Что такое селективность в электрике: Страница не найдена — Онлайн-журнал «Толковый электрик»

Содержание

что это такое и как она работает, основные виды работы

В электрике и энергетике существует множество понятий. Каждое из них играет определенную роль. Селективность — это защитный механизм, который уберегает технику от поломок. Ее наличие позволяет продлить срок службы приборов и аппаратов и предупредить появление неисправностей. Селективность подразумевает использование определенного оборудования.

Основная характеристика

Предохранители, дифавтоматы, УЗО и прочие устройства необходимы для предупреждения сгорания устройств. Правильно подключенная схема приборов позволяет отключать только определенные участки цепи, не нарушая работы остальной системы. Селективность защиты электрической сети — это отлаженная работа оборудования.

Ее основные задачи:

  • обеспечение безопасности электроприборов;
  • своевременное отключение зоны питания, где произошла поломка;
  • снижение вероятности негативных последствий для остальных механизмов;
  • беспрерывность рабочего процесса;
  • экономность;
  • простая эксплуатация.

Для нормальной работы селективности потребуется наладить согласованность между всеми устройствами. Для лучшего понимания, что это такое, достаточно рассмотреть принцип действия на электрическом щитке. При возникновении короткого замыкания в ванной или на кухне срабатывает только тот автомат, который подключен к этой цепи. Все остальные участки продолжают работать и поставлять энергию. Если отключения не произойдёт, то автомат ввода прекратит работу всего щитка.

Такие меры помогают предупредить возникновение пожаров и сохранить технику.

Два типа защиты

Селективность определяют в ГОСТ IEC 60947−1−2014. Согласно ему, выделяют два типа: абсолютная и относительная. К первому относят системы с защитой, которая действует только внутри защищенной зоны. На поврежденном участке срабатывают предохранители.

Относительная селективность — это резервная защита. Она включается тогда, когда по каким-то причинам не блокируется поврежденный участок. Тогда вышестоящие автоматы полностью перекрывают подачу энергии.

Однако относительная селективность срабатывает при больших перегрузках. При коротких замыканиях это редко происходит. Все аппараты должны быть соединены в схему в определенной последовательности. Каждый конкретный производитель выпускает таблицы связки аппаратов.

Основные виды

Селективность бывает нескольких видов. При полной подключают два аппарата с последовательным подключением. При возникновении неисправности отключается участок, который находится ближе всех к проблеме. Частичная защита работает аналогично, но с небольшим отличием: защита работает только до определенного показателя сверхтока.

Временная селективность включает в себя несколько автоматов с одинаковыми характеристиками тока. Но все они отличаются выдержкой по времени отключения. В итоге первым срабатывает самый близкий к неисправности автомат.

Дальше цепь включается:

  • через 0,2 с;
  • через 0,5;
  • через 1 с;
  • через 2 с.

Такая система выключателей позволяет автоматам страховать друг друга и при необходимости постепенно выключать систему, не допуская ее перегрузки. Аналогично работает токовая защита, но выдержка ставится не по времени, а по увеличению тока. У автоматов ставятся показатели в 25 А — 15 А — 10 А.

Еще бывает защита времятоковая, которая сочетает в себе реакцию механизмов на ток и время выключения.

Зонная нацелена на выявление неисправной зоны. При ее обнаружении, система отключает участок с поломкой. Это позволяет сохранить работоспособность остальных автоматов.

При энергетической защите все сбои происходят в литом корпусе автоматического выключателя. Максимальных показателей ток не успевает достигнуть, так как система моментально отключает подачу энергии.

Карта селективности

Все характеристики токовых устройств вносятся в определенную схему. Она позволяет создать максимальную защиту автоматов. Основной ее принцип — это последовательность подключения аппаратов.

При создании карты учитываются определенные правила:

  • один источник напряжения для всех установок;
  • правильный масштаб нужен для хорошего просмотра расчетных точек;
  • отмечаются минимальные и максимальные показатели короткого замыкания и защитные свойства.

Отсутствие грамотно построенной карты приводит к нарушениям электроснабжения. Наглядная схема позволяет увидеть согласованность установок и сравнить работу автоматов. Сама схема состоит из двух осей:

  • ось абсцисс — это величина тока в кВ;
  • ось ординат — это время в секундах.

Не стоит пренебрегать ее изготовлением, так как отсутствие точности в расчетах приведет к некорректной работе защитной системы. Карту легко вычертить в специальной программе.

Селективность защиты в схемах электроснабжения

Карта селективности

Все характеристики токовых устройств вносятся в определенную схему. Она позволяет создать максимальную защиту автоматов. Основной ее принцип — это последовательность подключения аппаратов.

При создании карты учитываются определенные правила:

  • один источник напряжения для всех установок;
  • правильный масштаб нужен для хорошего просмотра расчетных точек;
  • отмечаются минимальные и максимальные показатели короткого замыкания и защитные свойства.

Отсутствие грамотно построенной карты приводит к нарушениям электроснабжения. Наглядная схема позволяет увидеть согласованность установок и сравнить работу автоматов. Сама схема состоит из двух осей:

  • ось абсцисс — это величина тока в кВ;
  • ось ординат — это время в секундах.

Виды селективной защиты

Селективность защитной аппаратуры разделяется на следующие виды:

  1. Полная. Задействовано два аппарата с последовательным подключением, при воздействии сверхтоков срабатывает защита только одного, который находится ближе к зоне неисправности.
  2. Частичная. Подобна полной, но защита действует только до определенного показателя сверхтока.
  3. Временная. В цепь включается несколько автоматов с одинаковыми токовыми характеристиками, но разной выдержкой по времени. В результате от самого ближнего к неисправности, до самого отдаленного автоматического выключателя, аппараты друг друга страхуют (например, самый ближний сработает через 0,02 с, следующий через 0,5 с, ну и последний через 1 с, если остальные 2 не сработают).
  4. Токовая. Если говорить грубо, то принцип действия токовой селективности защит аналогичен временной, но только выдержка происходит не по времени, а по величине тока. К примеру, автоматические выключатели устанавливаются на вводе 25А, далее 16А, а потом 10А. При этом время отключения у них может быть одинаковое.
  5. Времятоковая. Кроме реакции механизмов защиты на ток, также определяется время этой реакции.
  6. Зонная. При выявлении нарушения порога тока срабатывание установки позволяет точно определить неисправную зону и отключить подачу электричества только в ней.
  7. Энергетическая. Все процессы по предотвращению поломки происходят в литом корпусе автоматического выключателя. Отключение происходит за такой малый срок, что отметка максимального значения тока не достигает своего результата.

Также селективность защиты может быть абсолютной и относительной. В первом случае отключается только поврежденный участок цепи. По такому принципу работают предохранители, установленные в электроприборах. Относительная селективность защищает не только «свой участок», но и соседний, если в нем не отработала абсолютная селективная защита.

Что такое селективная защита

Правило, утверждающее, что величина тока, проходящего через все распредвыключатели, установленные за вводным автоматом, меньше обозначенного тока последнего, является основой селективной защиты. В сумме эти номиналы могут быть и больше, но каждый отдельный обязательно хотя бы на шаг ниже вводного. Так, если на вводе установлен 50-амперный автомат, то следующим за ним устанавливают выключатель, с номиналом по току в 40 А.

Автоматический выключатель состоит из следующих элементов: рычага (1), клемм винтовых (2), контактов подвижного и неподвижного(3, 4), биметаллической пластины (5), винта регулировочного (6), соленоида (7), решетки дугогасительной (8), защелки (9)

При помощи рычажка как включают, так и выключают впуск тока на клеммы. К клеммам подводят и фиксируют контакты. Подвижный контакт с пружиной служит для быстрого размыкания, а связь цепи с ним выполнена через неподвижный контакт. Расцепление, в случае перекрытия током своего порогового значения, происходит за счет нагрева и изгиба биметаллической пластины, а также соленоида.

Токи срабатывания настраивают при помощи регулировочного винта. С целью предотвращения появления электродуги во время размыкания контактов, введен в схему такой элемент, как дугогасительная решетка. Для фиксации корпуса автомата существует защелка. Избирательность, как особенность релейной защиты — это умение обнаруживать неисправный узел системы и отсекать его от действующей части ЭЭС.

Здесь приведена схема щита, наглядно показывающая, как распределяется нагрузка по квартире. Перед установкой автомата нужно выполнить расчет суммарной мощности оборудования, которое будет подключено к нему

Селективность автоматов — это их свойство работать поочередно. Если этот принцип нарушен, будут греться и автоматические выключатели, и электропроводка. В результате может возникнуть КЗ на линии, перегорание плавких контактов, изоляции. Все это приведет к выходу из строя электроприборов и пожару.

Допустим, на длинной линии электропередач возникла аварийная ситуация. Согласно главному правилу селективности первым срабатывает автомат ближайший к месту повреждения. Если в обычной квартире в розетке происходит короткое замыкание, на щитке срабатывать должна защита линии, частью которой эта розетка является. Если этого не произошло, наступает очередь автоматического выключателя на щиток, и только за ним — вводного.

Принцип дифференцирования

Эта разновидность селективности характерна для электрических цепей с мощными агрегатами, такими как:

  • электродвигатели;
  • преобразователи напряжения;
  • электрогенераторы;
  • кабельные сети;
  • шины сборные.

Фазовые и амплитудные отклонения величин токов в точках А и В воспринимаются как авария. При этом аварийные события за пределами участка АВ не воспринимаются. Защита срабатывает если ток IA больше чем ток IB. Но при этом должны использоваться специальные трансформаторы тока, которые позволяют отстроить защиту от ненужных процессов, влияющих на срабатывание защиты, таких как:

  • ток намагничивания трансформатора;
  • насыщение токовых датчиков и возникающий при этом ток погрешности;
  • ёмкостная составляющая тока линии электропередачи.

Применение находят две схемы соответственно выбранному методу поддержания устойчивости работы защиты:

Преимуществами являются:

  • хорошая чувствительность;
  • большая скорость отключения в зоне защиты.

Недостатки:

  • дороговизна;
  • высокие требования к персоналу, допущенному к эксплуатации защиты ввиду её сложности;
  • требует установку максимальной токовой защиты на случай аварии.

Типы селективности электрических приборов

Классификацию защиты электрических устройств можно представить в различии схем подключения:

  • Полная. Если несколько приборов подключены последовательно, то на неисправность быстрее реагирует тот, что находится ближе к зоне аварии.
  • Частичная. Принцип действия селективности автоматов аналогичен с полной, но существует ограничение величины тока.
  • Временная. Такого рода избирательность предполагает разное время выдержки автоматов с одинаковыми характеристиками на срабатывание в случае поломки. Эта защита предназначена для того, чтобы подстраховать автоматы по скорости выключения. Например: первый начинает действовать спустя 0,2 сек, второй – 0,4 сек и т. д.
  • Токовая. Принцип работы селективности тот же, что и у временной, но в этом случае параметром выступает максимальная токовая отметка. Выставляются определённые значения в порядке убывания от источника питания до объекта нагрузки. Например, при вводе 28 А., к розеткам 18 А и 12 – к свету.
  • Времятоковая. Одна из самых сложных систем по защите от неисправностей. Аппараты подразделяются на четыре различные группы: A, B, C и D, каждая из которых реагирует на ток. В этом случае сложно составить схему защиты автоматических выключателей при коротком замыкании. Наиболее эффективна защита будет при первой группе А. Её используют в основном для электронных цепей. Наибольшую популярность и распространённость получили аппараты типа С, однако следует серьёзно отнестись к их установке.
  • Зонная. Этот способ защиты используется чаще всего в промышленности, так как он является дорогостоящим и довольно сложным. За работой электрической сети следят специальные приборы. При достижении установленного значения все данные передаются в центр контроля, где выбирается аппарат для выключения. Селективность этого вида предполагает наличие специальных электронных расцепителей. Они действуют следующим образом: при обнаружении какого-либо нарушения аппарат, расположенный ниже, подаёт сигнал другому автомату, который находится выше. Если в течение 1 секунды не сработает первое устройство, включится второе.
  • Энергетическая. Здесь автоматы действуют очень быстро, благодаря чему ток короткого замыкания не успевает достичь максимального значения.

Принцип селективности для выбора автоматических выключателей и УЗО

Это свойство еще именуют избирательностью. Селективность позволяет надежно эксплуатировать электрохозяйство благодаря правильному подбору защитных устройств. Для любой электрической схемы применяется иерархия автоматов защиты, разделяющие электропроводку с потребителями на определенные участки — электрические цепи, даже когда ток идет от источника к потребителю напрямую, минуя промежуточные звенья. Неисправность в этой самой простой схеме может возникнуть внутри:

  • генератора;
  • приемника;
  • или соединительных проводов.

Каждый из этих случаев требует своего технического решения, которое позволит быстрыми способами надежно выявить и локализовать поврежденный участок.

Селективность определяет правила установки и совместимости защит. Для этого вся система электроснабжения разбивается на отдельные составные участки, делится на зоны с включением в них отключающих аппаратов, реагирующих на появление неисправностей.

Виды селективности

Избирательность бывает:

  • абсолютная;
  • относительная.

Принцип абсолютной селективности подразумевает отключение возникающих повреждений исключительно в своей зоне. Защиты, выполненные по относительному принципу, реагируют на неисправности своего и соседних участков. Они могут сработать по любому пусковому фактору. Поэтому для исключения ложных отключений их наделяют дополнительными функциями:

  • величиной выдержки времени на срабатывание;
  • уставками по току, напряжению, частоте, электрическому сопротивлению, направлению мощности или другим параметрам сети.

Селективность защиты абсолютная и относительная

Понятие селективности определено ГОСТотм IEC 60947-1-2014. Выделяют два типа селективности — абсолютную и относительную. Если работа защиты скоординирована таким образом, что она срабатывает исключительно внутри защищенной зоны, то это указывает на ее абсолютную селективность. В этих обстоятельствах максимальный ток селективности становится таким же, как и максимальная отключающая способность расположенного ниже автомата.

Срабатывание в виде резервного, когда не произошло отключение на проблемном участке, называют относительно селективной защитой. При этом происходит отключение выше расположенных выключателей. В случае превышения заданной величины тока выключателя-автомата, т.е. при отсутствии больших перегрузок, селективная защита действует практически безотказно. Куда затруднительней добиться этого при коротких замыканиях.

Упрощают задачу таблицы селективности, которые производители прилагают к своим изделиям. Применяя их, создают группы с селективностью срабатывания

Данные о выпускаемых изделиях предприятия размещают

Селективность защиты — основные принципы и виды

Электрическая сеть состоит из множества цепей. Каждая из них включает те или иные элементы с соответствующими функциями, соединённые между собой и нейтралью с определённым способом заземления. Для того чтобы эта сеть работала наиболее эффективно необходимо создавать надёжную изоляцию аварийных участков сети оставляя остальные электрические цепи нормально функционирующими.

Селективность защиты или иначе избирательность защиты является таким принципом работы, при котором аварийные электрические цепи отключаются максимально быстро, а остальные продолжают работать без какого-либо влияния произошедшего отключения. Различают такие разновидности селективности:

  • временную. Работает в сети с установленными защитными устройствами максимального тока. Выдержка времени срабатывания устанавливается прямо пропорционально удалённости места расположения реле максимального тока от источника питания.
  • По току. За основу берётся обратно пропорциональная зависимость тока срабатывания защитного устройства от удалённости места его установки от источника питания.
  • Логическую. Этот вид избирательности применяется для улучшения селективности по времени. Его целью является минимизация сроков ремонта в повреждённой электрической цепи.
  • Направленную. Применяется в сети с разветвлением аварийного тока при наличии в ней максимальной направленной токовой защиты.
  • Дифференциальную. Защитное устройство сравнивает величины тока в начале и конце защищаемой электрической цепи.
  • комбинированную. Использует ту или иную комбинацию селективностей применительно к структуре электрической цепи и задачами, поставленными перед системой защиты этой цепи.

Селективность по времени

Область применения – радиальные сети. Отсчёт времени установленной выдержки начинается при превышении тока срабатывания реле. Обязательным условием является согласование пороговых значений срабатывания токовых реле. Возможны два типа схем избирательности по времени в зависимости от того, какой тип временной выдержки используется.

Независимая выдержка времени реле.

Зависимая выдержка времени реле.

 В радиальной сети имеющей уровни защиты А, В и С при коротком замыкании каждое из защитных устройств на своём уровне фиксирует его (изображение слева). Но для каждой из них установлена своя выдержка времени. При этом уровень D должен отключаться первым, затем  может отключиться уровень С, потом В и в последнюю очередь уровень А. Но если с отключением уровня D проблема исчезла, защитные устройства предыдущих уровней переходят в режим ожидания. Интервал селективности определяется разностью между временами отключения защитных устройств соседних уровней и включает в себя несколько временных составляющих, изображённых ниже:

  • Простое устройство и наличие резервирования срабатыванием на каждом уровне являются преимуществами временной избирательности.

Селективность по току

Этот вид селективной защиты устанавливается в каждой электрической цепи в её начале. Если в электрической сети, состоящей из этих цепей, происходит короткое замыкание, ток увеличивается соответственно её импедансу. При этом индуктивность ограничивает скорость нарастания тока и существует некоторая минимальная величина его. Эта величина и является порогом срабатывания защиты.

При этом защитные устройства могут сработать и при несколько меньших значениях силы тока, если это необходимо. Но величина тока срабатывания должна находиться в диапазоне значений силы тока, которое будет больше чем при коротком замыкании за пределами области покрытия защиты. Пример токовой защиты цепи с трансформатором, подключенным между кабельными линиями электропередачи, показан на изображении ниже:

Преимуществом избирательности по току является возможность реагирования только на повреждения внутри защищаемой области и в привязке к потребителю, исключая аварии вне защищаемой области. Отличается быстротой срабатывания, небольшой стоимостью и схемотехнической простотой. В этом её преимущество. Недостатком является сложность настройки избирательности последовательно установленных устройств защиты при их расположении в соседних областях из-за похожести параметров процессов, определяемых аварийными ситуациями.

Принцип логики

При этой разновидности селективности в сетях организован обмен данными между включенными последовательно устройствами защиты с большим числом порогов избирательности. Поэтому становится возможным «на лету» изменять задержки времён срабатывания каждой из защит. В результате срабатывают именно те защитные устройства, которые находятся вблизи источников питания. А те, что ближе к потребителю – не включаются. Поэтому становится возможным сделать оптимальный выбор для выключателя, который отключит аварийный ток, как показано на изображении ниже:

Преимуществом логической селективности является возможность регулировки временных установок срабатывания реле по каскадно на любом уровне не зависимо от их числа. При этом можно сделать выбор оптимальной установки срабатывания реле, как со стороны источника питания, так и со стороны потребителя. Недостатком является сложность построения протяжённой многоуровневой защиты с необходимостью введения дополнительных цепей для обмена данными. Наибольшее распространение эта избирательность получила в схемах сетей с радиальными цепями и средними величинами напряжения.

Принцип направленности

Защитные устройства отрабатывают в последовательности, определяемой направлением тока. Вектор напряжения задаёт некоторую точку. Относительно неё вектор тока имеет фазовый сдвиг. Причём реле реагирует на оба параметра – ток и напряжение. Защищаемая сеть должна быть приспособлена к расположению как области с отключениями, так и области, в которой отключение не выполняется, как показано на изображении ниже:

Если короткое замыкание произошло в 1-й точке, защитное устройство D1 и управляемый им выключатель сработают.  Отключение будет выполнено. Никакие иные защитные устройства при этом срабатывать не будут. При коротком замыкании в точке 2, срабатывания обеих защит и выключателей не происходит. Сборные шины должны иметь отдельную защиту, как показано на изображении слева:

Преимуществом является простота устройства защиты. Недостаток – наличие дополнительных элементов – трансформаторов напряжения. Они нужны для определения направления тока.

Принцип дифференцирования

Эта разновидность селективности характерна для электрических цепей с мощными агрегатами, такими как:

  • электродвигатели;
  • преобразователи напряжения;
  • электрогенераторы;
  • кабельные сети;
  • шины сборные.

Фазовые и амплитудные отклонения величин токов в точках А и В воспринимаются как авария. При этом аварийные события за пределами участка АВ не воспринимаются. Защита срабатывает если ток IA больше чем ток IB. Но при этом должны использоваться специальные трансформаторы тока, которые позволяют отстроить защиту от ненужных процессов, влияющих на срабатывание защиты, таких как:

  • ток намагничивания трансформатора;
  • насыщение токовых датчиков и возникающий при этом ток погрешности;
  • ёмкостная составляющая тока линии электропередачи.

Применение находят две схемы соответственно выбранному методу поддержания устойчивости работы защиты:

Преимуществами являются:

  • хорошая чувствительность;
  • большая скорость отключения в зоне защиты.

Недостатки:

  • дороговизна;
  • высокие требования к персоналу, допущенному к эксплуатации защиты ввиду её сложности;
  • требует установку максимальной токовой защиты на случай аварии.

Комбинированная селективность

Эта разновидность селективности основана на комбинациях избирательности составляющих её компонентов описанных выше. Эти комбинации позволяют существенно улучшить:

  • общую избирательность;
  • резервирование или аварийный режим.

Варианты использования на практике данного вида избирательности перечислены далее:

  • по току + временная;
  • логическая + временная;
  • временная + направленная;
  • логическая + направленная;
  • направленная + временная.

Понятие (карта) селективности в электрических сетях: функции и виды защиты

Выявление повреждённых компонентов в электрических сетях и системах осуществляется при помощи защиты. Подобная защита имеет селективное действие. Благодаря этой особенности, возможны надёжная и длительная работа электрооборудования, а также безопасность его обслуживания техническим персоналом.

Селективность

Основные задачи селективной защиты

Селективность – это процесс, означающий выбор (отбор). Этот термин применим к разным отраслям и направлениям деятельности человека. Например, в химии, при протекании химических реакций, ведут речь об индексе селективности. При этом рассматривают избирательность химических превращений.

Что касается человека, то его восприятие окружающего мира, выбор информации, а также её запоминание носят избирательный характер.

Что же такое селективность в электрике, и для чего она нужна?

К задачам электрической селективной защиты относятся:

  • гарантия безопасности оборудования и обслуживающего персонала;
  • моментальное установление места повреждения и отключение только неисправного участка;
  • уменьшение отрицательных результатов влияния аварии на другие узлы и части электроприборов;
  • минимизация повреждений на неисправном участке;
  • гарантирование максимальной беспрерывности работы электросистемы;
  • достижение простоты эксплуатирования электрического оборудования.

К тому же селективность снижает последствия коротких замыканий и нагрузку на устройство.

Что такое селективная защита

Селективность – это способность релейной схемы защиты отыскивать повреждённый элемент сети и отключать его, а не всю схему. При этом негативные воздействия утечек тока или короткого замыкания (КЗ) не выведут из строя сеть целиком.

Принцип селективности в защите

Селективность защиты абсолютная и относительная

Рассматривая подробно, что такое селективность, выделяют два вида избирательного действия.

По степени селективности защита делится на:

  • абсолютную;
  • относительную.

Перегорание предохранителей именно в той цепи, где произошло КЗ, носит название «абсолютной защиты».

Срабатывание автоматического выключателя поблизости от того места, где не сработал предохранитель, именуется «относительной защитой».

Внимание! Можно сказать, что от внутренних (собственных) замыканий предохраняет абсолютная селективная защита, а от внешних (соседних) и внутренних одновременно – относительная селективная защита.

Относительная и абсолютная избирательность защиты

Виды селективных схем подключения

Защитная аппаратура по селективности подразделяется на несколько видов. К таковым относятся следующие виды защит:

  • полная;
  • частичная;
  • токовая;
  • временная;
  • времятоковая;
  • энергетическая.

На каждом из них нужно остановиться отдельно.

Защита полная и частичная

При такой защищённости цепи подразумевается последовательное подключение аппаратов. В случае возникновения сверхтока сработает тот автомат, который ближе всего к месту повреждения.

Важно! Частичная избирательная защита отличается от полной селективности тем, что срабатывает лишь до установленного значения сверхтока.

Токовый тип селективности

Выстраивая в убывающем порядке величины токов от источника к нагрузке, обеспечивают работу токовой избирательности. Главной мерой здесь является предельное значение токовой метки.

Например, начиная от источника питания или ввода, автоматические выключатели устанавливают в последовательности: 25А, 16А, 10А. Все автоматы могут иметь одинаковое время на срабатывание.

Важно! Между автоматами должно быть высокое сопротивление цепи. Тогда они будут иметь эффективную избирательность. Повышают сопротивление путём увеличения протяжённости линии, включения участков с проводом меньшего диаметра или вставкой трансформаторной обмотки.

Токовая селективность

Временная и времятоковая селективность

Что значит селективная защита по времени? Особенностью такого построения схемы релейной защиты является привязка ко времени срабатывания каждого защитного элемента. Автоматические выключатели обладают одинаковыми токовыми параметрами, но имеют разную выдержку времени при срабатывании. Время срабатывания увеличивается по мере удаления от нагрузки. К примеру, самый ближний рассчитан на срабатывание после 0,2 с. В случае его отказа через 0,5 с. должен сработать второй. Работа третьего автоматического выключателя рассчитана через 1 секунду в случае несрабатывания первых двух.

Временная избирательность

Очень сложной считается времятоковая избирательность. Чтобы её организовать, необходимо выбирать приборы групп: A, B, C, D. У группы А наивысшая защита (применяется в электроцепях). Каждая из этих групп имеет индивидуальную реакцию на величину электрического тока и временную задержку.

Энергетическая селективность автоматов

Такая защита обусловлена свойствами выключателей, которые заложены производителем. Быстрое срабатывание – до того, как токи КЗ достигли максимума. Счёт идёт на миллисекунды, согласовать такую избирательность очень сложно.

Энергетическая селективность

Что такое зонная селективность

Определение данного покрытия избирательной защитой сети связано с особенностью её построения. Это достаточно дорогой и сложный способ. В результате обработки сигналов, поступающих от каждого выключателя, определяется зона повреждения, и отключение происходит только в ней.

Информация. Для обустройства такой защиты требуется дополнительное питание. Сигнал от каждого выключателя подаётся в контрольный центр. Отключения производятся электронными расцепителями.

Такие схемы рациональнее всего использовать на промышленных предприятиях, где системы обладают высокими значениями токов КЗ и значительными рабочими токами.

Пример и график зонной избирательности

Расчет селективности автоматов

При рассмотрении вопроса, что такое селективность, необходимо иметь понятие, как её рассчитывают. Расчёты сводятся к правильному подбору защитного устройства, в частности, автомата.

Селективность для автоматов, расположенных поблизости к источнику питания, должна удовлетворять условию:

Iс.о.послед. ≥ Kн.о.* Iк. предыд.,

здесь:

  • Iс.о.послед. – значение тока, вызывающего срабатывание защиты;
  • Kн.о. – коэффициент надёжности отключения;
  • I к. предыд. – ток КЗ в конце участка защиты.

В случае временной зависимости для расчётов избирательности используют такую формулу:

Tс.о.послед ≥ Tк.пред.+ ∆T,

где:

  • Tс.о.послед и Tк.пред. – интервалы времени, через которые действуют отсечки выключателей;
  • ∆T – временная точка избирательности.

Подбор автоматических выключателей при расчётах производят по таблицам.

Таблица избирательности автоматов

Принцип логики

Для выполнения схем, использующих такой принцип, необходимы цифровые реле. Между собой реле соединяются линией «витая пара», кабелем ВОЛС или через телефонную линию (с использованием модема). С помощью таких линий приём (передача) информации осуществляется на диспетчерский пульт с разных объектов и между самими реле.

Принцип логики в радиальной сети

На приведённой Картинке 9, пояснён принцип работы логики. В каждом из 4-х цифровых реле применяется уставка по току, равная самой последней чувствительной ступени. Такая ступень имеет время срабатывания 0,2 с. Логическая селективность подразумевает возможность блокировки реле сигналом ЛО (логического ожидания). Такой сигнал подаётся по каналу от предыдущего реле защиты. Каждое из реле может передавать такие сигналы транзитом.

Как видно из рисунка, при КЗ в точке К1 все остальные реле, от сигнала ЛО, поданного реле К1, подвергнутся ожиданию. Реле К1 сработает и выполнит отключение. При КЗ в точке 2 аналогичным образом сработает реле К4.

Такие схемы построения логического управления требовательны к надёжности линий связи между элементами.

Принцип направленности

Расстановка автоматов и дальнейшая последовательность их срабатывания ориентируются на направленность тока. Для этого при помощи вектора напряжения задана какая-либо точка, относительно которой этот вектор получает фазовый сдвиг. По такому принципу реле будет чувствительно и к току, и к напряжению. Такую цепь можно установить и в отключаемой зоне, и зоне, не подлежащей отключению.

УЗО и выключатели присоединены по принципу направленности

Важно! Для реализации таких схем нужны трансформаторы напряжения, чтобы с их помощью определять направление тока.

На приведённом выше рисунке можно увидеть, что защитное устройство D1 и управляемый им выключатель отреагируют на короткое замыкание в точке 1, а на замыкание в точке 2 – нет.

Принцип дифференцирования

Его применяют там, где используются цепи с потребителями большой мощности. К таким потребителям относятся:

  • электрические двигатели и генераторы;
  • силовые кабели;
  • шинные сборки;
  • трансформаторы и иные преобразователи.

В этом решении используют отклонения фазных и амплитудных параметров тока в различных точках. Отклонение таких величин в точке А и точке В, на участке АВ, считается аварийным, и аппаратура выполняет отключение.  Использование трансформаторов тока позволяет выполнять фильтрацию от различных посторонних электромагнитных процессов.

Защита срабатывает только на участке АВ, если IA>IB.

Дифференциальная селективная защита мощного оборудования

Защита, созданная по дифференциальному принципу, может быть двух видов: продольная и поперечная.

Карта селективности и правила ее создания

Схема утверждённого образца, на которой нанесены все токовые параметры защитных аппаратов и устройств, с указанием общего источника питания, выполняется в удобном для просмотра масштабе. Это карта селективности. Она обеспечивает максимальное применение защитных качеств автоматических выключателей. Все процессы, возможные при эксплуатации, отображены на ней графически.

На карту в обязательном порядке наносятся:

  • места важных расчётных точек;
  • защитные характеристики автоматов и возможных КЗ, при этом указаны их min и max значения.

Данная карта служит основанием для составления таблицы по выбору защитных аппаратов. Кроме того, карта позволяет оценивать общую защитную селективность и даёт полную информацию о согласованных между собой уставках всех автоматов.

Построение карты выполнено по осям. Ось абсцисс представляет токовые значения, на ось ординат наносятся временные значения.

К сведению. На ось могут наноситься и другие разновидности характеристик. Каждая схема включает в себя параметры двух-трёх автоматов. Построение таких карт можно выполнить при помощи компьютерной программы.

Пример карты селективности, выполненной при помощи программы

Грамотно выполненная селективная защита позволяет сохранить оборудование. При отключении конкретного участка она допускает выполнить обратное включение питания автоматическим включением резерва (АВР) и свести к минимуму простой оборудования и перерывы в подаче электроэнергии потребителям.

Видео

Автоматические выключатели селективность защит. Для чего нужна селективность описание. Электрика-шоп

Селективность защит

Является одним из основных элементов, который следует учитывать в процессе проектирования электроустановки, чтобы гарантировать пользователям максимальную бесперебойность электроснабжения.
Селективность важна для всех электроустановок, где нужно обеспечить удобство пользователей, однако наибольшее значение она имеет в системах питания промышленного технологического оборудования.
Злектроустановка, в которой нет селективности, подвергается следующим рисками различной степени тяжести:
— несоблюдение производственных требований.
— приостановка производственного процесса, влекущая за собой: недопроизводство или потерю готовых изделий, опасность повреждения технологической оснастки в случае непрерывного производственного процесса.
— после общего отключения питания необходимо повторно запустить одну за другой все производственные машины.
— отключение электродвигателей механизмов, связанных с безопасностью, таких как насос системы смазки, дымосос и т.д
Следует отметить что селективная защита является важной составляющей проектирования низковольтных распределительных сетей в целях обеспечения устойчивой работы оборудования. Правильно построенная селективная защита обеспечивает при коротком замыкании отключение только выключателя на отходящей линии, в которой произошла авария, вышестоящий вводной выключатель при этом останется включенным, не прерывая питания остальных отходящих линий.

Что такое селективность?

Это координация устройств автоматического отключения, осуществляемая для того, чтобы  повреждение, произошедшее в какой-либо точке сети, было устранено автоматическим выключателем, расположенным непосредственно перед повреждением, и только им.

Полная селективность

Распределительная сеть полностью селективно, если при любом тоже повреждения, от перегрузки до глухого короткого замыкания, автоматический выключатель №2 отключается, а автоматический выключатель №1 остается включенным.

Частичная селективность:

Селективность является частичной, если оговоренное выше условие соблюдается не до полной величины тока короткого замыкания, а только до определенного меньшего значения, называемого пределом селективности.

Отсутствие селективности:

При повреждении отключаются оба автоматических выключателя (№1 и №2).
Полная селективность — стандартная функция для автоматических выключателей Masterpact NT/NW:
Благодаря эффективным блокам контроля и управления, а также многим техническим преимуществам автоматические выключатели Masterpact NT и NW обеспечивают как стандартную функцию полную селективность с нижестоящими выключателями Comact NSX с номинальным током до 630 А.

Естественная селективность автоматических выключателей Compact NSX:

Принцип рото-активного размыкания, который используется в аппаратах Compact NSX, позволяет значительно повысить пределы селективности. Высокие значения предельного тока селективности аппаратов Compact NSX обусловлены одновременным использованием 3 видов селективности:
— токовой селективности
— временной селективности
— энергетической селективности

Что такое селективность защиты электрической сети

В электрике и энергетической отрасли селективность относится к важнейшим понятиям, так как основное ее назначение — защита от выхода из строя электроприборов по причине каких-либо неисправностей при функционировании электроустановок. Благодаря такой функции продляется срок службы приборов, повышается надежность их работы.

Что такое селективность?

Понимание селективности представляет собой отлаженное функционирование и механизм защиты определенного оборудования, состоящего из последовательно соединенных элементов. К подобным устройствам часто относятся разнообразные типы УЗО, дифавтоматов, предохранителей. Итог их работы — недопущение перегорания электрических механизмов при возникновении каких-либо предпосылок для этого. Читайте также статью ⇒ Принцип селективности для выбора автоматических выключателей и УЗО.

Схема совместной селективной работы УЗО и автоматических выключателей в щитке

Основным преимуществом такой системы можно назвать возможность отключения только неисправных участков, при которой оставшаяся часть системы продолжает работать.

Совет №1: Единственным необходимым условием в таком случае является согласованность между собой всех имеющихся устройств.

Функции селективности

К основным функциям селективности относятся:

  • обеспечение условий безопасности электрооборудования и работающих с ним сотрудников;
  • мгновенное выявление и отключение от питания зон, в которых возникла неисправность без отключения подачи питания в зоны исправной работы электротехники;
  • минимизация влияния отрицательных последствий неисправности на работающие в нормальном режиме части оборудования;
  • снижение нагрузки на состоящие из нескольких частей установки, предотвращение возникновения повреждений в аварийной части системы;
  • гарантирование максимально продолжительного электроснабжения требуемого качества;
  • обеспечение непрерывности выполнения процесса функционирования;
  • выполнение необходимого уровня поддержки при неисправности защиты, работающей на размыкание;
  • выполнение поддержки наиболее приемлемого режима работы агрегатов;
  • обеспечение рационального и простого использования, экономически рациональной работы установок.

Виды защиты

В цепь подключается ряда автоматов, обладающих различной выдержкой по времени, но идентичными токовыми параметрами. В итоге приборы подстраховывают один другого от ближайшего к неисправной зоне до наиболее удаленного устройства. К примеру, сработка ближайшего произойдет спустя 0,02 с, последующего — через 0,5 с, последнего, если не произойдет сработки предыдущих- спустя 1 с.

Принципиальная схема для выбора автоматических выключателей и УЗО по времени срабатывания

Про типы УЗО и его подключение подробно описано в статьях:

Принцип работы такого типа селективности одинаков с предыдущим, за исключением выдержки, происходящей по значению тока, а не по скорости сработки. Например, выключатели установлены на вводе 25А, затем на 16А, а после — на 10А. Срок сработки у всех приборов может быть равным.

Принципиальна схема подбора автоматических выключателей и УЗО по току срабатывания

При определении нарушения диапазона тока сработка прибора позволяет с наиболее возможной точностью выявить аварийную зону и прекратить ее питание.

Принцип логики

Такой тип селективности в сети организуется обмен данными между подключенными к сети по последовательной схеме защитными приборами со значительным количеством порогов избирательности. При этом появляется возможность изменения задержки срока срабатывания любой из защит.

Принцип действия схемы логической селективности позволяет выбрать требуемый отключающий автомат

В итоге происходит сработка именно тех защитных приборов, которые располагаются близко от поставщиков электропитания, а близкие к оборудованию не подключаются. Это позволяет сделать выбор в пользу автомата, отключающего подачу аварийного тока.

По направленности

Включение приборов защиты осуществляется по очереди, формируемой направленностью тока. С помощью вектора напряжения задается некая точка, по отношению к которой сам вектор обладает фазовым сдвигом. Реле при этом реагирует и на напряжение, и на поступающий ток. Подлежащая защите цепь приспосабливается к размещению как в отключаемой зоне, так и на участке, на котором не производится отключение.

Включение устройств УЗО и выключателей, реализуемое по принципу направленности селективной защиты

При возникновении короткого замыкания в точке 1 устройство защиты D1 и выключатель, управляющийся им, среагируют, и будет произведено отключение. Сработки других приборов в этом случае не осуществится.

При возникновении короткого замыкания во 2-й точке обе защиты и выключатель не сработают.

Совет №2: Сборные шины оснащаются индивидуальной защитой.

Преимуществом такой схемы можно назвать простоту устройства. К недостатку следует отнести необходимость установки вспомогательного оборудования — трансформаторов напряжения, требующихся для выявления направленности тока.

По принципу дифференцирования

Такой тип селективности свойственен цепям с подключением мощных потребителей.

Отступления параметров токов по фазе и амплитуде в пунктах А и В будут определяться как аварийные. При нештатном событии за границами зоны АВ не фиксируются. Защита сработает при условии превышения величиной тока IA величины тока IB. Для реализации такого принципа требуется установка трансформаторов тока особых типов, позволяющих выстроить надежную защиту от процессов, оказывающих воздействие на сработку приборов:

  • намагничивающего тока трансформатора;
  • насыщения датчиков тока и образующегося тока погрешности;
  • емкостного элемента тока ЛЭП.

Принцип селективной дифференциальной защиты при подключении оборудования со значительной мощностью

Преимуществами такого метода являются:

  • высокий уровень чувствительности;
  • высокая скорость отключения в защищаемой зоне.

К минусам относятся:

  • немалая стоимость;
  • повышенные требования к сотрудникам, получивших доступ к работе с защитой;
  • необходимость обустройства наибольшей токовой защиты при возникновении нештатных событий.

Комбинированная селективность

Этот вид основывается на комбинировании селективности компонентов, входящих в ее состав. Такие комбинации позволяют выполнить значительные улучшения:

  • суммарной селективности;
  • аварийного режима либо резервирования.

Варианты применения комбинированной селективности:

  • по времени и току;
  • логическая плюс временная;
  • направленная и логическая;
  • направленная с временной;
  • временная совместно с направленной.

Карта селективности

Нельзя не упомянуть и селективной карте, требующейся для обеспечения максимальной токовой защиты. Карта выглядит как построенная в осях схема, на которой показаны все совокупности времятоковых характеристик поставленных автоматов.

На карте селективности отображаются времятоковые характеристики установленных и подключенных защитных автоматов

Как уже было указано выше, каждый из приборов защиты должен подключаться поочередно.

Основные правила для построения карт:

  • защитные приборы должны исходить от одного напряжения;
  • масштаб подбирается с учетом видимости всех граничных точек;
  • должны указываться наименьшие и наибольшие показатели коротких замыканий во всех расчетных точках.

Селективные автоматы

Рассмотрим работу селективной защиты на примере автомата АВВ S750DR, в которых обеспечивается селективность автоматов за счет наличия дополнительного токового пути, не размыкающегося после сработки главного контакта при коротком замыкании.

При выключении расположенной ниже аварийной зоны селективной клеммой создается задержка по времени сработки. Основная клемма селективного автомата при этом под действием пружины возвращается в исходное положение. При продолжении поступления сверхтока тепловая защита и в главной, и во вспомогательной цепях отключается. Селективная пластина при этом продолжает препятствовать механизму размыкания — пружина не может обратно изолировать основную клемму.

Ограничение автомата по току обеспечивается наличием селективного резистора на 0,5 Ом и значительного дугового сопротивления внутри самого устройства.

Релейная защита

К релейной защите, отключающей цепь при повреждениях, предъявляются такие требования:

  • селективность;
  • скорость реагирования;
  • чувствительность;
  • надежность.

Селективность можно назвать главным условием, обеспечивающим бесперебойность и непрерывность питания электрооборудования при наличии запасного источника.

Использование выключателей и реле с высокой скоростью реагирования исключается нарушение динамической устойчивости функционирующих параллельно синхронных агрегатов. Так устраняется основная причина самых тяжелых системных аварий с точки зрения непрерывной работы потребителей.

Релейная защита также должна обладать достаточной чувствительностью к повреждениям и нештатным режимам функционирования, возникающих на подлежащих защите элементах системы. Соответствия требованию необходимого уровня чувствительности во вновь создаваемых современных электросетях добиться очень сложно.

Требование надежности предъявляется в связи с тем, что защита сети должна безотказно и корректно функционировать и отключать оборудование при любом его повреждении и возникновении нарушений, препятствующих нормальному рабочему режиму.

Источник: electric-tolk.ru

Что такое селективность защиты?

Электрическая сеть состоит из множества цепей. Каждая из них включает те или иные элементы с соответствующими функциями, соединённые между собой и нейтралью с определённым способом заземления. Для того чтобы эта сеть работала наиболее эффективно необходимо создавать надёжную изоляцию аварийных участков сети оставляя остальные электрические цепи нормально функционирующими.

Селективность защиты или иначе избирательность защиты является таким принципом работы, при котором аварийные электрические цепи отключаются максимально быстро, а остальные продолжают работать без какого-либо влияния произошедшего отключения. Различают такие разновидности селективности:

  • временную. Работает в сети с установленными защитными устройствами максимального тока. Выдержка времени срабатывания устанавливается прямо пропорционально удалённости места расположения реле максимального тока от источника питания.
  • По току. За основу берётся обратно пропорциональная зависимость тока срабатывания защитного устройства от удалённости места его установки от источника питания.
  • Логическую. Этот вид избирательности применяется для улучшения селективности по времени. Его целью является минимизация сроков ремонта в повреждённой электрической цепи.
  • Направленную. Применяется в сети с разветвлением аварийного тока при наличии в ней максимальной направленной токовой защиты.
  • Дифференциальную. Защитное устройство сравнивает величины тока в начале и конце защищаемой электрической цепи.
  • комбинированную. Использует ту или иную комбинацию селективностей применительно к структуре электрической цепи и задачами, поставленными перед системой защиты этой цепи.

Селективность по времени

Область применения – радиальные сети. Отсчёт времени установленной выдержки начинается при превышении тока срабатывания реле. Обязательным условием является согласование пороговых значений срабатывания токовых реле. Возможны два типа схем избирательности по времени в зависимости от того, какой тип временной выдержки используется.

Независимая выдержка времени реле.

Зависимая выдержка времени реле.

В радиальной сети имеющей уровни защиты А, В и С при коротком замыкании каждое из защитных устройств на своём уровне фиксирует его (изображение слева). Но для каждой из них установлена своя выдержка времени. При этом уровень D должен отключаться первым, затем может отключиться уровень С, потом В и в последнюю очередь уровень А. Но если с отключением уровня D проблема исчезла, защитные устройства предыдущих уровней переходят в режим ожидания. Интервал селективности определяется разностью между временами отключения защитных устройств соседних уровней и включает в себя несколько временных составляющих, изображённых ниже:

  • Простое устройство и наличие резервирования срабатыванием на каждом уровне являются преимуществами временной избирательности.

Селективность по току

Этот вид селективной защиты устанавливается в каждой электрической цепи в её начале. Если в электрической сети, состоящей из этих цепей, происходит короткое замыкание, ток увеличивается соответственно её импедансу. При этом индуктивность ограничивает скорость нарастания тока и существует некоторая минимальная величина его. Эта величина и является порогом срабатывания защиты.

При этом защитные устройства могут сработать и при несколько меньших значениях силы тока, если это необходимо. Но величина тока срабатывания должна находиться в диапазоне значений силы тока, которое будет больше чем при коротком замыкании за пределами области покрытия защиты. Пример токовой защиты цепи с трансформатором, подключенным между кабельными линиями электропередачи, показан на изображении ниже:

Преимуществом избирательности по току является возможность реагирования только на повреждения внутри защищаемой области и в привязке к потребителю, исключая аварии вне защищаемой области. Отличается быстротой срабатывания, небольшой стоимостью и схемотехнической простотой. В этом её преимущество. Недостатком является сложность настройки избирательности последовательно установленных устройств защиты при их расположении в соседних областях из-за похожести параметров процессов, определяемых аварийными ситуациями.

Принцип логики

При этой разновидности селективности в сетях организован обмен данными между включенными последовательно устройствами защиты с большим числом порогов избирательности. Поэтому становится возможным «на лету» изменять задержки времён срабатывания каждой из защит. В результате срабатывают именно те защитные устройства, которые находятся вблизи источников питания. А те, что ближе к потребителю – не включаются. Поэтому становится возможным сделать оптимальный выбор для выключателя, который отключит аварийный ток, как показано на изображении ниже:

Преимуществом логической селективности является возможность регулировки временных установок срабатывания реле по каскадно на любом уровне не зависимо от их числа. При этом можно сделать выбор оптимальной установки срабатывания реле, как со стороны источника питания, так и со стороны потребителя. Недостатком является сложность построения протяжённой многоуровневой защиты с необходимостью введения дополнительных цепей для обмена данными. Наибольшее распространение эта избирательность получила в схемах сетей с радиальными цепями и средними величинами напряжения.

Принцип направленности

Защитные устройства отрабатывают в последовательности, определяемой направлением тока. Вектор напряжения задаёт некоторую точку. Относительно неё вектор тока имеет фазовый сдвиг. Причём реле реагирует на оба параметра – ток и напряжение. Защищаемая сеть должна быть приспособлена к расположению как области с отключениями, так и области, в которой отключение не выполняется, как показано на изображении ниже:

Если короткое замыкание произошло в 1-й точке, защитное устройство D1 и управляемый им выключатель сработают. Отключение будет выполнено. Никакие иные защитные устройства при этом срабатывать не будут. При коротком замыкании в точке 2, срабатывания обеих защит и выключателей не происходит. Сборные шины должны иметь отдельную защиту, как показано на изображении слева:

Преимуществом является простота устройства защиты. Недостаток – наличие дополнительных элементов – трансформаторов напряжения. Они нужны для определения направления тока.

Принцип дифференцирования

Эта разновидность селективности характерна для электрических цепей с мощными агрегатами, такими как:

  • электродвигатели;
  • преобразователи напряжения;
  • электрогенераторы;
  • кабельные сети;
  • шины сборные.

Фазовые и амплитудные отклонения величин токов в точках А и В воспринимаются как авария. При этом аварийные события за пределами участка АВ не воспринимаются. Защита срабатывает если ток IA больше чем ток IB. Но при этом должны использоваться специальные трансформаторы тока, которые позволяют отстроить защиту от ненужных процессов, влияющих на срабатывание защиты, таких как:

  • ток намагничивания трансформатора;
  • насыщение токовых датчиков и возникающий при этом ток погрешности;
  • ёмкостная составляющая тока линии электропередачи.

Применение находят две схемы соответственно выбранному методу поддержания устойчивости работы защиты:

  • хорошая чувствительность;
  • большая скорость отключения в зоне защиты.
  • дороговизна;
  • высокие требования к персоналу, допущенному к эксплуатации защиты ввиду её сложности;
  • требует установку максимальной токовой защиты на случай аварии.

Комбинированная селективность

Эта разновидность селективности основана на комбинациях избирательности составляющих её компонентов описанных выше. Эти комбинации позволяют существенно улучшить:

  • общую избирательность;
  • резервирование или аварийный режим.

Варианты использования на практике данного вида избирательности перечислены далее:

  • по току + временная;
  • логическая + временная;
  • временная + направленная;
  • логическая + направленная;
  • направленная + временная.

Источник: podvi.ru

Что такое селективность защит в электроустановках

При эксплуатации и проектировании электрической схемы всегда уделяется внимание вопросам ее безопасного использования. С этой целью все электрические приборы защищаются специальными устройствами, которые подбирают и располагают строго по определенной, иерархической зависимости.

Например, когда мобильный телефон стоит на зарядке, то ее протекание контролирует встроенная в аккумулятор защита. Она отключает зарядный ток по окончании набора емкости. Когда же внутри АКБ возникнет короткое замыкание, то установленный в зарядное устройство предохранитель перегорает и обесточивает схему.

Если это по каким-либо причинам не произойдет, то возникшую неисправность в розетке контролирует автоматический выключатель квартирного щитка, а его работу страхует главный автомат. Эту последовательность поочередного срабатывания защит можно рассматривать и дальше.

Ее закономерности определяются принципом селективности, который еще называют избирательностью , подчеркивая функцию выбора или определения места возникновения повреждения, которое необходимо отключить.

Методы избирательности электрических защит формируется во время создания проекта и поддерживается при эксплуатации таким образом, чтобы своевременно выявить место возникновения неисправности в электрооборудовании и отделить его от действующей схемы с наименьшими потерями для нее.

При этом зону обхвата защит по селективности подразделяют на:

Первый тип защиты полностью контролирует свой рабочий участок и устраняет повреждения только в нем. По этой закономерности работают встроенные в электроприборы предохранители.

Устройства, созданные по относительному принципу, выполняют больше функций. Они отключают неисправности внутри своей зоны и соседних, но когда в них не отработали защиты абсолютного типа.

Качественно настроенная защита определяет:

1. место и вид повреждения;

2. отличие ненормального, но допустимого режима от ситуации, способной нанести весьма серьезные повреждения оборудованию электроустановки внутри контролируемой зоны.

Устройства, настроенные только по первому действию, работают обычно в неответственных сетях до 1000 вольт. Для высоковольтных электроустановок стараются внедрить оба этих принципа. С этой целью в состав защиты вводят:

схемы взаимных блокировок;

точные измерительные органы;

системы обмена информацией;

специальные логические алгоритмы.

Между двумя последовательно подключенными силовыми выключателями выполняется зашита от сверхтоков, превышающих номинальные значения нагрузки по любой причине. При этом ближний к потребителю с повреждением выключатель должен размыканием своих контактов обесточивать неисправность, а дальний — продолжать подачу напряжения на своем участке.

В этом случае рассматривается два вида селективности:

Если ближняя к неисправности защита способна полностью ликвидировать повреждения на всем диапазоне уставок без задействования удаленного выключателя, то ее считают полной.

Частичная избирательность присуща ближним защитам, настроенным на срабатывание до какого-то предельного тока селективности Is. Если он превышен, то вступает в работу удаленный выключатель.

Зоны перегрузки и короткого замыкания в селективных защитах

Пределы токов, назначенные для срабатывания автоматических выключателей защит, разделяют на две группы:

1. режим перегрузок;

2. зону коротких замыканий.

Для упрощения разъяснения применим этот принцип к токовым характеристикам автоматических выключателей.

Они настраиваются на работу в зоне перегруза номинальных токов на величину до 8÷10 крат.

На этом участке работают в основном тепловые или термомагнитные расцепители защит. Токи коротких замыканий в эту зону попадают очень редко.

Область возникновения КЗ обычно сопровождается токами, превышающими в 8÷10 раз номинальные нагрузки автоматических выключателей и характеризуется серьезными повреждениями в электрической схеме.

Для их отключения применяются электромагнитные или электронные расцепители.

Методы создания селективности

Для области перегрузок по току создаются защиты, работающие по принципу времятоковой селективности.

Зона коротких замыканий формируется на основе:

4. зонной избирательности.

Временна́я селективность создается за счет выбора разных выдержек времени для срабатывания защиты. Этот способ может быть применен даже к устройствам с одной уставкой тока, но разным временем, как показано на рисунке.

Например, ближайшая к оборудованию защита №1 налаживается на работу при коротком замыкании со временем, близким к 0,02 с, а ее работу страхует более отдаленная №2 с настройкой на 0,5 с.

Самая дальняя защита со временем отключения в одну секунду резервирует работу предыдущих устройств при их возможном отказе.

Токовая селективность налаживается для срабатывания по превышению допустимых нагрузок. Довольно грубо этот принцип можно пояснить следующим примером.

Три защиты последовательно контролируют ток КЗ и настроены на отключение со временем 0,02 с, но с разными токовыми уставками в 10, 15 и 20 ампер. За счет этого оборудование будет отключаться вначале от защитного устройства №1, а №2 и №3 будут избирательно его страховать.

Реализация временно́й или токовой селективности в чистом виде требует использования чувствительных датчиков или реле тока и времени. При этом создается довольно сложная электрическая схема, которая на практике обычно объединяет оба рассмотренных принципа, а не применяется в чистом виде.

Времятоковая селективность защит

Для защиты электроустановок с напряжением до 1000 вольт применяют автоматические выключатели, которые обладают объединенной времятоковой характеристикой. Рассмотрим этот принцип на примере двух последовательно включенных автоматов, разнесенных по концам линии со стороны нагрузки и питания.

Времятоковая избирательность определяет способ срабатывания выключателя, настроенного на более быстрое отключение при расположении около потребителя электроэнергии, а не на генераторном конце.

На левом графике показан случай наибольшего времени отключения верхней кривой защиты со стороны нагрузки, а на правом — наименьшего времени выключателя на конце подвода питания. Это позволяет более детально анализировать проявление селективности защит.

Выключатель «В», расположенный ближе к питаемому оборудованию, за счет применения времятоковой селективности работает раньше и быстрее, а выключатель «А» резервирует его в случае отказа.

Токовая селективность защит

При этом способе избирательность может формироваться за счет создания определенной конфигурации сети, например, включенной в схему кабельной или воздушной линии электропередач, обладающей электрическим сопротивлением. В этом случае значение тока короткого замыкания между генератором и потребителем зависит от места возникновения повреждения.

На кабельном конце со стороны питания оно будет иметь максимальное значение, например, 3 кА, а на противоположном — минимальное, допустим, 1кА.

При возникновении КЗ около выключателя А не должна работать защита конца В (I кз1кА), то он и должен снимать напряжение с оборудования. Для точной работы защит необходимо учесть величину реальных токов, проходящих через выключатели при аварийном режиме.

Следует понимать, что для обеспечения полной избирательности по этому методу необходимо иметь большое сопротивление между обоими выключателями, которое может образоваться за счет:

протяженной линии электропередачи;

вставкой обмотки трансформатора;

включением в разрыв кабеля уменьшенного сечения или другими способами.

Поэтому при таком способе селективность чаще всего бывает частичной.

Временна́я селективность защиты

Этот метод избирательности обычно дополняет предыдущий способ с учетом времен:

определения защитой места и начала развития неисправности;

срабатывания на отключение.

Формирование алгоритма работы защиты производится за счет постепенного приближения уставок по току и времени при перемещениях токов КЗ к источнику питания.

Избирательность по времени может создаваться автоматами одних номиналов по току, когда у них есть возможность регулировки задержки на срабатывание.

При этом способе защиты выключателя В отключают неисправность, а выключателя А — контролируют весь процесс и находятся в готовности к работе. Если за время, отведенное для срабатывания защит В короткое замыкание не устранилось, то повреждение ликвидируется работой защит стороны А.

Энергетическая селективность защит

Метод основан на использовании специальных новых видов автоматических выключателей, выполненных в литом корпусе и способных максимально быстро работать, когда токи коротких замыканий еще даже не успели достичь своих максимальных значений.

Подобные скоростные автоматы работают в течение нескольких миллисекунд, когда еще действуют апериодические составляющие переходных процессов. В таких условиях из-за высокой динамичности протекания нагрузок сложно согласовать реально действующие времятоковые характеристики защит.

Конечный пользователь практически не может отследить характеристики энергетической селективности. Их предоставляет производитель в виде графиков, программ расчета, таблиц.

При этом способе для расцепителей термомагнитного и электронного принципа, расположенных на стороне питания необходимо учесть специфические условия работы.

Зонная селективность защиты

Этот тип избирательности является разновидностью временно́й характеристики. Для его работы используются измерительные устройства тока на каждой стороне, между которыми постоянно происходит обмен информацией и сравнение векторов токов.

Зонная селективность может быть сформирована двумя способами:

1. в логическое устройство контроля защиты поступают одновременно сигналы с обоих концов контролируемого участка. Оно сравнивает значения поступивших токов и определяет выключатель, который должен быть отключен;

2. сведения о завышенных значениях векторов тока от обеих сторон поступают в виде блокировочного сигнала на логическую часть защиты более высокого уровня иерархии по стороне питания. Если на ней присутствует блокировочный сигнал снизу, то отключается нижерасположенный выключатель. Когда запрета на отключение снизу не поступило, то напряжение снимает вышерасположенная защита.

При этих способах отключение происходит намного быстрее, чем при временно́й избирательности. Это обеспечивает меньшие повреждения электрооборудования, снижение динамических и тепловых нагрузок внутри системы.

Однако, способ зонного разделения селективности требует создания дополнительных сложных технических систем измерения, логики и обмена информацией, что удорожает стоимость оборудования. По этим причинам такие методы, основанные на высокочастотной блокировке, применяются на высоковольтных линиях электропередач и подстанциях, передающих большие потоки мощности электроэнергии в непрерывном режиме.

Для этого используются быстродействующие воздушные, масляные или элегазовые выключатели, способные коммутировать огромные токовые нагрузки.

Источник: electricalschool.info

Что такое селективность защиты?

Что это такое?

В первую очередь, понятие «селективность» включает в себя защитный механизм и отлаженную работу неких приборов, состоящих из отдельных элементов, последовательно подключенных между собой. Зачастую такими приборами служат различные виды автоматов, предохранителей, УЗО и т.д. Результатом их работы является предупреждение «сгорания» электромеханизмов в случае возникновения угроз. Схема селективной работы автоматических выключателей и УЗО в щитке предоставлена ниже:

Преимуществом данной системы является ее свойство отключать лишь необходимые участки, при этом вся остальная система остается в рабочем состоянии. Единственным условием при этом остается согласованность защитных устройств между собой.

Основные функции

Итак, основными функциями селективной защиты являются:

  • обеспечение безопасности электроприборов и сотрудников;
  • мгновенное определение и отключение зоны питания, в которой произошла поломка, без других отключений, которые прекратят подачу электроэнергии в местах стабильной работы техники;
  • снижение влияния негативных последствий на остальные части электромеханизмов;
  • уменьшение нагрузки на составные установки и предотвращение поломок в неисправной зоне;
  • обеспечение максимально возможного непрерывного электроснабжения высокого качества;
  • обеспечение беспрерывности рабочего процесса;
  • обеспечение квалифицированной поддержки в том случае, если сама защита, отвечающая за размыкание, придет в неисправность;
  • поддержка оптимального функционирования установки;
  • обеспечение простоты в эксплуатации и экономической эффективности.

Виды селективной защиты

Селективность защитной аппаратуры разделяется на следующие виды:

  1. Полная. Задействовано два аппарата с последовательным подключением, при воздействии сверхтоков срабатывает защита только одного, который находится ближе к зоне неисправности.
  2. Частичная. Подобна полной, но защита действует только до определенного показателя сверхтока.
  3. Временная. В цепь включается несколько автоматов с одинаковыми токовыми характеристиками, но разной выдержкой по времени. В результате от самого ближнего к неисправности, до самого отдаленного автоматического выключателя, аппараты друг друга страхуют (например, самый ближний сработает через 0,02 с, следующий через 0,5 с, ну и последний через 1 с, если остальные 2 не сработают).
  4. Токовая. Если говорить грубо, то принцип действия токовой селективности защит аналогичен временной, но только выдержка происходит не по времени, а по величине тока. К примеру, автоматические выключатели устанавливаются на вводе 25А, далее 16А, а потом 10А. При этом время отключения у них может быть одинаковое.
  5. Времятоковая. Кроме реакции механизмов защиты на ток, также определяется время этой реакции.
  6. Зонная. При выявлении нарушения порога тока срабатывание установки позволяет точно определить неисправную зону и отключить подачу электричества только в ней.
  7. Энергетическая. Все процессы по предотвращению поломки происходят в литом корпусе автоматического выключателя. Отключение происходит за такой малый срок, что отметка максимального значения тока не достигает своего результата.

Также селективность защиты может быть абсолютной и относительной. В первом случае отключается только поврежденный участок цепи. По такому принципу работают предохранители, установленные в электроприборах. Относительная селективность защищает не только «свой участок», но и соседний, если в нем не отработала абсолютная селективная защита.

Карта селективности

Обязательно необходимо упомянуть о карте селективности, которая будет вам необходима «как воздух» для максимальной токовой защиты. Сама карта представляет собой определенную схему, построенную в осях, где отображаются все совокупности времятоковых характеристик установленных аппаратов. Пример предоставлен ниже:

Мы уже говорили, что все защитные аппараты должны быть подключены по-очереди друг за другом. И на карте отображают характеристики именно этих приборов. Главными правилами при чертежах карт являются: установки защит должны исходить от одного напряжения; масштаб необходимо выбирать с расчетом того, что будет видны все граничные точки; необходимо указать не только защитные свойства, но и максимальные и минимальные показатели коротких замыканий в расчетных точках схемы.

Стоит отметить, что в сегодняшней практике крепко закрепилось отсутствие карт селективности в проектах, особенно при небольших напряжениях. И это нарушение всех норм проектирования, которое в итоге и является результатом отключения электричества у потребителей.

Напоследок рекомендуем просмотреть полезное видео по теме:

Теперь вы знаете, что такое селективность защиты электрической сети и для чего она нужна. Если есть вопросы, можете задавать их на нашем форуме для электриков.

Будет интересно прочитать:

Источник: samelectrik.ru

Что такое селективность защиты?

Селективность в электрике и энергетике является наиважнейшим понятием, поскольку ее главной функцией была, будет и остается защита электрических приборов от выхода из строя, вследствие каких-либо нарушений в работе электроустановок. Именно благодаря этой защитной функции сохраняется продолжительность жизни аппаратов и приборов, что позволяет работать электрооборудованию дольше и надежнее. В этой статье мы постараемся разобраться, что такое селективность защиты электрической сети и какой у нее принцип действия.

Что это такое?

В первую очередь, понятие «селективность» включает в себя защитный механизм и отлаженную работу неких приборов, состоящих из отдельных элементов, последовательно подключенных между собой. Зачастую такими приборами служат различные виды автоматов, предохранителей, УЗО и т.д. Результатом их работы является предупреждение «сгорания» электромеханизмов в случае возникновения угроз. Схема селективной работы автоматических выключателей и УЗО в щитке предоставлена ниже:

Преимуществом данной системы является ее свойство отключать лишь необходимые участки, при этом вся остальная система остается в рабочем состоянии. Единственным условием при этом остается согласованность защитных устройств между собой.

Основные функции

Итак, основными функциями селективной защиты являются:

  • обеспечение безопасности электроприборов и сотрудников;
  • мгновенное определение и отключение зоны питания, в которой произошла поломка, без других отключений, которые прекратят подачу электроэнергии в местах стабильной работы техники;
  • снижение влияния негативных последствий на остальные части электромеханизмов;
  • уменьшение нагрузки на составные установки и предотвращение поломок в неисправной зоне;
  • обеспечение максимально возможного непрерывного электроснабжения высокого качества;
  • обеспечение беспрерывности рабочего процесса;
  • обеспечение квалифицированной поддержки в том случае, если сама защита, отвечающая за размыкание, придет в неисправность;
  • поддержка оптимального функционирования установки;
  • обеспечение простоты в эксплуатации и экономической эффективности.

Виды селективной защиты

Селективность защитной аппаратуры разделяется на следующие виды:

  1. Полная. Задействовано два аппарата с последовательным подключением, при воздействии сверхтоков срабатывает защита только одного, который находится ближе к зоне неисправности.
  2. Частичная. Подобна полной, но защита действует только до определенного показателя сверхтока.
  3. Временная. В цепь включается несколько автоматов с одинаковыми токовыми характеристиками, но разной выдержкой по времени. В результате от самого ближнего к неисправности, до самого отдаленного автоматического выключателя, аппараты друг друга страхуют (например, самый ближний сработает через 0,02 с, следующий через 0,5 с, ну и последний через 1 с, если остальные 2 не сработают).
  4. Токовая. Если говорить грубо, то принцип действия токовой селективности защит аналогичен временной, но только выдержка происходит не по времени, а по величине тока. К примеру, автоматические выключатели устанавливаются на вводе 25А, далее 16А, а потом 10А. При этом время отключения у них может быть одинаковое.
  5. Времятоковая. Кроме реакции механизмов защиты на ток, также определяется время этой реакции.
  6. Зонная. При выявлении нарушения порога тока срабатывание установки позволяет точно определить неисправную зону и отключить подачу электричества только в ней.
  7. Энергетическая. Все процессы по предотвращению поломки происходят в литом корпусе автоматического выключателя. Отключение происходит за такой малый срок, что отметка максимального значения тока не достигает своего результата.

Также селективность защиты может быть абсолютной и относительной. В первом случае отключается только поврежденный участок цепи. По такому принципу работают предохранители, установленные в электроприборах. Относительная селективность защищает не только «свой участок», но и соседний, если в нем не отработала абсолютная селективная защита.

Карта селективности

Обязательно необходимо упомянуть о карте селективности, которая будет вам необходима «как воздух» для максимальной токовой защиты. Сама карта представляет собой определенную схему, построенную в осях, где отображаются все совокупности времятоковых характеристик установленных аппаратов. Пример предоставлен ниже:

Мы уже говорили, что все защитные аппараты должны быть подключены по-очереди друг за другом. И на карте отображают характеристики именно этих приборов. Главными правилами при чертежах карт являются: установки защит должны исходить от одного напряжения; масштаб необходимо выбирать с расчетом того, что будет видны все граничные точки; необходимо указать не только защитные свойства, но и максимальные и минимальные показатели коротких замыканий в расчетных точках схемы.

Стоит отметить, что в сегодняшней практике крепко закрепилось отсутствие карт селективности в проектах, особенно при небольших напряжениях. И это нарушение всех норм проектирования, которое в итоге и является результатом отключения электричества у потребителей.

Напоследок рекомендуем просмотреть полезное видео по теме:

Теперь вы знаете, что такое селективность защиты электрической сети и для чего она нужна.

Источник: www.remontostroitel.ru

Я — электрик! — вся информация о домашней электрике

Электричество — основа цивилизации. Оно создает комфорт в домах и квартирах, дает нам возможность работать на заводах и в офисах, помогает отдохнуть и развлечься по вечерам. Если жизнь устроена, мы используем электроприборы не задумываясь. Проблемы возникают когда мы начинаем ремонт в квартире, строим новый дом или однажды, нажав выключатель, обнаруживаем, что света нет. В такой ситуации люди вызывают электрика и ожидают решения возникшей проблемы в разумные сроки с минимальными затратами. Если для вас электрика трудно доступна для понимания, ассоциируется с опасностью или опостылевшими уроками физики в школе, нет ничего зазорного в том чтобы обратиться к профессионалам. К сожалению, даже хороший специалист работает прежде всего на себя, а только затем на нас с вами. К тому же на рынке полным полно дилетантов, лентяев  да и просто недобросовестных людей, всегда готовых нажиться на чьей-то технической безграмотности…

В любых нетривиальных ситуациях результат работы электрика во многом будет зависеть от вашей способности грамотно поставить задачу, согласовать способ ее решения, при необходимости проконтролировать процесс и в конце концов принять работу. Понимание того как устроена современная электропроводка, зачем нужен автоматический выключатель или УЗО, что находится внутри электрического щитка, поможет вам не только сохранить время, нервы и деньги, но и обеспечить максимально возможный комфорт и безопасность вашей семьи.

Для большинства людей нужда в информации по электрике возникает изредка, нет смысла идти учиться на электрика, чтобы потом раз в пятилетку починить розетку или пару раз в жизни сделать проводку в новом доме. В таких случаях поможет наш сайт. Здесь вы сможете быстро получить необходимые знания для решения вашей проблемы без погружения в ненужные технические, исторические и прочие дебри. Наша цель не сделать вас профессиональным электриком, а дать возможность принимать осознанные решения, не стать жертвой недобросовестного «специалиста».

Сайт содержит много полезной информации для тех кто любит работать своими руками. Многие работы в электрике достаточно просты, материалы и инструменты широко доступны. Иногда просто нет возможности вызвать электрика или приходится ждать несколько дней… В таких случаях первым делом тщательно и всесторонне изучите проблему. Если возникли вопросы, задайте их в комментариях к соответствующей статье, мы постараемся помочь. Всегда и везде соблюдайте правила электробезопасности.

Как электрическая селективность помогает установкам жить долго и процветать

Селективность — Скотти в машинном отделении перенаправляет мощность

Избирательность — не новая идея. Всем известно, что при возникновении неисправности в установке требуется быстрое реагирование, чтобы ограничить повреждение и обеспечить бесперебойную работу других частей установки.

Что такое избирательность?

Избирательность — это страхование от серьезной неисправности, такой как нарушение изоляции кабеля или ситуация, при которой внезапно требуется больше энергии, чем цепи могут выдержать.Возникающий в результате сверхток проходит через все автоматические выключатели от источника питания до точки повреждения.

Selectivity позволяет расцепителям внутри каждого автоматического выключателя принимать решения, необходимые для правильного обнаружения короткого замыкания, например, отправляя сигнал «блокировка» на выключатель, расположенный над ними. То, как это будет сделано, в конечном итоге зависит от того, что доступно оператору: базовое оборудование или усовершенствованные устройства защиты.

Методы селективности

Помимо этого, ABB разработала несколько передовых методов селективности, которые выводят защиту на новый уровень:

  • Время-токовая селективность — по мере увеличения тока время срабатывания выключателя уменьшается
  • Селективность по току основана на наблюдении, что чем ближе точка повреждения к источнику питания, тем выше ток.Используя это, вы можете установить мгновенную защиту на различные значения тока, чтобы различать зону, в которой происходит повреждение.
  • Селективность по времени развивает эту идею, также определяя время срабатывания. Определенное значение тока приведет к срабатыванию защиты по истечении определенного времени задержки. Задержка позволяет защите, расположенной ближе к месту повреждения, срабатывать первой, тем самым сводя к минимуму зону исключения.
  • Зональная селективность — это эволюция временной селективности. После достижения порога настройки диалог между устройствами позволяет точно идентифицировать зону повреждения и вырезать ее.
  • Энергетическая селективность использует токоограничивающие характеристики автоматических выключателей в литом корпусе.

Существуют также автоматические инструменты для повышения избирательности — наше программное обеспечение для проектирования электрических систем, DOC, является мощным и бесплатным в использовании, но избирательность — это определенно то, чему необходимо научиться, и компания ABB готова помочь.

Selectivity — Скотти в машинном отделении перенаправляет мощность, «давая ей все, что у нее есть», чтобы «Энтерпрайз» работал в аварийной ситуации.Без Скотти можно смело зайти так далеко.

Так почему же на борту так много установок без селективности?

Одна из причин — цейтнот. Создание системы селективной защиты питания занимает немного больше времени, а повышение гибкости, долговечности и простоты обслуживания электроустановки не всегда является частью первоначальных приоритетов заказчика.

В ABB мы считаем, что качество означает делать все правильно, даже когда никто не смотрит.

И как лидер в области низковольтных электрических решений, наша миссия — искать новые способы сделать то же самое для других проще.

Как мы можем вам помочь?

ABB стремится предложить самую лучшую техническую поддержку. Отличное место для начала — это наш популярный технический документ «Селективность низкого напряжения с автоматическими выключателями ABB» или наш новый микросайт, посвященный селективности.

Мы даже можем предложить индивидуальную поддержку с технической документацией для дизайнеров — просто свяжитесь с вашим местным офисом продаж ABB или для более сложных сетей, таких как микросети и военно-морские приложения, свяжитесь с нашей специальной командой в Техническом центре в Бергамо.

Как человек, который был там и сделал это, я знаю, что избирательность стоит затраченных усилий. Создание селективной установки может занять немного больше времени (по моему опыту на 10-20%), но, как однажды сказал Скотти: «Корабль настолько хорош, насколько хорош инженер, который о нем позаботится».

Основы селективности между автоматическими выключателями

Что такое селективность?

По экономическим соображениям и по причине надежности обслуживания не всегда идеально прерывать подачу питания к установке в случае неисправности как можно быстрее .Вот почему у нас есть селективность между защитными устройствами.

Основы селективности (дискриминации) между автоматическими выключателями (фото предоставлено ABB)

Так что же такое селективность? Весь смысл избирательности в том, что защитное устройство, находящееся непосредственно перед неисправностью , должно срабатывать сначала . Следует изолировать только неисправную часть установки. Все остальные коммутационные и защитные устройства, подключенные к системе, должны оставаться в рабочем состоянии.

Избирательность сокращает продолжительность неисправности и ограничивает ее возможное повреждающее воздействие только на части установки.Прерывание обслуживания сведено к минимуму.

Давайте теперь обсудим два типа селективности между автоматическими выключателями //


Селективность по току

В распределительной сети номинальные характеристики автоматических выключателей будут все меньше и меньше по мере того, как мы идем от трансформатора к сети. нагрузка. Точно так же настройки магнитных расцепителей короткого замыкания также будут все ниже и ниже. В то же время величина тока короткого замыкания, которая может возникнуть, также будет постепенно снижаться.

Это приводит к естественной селективности сорта в зависимости от величины тока короткого замыкания.

Принцип избирательности по току применяется в основном для распределительных фидеров на конце системы , с заметным уменьшением тока короткого замыкания из-за большой длины проводов.

Должен быть известен предполагаемый ток короткого замыкания в месте установки автоматического выключателя.

Два автоматических выключателя являются взаимно селективными, если ток короткого замыкания, протекающий через выключатель ниже по потоку, ниже (регулируемого) порога срабатывания магнитного расцепителя блока, подключенного выше по потоку.Это значение считается пределом селективности.

Действительно ли два автоматических выключателя являются взаимно селективными, проверяется путем сравнения времени-токовых характеристик выключателей . Характеристики срабатывания двух выключателей не должны касаться или пересекаться друг с другом до максимального значения допустимого уровня неисправности.

Между двумя характеристиками должен быть определенный интервал, в зависимости от допустимого диапазона допусков расцепителей выключателей.

Рисунок 1 — Время-токовые характеристики двух токоизбирательных автоматических выключателей

Хотя метод сравнения времени-токовых характеристик является точным, он также требует много времени. Опубликованные таблицы производителей, в которых указана селективность автоматических выключателей по отношению друг к другу, упрощают выбор.

Что касается перегрузки, биметаллические расцепители перегрузки с термической задержкой автоматических выключателей с разными номинальными токами всегда селективны по отношению друг к другу .Время срабатывания автоматических выключателей разных номиналов при одинаковых токах перегрузки автоматически различается (как, например, версия на 100 А и версия на 6,3 А).

Вернуться к типам селективности ↑


Временная селективность

Если селективность по току не может быть достигнута, например, между двумя быстродействующими автоматическими выключателями, имеющими практически одинаковое время реакции, селективность должна быть реализована через регулируемое время задержки выключателей .

Временная селективность в случае больших автоматических выключателей для защиты установок реализуется за счет задержки времени магнитного отключения на несколько полупериодов. Общее время отключения выключателя, расположенного ниже по цепи, должно быть меньше минимально необходимой продолжительности времени подачи команды выключателя, подключенного непосредственно выше по цепи.

Другими словами, для взаимно селективных автоматических выключателей, действующих во временной последовательности. — Время задержки выключателя на входе должно быть больше, чем общее время отключения выключателя, подключенного на выходе.

Минимальное время задержки, которое может быть реализовано между автоматическими выключателями со смещением по времени, составляет 60 или 100 мс . Отключающая характеристика выключателя с задержкой сдвинута вверх на опубликованной диаграмме время-токовой характеристики.

Рисунок 2 — Время-токовые характеристики двух селективных по времени автоматических выключателей

Селективность по времени между автоматическими выключателями, реагирующими в ступенчатой ​​последовательности, достигается за счет того, что контакты или магнитный расцепитель не реагируют напрямую с током короткого замыкания .Механический механизм задержки или электронная схема задерживают срабатывание выключателя.

Для выключателя на входе больше нельзя говорить о быстродействующем прерывании с ограничением тока. Более половины цикла действительного тока короткого замыкания протекает через защитное устройство с задержкой срабатывания, а также через установку. Очевидно, что он должен быть спроектирован соответственно , чтобы выдерживать это напряжение .

Вернуться к типам селективности ↑

Ссылка // Основы автоматических выключателей Rockwell Automation

Избирательность: когда она необходима?

Техническая группа Stroma изучает изменения в 18 -й выпуск , касающиеся селективности между устройствами защиты от перегрузки по току и того, что это означает для монтажников.

18 -е издание стандарта BS 7671 изменило то, что в течение многих лет было известно как «дискриминация» на «избирательность».

«Селективность» определяется в Части 2 как: «Согласование рабочих характеристик двух или более защитных устройств таким образом, чтобы при возникновении перегрузки по току или остаточного тока в установленных пределах устройство, предназначенное для работы в этих пределах, действовало. так что, в то время как другие не делают (не делают) ». Есть примечание к определению, которое описывает частичную и полную избирательность.

Раздел 536 стандарта BS 7671 теперь содержит подробные описания применения селективности между устройствами защиты от сверхтоков (OCPD), УЗО и другими устройствами. К сожалению, в 18 -м выпуске не сказано, когда требуется избирательность, оставляя решение за проектировщиком установки. В 17 -е издание требовалось: «Согласование серийных защитных устройств необходимо для предотвращения опасности и там, где это необходимо для надлежащего функционирования установки».

Когда использовать «полную» или «частичную» избирательность

Как правило, если устройство защиты цепи питает несколько цепей, и каждая из этих цепей защищена своей собственной защитой цепи, желательно, чтобы нижестоящее устройство работало первым в условиях перегрузки по току.Если одна цепь имеет два последовательно включенных защитных устройства, вероятно, нет необходимости в полной или частичной селективности.

Необходимо иметь полную селективность, если может возникнуть опасность, если вышестоящее устройство сработает перед последующим устройством в условиях перегрузки по току. Примером этого является то, что в здании есть службы безопасности жизнедеятельности (LSS), такие как пожарные лифты, дымоудаления, спринклерные насосы и пожарные насосы. В этих установках в условиях пожара может потребоваться, чтобы источники LSS работали до разрушения, а не работали для предотвращения повреждения кабеля.Примером этого может быть подача воды на два пожарных насоса, где защита контура одного насоса срабатывает перед защитой на входе, чтобы второй резервный насос продолжал подавать воду на барабаны пожарных рукавов.

Исследование избирательности

До 18-го выпуска -го разработчики должны были провести исследование дискриминации, чтобы определить последовательность срабатывания защитных устройств в условиях перегрузки по току. В 18 th Edition говорится, что теперь это можно проверить с помощью настольного исследования с использованием данных производителя, программного обеспечения, тестов или декларации производителя.Большинство дизайнеров, вероятно, предпочтут использовать проприетарное программное обеспечение для проведения исследования селективности (дискриминации).

Использование программного обеспечения для исследования селективности позволит разработчику построить кривые время / ток для каждого устройства в серии, чтобы проверить, достигнута ли селективность. Построенные кривые будут указывать кривую перед дуговым разрядом, которая указывает, где устройство не будет работать, диапазон допуска, в котором устройство может работать, и рабочая кривая, где устройство определенно будет работать .

Ток повреждения

Доступный ток короткого замыкания в любой точке установки будет определяться импедансом входящего источника питания, сопротивлением проводников распределительной и конечной цепи и местом замыкания. В больших установках с многоуровневой защитой цепи может оказаться невозможным достичь полной дискриминации. Это потребует увеличения мощности источника питания для увеличения тока короткого замыкания, более высокой номинальной защиты цепи и кабелей большего размера по всей установке.

Это явно было бы нерентабельно. Источник большей мощности может быть недоступен и, вероятно, не нужен, если не требуется полная селективность для предотвращения опасности. Селективность может быть достигнута с помощью автоматических выключателей с регулируемыми расцепителями, чтобы ввести временную задержку для достижения селективности.

НАЧАЛО СТРОИТЕЛЬСТВА STROMA BUILDING CONTROL

Группа компаний Stroma объявила о запуске нового бренда Approved Inspector: Stroma Building Control (Stroma). При этом он становится одним из самых известных и крупнейших инспекторов строительной отрасли, утвержденных CICAIR.Компания Stroma, созданная из трех уже существующих поставщиков систем управления зданием, таких как: Консультации по утвержденному проектированию, BBS Building Control и Greendoor Building Control, объединяет более трех десятилетий проектной работы и опыт в области управления зданиями. Обширная команда из более чем 120 квалифицированных инспекторов по контролю за зданиями и сеть из 14 региональных офисов означает, что клиенты могут положиться на общенациональную службу соответствия требованиям по контролю за зданиями, предоставляемую на местном уровне.

Группа управления зданием Stroma имеет обширный послужной список по всем типам проектов в строительной отрасли.Его работа в качестве надежных партнеров-консультантов для клиентов охватывает жилые, коммерческие, смешанные, развлекательные, розничные, образовательные и другие сферы. Консультации и поддержка компании Stroma могут быть предоставлены на этапе разработки концепции и на начальном этапе проектирования, путем подачи первоначального уведомления, оценки планов и инспекций участка до представления окончательного сертификата по завершении. Команда также предоставляет клиентам полную техническую поддержку, CPD по всем правилам и консультации по любым изменениям в этих правилах.

Для получения дополнительных технических рекомендаций и информации о членстве в Stroma посетите: stroma.com / Certification

Согласование автоматических выключателей — Руководство по устройству электроустановок

Каскад (или резервная защита)

В методе «каскадирования» используются свойства токоограничивающих автоматических выключателей, позволяющих устанавливать все расположенные ниже распределительные устройства, кабели и другие компоненты схемы со значительно более низкими характеристиками, чем было бы необходимо, тем самым упрощая и снижая стоимость установки.

Определение каскадной техники

Ограничивая пиковое значение проходящего через него тока короткого замыкания, токоограничивающий выключатель позволяет использовать во всех цепях после его расположения распределительное устройство и компоненты цепей с гораздо более низкими отключающими способностями при коротком замыкании, а также тепловые и электромеханические. выдерживать возможности, которые в противном случае были бы необходимы.Уменьшенный физический размер и более низкие требования к производительности приводят к значительной экономии и упрощению монтажных работ. Можно отметить, что, хотя токоограничивающий выключатель оказывает влияние на цепи ниже по потоку, (очевидно) увеличивая полное сопротивление источника в условиях короткого замыкания, он не имеет такого эффекта ни в каких других условиях; например, при запуске большого двигателя (где очень желательно низкое сопротивление источника). Особенно интересна линейка токоограничивающих автоматических выключателей Compact NSX с мощными ограничивающими характеристиками.

Условия реализации

Как правило, необходимы лабораторные испытания, чтобы гарантировать выполнение условий реализации, требуемых национальными стандартами, и совместимые комбинации коммутационных устройств должны быть предоставлены производителем.

Большинство национальных стандартов допускают каскадную технику при условии, что количество энергии, «пропускаемой» ограничивающим выключателем, меньше энергии, которую все последующие выключатели и компоненты могут выдержать без повреждений.

На практике это можно проверить только для выключателей с помощью тестов, проведенных в лаборатории. Такие испытания проводят производители, которые предоставляют информацию в виде таблиц, чтобы пользователи могли уверенно спроектировать каскадную схему на основе комбинации рекомендуемых типов выключателей. Например, Рисунок h57 показывает возможности каскадирования автоматических выключателей типов iC60, C120 и NG125 при установке после токоограничивающих выключателей Compact NSX 250 N, H или L для 230/400 В или 240/415 В 3 -фазная установка.

Рис. H57 — Пример возможностей каскадирования в трехфазной сети 230/400 В или 240/415 В

CB восходящего потока NSX250
В F N H S л
Icu (кА) 25 36 50 70 100 150
Выходной CB
Тип Рейтинг (A) Icu (кА) Усиленная отключающая способность (кА)
iDPN [a] 1-40 6 10 10 10 10 10 10
iDPN N [a] 1–16 10 20 20 20 20 20 20
25-40 10 16 16 16 16 16 16
iC60N 0,5-40 10 20 25 30 30 30 30
50-63 10 20 25 25 25 25 25
iC60H 0,5-40 15 25 30 30 30 30 30
50-63 15 25 25 25 25 25 25
iC60L 0,5-25 25 25 30 30 30 30 30
32-40 20 25 30 30 30 30 30
50-63 15 25 25 25 25 25 25
C120N 63-125 10 25 25 25 25 25 25
C120H 63-125 15 25 25 25 25 25 25
NG125N 1-125 25 36 36 36 50 70
NG125H 1-125 36 40 50 70 100
NG125L 1-80 50 50 70 100 150
  1. ^ 1 2 230 В фаза на нейтраль

Преимущества каскадирования

Ограничение тока выгодно для всех нижестоящих цепей, которые управляются соответствующим токоограничивающим выключателем.

Принцип не является ограничивающим, т. Е. Токоограничивающие выключатели могут быть установлены в любой точке установки, где в противном случае выходные цепи были бы неадекватно рассчитаны.

Результат:

  • Упрощенный расчет тока короткого замыкания
  • Упрощение, т. Е. Более широкий выбор распределительных устройств и приборов, расположенных ниже по цепочке
  • Использование более легких распределительных устройств и приборов с, как следствие, более низкой стоимостью
  • Экономия места, поскольку легкое оборудование обычно имеет меньший объем

Принципы избирательности

Селективность важна для обеспечения бесперебойного питания и быстрой локализации неисправностей.

Избирательность достигается за счет устройств защиты от перегрузки по току и замыкания на землю, если условие отказа, возникающее в любой точке установки, устраняется защитным устройством, расположенным непосредственно перед местом замыкания, в то время как все другие защитные устройства остаются неизменными (см. Рисунок h58 ).

Рис. H58 — Принцип селективности

Селективность требуется для установки, питающей критические нагрузки, когда одна неисправность в одной цепи не должна вызывать прерывание питания других цепей.В серии IEC 60364 это обязательно для установки, обеспечивающей услуги безопасности (IEC60364-5-56 2009 560.7.4). Селективность также может требоваться некоторыми местными нормативными актами или для некоторых специальных приложений, например:

  • Медицинский пункт
  • Морской
  • Высотное здание

Селективность настоятельно рекомендуется там, где бесперебойность электроснабжения критична из-за характера нагрузок.

  • Дата-центр
  • Инфраструктура (туннель, аэропорт…)
  • Критический процесс

С точки зрения установки: Селективность достигается, когда максимальный ток короткого замыкания в точке установки ниже предела селективности автоматических выключателей, питающих эту точку установки.

Селективность должна проверяться для всех цепей, питаемых от одного источника, и для всех типов неисправностей:

  • Перегрузка
  • Короткое замыкание
  • Замыкание на землю

Если система может питаться от разных источников (например, от сети или генераторной установки), в обоих случаях необходимо проверять селективность.

Селективность между двумя автоматическими выключателями может быть

  • Итого: до отключающей способности выключателя, расположенного ниже по цепи
  • Частично: до указанного значения в соответствии с характеристиками автоматических выключателей Рисунок h59, H50 и H51

Предлагаются различные решения для достижения селективности на основе:

  • Текущий
  • Время
  • Энергия
  • Логика

Рис.h59 — Полная и частичная избирательность

Рис. H50 — Полная селективность между выключателями A и B

Рис. H51 — Частичная селективность между выключателями A и B

Селективность по току

см. (a) из Рисунок H52

Этот метод реализуется путем установки последовательных пороговых значений срабатывания на ступенчатых уровнях от цепей ниже по потоку (более низкие значения) к источнику (более высокие значения).

Избирательность может быть полной или частичной, в зависимости от конкретных условий, как указано выше.

Селективность по времени

см. (b) из Рисунок H52

Этот метод реализуется путем настройки отключающих устройств с выдержкой времени, так что реле ниже по потоку имеют самое короткое время срабатывания с постепенно увеличивающимися задержками по направлению к источнику. В показанном двухуровневом расположении автоматический выключатель A на входе имеет задержку, достаточную для обеспечения полной селективности с B (например, Masterpact с электронным расцепителем).

Автоматические выключатели категории селективности B спроектированы для селективности на основе времени, предел селективности будет кратковременным выдерживаемым значением на входе (Icw).

Селективность на основе комбинации двух предыдущих методов

см. (c) из Рисунок H52

Задержка, добавленная к схеме текущего уровня, может улучшить общие характеристики селективности.

У вышестоящего выключателя есть два порога срабатывания магнитного срабатывания:

  • Im A: магнитное отключение с задержкой или электронное отключение с короткой задержкой
  • Ii: мгновенное отключение

Избирательность полная, если Isc B

Рис. H52 — Селективность по току, Селективность по времени, Комбинация обоих

Защита от токов короткого замыкания высокого уровня: селективность на основе уровней энергии дуги

Если кривые зависимости времени от тока наложены, селективность возможна с автоматическим выключателем-ограничителем, если они правильно скоординированы.

Принцип: Когда два автоматических выключателя A и B обнаруживают очень высокий ток короткого замыкания, их контакты размыкаются одновременно. В результате ток сильно ограничен.

  • Очень высокая энергия дуги на уровне B вызывает отключение выключателя B
  • Тогда энергия дуги ограничена на уровне A и недостаточна для отключения A

Рис. H53 — Селективность на основе энергии

Этот подход требует точного согласования уровней ограничения и уровней энергии отключения.Он реализован внутри линейки Compact NSX (токоограничивающий автоматический выключатель), а также между серией Compact NSX и acti 9. Это единственное решение, обеспечивающее селективность вплоть до высокого тока короткого замыкания с автоматическим выключателем категории селективности A согласно IEC60947-2.

Рис. H54 — Практический пример селективности на нескольких уровнях с автоматическими выключателями Schneider Electric (с электронными расцепителями)

Селективность повышена за счет каскадирования

Каскадирование между 2 устройствами обычно достигается с помощью отключения автоматического выключателя A, расположенного на входе, чтобы помочь автоматическому выключателю B, расположенному на выходе, отключить ток.По принципу каскадирование противоречит избирательности. Но технология энергоселективности, реализованная в автоматических выключателях Compact NSX, позволяет улучшить отключающую способность выключателей, расположенных ниже по цепи, и сохранить высокую селективность.

Принцип следующий:

  • Нижний ограничительный автоматический выключатель B обнаруживает очень высокий ток короткого замыкания. Отключение происходит очень быстро (<1 мс), а затем ограничивается ток
  • Выключатель A, расположенный выше по цепи, имеет ограниченный ток короткого замыкания по сравнению с его отключающей способностью, но этот ток вызывает отталкивание контактов.В результате напряжение дуги увеличивает ограничение тока. Однако энергии дуги недостаточно, чтобы вызвать отключение автоматического выключателя. Таким образом, автоматический выключатель A помогает выключателю B отключиться, не срабатывая при этом сам. Предел селективности может быть

выше, чем Icu B, и селективность становится полной при снижении стоимости устройств.

Логическая избирательность или «Блокировка последовательности зон — ZSI»

Возможны схемы селективности, основанные на логических методах, с использованием автоматических выключателей, оборудованных электронными расцепителями, предназначенными для этой цели (Compact, Masterpact) и соединенными с контрольными проводами.

Этот тип селективности может быть достигнут с помощью автоматических выключателей, оснащенных специально разработанными электронными расцепителями (Compact, Masterpact): Logic управляет только функциями кратковременной защиты (Isd, Tsd) и защиты от замыкания на землю (GFP). Избирательность. В частности, функция мгновенной защиты не касается.

Одним из преимуществ этого решения является короткое время отключения, где бы ни находилась неисправность, благодаря автоматическому выключателю категории селективности B.Селективность по времени в многоуровневой системе подразумевает длительное время отключения в исходной точке установки.

Настройки автоматических выключателей

  • временная задержка: включение временных задержек необходимо, по крайней мере, для автоматического выключателя, получающего вход ZSI (ΔtD1> время отключения без задержки D2 и ΔtD2> время отключения без задержки D3)
  • Пороговые значения
  • : правила для пороговых значений не применяются, но должно соблюдаться естественное каскадирование номиналов защитного устройства (IcrD1> IcrD2> IcrD3).

Примечание : Этот метод обеспечивает селективность даже с автоматическими выключателями аналогичного номинала.

Принципы

Активация функции логической селективности осуществляется посредством передачи информации по контрольному проводу:

  • Вход ZSI:
    • низкий уровень (нет отказов на выходе): функция защиты находится в режиме ожидания без временной задержки,
    • высокий уровень (наличие отказов на выходе): соответствующая функция защиты переходит в состояние временной задержки, установленное на устройстве.
  • ZSI выход:
    • низкий уровень: расцепитель не обнаруживает неисправностей и не отправляет приказы,
    • высокий уровень: расцепитель обнаруживает неисправность и отправляет команду.

Эксплуатация

Контрольный провод каскадно соединяет защитные устройства установки (см. , рисунок H55). При возникновении неисправности каждый автоматический выключатель перед неисправностью (обнаружение неисправности) посылает команду (выход высокого уровня) и переводит выключатель цепи выше по потоку на установленную задержку времени (вход высокого уровня).Автоматический выключатель, расположенный чуть выше места повреждения, не принимает никаких команд (вход низкого уровня) и, таким образом, срабатывает почти мгновенно.

Рис. H55 — Логическая избирательность.

Селективность автоматического выключателя для обеспечения доступности электроэнергии

Промышленные предприятия, больницы, центры обработки данных и, фактически, любой тип объекта или университетского городка не могут позволить себе какое-либо количество простоев из-за проблем с электрической системой. Время простоя также негативно влияет на удовлетворенность клиентов и чистую прибыль.Кроме того, стандарт IEC 60364 делает избирательность обязательной для установок, обеспечивающих безопасность, в то время как местные правила могут также требовать ее для других конкретных приложений.

Конструкция электрической системы, включая выбранные защитные устройства, напрямую способствует обеспечению доступности электроэнергии. Частью достижения доступности является оптимизация координации устройств. Следует тщательно выбирать устройства для правильной работы в сочетании с другими устройствами в электрической системе, включая переключатели, контакторы, автоматические выключатели и устройства защитного отключения (УЗО) внутри такого узла, как распределительный щит.

В этой серии блогов мы рассмотрим преимущества согласования автоматических выключателей. В электрических системах можно использовать несколько типов координации, в зависимости от требований. В этом посте мы рассмотрим «избирательность», а в моем следующем посте — «каскадирование». Оба метода охватываются стандартом автоматического выключателя IEC 60947-2, приложение A.

.
Как работает избирательность?

Очевидно, что для таких объектов, как больницы, центры обработки данных и аэропорты, важно поддерживать работоспособность при всех критических нагрузках.Но для таких приложений, как непрерывные производственные процессы или охлаждение пищевых продуктов, потеря мощности может привести к дорогостоящим повреждениям сырья, продукции и времени. Когда в распределительной цепи происходит перегрузка, короткое замыкание или замыкание на землю, доступность энергии должна сохраняться для всех других частей электрической установки.

Одним из решений является применение селективности — иногда называемой дискриминацией — между цепями. Как это работает? Если в цепи возникает неисправность, срабатывает автоматический выключатель, ближайший к неисправности.Автоматические выключатели перед сработавшим выключателем остаются неизменными, поэтому питание остается доступным для всех других цепей и нагрузок.

Кроме того, бригаде объекта будет намного быстрее найти и устранить источник неисправности, поскольку им просто нужно идентифицировать цепь, в которой сработал один выключатель. Напротив, если сработал автоматический выключатель, расположенный выше по потоку, неисправность могла произойти в любой из ряда нижестоящих распределительных цепей, поэтому на поиск потребуется больше времени.

Несколько уровней селективности

Важно, чтобы автоматические выключатели были разработаны для совместной работы.В коммерческих зданиях, например, функция и номинальные характеристики автоматического выключателя зависят от его положения в электрической архитектуре: воздушные автоматические выключатели (ACB) или высокопроизводительные автоматические выключатели в литом корпусе (MCCB) в качестве входного устройства с автоматическими выключателями среднего уровня и миниатюрными цепями. автоматические выключатели (MCB) для оконечных цепей.

При рассмотрении нескольких уровней качество установки будет зависеть от того, как продукты спроектированы таким образом, чтобы их можно было скоординировать вместе для управления коротким замыканием. Это трудно гарантировать, когда смешиваются продукты разных марок.Выбор продуктов от одного производителя, у которого есть инженерные группы, работающие в тесном сотрудничестве, может помочь обеспечить лучшую координацию.

В случае короткого замыкания в одной точке установки следует иметь в виду, что все автоматические выключатели между источником питания (например, электросетью) и местом повреждения обнаружат перегрузку по току. Главный вход ACB или MCCB с высоким рейтингом может быть отложен для достижения «селективности на основе времени». Задача здесь состоит в том, чтобы определить правильную настройку. Для автоматических выключателей с ограничением тока — сюда входит большинство автоматических выключателей на фидерах и автоматических выключателей в конечных распределительных цепях — добиться селективности еще сложнее.Он основан на ограничении сквозной энергии всех задействованных автоматических выключателей, а также энергии неотключения вышестоящего автоматического выключателя. Это необходимо учитывать при расчете отключающих характеристик и отключающих характеристик всего диапазона.

Благодаря тесному сотрудничеству между нашими группами разработчиков MCB, MCCB и ACB, Schneider Electric может предложить несравнимый ассортимент селективных продуктов, позволяющих создавать архитектуры с несколькими промежуточными распределительными щитами для оптимизации длины кабеля.

Выбор автоматических выключателей по селективности

Что еще более важно, как выбрать правильную комбинацию автоматических выключателей и номиналов, чтобы селективность работала надежно?

Schneider Electric предоставляет специальное программное обеспечение (EcoStruxure Power Design), онлайн-инструменты и руководство (Руководство по селективности, каскадированию и координации) для поддержки проектирования низковольтной установки с учетом селективности. Кроме того, наличие правильных продуктов, таких как автоматические выключатели серий MasterPact, ComPact и Acti9, предлагает ограниченное количество типоразмеров и моделей, чтобы сделать этот процесс еще проще.Эти линейки выключателей также разработаны и испытаны для выборочной координации — от ACB до MCCB до MCB, а также пускатели двигателей и автоматические выключатели двигателей — что дает вам уверенность в том, что селективность будет работать, от сети до фидеров. до окончательного распределения.

Что вы думаете? Продолжите обсуждение на форуме Power Availability Forum

.

Решено: что стоит за полной избирательностью, полной избирательностью и повышенной избирательностью?

Здравствуйте,

Спасибо за соответствующий вопрос.Я понимаю, что это действительно может сбивать с толку.

Селективность (или дискриминация) достигается с помощью устройств защиты от перегрузки по току и замыкания на землю, если состояние отказа, возникающее в любой точке установки, устраняется защитным устройством, расположенным непосредственно перед замыканием, в то время как все другие защитные устройства остаются незатронутый.

Это основная цель: минимизировать часть установки, отключенную в случае неисправности, такой как перегрузка, короткое замыкание линии на линию или замыкание линии на землю.Задача состоит в том, чтобы преобразовать это общее требование в критерии выбора автоматических выключателей.

Селективность достигается, когда максимальный ток короткого замыкания в точке установки (Isc_max) ниже предела селективности (Is) автоматических выключателей, питающих эту точку установки. Вот где в игру вступают концепции полной / полной / расширенной селективности … IEC 60364-5-53: 535 2019 теперь дает некоторые рекомендации.

Если рассматривать два автоматических выключателя, возможны следующие ситуации:

  1. Is : Предел селективности (Is) между двумя автоматическими выключателями ниже отключающей способности автоматический выключатель на стороне нагрузки (Icu или Icn).(В этом случае мы говорим о «частичной селективности» между двумя автоматическими выключателями.)

Пример: ComPact NSX100F (36 кА, 400 В) TMD 100A и iC60N (10 кА, 40 В) C 32A Предел селективности Is = 1 кА

В данной электрической установке тогда возможны два случая:

  • Is : Максимальный ток короткого замыкания на стороне нагрузки (Isc_max) выше, чем этот предел селективности «Is» .(1кА в примере). В этом случае селективность не будет достигнута для всех значений тока короткого замыкания. Мы называем эту ситуацию « частичной селективностью» в установке и частичной селективностью для автоматических выключателей.

  • Isc_max <= Is : максимальный ток короткого замыкания на стороне нагрузки меньше или равен этому пределу селективности Is. (1кА в примере). В этом случае мы говорим о « Полная селективность » в установке, даже если она частичная с точки зрения автоматического выключателя.
  1. Isc_max Предел селективности (Is) между двумя автоматическими выключателями равен отключающей способности автоматического выключателя на стороне нагрузки и максимальному току короткого замыкания на нагрузке. сторона меньше или равна этой отключающей способности. В этом случае мы говорим о « Полная селективность » в установке и полная селективность для автоматических выключателей.

Пример: ComPact NSX100F (36 кА, 400 В) Micrologic 2.2 100 А и iC60N (10 кА, 40 В) C 32 А: общая селективность

  1. Icu Максимальный ток короткого замыкания на стороне нагрузки выше, чем отключающая способность автоматического выключателя на стороне нагрузки при использовании резервного (или каскадного) эффекта в соответствии с IEC 60364-4-43 Ed 3 2008 § 434.5.1 или эквивалентных национальных стандартов, таких как BS7671, NFC15100. В этом случае максимальный ток короткого замыкания должен быть ниже, чем усиленная отключающая способность (Icomb). Предел селективности между двумя автоматическими выключателями в этом конкретном случае также может быть увеличен или нет в соответствии с информацией производителя. Если предел селективности превышает Icu выключателя, расположенного ниже по цепи, это называется « Enhanced selectivity » в установке и повышенной селективностью для автоматических выключателей.

Пример: ComPact NSX100F (36 кА, 400 В) Micrologic 100A и iC60N (10 кА, 40 В) C 32A «20/20»

  • Повышенный предел селективности = 20 кА
  • Повышенная отключающая способность = 20 кА

В завершение:

Селективность в данной установке в соответствии с характеристиками селективности автоматических выключателей без резервная

автоматические выключатели

Частично до Is

902 79

Полный

Ток короткого замыкания

Последствия селективности для электроустановки

Частичное (до Is)

Is <= Isc max <= Icu или Icn

Isc max

Всего

Макс. данная установка в соответствии с характеристиками селективности выключателей при использовании резервного питания:

9027 I

Is макс.

Характеристики селективности двух автоматических выключателей

Ток короткого замыкания

Последствия селективности для электрическая установка

Частично (до Is)

Is

Частично (до Is)

Всего

Частично (до Icu)

Enhan ced

Icu

Повышенная селективность (до Is_enhanced)

С точки зрения конструктора, когда избирательность I в электрической установке ожидается укажите следующее: Либо «Требуется полная селективность, а резервное копирование запрещено», либо «Требуется полная селективность, если применяется резервирование, должна быть проверена повышенная селективность до максимального тока короткого замыкания.

Матье Гийо

Schneider Electric

Глава 12.6 — Избирательность и пропускная способность

12.6 ВЫБОРКА И ШИРИНА ПОЛОСЫ

Последовательная цепь RLC дает неодинаковую реакцию на напряжения разных частот.
На частоте резонанса импеданс минимален, а ток
максимален. Когда частота приложенного напряжения уменьшается
или увеличивается от этой резонансной частоты, импеданс увеличивается, а
ток падает.На рисунке 12.9 показано изменение тока I от частоты.
Таким образом, последовательная цепь RLC обладает частотной избирательностью.

На рисунке 12.9 показаны частотные кривые и последовательной цепи RLC
для небольшого значения R. Частоты f 1 и f 2 , при которых ток I падает до
(или 0,707) от его максимального значения называются частоты половинной мощности .
Пропускная способность ( f 2 f 1 ) называется полосой половинной мощности или просто полосой
схемы.


РИСУНОК 12.9 График зависимости тока от частоты серии RLC цепь .

Селективность резонансного контура определяется как отношение резонансной частоты
f r к ширине полосы половинной мощности, то есть избирательности.

Ток в последовательной цепи RLC определяется как,

Пусть ω 2 будет такой частотой, что

Тогда на частоте ω 2 ,

,

Таким образом, ω 2 радиан / сек.(или f 2 Гц) дает верхнюю частоту половинной мощности.
Аналогично, пусть ω 1 будет такой частотой, что,

Тогда ток на частоте ω 1 будет равен,

Величина,

Таким образом, ω 1 радиан / сек.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *