Датчик температуры устройство принцип действия: типы, принцип работы, диапазон температур

Содержание

типы, устройство, принцип работы, схемы подключения

Контроль температуры повсеместно задействуется в технологических процессах, позволяя выбирать подходящий режим работы или отслеживать изменения состояния материала. Температурный режим одинаково важен как при включении духовки на кухне, так и в доменных печах при плавлении стали, а отклонение от нормальной работы может привести к аварии и травмированию людей. Чтобы избежать неприятных последствий и обеспечить возможность регулирования степени нагрева используется датчик температуры.

Разновидности, устройство и принцип работы

В ходе развития и совершенствования технологий датчик температуры, как измерительное приспособление, претерпел множественные изменения и модернизации. Благодаря чему сегодня они представлены в большом разнообразии, которые можно разделить по нескольким критериям. Так, в зависимости от способа передачи и отображения данных об измерениях температуры они подразделяются на цифровые и аналоговые. Цифровые устройства являются более современным решением, так как информация в них отображается на дисплее и передается по электронным каналам коммуникации, аналоговые имеют циферблатное отображение данных, электрический или механический способ передачи измерений.

В зависимости от принципа действия все датчики можно подразделить на:

  • термоэлектрические;
  • полупроводниковые;
  • пирометрические;
  • терморезистивные;
  • акустические;
  • пьезоэлектрические.

Термоэлектрические

В основе работы термоэлектрического датчика лежит принцип термопары (см. рисунок 1) – у всех металлов существует определенная валентность (количество свободных электронов на внешних атомарных орбитах, не задействованных в жестких связях). При воздействии внешних факторов, сообщающих свободным электронам дополнительную энергию, они могут покинуть атом, создавая движение заряженных частиц. В случае совмещения двух металлов с различным потенциалом выхода электронов и последующим нагреванием места соединения возникнет разность потенциалов, получившая название эффекта Зеебека.

Рис. 1. Устройство термопары

На практике применяется несколько разновидностей термоэлектрических датчиков температуры, так, согласно п.1.1  ГОСТ Р 50342-92 они подразделяются на:

  • вольфрамрений-вольфрамрениевые (ТВР) – применяется в средах с большой рабочей температурой порядка 2000°С;
  • платинородий-платинородиевые (ТПР) – отличаются высокой себестоимостью и высокой точностью измерений, применяются я в лабораторных измерениях;
  • платинородий-платиновые (ТПП) – оснащаются защитной трубкой из металла и керамической изоляцией, обладают высоким температурным пределом;
  • хромель-алюмелевые (ТХА)  — широко применяются в промышленности, способны охватывать диапазон температуры до  1200°С, используются в кислых средах;
  • хромель-копелевые (ТХК) –  характеризуются средним температурным показателем, монтируются только в неагрессивных средах;
  • хромель-константановые (ТХК) — актуальны для газовых смесей и разжиженных аэрозолей нейтрального или слабокислого состава;
  • никросил-нисиловые (ТНН) – применяются для устройств среднего температурного диапазона, но обладают длительным сроком эксплуатации;
  • медь-константановые (ТМК) – характеризуется наименьшим пределом измерений до 400°С, но отличается устойчивостью к влаге и некоторым категориям агрессивных сред;
  • железо-константановые (ТЖК) – применяются в среде с разжиженной атмосферой или вакуумного пространства.

Такое разнообразие температурных датчиков на основе термопары позволяет охватывать любые сферы человеческой деятельности.

Полупроводниковые

Изготавливаются на основе кристаллов с заданной вольтамперной характеристикой. Такие датчики температуры работают в режиме полупроводникового ключа, аналогично классическому биполярному транзистору, где степень нагревания сравнима с подачей потенциала на базу. При повышении температуры полупроводниковый датчик  начнет выдавать большее значение тока. Как правило, самостоятельно полупроводник не используется для измерения нагрева, а подключается через цепь усилителя (см. рисунок 2).

Рис. 2. Подключение полупроводникового датчика через усилитель

Отличаются широким диапазоном производимых измерений и возможностью подстройки датчика в соответствии с рабочими параметрами оборудования. Являются высокоточным типом, мало зависящим от продолжительности эксплуатации. Обладают небольшими габаритами, за счет чего легко устанавливаются в схемах, радиоэлементах и т.д.

Пирометрические

Работают за счет специальных датчиков – пирометров, которые позволяют улавливать малейшие температурные колебания рабочей поверхности любого предмета. Непосредственно сам чувствительный элемент представляет собой матрицу, реагирующую на определенную частоту температурного диапазона. Этот принцип положен в основу измерений бесконтактным термометром, который получил широкое распространение в период борьбы с коронавирусом. Помимо этого их применение активно используется для тепловизионного контроля конструктивных элементов, оборудования, зданий и сооружений.

Рис. 3. Принцип действия пирометрического датчика

Терморезистивные

Такие датчики температуры выполняются на основе терморезисторов – устройств с определенной зависимостью сопротивления от степени нагрева основного материала. С повышением температуры, изменяется и проводимость резистора, благодаря чему вы можете следить за состоянием нужного объекта.

Основным недостатком терморезистивного датчика  является малый диапазон измеряемой температуры, но он способен обеспечивать хороший шаг измерений и высокую точность в десятых и сотых долях градусов Цельсия. Из-за чего их нередко включают в цепь с применением усилителя, расширяющего рабочие пределы.

Акустические

Акустические датчики температуры функционируют по принципу определения скорости прохождения звуковых колебаний в зависимости от температуры материала или поверхности . Непосредственно сам сенсор производит сравнение скорости звука, генерируемого источником, которая будет отличаться, в зависимости от степени нагрева (см. рисунок 4). Такой тип является бесконтактным и позволяет производить замеры в труднодоступных местах или на объектах повышенной опасности.

Рис. 4. Звуковой датчик температуры

Пьезоэлектрические

Работа датчика основана на эффекте распространения колебаний кварцевого кристалла при прохождении электрического тока. Но, в зависимости от температуры окружающей среды, будет меняться и частота колебаний кристалла. Принцип фиксации температурных изменений заключается в измерении частоты колебаний и последующем сравнении с установленной градуировкой номиналов для разных температур.

Схемы подключения

Основные отличия в подключении датчика температур обуславливаются сферой его применения и конструктивными особенностями. Так, в рамках статьи, мы рассмотрим несколько наиболее распространенных и интересных вариантов. Таковыми является подключение с помощью двухпроводной и трехпроводной схемы.

Рис. 5. Двухпроводная схема подключения

На рисунке 5 приведен вариант двухпроводного присоединения измерительного устройства. Этот принцип рекомендуется для всех датчиков  температуры с небольшим расстоянием до контролируемого объекта. Так как сопротивление самого чувствительного элемента  Rt мало измениться от сопротивления соединительных проводников R1 и R2, соответственно, поправка на измерения будет минимальной.

Рис. 6. Трехпроводная схема подключения

При больших расстояниях, от 150 м и более, подключение датчика следует выполнять по трехпроводной схеме, в которой существенно снижается погрешность на сопротивление в проводах R1, R2, R3.

Рис. 7. Схема подключения датчика температуры двигателя

Практически в каждом современном авто осуществляется постоянный контроль температурных параметров мотора. Поэтому использование датчика является обязательным требованием безопасности. Согласно двухпроводной схемы (рисунок 7) датчик подключается одним выводом на отдельно стоящий концевик капота, который не имеет каких-либо подключений к цепи. А второй вывод, подсоединяется к блоку сигнализации установленным порядком, в соответствии с моделью.

Рис. 8. Схема подключения цифрового датчика температуры

На рисунке 8 приведен пример включения цифрового датчика Dallas. Это модель с тремя выводами, первый из которых, согласно распиновки GND подключается к заземляющему выводу микроконтроллера, второй DATA к выводу PIN 2, а третий к клемме питания +5 В. Между третей и второй ножкой включается резистор на 4,7кОм.

Примение

Сфера применения датчиков температуры охватывает как бытовые приборы, так и оборудование общепромышленного назначения, сельскохозяйственную отрасль, военную промышленность, аэрокосмический сектор. Каждый из вас может встретить их у себя дома в нагревательных приборах – бойлерах, духовках, мультиварках или хлебопечках.

В тяжелой промышленности тепловые сенсоры позволяют контролировать степень нагрева печей, воздуха в рабочей области, состояние трущихся поверхностей. В медицине их используют для контроля температуры в труднодоступных местах или для упрощения различных процедур.

Многие автолюбители часто сталкиваются с анализаторами температуры, контролирующими состояние масла или другой охлаждающей жидкости. На сети железных дорог они позволяют отслеживать нагрев букс и колесных пар. В энергетике с их помощью обследуются контактные соединения и качество прилегания поверхностей.

Как подобрать?

При выборе датчика температуры необходимо руководствоваться такими критериями:

  • если датчик будет соприкасаться или располагаться внутри измеряемой среды, то берется контактная модель, если находиться вне объекта, то бесконтактная;
  • условия и состояние среды, в которой он будет функционировать (влажность, агрессивные вещества и т.д.) должны соответствовать возможностям датчика;
  • шаг и градуировка измерений должны обеспечивать удобную эксплуатацию и датчика, и оборудования;
  • если датчик подлежит замене в ходе эксплуатации, то устанавливаются сменные варианты;
  • при выборе датчика температуры для замены неисправного, лучше воспользоваться его VIN кодом;
  • предел рабочих температур должен охватывать все возможные значения нагрева, некоторые из них приведены в таблице ниже.

Таблица: температурные пределы датчиков термоэлектрического типа

ТипСоставДиапазон температур
Tмедь / константанот -250 °C до 400 °C
Jжелезо / константанот -180 °C до 750 °C
Eхромель / константанот -40 °C до 900 °C
Kхромель / алюмельот -180 °C до 1 200 °C
Sплатина-родий (10 %) / платинаот 0 °C до 1 700 °C
Rплатина-родий (13 %) / платинаот 0 °C до 1 700 °C
Bплатина-родий (30 %) / платина-родий (6 %)от 0 °C до 1 800 °C
Nнихросил / нисилот -270 °C до 1 280 °C
Gвольфрам / рений (26 %)от 0 °C до 2 600 °C
Cвольфрам-рений (5 %) / вольфрам-рений (26 %)от 20 °C до 2 300 °C
Dвольфрам-рений (3 %) / вольфрам-рений (25 %)от 0 °C до 2 600 °C

Использованная литература

  1. Виглеб Г  «Датчики», 1989
  2. Фрайден Дж «Современные датчики. Справочник» 2005
  3. Ананьева Н.Г., Ананьева М.С., Самойлов В.Н «Измерение температуры» 2015
  4. Дж. Вебстер «Справочник по измерениям, сенсорам и приборам» 2006

Датчик температуры охлаждающей жидкости: назначение, устройство, принцип работы

Работа мотора в машине сопряжена с постоянным процессом сгорания топливной смеси. Из-за чего двигатель внутреннего сгорания (ДВС) может перегреться и выйти со строя. Для предотвращения подобных инцидентов ДВС принудительно охлаждается посредством циркуляции специальной жидкости.  А вот контроль за ее состоянием производит датчик температуры охлаждающей жидкости (ДТОЖ).

Назначение

Такой датчик предназначен для контроля состояния двигателя авто посредством фиксации температурных изменений жидкости охлаждения. С этой целью его размещают в антифризе, где происходит непосредственное взаимодействие чувствительного элемента и слоя охлаждающей жидкости. Также заметьте, что в некоторых автомобилях размещают два сенсора по отношению ко входному и выходному патрубку системы охлаждения, за счет чего компьютер производит сравнение показаний.

Датчик передает данные измерений на блок управления для дальнейшей регулировки работы системы. Логический блок принимает решение о продолжении работы автомобиля в том же режиме или об уменьшении параметра, влияющего на фактора нагрева. Помимо электронных моделей, существуют и механические сенсоры, которые предназначены не для взаимодействия с логическим блоком, а для вывода информации на термометр в салоне. В случае с механическими моделями водитель сам принимает решение об изменении режима вождения или полной остановке агрегата.

В зависимости от модели машины, датчик предназначается для выполнения таких функций:

  • Контроль температуры в конкретный момент времени для системы охлаждения.
  • Влияние на выбор режима работы, в зависимости от сложившейся ситуации.
  • Подача сигнала к аварийному включению или отключению мотора, при резком нарастании или падении температуры.
  • Контроль опережения или запаздывания зажигания – позволяет регулировать интенсивность выброса выхлопных газов и нагрузку на поршневую систему.
  • Подача сигнала на обогащение топливной смеси в случае недопустимого снижения температуры охлаждающей жидкости.

Устройство и принцип работы

В отличии от устаревших моделей, современные приспособления для контроля температуры, основываются на работе термистора. В соответствии с п.22 ГОСТ 21414-75 это такой нелинейный резистор, который изменяет величину собственного омического сопротивления, в зависимости от степени нагрева или охлаждения.

Рис. 1. Устройство датчика температуры охлаждающей жидкости

Для датчика температуры охлаждающей жидкости применяются резистивные элементы с отрицательным температурным коэффициентом. Это обозначает, что в отличии от классических проводниковых материалов, где с нагреванием омическое сопротивление возрастает, повышение температуры датчика приводит к уменьшению сопротивления.

К примеру, измеряя показания при +20 ºС сопротивление термистора будет составлять 3,5 кОм. При нагревании антифриза до +90 ºС сопротивление датчика упадет до отметки 0,24 кОм. Но, существуют и исключения, к примеру, у автомобилей марки Renault датчик имеет положительный температурный коэффициент.

Принцип действия датчика температуры охлаждающей жидкости базируется на следующей схеме:

Рис. 2. Принцип действия датчика температуры охлаждающей жидкости
  1. В состоянии покоя двигателя  охлаждающая жидкость будет иметь сопоставимую с окружающей средой температуру. Сопротивление термистора датчика Rt останется на максимальной отметке и поданное напряжение практически не выдаст ток в цепь индикации логического блока.
  2. При замыкании контактов V в замке зажигания вместе с запуском двигателя будет подано напряжение от аккумулятора А на датчик температуры. По мере нарастания оборотов, сопротивление  термистора Rt будет снижаться в соответствии с его характеристикой.
  3. В случае превышения допустимого предела температур, Rt  перейдет в режим проводимости. В соответствии с законом Ома величина тока, протекающего через термистор, возрастет. Сигнал придет на логический блок и будет подана команда для снижения объема, впрыскиваемого топлива, или уменьшение числа оборотов коленчатого вала.
  4. При снижении оборотов и мощности мотора, со временем камера сгорания охладится и ДВС придет в норматив температуры. Охлаждающая жидкость остынет и у термистора Rt снова возрастет сопротивление. Величина тока в цепи индикации логического блока снова уменьшится, и автомобиль перейдет в нормальный режим работы.

В зависимости от величины падения напряжения на термисторе датчика Rt, будет оцениваться текущий температурный режим. В данном примере мы рассмотрели электрический метод измерения, но у некоторых типов датчиков может применяться и механический, работающий за счет температурного расширения.

Где находится?

Для производства каких-либо операций с датчиком температуры охлаждающей жидкости необходимо четко представлять себе место его установки. Следует отметить, что точка установки будет отличаться в зависимости от модели автомобиля. Поэтому для поиска лучше обратиться к инструкции производителя, где указана позиция соприкосновения с охлаждающей жидкостью.

Рис. 3. Место установки датчика температуры охлаждающей жидкости

Наиболее распространенным местом установки является:

  1. головка блока цилиндров или выпускной патрубок;
  2. верхний шланг радиатора;
  3. корпус термостата;
  4. в некоторых ситуациях может устанавливаться два датчика температуры– на входе и на выходе.

Место установки предусматривает обеспечение контакта чувствительного элемента с охлаждающей жидкостью. Но, в случае утечки антифриза из системы, контакт может  нарушиться и контроль температуры прекратиться. В результате этого вы получите некорректные показания, что может повлечь сбой в работе системы.

Признаки поломки

Как и неисправности любого устройства в автомобиле, выход со строя сенсора температуры охлаждающей жидкости может привести к нежелательным последствиям.

При движении машины поломка может проявляться как:

  1. проблематичный запуск мотора в холодную погоду;
  2. нетипичные звуки от выхлопных газов только запущенного мотора;
  3. при достижении максимальной температуры мотор глохнет;
  4. не запускается вентилятор охлаждения при нагревании ДВС;
  5. превышение расхода топлива сверх установленной нормы.

Современные авто выводят данные о нарушении температуры охлаждающей жидкости на дисплей. Причиной неисправности может стать как механическая поломка (сорванная резьба, растрескивание корпуса, перегорание термистора), так и электрическая (короткое замыкание в измерительной цепи или обрыв провода). Чтобы убедиться в правильности вашего предположения, проверьте датчик, и, при необходимости замените его новым.

Проверка и замена

Следует отметить, что появление характерных признаков может обуславливаться и другими поломками. К примеру, поломкой вентилятора охлаждения или нехваткой охлаждающей жидкости. Поэтому для начала необходимо проверить работоспособность и правильность показаний  датчика температуры охлаждающей жидкости.

На практике существует довольно большое число методов, одни из которых вы можете реализовать в домашних условиях. Другие, как съем осциллограммы, вам проведут только на станциях техобслуживания. Самостоятельно произведите внешний осмотр датчика охлаждающей жидкости – на нем должны отсутствовать следы ржавчины, подтеки антифриза, трещины и прочие следы.

Если внешне датчик исправен, проверьте его с помощью мультиметра, для этого:

  • Отсоедините шлейф от контактов датчика – вам необходимо получить доступ для проведения замеров.
Рис. .4. Отсоедините шлейф от контактов датчика
  • Измерения производятся изначально при холодном ДВС. Если это условие не обеспечено, выкрутите датчик с посадочного места и опустите чувствительный элемент в холодную воду.
Рис. 5. Выкрутите датчик с посадочного места
  • Подключите щупы мультиметра к выводам датчика и замерьте величину омического сопротивления.
Рис. 6. Подключите щупы к выводам датчика
  • Затем запустите ДВС и дождитесь включения вентилятора охлаждения, если вы выкрутили датчик температуры, поместите его в кипяток. Повторно замерьте величину переходного сопротивления.
Рис. 7. Опустите датчик в горячую воду и повторно измерьте сопротивление
  • Сравните полученные данные сопротивления для вашей модели автомобиля. К примеру, ниже приведена такая таблица:

Таблица: зависимость сопротивления и падения напряжения датчика температуры от степени нагрева

Температура ОЖ (°С)Сопротивление (Ом)Напряжение (В)
 4800 — 66004,00 — 4,50
1040003,75-4,00
202200 — 28003,00 — 3,50
3013003,25
401000-12002,50 — 3,00
5010002,5
608002,00-2,50
80270 — 3801,00-1,30
110 0,5
 разрыв цепи5,0 ±0,1

В рассматриваемом примере в холодном состоянии при +10 ºС сопротивление будет составлять 4000 Ом. После того, как вы опустите его  в кипяток, исправный датчик будет иметь сопротивление в пределах 200 – 270 Ом. Если показания кардинально отличаются, налицо поломка сенсора, в таком случае его необходимо заменить.

Для замены датчика температуры охлаждающей жидкости из системы охлаждения слейте антифриз. Отключите шнур питания, если еще не отсоединили его. Затем, при помощи торцевого или рожкового ключа выкрутите сам сенсор.

Установите новый датчик охлаждающей жидкости в посадочное место, обязательно наденьте прокладку. Плотно зажмите его ключом по резьбе до упора.

Рис. 8. Плотно зажмите ключом новый датчик

Замена окончена, можете подключить питающий шнур и залить обратно охлаждающую жидкость.

Список использованных источников

  • Диана Скляр «Ремонт и обслуживание автомобилей для чайников» 2012
  • Коробейник А.В. «Ремонт автомобилей. Практический курс» 2003
  • Твег Росс «Система впрыска бензина. Устройство, обслуживание, ремонт» 2003
  • Березин С.В. «Справочник автомеханика» 2008

Как работает датчик температуры?

Как работает датчик температуры?

Датчик температуры – довольно маленький, но очень важный. В первую очередь на его показатели водители обращаются внимание зимой. Как работают датчики температуры двигателя, где они находятся и можно ли их чинить – это нужно знать каждому автовладельцу.

Как работает датчик температуры двигателя?

Как и во многих подобных устройствах, принцип работы основан на свойствах некоторых материалов менять свое сопротивление при нагревании. Поэтому датчики температуры охлаждающей жидкости представляют собой корпус из цветного металла, легко проводящего тепло, и термистора, который плотно прижат к внешней оболочке. Сигнал передается по проводам либо на термометр на передней панели, либо напрямую в блок управления.

Датчики температуры двигателя погружаются в антифриз. Когда охлаждающая жидкость нагревается, то нагревается и датчик. При этом повышается и сопротивление термистора. Блок управления посылает на термистор сигнал, измеряет напряжение вернувшегося сигнала. Результат измерения сравнивается с эталонной таблицей в памяти устройства, и на экран выводится температура двигателя.

Виды датчиков, контролирующих температуру охлаждающей жидкости

Встречаются датчики температуры двигателя в двух исполнениях:

  1. Цифровом.
  2. Механическом.

Цифровые – современные устройства, работающие в тандеме с электронным блоком управления. У них нет отдельного табло для вывода результатов – их регистрирует и обрабатывает сам блок. Поэтому такие датчики температуры представляют собой капсулу из металла и провода.

Механические используют в старых моделях авто. Показания у них выводятся на обычный термометр.

Расположение термодатчиков

Датчики температуры двигателя размещаются как можно ближе к цилиндрам. Чаще всего они либо входят в комплект автомобильного термостата, либо устанавливаются в выпускном коллекторе.

Диагностика датчиков температуры автомобиля

Любое устройство имеет свойство ломаться. Датчики температуры охлаждающей жидкости не исключение. Периодически их нужно проверять и менять.

Возможные неисправности

Чаще всего датчики температуры могут ломаться из-за:

  • физических повреждений – сорвалась резьба, треснул корпус, сгорел термистор;
  • проблем с электрической частью – короткое замыкание, обрыв проводов;
  • нехватки антифриза.

Проблемы с датчиком можно определить по работе двигателя и неправильным показаниям. Если есть сомнения в работе – его нужно снять и протестировать. Для этого датчик погружают в антифриз, нагревают и в процессе замеряют сопротивление. Если результаты опыта отличаются от эталона – датчик неисправен.

Если датчик температуры охлаждающей жидкости неисправен. Последствия

Проблемы с устройством обязательно скажутся на двигателе. Если в старых моделях этим можно было пренебречь – ну не работает термометр, и ладно, то в новых так не получится. Блок управления, опираясь на неправильные данные датчика, будет плохо выполнять свою работу. В результате двигатель может сбоить, не запускаться, топливо будет сгорать не полностью. Итоги могут быть печальны – износ деталей, нагар в цилиндрах, ремонт.

Датчики температуры двигателя – маленькие детали одного большого устройства. Но без них пришлось бы тяжело. Недаром они используются уже очень давно. За исправностью работы этих устройств лучше следить внимательно, периодически их тестировать и вовремя менять.

разновидности, принцип работы, устройство и распиновка разъема

Датчики измерения температуры используются для контроля веществ в твердом, жидком или газообразном состоянии. В зависимости от целей применения, схема строения прибора будет видоизменяться. Но чтобы выбрать подходящий инструмент необходимо обращать внимание на одни и те же нюансы.

Виды, конструкция и принципы действия

Термопара

Датчик включает в себя две проволоки из разных металлов, спаянных между собой. Для отношения концов друг с другом в зоне постоянной температуры, в конструкцию добавляют удлиняющие провода из двух металлов. Когда на концы проводов действуют разные температуры (например, при помещении датчика в горячую воду), то в цепи появляется электрический ток. Сила возникшего тока (от 40 до 60 мкВ) зависит от используемого материала термопары, который влияет на термоэлектрическую силу прибора.

В практике можно встретить железоникелевые, хромоалюминиевые, медно-константановые и так далее. В дешевых моделях используются неблагородные металлы (аналогичных термоэлектродам) для удлиняющих проводов, а в дорогих – благородные металлы, которые способы развивать аналогичную термо-ЭДС, что и электроды (необходимо для уменьшения стоимости высококлассным приборов).

Термопара относится к датчикам с высокой точностью. Проблемой устройства является сложность получения замеренного значения. Термопара действует по принципу относительности отличия температур между разъемами. Горячий спай помещается в замеряемое вещество, а холодный остается находиться в окружающей среде.

При необходимости использования термопары работа проводится следующим образом. Температуру холодного спая необходимо компенсировать, для чего вторую термопару помещают в среду с известным показателем.

Если используется программный способ компенсации, второй датчик помещается в изометрическую камеру, где находятся холодные спаи, что позволяет контролировать температуру с высокой точностью. Самое сложное в работе с одноконтактной термопарой – снять показатели.

В ГОСТе прописаны коэффициенты, необходимые для перевода ЭДС в показатель температуры и наоборот. Подсчет также может вестись при помощи контроллера.

Но получаемый от термопары показатель ЭДС измеряется в единицах и сотнях микровольт. Поэтому использование аналоговых преобразователей не будет успешным. Для сборки специальной конструкции, цель которой – получение точных результатов, потребуются малошумящие аналоговые преобразователи.

На практике для устранения имеющихся погрешностей используют автоматическое введение поправки на температуру свободных концов. Под этим подразумевают введение моста с плечами в виде медного и манганинового терморезисторов.

Терморезисторы

Терморезисторы делятся по типу зависимости сопротивления от температуры. Они могут быть отрицательными (NTC) или положительными (PTC).

Измерения легче проводить при помощи терморезисторов. Принцип работы построен на сопротивлении материалов внешней температуре. Высокая точность присуща для приборов, изготовленных из платины. На работу терморезисторов влияют две характеристики.

Первая – базовое сопротивление, второе – температура, при которой оно определяется. ГОСТ устанавливает, что определение должно проходить при 0 градусов по Цельсию. В нормативном документе указывается, что рекомендуется использовать несколько номиналов сопротивлений, определяемых в Омах, а также температуры, что позволит сопоставить результаты при 0°С и другом показателе. Для этого используется следующая формула:

Ткс = (Re – R0c) / (Te – T0c) *1/R0c

Температурный коэффициент будет изменяться в зависимости от используемого материала для термометров, что отражено в ГОСТе. В нормативном документе также указываются коэффициенты полинома, необходимые для расчета в зависимости от текущего сопротивления.

Термометры сопротивления обладают одним минусом – низкий температурный коэффициент сопротивления. Несмотря на этот нюанс, использование терморезисторов проще по сравнению с принципом работы термопары.

Способы измерения будут зависеть от комплектации модели. Базовые терморезисторы необходимо включать в цепь с источником тока и контролируемого дифференциального напряжения. Чтобы корректно определить доли единицы процента получаемых от температурного коэффициента проводников, лучше использовать аналого-цифровые преобразователи.

Если в датчик уже встроен аналоговый выход, соответствующий питаемому напряжению, то для оцифровывания можно напрямую подключать терморезистор к преобразователю

Комбинированные

Комбинированные датчики включают в себя несколько полупроводников, объединенных в единое устройство. Датчики могут иметь встроенный цифровой интерфейс, а не только интегральные схемы с выходом. Часто используется комбинированный датчик благодаря возможности подключения параллельных устройств. Погрешность при расчете температуры равна 2 °С, а при определении влажности – 5%. Проблема в таком датчике одна – оптимизация интерфейса.

Цифровые

В цифровых датчиках устанавливается трехвыводная микросхема. Показатели считываются с нескольких параллельно работающих датчиков, что позволяет получить показания с точностью 0,5 °С. Работа электронного термометра возможна от -55 до +125 °С. Единственным минусом устройства является скорость получения результатов – 750 секунд для получения максимально точного показателя. Определение точности прибора осуществляется при помощи соответствующих регулировок, которые необходимы для уменьшения количества затрачиваемого времени на получение результата. Опрос датчика не имеет смысла, так как корпус является инерционным.

Бесконтактные

Работа датчика основана на нагревании тонкой пленки, что осуществляется благодаря воздействию инфракрасных лучей. Встретить подобную технологию можно в пирометрических устройствах. В отличии от контактного, получить данные можно на расстоянии.

Кварцевые преобразователи температуры

Если диапазон изменяемых температур превышает стандартные значения и достигает отметки от -80 до +250°С, то используются кварцевые преобразователи. Такие устройства работают на принципе взаимодействия кварца и температуры, отражаемого частотной зависимостью. Преобразователь имеет несколько функций, которые меняются в зависимости от расположения среза по осям кристалла.

Кварцевые датчики отличаются высокой точностью, стабильностью и разрешением. Являются более перспективными способами измерения температуры. Часто можно встретить в цифровых термометрах.

Шумовые

Шумовой датчик служит для получения показателей по принципу разности потенциалов на резисторе, которые меняются в зависимости от температуры. На практике подобный способ измерения имеет условие – одна из температур должна быть известна, а вторая — измеряемая. Два полученных шума от различных температур сравнивают и находят искомое значение.

Работа датчика возможна от -270 до +1100 °С. Из преимуществ отмечается возможность измерения температур в термодинамике. Но минусом является сложность реализации такого способа измерения напряжения шумом из-за наличия различий с шумом усилителя.

Ядерного квадрупольного резонанса

Принцип работы биметаллического термометра основывается на действии градиента поля тока решетки кристалла и момента ядра, вызванного отклонением заряда от симметрии сферы. При помощи такого процесса создается процессия ядер. Частота напрямую зависит от градиента поля решетки. В зависимости от вещества, величина показателя может подниматься до нескольких тысяч МГц. Чем выше температура, тем меньше частота ЯКР.

ЯКР образует ампулу с веществом, которая помещается в обмотку индуктивности для дальнейшего соединения с контуром генератора. Если частота генератора и частота ЯКР совпадают, то исходящая от генератора энергия поглощается. При измерении вещества с температурой -263°С погрешность составляет 0,02 градуса, а при температуре 27°С, погрешность равна 0,002 градуса. Из преимуществ датчика выделяют неизменную стабильность. Минусом является значительная нелинейность преобразующей функции.

Объемные преобразователи

Принцип работы иного рода биметаллического термометра построен на свойстве веществ расширяться и сжиматься в зависимости от действующей температуры. Диапазон действия преобразователя определяется в зависимости от стабильности материала. Датчик может использоваться при температурах от -60 до +400°С. Погрешность составит от 1 до 5%.

При определении температуры датчиками на жидкости погрешность падает до 1-3% в зависимости от температурной среды. Температура закипания и замерзания жидкости также будет влиять на интервал работы датчика.

Если датчик измеряет преобразователи на газе, то граница измерения зависит от точки перехода газа в жидкое состояние и стойкостью баллона в воздействующей температуре.

Канальный

Все цифровые термометры относятся к канальным, так как для передачи сигналов они используют каналы. В зависимости от количества таких “магистралей” определяется канальность устройства. Так термометр Testo 925 относится к 1-канальным, в основе работы лежит термопара, как и у термометра Testo 735-2 – 3-канального. А Testo 810 – 2-канальный прибор с инфракрасным термометром.

Параметры выбора

Чтобы осуществить корректный выбор подходящего термометра, необходимо определить несколько условий, которые должны соответствовать для комфортной работы прибором.

Диапазон рабочей температуры

Необходимо знать, в каких температурах будет задействован термометр. Также нужно определить, какая погрешность будет приемлемой при получении результатов. Если диапазон температур небольшой, то подойдут термисторы. В самых суровых условиях работоспособны преимущественно шумовые приборы.

Условия проведения замеров

Возможно ли поместить термометр в среду или материал, который нужно заменить. Если нет, то получить данные можно при помощи радиационных термометров, которые замеряют температуру сквозь препятствия.

Время работы до калибровки или замены

Установить условия работы датчика. Окружающая обстановка может быть стандартной, с высокой влажность, окислительной, пожароопасной и так далее.

Величина сигнала выхода

Сигнал выхода должен соответствовать возможностям электроизмерительных приборов для дальнейшей обработки получаемых данных. Зависит это от полученных показателей температуры, преобразуемых в энергию.

Другие технические данные

Также при определении подходящего типа датчика температуры необходимо обращать внимание на второстепенные факторы. Эти нюансы позволяют выбрать самый подходящий аппарат для получения необходимых данных.

Погрешность

Для получения самых точных результатов потребуется большое количество времени. Лучший показатель выдает биметаллический термометр, построенный по принципу ЯКР и цифровые. Первые – быстрее, а вторые – точнее.

Разрешение

Этот показатель позволяет получить от датчика более точные приращениям дискретности измерения температуры. Ярким представителем является DS18B20, который может работать в разрешении 9,10,11 и 12 бит. Самый малый режим даст 0.5°C, а максимальный — 0.0625°C.

Напряжение

На величину выходного напряжения будет влиять сопротивление резистора. В зависимости от этого напряжение может быть линейным (изменяться в зависимости от температуры) и нелинейным. Для каждого датчика существуют свои эталонные величины на выводах термометра, который зависит от температуры измеряемого объекта.

Время сработки

Показатель отвечает за скорость получения результатов замера. Как правило, быстрые замеры можно получить, имея крупную погрешность. Для устранения этого недостатка потребуется пренебречь временем сработки и увеличить его до необходимого показателя точности.

Промышленные термодатчики и сенсоры

Кроме стандартных бытовых термодатчиков бывают промышленные, которые используются исключительно на специальных объектах. Их распространение направлено на определенную группу лиц из-за избыточных возможностей, которые требуются только на производстве. Некоторые из них способны работать в различных нетрадиционных средах и суровых условиях. Выбор подходящих типов осуществляется тем же образом, что и для подбора бытовых датчиков.

Применение

Стоит понимать, что каждый из типов датчиков создан для использования в специальных условиях. Практически во всех сферах производства и жизни требуется знать температуру. Так применять термисторы необходимо для получения абсолютных показателей, для сбора показателей в помещениях – шумовые, для получения максимально точных данных – цифровые и так далее.

Мир датчиков температур охватывает все сферы жизни, где требуется измерение показателей. Это может быть помещение, жидкость или предмет с совершенно различными нюансами. В одних помещениях высокая влажность, в другие нельзя попадать. Аналогичные параллели можно проводить с жидкостями и объектами. При выборе подходящего термометра необходимо обращать внимание на нюансы условий измерения.

Принцип работы датчиков температуры

Принцип работы

Термометры сопротивления (терморезисторы, термосопротивления)

Термометр сопротивления (Resistance Thermometer) — датчик для измерения температуры, принцип действия которого основан на зависимости электрического сопротивления от температуры.

Термосопротивления могут быть металлические (платина, никель, медь) или полупроводниковые.

Для большинства металлов температурный коэффициент сопротивления положителен — их сопротивление растёт с ростом температуры. Для полупроводников без примесей он отрицателен — их сопротивление с ростом температуры падает.

Термисторы

Термисторы – это полупроводниковые термосопротивления с большим температурным коэффициентом.

  • PTC-термисторы (Positive Temperature Coefficient), обладают свойством резко увеличивать свое сопротивление, когда достигнута заданная температура – широко используются для защиты двигателей
  • NTC-термисторы (Negative Temperature Coefficient), обладают свойством резко уменьшать свое сопротивление при достижении заданной температуры
PT100, PT1000

Платиновые термометры сопротивления (Platinum Resistance Thermometers) обладают высокой стойкостью к окислению и большой точностью измерения.

KTY

Кремниевые терморезисторы с положительным коэффициентом сопротивления, отличаются высокой линейностью характеристики, высоким быстродействием, надёжной твёрдотельной конструкцией и небольшой стоимостью.

Схемы включения термосопротивления в измерительную цепь

  • 2-х проводная схема используется там, где не требуется высокой точности, так как сопротивление присоединительных проводов суммируется с измеренным сопротивлением, что приводит к появлению дополнительной погрешности
  • 3-х проводная схема обеспечивает значительно более точные измерения, т.к. появляется возможность измерить сопротивление подводящих проводов и вычесть его из суммарного измеренного сопротивления
  • 4-х проводная схема — наиболее точная схема, обеспечивает полное исключение влияния подводящих проводов
Сравнение термометров сопротивления с термопарами

Преимущества:

  • выше точность и стабильность
  • можно исключить влияние сопротивления присоединительных проводов на результат измерения при использовании 3-х или 4-х проводной схемы измерений
  • практически линейная характеристика
  • не требуется компенсация холодного спая

Недостатки:

  • малый диапазон измерений
  • не могут измерять высокую температуру.

Термопары

Термопара (Thermocouple) — это два проводника из разных металлов, спаянные в одной точке. Эта точка измерения температуры называется — рабочий спай. Свободные концы называются холодным спаем. Если рабочий спай нагреть относительно холодного спая, то между свободными концами возникает напряжение (термо-ЭДС), пропорциональное разности температур.

Так как с помощью термопары всегда измеряется разность температур, то, чтобы определить температуру точки измерения, свободные концы у холодного спая должны содержаться при известной неизменной температуре.

Подключение к ПЛК

Холодные концы подключаются (непосредственно или с помощью компенсационных проводов, которые должны быть выполнены из тех же металлов, что и термопара) к клеммам соответствующего аналогового входа (с соблюдением полярности!) промышленного контроллера, который программно выполняет компенсацию температуры холодного спая и рассчитывает температуру в точке измерения.

При внутренней компенсации контроллер использует температуру модуля, к которому подключена термопара. При более точной внешней компенсации эталонная температура холодного спая измеряется с помощью дополнительного термометра сопротивления, который подключается к специальному входу контроллера.

Типы термопар
  • K: хромель-алюмель
  • J: железо-константан
  • S, R: платина-платина/родий и др.

Термопары отличаются диапазоном измеряемых температур и погрешностью измерений.

Преимущества термопар
  • Большой температурный диапазон измерения
  • Измерение высоких температур.
Недостатки
  • Невысокая точность
  • Необходимость вносить поправку на температуру холодного конца.

Термостаты

Термостат (Thermostat) – это регулятор, который поддерживает постоянную температуру воздуха или жидкости в системах отопления, кондиционирования и охлаждения.


Как и зачем измерять температуру: датчики температуры


НОВИНКА!

  • Главная »
  • Статьи »
  • Как и зачем измерять температуру: датчики температуры

 

Датчики температуры широко применяются на различных промышленных предприятиях. С их помощью происходит измерение температуры в системах автоматического контроля и регулировка технологических процессов. Задача температурных датчиков состоит в получении данных об измеряемой величине, преобразовании и передаче полученных сигналов. Самым распространенным видом температурных датчиков являются термопары, кроме того, к датчикам температуры относят термисторы, пирометры, интегральные датчики и термостаты и т.п..

Зачем измерять температуру

О необходимости проведения измерений люди задумались очень давно. И чем дальше уходила наука, тем более точные измерения требовались ученым. Так постепенно возникали и усовершенствовались приборы для измерения температуры, влажности, давления, движения, скорости и многие другие.

Температура — один из основных параметров, который необходимо было научиться измерять и держать под контролем. Если не брать во внимание привычные домашние термометры, то гораздо более сложные и высокоточные измерители температуры можно встретить на любом промышленном предприятии.

Практически невозможно назвать технологический процесс, который люди не стремились бы автоматизировать. Но любая автоматизация требует контроля, который осуществляется путем измерения различных физических величин, будь то давление, скорость, влажность или температура. Кстати, на температурные измерения приходится добрая половина подобных измерений. Так, на средней атомной станции наберется около полутора тысяч контрольных точек, а на опасном химическом производстве таких измерителей температуры еще больше.

Безопасность превыше всего.

Как измеряют температуру

Температуру измеряют при помощи датчиков. Датчик — это специальное устройство, которое способно воспринимать внешние физические воздействия и преобразовывать их в электрический сигнал. В частности, температурные датчики являются преобразователями температуры.

Полученный в результате температурного воздействия на датчик электрический сигнал может быть преобразован через специальные электронные устройства в напряжение, ток или заряд, т.е. в определенный формат выходного сигнала.

Существует большое количество типов температурных датчиков, которые отличаются как физическими принципами работы, так и материалами, из которых они изготавливаются. Часто датчики температуры размещают в труднодоступных местах, например, в атомных реакторах или плавильных печах. Но при помощи температурных датчиков решаются и гораздо более простые повседневные задачи, например, с их помощью происходит регулировка температуры воды в отопительной системе, без них не обходятся даже современные стиральные машины, электрические духовые шкафы или варочные панели.

Такое разнообразие функций и задач, которые выполняют датчики температуры, сказывается на их ассортименте. В зависимости от назначения и области применения конкретного датчика он будет обладать определенным набором технических характеристик.

Датчики температуры могут существенно отличаться друг от друга, прежде всего, диапазоном измерений, точностью, помехоустойчивостью и быстродействием. Тем не менее, все температурные датчики работают по одному принципу: принципу преобразования. Другими словами, измеряемая температура при помощи первичного преобразователя преобразуется в электрическую величину.

Почему именно в электрическую? Во-первых, электрический сигнал можно довольно просто передавать на большие расстояния. Во-вторых, электрический сигнал легко обрабатывать, что обеспечивает высокую точность измерений.

Классификация датчиков температуры

Можно найти множество классификаций температурных датчиков разной степени дифференциации. Мы предлагаем разделить датчики на две группы: пассивные и активные.

Пассивный датчик не требует дополнительный источник энергии. Пассивные датчики, как правило, максимально просты с точки зрения конструкции. Основным функциональным элементом в них является сенсор (термосопротивление). В результате воздействия температуры, терморезистор меняет свое сопротивление.

Чтобы получить показания проведенных температурных измерений, к пассивным датчикам дополнительно подключают преобразователи температуры. Существует специальная тарировочная таблица, в которой указаны значения термосопротивлений в Ом относительно температуры. Прибор сопоставляет полученное значение терпосопротивления с указанным в таблице и отражает показания на своем дисплее или в виде аналогового, цифрового сигнала. К пассивным датчикам температуры, представленным на нашем сайте, прилагается руководство по эксплуатации, в котором можно посмотреть таблицу сопротивлений, например, здесь.

Стандартная таблица термосопротивлений выглядит так:

Temp, oC Pt100 Pt500 Pt1000 Ni1000

Ni1000

TK5000

Ohm

NTC

1kOhm

Ohm

NTC

1,8kOhm

Ohm

NTC

2kOhm

Ohm

NTC

3kOhm

Ohm

NTC

5kOhm

Ohm

NTC

8kOhm

kOhm

-50 80,31 401,55 803,10 743,00 790,88 32886,00   77977,20 200338,00 333914,00 537,83
-40 84,27 421,35 842,70 791,00 830,83 18641,00   43039,60 100701,00 167835,00 269,71
-30 88,22 441,10 882,20 842,00 871,69 10961,00   24651,20 53005,00 88342,00 141,72
-20 92,16 460,80 921,60 893,00 913,48 6662,00   14614,90 29092,00 48487,00 77,70
-10 96,09 480,45 960,90 946,00 956,24 4175,00 8400,00 8946,90 16589,00 27649,00 44,27
0 100,00 500,00 1000,00 1000,00 1000,00 2961,00 5200,00 5642,00 9795,20 16325,40 26,13
10 103,90 519,50 1039,00 1056,00 1044,79 1781,00 3330,00 3656,90 5971,12 9951,80 15,92
20 107,79 538,95 1077,90 1112,00 1090,65 1205,00 2200,00 2431,10 3748,10 6246,80 9,99
21 108,18 540,90 1081,80 1117,80 1095,32 1164,00 2120,00 2344,88 3598,48 5997,44 9,59
22 108,57 542,85 1085,70 1123,60 1099,99 1123,00 2040,00 2258,66 3448,86 5748,08 9,19
23 108,96 544,80 1089,60 1129,40 1104,65 1082,00 1960,00 2172,44 3299,24 5498,72 8,80
24 109,35 546,75 1093,50 1135,20 1109,32 1041,00 1880,00 2086,22 3149,62 5249,36 8,40
25 109,74 548,70 1097,40 1141,00 1113,99 1000,00 1800,00 2000,00 3000,00 5000,00 8,00
26 110,13 550,63 1101,26 1147,00 1118,71 966,84 1736,00 1930,90 2883,36 4805,60 7,69
27 110,51 552,56 1105,12 1153,00 1123,44 933,68 1672,00 1861,80 2766,72 4611,20 7,38
28 110,90 554,49 1108,98 1159,00 1128,26 900,52 1608,00 1792,70 2650,08 4416,80 7,06
29 111,28 556,42 1112,84 1165,00 1132,89 867,36 1544,00 1723,60 2533,44 4222,40 6,75
30 111,67 558,35 1116,70 1171,00 1137,61 834,20 1480,00 1654,50 2416,80 4028,00 6,44
40 115,54 577,70 1155,40 1230,00 1185,71 589,20 1040,00 1150,70 1597,50 2662,40 4,26
50 119,40 597,00 1194,00 1291,00 1234,97 424,00 740,00 816,40 1080,30 1800,49 2,88
60 123,34 616,20 1232,40 1353,00 1285,44 310,40 540,00 590,10 746,12 1243,53 1,99
70 127,07 635,00 1270,00 1417,00 1337,14 231,00 402,00 433,90 525,49 875,81 1,40
80 130,89 654,45 1308,90 1483,00 1390,12 174,50 306,00 324,20 376,85 628,09 1,01
90 134,70 673,50 1347,00 1549,00 1444,39 133,60 240,00 245,80 274,83 458,06 0,73
100 138,50 692,50 1385,00 1618,00 1500,00 103,70 187,00 189,00 203,59 339,32 0,54
110 142,29 711,00 1422,00 1688,00 1556,98 81,40 149,00 147,10 153,03 255,03 0,41
120 146,06 730,00 1460,60 1760,00 1615,36 64,70 118,00 115,90 116,58 194,30 0,31
130 149,82 749,10 1498,20 1883,00 1675,18 51,90 95,00   89,95 149,91 0,24
140 153,58 767,90 1535,80 1909,00 1736,47 42,10 77,00   70,22 117,04 0,19
150 157,31 786,55 1573,10 1987,00 1799,26 34,40 64,00   55,44 92,39 0,15

 

Temp. oC

NTC

10kOhm

kOhm

NTC

15kOhm

NTC

20kOhm

NTC

30kOhm

NTC

47kOhm

Ohm

NTC

50kOhm

Ohm

KTY81-210

Ohm

KTY11-6

Ohm

KTY81-110

Ohm

KTY81-121

Ohm

NTC

10kPRE

kOhm

LM235Z

mVoit

-50 667,83   1667,57 2497,83 3152,41 4168,93 1068,65 1035,91 515,00 510,00 441,30 2232,00
-40 335,67   813,44 1219,17 1595,52 2033,61 1158,95 1139,27 567,00 562,00 239,80 2332,00
-30 176,68   415,48 622,94 843,12 1038,70 1269,25 1250,39 624,00 617,00 135,20 2432,00
-20 96,97   221,30 331,88 463,40 553,24 1385,15 1396,25 684,00 677,00 78,91 2532,00
-10 55,30   122,47 183,70 264,03 306,18 1508,65 1495,86 747,00 740,00 47,54 2632,00
0 32,65   70,20 105,31 155,48 175,51 1639,60 1630,21 815,00 807,00 29,49 2732,00
10 19,90 30,40 41,56 62,35 94,38 103,90 1778,10 1772,32 886,00 877,00 18,79 2832,00
20 12,49 18,80 25,35 38,02 58,91 63,49 1924,15 1922,17 961,00 951,00 12,26 2932,00
21 11,99 18,12 24,28 36,42 56,53 60,79 1939,32 1937,74 968,80 958,80 11,81 2942,00
22 11,49 17,44 23,21 34,81 54,15 58,09 1954,49 1953,30 976,60 966,60 11,36 2952,00
23 11,00 16,76 22,14 33,21 51,76 55,40 1969,66 1968,87 984,40 974,40 10,90 2962,00
24 10,50 16,08 21,07 31,60 49,38 52,70 1984,83 1984,43 992,20 982,20 10,45 2972,00
25 10,00 15,40 20,00 30,00 47,00 50,00 2000,00 2000,00 1000,00 990,00 10,00 2982,00
26 9,61 14,72 19,18 28,77 45,15 47,94 2015,56 2015,95 1008,00 997,80 9,64 2992,00
27 9,22 14,04 18,36 27,53 43,29 45,88 2031,12 2031,91 1016,00 1005,60 9,28 3002,00
28 8,84 13,36 17,53 26,30 41,44 43,83 2046,68 2047,86 1024,00 1013,40 8,91 3012,00
29 8,45 12,68 16,71 25,06 39,58 41,77 2062,24 2063,82 1032,00 1021,20 8,55 3022,00
30 8,06 12,00 15,89 23,83 37,73 39,71 2077,80 2079,77 1040,00 1029,00 8,19 3032,00
40 5,32 7,80 10,21 15,32 24,75 25,53 2238,90 2245,17 1122,00 1111,00 5,59 3132,00
50 3,60 5,20 6,72 10,08 16,60 16,80 2407,60 2418,21 1209,00 1196,00 3,89 3232,00
60 2,49 3,60 4,52 6,78 11,36 11,30 2583,80 2599,06 1299,00 1286,00 2,76 3332,00
70 1,75 2,50 3,10 4,65 7,92 7,75 2767,50 2787,65 1392,00 1378,00 1,99 3432,00
80 1,26 1,80 2,12 3,25 5,63 5,42 2958,80 2983,99 1490,00 1475,00 1,46 3532,00
90 0,92 1,30 1,54 2,31 4,06 3,85 3152,50 3188,08 1591,00 1575,00 1,08 3632,00
100 0,68 1,00 1,12 1,67 2,98 2,79 3363,90 3399,91 1696,00 1679,00 0,82 3732,00
110 0,51   0,82 1,32 2,21 2,05 3577,75 3619,50 1805,00 1786,00 0,62 3832,00
120 0,39   0,61 0,91 1,67 1,52 3799,10 3846,83 1915,00 1896,00 0,48 3932,00
130 0,30   0,46 0,69 1,27 1,15 4028,05 4081,91 2023,00 2003,00 0,38 4032,00
140 0,23   0,35 0,53 0,98 0,88 4188,10 4324,74 2124,00 2103,00 0,30 4132,00
150 0,18   0,27 0,41 0,77 0,68 4397,70 4575,31 2211,00 2189,00 0,24 4232,00

Пассивные датчики, в свою очередь, делятся на два типа: датчики с положительным температурным коэффициентом и датчики с отрицательным температурным коэффициентом. В первом случае с увеличением температуры сопротивление повышается, а во втором, наоборот, снижается, т.е. чем выше становится температура, тем меньше становится сопротивление. Классическим примером первой группы датчиков являются датчики с элементами Pt100, Pt1000, Ni1000, Ni1000Tk5000 и др. Датчики, принадлежащие ко второй группе, имеют общее название NTC.

В нашем каталоге вы найдете множество пассивных датчиков температуры, среди них: контактные и накладные, наружные, байонетные, ввинчиваемые, кабельные, канальные. ручные прокалывающие, маятниковые, погружные и многие другие. Чтобы вам было проще определиться с выбором, скажем несколько слов о каждом из представленных видов датчиков.

Тип датчика Сфера использования
Контактный Для измерения температуры плоских поверхностей. Например, его применяют в теплицах, когда нужен постоянный контроль температуры оконного стекла во избежание его запотевания.
Накладной Также измеряет температуру твердой поверхности. Предназначен, в частности, для измерения температуры теплоносителя в трубах и контроля температуры обратной воды на выходе калорифера или охладителя.
Наружный Измеряет температуру воздуха вне помещения. Устойчив к изменениям погоды и воздействию окружающей среды.
Байонетный Датчик с байонетным соединением для подключения к промышленному оборудованию без дополнительных инструментов. Такие датчики могут быть использованы при производстве пластмасс и в других промышленных областях.
Ввинчиваемый Предназначен для контроля температуры жидкостей и газов в резервуаре или трубопроводе, в системах кондиционирования, отопления и охлаждения.
Ручной-прокалывающий Измеряет температуру вязкопластичных веществ, таких как укладываемый асфальт. Может использоваться в пищевой промышленности, сельском хозяйстве, производстве строительных материалов.
Кабельный Предназначен для измерения температуры в газовых средах в системах кондиционирования, отопления и охлаждения.
Канальный Измеряет температуру газовой среды. Чаще всего применяется в системах кондиционирования и вентиляции, крепится в резервуаре или трубе.
Маятниковый Измеряет температуру посекционно в больших помещениях и помещениях с высокими потолками, в том числе в галереях, хранилищах и конференц-залах.
Погружной Используется для измерения температуры газов и жидкостей в трубах и резервуарах, в частности, для контроля температуры в обратной линии. Обычно не предназначен для работы в агрессивной среде.

Контактные датчики температуры лучше всего подходят для измерения температуры на плоских поверхностях. Они могут быть оснащены магнитом или крепежным колпаком для более надежного крепления к поверхности.

Например:

Датчик температуры с магнитным держателем, кабельный

Модель: OF4/E

  • -40…+400°C
  • PT100, PT500, PT1000
  • мощный магнит 90N
  • силиконовый кабель
  • IP65
Контактный датчик температуры OF4/E идеально подходит для измерения температуры плоской металлической поверхности в диапазоне -40…+400°C.читать подробнее…

Накладные датчики также измеряют температуру поверхности. Чаще всего такие датчики применяются в сфере отопления и вентиляции. Как правило, они крепятся к поверхности при помощи винтового хомута, а прочный корпус обеспечивает работу датчика даже в жестких условиях эксплуатации.

Например:

Накладной датчик температуры, кабельный

Модель: LF1/E

  • -50…+180°C
  • Pt100, Pt1000, Ni1000, KTY, NTC, LM235Z
  • винтовой хомут в комплекте
  • силиконовый кабель
  • IP65
Накладной датчик температуры LF1/E предназначен для измерения температуры поверхности и широко применяется в сфере HVAC (отопление, вентиляция и климатизация).читать подробнее…

Наружные датчики измеряют температуру наружного воздуха, они также облачены в прочный корпус и устойчивы к воздействию окружающей среды. Крепятся такие датчики обычно прямо на стену здания с помощью винтов.

Например:

Датчик температуры наружного воздуха

Модель: AF2/E

  • -50…+190°C
  • Pt100, Pt1000, Ni1000, KTY, NTC, LM235Z
  • вынесенный изм. элемент
  • IP65
Датчик температуры наружного воздуха серии AF2/E имеет прочный, устойчивый к воздействию окружающей среды корпус и предназначен для использования как снаружи, так и внутри помещений. читать подробнее…

Байонетные датчики температуры чаще всего применяются на промышленных предприятиях, в частности, на предприятиях по производству пластмасс. С их помощью измеряют температуру в твердых телах и подшипниках скольжения.

Например:

Байонетный датчик температуры с заостренным 120° наконечником

Модель: BF1/E

  • -30…+350°C
  • Pt100, Pt500, Pt1000
  • 120° изм. наконечник
  • стекловолоконный кабель
  • IP54
Датчик температуры BF1/E имеет байонетное соединение и заостренный на 120° измерительный наконечник. Предназначен для измерения температуры в диапазоне от -30 до +350°C.читать подробнее…

Ввинчиваемые, кабельные, канальные, погружные температурные датчики и термометры сопротивления могут изготавливаться из различных материалов, они измеряют температуру жидкостей и газов в определенных диапазонах. Основная сфера их применения — отопление, вентиляция, климатизация.

Например:

Ввинчиваемый датчик температуры, кабельный

Модель: EF5/E

  • -50…+180°C
  • Pt100, Pt500, Pt1000, Ni1000, KTY, NTC…
  • силиконовый кабель
  • макс. давление 40 бар
  • резьба G1/2″
  • IP65
Предназначен для контроля температуры жидкостей и газов с максимальным рабочим давлением 20 бар. Диапазон измерения: -50…+180°C.читать подробнее…

Ручные прокалывающие датчики чаще всего можно встретить на предприятиях пищевой промышленности, при производстве строительных материалов или в сельском хозяйстве. Они идеально подходят для быстрого и точного измерения температуры вязкопластичных средств.

Например:

Ручной прокалывающий датчик температуры, рукоятка и кабель из ПТФЭ

Модель: HET/E

  • -50…+250°C
  • Pt100, Pt500, Pt1000
  • рукоятка/кабель из ПТФЕ
  • влаго/паронепроницаем
  • IP65
Ручной прокалывающий датчик температуры HEТ/E с диапазоном измерения -50…+260°C идеально подходит для быстрого и точного измерения температуры вязкопластичных средств.читать подробнее…

Датчик температуры маятникового типа и датчики теплового излучения способны измерять температуру в высоких и объемных помещениях. Это может быть необходимо для контроля температуры в выставочных залах, хранилищах и других подобных помещениях, где важно поддерживать определенных температурный режим.

Как и все измерители температуры, пассивные датчики классифицируются по точности. В качестве примера приведем таблицу классов точности самых распространенных сопротивлений:

Обозначение Диапазон Макс. отклонение
Сопротивление   Класс В DIN Класс А 1/5 DIN Класс В
Pt 100Ω при -200oC ±1,3 К    
  при -100oC ±0,8 К    
  при -50oC   ±0,25 К*  
  при 0oC ±0,3 К ±0,15 К ±0,06 К
  при +100oC ±0,8 К ±0,35 К ±0,16 К
  при +200oC ±1,3 К ±0,55 К ±0,26 К
  при +300oC ±1,8 К ±0,75 К ±0,36 К
  при +400oC ±2,3 К    
Обозначение Диапазон Макс. отклонение
NTC датчик (10К при 25 oC) -20…0oC ±0,4 К
  0…+70oC ±0,4 К
  +70…+125oC ±0,6 К

Каждый из представленных в каталоге датчиков имеет определенный набор технических характеристик, главной из которых является сопротивление терморезистора (сенсора). Наши специалисты с радостью помогут вам в выборе подходящего датчика.

Важно отметить, что немецкая компания FuehlerSysteme может изготовить для вас датчики по вашим чертежам и с учетом ваших пожеланий, в том числе в минимальных количествах, т.е. небольшими партиями. Например, это могут быть термопары, пассивные датчики и т.п. Мы уже не раз выполняли подобные заказы. Нам по силам: изменить диаметр и длину измерительной части, увеличить до необходимого длину кабеля и подобрать его изоляцию. Возможно изготовление индивидуальных модификаций по вашим чертежам.

Схема работы проста:

  • вы отправляете нам запрос на разработку датчика по вашим уникальным параметрам;
  • мы обсуждаем детали заказа и проясняем все детали;
  • мы делаем вам предложение на разработку датчика;
  • разрабатываем и утверждаем образцы;
  • изготавливаем требуемую партию товара по согласованным образцам.

Таким образом, выполнение индивидуального заказа делится на шесть этапов, это позволяет осуществлять постоянный контроль за ходом работ.

 

Вне зависимости от того, выберете ли вы типовую продукцию из нашего каталога или сделаете заказ на индивидуальную разработку, мы гарантируем немецкое качество товаров.

Эта статья была написана для того, чтобы вы смогли найти в ней полезную для себя информацию. Наши специалисты с радостью ответят на все ваши вопросы и помогут подобрать приборы, ориентируясь на стоящие перед вами задачи. Вы можете обратиться к нам по телефонам 812) 340-00-38, 340-00-57.

 

Приборы для измерения температуры — виды и принцип действия

Большинство технологических процессов корректно проходят только при определенной температуре. Кроме того, измеряемые температурные показатели помогают определять, насколько корректно используется затрачиваемая энергия.

Иными словами, это — та величина, которую нужно постоянно контролировать. Все виды приборов для измерения температуры делятся на контактные и бесконтактные. Также они классифицируются по материалам, принципам и способам действия.

Виды термометров по принципу действия

Процесс измерения температуры может основываться на разных физических процессах. Исходя из этого, выделяют 5 видов термометров.

Контактные

Такие приборы еще называют термометрами расширения. Они основаны на отслеживании изменения объема тел под действием меняющейся температуры. Обычно измеряемый диапазон температур составляет от -190 до +500 градусов по Цельсию.

К этой категории относятся жидкостные и механические устройства. Жидкостные представляют собой приборы в стеклянном корпусе, заполненные спиртом, ртутью, толуолом или керосином. Они прочные и устойчивые к внешним воздействиям. Температурный диапазон измерений зависит от типа используемой жидкости (наибольший — у ртутных, наименьший — у цифровых).

Механические могут работать с разными типами сред, включая жидкостные, газообразные, твердые или сыпучие. Универсальность позволяет использовать их в разных инженерных системах.

Термометры сопротивления

К этой категории относятся приборы, которые способны измерять электрическое сопротивление веществ, меняющееся в зависимости от температурных показателей. Рабочий диапазон этих устройств — от -200 до +650 градусов.

Такие термометры состоят из чувствительных термодатчиков и точных электронных блоков, контролирующих изменения проводимости, сопротивления и электрического потенциала. Обычно их встраивают в общую систему мониторинга и оповещения, туда, где нужно отслеживать меняющиеся параметры и не допускать их превышения.

В котельных установках наибольшее применение получили термометры сопротивления медные (ТСМ). Термометрами сопротивления можно измерять температуры от -50 до +600°С.

Электронные термопары

При нагревании эти приборы генерируют ток, что и позволяет измерять температуру. Принцип действия основан на замерах термоэлектродвижущей силы. Диапазон измерений в этом случае — от 0 до +1800 градусов.

Манометрические

Такие термометры учитывают зависимость между температурными показателями и давлением газа. В измеряемую среду помещают термобаллон, соединенный с манометром латунной трубкой. При нагреве термобаллона давление внутри него увеличивается, и эта величина измеряется манометром. Таким образом проводят замеры температуры в диапазоне от -160 до +600 градусов.

Бесконтактные пирометры

В основе этих приборов — инфракрасные датчики, считывающие уровень излучения. Они подразделяются на два вида: яркостные, проводящие измерения излучений на определенной длине волны (диапазон — от +100 до +6000 градусов), и радиационные, когда определяется тепловое действие лучеиспускания (от -50 до +2000 градусов). Они могут использоваться в том числе и для определения температуры нагретого металла, а также при наладке и испытаниях котлов.

Виды термометров по используемым материалам

Здесь различают 7 категорий:

  1. Жидкостные. Представляют собой корпус, заполненный жидкостью, которая подвержена температурному расширению. Колба с жидкостью прикладывается к шкале. При нагреве жидкость расширяется, и столбик растет, а при охлаждении — наоборот, сжимается (уменьшается). Погрешность измерений такими приборами составляет менее 0,1 градуса.
  2. Газовые. Принцип действия — тот же, что и у жидкостных, но в качестве заполнителя для колбы выбирается инертный газ. Это позволяет существенно увеличить температурный диапазон измерения (если для жидкостных предел — +600 градусов, то для газовых — +1000 градусов). С их помощью можно измерять температуру в различных раскаленных жидких средах.
  3. Механические. В основе действия — принцип деформации металлической спирали. Часто эти термометры комплектуются стрелочным “дисплеем”. Устанавливаются в спецтехнике, автомобилях, на автоматизированных линиях. Нечувствительны к ударам.
  4. Электрические. Работают, измеряя уровень сопротивления проводника при разных температурных показателях. В качестве проводника могут использоваться разные металлы (например, медь или платина). Соответственно, и диапазон измерений таких устройств будет отличаться. Чаще всего такие модели применяются в лабораторных условиях.
  5. Термоэлектрические. В конструкции предусмотрено два проводника, проводящие замеры по физическому принципу на основе эффекта Зеебека. Эти устройства очень точные, работают с погрешностью до 0,01 градуса и подходят для высокоточных измерений в производственных процессах, когда рабочая температура превышает 1000 градусов.
  6. Волоконно-оптические. Чувствительные датчики из оптоволокна (оно натягивается и сжимается или растягивается при изменении температуры, а прибор фиксирует степень преломления проходящего луча света). Допустимый диапазон измерений — до +400 градусов, а погрешность — не более 0,1 градуса.
  7. Инфракрасные. Непосредственный контакт с измеряемым веществом не требуется: прибор генерирует инфракрасный луч, который направляется на изучаемую поверхность. Это современный вид бесконтактных термометров, которые работают с точностью до нескольких градусов и подходят для высокотемпературных измерений. С их помощью можно измерять даже температуру открытого пламени.

Компания «Измеркон» предлагает как разные виды термометров, так и комбинированные устройства, в том числе манометры-термометры или гигрометры-термометры для автономной работы с энергонезависимой памятью, обеспечивающей постоянную фиксацию результатов измерений.

Типы

, принцип работы и приложения

Все мы используем датчики температуры в повседневной жизни, будь то термометры, бытовые водонагреватели, микроволновые печи или холодильники. Обычно датчики температуры имеют широкий спектр применения, в том числе в области геотехнического мониторинга.

Датчики температуры — это простой прибор, который измеряет степень тепла или холода и преобразует ее в считываемые единицы. Но задумывались ли вы, как измеряется температура почвы, скважин, огромных бетонных дамб или зданий? Что ж, это достигается с помощью некоторых специализированных датчиков температуры.

Датчики температуры предназначены для регулярного контроля бетонных конструкций, мостов, железнодорожных путей, грунта и т. Д.

Здесь мы расскажем вам, что такое датчик температуры, как он работает, где он используется и какие бывают его типы.

Что такое датчики температуры?

Датчик температуры — это устройство, обычно термопара или резистивный датчик температуры, которое обеспечивает измерение температуры в читаемой форме с помощью электрического сигнала.

Термометр — это самая простая форма измерителя температуры, которая используется для измерения степени жара и прохлады.

Измерители температуры используются в геотехнической области для контроля бетона, конструкций, почвы, воды, мостов и т. Д. На предмет структурных изменений в них из-за сезонных колебаний.

Термопара (Т / С) изготовлена ​​из двух разнородных металлов, которые генерируют электрическое напряжение прямо пропорционально изменению температуры. RTD (резистивный датчик температуры) представляет собой переменный резистор, который изменяет свое электрическое сопротивление прямо пропорционально изменению температуры точным, воспроизводимым и почти линейным образом.

Для чего нужны датчики температуры?

Датчик температуры — это устройство, предназначенное для измерения степени жары или прохлады объекта. Работа измерителя температуры зависит от напряжения на диоде. Изменение температуры прямо пропорционально сопротивлению диода. Чем ниже температура, тем меньше сопротивление, и наоборот.

Сопротивление диода измеряется и преобразуется в считываемые единицы измерения температуры (Фаренгейт, Цельсий, Цельсия и т. Д.).) и отображается в числовой форме над блоками считывания. В области геотехнического мониторинга эти датчики температуры используются для измерения внутренней температуры таких конструкций, как мосты, плотины, здания, электростанции и т. Д.

Для чего нужен датчик температуры? | Каковы функции датчика температуры?

Существует много типов датчиков температуры, но наиболее распространенный способ их классификации основан на режиме подключения, который включает в себя контактные и бесконтактные датчики температуры.

Контактные датчики включают в себя термопары и термисторы, потому что они находятся в прямом контакте с объектом, который они должны измерять. А бесконтактные датчики температуры измеряют тепловое излучение, выделяемое источником тепла. Такие измерители температуры часто используются в опасных средах, таких как атомные электростанции или тепловые электростанции.

В геотехническом мониторинге датчики температуры измеряют теплоту гидратации в массивных бетонных конструкциях. Их также можно использовать для мониторинга миграции грунтовых вод или просачивания.Одна из наиболее распространенных областей, где они используются, — это время отверждения бетона, потому что он должен быть относительно теплым, чтобы схватиться и затвердеть должным образом. Сезонные колебания вызывают расширение или сжатие конструкции, тем самым изменяя ее общий объем.

Как работает датчик температуры?

Основным принципом работы датчиков температуры является напряжение на выводах диода. Если напряжение увеличивается, температура также повышается, за чем следует падение напряжения между выводами транзистора базы и эмиттера в диоде.

Помимо этого, Encardio-Rite имеет датчик температуры с вибрирующей проволокой, который работает по принципу изменения напряжения при изменении температуры.

Измеритель температуры с вибрирующей проволокой разработан по принципу, согласно которому разнородные металлы имеют разный линейный коэффициент расширения при изменении температуры.

В основном он состоит из магнитной, натянутой на разрыв проволоки с высокой прочностью на разрыв, два конца которой прикреплены к любому разнородному металлу таким образом, что любое изменение температуры напрямую влияет на натяжение проволоки и, следовательно, на ее собственную частоту колебаний.

В случае измерителя температуры Encardio-Rite разнородным металлом является алюминий (алюминий имеет больший коэффициент теплового расширения, чем сталь). Поскольку температурный сигнал преобразуется в частоту, тот же блок считывания, который используется для другие датчики с вибрирующей проволокой также могут использоваться для контроля температуры.

Изменение температуры регистрируется специально созданным датчиком с вибрирующей проволокой Encardio-rite и преобразуется в электрический сигнал, который передается в виде частоты на устройство считывания.

Частота, которая пропорциональна температуре и, в свою очередь, напряжению «σ» в проволоке, может быть определена следующим образом:

f = 1/2 [σg / ρ] / 2l Гц

Где:

σ = натяжение проволоки

g = ускорение свободного падения

ρ = плотность проволоки

l = длина провода

Какие бывают типы датчиков температуры?

Доступны датчики температуры различных типов, форм и размеров.Два основных типа датчиков температуры:

Датчики температуры контактного типа : Есть несколько измерителей температуры, которые измеряют степень тепла или холода в объекте, находясь в непосредственном контакте с ним. Такие датчики температуры относятся к категории контактных. Их можно использовать для обнаружения твердых тел, жидкостей или газов в широком диапазоне температур.

Бесконтактные датчики температуры : Эти типы измерителей температуры не находятся в прямом контакте с объектом, а измеряют степень тепла или холода посредством излучения, испускаемого источником тепла.

Контактные и бесконтактные датчики температуры делятся на:

Термостаты

Термостат — это датчик температуры контактного типа, состоящий из биметаллической полосы, состоящей из двух разнородных металлов, таких как алюминий, медь, никель или вольфрам.

Разница в коэффициентах линейного расширения обоих металлов заставляет их производить механическое изгибающее движение, когда они подвергаются нагреву.

Термисторы

Термисторы или термочувствительные резисторы — это те, которые меняют свой внешний вид при изменении температуры.Термисторы изготовлены из керамического материала, такого как оксиды никеля, марганца или кобальта, покрытого стеклом, что позволяет им легко деформироваться.

Большинство термисторов имеют отрицательный температурный коэффициент (NTC), что означает, что их сопротивление уменьшается с повышением температуры. Но есть несколько термисторов с положительным температурным коэффициентом (PTC), и их сопротивление увеличивается с повышением температуры.

Резистивные датчики температуры (RTD)

ТС

— это точные датчики температуры, которые состоят из проводящих металлов высокой чистоты, таких как платина, медь или никель, намотанных в катушку.Электрическое сопротивление RTD изменяется аналогично термистору.

Термопары

Один из наиболее распространенных датчиков температуры включает термопары из-за их широкого рабочего диапазона температур, надежности, точности, простоты и чувствительности.

Термопара обычно состоит из двух соединений разнородных металлов, таких как медь и константан, которые сварены или обжаты вместе. Один из этих переходов, известный как холодный спай, поддерживается при определенной температуре, в то время как другой является измерительным переходом, известным как горячий спай.

Под воздействием температуры на переходе возникает падение напряжения.

Термистор с отрицательным температурным коэффициентом (NTC)

Термистор — это, по сути, чувствительный датчик температуры, который точно реагирует даже на незначительные изменения температуры. Он обеспечивает огромную стойкость при очень низких температурах. Это означает, что как только температура начинает повышаться, сопротивление начинает быстро падать.

Из-за большого изменения сопротивления на градус Цельсия даже небольшое изменение температуры точно отображается термистором с отрицательным температурным коэффициентом (NTC).Из-за этого экспоненциального принципа работы требуется линеаризация. Обычно они работают в диапазоне от -50 до 250 ° C.

Полупроводниковые датчики

Датчик температуры на основе полупроводника работает с двойными интегральными схемами (ИС). Они содержат два одинаковых диода с температурно-чувствительными характеристиками напряжения и тока для эффективного измерения изменений температуры.

Однако они дают линейный выходной сигнал, но менее точны при температуре от 1 ° C до 5 ° C. Они также демонстрируют самую медленную реакцию (от 5 до 60 с) в самом узком температурном диапазоне (от -70 ° C до 150 ° C).

Датчик температуры вибрирующей проволоки модели ETT-10V

Измеритель температуры с вибрирующей проволокой Encardio-rite Model ETT-10V используется для измерения внутренней температуры в бетонных конструкциях или в воде. Он имеет разрешение лучше 0,1 ° C и работает аналогично термопарным датчикам температуры. Он также имеет диапазон высоких температур от -20 o до 80 o C.

Технические характеристики измерителя температуры вибрирующей проволоки ЭТТ-10В
Тип датчика Pt 100
Диапазон-20 o до 80 o C
Точность ± 0.Стандарт 5% полной шкалы; ± 0,1% полной шкалы опционально
Размер (Φ x L) 34 x 168 мм
Зонд
термистора сопротивления модели ЭТТ-10ТХ

Температурный датчик сопротивления Encardio-rite модели ETT-10TH представляет собой водостойкий температурный датчик малой массы для измерения температуры от –20 до 80 ° C. Благодаря низкой тепловой массе он имеет быстрое время отклика.

Датчик температуры сопротивления модели

ETT-10TH специально разработан для измерения температуры поверхности стали и измерения температуры поверхности бетонных конструкций.ETT-10TH может быть встроен в бетон для измерения объемной температуры внутри бетона и даже может работать под водой.

Термопреобразователи сопротивления ETT-10TH полностью взаимозаменяемы. Показания температуры не будут отличаться более чем на 1 ° C в указанном диапазоне рабочих температур. Это позволяет использовать один индикатор с любым датчиком ETT-10TH без повторной калибровки.

Индикатор с вибрирующей проволокой EDI-51V модели

Encardio-rite при использовании с ETT-10TH напрямую показывает температуру зонда в градусах Цельсия.

Как работает зонд термистора сопротивления модели ETT-10TH?
Датчик температуры

ETT-10TH состоит из термисторной эпоксидной смолы с согласованной температурной кривой, заключенной в медную трубку для более быстрого теплового отклика и защиты окружающей среды. Трубка сплющена на конце, чтобы ее можно было прикрепить к любой достаточно плоской металлической или бетонной поверхности для измерения температуры поверхности.

Плоский наконечник зонда можно прикрепить к большинству поверхностей с помощью легко доступных двухкомпонентных эпоксидных клеев.При желании зонд также можно прикрепить болтами к поверхности конструкции.

Датчик температуры снабжен четырехжильным кабелем, который используется в качестве стандартного во всех тензодатчиках Encardio-rite с вибрирующей проволокой. Провода белого и зеленого цвета используются для термистора, как и другие датчики с вибрирующим проводом Encardio-rite.

Пара красных и черных проводов не используется. Единая цветовая схема для разных датчиков упрощает безошибочное соединение с терминалом регистратора данных.

Технические характеристики модели ETT-10TH
Тип датчика Термистор NTC, согласованный по кривой R-T, эквивалент YSI 44005
Диапазон-20 o до 80 o C
Точность 1 или С
Материал корпуса Медь луженая
Кабель 4-х жильный в ПВХ оболочке
Датчик температуры RTD, модель ETT-10PT

Датчик температуры RTD (резистивный датчик температуры) ETT-10PT состоит из керамического резистивного элемента (Pt.100) с европейским стандартом калибровки кривой DIN IEC 751 (бывший DIN 43760). Элемент сопротивления заключен в прочную трубку из нержавеющей стали с закрытым концом, которая защищает элемент от влаги.

Как работает датчик температуры RTD модели ETT-10PT?

Температурный датчик сопротивления работает по принципу, согласно которому сопротивление датчика является функцией измеренной температуры. Платиновый термометр сопротивления имеет очень хорошую точность, линейность, стабильность и воспроизводимость.

Датчик температуры сопротивления модели ETT-10PT снабжен трехжильным экранированным кабелем.Красный провод обеспечивает одно соединение, а два черных провода вместе — другое. Таким образом достигается компенсация сопротивления проводов и температурных изменений сопротивления проводов. Показания резистивного датчика температуры легко считываются с помощью цифрового индикатора температуры RTD.

Нажмите кнопку редактирования, чтобы изменить этот текст. Lorem ipsum dolor sit amet, conctetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.

Технические характеристики датчика RTD модели ETT-10PT
Тип датчика Pt 100
Диапазон-20 o до 80 o C
Точность ± (0.3 + 0,005 * т) или С
Калибровка DIN IEC 751
Кривая (европейская) 0,00385 Ом / Ом / o C
Размер (Φ x L) 8 x 135 мм
Кабель 3-жильный экранированный
Термопара Encardio-Rite

Encardio-rite предлагает термопару Т-типа (медь-константан) для измерения внутренней температуры в бетонных конструкциях.Он состоит из двух разнородных металлов, соединенных одним концом. Когда соединение двух металлов нагревается или охлаждается, создается напряжение, которое может быть обратно соотнесено с температурой.

Измерение с помощью термопары состоит из провода термопары с двумя разнородными проводниками (медь-константан), соединенными на одном конце для образования горячего спая. Этот конец защищен от коррозии и помещен в требуемые места для измерения температуры.

Другой конец провода термопары подсоединяется к подходящему разъему термопары для образования холодного спая.Показания термопары отображают прямое считывание температуры в месте установки и автоматически компенсируют температуру на холодном спайе.

Технические характеристики термопары Encardio-Rite
Тип провода Т-медь-константан
Изоляция проводов PFA тефлон C
Температура горячего спая до 260 o C (макс.)
Тип разъема Миниатюрный Стеклонаполненный нейлон
Рабочая температура-20 o до 100 o C
Температура холодного спая Окружающий

Где используется датчик температуры?

Область применения датчика температуры:

  1. Датчики температуры используются для проверки проектных предположений, что способствует более безопасному и экономичному проектированию и строительству.
  2. Они используются для измерения повышения температуры в процессе твердения бетона.
  3. Они могут измерять температуру горных пород возле резервуаров для хранения сжиженного газа и при проведении операций по замораживанию грунта.
  4. Датчики температуры также могут измерять температуру воды в резервуарах и скважинах.
  5. Его можно использовать для интерпретации температурных напряжений и изменений объема в плотинах.
  6. Их также можно использовать для изучения влияния температуры на другие установленные приборы.

Преимущества датчиков температуры Encardio-Rite

  1. Датчик температуры Encardio-Rite является точным, недорогим и чрезвычайно надежным.
  2. Они подходят как для поверхностного монтажа, так и для встраиваемых систем.
  3. Низкая тепловая масса сокращает время отклика.
  4. Датчик температуры вибрирующей проволоки полностью взаимозаменяемый; один индикатор может считывать данные со всех датчиков.
  5. Имеет водонепроницаемый корпус со степенью защиты IP-68.
  6. Они поставляются с индикаторами, которые легко доступны для прямого отображения температуры.
  7. Датчики температуры обладают отличной линейностью и гистерезисом.
  8. Технология вибрирующей проволоки обеспечивает долгосрочную стабильность, быстрое и легкое считывание.
  9. Датчики герметично закрыты электронно-лучевой сваркой с вакуумом около 1/1000 Торр.
  10. Они подходят для удаленного чтения, сканирования, а также регистрации данных.

Часто задаваемые вопросы

В чем разница между датчиком температуры и преобразователем температуры?

Датчик температуры — это прибор, используемый для измерения степени нагрева или прохлады объекта, тогда как датчик температуры — это устройство, которое сопрягается с датчиком температуры для передачи сигналов в удаленное место для мониторинга и управления.

Это означает, что термопара, RTD или термистор подключены к регистратору данных для получения данных в любом удаленном месте.

Как измеряется температура в бетонной плотине?

За исключением процедуры, принятой во время строительства, наибольший фактор, вызывающий напряжение в массивном бетоне, связан с изменением температуры. Следовательно, для анализа развития термического напряжения и контроля искусственного охлаждения необходимо отслеживать изменение температуры бетона во время строительства.

Для этого необходимо точно измерить температуру во многих точках конструкции, в воде и в воздухе. Должно быть встроено достаточное количество датчиков, чтобы получить правильную картину распределения температуры в различных точках конструкции.

В большой бетонной плотине типичная схема заключается в размещении датчика температуры через каждые 15-20 м по поперечному сечению и через каждые 10 м по высоте. Для небольших плотин интервал может быть уменьшен. Температурный зонд, помещенный в верхнем бьефе плотины, оценивает температуру водохранилища, поскольку она меняется в течение года.

Это намного проще, чем то и дело ронять термометр в резервуар, чтобы проводить наблюдения. Во время эксплуатации бетонной плотины суточные и сезонные изменения окружающей среды наносят ущерб развитию термических напряжений в конструкции. Эффект более выражен на стороне нисходящего потока. Несколько датчиков температуры должны быть размещены рядом и в нижней части бетонной плотины для оценки быстрых суточных и еженедельных колебаний температуры.

Какой датчик температуры самый точный?

RTD — самый точный датчик температуры. Платиновый RTD имеет очень хорошую точность, линейность, стабильность и воспроизводимость по сравнению с термопарами или термисторами.

Что такое термопара?

Термопара — это тип датчика температуры, который используется для измерения внутренней температуры объекта.

Существует три закона для термопар, как указано ниже:

Закон однородного материала

Если все провода и термопара сделаны из одного материала, изменения температуры в проводке не влияют на выходное напряжение.Следовательно, необходимы провода, изготовленные из различных материалов.

Закон промежуточных материалов

Сумма всех термоэлектрических сил в цепи с несколькими разнородными материалами при постоянной температуре равна нулю. Это означает, что если третий материал добавляется при той же температуре, новый материал не генерирует никакого сетевого напряжения.

Закон последовательных или промежуточных температур

Если два разнородных однородных материала создают термоэдс 1, когда переходы находятся в точках T1 и T2, и создают термоэдс 2, когда переходы находятся в точках T2 и T3, то ЭДС, генерируемая, когда переходы находятся в точках T1 и T3, будет равна ЭДС1 + ЭДС2

Как проверить датчик температуры?

В Encardio-Rite есть специализированные камеры для испытания температуры (с уже известными системами контроля температуры и температуры) для проверки точности и качества наших датчиков температуры.

Это все о датчиках температуры, их различных типах, областях применения, использовании, а также о принципе работы. Сообщите нам свои вопросы в разделе комментариев ниже.

Типы датчиков температуры и принципы их работы

Температура — это наиболее часто измеряемая величина окружающей среды. Этого можно было ожидать, поскольку большинство физических, электронных, химических, механических и биологических систем подвержены влиянию температуры. Определенные химические реакции, биологические процессы и даже электронные схемы лучше всего работают в ограниченном диапазоне температур.Температура — одна из наиболее часто измеряемых переменных, поэтому неудивительно, что существует множество способов ее измерения. Измерение температуры может осуществляться либо посредством прямого контакта с источником тепла, либо дистанционно, без прямого контакта с источником, используя вместо этого излучаемую энергию. Сегодня на рынке представлен широкий спектр датчиков температуры, включая термопары, датчики температуры сопротивления (RTD), термисторы, инфракрасные и полупроводниковые датчики.


5 типов датчиков температуры

  • Термопара : это тип датчика температуры, который изготавливается путем соединения двух разнородных металлов на одном конце.Присоединенный конец называется ГОРЯЧИМ СОЕДИНЕНИЕМ. Другой конец этих разнородных металлов называется ХОЛОДНЫЙ КОНЕЦ или ХОЛОДНЫЙ СПАС. Холодный спай образуется в последней точке материала термопары. Если есть разница в температуре между горячим и холодным спаями, создается небольшое напряжение. Это напряжение называется ЭДС (электродвижущая сила), и его можно измерить и, в свою очередь, использовать для обозначения температуры.
Термопара
  • RTD — это датчик температуры, сопротивление которого изменяется в зависимости от температуры.Обычно RTD изготавливаются из платины, хотя устройства из никеля или меди не редкость, они могут принимать различные формы, например, проволочную намотку или тонкую пленку. Чтобы измерить сопротивление RTD, подайте постоянный ток, измерьте результирующее напряжение и определите сопротивление RTD. RTD демонстрируют довольно линейное сопротивление температурным кривым в их рабочих областях, и любая нелинейность очень предсказуема и воспроизводима. В оценочной плате PT100 RTD используется RTD для поверхностного монтажа для измерения температуры.Внешний 2-, 3- или 4-проводный датчик PT100 также может использоваться для измерения температуры в удаленных районах. Для смещения RTD используется источник постоянного тока. Чтобы уменьшить саморазогрев из-за рассеивания мощности, величина тока умеренно низкая. Схема, показанная на рисунке, представляет собой источник постоянного тока, использующий опорное напряжение, один усилитель и транзистор PNP.

  • Термисторы : Подобно RTD, термистор представляет собой термочувствительное устройство, сопротивление которого изменяется в зависимости от температуры.Однако термисторы изготавливаются из полупроводниковых материалов. Сопротивление определяется так же, как и RTD, но термисторы показывают сильно нелинейную зависимость сопротивления от температуры. Таким образом, в рабочем диапазоне термисторов мы можем увидеть большое изменение сопротивления при очень небольшом изменении температуры. Это делает устройство высокочувствительным, идеально подходящим для приложений уставки.
  • Полупроводниковые датчики : Они подразделяются на различные типы, такие как выход напряжения, выход тока, цифровой выход, кремниевый выход сопротивления и датчики температуры диодов.Современные полупроводниковые датчики температуры обеспечивают высокую точность и высокую линейность в рабочем диапазоне от 55 ° C до + 150 ° C. Внутренние усилители могут масштабировать выходной сигнал до удобных значений, например 10 мВ / ° C. Они также полезны в схемах компенсации холодного спая для термопар с широким диапазоном температур. Краткие сведения об этом типе датчика температуры приведены ниже.

ИС датчиков

Существует широкий спектр микросхем датчиков температуры, которые позволяют упростить самый широкий спектр задач по мониторингу температуры.Эти кремниевые датчики температуры существенно отличаются от вышеупомянутых типов по нескольким важным параметрам. Во-первых, это диапазон рабочих температур. ИС датчика температуры может работать в номинальном диапазоне температур ИС от -55 ° C до + 150 ° C. Второе важное отличие — функциональность.

Кремниевый датчик температуры представляет собой интегральную схему и, следовательно, может включать в себя обширную схему обработки сигналов в том же корпусе, что и датчик. Нет необходимости добавлять схемы компенсации для датчика температуры ICS.Некоторые из них представляют собой аналоговые схемы с выходом по напряжению или по току. Другие комбинируют аналоговые чувствительные схемы с компараторами напряжения для обеспечения функций оповещения. Некоторые другие сенсорные ИС сочетают в себе схему аналогового считывания с цифровыми входами / выходами и регистрами управления, что делает их идеальным решением для микропроцессорных систем.

Цифровой выходной датчик обычно содержит датчик температуры, аналого-цифровой преобразователь (АЦП), двухпроводной цифровой интерфейс и регистры для управления работой ИС.Температура постоянно измеряется и может быть считана в любое время. При желании хост-процессор может дать команду датчику контролировать температуру и установить высокий (или низкий) выход на выходном контакте, если температура превышает запрограммированный предел. Также можно запрограммировать более низкую пороговую температуру, и хост может быть уведомлен, когда температура упадет ниже этого порога. Таким образом, цифровой выходной датчик может использоваться для надежного контроля температуры в микропроцессорных системах.

Датчик температуры

Указанный выше датчик температуры имеет три клеммы и требуется максимум 5.Питание 5 В. Этот тип датчика состоит из материала, который работает в зависимости от температуры для изменения сопротивления. Это изменение сопротивления воспринимается схемой и рассчитывает температуру. При повышении напряжения повышается и температура. Мы можем увидеть эту операцию с помощью диода.

Датчики температуры напрямую подключены к входу микропроцессора и, таким образом, могут напрямую и надежно связываться с микропроцессорами. Сенсорный блок может эффективно взаимодействовать с недорогими процессорами без необходимости в аналого-цифровых преобразователях.

Пример датчика температуры: LM35 . Серия LM35 представляет собой прецизионные датчики температуры на интегральных схемах, выходное напряжение которых линейно пропорционально температуре по Цельсию. LM35 работает при температуре от -55˚ до + 120˚C.

Базовый датчик температуры по Цельсию (от + 2˚C до + 150˚C) показан на рисунке ниже.

Характеристики датчика температуры LM35:
  • Калибровка непосредственно в ˚ Цельсия (Цельсия)
  • Расчетный для полного диапазона л от −55˚ до + 150˚C
  • Подходит для удаленного применения
  • Низкая стоимость за счет обрезки пластин
  • Работает от 4 до 30 вольт
  • Низкий самонагревающийся,
  • ± 1 / 4˚C типовой нелинейности
Работа LM35:
  • LM35 можно легко подключить так же, как и другие встроенные датчики температуры.Его можно приклеить или закрепить на поверхности, и его температура будет в пределах 0,01 ° C от температуры поверхности.
  • Это предполагает, что температура окружающего воздуха примерно такая же, как температура поверхности; если бы температура воздуха была намного выше или ниже температуры поверхности, фактическая температура штампа LM35 была бы промежуточной между температурой поверхности и температурой воздуха.

Датчики температуры широко используются в системах управления окружающей средой и технологическими процессами, а также в испытаниях, измерениях и коммуникациях.Цифровой датчик температуры — это датчик, который выдает 9-битные показания температуры. Цифровые датчики температуры обеспечивают превосходную точность, они рассчитаны на показания от 0 ° C до 70 ° C и позволяют достичь точности ± 0,5 ° C. Эти датчики полностью согласованы с цифровыми показаниями температуры в градусах Цельсия.

  • Цифровые датчики температуры: Цифровые датчики температуры устраняют необходимость в дополнительных компонентах, таких как аналого-цифровой преобразователь, в приложении, и нет необходимости калибровать компоненты или систему при определенных эталонных температурах, если это необходимо, при использовании термисторов.Цифровые датчики температуры решают все, что позволяет упростить базовую функцию мониторинга температуры.

Основные преимущества цифрового датчика температуры заключаются в его точности вывода в градусах Цельсия. Выходной сигнал датчика представляет собой сбалансированное цифровое показание. Для этого не нужны другие компоненты, такие как аналого-цифровой преобразователь, и он намного проще в использовании, чем простой термистор, который обеспечивает нелинейное сопротивление при изменении температуры.

Примером цифрового датчика температуры является DS1621, который обеспечивает 9-битное показание температуры.

Характеристики DS1621:
  1. Никаких внешних компонентов не требуется.
  2. Измеряется диапазон температур от -55 ° C до + 125 ° C с шагом 0,5 °.
  3. Выдает значение температуры в 9-битном формате.
  4. Широкий диапазон питания (от 2,7 В до 5,5 В).
  5. Преобразует температуру в цифровое слово менее чем за одну секунду.
  6. Термостатические настройки определяются пользователем и являются энергонезависимыми.
  7. Это 8-контактный DIP.

Описание штыря:
  • SDA — 2-проводный последовательный ввод / вывод данных.
  • SCL — 2-проводные последовательные часы.
  • GND — Земля.
  • TOUT — Выходной сигнал термостата.
  • A0 — Ввод адреса чипа.
  • A1 — Ввод адреса чипа.
  • A2 — Ввод адреса чипа.
  • VDD — Напряжение питания.
Работа DS1621:
  • Когда температура устройства превышает заданную пользователем температуру HIGH, тогда активизируется выход TOUT. Выход будет оставаться активным до тех пор, пока температура не упадет ниже заданной пользователем температуры LOW.
  • Заданные пользователем настройки температуры сохраняются в энергонезависимой памяти, поэтому их можно запрограммировать перед установкой в ​​систему.
  • Показание температуры предоставляется в виде 9-битного считывания с дополнением до двух, путем выдачи команды READ TEMPERATURE при программировании.
  • 2-проводной последовательный интерфейс используется для ввода в DS16121 для настроек температуры и вывода показаний температуры с DS1621

Фото:

Датчики температуры

: типы, принцип работы и применение | by Encardio rite

Датчики температуры: типы, принцип работы и применение

10 июля 2019 г.

Мы все используем датчики температуры в повседневной жизни, будь то термометры, бытовые водонагреватели, микроволновые печи и т. д. или холодильники.Обычно датчики температуры имеют широкий спектр применения, в том числе в области геотехнического мониторинга.

Датчики температуры — это простой прибор, который измеряет степень тепла или холода и преобразует ее в считываемые единицы. Но задумывались ли вы, как измеряется температура почвы, скважин, огромных бетонных дамб или зданий? Что ж, это достигается с помощью некоторых специализированных датчиков температуры.

Датчики температуры предназначены для регулярного контроля бетонных конструкций, мостов, железнодорожных путей, грунта и т. Д.

Здесь мы расскажем вам, что такое датчик температуры, как он работает, где он используется и какие бывают его типы.

Что такое датчики температуры?

Датчик температуры — это устройство, обычно термопара или резистивный датчик температуры, которое обеспечивает измерение температуры в читаемой форме с помощью электрического сигнала.

Термометр — это самая простая форма измерителя температуры, которая используется для измерения степени жара и холода.

Измерители температуры используются в геотехнической области для контроля бетона, конструкций, почвы, воды, мостов и т. Д. На предмет структурных изменений в них из-за сезонных колебаний.

Термопара (Т / С) изготовлена ​​из двух разнородных металлов, которые генерируют электрическое напряжение прямо пропорционально изменению температуры. RTD (резистивный датчик температуры) представляет собой переменный резистор, который изменяет свое электрическое сопротивление прямо пропорционально изменению температуры точным, воспроизводимым и почти линейным образом.

Что делают датчики температуры?

Датчик температуры — это устройство, предназначенное для измерения степени жара или прохлады объекта. Работа измерителя температуры зависит от напряжения на диоде. Изменение температуры прямо пропорционально сопротивлению диода. Чем ниже температура, тем меньше сопротивление, и наоборот.

Сопротивление на диоде измеряется и преобразуется в считываемые единицы температуры (Фаренгейт, Цельсий, Цельсия и т. Д.)) и отображается в числовой форме над блоками считывания. В области геотехнического мониторинга эти датчики температуры используются для измерения внутренней температуры таких конструкций, как мосты, плотины, здания, электростанции и т. Д.

Для чего используется датчик температуры? | Каковы функции датчика температуры?

Что ж, существует много типов датчиков температуры, но наиболее распространенный способ их классификации основан на режиме подключения, который включает в себя контактные и бесконтактные датчики температуры.

Контактные датчики включают в себя термопары и термисторы, потому что они находятся в прямом контакте с объектом, который они должны измерять. А бесконтактные датчики температуры измеряют тепловое излучение, выделяемое источником тепла. Такие измерители температуры часто используются в опасных средах, таких как атомные электростанции или тепловые электростанции.

В геотехническом мониторинге датчики температуры измеряют теплоту гидратации в массивных бетонных конструкциях. Их также можно использовать для мониторинга миграции грунтовых вод или просачивания.Одна из наиболее распространенных областей, где они используются, — это время отверждения бетона, потому что он должен быть относительно теплым, чтобы схватиться и затвердеть должным образом. Сезонные колебания вызывают расширение или сжатие конструкции, тем самым изменяя ее общий объем.

Как работает датчик температуры?

Основным принципом работы датчиков температуры является напряжение на выводах диода. Если напряжение увеличивается, температура также повышается, за чем следует падение напряжения между выводами транзистора базы и эмиттера в диоде.

Кроме того, Encardio-Rite имеет датчик температуры с вибрирующей проволокой, работающий по принципу изменения напряжения из-за изменения температуры.

Измеритель температуры с вибрирующей проволокой разработан по принципу, согласно которому разнородные металлы имеют разный линейный коэффициент расширения при изменении температуры.

Он в основном состоит из магнитной растянутой проволоки с высокой прочностью на растяжение, два конца которой прикреплены к любому разнородному металлу таким образом, что любое изменение температуры напрямую влияет на натяжение проволоки и, следовательно, на ее собственную частоту вибрации. .

В случае измерителя температуры Encardio-Rite разнородным металлом является алюминий (алюминий имеет больший коэффициент теплового расширения, чем сталь). Поскольку сигнал температуры преобразуется в частоту, используется тот же блок считывания. другие датчики с вибрирующей проволокой также могут использоваться для контроля температуры.

Изменение температуры регистрируется специально созданным датчиком вибрирующей проволоки Encardio-rite и преобразуется в электрический сигнал, который передается в виде частоты на устройство считывания.

Частота, которая пропорциональна температуре и, в свою очередь, напряжению σ в проволоке, может быть определена следующим образом:

f = 1/2 [σg / ρ] / 2l Гц

Где :

σ = натяжение проволоки

g = ускорение свободного падения

ρ = плотность проволоки

l = длина проволоки

Какие существуют датчики температуры?

Доступны датчики температуры различных типов, форм и размеров.Существуют два основных типа датчиков температуры:

Датчики температуры контактного типа : Есть несколько измерителей температуры, которые измеряют степень нагрева или охлаждения объекта, находясь в непосредственном контакте с ним. Такие датчики температуры относятся к категории контактных. Их можно использовать для обнаружения твердых тел, жидкостей или газов в широком диапазоне температур.

Датчики температуры бесконтактного типа : Эти типы измерителей температуры не находятся в прямом контакте с объектом, а измеряют степень тепла или холода посредством излучения, испускаемого источником тепла.

Контактные и бесконтактные датчики температуры подразделяются на:

Термостаты

Термостат — это датчик температуры контактного типа, состоящий из биметаллической полосы, состоящей из двух разнородных металлов, таких как алюминий, медь, никель. , или вольфрам.

Разница в коэффициентах линейного расширения обоих металлов заставляет их производить механическое изгибающее движение, когда они подвергаются нагреву.

Термисторы

Термисторы или термочувствительные резисторы — это те резисторы, которые меняют свой внешний вид при изменении температуры.Термисторы изготовлены из керамического материала, такого как оксиды никеля, марганца или кобальта, покрытого стеклом, что позволяет им легко деформироваться.

Большинство термисторов имеют отрицательный температурный коэффициент (NTC), что означает, что их сопротивление уменьшается с увеличением температуры. Но есть несколько термисторов с положительным температурным коэффициентом (PTC), и их сопротивление увеличивается с повышением температуры.

Резистивные датчики температуры (RTD)

RTD — это точные датчики температуры, которые состоят из проводящих металлов высокой чистоты, таких как платина, медь или никель, намотанных в катушку.Электрическое сопротивление RTD изменяется аналогично термистору.

Термопары

Один из наиболее распространенных датчиков температуры включает термопары из-за их широкого диапазона рабочих температур, надежности, точности, простоты и чувствительности.

Термопара обычно состоит из двух соединений разнородных металлов, таких как медь и константан, которые сварены или обжаты вместе. Один из этих переходов, известный как холодный спай, поддерживается при определенной температуре, в то время как другой является измерительным переходом, известным как горячий спай.

Под воздействием температуры на переходе возникает падение напряжения.

Термистор с отрицательным температурным коэффициентом (NTC)

Термистор в основном является чувствительным к температуре .. (Подробнее)

Курсы PDH онлайн. PDH для профессиональных инженеров. ПДХ Инжиниринг.

«Мне нравится широта ваших курсов по HVAC; не только экологичность или экономия энергии

курс. «

Рассел Бейли, П.E.

Нью-Йорк

«Он укрепил мои текущие знания и научил меня еще нескольким новым вещам

, чтобы познакомить меня с новыми источниками

информации. «

Стивен Дедак, P.E.

Нью-Джерси

«Материал был очень информативным и организованным. Я многому научился, и они были

.

очень быстро отвечает на вопросы.

Это было на высшем уровне. Будет использовать

снова. Спасибо. «

Blair Hayward, P.E.

Альберта, Канада

«Простой в использовании веб-сайт. Хорошо организованный. Я действительно буду снова пользоваться вашими услугами.

проеду по вашей роте

имя другим на работе «

Roy Pfleiderer, P.E.

Нью-Йорк

«Справочный материал был превосходным, а курс был очень информативным, особенно с учетом того, что я думал, что уже знаком.

с деталями Канзаса

Городская авария Хаятт.»

Майкл Морган, P.E.

Техас

«Мне очень нравится ваша бизнес-модель. Мне нравится просматривать текст перед покупкой. Я нашел класс

.

информативно и полезно

на моей работе »

Вильям Сенкевич, П.Е.

Флорида

«У вас большой выбор курсов, а статьи очень информативны.Вы

— лучшее, что я нашел ».

Russell Smith, P.E.

Пенсильвания

«Я считаю, что такой подход позволяет работающему инженеру легко зарабатывать PDH, давая время на просмотр

материал. «

Jesus Sierra, P.E.

Калифорния

«Спасибо, что разрешили мне просмотреть неправильные ответы.На самом деле

человек узнает больше

от отказов »

John Scondras, P.E.

Пенсильвания

«Курс составлен хорошо, и использование тематических исследований является эффективным.

способ обучения. «

Джек Лундберг, P.E.

Висконсин

«Я очень впечатлен тем, как вы представляете курсы; i.е., позволяя

студент, оставивший отзыв на курс

материалов до оплаты и

получает викторину «

Арвин Свангер, P.E.

Вирджиния

«Спасибо за то, что вы предложили все эти замечательные курсы. Я определенно выучил и

получил огромное удовольствие «

Mehdi Rahimi, P.E.

Нью-Йорк

«Я очень доволен предлагаемыми курсами, качеством материалов и простотой поиска.

на связи

курс.»

Уильям Валериоти, P.E.

Техас

«Этот материал в значительной степени оправдал мои ожидания. По курсу было легко следовать. Фотографии в основном обеспечивали хорошее наглядное представление о

обсуждаемые темы »

Майкл Райан, P.E.

Пенсильвания

«Именно то, что я искал. Потребовался 1 балл по этике, и я нашел его здесь.»

Джеральд Нотт, П.Е.

Нью-Джерси

«Это был мой первый онлайн-опыт получения необходимых мне кредитов PDH. Это было

информативно, выгодно и экономично.

Я очень рекомендую

всем инженерам »

Джеймс Шурелл, P.E.

Огайо

«Я понимаю, что вопросы относятся к« реальному миру »и имеют отношение к моей практике, и

не на основании какой-то неясной секции

законов, которые не применяются

до «нормальная» практика.»

Марк Каноник, П.Е.

Нью-Йорк

«Отличный опыт! Я многому научился, чтобы использовать свой медицинский прибор.

организация. «

Иван Харлан, P.E.

Теннесси

«Материалы курса имели хорошее содержание, не слишком математическое, с хорошим акцентом на практическое применение технологий».

Юджин Бойл, П.E.

Калифорния

«Это был очень приятный опыт. Тема была интересной и хорошо изложенной,

а онлайн-формат был очень

доступный и простой

использовать. Большое спасибо. «

Патрисия Адамс, P.E.

Канзас

«Отличный способ добиться соответствия требованиям PE Continuing Education в рамках ограничений по времени лицензиата.»

Joseph Frissora, P.E.

Нью-Джерси

«Должен признаться, я действительно многому научился. Помогает напечатанная викторина во время

обзор текстового материала. Я

также оценил просмотр

предоставлено фактических случаев »

Жаклин Брукс, П.Е.

Флорида

«Документ» Общие ошибки ADA при проектировании объектов «очень полезен.Модель

испытание потребовало исследования в

документ но ответы были

в наличии. «

Гарольд Катлер, П.Е.

Массачусетс

«Я эффективно использовал свое время. Спасибо за широкий выбор вариантов

в транспортной инженерии, что мне нужно

для выполнения требований

Сертификат ВОМ.»

Джозеф Гилрой, P.E.

Иллинойс

«Очень удобный и доступный способ заработать CEU для моих требований PG в Делавэре».

Ричард Роудс, P.E.

Мэриленд

«Я многому научился с защитным заземлением. До сих пор все курсы, которые я прошел, были отличными.

Надеюсь увидеть больше 40%

курс со скидкой.»

Кристина Николас, P.E.

Нью-Йорк

«Только что сдал экзамен по радиологическим стандартам и с нетерпением жду возможности сдать еще

курс. Процесс прост, и

намного эффективнее, чем

в пути «.

Деннис Мейер, P.E.

Айдахо

«Услуги, предоставляемые CEDengineering, очень полезны для профессионалов

Инженеры получат блоки PDH

в любое время.Очень удобно ».

Пол Абелла, P.E.

Аризона

«Пока все отлично! Поскольку я постоянно работаю матерью двоих детей, у меня мало

время исследовать где на

получить мои кредиты от. «

Кристен Фаррелл, P.E.

Висконсин

«Это было очень познавательно и познавательно.Легко для понимания с иллюстрациями

и графики; определенно делает это

проще поглотить все

теории »

Виктор Окампо, P.Eng.

Альберта, Канада

«Хороший обзор принципов работы с полупроводниками. Мне понравилось пройти курс по

.

мой собственный темп во время моего утро

метро

на работу.»

Клиффорд Гринблатт, П.Е.

Мэриленд

«Просто найти интересные курсы, скачать документы и взять

викторина. Я бы очень рекомендовал

вам на любой PE, требующий

CE единиц. «

Марк Хардкасл, П.Е.

Миссури

«Очень хороший выбор тем из многих областей техники.»

Randall Dreiling, P.E.

Миссури

«Я заново узнал то, что забыл. Я также рад оказать финансовую помощь

по ваш промо-адрес который

сниженная цена

на 40%. «

Конрадо Казем, П.E.

Теннесси

«Отличный курс по разумной цене. Воспользуюсь вашими услугами в будущем».

Charles Fleischer, P.E.

Нью-Йорк

«Это был хороший тест и фактически подтвердил, что я прочитал профессиональную этику

коды и Нью-Мексико

регламент. «

Брун Гильберт, П.E.

Калифорния

«Мне очень понравились занятия. Они стоили потраченного времени и усилий».

Дэвид Рейнольдс, P.E.

Канзас

«Очень доволен качеством тестовых документов. Буду использовать CEDengineerng

при необходимости дополнительных

Сертификация . «

Томас Каппеллин, П.E.

Иллинойс

«У меня истек срок действия курса, но вы все же выполнили свое обязательство и дали

мне то, за что я заплатил — много

оценено! «

Джефф Ханслик, P.E.

Оклахома

«CEDengineering предоставляет удобные, экономичные и актуальные курсы.

для инженера »

Майк Зайдл, П.E.

Небраска

«Курс был по разумной цене, а материалы были краткими и

хорошо организовано. «

Glen Schwartz, P.E.

Нью-Джерси

«Вопросы подходили для уроков, а материал урока —

.

хороший справочный материал

для деревянного дизайна. «

Брайан Адамс, П.E.

Миннесота

«Отлично, я смог получить полезные рекомендации по простому телефонному звонку.»

Роберт Велнер, P.E.

Нью-Йорк

«У меня был большой опыт работы в прибрежном строительстве — проектирование

Building курс и

очень рекомендую

Денис Солано, P.E.

Флорида

«Очень понятный, хорошо организованный веб-сайт. Материалы курса этики Нью-Джерси были очень хорошими

хорошо подготовлен. «

Юджин Брэкбилл, P.E.

Коннектикут

«Очень хороший опыт. Мне нравится возможность загружать учебные материалы по номеру

.

обзор везде и

всякий раз, когда.»

Тим Чиддикс, P.E.

Колорадо

«Отлично! Сохраняю широкий выбор тем на выбор».

Уильям Бараттино, P.E.

Вирджиния

«Процесс прямой, без всякой ерунды. Хороший опыт».

Тайрон Бааш, П.E.

Иллинойс

«Вопросы на экзамене были зондирующими и продемонстрировали понимание

материала. Полная

и всесторонний ».

Майкл Тобин, P.E.

Аризона

«Это мой второй курс, и мне понравилось то, что мне предложили этот курс

поможет по телефону

работ.»

Рики Хефлин, P.E.

Оклахома

«Очень быстро и легко ориентироваться. Я определенно буду использовать этот сайт снова».

Анджела Уотсон, P.E.

Монтана

«Легко выполнить. Нет путаницы при подходе к сдаче теста или записи сертификата».

Кеннет Пейдж, П.E.

Мэриленд

«Это был отличный источник информации о солнечном нагреве воды. Информативный

и отличный освежитель ».

Luan Mane, P.E.

Conneticut

«Мне нравится подход к регистрации и возможность читать материалы в автономном режиме, а затем

вернуться, чтобы пройти викторину «

Алекс Млсна, П.E.

Индиана

«Я оценил объем информации, предоставленной для класса. Я знаю

это вся информация, которую я могу

использование в реальных жизненных ситуациях »

Натали Дерингер, P.E.

Южная Дакота

«Обзорные материалы и образец теста были достаточно подробными, чтобы позволить мне

успешно завершено

курс.»

Ира Бродская, П.Е.

Нью-Джерси

«Веб-сайт прост в использовании, вы можете скачать материал для изучения, а потом вернуться

и пройдите викторину. Очень

удобно а на моем

собственный график «

Майкл Гладд, P.E.

Грузия

«Спасибо за хорошие курсы на протяжении многих лет.»

Dennis Fundzak, P.E.

Огайо

«Очень легко зарегистрироваться, получить доступ к курсу, пройти тест и распечатать PDH

Сертификат

. Спасибо за изготовление

процесс простой. »

Фред Шейбе, P.E.

Висконсин

«Опыт положительный.Быстро нашел курс, который соответствовал моим потребностям, и прошел

один час PDH в

один час «

Стив Торкильдсон, P.E.

Южная Каролина

«Мне понравилось загружать документы для проверки содержания

и пригодность, до

имея для оплаты

материал

Ричард Вимеленберг, P.E.

Мэриленд

«Это хорошее напоминание об EE для инженеров, не занимающихся электричеством».

Дуглас Стаффорд, P.E.

Техас

«Всегда есть возможности для улучшения, но я ничего не могу придумать в вашем

процесс, которому требуется

улучшение.»

Thomas Stalcup, P.E.

Арканзас

«Мне очень нравится удобство участия в викторине онлайн и получение сразу

Сертификат

. «

Марлен Делани, П.Е.

Иллинойс

«Учебные модули CEDengineering — это очень удобный способ доступа к информации по номеру

.

много разные технические зоны за пределами

своя специализация без

надо ехать.»

Гектор Герреро, P.E.

Грузия

Принцип работы датчика температуры

и его применение • Зонды Blaze

NewsTemperature Sensor

Термопары, резистивные датчики температуры (RTD), термисторы, инфракрасные и полупроводниковые датчики.

Что такое датчик температуры?

Обычно датчик температуры представляет собой термопару или резистивный датчик температуры (RTD), который измеряет температуру от определенного источника и преобразует собранную информацию в понятный для прибора или наблюдателя тип.Датчики температуры используются в нескольких приложениях, а именно в системах контроля окружающей среды в системах высокого напряжения и переменного тока, в лабораторных устройствах, на предприятиях пищевой промышленности, в системах обработки химикатов, в системах управления, в автомобильном мониторинге под капотом и т. Д.

Датчик температуры

Наиболее частый тип датчика температуры — термометр, используемый для определения температуры твердых тел, жидкостей и газов. Он также в основном используется в ненаучных целях, так как не очень точен. Различные типы датчиков классифицируются по чувствительной способности датчика, а также по диапазону применения.К различным типам датчиков температуры относятся следующие.
Датчик температуры LM35
LM35 — это один из видов широко используемых датчиков температуры, которые можно использовать для измерения температуры с помощью электрического o / p, сравниваемого с температурой (в ° C). Он может измерять температуру более правильно, чем термистор. Этот датчик генерирует более высокое выходное напряжение, чем термопары, и может не нуждаться в усилении выходного напряжения. LM35 имеет выходное напряжение, пропорциональное температуре по Цельсию.Масштабный коэффициент составляет 0,01 В / ° C.

Датчик температуры LM35

LM35 не требует внешней калибровки и поддерживает точность +/- 0,4 ° C при комнатной температуре и +/- 0,8 ° C в диапазоне от 0 ° C до + 100 ° C. Еще одной важной характеристикой этого датчика является то, что он потребляет от источника питания всего 60 мкА и имеет низкую способность к самонагреву. Датчик температуры LM35 доступен во многих различных корпусах, таких как металлический корпус T0-46, подобный транзистору, пластиковый транзисторный корпус TO-92, 8-выводный корпус SO-8 для поверхностного монтажа, небольшой контур.Первоисточник: https://www.efxkits.us/lm35-temperature-sensor-circuit-working/]]>

Что такое датчик температуры?

Вы когда-нибудь оставляли свой смартфон в машине в жаркий день? Если это так, на вашем экране могло быть изображение термометра и предупреждение о том, что ваш телефон перегрелся. Это потому, что есть крошечный встроенный датчик температуры, который измеряет внутреннюю температуру вашего телефона. Как только внутри телефона достигается определенная температура (например, iPhone выключается при температуре около 113 градусов по Фаренгейту), датчик температуры отправляет электронный сигнал на встроенный компьютер.Это, в свою очередь, ограничивает доступ пользователей к каким-либо приложениям или функциям до тех пор, пока телефон не остынет, поскольку запущенные программы могут только еще больше повредить внутренние компоненты телефона.

Датчик температуры — это электронное устройство, которое измеряет температуру окружающей среды и преобразует входные данные в электронные данные для регистрации, отслеживания или сигнализации изменений температуры. Есть много разных типов датчиков температуры. Некоторые датчики температуры требуют прямого контакта с контролируемым физическим объектом (контактные датчики температуры), тогда как другие косвенно измеряют температуру объекта (бесконтактные датчики температуры).

Бесконтактные датчики температуры обычно являются инфракрасными (ИК) датчиками. Они удаленно обнаруживают инфракрасную энергию, излучаемую объектом, и отправляют сигнал на откалиброванную электронную схему, которая определяет температуру объекта.

Среди контактных датчиков температуры есть термопары и термисторы. Термопара состоит из двух проводников, каждый из которых изготовлен из металла разного типа, которые соединены на конце, образуя спай. Когда соединение подвергается нагреву, создается напряжение, которое напрямую соответствует входной температуре.Это происходит из-за явления, называемого термоэлектрическим эффектом. Термопары, как правило, недорогие, так как их конструкция и материалы просты. Другой тип контактного датчика температуры называется термистором. В термисторах сопротивление уменьшается с увеличением температуры. Существует два основных типа термисторов: отрицательный температурный коэффициент (NTC) и положительный температурный коэффициент (PTC). Термисторы более точны, чем термопары (способны измерять в пределах 0,05–1,5 градусов Цельсия), и они сделаны из керамики или полимеров.Температурные датчики сопротивления (RTD), по сути, являются металлическим аналогом термисторов, и они являются наиболее точным и дорогим типом датчиков температуры.

Датчики температуры используются в автомобилях, медицинских устройствах, компьютерах, кухонных приборах и другом оборудовании.

Основы датчика температуры

— NI

Теория работы термопар

Термопары

работают по принципу, известному как эффект Зеебека. Когда два провода, сделанные из разнородных металлов, соединяются и нагреваются на одном конце, образуется термоэлектрическая цепь, которая вызывает измеряемый перепад напряжения, известный как напряжение Зеебека на «холодном» конце.Данная пара металлов различается по температурному диапазону, чувствительности и погрешности в зависимости от свойств этих металлов.

Рисунок 1: Иллюстрация эффекта Зеебека

Каждый тип термопары состоит из уникальной пары металлов. Вам необходимо понимать рабочие характеристики термопары, которую вы выбираете для измерения температуры. Некоторые термопары предлагают широкий температурный диапазон за счет очень нелинейной зависимости напряжения от температуры, в то время как другие обеспечивают меньший (но более линейный) температурный диапазон.

Типы термопар

Как упоминалось выше, вы можете выбирать из множества типов и конструкций термопар. Типы обычно определяются буквенным обозначением, например E, J или K. Тип термопары определяет металлы, используемые для создания термопары; следовательно, он также определяет рабочий диапазон, точность и линейность термопары. На следующих графиках показано изменение напряжения различных типов термопар в диапазоне температур.

Рисунок 2: Температурный отклик различных типов термопар

В дополнение к типу термопары необходимо выбрать конфигурацию оболочки.Некоторые из этих вариантов показаны на рисунке 3, включая заземление, изолированное, герметичное и открытое.

Рисунок 3: Варианты оболочки термопары

Каждая конфигурация имеет преимущества и недостатки в отношении времени отклика, помехоустойчивости и безопасности. В таблице 1 представлен обзор влияния каждого варианта конфигурации.

Конфигурация соединения

Преимущества

Недостатки

Открыто

Самый быстрый ответ (~ 0.От 1 до 2 с)

Контур заземления и потенциал шума

без химической защиты

Наиболее подвержены физическим повреждениям

Открытый борт

Быстрый отклик (~ 15 с)

Контур заземления и потенциал шума

без химической защиты

склонен к физическому урону

Герметичный и заземленный

Физико-химическая защита

Медленный отклик (~ 40 с)

Контур заземления и потенциал шума

Герметичный и изолированный

Физико-химическая защита

электрическая защита (предотвращает контуры заземления и шум)

Самый медленный ответ (~ 75 с)

Таблица 1: Обзор конфигураций спая термопар

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *