном производстве газа при каталитическом пиролизе полиэтилена с высококислотным катализатором ZSM-5. Согласно Lee (2012) и Williams (2006), PE имеет длинноцепочечную углеродную структуру, и его разложение происходит случайным образом на более мелкие цепочечные молекулы за счет случайного разрыва цепи, что может способствовать образованию газа. Во время пиролиза полиэтилена, который удерживает только связи C-H и C-C, сначала происходит разрыв основной цепи макромолекулы и образование стабильных свободных радикалов.Далее происходили стадии гидрирования, ведущие к синтезу вторичных свободных радикалов (новая стабильная связь C-H), что приводило к β-разрыву и образованию ненасыщенной группы (Rizzarelli et al., 2016).
Каталитический пиролиз ПП / ПЭ (соотношение 50/50%) не показал какой-либо значительной разницы в общих выходах продукта при использовании как AA-NZ, так и TA-NZ. Жидкое масло, полученное в результате каталитического пиролиза PP / PE, составляло 44 и 40% от катализаторов TA-NZ и AA-NZ, соответственно. Небольшое снижение выхода жидкого масла из AA-NZ может быть связано с его высокой кислотностью.Syamsiro et al. (2014) сообщили, что AA-NZ с HCl имеет более высокую кислотность по сравнению с TA-NZ, дает меньший выход жидкой нефти и имеет высокий выход газов. Общий каталитический пиролиз PP / PE дает максимальное количество газа с низким содержанием полукокса. Высокая добыча газа может быть связана с присутствием ПП. Разложение полипропилена усиливает процесс карбокатиона из-за присутствия третичного углерода в его углеродной цепи (Jung et al., 2010). Кроме того, разложение полиэтилена в присутствии катализатора также способствует получению газа с низким выходом жидкого масла.Однако, когда каталитический пиролиз ПП и ПЭ проводился отдельно с ПС, наблюдалась значительная разница в выходе продукта.
Наблюдалась значительная разница в выходе жидкого масла 54 и 34% для каталитического пиролиза PS / PP (соотношение 50/50%) с катализаторами TA-NZ и AA-NZ, соответственно. Аналогичным образом наблюдалась значительная разница в выходе полукокса 20,3 и 35,2%, тогда как высокий выход газов составлял 25,7 и 30,8% при использовании катализаторов TA-NZ и AA-NZ, соответственно.Lopez et al. (2011) и Seo et al. (2003) сообщили, что катализатор с высокой кислотностью способствует процессу крекинга и обеспечивает максимальное производство газа. Кроме того, присутствие ПП также увеличивает газообразование из-за процесса карбокатиона во время разложения (Jung et al., 2010). Kim et al. (2002) сообщили, что при разложении полипропилена выделяется максимум газа в присутствии кислотных катализаторов.
Каталитический пиролиз полистирола с полиэтиленом (соотношение 50/50%) в присутствии катализатора TA-NZ дает 44% жидкого масла, однако 52% жидкого масла было получено с использованием катализатора AA-NZ.Kiran et al. (2000) провели пиролиз PS с PE при различных соотношениях и сообщили, что увеличение концентрации PE снижает концентрацию жидкой нефти с увеличением количества газа. Присутствие ПС с ПЭ способствует процессу разложения из-за образования активного стабильного бензольного кольца из ПС (Miandad et al., 2016b). Wu et al. (2014) провели ТГА ПС с ПЭ и наблюдали два пика, первый для ПС при низкой температуре, а затем деградацию ПЭ при высокой температуре.Более того, деградация PE следует за процессом цепи свободных радикалов и процессом гидрирования, в то время как PS следует за процессом цепи радикалов, включающим различные стадии (Kiran et al., 2000). Таким образом, даже с учетом явления разложения, PS приводил к более высокой деградации по сравнению с PE и давал стабильные бензольные кольца (McNeill et al., 1990).
Каталитический пиролиз ПС / ПЭ / ПП (соотношение 50/25/25%) показал несколько более низкий выход жидкого масла по сравнению с каталитическим пиролизом всех отдельных типов пластмасс.Выход масла для обоих катализаторов, TA-NZ и AA-NZ, в этом случае одинаков, 44 и 40% соответственно. Производство полукокса было выше (29,7%) с катализатором AA-NZ, чем (19,0%) с катализатором TA-NZ, что может быть связано с реакциями полимеризации (Wu and Williams, 2010). Кроме того, добавление ПЭТ с ПС, ПЭ и ПП (соотношение 20/40/20/20%) снизило выход жидкого масла до 28 и 30% в целом при использовании катализаторов TA-NZ и AA-NZ, соответственно, с более высокой фракции полукокса и газа. Демирбас (2004) провел пиролиз ПС / ПЭ / ПП и сообщил аналогичные результаты для выхода продукта.Аднан и др. (2014) провели каталитический пиролиз ПС и ПЭТ с использованием катализатора Al-Al 2 O 3 с соотношением 80/20% и сообщили только о 37% жидкой нефти. Более того, Yoshioka et al. (2004) сообщили о максимальном производстве газа и полукокса при незначительном производстве жидкой нефти при каталитическом пиролизе ПЭТ. Кроме того, о максимальном образовании угля сообщалось также при проведении каталитического пиролиза ПЭТ с другими пластиками (Bhaskar et al., 2004). Более высокое производство полукокса при пиролизе ПЭТ связано с реакциями карбонизации и конденсации во время его пиролиза при высокой температуре (Yoshioka et al., 2004). Кроме того, присутствие атома кислорода также способствует высокому образованию полукокса при каталитическом пиролизе ПЭТ (Xue et al., 2017). Thilakaratne et al. (2016) сообщили, что образование свободных радикалов от бензола с двумя активированными углями является предшественником каталитического кокса при разложении ПЭТ.
Влияние катализаторов на состав жидкой нефти
Химический состав жидкого масла, полученного каталитическим пиролизом различных пластиковых отходов с использованием катализаторов TA-NZ и AA-NZ, был охарактеризован с помощью ГХ-МС (Рисунки 4, 5).На состав добываемой жидкой нефти влияют различные типы сырья и катализаторов, используемых в процессе пиролиза (Miandad et al., 2016a, b, c). Жидкое масло, полученное из отдельных типов пластмасс, таких как ПС, ПП и ПЭ, содержало смесь ароматических, алифатических и других углеводородных соединений. Ароматические соединения, обнаруженные в масле из ПС и ПЭ, были выше, чем ПП при использовании катализатора TA-NZ. Количество ароматических соединений увеличилось в масле из ПС и ПП, но уменьшилось в ПЭ при использовании катализатора AA-NZ.Мезопористый и кислотный катализатор приводит к производству углеводородов с более короткой цепью из-за его высокой крекирующей способности (Lopez et al., 2011). Однако микропористые и менее кислые катализаторы способствуют получению длинноцепочечных углеводородов, поскольку процесс крекинга происходит только на внешней поверхности катализаторов. В целом, в присутствии катализаторов PE и PP следуют механизму разрыва случайной цепи, в то время как PS следует механизму разрыва цепи или разрыва концевой цепи (Cullis and Hirschler, 1981; Peterson et al., 2001). Разрыв концевой цепи приводит к образованию мономера, тогда как разрыв случайной цепи дает олигомеры и мономеры (Peterson et al., 2001).
Рис. 4. (A, B) ГХ-МС жидкого масла, полученного из различных типов пластиковых отходов с помощью TA-NZ.
Рис. 5. (A, B) ГХ-МС жидкого масла, полученного из различных типов пластиковых отходов с AA-NZ.
Жидкое масло, полученное в результате каталитического пиролиза полиэтилена, при использовании обоих катализаторов, дает в основном нафталин, фенантрен, нафталин, 2-этенил-, 1-пентадецен, антрацен, 2-метил-, гексадекан и т. Д. (Рисунки 4A, 5A ).Эти результаты согласуются с несколькими другими исследованиями (Lee, 2012; Xue et al., 2017). Получение производного бензола показывает, что TA-NZ усиливает процесс ароматизации по сравнению с AA-NZ. Xue et al. (2017) сообщили, что промежуточные олефины, полученные в результате каталитического пиролиза ПЭ, далее ароматизируются внутри пор катализаторов. Тем не менее, реакция ароматизации далее приводит к образованию атомов водорода, которые могут усилить процесс ароматизации. Ли (2012) сообщил, что ZSM-5 производит больше ароматических соединений по сравнению с морденитным катализатором из-за его кристаллической структуры.
Есть два возможных механизма, которые могут включать разложение полиэтилена в присутствии катализатора; отрыв гибридных ионов из-за присутствия сайтов Льюиса или из-за механизма иона карбения через добавление протона (Rizzarelli et al., 2016). Первоначально деградация начинается на внешней поверхности катализаторов, а затем продолжается с дальнейшей деградацией во внутренних порах катализаторов (Lee, 2012). Однако микропористые катализаторы препятствуют проникновению более крупных молекул, и, таким образом, соединения с более высокой углеродной цепью образуются в результате каталитического пиролиза полиэтилена с микропористыми катализаторами.Кроме того, в присутствии кислотных катализаторов из-за карбениевого механизма может увеличиваться образование ароматических и олефиновых соединений (Lee, 2012). Lin et al. (2004) сообщили о получении высокореакционных олефинов в качестве промежуточных продуктов во время каталитического пиролиза полиэтилена, которые могут способствовать образованию парафинов и ароматических соединений в добываемой жидкой нефти. Более того, присутствие кислотного катализатора и свободного атома водорода может привести к алкилированию толуола и бензола, превращая промежуточный алкилированный бензол в нафталин за счет ароматизации (Xue et al., 2017).
Жидкое масло, полученное каталитическим пиролизом ПС с ТА-НЗ и АА-НЗ, содержит различные виды соединений. Основными обнаруженными соединениями были альфа-метилстирол, бензол, 1,1 ‘- (2-бутен-1,4-диил) бис-, бибензил, бензол, (1,3-пропандиил), фенантрен, 2-фенилнафталин и т. Д. в добываемой жидкой нефти (Рисунки 4A, 5A). Жидкая нефть, полученная каталитическим пиролизом ПС с обоими активированными катализаторами, в основном содержит ароматические углеводороды с некоторыми парафинами, нафталином и олефиновыми соединениями (Rehan et al., 2017). Однако в присутствии катализатора было достигнуто максимальное производство ароматических соединений (Xue et al., 2017). Рамли и др. (2011) также сообщили о производстве олефинов, нафталина с ароматическими соединениями путем каталитического пиролиза полистирола с Al 2 O 3 , нанесенных на катализаторы Cd и Sn. Деградация ПС начинается с растрескивания на внешней поверхности катализатора, а затем следует преобразование внутри пор катализатора (Uemichi et al., 1999). Первоначально крекинг полимера осуществляется кислотным центром Льюиса на поверхности катализатора с образованием карбокатионных промежуточных соединений, которые в дальнейшем испаряются или подвергаются риформингу внутри пор катализатора (Xue et al., 2017).
При каталитическом пиролизе полистирола в основном образуется стирол и его производные, которые являются основными соединениями в добываемой жидкой нефти (Siddiqui and Redhwi, 2009; Rehan et al., 2017). Превращение стирола в его производное увеличивалось в присутствии протонированных катализаторов из-за гидрирования (Kim et al., 2002). Шах и Ян (2015) и Укей и др. (2000) сообщили, что гидрирование стирола усиливается с увеличением температуры реакции. Огава и др. (1982) провели пиролиз ПС с алюмосиликатным катализатором при 300 ° C и обнаружили гидрирование стирола до его производного.Рамли и др. (2011) сообщили о возможном механизме разложения PS на кислотных катализаторах, который может происходить из-за атаки протона, связанного с кислотными центрами Бренстеда, что приводит к механизму карбениевых ионов, который далее подвергается β-расщеплению и позже сопровождается переносом водорода. Более того, реакции сшивки благоприятствовали сильные кислотные центры Бренстеда, и когда эта реакция происходит, завершение крекинга может в некоторой степени уменьшаться и увеличивать образование полукокса (Serrano et al., 2000). Кроме того, катализаторы оксид кремния-оксид алюминия не имеют сильных кислотных центров Бренстеда, хотя они могут не улучшать реакцию сшивки, но благоприятствуют процессу гидрирования. Таким образом, это может быть причиной того, что стирол не был обнаружен в жидком масле, однако его производное было обнаружено в больших количествах (Lee et al., 2001). Xue et al. (2017) также сообщили о деалкилировании стирола из-за задержки испарения внутри реактора, что может привести к усилению процесса риформинга и образованию производного стирола.TA-NZ и AA-NZ содержат большое количество оксида алюминия и диоксида кремния, что приводит к гидрированию стирола до его производного, что приводит к получению мономеров стирола вместо стирола.
Каталитический пиролиз полипропилена дает сложную смесь жидкого масла, содержащего ароматические углеводороды, олефины и соединения нафталина. Бензол, 1,1 ‘- (2-бутен-1,4-диил) бис-, бензол, 1,1’ — (1,3-пропандиил) бис-, антрацен, 9-метил-, нафталин, 2-фенил -, 1,2,3,4-тетрагидро-1-фенил-, нафталин, фенантрен и др.были основными соединениями, обнаруженными в жидкой нефти (Рисунки 4A, 5A). Эти результаты согласуются с другими исследованиями, в которых проводился каталитический пиролиз полипропилена с различными катализаторами (Marcilla et al., 2004). Кроме того, разложение ПП с помощью AA-NZ привело к максимальному образованию фенольных соединений. Более высокая продукция, возможно, была связана с наличием сильных кислотных центров, так как это способствует образованию фенольных соединений. Более того, присутствие высококислотного центра на катализаторах усиливает механизм олигомеризации, ароматизации и деоксигенации, что приводит к получению полиароматических и нафталиновых соединений.Dawood и Miura (2002) также сообщили о высоком уровне образования этих соединений при каталитическом пиролизе полипропилена с высококислотным модифицированным HY-цеолитом.
Состав масла, полученного в результате каталитического пиролиза полипропилена с полиэтиленом, содержит соединения, обнаруженные в масле из обоих видов сырья пластикового типа. Miandad et al. (2016b) сообщили, что состав сырья также влияет на качество и химический состав нефти. Жидкое масло, полученное каталитическим пиролизом ПЭ / ПП, содержит ароматические, олефиновые и нафталиновые соединения.Основными обнаруженными соединениями были: бензол, 1,1 ‘- (1,3-пропандиил) бис-, моно (2-этилгексил) сложный эфир, 1,2-бензолдикарбоновая кислота, антрацен, пентадекан, фенантрен, 2-фенилнафталин и т. д. (Рисунки 4B, 5B) . Юнг и др. (2010) сообщили, что производство ароматических соединений при каталитическом пиролизе ПП / ПЭ может происходить по механизму реакции Дильса-Альдера, а затем следует дегидрирование. Кроме того, каталитический пиролиз ПП и ПЭ, проводимый отдельно с ПС, в основном дает ароматические соединения из-за присутствия ПС.Полученная жидкая нефть из ПС / ПП содержит бензол, 1,1 ‘- (1,3-пропандиил) бис, 1,2-бензолдикарбоновую кислоту, дисооктиловый эфир, бибензил, фенантрен, 2-фенилнафталин, бензол, (4-метил- 1-деценил) — и так далее (Фигуры 4А, 5А). Каталитический пиролиз ПС с ПЭ в основном дает жидкую нефть с основными соединениями азулена, нафталина, 1-метил-, нафталина, 2-этенила, бензола, 1,1 ‘- (1,3-пропандиил) бис-, фенантрена, 2-фенилнафталина. , бензол, 1,1 ‘- (1-метил-1,2-этандиил) бис- и некоторые другие соединения (Рисунки 4B, 5B).Miskolczi et al. (2006) провели пиролиз ПС с ПЭ с соотношением 10 и 90%, соответственно, и сообщили о максимальном производстве ароматических углеводородов даже при очень низком соотношении ПС. Miandad et al. (2016b) сообщили, что термический пиролиз ПЭ с ПС без катализатора приводит к превращению ПЭ в жидкое масло с высоким содержанием ароматических углеводородов. Однако термический пиролиз единственного полиэтилена без катализатора превратил его в воск вместо жидкого масла из-за его сильной разветвленной длинноцепочечной структуры (Lee, 2012; Miandad et al., 2016б). Wu et al. (2014) провели ТГА ПС с ПЭ и сообщили, что присутствие ПС способствует разложению ПЭ из-за образования стабильных бензольных колец.
Химический состав пиролизного масла по различным функциональным группам был изучен методом FT-IR. Полученные данные показали наличие в масле ароматических и алифатических функциональных групп (рисунки 6, 7). Очень сильный пик при 696 см. -1 наблюдался в большинстве жидких масел, полученных с использованием обоих катализаторов, что соответствует высокой концентрации ароматических соединений.Еще два очевидных пика были видны около 1,456 и 1,495 см. -1 для C-C с одинарными и двойными связями, соответствующих ароматическим соединениям. Кроме того, в конце спектра сильные пики при 2,850, 2,923 и 2,958 см -1 наблюдались во всех типах жидких масел, кроме PS, соответствующих C-H-отрезку соединений алканов. В целом жидкое масло, полученное в результате каталитического пиролиза различных пластиковых отходов с использованием катализатора AA-NZ, показало больше пиков, чем образцы катализаторов TA-NZ.Эти дополнительные пики соответствуют ароматическим соединениям, алканам и алкеновым соединениям. Это указывает на то, что, как и ожидалось, AA-NZ имел лучшие каталитические свойства, чем TA-NZ. Различные исследователи сообщили о схожих результатах, что в жидкой нефти, полученной из PS, преобладали ароматические углеводороды. Tekin et al. (2012) и Panda and Singh (2013) также сообщили о присутствии ароматических углеводородов с некоторыми алканами и алкенами в результате каталитического пиролиза полипропилена. Kunwar et al. (2016) провели термический и каталитический пиролиз полиэтилена и сообщили, что полученная жидкая нефть содержит алканы и алкены в качестве основной функциональной группы.В целом, анализ FT-IR позволил лучше понять химический состав жидкого масла, полученного в результате каталитического пиролиза различных пластиковых отходов с использованием модифицированных NZ-катализаторов, и дополнительно подтвердил наши результаты GC-MS.
Рисунок 6 . FT-IR анализ жидкой нефти, полученной каталитическим пиролизом с TA-NZ.
Рисунок 7 . FT-IR анализ жидкой нефти, полученной в результате каталитического пиролиза с AA-NZ.
Возможное применение продуктов пиролиза
Жидкое масло, полученное в результате каталитического пиролиза различных типов пластмассового сырья, содержит большое количество ароматических, олефиновых и нафталиновых соединений, которые содержатся в нефтепродуктах.Более того, HHV добываемой жидкой нефти было обнаружено в диапазоне 41,7–44,2 МДж / кг (Таблица 2), что очень близко к энергетической ценности обычного дизельного топлива. Самая низкая HHV 41,7 МДж / кг была обнаружена в жидкой нефти, полученной из PS с использованием катализатора TA-NZ, тогда как самая высокая HHV в 44,2 МДж / кг была у PS / PE / PP с использованием катализатора AA-NZ. Таким образом, жидкое пиролизное масло, получаемое из различных пластиковых отходов, потенциально может быть использовано в качестве альтернативного источника энергии. По данным Lee et al.(2015) и Rehan et al. (2016), производство электроэнергии возможно с использованием жидкого пиролизного масла в дизельном двигателе. Саптоади и Пратама (2015) успешно использовали жидкое пиролитическое масло в качестве альтернативы керосиновой печи. Кроме того, полученные ароматические соединения могут быть использованы в качестве сырья для полимеризации в различных отраслях химической промышленности (Sarker, Rashid, 2013; Shah, Jan, 2015). Кроме того, различные исследователи использовали добытую жидкую нефть в качестве транспортного топлива после смешивания с обычным дизельным топливом в различных соотношениях.Исследования проводились для изучения потенциала добываемой жидкой нефти в контексте характеристик двигателя и выбросов выхлопных газов транспортных средств. Nileshkumar et al. (2015) и Ли и др. (2015) сообщили, что соотношение смеси пиролитического жидкого масла и обычного дизельного топлива, равное 20: 80%, соответственно, дает аналогичные результаты по рабочим характеристикам двигателя, чем у обычного дизельного топлива. Более того, при том же смешанном соотношении выбросы выхлопных газов также были аналогичными, однако выбросы выхлопных газов увеличивались с увеличением количества смешанного пиролизного масла (Frigo et al., 2014; Мукерджи и Тамотаран, 2014).
Таблица 2 . Высокие значения нагрева (HHV) пиролизного масла из различного сырья с использованием катализаторов TA-NZ и AA-NZ.
Остаток (полукокс), оставшийся после процесса пиролиза, можно использовать в нескольких экологических целях. Несколько исследователей активировали полукокс с помощью пара и термической активации (Lopez et al., 2009; Heras et al., 2014). Процесс активации увеличил площадь поверхности по БЭТ и уменьшил размер пор полукокса (Lopez et al., 2009). Кроме того, Бернандо (2011) модернизировал пластиковый уголь биоматериалом и провел адсорбцию (3,6–22,2 мг / г) красителя метиленового синего из сточных вод. Miandad et al. (2018) использовали полукокс, полученный при пиролизе пластиковых отходов ПС, для синтеза нового наноадсорбента двухслойных оксидов углерода-металла (C / MnCuAl-LDOs) для адсорбции конго красного (CR) в сточных водах. Кроме того, полукокс также может использоваться в качестве сырья для производства активированного угля.
Ограничения ГХ-МС анализа пиролизного масла
Существуют некоторые ограничения при проведении точного количественного анализа химических компонентов в пиролизном масле с использованием ГХ-МС.В этом исследовании мы использовали массовый процент различных химикатов, обнаруженных в образцах нефти, рассчитанный на основе площадей пиков, определенных с помощью колонки DP5-MS с нормальной фазой и FID. Идентифицированные пики были сопоставлены с NIST и библиотекой спектров банка масс. Соединения были выбраны на основе индекса сходства (SI> 90%). Дальнейшее сравнение с известными стандартами (CRM) позволило подтвердить идентифицированные соединения. Использованная колонка и детекторы ограничивались только углеводородами. Однако в действительности масло из большинства пластиковых отходов имеет сложную химическую структуру и может содержать другие группы неустановленных химических веществ, таких как сера, азот и кислородсодержащие углеводороды.Вот почему необходим более глубокий и точный качественный химический анализ, чтобы полностью понять химию пиролизного масла, с использованием расширенной калибровки и стандартизации и использования различных детекторов МС, таких как SCD и NCD, а также различных колонок для ГХ.
Возможности и проблемы биоперерабатывающих заводов на основе пиролиза
Заводы по переработке отходов привлекают огромное внимание как решение для преобразования ТБО и других отходов биомассы в ряд продуктов, таких как топливо, энергия, тепло и другие ценные химические вещества и материалы.Различные типы биоперерабатывающих заводов, такие как биопереработка на базе сельского хозяйства, биопереработка животных отходов, биопереработка сточных вод, биопереработка на основе водорослей, очистка пластиковых отходов, биопереработка на базе лесного хозяйства, биопереработка промышленных отходов, биопереработка пищевых отходов и т. Д., Могут быть разработаны в зависимости от тип и источник отходов (Gebreslassie et al., 2013; De Wild et al., 2014; Nizami et al., 2017a, b; Waqas et al., 2018). Эти биоперерабатывающие заводы могут сыграть важную роль в сокращении загрязнения окружающей среды отходами и выбросов парниковых газов.Кроме того, они приносят существенные экономические выгоды и могут помочь в достижении экономики замкнутого цикла в любой стране.
Биоперерабатывающий завод на основе пиролиза может быть разработан для обработки ряда отходов биомассы и пластиковых отходов с целью производства жидкого и газового топлива, энергии, биоугля и других более ценных химикатов с использованием комплексного подхода. Комплексный подход помогает достичь максимальных экономических и экологических выгод при минимальном образовании отходов. Существует множество проблем и возможностей для улучшения биоперерабатывающих заводов на основе пиролиза, которые необходимо решать и оптимизировать, чтобы обеспечить максимальную выгоду.Хотя пиролизное масло содержит больше энергии, чем уголь и некоторые другие виды топлива, пиролиз сам по себе является энергоемким процессом, а нефтепродукт требует больше энергии для очистки (Inman, 2012). Это означает, что пиролизное масло может быть не намного лучше обычного дизельного топлива или другого ископаемого топлива с точки зрения выбросов парниковых газов, хотя для подтверждения этого необходимы более подробные исследования баланса массы и энергии по всему процессу. Чтобы преодолеть эти технологические потребности в энергии, могут быть разработаны более передовые технологии с использованием интеграции возобновляемых источников энергии, таких как солнечная или гидроэнергетика, с пиролизными биоперерабатывающими заводами для достижения максимальных экономических и экологических выгод.
Доступность потоков отходов пластика и биомассы в качестве сырья для биоперерабатывающих заводов, основанных на пиролизе, является еще одной серьезной проблемой, поскольку переработка в настоящее время не очень эффективна, особенно в развивающихся странах. Газы, образующиеся при пиролизе некоторых пластиковых отходов, таких как ПВХ, токсичны, и поэтому технология очистки выбросов пиролиза требует дальнейшего совершенствования для достижения максимальных экологических преимуществ. Пиролизное масло, полученное из различных типов пластика, необходимо значительно очистить перед использованием в любом применении, чтобы обеспечить минимальное воздействие на окружающую среду.Высокое содержание ароматических веществ в пиролизном масле является хорошим, и некоторые ароматические соединения, такие как бензол, толуол и стирол, можно очищать и продавать на уже сложившемся рынке. Однако некоторые ароматические углеводороды являются известными канцерогенами и могут нанести серьезный вред здоровью человека и окружающей среде. Поэтому в этом отношении необходимо серьезное рассмотрение.
Другие аспекты оптимизации биоперерабатывающих заводов на основе пиролиза, такие как новые появляющиеся передовые катализаторы, включая нанокатализаторы, должны быть разработаны и применены в процессах пиролиза для повышения качества и выхода продуктов, а также для оптимизации всего процесса.Рынок продуктов биопереработки на основе пиролиза должен быть создан / расширен, чтобы привлечь дополнительный интерес и финансирование, чтобы сделать эту концепцию более практичной и успешной. Точно так же необходимо больше внимания уделять проведению дальнейших исследований и разработок по обогащению концепции биопереработки и раскрытию ее истинного потенциала. Кроме того, очень важно провести подробную оценку экономического и экологического воздействия биоперерабатывающих заводов на стадии проектирования с использованием специализированных инструментов, таких как оценка жизненного цикла (ОЖЦ).LCA может анализировать воздействие биоперерабатывающего завода и всех продуктов на окружающую среду путем проведения подробных энергетических и материальных балансов на всех этапах жизненного цикла, включая добычу и переработку сырья, производство, распределение продуктов, использование, техническое обслуживание и утилизацию / переработку. Результаты LCA помогут определить устойчивость биоперерабатывающих заводов, что имеет решающее значение для принятия правильного решения.
Выводы
Каталитический пиролиз — многообещающий метод преобразования пластиковых отходов в жидкое масло и другие продукты с добавленной стоимостью с использованием модифицированного природного цеолита (NZ) катализатора.Модификация катализаторов NZ была проведена с помощью новой термической (TA) и кислотной (AA) активации, которая улучшила их каталитические свойства. Каталитический пиролиз PS дал наибольшее количество жидкой нефти (70 и 60%) по сравнению с PP (40 и 54%) и PE (40 и 42%) с использованием катализаторов TA-NZ и AA-NZ, соответственно. Химический состав пиролизного масла был проанализирован с помощью ГХ-МС, и было обнаружено, что большая часть жидкого масла дает высокое содержание ароматических веществ с некоторыми алифатическими и другими углеводородными соединениями.Эти результаты были дополнительно подтверждены анализом FT-IR, показывающим четкие пики, соответствующие ароматическим и другим углеводородным функциональным группам. Кроме того, жидкое масло, полученное из различных типов пластиковых отходов, имело более высокую теплотворную способность (HHV) в диапазоне 41,7–44,2 МДж / кг, как и у обычного дизельного топлива. Следовательно, он может быть использован в различных энергетических и транспортных приложениях после дальнейшей обработки и очистки. Данное исследование является шагом к развитию биоперерабатывающих заводов на основе пиролиза.Биоперерабатывающие заводы обладают огромным потенциалом для преобразования отходов в энергию и другие ценные продукты и могут помочь в достижении экономики замкнутого цикла. Однако, как обсуждалось выше, существует множество технических, эксплуатационных и социально-экономических проблем, которые необходимо преодолеть для достижения максимальных экономических и экологических выгод от биоперерабатывающих заводов.
Доступность данных
Все наборы данных, созданные для этого исследования, включены в рукопись и / или дополнительные файлы.
Авторские взносы
RM провел эксперименты по пиролизу и помог в написании рукописи.HK, JD, JG и AH провели подробную характеристику продуктов процесса. MR и ASA проанализировали данные и письменные части рукописи. MAB, MR и A-SN исправили и отредактировали рукопись. ASA и IMII поддержали проект финансово и технически.
Заявление о конфликте интересов
Авторы заявляют, что исследование проводилось при отсутствии каких-либо коммерческих или финансовых отношений, которые могут быть истолкованы как потенциальный конфликт интересов.
Благодарности
MR и A-SN выражают признательность Центру передового опыта в области экологических исследований (CEES), Университету короля Абдель Азиза (KAU), Джидда, штат Калифорния, и Министерству образования штата Калифорния за финансовую поддержку в рамках гранта № 2 / S / 1438. Авторы также благодарны деканату научных исследований (DSR) КАУ за финансовую и техническую поддержку ОЕЭП.
Список литературы
Аднан А., Шах Дж. И Ян М. Р. (2014). Исследования разложения полистирола с использованием катализаторов на медной основе. J. Anal. Прил. Пирол . 109, 196–204. DOI: 10.1016 / j.jaap.2014.06.013
CrossRef Полный текст | Google Scholar
Агуадо, Дж., Сотело, Дж. Л., Серрано, Д. П., Каллес, Дж. А. и Эскола, Дж. М. (1997). Каталитическая конверсия полиолефинов в жидкое топливо на MCM-41: сравнение с ZSM-5 и аморфным SiO2 – Al 2 O 3 . Ener топливо 11, 1225–1231. DOI: 10.1021 / ef970055v
CrossRef Полный текст | Google Scholar
Александра, Л.С. (2012). Твердые бытовые отходы: превращение проблемы в ресурсные отходы: проблемы, с которыми сталкиваются развивающиеся страны, специалист по городскому хозяйству . Всемирный банк. 2–4 стр.
Батул, М., Шах, А. Т., Имран Дин, М., и Ли, Б. (2016). Каталитический пиролиз полиэтилена низкой плотности с использованием инкапсулированных цетилтриметиламмониевых моновакантных блоков кеггина и ZSM-5. J. Chem. 2016: 2857162. DOI: 10.1155 / 2016/2857162
CrossRef Полный текст | Google Scholar
Бернандо, М.(2011). «Физико-химические характеристики углей, образующихся при совместном пиролизе отходов, и возможные пути повышения ценности», в Chemical Engineering (Лиссабон: Universidade Nova de Lisboa), 27–36.
Bhaskar, T., Kaneko, J., Muto, A., Sakata, Y., Jakab, E., Matsui, T., et al. (2004). Исследования пиролиза пластмасс PP / PE / PS / PVC / HIPS-Br, смешанных с ПЭТ, и дегалогенирование (Br, Cl) жидких продуктов. J. Anal. Прил. Пиролиз 72, 27–33. DOI: 10.1016 / j.jaap.2004.01.005
CrossRef Полный текст | Google Scholar
Чандрасекаран С. Р., Кунвар Б., Мозер Б. Р., Раджагопалан Н. и Шарма Б. К. (2015). Каталитический термический крекинг пластмассовых отходов постпотребительского производства с получением топлива. 1. Кинетика и оптимизация. Energy Fuels 29, 6068–6077. DOI: 10.1021 / acs.energyfuels.5b01083
CrossRef Полный текст | Google Scholar
Cullis, C.F., и Hirschler, M.M. (1981). Горение органических полимеров. об.5. Лондон: Издательство Оксфордского университета.
Давуд А. и Миура К. (2002). Каталитический пиролиз c-облученного полипропилена (PP) над HY-цеолитом для повышения реакционной способности и селективности продукта. Polym. Деграда. Укол . 76, 45–52. DOI: 10.1016 / S0141-3910 (01) 00264-6
CrossRef Полный текст | Google Scholar
De Wild, P.J., Huijgen, W.J. и Gosselink, R.J. (2014). Пиролиз лигнина для рентабельных лигноцеллюлозных биоперерабатывающих заводов. Биотопливо Биопрод.Биорефайнинг 8, 645–657. DOI: 10.1002 / bbb.1474
CrossRef Полный текст | Google Scholar
Демирбас А. (2004). Пиролиз муниципальных пластиковых отходов для утилизации углеводородов бензиновой марки. J. Anal. Прил. Пиролиз 72, 97–102. DOI: 10.1016 / j.jaap.2004.03.001
CrossRef Полный текст | Google Scholar
Димитров, Н., Крехула, Л. К., Сирочич, А. П., и Хрняк-Мургич, З. (2013). Анализ переработанных бутылок из ПЭТ методом пиролизно-газовой хроматографии. Polym. Деграда. Stab. 98, 972–979. DOI: 10.1016 / j.polymdegradstab.2013.02.013
CrossRef Полный текст | Google Scholar
Dziecioł, M., and Trzeszczynski, J. (2000). Летучие продукты термической деструкции полиэтилентерефталата в атмосфере азота. J. Appl. Polym. Sci. 77, 1894–1901. DOI: 10.1002 / 1097-4628 (20000829) 77: 9 <1894 :: AID-APP5> 3.0.CO; 2-Y
CrossRef Полный текст | Google Scholar
Фриго, С., Сеггиани, М., Пуччини, М., и Витоло, С. (2014). Производство жидкого топлива путем пиролиза отработанных шин и его использование в дизельном двигателе. Топливо 116, 399–408. DOI: 10.1016 / j.fuel.2013.08.044
CrossRef Полный текст | Google Scholar
Gaca, P., Drzewiecka, M., Kaleta, W., Kozubek, H., and Nowinska, K. (2008). Каталитическая деструкция полиэтилена на мезопористом молекулярном сите МСМ-41, модифицированном гетерополисоединениями. Польский J. Environ. Stud. 17, 25–35.
Google Scholar
Гандиди, И.М., Сусила, М. Д., Мустофа, А., Памбуди, Н. А. (2018). Термико-каталитический крекинг реальных ТБО в био-сырую нефть. J. Energy Inst. 91, 304–310. DOI: 10.1016 / j.joei.2016.11.005
CrossRef Полный текст | Google Scholar
Gebreslassie, Б. Х., Сливинский, М., Ван, Б., и Ю, Ф. (2013). Оптимизация жизненного цикла для устойчивого проектирования и эксплуатации заводов по биологической переработке углеводородов с помощью быстрого пиролиза, гидроочистки и гидрокрекинга. Comput. Chem. Англ. 50, 71–91.DOI: 10.1016 / j.compchemeng.2012.10.013
CrossRef Полный текст | Google Scholar
Херас, Ф., Хименес-Кордеро, Д., Гиларранс, М.А., Алонсо-Моралес, Н., и Родригес, Дж. Дж. (2014). Активация полукокса изношенных шин путем циклического жидкофазного окисления. Топливный процесс. Технол . 127, 157–162. DOI: 10.1016 / j.fuproc.2014.06.018
CrossRef Полный текст | Google Scholar
Юнг, С. Х., Чо, М. Х., Кан, Б. С. и Ким, Дж. С. (2010). Пиролиз фракции отработанного полипропилена и полиэтилена для извлечения ароматических углеводородов БТК с использованием реактора с псевдоожиженным слоем. Топливный процесс. Technol. 91, 277–284. DOI: 10.1016 / j.fuproc.2009.10.009
CrossRef Полный текст | Google Scholar
Ким, Х. С., Ким, С., Ким, Х. Дж. И Янг, Х. С. (2006). Тепловые свойства полиолефиновых композитов с наполнителем из биомки с различным типом и содержанием компатибилизатора. Thermochim. Acta 451, 181–188. DOI: 10.1016 / j.tca.2006.09.013
CrossRef Полный текст | Google Scholar
Ким, Дж. Р., Юн, Дж. Х. и Пак, Д.W. (2002). Каталитическая переработка смеси полипропилена и полистирола. Polym. Деграда. Stab. 76, 61–67. DOI: 10.1016 / S0141-3910 (01) 00266-X
CrossRef Полный текст | Google Scholar
Kiran, N., Ekinci, E., and Snape, C.E. (2000). Переработка пластиковых отходов пиролизом. Resour. Консерв. Recycl. 29, 273–283. DOI: 10.1016 / S0921-3449 (00) 00052-5
CrossRef Полный текст | Google Scholar
Кунвар Б., Мозер Б. Р., Чандрасекаран С.Р., Раджагопалан, Н., Шарма, Б. К. (2016). Каталитическая и термическая деполимеризация малоценного полиэтилена высокой плотности, бывшего в употреблении. Energy 111, 884–892. DOI: 10.1016 / j.energy.2016.06.024
CrossRef Полный текст | Google Scholar
Lecomte, H.A., and Liggat, J.J. (2006). Механизм разложения звеньев диэтиленгликоля в терефталатном полимере. Polym. Деграда. Stab. 91, 681–689. DOI: 10.1016 / j.polymdegradstab.2005.05.028
CrossRef Полный текст | Google Scholar
Ли, К.Х. (2012). Влияние типов цеолитов на каталитическую очистку воскового масла пиролиза. J. Anal. Прил. Пирол . 94, 209–214. DOI: 10.1016 / j.jaap.2011.12.015
CrossRef Полный текст | Google Scholar
Ли С., Йошида К. и Йошикава К. (2015). Применение отработанного пластикового пиролизного масла в дизельном двигателе с прямым впрыском: Для небольшой несетевой электрификации. Energy Environ. Рез . 5:18. DOI: 10.5539 / eer.v5n1p18
CrossRef Полный текст
Ли, С.Ю., Юн, Дж. Х., Ким, Дж. Р. и Пак, Д. У. (2001). Каталитическая деструкция полистирола над природным клиноптилолитовым цеолитом. Polym. Деграда. Stab. 74, 297–305. DOI: 10.1016 / S0141-3910 (01) 00162-8
CrossRef Полный текст | Google Scholar
Лин, Ю. Х., Ян, М. Х., Йе, Т. Ф., и Гер, М. Д. (2004). Каталитическое разложение полиэтилена высокой плотности на мезопористых и микропористых катализаторах в реакторе с псевдоожиженным слоем. Polym. Деграда. Stab. 86, 121–128.DOI: 10.1016 / j.polymdegradstab.2004.02.015
CrossRef Полный текст | Google Scholar
Лопес, А., Марко д, И., Кабальеро, Б. М., Ларесгоити, М. Ф., Адрадос, А., и Торрес, А. (2011). Пиролиз муниципальных пластиковых отходов II: влияние состава сырья в каталитических условиях. Управление отходами . 31, 1973–1983. DOI: 10.1016 / j.wasman.2011.05.021
CrossRef Полный текст | Google Scholar
Лопес, Г., Олазар, М., Артеткс, М., Амутио, М., Элорди, Дж., И Бильбао, Дж. (2009). Активация паром пиролитического полукокса шин при различных температурах. J. Anal. Прил. Пирол . 85, 539–543. DOI: 10.1016 / j.jaap.2008.11.002
CrossRef Полный текст | Google Scholar
Ma, C., Yu, J., Wang, B., Song, Z., Xiang, J., Hu, S., et al. (2017). Каталитический пиролиз огнестойкого ударопрочного полистирола на различных твердых кислотных катализаторах. Топливный процесс. Technol. 155, 32–41. DOI: 10.1016 / j.fuproc.2016.01.018
CrossRef Полный текст | Google Scholar
Марсилла, А., Бельтран, М. И., Эрнандес, Ф., и Наварро, Р. (2004). Дезактивация HZSM5 и HUSY при каталитическом пиролизе полиэтилена. Заявл. Катал. A Gen. 278, 37–43. DOI: 10.1016 / j.apcata.2004.09.023
CrossRef Полный текст | Google Scholar
McNeill, I.C., и Bounekhel, M. (1991). Исследования термической деструкции сложных полиэфиров терефталата: 1. Поли (алкилентерефталаты). Полимерная деградация. Stab. 34, 187–204. DOI: 10.1016 / 0141-3910 (91)-C
CrossRef Полный текст | Google Scholar
Макнил, И.К., Зульфикар М. и Кусар Т. (1990). Подробное исследование продуктов термической деструкции полистирола. Polym. Деграда. Stab. 28, 131–151. DOI: 10.1016 / 0141-3910 (90)
Пиролиз Процессы можно разделить на медленный пиролиз или быстрый пиролиз.Быстрый пиролиз в настоящее время является наиболее широко используемой системой пиролиза. Медленный пиролиз занимает несколько часов и приводит к получению биоугля в качестве основного продукта. С другой стороны, быстрый пиролиз дает 60% биомасла и требует секунд для полного пиролиза. Кроме того, он дает 20% биоугля и 20% синтез-газа. Процессы быстрого пиролиза включают пиролиз с неподвижным слоем с открытым сердечником, быстрый абляционный пиролиз, циклонный быстрый пиролиз и системы быстрого пиролиза с вращающимся сердечником. Существенными характеристиками процесса быстрого пиролиза являются:
- Очень высокие скорости нагрева и теплопередачи, для которых требуется тонко измельченный материал.
- Тщательно контролируемая температура реакции около 500 ° C в паровой фазе
- Время пребывания паров пиролиза в реакторе менее 1 с
- Гашение (быстрое охлаждение) паров пиролиза с получением продукта бионефти.
Использование биомасла
Бионефть — это жидкость темно-коричневого цвета, имеющая состав, аналогичный составу биомассы. Он имеет гораздо более высокую плотность, чем древесные материалы, что снижает затраты на хранение и транспортировку.Биомасло не подходит для прямого использования в стандартных двигателях внутреннего сгорания. В качестве альтернативы масло можно улучшить либо до специального моторного топлива, либо с помощью процессов газификации до синтез-газа, а затем биодизеля. Бионефть особенно привлекательна для совместного сжигания, поскольку с ней легче обращаться и сжигать, чем твердое топливо, и ее дешевле транспортировать и хранить. Совместное сжигание биомасла было продемонстрировано на газовой электростанции мощностью 350 МВт в Голландии, когда был успешно заменен 1% мощности котла.Именно в таких приложениях биомасло может предложить значительные преимущества перед твердой биомассой и газификацией из-за простоты обращения, хранения и сжигания на существующей электростанции, когда нет необходимости в специальных процедурах запуска. Кроме того, биомасло также является жизненно важным источником широкого спектра органических соединений и специальных химикатов.
Важность Biochar
Растущие опасения по поводу изменения климата привлекли внимание к биочару. Сжигание и разложение древесной биомассы и сельскохозяйственных остатков приводит к выбросу большого количества диоксида углерода.Biochar может накапливать этот CO2 в почве, что приводит к сокращению выбросов парниковых газов и повышению плодородия почвы. Помимо способности связывать углерод, biochar имеет ряд других преимуществ.
- Biochar может увеличить количество доступных питательных веществ для роста растений, удержания воды и уменьшить количество удобрений, предотвращая вымывание питательных веществ из почвы.
- Biochar снижает выбросы метана и закиси азота из почвы, тем самым еще больше сокращая выбросы парниковых газов.
- Biochar может использоваться во многих приложениях в качестве замены других энергетических систем на биомассе.
- Biochar можно использовать в качестве удобрения почвы для увеличения урожайности растений.
Выводы
Пиролиз биомассы привлекает большое внимание из-за его высокой эффективности и хороших экологических характеристик. Это также дает возможность перерабатывать сельскохозяйственные остатки, древесные отходы и твердые бытовые отходы в экологически чистую энергию.Кроме того, связывание биоугля может иметь большое значение для выбросов ископаемого топлива во всем мире и выступать в качестве основного игрока на мировом углеродном рынке с его надежной, чистой и простой технологией производства.
Принципы пиролиза | Задача 34
Ключевые моменты
Система быстрого пиролиза на Scion в Новой Зеландии, PyNe42.
- Пиролиз позволяет производить жидкое биотопливо из твердой биомассы с использованием быстрого нагрева в среде с низким содержанием кислорода.
- Быстрый пиролиз происходит при передаче тепла за несколько секунд, давая максимально жидкий продукт.
- Продукт называется «Бионефть», который можно сжигать как биотопливо или преобразовывать в более ценные продукты или топливо.
- В процессе используется быстрая теплопередача и среда с низким содержанием кислорода, чтобы вызвать тепловые реакции, которые разрушают структуру полимера биомассы с образованием жидкости.
Дополнительная литература
Примеры приложений
Пиролиз
Биомасло, уголь и сосновые опилки. Фото: Скотт Батнер, PNNL.
Пиролиз — это термическое разложение, происходящее в отсутствие кислорода.Это всегда также первый шаг в процессах сжигания и газификации, за которым следует полное или частичное окисление первичных продуктов. Более низкая температура процесса и более длительное время пребывания паров способствуют производству древесного угля. Высокая температура и более длительное время пребывания увеличивают конверсию биомассы в газ, а умеренная температура и короткое время пребывания пара являются оптимальными для получения жидкостей. Распределение продуктов, полученных при различных режимах процесса пиролиза, представлено в таблице ниже.Быстрый пиролиз для производства жидкостей представляет особый интерес в настоящее время, поскольку жидкости можно транспортировать и хранить.
Типичный выход продукта (в пересчете на сухую древесину), полученного при различных режимах пиролиза древесины
Режим | Условия Вес% | Жидкость | символ | Газ |
Быстро | ~ 500 o C, короткое время пребывания горячего пара ~ 1 с | 75% | 12% | 13% |
Средний | ~ 500 o C, время пребывания горячего пара ~ 10-30 с | 50% | 25% | 25% |
Медленное — торрефикация | ~ 290 o C, время пребывания твердых частиц ~ 30 минут | – | 82% твердых | 18% |
Медленное — карбонизация | ~ 400 o C, длительное время пребывания пара часов -> дней | 30% | 35% | 35% |
Газификация | ~ 800 o С | 5% | 10% | 85% |
Быстрый пиролиз происходит за несколько секунд или меньше.Следовательно, важную роль играют не только кинетика химических реакций, но и процессы тепломассопереноса, а также явления фазового перехода. Важнейшей задачей является доведение реагирующей частицы биомассы до оптимальной температуры процесса и минимизация ее воздействия на промежуточные (более низкие) температуры, которые способствуют образованию древесного угля. Одним из способов достижения этой цели является использование мелких частиц, например, в процессах с псевдоожиженным слоем, которые описаны ниже. Другая возможность заключается в очень быстрой передаче тепла только к поверхности частицы, которая контактирует с источником тепла, который применяется в абляционных процессах.
При быстром пиролизе биомасса разлагается с образованием в основном паров, аэрозолей и некоторого количества древесного угля. После охлаждения и конденсации образуется темно-коричневая подвижная жидкость, теплотворная способность которой примерно вдвое ниже, чем у обычного жидкого топлива. Хотя он связан с традиционными процессами пиролиза для производства древесного угля, быстрый пиролиз — это продвинутый процесс с тщательно контролируемыми параметрами для получения высоких выходов жидкости. Существенными особенностями процесса быстрого пиролиза для получения жидкостей являются:
- Очень высокие скорости нагрева и теплопередачи на границе реакции, для чего обычно требуется тонко измельченная биомасса;
- Тщательно контролируемая температура реакции пиролиза около 500 o C и температура паровой фазы 400-450 o C;
- Короткое время пребывания пара, обычно менее 2 секунд; или
- Быстрое охлаждение паров пиролиза с образованием бионефти. или
Основной продукт, бионефти, получается с выходом до 75% мас. В пересчете на сухое сырье, вместе с побочными продуктами полукокса и газом, которые используются в процессе для обеспечения потребности в технологическом тепле, чтобы не было отходов другие потоки, кроме дымовых газов и золы. Процесс быстрого пиролиза включает сушку сырья до уровня менее 10% воды, чтобы минимизировать количество воды в жидком нефтепродукте (хотя может быть приемлемо до 15%), измельчение сырья (примерно до 2 мм в случае текучей среды). реакторы со слоем), чтобы получить достаточно мелкие частицы для обеспечения быстрой реакции, реакции пиролиза, отделения твердых частиц (полукокса), гашения и сбора жидкого продукта (бионефти).Практически любая форма биомассы может рассматриваться для быстрого пиролиза. В то время как большая часть работы была проведена с древесиной из-за ее консистенции и сопоставимости между тестами, почти 100 различных типов биомассы были протестированы во многих лабораториях, начиная от сельскохозяйственных отходов, таких как солома, оливковые косточки и скорлупа орехов, до энергетических культур, таких как мискантус и сорго, отходы лесного хозяйства, такие как кора, и твердые отходы, такие как осадок сточных вод и отходы кожи.
В основе процесса быстрого пиролиза лежит реактор.Хотя это, вероятно, составляет не более 10-15% от общих капитальных затрат интегрированной системы, большая часть исследований и разработок была сосредоточена на реакторе, хотя в настоящее время все большее внимание уделяется контролю и улучшению качества жидкости, включая улучшение сбора. системы. Остальная часть процесса состоит из приема, хранения и обработки биомассы, сушки и измельчения биомассы, сбора, хранения и, при необходимости, модернизации.
7. Исследование процессов пиролиза биомассы
7.Прогресс исследований процессов пиролиза биомассы7.1. Общее введение
7.2. Система пиролиза биомассы
7.3. Продукты и их характеристики
7.4. Предварительная обработка и определение характеристик исходного сырья
7.5. Установлен пилотный реактор с вращающимся конусом в САУ
7.1.1 Что такое пиролиз?
Пиролиз — это термическая деградация либо при полном отсутствии окислителя, либо с такой ограниченной подачей, что газификация не происходит в значительной степени или может быть описана как частичная газификация.Применяются относительно низкие температуры от 500 до 800 ° C по сравнению с 800 до 1000 ° C при газификации. Обычно производятся три продукта: газ, пиролизное масло и древесный уголь, относительные пропорции которых очень сильно зависят от метода пиролиза, характеристик биомассы и параметров реакции. Быстрый или мгновенный пиролиз используется для максимального увеличения количества газообразных или жидких продуктов в зависимости от используемой температуры.
7.1.2 История пиролиза биомассы
Чем интересен пиролиз?
Есть несколько способов использовать энергию, содержащуюся в биомассе, от прямого сжигания до газификации и пиролиза.Выбор наиболее прибыльного метода рекуперации энергии из биомассы определенного типа является и наиболее важным шагом на пути к прибыльным инвестициям.
Прямое сжигание — это старый способ использования биомассы. Биомасса полностью превращается в тепло, но эффективность составляет всего около 10 процентов. Газификация доводит до максимального уровня крекинг биомассы, полностью превращая ее в горючий газ перед сжиганием. Производство древесного угля, медленный пиролиз древесины при температуре 500 ° C — это процесс, который производители древесного угля использовали на протяжении тысячелетий.Древесный уголь — бездымное топливо, которое до сих пор используется для отопления. Его первое технологическое применение можно отнести к железному веку, когда древесный уголь использовался при плавке руды для производства железа. Производство древесного пара обычно связано с копчением, которое является одним из старейших методов консервирования пищевых продуктов, вероятно, применяемым с момента развития кулинарии на огне. Эти пары, содержащие природные консерванты, такие как формальдегид и спирт, использовались в качестве исходного сырья. Главное преимущество — небольшие и очень простые установки, которые можно сделать с очень низкими инвестиционными затратами.Недостаток — довольно низкая выработка энергии и загрязнение воздуха.
Пиролиз биомассы привлекателен, поскольку твердая биомасса и отходы очень сложны и дороги в обращении. легко превращается в жидкие продукты. Эти жидкости, такие как сырая бионефть или суспензия древесного угля из воды или масла, имеют преимущества при транспортировке, хранении, сжигании, модернизации и гибкости в производстве и сбыте. Плотность энергии сведена в Таблицу 7.1.
Неочищенное пиролизное масло — это холостая жидкость, которую часто называют бионефть, пиролизное масло или просто нефть.Другой основной продукт — это суспензия, которую можно приготовить из отходов и древесного угля с добавлением химикатов для стабилизации суспензии. Сообщалось о стабильной и подвижной концентрации до 60 мас.%. Суспензии также можно приготовить из масла и древесного угля.
На пилотной установке газ обычно сжигается на факеле, но в промышленном процессе он будет использоваться для управления процессом или для сушки топлива или выработки электроэнергии.
При транспортировке важна насыпная плотность, некоторые расчетные значения приведены в таблице 7.1 Смеси нефти и навозной жижи имеют явное преимущество перед древесной щепой и соломой по объемной плотности при транспортировке и заметны по удельной энергии.
Для сбора биомассы на большие расстояния эта разница может быть решающим фактором.
Хранение и транспортировка могут быть важны из-за сезонных колебаний производства, и всегда будет требоваться некоторое хранение. Помимо насыпной плотности и учета энергии, важно, чтобы сырая биомасса ухудшалась во время хранения из-за процесса биологического разложения.Однако уголь очень стабилен и биологически не разлагается. Еще одним важным фактором является обращение с жидкостью, при котором жидкости имеют значительные преимущества перед твердыми веществами.
Обычно жидкие продукты легче контролировать в процессе сгорания, и это важно при модернизации существующего оборудования. Существующие горелки, работающие на жидком топливе, не могут полностью работать на твердой биомассе без какой-либо модификации устройства, что может не быть заинтересовано в неопределенных рынках топлива. Тем не менее, бионефти, суспензии полукокса и воды, вероятно, потребуются лишь относительно небольшая переделка оборудования или даже не потребуется в некоторых случаях.Горелки для угля с электроприводом относительно легко могут принять древесный уголь в качестве частичной замены топлива, если содержание нарушения совместимо с конструкцией горелки.
На электростанциях газовые турбины могут легко работать на биомасле и жидком топливе, хотя при этом требуется щелочная зола в полукоксовом составе пульпы. Некоторые модифицированные двигатели могут использоваться для использования модернизированного масла. В некоторых странах. существует рынок кусков древесного угля и брикетов для отдыха и промышленного использования.
Табл.7.1 Энергетические и плотностные характеристики
Корм | Насыпная плотность кг / м 3 ) | Теплотворная способность в сухом виде (ГДж / т) | Плотность энергии (ГДж / м 3 ) |
солома | 100 | 20 | 2 |
щепа | 400 | 20 | 8 |
пиро-масло | 1200 | 25 | 30 |
уголь | 300 | 30 | 9 |
суспензия угольной воды (50/50) | 1000 | 15 | 15 |
суспензия угольного масла (20/80) | 1150 | 23 | 26 |
7.1.3 Общее введение в процесс пиролиза биомассы
На сегодняшний день существует много видов процессов пиролиза биомассы, таких как обычные, мгновенные или быстрые, которые зависят от параметров реакции. Однако типичный процесс пиролиза можно описать следующим образом:
Биомассу предварительно нарезают по размеру и сушат, чтобы полностью контролировать процесс. Таким образом, биомасса подается в реактор с воздухом, достаточным для сжигания той части биомассы или теплоносителя (песка или другого), обеспечивающего тепло, необходимое для процесса.Система циклонов и конденсаторов позволяет восстанавливать продукты. Вообще говоря, система пиролиза биомассы имеет дело со многими аспектами: посадка биомассы, предварительная обработка, процесс пиролиза, использование и обновление продуктов, стоимость и экономическая оценка. Ниже будут рассмотрены новейшие технологии пиролиза биомассы в странах Европы и США.
7.2.1 Классификация пиролиза
Пиролиз применялся на протяжении веков для производства древесного угля.Это требует относительно медленной реакции при очень низких температурах для максимального увеличения выхода твердого вещества. Совсем недавно исследования механизмов пиролиза предложили способы существенного изменения пропорций газа, жидких и твердых продуктов путем изменения скорости нагрева, температуры и времени пребывания.
Высокие скорости нагрева, до заявленных 1000 ° C / с или даже 10000 ° C / с, при температуре ниже примерно 650 ° C и с быстрым охлаждением, вызывают конденсацию жидких промежуточных продуктов пиролиза до того, как дальнейшая реакция развалится. частицы с более высокой молекулярной массой в газообразные продукты.Высокие скорости реакции также сводят к минимуму образование полукокса, и при некоторых условиях, по-видимому, не образуется никакого полукокса. При высокой максимальной температуре основным продуктом является газ. Пиролиз при таких высоких скоростях нагрева известен как быстрый пиролиз, или мгновенный пиролиз, в зависимости от скорости нагрева и времени пребывания, хотя различия нечеткие. В другой работе была предпринята попытка использовать сложные механизмы разложения путем пиролиза в необычной среде. Основные варианты пиролиза перечислены в таблице 7.2, а характеристики основных моделей пиролиза обобщены в таблице 7.3.
Таблица 7.2 Вариант технологии пиролиза
Тех. | Время пребывания | Скорость нагрева | Температура ° C | Продукты |
карбонизация | дней | очень низкий | 400 | древесный уголь |
Обычный | 5-30 мин | низкий | 600 | нефть, газ, уголь |
Быстрый | 0.5-5с | очень высокий | 650 | биомасло |
Вспышка | <1 с | высокий | <650 | биомасло |
Вспышка газа | <1 с | высокий | <650 | химикаты, газ |
Ультра | <0.5 | очень высокий | 1000 | химикаты, газ |
Вакуум | 2-30 сек | средний | 400 | биомасло |
Hydro-pyro. | <10 с | высокий | <500 | биомасло |
Метано-пиро. | <10 с | высокий | > 700 | химикаты |
Таблица 7.3 Характеристики пиролизных технологий
Мгновенный низкий T | Мигающий высокий T | Медленная | Карбонизация | ||
Сырье | |||||
Размер корма | малый | малый | умеренный | большой | |
Влажность | v.низкий | v. Низкий | низкий | низкий | |
Параметры | |||||
Температура ° C | 450-600 | 650-900 | 500-600 | 450-600 | |
Давление, бар | 1 | 0.1-1 | 1 | 1 | |
Макс. расход, т / ч | 0,05 | 0,02 | 5 | 10 | |
Товар | |||||
Газ,% сухой | <30 | <70 | <40 | <40 | |
МДж / Нм3 | 10-20 | 10-20 | 5-10 | 2-4 | |
Жидкость% | <80 | <20 | <30 | <20 | |
МДж / кг | 23 | 23 | 23 | 10-20 | |
Цельный% | <15 | <20 | <30 | <35 | |
МДж / кг | 30 | 30 | 30 | 30 |
7.2.2 Текущее состояние технологий
В Европе в настоящее время в Италии работает демонстрационная установка по производству жидкости мощностью 500 кг / ч. Планируется, что на основе этой технологии появятся небольшие коммерческие предприятия в Италии, Испании и Греции в качестве проектов LEBEN. Пилотная установка производительностью 250 кг / ч, основанная на процессах Ватерлоо, была построена в Испании. Несколько заводов работают на демонстрационном уровне для отстоя сточных вод и бытовых отходов в Западной Германии с производительностью до 2 т / ч на основе медленного пиролиза.
В других местах в Северной Америке работает ряд демонстрационных установок для мгновенного пиролиза с производительностью до 25 кг / ч с планами нескольких коммерческих разработок с производительностью до 40 кг / ч, включая коммерческую установку, запланированную в Калифорнии на основе абляционный пиролиз и пиролиз осадка сточных вод SERI в Канаде и Австралии. Примеры текущих исследований и разработок перечислены в Таблице 7.4. Некоторые свойства, о которых было сообщено, суммированы и сравниваются в Таблице 7.5.
A. Реактор с неподвижным слоем
Древесный уголь можно производить с помощью реактора с неподвижным слоем, в котором сырье биомассы частично газифицируется воздухом. Компания Bio-Alternative SA использовала газогенератор с нисходящим потоком с неподвижным слоем газа диаметром 1 м и высотой 3 м (Bridgwater and Bridgw, 1991). с производительностью по биомассе 2000 кг / ч. Продуктами этого процесса являются газ, вязкие смолы и древесный уголь, выход которых максимален. Для древесины пихты и бука был достигнут выход древесного угля 300% по весу в пересчете на загружаемую древесину.Все продукты используются в качестве энергоносителей.
Таблица 7.5. Характеристики различных технологий пиролиза бионефти
Технологии | ГИТ | Энсин | лаваль | СЕРИИ | Твенте | |
Температура [° C] | 500 | 550 | 480 | 510 | 600 | |
Давление [бар абс.] | 1.0 | 1,0 | 0,01 | 1,0 | 1,0 | |
Расход [кг / ч] | 50 | 50 | 30 | 30 | 12 | |
dp [мм] | 0,5 | 0.2 | 10 | 5 | 0,5 | |
т газа [с] | 1,0 | 0,4 | 3 | 1 | 0,5 | |
т твердых [с] | 1,0 | 0,4 | 100 | 0.5 | ||
Выход газа [мас.%] | 30 | 25 | 14 | 35 | 20 | |
Выход гудрона [мас.%] | 60 | 65 | 65 | 55 | 70 | |
Выход полукокса [мас.%] | 10 | 10 | 21 | 10 | 10 | |
Характеристики гудрона (на мокрой основе) | ||||||
Плотность | 1.23 | 1,21 | 1,23 | 1,20 | 1,20 | |
Вязкость [cp] | 10 (60c) | 90 (25c) | 5 (40c) | 90 (30c) | 80 (20c) | |
C мас.% | 39.5 | 45,5 | 49,9 | 54,4 | 43,2 | |
H вес.% | 7,5 | 7,0 | 7,0 | 5,7 | 8,2 | |
0 мас.% | 52,6 | 45.4 | 43,0 | 39,8 | 48,6 | |
HHV [МДж / кг] | 24 | 19,3 | 21 | 15 | 25 | |
Вода в гудроне [мас.%] | 29 | 16 | 18 | 15 | 25 | |
Выход продукта | ||||||
% по массе жидкости | 21 | 59 | 66 | 70 | ||
вода | 26 | 26 | 10 | 10 | ||
символ | 21 | 15 | 14 | 10 | ||
газ | 32 | – | 10 | 10 |
Таблица 7.4 Сравнение технологий процесса пиролиза: ранжирование по желаемым продуктам
Технологии | Организация | Производительность (кг / ч) | Требуемый газ / смола / уголь | T (° C) | |
товар | (Вес%) | ||||
Фиксированная кровать | Био-альтернатива | 2000 | Char | 55/15/30 | 500-800 |
псевдоожиженный слой | ТЕБЯ | 500 | Газ | 80/10/10 | 650–1000 |
Радиационная печь | Univ.Сарагоса | 100 | Газ | 90/8/2 | 1000–2000 |
Обычный | Альтен (КТИ + Itaenergy) | 500 | Смола | ||
Циркуляционный псевдоожиженный слой | Ensyn Engineering | 30 | Смола | 25/65/10 | 450-800 |
Быстрый увлеченный поток | Georgia Tech Research Ins. | 50 | Смола | 30/60/10 | 400–550 |
Вакуум | Университет Лаваля | 30 | Смола | 15/65/20 | 250-450 |
Вихревой реактор | Исследования солнечной энергии Ins. | 30 | Смола | 35/55/10 | 475-725 |
низкая температура | Тюбингенский университет | 10 | |||
Flash с псевдоожиженным слоем | Университет Ватерлоо | 3 | Смола | 20/70/10 | 425-625 |
Реактор с вращающимся конусом | Univ.Твенте | 10 | Смола | 20/70/10 | 500-700 |
B. Реактор с псевдоожиженным слоем
Хорошо известная технология реакторов с псевдоожиженным слоем была применена Kosstrin (1980), Gourtay et al (1987) и Scott et al (1988). Выходы смолы, производимые реактором с псевдоожиженным слоем среднего масштаба (100 кг / ч), довольно низкие из-за крекинга паров в больших объемах слоя и надводного борта.Технология реакторов с псевдоожиженным слоем предлагает хорошие возможности для газификации сырья биомассы с минимальным образованием смол. В этом случае материал слоя следует выбирать на основе оптимальных характеристик каталитического крекинга гудрона. Однако, если продуктом является деготь, следует применять некаталитический неглубокий псевдоожиженный слой с последующим немедленным гашением газообразных продуктов.
C. Специфические технологии производства бионефти.
Производство бионефти максимально при средних температурах процесса (450-650) и коротком времени пребывания паров в реакторе.Полезными критериями для выбора технологий пиролиза для производства бионефти являются: i) выход биомасла на единицу массы древесины, который должен быть как можно более высоким, ii) мощность реактора процесса должна быть достаточно большой, чтобы ограничить количество шагов по увеличению мощности до полной мощности завода. Технологии пиролиза, включенные в следующий обзор, выбираются на основе этих критериев. Соответственно, было решено рассматривать только процессы с выходом биомасла более 50 мас.% В пересчете на сухую древесину и производительностью более 10 кг / ч.Схематическое расположение четырех известных технологий представлено на рис. 7.1; их особенности приведены в таблице 5 вместе с характеристиками «процесса вращения конуса Твенте».
а. Реактор с увлеченным потоком
Пиролиз биомассы в проточном реакторе с увлеченным потоком был изучен Гортоном и др. (1990) в Технологическом институте Джорджии, Атланта, Джорджия, США. Технологическая схема их процесса представлена на рис. 7.1a. Вертикальная трубка реактора имеет длину 6,4 м и внутренний диаметр 0 мкм.15м. Воздух и пропан вводятся стехиометрически и сгорают в нижней части их реактора. Полученный горячий дымовой газ течет вверх по трубе, проходя через точку сбора биомассы. Таким образом, тепловая энергия горючего газа используется для нагрева частиц биомассы и, при необходимости, для обеспечения тепла реакции пиролиза. Типичные рабочие условия — отношение массового расхода газа-носителя к массовому потоку пиролиза около 4, температура на входе в реактор 900 ° C, атмосферное давление в реакторе и пропускная способность реактора 500 кг.час Недостатком является то, что для этого требуется большое количество газа-носителя (азота).
г. Реактор с циркулирующим псевдоожиженным слоем.
Реактор с восходящим потоком циркулирующей жидкости эксплуатируется компанией Ensyn в Оттаве, Канада (Graham, 1988). Рис. 7.1b показывает, что частицы биомассы и предварительно нагретый песок подаются вместе в нижнюю часть реактора с циркулирующей жидкостью. К сожалению, в литературе нет данных о размерах и расходах предварительно нагретого газа-носителя и песка для этого процесса.Обычно этот реактор работает при температуре 600 ° C и производительности по биомассе 100 кг / ч. Утверждается, что 60% биомасла можно получить из древесины тополя в качестве исходного сырья. Использование песка в качестве теплоносителя дает преимущество компактной конструкции из-за высокой скорости передачи тепла от песка к частицам биомассы. Еще одно преимущество — короткое время пребывания газа, за счет которого подавляется вторичный крекинг гудрона. Когда этот реактор становится масштабным, особое внимание следует уделять быстрому смешиванию частиц биомассы с твердым теплоносителем.И снова потребность в газе-носителе является недостатком.
г. Вакуумная печь-реактор
Вакуумный пиролиз полярной осины в многоподовом реакторе был изучен Роем и др. (1992, 1993) в Университете Лаваля, Квебек, Канада. Шесть обогреваемых подов диаметром 0,7 м установлены наверху общей высотой 2 м как часть реактора, показанного на рис. 7.1c. Древесина подается в верхний отсек реактора и транспортируется вниз под действием силы тяжести и скребков, которые в настоящее время находятся в каждом отсеке.Если биомедицина полностью преобразована, нижнее отделение содержит только древесный уголь, который можно легко удалить из реактора. Температура верхнего пода составляет около 200 ° C и увеличивается по направлению к нижней части реактора, где она достигает 400, ° C, ° C для получения максимального количества бионефтепродуктов. Вакуумный насос используется для поддержания давления в реакторе на уровне 1 кПа. Трудность масштабирования реактора связана с установкой вакуумного насоса большой мощности, который чувствителен к загрязнению, а также является очень дорогостоящим.
г. Вихревой реактор
Вихревой реактор был построен Diebold and Power (1988) в Исследовательском институте солнечной энергии, Голден, Ко. США. Диаметр трубы этого реактора составляет 0,13 м, а длина 0,7 м. Для правильной работы реактора частицы биомассы должны быть увлекаются потоком азота со скоростью 400 м / с и входят в трубку реактора по касательной (см. рис. 7.1d). В таких условиях частицы биомассы испытывают высокие центробежные силы, которые вызывают высокие скорости абляции частиц на нагретой стенке реактора (625 ° C).Абляционные частицы оставляют на стенке жидкую пленку биомасла, которая быстро испаряется. Если древесные частицы не преобразованы полностью, они могут быть переработаны с помощью специального контура рециркуляции твердых частиц. В своей статье Диблод и Пауэр (1988) оценивают количество циклов, необходимых для достижения полного преобразования частиц биомассы, примерно в 15, что считается слишком высоким. Однако до сих пор было получено 80 мас.% Биомасла на основе сухой древесины.
В зависимости от используемого процесса первичные продукты могут быть газовыми, жидкими и твердыми.Большинство проектов заинтересованы в жидких продуктах из-за их высокой энергоемкости и потенциала замещения нефти.
Жидкость при образовании приближается к биомассе по элементному составу с немного более высокой теплотворной способностью 20-25 МДж / кг и состоит из очень сложной смеси кислородсодержащих углеводородов. Сложность возникает из-за разложения лигнина и широкого спектра фенольных соединений. Жидкость часто называют маслом, но она больше похожа на деготь. Это также может быть разложено до жидкого углеводородного топлива.Неочищенная жидкость пиролиза представляет собой густую смолистую жидкость с содержанием воды до 20% и вязкостью как тяжелая нефть.
Твердым продуктом процесса пиролиза является уголь, который имеет ограниченное применение в развитых странах для металлургии и отдыха. Альтернативный подход к жидким продуктам заключается в измельчении автомобиля и замачивании его водой со стабилизатором. Сообщалось о стабильной и подвижной концентрации до 60 мас.%. Суспензию также можно приготовить из биомасла и полукокса, но максимальная концентрация твердого вещества составляет 30%.
Газовый продукт пиролиза обычно представляет собой горючий газ MHV около 15-22 МДж / м.ми. 3 . или низковольтный топливный газ с расходом около 4-8 МДж / Нм 3 от частичной газификации в зависимости от параметров подачи и обработки.
Рис. 7.1 Схематическое расположение четырех известных технологий. A. Реактор с увлеченным потоком (GIT)
Рис. 7.1 Схематическое расположение четырех известных технологий. B. Реактор с циркулирующим псевдоожиженным слоем (ENSYN)
Фиг.7.1 Схематическое расположение четырех известных технологий. C. Многоподовый реактор (Университет Лаваля)
Рис. 7.1 Схематическое расположение четырех известных технологий. D. Вихревой реактор (SERI)
Сырье, обычно рассматриваемое для термохимической переработки, — это древесина и древесные отходы, энергетические культуры, такие как лесное хозяйство с коротким оборотом и сладкое сорго, сельскохозяйственные отходы и мусор. Основными техническими критериями пригодности для термохимической обработки являются влажность, зольность и характеристики.Основными экономическими критериями являются стоимость, которая включает производство, сбор и транспортировку, и количество, которая включает доступность. Существует также вопрос о конкурирующих применениях, таких как производство целлюлозы и картона, сжигание, рециркуляция или рекуперация материалов, а не рекуперация энергии.
7.4.1 Сушка сырья
Обычно для пиролиза требуется сырье с влажностью менее 15%, но существует оптимизация между содержанием влаги и эффективностью процесса конверсии.Фактическое содержание влаги, необходимое для процесса конверсии, очень незначительно между конверсионными установками. Полученная биомасса обычно имеет влажность в диапазоне 50-60% (влажная масса).
Пассивная сушка во время летнего хранения может снизить это количество примерно до 30 %. Активная сушка силоса позволяет снизить влажность до 12%. Сушка может осуществляться либо очень простыми средствами, такими как сушка вблизи окружающей среды, солнечная сушка или потоки отходящего тепла, либо с помощью специально разработанных сушилок, работающих на месте.Коммерческие сушилки доступны во многих формах и на разных площадках, но наиболее распространенными являются вращающиеся печи и сушилки с неглубоким псевдоожиженным слоем.
7.4.2 Характеристики исходного сырья
Основные физические характеристики биомассы приведены в Таблице 7.6. Отличительные особенности: довольно высокое содержание влаги, низкая насыпная плотность и широкий диапазон размеров частиц.
Таблица 7.6 Типичные свойства исходного сырья
Сырье | Лесные отходы | дерево процессов | целиком | MSW | Солома |
влажность (% ) | 30-60 | 20-60 | 40-60 | 15-40 | 10-20 |
Плотность (кг / м3) | 300 | 350 | 300 | 350 | 200 |
7.4.3 Производство пиролиза, связанное с составом биомассы
Пиролиз древесины приводит к образованию газа, смолы и полукокса (твердого вещества). Конечно, выход этих продуктов напрямую зависит от состава биомассы.
Биомасса состоит из трех основных компонентов: целлюлозы, гемицеллюлозы и лигнина. Целлюлоза представляет собой прямую и жесткую молекулу со степенью полимеризации приблизительно 10.000 единиц глюкозы (сахар C6). Гемицеллюлоза представляет собой полимеры, построенные из сахаров C5, C6 со степенью полимеризации около 200 единиц сахара.И целлюлоза, и гемицеллюлоза могут испаряться с незначительным образованием полукокса при температурах выше 500 ° C. Лигнин представляет собой трехмерный разветвленный полимер, состоящий из фенольных звеньев. Из-за ароматического содержания лигнина он медленно разлагается при нагревании и составляет большую часть Образование угля. Помимо основного состава клеточной стенки, такого как целлюлоза, гемицеллюлоза и лигнин, биомасса часто содержит различные количества видов, называемых «экстрактивными веществами». Эти экстрактивные вещества, которые растворимы в полярных или неполярных растворителях, состоят из терпенов, жирных кислот, ароматические соединения и эфирное масло.Состав различных материалов биомассы представлен в таблице 7.7.
Таблица 7.7 Состав различных типов биомассы
Тип | класс | HCL | LIG | Экстра. | ЯСЕНЬ |
Мягкая древесина | 41 | 24 | 28 | 2 | 0.4 |
Твердая древесина | 39 | 35 | 20 | 3 | 0,3 |
Кора сосновая | 34 | 16 | 34 | 14 | 2 |
Солома (пшеница) | 40 | 28 | 17 | 11 | 7 |
Рисовая шелуха | 30 | 25 | 12 | 18 | 16 |
Торф | 10 | 32 | 44 | 11 | 6 |
Примечание: CL — Целлюлоза; HCL-гемицеллюлоза; LIG-лигнин
Фиг.7.2 показывает процессы, которые управляют пиролизом частиц биомассы. Сначала тепло переносится к поверхности частицы за счет теплопроводности. Нагретый объемный элемент внутри частицы биомассы впоследствии разложился на обугленные и паровые фрагменты, которые состоят из значительных газов (бионефти) и незначительных газов. Из-за объемного образования пара внутри пористой частицы создается давление, которое достигает максимума в центре частицы и уменьшается по направлению к поверхности частицы. Пары, образующиеся внутри пор биомассы, подвергаются дальнейшему растрескиванию, что приводит к образованию полукокса, газов и термически стабильных смол.Длительное время пребывания паров внутри крупных частиц s при низких температурах пиролиза объясняет образование древесного угля в корпусе. Однако этот механизм отсутствует, если размер частиц 1 меньше 1 мм. Когда газообразные продукты покидают частицу биомассы, они попадают в окружающую газовую фазу, где могут разлагаться дальше. Каждый из этих элементарных процессов анализируется ниже с точки зрения свойств частиц, условий процесса и конструкции реактора.
Рис. 7.2. Эскиз разлагающейся древесной частицы, в том числе задействованные пути реакции
Пилотный реактор пиролиза биомассы с вращающимся конусом спроектирован и поставлен Университетом Твенте, Нидерланды.Его производительность 50 кг / час. Вращающийся конус — это реактор нового типа для мгновенного пиролиза биомассы для максимального увеличения производства бионефти. Частицы древесины, подаваемые на дно вращающегося конуса вместе с избытком частиц инертного теплоносителя, преобразуются, перемещаясь по спирали вверх вдоль горячей стенки конуса. Геометрия конуса, используемого в работе, определяется верхним углом 90 градусов радиан и максимальным диаметром 650 мм. Наиболее важными преимуществами технологии атмосферного вращающегося конуса являются ее высокая селективность по отношению к бионефти и отсутствие разбавляющего газа.Выход бионефти сопоставим с выходом других технологий производства бионефти.
Отличительными особенностями этого реактора являются: быстрый нагрев (5000 К / с) твердых частиц, короткое время пребывания твердых частиц (0,5 с) и небольшое время пребывания в газовой фазе (0,3 с). Продукты, полученные в результате мгновенного пиролиза древесной пыли во вращающемся конусном реакторе, представляют собой неконденсируемые газы, бионефть (гудрон) и полукокс. Поскольку не требуется газа-носителя (снижение затрат), продукты пиролиза будут образовываться в высоких концентрациях.Если необходимо. уменьшение объема газовой фазы внутри вращающегося конуса возможно за счет перекрытия части объема внутри вращающегося конуса; он сокращает время пребывания газовой фазы в реакторе, за счет чего подавляется крекинг смолы в газовой фазе. На рис. 7.3 показано поперечное сечение реактора, в котором виден вращающийся конус.
Рис. 7.3 Поперечное сечение реактора с вращающимся конусом
Выводы и проблемы
Пиролиз является наиболее универсальной системой конверсии биомассы, предлагает высокие выходы жидких продуктов, которые можно использовать напрямую или улучшать, эта технология предлагает многообещающие перспективы для топлива и химикатов, постоянные исследования и разработки необходимы для реализации потенциала.
Для продукта с более высокой жидкостью используются более продвинутые процессы в Университете Твенте, Альтене, Ватерлоо, Университете Тюбингена и Исследовательском институте солнечной энергии.
Для интегрированной системы. еще предстоит выполнить следующие работы:
— Сбор данных о процессах производства, сбора, переработки и улучшения биомассы;
— Сбор данных о затратах на транспортировку и обработку биомассы и производных продуктов.
— Продолжение технико-экономических оценочных исследований для оптимизации системы.
— Сделайте установку более дешевой и простой в эксплуатации.
.