Давление газа это: Давление газа — урок. Физика, 7 класс.

Содержание

Давление газа | Физика

Мы знаем, что газы в отличие от твердых тел и жидкостей заполняют весь сосуд, в котором они находятся (например, стальной баллон для хранения газов, камеру автомобильной шины и т. д.). При этом газ оказывает давление на стенки, дно и крышку баллона или камеры, в которых он находится. Чем обусловлено это давление?

Молекулы газа беспорядочно движутся. При своем движении они сталкиваются друг с другом, а также со стенками сосуда, в котором находится газ (рис. 87). Газ состоит из огромного количества молекул, поэтому и число их ударов очень велико. Например, в комнате, в которой вы сейчас находитесь, на каждый квадратный сантиметр за 1 с молекулами воздуха наносится столько ударов, что их количество выражается двадцатитрехзначным числом. Хотя сила удара отдельной молекулы мала, но действие всех молекул о стенки сосуда приводит к значительному давлению.Итак, в газах давление создается ударами беспорядочно движущихся молекул.

Рассмотрим следующий опыт.

Под колокол воздушного насоса помещают завязанный резиновый шарик. Он содержит небольшое количество воздуха и имеет неправильную форму (рис. 88, а). Затем насосом откачивают воздух из-под колокола. Оболочка шарика, вокруг которой воздух становится все более разреженным, постепенно раздувается и принимает сферическую форму (рис. 88, б).Как можно это объяснить?

Мы знаем, что молекулы воздуха движутся и потому непрерывно ударяют о стенки шарика внутри и снаружи. При откачивании воздуха число молекул под колоколом вокруг оболочки шарика уменьшается. Но внутри завязанного шарика их число не изменяется. Поэтому число ударов молекул о внешнюю поверхность оболочки становится меньше числа ударов о внутреннюю поверхность. Из-за этого шарик раздувается и принимает такие размеры, при которых сила упругости его резиновой оболочки становится равной силе давления газа, находящегося внутри его.

Сферическая форма, которую принимает раздутая оболочка шарика показывает, что газ оказывает по всем направлениям одинаковое давление.

Выясним, как зависит давление газа от его объема. Температуру газа будем считать постоянной.

Если объем газа уменьшить, но так, чтобы масса его осталась неизменной, то в каждом кубическом сантиметре газа молекул станет больше. Это означает, что плотность газа увеличится. Тогда число ударов молекул о стенки сосуда возрастет и давление газа станет больше. Это можно подтвердить опытом.

На рисунке 89, а изображен стеклянный цилиндр, один конец которого закрыт тонкой резиновой пленкой. В цилиндр вставлен поршень. При вдвигании поршня объем воздуха в цилиндре уменьшается. При этом резиновая пленка выгибается наружу, указывая на то, что давление воздуха в цилиндре увеличилось (рис. 89, б).
Наоборот, при увеличении объема этой же массы газа число молекул в каждом кубическом сантиметре, а значит, и число их ударов о стенки сосуда станет меньше. При этом давление газа тоже уменьшится.

На опыте это проявляется следующим образом. При вытягивании поршня из цилиндра резиновая пленка прогибается внутрь сосуда, указывая, что давление воздуха внутри цилиндра стало меньше, чем снаружи (рис.

89, в).

Итак, если масса и температура газа остаются неизменными, то при уменьшении объема газа его давление увеличивается, а при увеличении объема давление уменьшается.

Изменение давления газа при изменении его объема учитывают, например, в таком устройстве, как резиновая груша (рис. 90). Этот прибор состоит из двух резиновых шаров с клапанами и резиновой трубки, которую обычно присоединяют к пульверизатору (устройству, предназначенному для распыления жидкостей). Когда шар 1 сдавливают рукой, один (впускной) клапан закрывается, и воздух из шара 1 накачивается в шар 2. При освобождении шара 1 от надавливания он благодаря упругости своих стенок принимает первоначальную форму. При этом давление внутри его уменьшается, и очередная порция наружного воздуха, открывая впускной клапан, вновь входит внутрь шара 1. Воздух в шаре 2 в это время закрывает другой клапан и по трубке направляется в пульверизатор.

1. Из-за чего возникает давление газа? 2. С помощью какого опыта можно показать, что газ производит давление на стенки сосуда, в котором он находится? 3.

Как изменяется давление газа при его сжатии? Почему? 4. Опишите принцип действия резиновой груши.
Экспериментальное задание. Надуйте воздушный шарик. О каких свойствах газа и оболочки шарика свидетельствует его форма? Почему, направляя струю воздуха в определенном направлении, мы заставляем шарик раздуваться сразу по всем направлениям? Почему не все воздушные шарики принимают сферическую форму?

Давление газа

Отвечая на первый, из поставленных выше, вопрос, предположим, что давление газов на стенки сосуда объясняется ударами молекул.

Для того, чтобы в процессе поиска расчетной формулы этого давления ограничиться знаниями элементарной математики и физики, введем некоторые упрощения.

  • Форма, строение молекул достаточно сложны. Но попробуем представить их в виде маленьких шариков. Это позволит нам применить к описанию процесса удара молекул о стенки сосуда законы механики, в частности, второй закон Ньютона.
  • Будем считать, что молекулы газа находятся на достаточно большом расстоянии друг от друга, так, что силы взаимодействия между ними пренебрежимо малы. Если между частицами отсутствуют силы взаимодействия, соответственно, равна нулю и потенциальная энергия взаимодействия. Назовем газ, отвечающий этим свойствам, идеальным.
  • Известно, что молекулы газа движутся с разными скоростями. Однако, усредним скорости движения молекул и будем считать их одинаковыми.
  • Предположим, что удары молекул о стенки сосуда абсолютно упругие (молекулы ведут себя при ударе подобно резиновым мячикам, а не подобно куску пластилина). При этом скорости молекул изменяются лишь по направлению, а по величине остаются прежними. Тогда изменение скорости каждой молекулы при ударе равно –2υ.

Введя такие упрощения, рассчитаем давление газа на стенки сосуда.


Давление – это физическая величина, равная отношению перпендикулярной составляющей силы, действующей на поверхность, к площади этой поверхности.

Сила действует на стенку со стороны множества молекул. Она может быть рассчитана как произведение силы, действующей со стороны одной молекулы, на число молекул, движущихся в сосуде в направлении этой стенки. Так как пространство трехмерно и каждое измерение имеет два направления: положительное и отрицательное, можно считать, что в направлении одной стенки движется одна шестая часть всех молекул (при большом их числе): N = N

0 / 6.

Сила, действующая на стенку со стороны одной молекулы, равна силе, действующей на молекулу со стороны стенки. Сила, действующая на молекулу со стороны стенки, равна произведению массы одной молекулы на ускорение, которое она получает при ударе о стенку:

Ускорение же – это физическая величина, определяемая отношением изменения скорости ко времени, в течение которого это изменение произошло: a = Δυ / t.

Изменение скорости равно удвоенному значению скорости молекулы до удара: Δυ = –2υ.

Если молекула ведет себя подобно резиновому мячику, нетрудно представить процесс удара: молекула, ударяясь, деформируется. На процесс сжатия и разжатия затрачивается время. Пока молекула действует на стенку сосуда, о последнюю успевает удариться еще некоторое число молекул, находящихся от нее на расстояниях не дальше l = υt. (Например, условно говоря, пусть молекулы имеют скорость 100 м/с. Удар длится 0,01 с. Тогда за это время до стенки успеют долететь и внести свой вклад в давление молекулы, находящиеся от нее на расстояниях 10, 50, 70 см, но не далее 100 см).

Будем рассматривать объем сосуда V = lS.

Подставив все формулы в исходную, получаем уравнение:

где: – масса одной молекулы, – среднее значение квадрата скорости молекул, N – число молекул в объеме V.

Сделаем некоторые пояснения по поводу одной из величин, входящих в полученное уравнение.

Так как движение молекул хаотично и преимущественного движения молекул в сосуде нет, их средняя скорость равна нулю. Но ясно, что это не относится к каждой отдельной молекуле.

Для вычисления давления идеального газа на стенку сосуда используется не среднее значение x-компоненты скорости молекул а среднее значение квадрата скорости

Чтобы введение этой величины было более понятным, рассмотрим численный пример.

Пусть четыре молекулы имеют скорости 1, 2, 3, 4 усл. ед.

Квадрат среднего значения скорости молекул равен:

Среднее значение квадрата скорости равно:

Если скорости молекул равны +1, –2 , –3 , +4 усл. ед., то квадрат среднего значения скорости равен:

Среднее значение квадрата скорости равно:

Средние значения проекций квадрата скорости на оси x, y, z связаны со средним значением квадрата скорости соотношением:

Если извлечь квадратный корень из то получим величину, которая называется средней квадратичной скоростью молекул.

Величина, определяемая отношением числа частиц к объему, в котором они находятся, называется концентрацией (обозначается буквой n).

Величина же – это средняя кинетическая энергия каждой молекулы газа.

С учетом этого полученное уравнение можно переписать в виде:

Уравнения связывают макропараметры газа – его давление и объем (p, V) с микропараметрами – массой молекул и их скоростью (m0, υ), или энергией

Последнее уравнение читается следующим образом: давление идеального газа на стенки сосуда прямо пропорционально концентрации молекул в сосуде и их средней кинетической энергии.

Распределительные газопроводы и их классификация — Что такое Распределительные газопроводы и их классификация?

Газопровод является важным элементом системы газоснабжения, так как на его сооружение расходуется 70-80% всех капитальных вложений.

ИА Neftegaz.RU. В системах газоснабжения в зависимости от давления транспор­тируемого газа различают:
  • газопроводы высокого давления I категории (рабочее давление газа от 0,6 до 1,2 МПа),
  • газопроводы высокого давления II категории (рабочее давление газа от 0,3 до 0,6 МПа),
  • газопроводы среднего давления (рабочее давление газа от 0,005 до 0,3 МПа),
  • газопроводы низкого давления (рабочее давление газа до 0,005 МПа).

Газопровод является важным элементом системы газоснабжения, так как на его сооружение расходуется 70-80% всех капитальных вложений.

При этом от общей протяженности распределительных газовых сетей 80% приходится на газопроводы низкого давления и 20% — на газопроводы среднего и высокого давлений.

Газопроводы низкого давления служат для подачи газа к жилым домам, общественным зданиям и коммунально-бытовым предприятиям.

Газопроводы среднего давления через газорегуляторные пункты (ГРП) снабжают газом газопроводы низкого давления, а также промышленные и коммунально-бытовые предприятия.

По газопроводам высокого давления газ поступает через газораспределительные установки (ГРУ) на промышленные предприятия и газопроводы среднего давления.

Связь между потребителями и газопроводами различных давлений осуществляется через ГРП и ГРУ и ГРШ.

В зависимости от расположения газопроводы делятся на наружные (уличные, внутриквартальные, дворовые, межцеховые) и внутренние (расположенные внутри зданий и помещений), а также на подземные (подводные) и надземные (надводные).

В зависимости от назначения в системе газоснабжения газопроводы подразделяются на распределительные, газопроводы-вводы, вводные, продувочные, сбросные и межпоселковые.

Распределительными являются наружные газопроводы, обеспечивающие подачу газа от магистральных газопроводов до газопроводов — вводов, а также газопроводы высокого и среднего давлений, предназначенные для подачи газа к одному объекту.

Газопроводом-вводом считают участок от места присоединения к распределительному газопроводу до отключающего устройства на вводе.

Вводным газопроводом (газопровод — ввод) считают участок от отключающего устройства на вводе в здание до внутреннего газопровода.

Межпоселковыми являются распределительные газопроводы, проложенные между населенными пунктами и связывающие газопроводы различного назначения между собой.

Внутренним газопроводом считают участок от газопровода-ввода (вводного газопровода) до места подключения газового прибора или теплового агрегата.

В зависимости от материала труб газопроводы подразделяют на металлические (стальные, медные) и неметаллические (полиэтиленовые).

Различают также трубопроводы с сжиженным углеводородным газом (СУГ), а также сжиженным природным газом (СПГ), при криогенных температурах.

По принципу построения распределительные системы газопроводов делятся на кольцевые, тупиковые и смешанные.

В тупиковых газовых сетях газ поступает потребителю в одном направлении, т. е. потребители имеют одностороннее питание.

В отличие от тупиковых кольцевые сети состоят из замкнутых контуров, в результате чего газ может поступать к потребителям по 2м или нескольким линиям.

Надежность кольцевых сетей выше тупиковых.

При проведении ремонтных работ на кольцевых сетях отключается только часть по­требителей, присоединенных к данному участку.

В систему газоснабжения входят распределительные газопроводы всех давлений, газораспределительные станции (ГРС), газорегуляторные пункты и установки.

Все элементы систем газоснабжения должны обеспечивать надежность и безопасность подачи газа потребителям.

В зависимости от числа ступеней и давления газа в газопроводах, системы газоснабжения городов и населенных пунктов делятся на одно-, двух-, трех- и многоступенчатые.

Одноступенчатые системы газоснабжения обеспечивают подачу газа потребителям по газопроводам только одного давления, как правило, низкого (рис. 5.1 )

Двухступенчатые системы газоснабжения (рис.5.2) обеспечивают распределение и подачу газа потребителям по газопроводам среднего и низкого или высокого и низкого давлений.

Трехступенчатая система газоснабжения позволяет осуществлять распределение и подачу газа потребителям по газопроводам низкого, среднего и высокого давлений.

Многоступенчатая система газоснабжения предусматривает рас­пределение газа по газопроводам высокого I категории (до 1,2 МПа), высокого II категории (до 0,6 МПа), среднего (до 0,3 МПа) и низкого (до 500 даПа) давлений.

Выбор системы газоснабжения зависит от характера планировки и плотности застройки населенного пункта.


Устройство подземных распределительных газопроводов.

Система газоснабжения должна быть надежной и экономичной, что определяется правильным выбором трассы газопровода, который зависит от расстояния до потребителя, ширины проездов, вида дорожного покрытия, наличия вдоль трассы различных сооружений и препятствий, а также от рельефа местности.

Минимальная глубина заложения газопроводов должна быть не менее 0,8 м.

В местах, где не предусматривается движение транспорта, глубина заложения газопровода может составлять 0,6 м.

Расстояние от газопровода до наружной стены колодцев и камер подземных сооружений должно быть не менее 0,3 м.

Допускается укладка 2х и более газопроводов в одной траншее на одном или разных уровнях.

При этом расстояние между газопроводами в свету должно быть достаточным для их монтажа и ремонта.

Расстояние по вертикали между подземными газопроводами всех давлений и другими подземными сооружениями и коммуникациями должно составлять:

  • при пересечении водопровода, канализации, водостока, каналов телефонных и теплосети — не менее 0,2 м,
  • электрокабелей и телефонных бронированных кабелей — не менее 0,5м,
  • электрокабелей маслонаполненных (на 110-220 кВ) — не менее 1,0 м.

Допускается уменьшать расстояние между газопроводом и электрокабелем при прокладке их в футлярах.

При этом концы футляра электрокабеля должны выходить на 1 м по обе стороны от стенок пересекаемого газопровода.

При пересечении каналов теплосети, коллекторов, туннелей, каналов с переходом над или под ними следует предусматривать прокладку газопровода в футляре, выходящем на 2 м в обе стороны от наружных стенок пересекаемых сооружений, а также проверку физическими методами контроля всех сварных стыков в пределах пересечения и на расстоянии 5 м в стороны от наружных стенок этих сооружений.

Запорную арматуру и конденсатосборники на газопроводах устанавливают на расстоянии не менее 2 м от края пересекаемой коммуникационной системы или сооружения.

Газопроводы в местах прохода через наружные стены зданий заключают в футляры диаметром не менее чем на 100-200 мм больше диаметра газопровода.

ДАВЛЕНИЕ ГАЗА — это… Что такое ДАВЛЕНИЕ ГАЗА?

ДАВЛЕНИЕ ГАЗА
— сила, с которой давит газ, стремясь к расширению под действием теплового движения его молекул; оно выражается обычно в кгс/см2, или в атм (1 атм соответствует давлению 1,03 кгс/см2).

Геологический словарь: в 2-х томах. — М.: Недра. Под редакцией К. Н. Паффенгольца и др.. 1978.

  • ДАВЛЕНИЕ ВНУТРИ ЗЕМЛИ
  • ДАВЛЕНИЕ ГИДРОДИНАМИЧЕСКОЕ

Смотреть что такое «ДАВЛЕНИЕ ГАЗА» в других словарях:

  • давление газа — 3.6 давление газа: Избыточное давление движущегося газа относительно атмосферного давления. Источник: ГОСТ Р 52057 2003: Краны для газовых аппаратов. Общие технические требования и методы испытаний …   Словарь-справочник терминов нормативно-технической документации

  • давление газа — dujų slėgis statusas T sritis Standartizacija ir metrologija apibrėžtis Dujų molekulių, atsitrenkiančių į indo sienas, slėgis. atitikmenys: angl. gas pressure vok. Gasdruck, m rus. давление газа, n pranc. pression de gaz, f …   Penkiakalbis aiškinamasis metrologijos terminų žodynas

  • давление газа — dujų slėgis statusas T sritis fizika atitikmenys: angl. gas pressure; gaseous pressure vok. Gasdruck, m rus. давление газа, n pranc. pression de gaz, f …   Fizikos terminų žodynas

  • давление газа — статическое давление движущегося газа относительно атмосферного давления. Единица физической величины килопаскаль (кПа). (Смотри: ГОСТ Р 51733 2001. Котлы газовые центрального отопления, оснащенные атмосферными горелками, номинальной тепловой… …   Строительный словарь

  • Давление газа рабочее — давление газа рабочее: максимально возможное давление газа, установленное проектом, при котором обеспечивается режим эксплуатации газопровода… Источник: Методические рекомендации по определению и обоснованию технологических потерь природного… …   Официальная терминология

  • давление газа в пласте — — [http://slovarionline. ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность EN gas reservoir pressure …   Справочник технического переводчика

  • давление газа, при котором начинается фонтанирование скважины — — [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность EN kickoff pressure …   Справочник технического переводчика

  • давление газа р, кПа — 3.1.4 давление газа р, кПа: Статическое давление движущегося газа относительно атмосферного давления. Источник: ГОСТ Р 54439 2011: Котлы газовые для центрального отопл …   Словарь-справочник терминов нормативно-технической документации

  • давление газа, р, мбар — 3.1.10 давление газа, р, мбар: Статическое давление движущегося газа относительно атмосферного давления. Источник …   Словарь-справочник терминов нормативно-технической документации

  • общее давление газа-наполнителя газового ионизационного детектора — общее давление газа наполнителя Сумма парциальных давлений газов внутри газового ионизационного детектора. [ГОСТ 19189 73] Тематики детекторы ионизирующих излучений Синонимы общее давление газа наполнителя EN filling gas total pressure of gas… …   Справочник технического переводчика


Классификация природного газа по давлению

Единица измеренияНизкое давление газаСреднее давление газаВысокое давление газа II категорииВысокое давление газа I категории
1 МПа

до 0,005

от 0,005 до 0,3

от 0,3 до 0,6

от 0,6 до 1,2

1 кПа

до 5

от 5 до 300

от 300 до 600

от 600 до 1200

1 мбар

до 50

от 50 до 3000

от 3000 до 6000

от 6000 до 12000

1 бар

до 0,05

от 0,05 до 3

от 3 до 6

от 6 до 12

1 атм

до 0,049

от 0,049 до 2,960

от 2,960 до 5,921

от 5,921 до 11,843

1 кгс/см2

до 0,050

от 0,050 до 3,059

от 3,059 до 6,118

от 6,118 до 12,236

1 н/м2 (Па)

до 5000

от 5000 до 300000

от 300000 до 600000

от 600000 до 1200000

1 мм. вод. ст.

до 509,858

от 509,585 до 30591,48

от 30591,48 до 61182,96

от 61182,96 до 122365,92

Газопровод — это основа газовых сетей. Классифицировать газопроводы принято по давлению:

  • газопроводы низкого давления служат для снабжения отоплением обыкновенных граждан, небольших газовых котельных, некрупных предприятий; давления газа в них составляет до до 5кПа;
  • газопроводы среднего давления до 0,3МПа;
  • газопроводы высокого давления до 1,2МПа, которые, в свою очередь, подразделяются на I, II и III категории.

Тогда как газопроводы низкого давления служат для работы в небольших газовых котельных, газопроводы среднего и высокого давления обеспечивают теплом и горячим водоснабжением различные коммунальные и промышленные предприятия. Обычно они работают через газорегуляторные установки.

Газоснабжение осуществляется при помощи разных систем, многоступенчатых и одноступенчатых. Обычно в небольших населённых пунктах предпочтение отдаётся двухступенчатому газопроводу, а в больших городах применяются, по большей части, многоступенчатые газопроводы высокого давления. Совсем крупные потребители газа имеют возможность подключиться к ТЭЦ с помощью газорегуляторной установки или напрямую к магистрали.

Кроме того, газопроводы разного давления делятся на наземные (или наводные) и подземные (или подводные).

Таблицы в картинках

Приведенные ниже картинки вы можете сохранить к себе для личного пользования.

Для расчёта стоимости котельной, пожалуйста,
заполните опросный лист на котельную.
Опросный лист можно заполнить в онлайн-режиме или скачать.

По всем возникшим вопросам:
телефон: 8 (906) 700-40-55
электронная почта: [email protected]

Вас также может заинтересовать

Отличие между парциальным давлением и полным давлением газа

« Назад

Если поместить любой газ в закрытую емкость, то он всегда будет равномерно занимать весь объем этой емкости. Молекулы газа постоянно совершают тепловое движение по всему объему, ударяясь при этом о стенки емкости и создавая давление внутри.

В вакуумной технике существуют понятия парциальное давление и полное давление газовой смеси:

 

Газовая смесь состоит из нескольких типов газа.

Парциальное давление — это давление отдельно взятого компонента газовой смеси.

Полное давление — это сумма парциальных давлений всех газов.

В вакуумной технике парциальное давление и полное давление измеряются разными способами.

Измерение парциального давления

Для измерения парциального давления используется вакуумметр Мак-Леода

На изображении представлены измерения парциального давления 2НВ-16МТ (3*10-2 Па).

Измерение полного давления

Для измерения общего давления используется вакуумметр Пирани

На изображении представлены измерения полного давления 2НВ-16МТ (3. 5*10-1 Па.)

Заключение

Парциальное предельное остаточное давление (измеренное вакуумметром Мак-Леода) и полное предельное остаточное давление (измеренное вакуумметром Пирани) одного и того же насоса соответственно 3*10-2 Па и 3.5*10-1 Па.

Как правило, парциальное давление в 10 раз меньше, чем полное давление.

Зачастую, в характеристиках вакуумного насоса указываются следующие значения предельно остаточного давления:

1. Парциальное давление без газобалласта — давление откачиваемой среды, в которой отсутствуют пары воды или парогазовые смеси без напуска балластного газа.

2. Полное без газобалласта — давление откачиваемой среды без напуска балластного газа.

3. Полное с газобалластом — давление откачиваемой среды, при работе насоса с напуском балластного газа.

 Что такое газобалласт и как он влияет на работу пластинчато-роторного вакуумного насоса?

« Назад

Давление газа

 

Попробуйте растянуть воздушный шарик руками. В длину, в ширину. Прикиньте на глазок или замерьте расстояние, на которое вам удалось его растянуть. А теперь надуйте шарик.

И сравните длину и ширину надутого шарика с тем расстоянием, на которое вам удавалось его растянуть. Практически в ста процентах случаев оказывается, что воздух, самый обыкновенный воздух, которым вы дышите, справился значительно лучше ваших мышц. Поразительно, не правда ли? Точно так же мы накачиваем камеры машин и велосипедов, мячи для спортивных игр, и после качественной накачки мы абсолютно не в состоянии сжать руками воздух внутри камеры или мяча. Отчего так происходит? Почему воздух оказывается намного сильнее нас, не имея ни мускулов, ни приспособлений для этого? Это явление носит название давление газа и проходится в седьмом классе на уроках физики. 

Давление газа в физике

Абсолютно все вещества состоят из мельчайших, не видимых глазу частиц – молекул. Эти молекулы находятся в беспрерывном хаотичном движении. И если в твердых телах это лишь небольшое колебание на одном месте, то в жидкостях и газах это движение происходит в любых направлениях, молекулы сталкиваются друг с другом, летят в новом направлении, вновь сталкиваются и так далее, рисуя немыслимые траектории и пересекая неисчислимое расстояние. Удар при столкновении одной молекулы очень и очень мал, но, как известно, молекул невероятное множество, двигаются они очень быстро, а потому действие всех молекул – это довольно значительная величина. То есть, многочисленные удары беспорядочно движущихся молекул и создают давление газа на стенки сосуда или на помещенное в газ тело.

Именно потому, когда мы надували воздушный шарик, мы наполняли его все новыми и новыми порциями воздуха, то есть газа, и, будучи накачиваемым все в большем количестве, он создавал все большее давление на стенки шарика, растягивая его. А так как из-за хаотического движения молекулы равномерно распределяются по всему объему, создавая равномерное давление газа на стенки сосуда, то и шарик равномерно раздувался во все стороны.

Зависимость давления газа от температуры

Если же мы уменьшаем объем сосуда при постоянной массе и температуре газа, то его давление на стенки уменьшается. Это и понятно, так как при увеличении объема расстояние между молекулами становится больше и количество соударений уменьшается. Существует также зависимость давления газа от температуры. Чем выше температура, тем выше скорость молекул газа и, соответственно, количество соударений и их сила увеличивается. Поэтому категорически нельзя нагревать баллоны со сжиженным газом, так как от увеличения давления внутри они могут не выдержать и взорваться. Для измерения давления газа существуют специальные приборы, самый известный из которых – это барометр, который позволяет нам узнать величину атмосферного давления и, исходя их этих данных, одеваться на улицу соответственно.

Нужна помощь в учебе?



Предыдущая тема: Способы уменьшения и увеличения давления
Следующая тема:&nbsp&nbsp&nbspЗакон Паскаля: формула и применение

Давление газа | Химия для майоров

Результаты обучения

  • Определить свойство давления
  • Определение и преобразование единиц измерения давления
  • Описать работу обычных инструментов для измерения давления газа
  • Рассчитать давление по данным манометра

Атмосфера Земли оказывает давление, как и любой другой газ. Хотя обычно мы не замечаем атмосферное давление, мы чувствительны к изменениям давления — например, когда ваши уши «хлопают» во время взлета и посадки во время полета или когда вы ныряете под водой.Давление газа вызывается силой, действующей при столкновении молекул газа с поверхностями объектов (рис. 1). Хотя сила каждого столкновения очень мала, любая поверхность значительной площади подвергается большому количеству столкновений за короткое время, что может привести к высокому давлению. Фактически, нормальное давление воздуха достаточно велико, чтобы раздавить металлический контейнер, если он не уравновешен равным давлением внутри контейнера.

Рис. 1. Атмосфера над нами оказывает сильное давление на объекты на поверхности земли, примерно равное весу шара для боулинга, давящего на область размером с ноготь человека.

В этом коротком видеоролике представлена ​​наглядная иллюстрация атмосферного давления, на которой показан взрыв железнодорожной цистерны при понижении внутреннего давления. (Обратите внимание, что в видео нет повествования. Вы можете получить доступ к описанию аудио с помощью виджета под видео.)

Расшифровку звукового описания «Вакуумного взрыва железнодорожной цистерны» можно посмотреть здесь (открывается в новом окне).

Демонстрация этого явления в меньшем масштабе кратко объясняется в следующем видео:

Вы можете просмотреть стенограмму «Раздавить бочку объемом 55 галлонов давлением воздуха» здесь (открывается в новом окне).

Атмосферное давление создается за счет веса столба молекул воздуха в атмосфере над объектом, например, цистерной. На уровне моря это давление примерно такое же, как у взрослого африканского слона, стоящего на коврике, или обычного шара для боулинга, опирающегося на большой палец руки. Это может показаться огромным, и это так, но жизнь на Земле развивалась под таким атмосферным давлением. Если вы на самом деле поместите шар для боулинга на ноготь большого пальца, испытываемое давление будет , вдвое , по сравнению с обычным давлением, и ощущение будет неприятным.

Обычно давление определяется как сила, действующая на заданную область: [латекс] P = \ dfrac {F} {A}. [/ Latex] Обратите внимание, что давление прямо пропорционально силе и обратно пропорционально площади. Таким образом, давление может быть увеличено либо за счет увеличения силы, либо за счет уменьшения площади, по которой оно применяется; давление можно уменьшить, уменьшив силу или увеличив площадь.

Давайте применим эту концепцию, чтобы определить, кто с большей вероятностью упадет сквозь тонкий лед на рисунке 2 — слон или фигурист? Большой африканский слон может весить 7 тонн, опираясь на четыре ноги, каждая из которых имеет диаметр около 1.{2} [/ латекс]

Даже несмотря на то, что слон более чем в сто раз тяжелее фигуриста, он оказывает менее половины давления и, следовательно, с меньшей вероятностью упадет через тонкий лед. С другой стороны, если фигуристка снимает коньки и стоит босиком (или в обычной обуви) на льду, большая площадь, на которую приходится ее вес, значительно снижает оказываемое давление:

[латекс] \ text {давление на ногу человека} = 120 \ dfrac {\ text {lb}} {\ text {skater}} \ times \ dfrac {\ text {1 skater}} {\ text {2 ft}} \ times \ dfrac {\ text {1 фут}} {30 {\ text {in}} ^ {2}} = 2 {\ text {lb / in}} ^ {2} [/ latex]

Рисунок 2. Хотя (а) вес слона велик, что создает очень большую силу на земле, (б) фигуристка оказывает гораздо большее давление на лед из-за небольшой площади поверхности коньков. (Фото А: модификация работы Гвидо да Роззе; кредит б: модификация работы Рёске Яги)

Единица давления в системе СИ — паскаль (Па) , где 1 Па = 1 Н / м 2 , где N — ньютон, единица силы, определяемая как 1 кг м / с 2 . Один паскаль — это небольшое давление; во многих случаях удобнее использовать единицы килопаскаль (1 кПа = 1000 Па) или бар (1 бар = 100000 Па).В Соединенных Штатах давление часто измеряется в фунтах силы на площади в один квадратный дюйм — фунт на квадратный дюйм (psi) — например, в автомобильных шинах. Давление также можно измерить с помощью прибора атмосфера (атм) , который первоначально представлял среднее атмосферное давление на уровне моря на приблизительной широте Парижа (45 °). В таблице 1 представлена ​​некоторая информация об этих и некоторых других распространенных единицах измерения давления

Таблица 1. Единицы давления
Наименование и сокращение Определение или отношение к другой единице
паскаль (Па) 1 Па = 1 Н / м 2
Рекомендуемый блок IUPAC
килопаскаль (кПа) 1 кПа = 1000 Па
фунтов на квадратный дюйм (psi) Давление воздуха на уровне моря ~ 14. 7 фунтов на кв. Дюйм
атмосфера (атм) 1 атм = 101,325 Па
Давление воздуха на уровне моря ~ 1 атм
бар (бар, или бар) 1 бар = 100000 Па (точно)
обычно используется в метеорологии
миллибар (мбар или мбар) 1000 мбар = 1 бар
дюймов рт. Ст. (Дюймы рт. Ст.) 1 дюйм рт. Ст. = 3386 Па
используется в авиационной промышленности, а также в некоторых сводках погоды
торр [latex] \ text {1 torr} = \ dfrac {\ text {1}} {\ text {760}} \ text {atm} [/ latex]
имени Евангелисты Торричелли, изобретателя барометра
миллиметры ртутного столба (мм рт. Ст.) [латекс] 1 [/ латекс] мм рт. Ст. [Латекс] \ text {~} 1 [/ латекс] торр

Пример 1: Преобразование единиц давления

Национальная метеорологическая служба США сообщает о давлении как в дюймах ртутного столба, так и в миллибарах. Преобразуйте давление 29,2 дюйма рт. Ст. В:

  1. торр
  2. атм
  3. кПа
  4. мбар
Показать решение

Это проблема преобразования единиц измерения. Отношения между различными единицами измерения давления приведены в таблице 1.

  1. [латекс] 29.2 \ cancel {\ text {in Hg}} \ times \ dfrac {\ text {760 torr}} {29.92 \ cancel {\ text {in Hg}}} = \ text {742 torr} [/ латекс]
  2. [латекс] 742 \ cancel {\ text {torr}} \ times \ dfrac {\ text {1 atm}} {760 \ cancel {\ text {torr}}} = \ text {0.976 атм} [/ латекс]
  3. [латекс] 742 \ cancel {\ text {torr}} \ times \ dfrac {\ text {101,325 кПа}} {760 \ cancel {\ text {torr}}} = \ text {98,9 кПа} [/ латекс]
  4. [латекс] 98.9 \ cancel {\ text {kPa}} \ times \ dfrac {1000 \ cancel {\ text {Pa}}} {1 \ cancel {\ text {kPa}}} \ times \ dfrac {1 \ cancel {\ text {bar}}} {100 000 \ cancel {\ text {Pa}}} \ times \ dfrac {\ text {1000 мбар}} {1 \ cancel {\ text {bar}}} = \ text {989 мбар } [/ латекс]
Проверьте свои знания

Типичное атмосферное давление в Канзас-Сити составляет 740 торр. Что это за давление в атмосферах, миллиметрах ртутного столба, килопаскалях и барах?

Показать решение

0,974 атм; 740 мм рт. 98,7 кПа; 0,987 бар

Мы можем измерить атмосферное давление, силу, действующую со стороны атмосферы на земную поверхность, с помощью барометра (рис. 3). Барометр представляет собой стеклянную трубку, которая закрыта с одного конца, заполнена нелетучей жидкостью, такой как ртуть, а затем перевернута и погружена в контейнер с этой жидкостью. Атмосфера оказывает давление на жидкость за пределами трубки, столб жидкости оказывает давление внутри трубки, а давление на поверхности жидкости одинаково внутри и снаружи трубки.Следовательно, высота жидкости в трубке пропорциональна давлению, оказываемому атмосферой.

Рис. 3. В барометре высота столба жидкости h используется как измерение давления воздуха. Использование очень плотной жидкой ртути (слева) позволяет создавать барометры разумного размера, тогда как для использования воды (справа) потребуется барометр высотой более 30 футов.

Если жидкостью является вода, нормальное атмосферное давление будет поддерживать столб воды высотой более 10 метров, что довольно неудобно для изготовления (и считывания) барометра.Поскольку ртуть (Hg) примерно в 13,6 раз плотнее воды, ртутный барометр должен быть [латекс] \ dfrac {1} {13.6} [/ латекс] высотой с водяной барометр — более подходящий размер. Стандартное атмосферное давление 1 атм на уровне моря (101 325 Па) соответствует столбу ртути высотой около 760 мм (29,92 дюйма). торр изначально задумывался как единица измерения, равная одному миллиметру ртутного столба, но теперь не соответствует точно. Давление, оказываемое жидкостью под действием силы тяжести, известно как гидростатическое давление , [латекс] п [/ латекс]:

[латекс] p = h \ rho g [/ латекс]

, где [latex] h [/ latex] — высота жидкости, [latex] \ rho [/ latex] — плотность жидкости, а [latex] g [/ latex] — ускорение свободного падения.

Пример 2: Расчет барометрического давления

Покажите расчет, подтверждающий утверждение о том, что атмосферное давление около уровня моря соответствует давлению, оказываемому столбом ртути высотой около 760 мм. Плотность ртути = 13,6 г / см 3 .

Показать решение

Гидростатическое давление определяется как p = hρg , при этом h = 760 мм, ρ = 13,6 г / см 3 и g = 9,81 м / с 2 .{5} \ text {Pa} \ end {array} [/ latex]

Проверьте свои знания

Рассчитайте высоту водяного столба при 25 ° C, что соответствует нормальному атмосферному давлению. Плотность воды при этой температуре составляет 1,0 г / см 3 .

Манометр — устройство, подобное барометру, которое можно использовать для измерения давления газа, находящегося в контейнере. Манометр с закрытым концом представляет собой U-образную трубку с одним закрытым плечом, одним плечом, которое соединяется с измеряемым газом, и нелетучей жидкостью (обычно ртутью) между ними.Как и в случае с барометром, расстояние между уровнями жидкости в двух рукавах трубки ( х на диаграмме) пропорционально давлению газа в баллоне. Манометр с открытым концом (рис. 4) аналогичен манометру с закрытым концом, но одно из его рукавов открыто для атмосферы. В этом случае расстояние между уровнями жидкости соответствует разнице давлений между газом в емкости и атмосферой.

Рис. 4. Манометр можно использовать для измерения давления газа.Высота (разница) между уровнями жидкости (h) является мерой давления. Обычно используется ртуть из-за ее большой плотности.

Пример 3: Расчет давления с помощью манометра закрытого типа

Давление пробы газа измеряется манометром с закрытым концом, как показано ниже.

Жидкость в манометре — ртуть. Определить давление газа в:

  1. торр
  2. Па
  3. бар
Показать решение

Давление газа равно столбу ртути высотой 26.4 см. (Давление в нижней горизонтальной линии одинаково с обеих сторон трубки. Давление слева обусловлено газом, а давление справа — 26,4 см ртутного столба.) Мы могли бы использовать уравнение p = hρg , как в Примере 2, но проще преобразовать единицы измерения с помощью таблицы 1.

  1. [латекс] 26,4 \ cancel {\ text {cm Hg}} \ times \ dfrac {10 \ cancel {\ text {mm Hg}}} {1 \ cancel {\ text {cm Hg}}} \ times \ dfrac {\ text {1 торр}} {1 \ cancel {\ text {мм рт. ст.}}} = \ text {264 торр} [/ latex]
  2. [латекс] 264 \ cancel {\ text {torr}} \ times \ dfrac {1 \ cancel {\ text {atm}}} {760 \ cancel {\ text {torr}}} \ times \ dfrac {\ text { 101,325 Па}} {1 \ cancel {\ text {atm}}} = \ text {35,200 Па} [/ latex]
  3. [латекс] 35 \ text {, 200} \ cancel {\ text {Pa}} \ times \ dfrac {\ text {1 bar}} {100 000 \ cancel {\ text {Pa}}} = \ text {0.352 бар} [/ латекс]
Проверьте свои знания

Давление пробы газа измеряется манометром с закрытым концом. Жидкость в манометре — ртуть.

Определить давление газа в:

  1. торр
  2. Па
  3. бар
Показать решение
  1. [латекс] \ text {~} 150 [/ латекс] торр
  2. [латекс] \ text {~} 20 000 [/ латекс] Па
  3. [латекс] \ text {~} 0,20 [/ латекс] бар

Пример 4: Расчет давления с помощью манометра с открытым концом

Давление пробы газа измеряется на уровне моря ртутным манометром с открытым концом, как показано ниже.

Определить давление газа в:

  1. мм рт. Ст.
  2. атм
  3. кПа
Показать решение

Давление газа равно гидростатическому давлению столба ртути высотой 13,7 см плюс давление атмосферы на уровне моря. (Давление в нижней горизонтальной линии одинаково с обеих сторон трубки. Давление слева обусловлено газом, а давление справа — 13,7 см ртутного столба плюс атмосферное давление.{2} \ text {кПа} [/ латекс]

Проверьте свои знания

Давление пробы газа измеряется на уровне моря ртутным манометром с открытым концом, как показано ниже.

Определить давление газа в:

  1. мм рт. Ст.
  2. атм
  3. кПа
Показать решение
  1. 642 мм рт. Ст.
  2. 0,845 атм
  3. 85,6 кПа

Попробуйте

  1. Давление пробы газа измеряется на уровне моря манометром с закрытым концом.Жидкость в манометре — ртуть.

    Определите давление газа в:
    1. торр
    2. Па
    3. бар
  2. Давление пробы газа измеряется манометром с открытым концом, частично показанным справа. Жидкость в манометре — ртуть.

    Предполагая, что атмосферное давление составляет 29,92 дюйма рт. Ст., Определите давление газа в:
    1. торр
    2. Па
    3. бар
  3. Давление пробы газа измеряется на уровне моря ртутным манометром с открытым концом.

    Предполагая, что атмосферное давление составляет 760,0 мм рт. Ст., Определите давление газа в:
    1. мм рт. Ст.
    2. атм
    3. кПа
  4. Давление пробы газа измеряется на уровне моря ртутным манометром с открытым концом.

    Предполагая, что атмосферное давление составляет 760 мм рт. Ст., Определите давление газа в:
    1. мм рт. Ст.
    2. атм
    3. кПа
Показать выбранные решения

1. Давление газа:

  1. [латекс] 26.4 \ cancel {\ text {cm}} \ times \ dfrac {10 \ cancel {\ text {mm}}} {1 \ cancel {\ text {cm}}} \ times \ dfrac {\ text {1 торр}} {1 \ cancel {\ text {mm}}} = \ text {264 торр} [/ latex]
  2. [латекс] \ text {264 торр} \ times \ dfrac {101, \ text {325 Па}} {\ text {760 торр}} = 35, \ text {200 Па} [/ латекс]
  3. [латекс] 264 \ cancel {\ text {torr}} \ times \ dfrac {\ text {1. 01325 bar}} {760 \ cancel {\ text {torr}}} = \ text {0.352 bar} [/ latex]

3. Давление газа равно гидростатическому давлению, создаваемому давлением атмосферы на уровне моря за вычетом столба ртути высотой 13.7 см. Давление слева обусловлено газом, а давление справа — атмосферным давлением минус 13,7 см рт. Ст.).

  1. В мм рт. Ст. Это: 760 мм рт. Ст. — 137 мм рт. Ст. = 623 мм рт. Ст .;
  2. [латекс] \ text {623 мм рт. Ст.} \ Times \ dfrac {\ text {1 атм}} {\ text {760 мм рт. Ст.}} = 0,820 \ text {атм;} [/ латекс]
  3. [латекс] \ text {0,820 атм} \ times \ dfrac {\ text {101,325 кПа}} {\ text {1 атм}} = \ text {83,1 кПа} [/ латекс]

Измерение артериального давления

Артериальное давление измеряется с помощью устройства, называемого сфигмоманометром (греч. sphygmos = «пульс»).Он состоит из надувной манжеты для ограничения кровотока, манометра для измерения давления и метода определения, когда кровоток начинается и когда он становится затрудненным (Рисунок 5). С момента своего изобретения в 1881 году он был незаменимым медицинским устройством. Существует много типов сфигмоманометров: ручные, для которых требуется стетоскоп и которые используются медицинскими работниками; ртутные, когда требуется наибольшая точность; менее точные механические; и цифровые, которые можно использовать после небольшого обучения, но у них есть ограничения.При использовании сфигмоманометра манжету надевают вокруг плеча и накачивают до тех пор, пока кровоток полностью не блокируется, а затем медленно отпускают. Когда сердце бьется, кровь, проходящая через артерии, вызывает повышение давления. Это повышение давления, при котором начинается кровоток, составляет систолическое давление пиковое давление в сердечном цикле. Когда давление в манжете сравняется с артериальным систолическим давлением, кровь течет мимо манжеты, создавая слышимые звуки, которые можно услышать с помощью стетоскопа.За этим следует снижение давления, поскольку желудочки сердца готовятся к новому удару. Поскольку давление в манжете продолжает снижаться, звук в конце концов перестает быть слышным; это диастолическое давление наименьшее давление (фаза покоя) в сердечном цикле. Единицы измерения артериального давления тонометра выражаются в миллиметрах ртутного столба (мм рт. Ст.).

Рис. 5. (a) Медицинский техник готовится измерить артериальное давление пациента с помощью сфигмоманометра. (b) Типичный сфигмоманометр использует резиновую грушу с клапаном для надувания манжеты и диафрагменный манометр для измерения давления.(кредит а: модификация работы магистра-сержанта Джеффри Аллена)

Метеорология, климатология и атмосферные науки

На протяжении веков люди наблюдали облака, ветры и осадки, пытаясь определить закономерности и сделать прогнозы: когда лучше сажать и собирать урожай; безопасно ли отправляться в морское путешествие; и многое другое. Сейчас мы сталкиваемся со сложными проблемами, связанными с погодой и атмосферой, которые окажут серьезное влияние на нашу цивилизацию и экосистему. Несколько различных научных дисциплин используют химические принципы, чтобы помочь нам лучше понять погоду, атмосферу и климат.Это метеорология, климатология и атмосферная наука. Метеорология — это изучение атмосферы, атмосферных явлений и атмосферных воздействий на погоду Земли. Метеорологи стремятся понять и предсказать погоду в краткосрочной перспективе, что может спасти жизни и принести пользу экономике. Прогнозы погоды (рис. 6) являются результатом тысяч измерений атмосферного давления, температуры и т.п., которые собираются, моделируются и анализируются в метеорологических центрах по всему миру.

Рисунок 6.Метеорологи используют карты погоды для описания и предсказания погоды. Области высокого (H) и низкого (L) давления сильно влияют на погодные условия. Серые линии представляют собой места постоянного давления, известные как изобары. (кредит: модификация работы Национального управления океанических и атмосферных исследований)

Что касается погоды, системы низкого давления возникают, когда атмосферное давление на поверхности земли ниже, чем в окружающей среде: влажный воздух поднимается и конденсируется, образуя облака. Движение влаги и воздуха в пределах различных погодных фронтов провоцирует большинство погодных явлений.

Атмосфера — это газовый слой, окружающий планету. Атмосфера Земли толщиной примерно 100–125 км состоит из примерно 78,1% азота и 21,0% кислорода и может быть подразделена на области, показанные на рисунке 7: экзосфера (наиболее удаленная от Земли,> 700 км над уровнем моря) , термосфера (80–700 км), мезосфера (50–80 км), стратосфера (второй нижний уровень нашей атмосферы, 12–50 км над уровнем моря) и тропосфера (до 12 км над уровнем моря, примерно 80% земной атмосферы по массе и слой, в котором происходит большинство погодных явлений).По мере того, как вы поднимаетесь в тропосфере, плотность и температура воздуха снижаются.

Рис. 7. Атмосфера Земли состоит из пяти слоев: тропосферы, стратосферы, мезосферы, термосферы и экзосферы.

Климатология — это изучение климата, усредненных погодных условий за длительные периоды времени с использованием атмосферных данных. Однако климатологи изучают закономерности и эффекты, которые происходят в течение десятилетий, столетий и тысячелетий, а не более короткие временные рамки в часы, дни и недели, как метеорологи.Наука об атмосфере — это еще более широкая область, объединяющая метеорологию, климатологию и другие научные дисциплины, изучающие атмосферу.

Ключевые концепции и резюме

Газы оказывают давление, то есть силу на единицу площади. Давление газа может быть выражено в единицах СИ — паскаль или килопаскаль, а также во многих других единицах, включая торр, атмосферу и бар. Атмосферное давление измеряется с помощью барометра; другие давления газа можно измерить с помощью одного из нескольких типов манометров.

Ключевые уравнения
  • [латекс] P = \ dfrac {F} {A} [/ латекс]
  • [латекс] p = h \ rho {g} [/ латекс]

Попробуйте

  1. Почему острые ножи более эффективны, чем тупые (подсказка: подумайте об определении давления)?
  2. Почему у некоторых небольших мостов есть ограничения по весу, зависящие от количества колес или осей у проезжающего транспортного средства?
  3. Почему лучше кататься или ползать на животе, чем ходить по замерзшему пруду?
  4. Типичное атмосферное давление в Реддинге, Калифорния, составляет около 750 мм рт. Вычислите это давление в атм и кПа.
  5. Типичное барометрическое давление в Денвере, штат Колорадо, составляет 615 мм рт. Что это за давление в атмосферах и килопаскалях?
  6. Типичное атмосферное давление в Канзас-Сити составляет 740 торр. Что это за давление в атмосферах, миллиметрах ртутного столба и килопаскалях?
  7. Канадские манометры имеют маркировку в килопаскалях. Какое значение на таком манометре соответствует 32 фунтам на квадратный дюйм?
  8. Во время высадки викингов на Марс атмосферное давление было определено в среднем около 6.50 миллибар (1 бар = 0,987 атм). Что это за давление в торр и кПа?
  9. Давление атмосферы на поверхности планеты Венера составляет около 88,8 атм. Сравните это давление в фунтах на квадратный дюйм с нормальным давлением на Земле на уровне моря в фунтах на квадратный дюйм.
  10. Каталог медицинских лабораторий описывает давление в баллоне газа как 14,82 МПа. Какое давление у этого газа в атмосферах и торр?
  11. Рассмотрите этот сценарий и ответьте на следующие вопросы: В середине августа на северо-востоке США в местной газете появилась следующая информация: атмосферное давление на уровне моря 29. 97 дюймов, 1013,9 мбар.
    1. Какое было давление в кПа?
    2. Давление у побережья на северо-востоке США обычно составляет около 30,0 дюймов рт. Ст. Во время урагана давление может упасть примерно до 28,0 дюймов рт. Ст. Рассчитайте падение давления в торр.
  12. Почему необходимо использовать нелетучую жидкость в барометре или манометре?
  13. Как использование летучей жидкости повлияет на измерение газа с помощью манометров открытого типа по сравнению сзакрытые манометры?
Избранные ответы

1. Режущая кромка заточенного ножа имеет меньшую площадь поверхности, чем затупившийся нож. Поскольку давление — это сила на единицу площади, острый нож будет оказывать более высокое давление с той же силой и более эффективно прорезать материал.

3. Лежа распределяет ваш вес на большую площадь поверхности, оказывая меньшее давление на лед, чем стоя. Если вы будете меньше нажимать, у вас меньше шансов пробить тонкий лед.{{-2}} [/ латекс]

11. Ответы следующие:

  1. [латекс] 29.97 \ cancel {\ text {in. Hg}} \ times \ dfrac {\ text {101,325 кПа}} {29.92 \ cancel {\ text {in. Hg}}} = \ text {101,5 кПа} [/ latex]
  2. [латекс] 28.0 \ cancel {\ text {дюйм. Hg}} \ times \ dfrac {\ text {760 торр}} {29.92 \ cancel {\ text {in. Hg}}} = \ text {711 торр;} [/ latex] 762 — 711 = падение 51 торр

13. При использовании манометра с закрытым концом никаких изменений не наблюдалось бы, поскольку испаренная жидкость будет вносить равные противодействующие давления в обоих плечах трубки манометра.Однако с манометром с открытым концом будет получено более высокое давление газа, чем ожидалось, поскольку P газ = P атм + P объем жидкости .

Глоссарий

атмосфера (атм): единица давления; 1 атм = 101,325 Па

бар: (бар или б) единица давления; 1 бар = 100 000 Па

барометр: прибор для измерения атмосферного давления

гидростатическое давление: давление жидкости под действием силы тяжести

манометр: прибор для измерения давления газа, находящегося в контейнере

паскаль (Па): единица давления в системе СИ; 1 Па = 1 Н / м 2

фунтов на квадратный дюйм (psi): единица давления, общепринятая в США

давление: сила на единицу площади

торр: ед. Давления; [латекс] \ text {1 torr} = \ frac {1} {760} \ text {atm} [/ latex]

Давление газа

Важное свойство любого газа это его давление .У нас есть опыт работы с газом давление, которого у нас нет с такими свойствами, как вязкость и сжимаемость. Каждый день мы слышим, как метеоролог по телевизору дает значение барометрического давления атмосфера (29,8 дюйма ртуть, например). И большинство из нас надували воздушный шар или использовали насос для накачки велосипедной шины или баскетбольного мяча.

Потому что понимание того, что такое давление и как оно работает, так фундаментальные для понимания аэродинамики, мы включаем несколько слайдов о давлении газа в Руководстве для начинающих.An интерактивный симулятор атмосферы позволяет учиться как статическое давление воздуха меняется с высотой. В Программа FoilSim показывает, как изменяется давление вокруг подъемного крыла, а Программа EngineSim показывает, как давление изменяется в газотурбинном двигателе. Другой тренажер поможет вам изучить, как изменяется давление в ударные волны, возникающие на высоких скоростях. Есть два способа взглянуть на давление: (1) мелкомасштабное действие. отдельных молекул воздуха или (2) крупномасштабное действие большого количество молекул.

Молекулярное определение давления

От кинетическая теория газов, газ составлен большого количества молекул, которые очень малы по сравнению с расстояние между молекулами. Молекулы газ находятся в постоянном, случайном движения и часто сталкиваются друг с другом и со стенками любой контейнер. Молекулы обладают физическими свойствами массы, импульс и энергия.Импульс отдельной молекулы равен произведение его массы и скорости, а кинетическая энергия равна единице. половина массы, умноженная на квадрат скорости. Поскольку молекулы газа сталкиваются со стенками контейнер, как показано слева на рисунке, молекулы передают импульс к стенам, создающий силу перпендикулярно стене . Сумма сил всех молекул, ударяющихся о стенку, деленная на площадь стенка определяется как давление .Давление газа равно затем мера среднего количества движения движущихся молекул газа. Давление действует перпендикулярно (перпендикулярно) стене; тангенциальный (сдвиг) составляющая силы связана с вязкость газа.

Скалярная величина

Давайте посмотрим на статический газ; тот, который, кажется, не движется или не течет. Хотя газ в целом не движется, отдельные молекулы газа, которые мы не видим, находятся в постоянном случайном движение.Поскольку мы имеем дело с почти бесконечным числом молекул и поскольку движение отдельных молекул случайным образом во всех направлениях, мы не обнаруживаем никакого движения. Если мы заключаем газ в контейнер, мы обнаруживаем давление в газ из молекул, сталкивающихся со стенками нашего контейнера. Мы может поставить стенки нашего контейнера где угодно внутри газа, а сила на площадь (давление) то же самое. Мы можем уменьшить размер нашего «контейнера» до бесконечно малая точка, а давление имеет единственное значение в таком случае.Следовательно, давление — это скаляр количество, а не векторное количество. Он имеет величину, но не имеет направления, связанного с Это. В точке внутри газа давление действует во всех направлениях. На поверхности газа сила давления действует перпендикулярно поверхность.

Если газ в целом движется, измеренное давление отличается в направление движения. Упорядоченное движение газа производит упорядоченную составляющую импульса в направление движения.Мы связываем дополнительное давление компонент, называемый динамическое давление с этим движением жидкости. Давление, измеренное в направлении движения, называется полное давление и равно сумме статического и динамического давления, описываемого уравнением Бернулли.

Макромасштаб Определение давления

В более крупном масштабе давление — это переменная состояния газа, как температура и плотность. Изменение давления во время любого процесса регулируется законами термодинамика. Вы можете изучить влияние давления на другие параметры газа. в анимационной газовой лаборатории. Хотя само давление является скаляром, мы можем определить сила давления быть равным давлению (сила / площадь), умноженному на поверхность область в направлении, перпендикулярном поверхности. Сила давления — это вектор , величина .

Силы давления обладают некоторыми уникальными качествами по сравнению с гравитационными. или механические силы.На рисунке, показанном выше справа, у нас есть красный газ. который заключен в коробку. К верхней части коробка. Сила давления внутри коробки противостоит приложенной силе согласно Ньютону третий закон движения. Скалярное давление равно внешней силе, деленной на площадь вершины. коробки. Внутри газа давление действует во всех направлениях. Так давление давит на дно коробки и на стороны. Это отличается от простой механики твердого тела. Если красный газ был твердым телом, не было бы сил, приложенных к бокам коробки; приложенная сила будет просто передана на Нижний. Но в газе, потому что молекулы могут свободно перемещаться и сталкиваются друг с другом, сила, приложенная по вертикали Направление вызывает силы в горизонтальном направлении.


Действия:

Экскурсии с гидом

Навигация..


Руководство для начинающих Домашняя страница

Давление газа

Введение:

Давление определяется потоком массы от высокого давления область в область низкого давления. Измерения давления производятся на жидких состояниях — жидкости и газы. Воздух оказывает давление к которому мы так привыкли, что игнорируем его. Давление воды на пловце более заметно.Вы можете знать о измерения давления в зависимости от погоды или вашего автомобиля или велосипедные шины.

Что такое давление?

ДАВЛЕНИЕ — сила, прилагаемая веществом на единицу область на другом веществе. Давление газа — это сила что газ действует на стенки контейнера. Когда вы дует воздух в воздушный шар, воздушный шар расширяется, потому что давление молекул воздуха внутри шара больше, чем снаружи.Давление — это свойство, определяющее направление в котором течет масса. Если воздушный шар выпущен, воздух движется из области высокого давления в область низкого давления.

Атмосферное давление меняется с высотой так же, как давление воды. зависит от глубины. Когда пловец ныряет глубже, давление воды увеличивается. Как альпинист поднимается на большую высоту, атмосферное давление понижается. Его тело сжимается меньшее количество воздуха над ним.Атмосферное давление при 20000 футов — это только половина от уровня моря, потому что около половина всей атмосферы находится ниже этой отметки.

Атмосферное давление на уровне моря можно выразить через 14,7 фунтов на квадратный дюйм. Давление в машине или велосипеде шины также измеряются в фунтах на квадратный дюйм. Автомобиль должен 26-30 фунтов / кв. дюйм. и велосипедные шины 40-60 / кв.

БАРОМЕТР:

Метеоролог может дать атмосферное давление или барометрическое давление. давление как 30 дюймов.Этот тип измерения выполняется с помощью барометр Торричелли. Он состоит из длинной трубки, закрытой на один конец, наполненный ртутью и перевернутый в сосуд с ртутью как показано на рисунке 4.

На уровне моря сила атмосферного давления поддержит столбик ртути высотой 760 мм. Собственно, вес столб ртути равен силе атмосферного давление.

Подобным образом атмосферное давление заставляет воду в аналогичная колонна высотой от
до 34 футов!

Простые приложения, связанные с давлением:

ПИТЬЕВАЯ СОЛОМКА: Питьевая соломинка используется для создания всасывание ртом. Собственно это вызывает уменьшение давление воздуха внутри соломинки. Поскольку атмосферный давление больше снаружи соломинки, жидкость вытесняется в соломинку и вверх.

СИФОН: С помощью сифона вода может течь «в гору». Сифон можно запустить, наполнив трубку водой (возможно всасыванием). После запуска атмосферное давление на поверхности верхней емкости заставляет воду подниматься по короткой трубке, чтобы заменить вода вытекает из длинной трубки.

Закон Бойля:

В 1662 году Роберт Бойль провел первое систематическое исследование соотношение
между объемом и давлением в газах. Наблюдения Бойля могут можно суммировать
в утверждении: При постоянной температуре объем газ изменяется на
обратно пропорционально действующему на него давлению.

Рис. 6. ДЕМОНСТРАЦИЯ ЗАКОНА БОЙЛА.

Кинетическая молекулярная теория Объяснение закона Бойля

Наблюдения за давлением можно пояснить следующим образом: идеи. Быстрое движение и столкновения молекул с стенки контейнера вызывают давление (силу на единицу площади). Давление пропорционально количеству столкновений молекул. и сила столкновений в определенной области. Чем больше при столкновении молекул газа со стенками давление выше.

Демонстрации:
Антигравитация
Подвешивание вода
Magic Leaky Бутылка — бутылка с отверстиями
Верх. стакан в воде
Battle из двух шаров
Воздушный шар Надутый внутри бутылки
Film Can Space Шаттл
King Kong’s Hand

Давление газа · Химия

Давление газа · Химия

К концу этого раздела вы сможете:

  • Определить свойство давления
  • Определение и преобразование единиц измерения давления
  • Описать работу обычных инструментов для измерения давления газа
  • Рассчитать давление по данным манометра

Атмосфера Земли оказывает давление, как и любой другой газ. Хотя обычно мы не замечаем атмосферное давление, мы чувствительны к изменениям давления — например, когда ваши уши «хлопают» во время взлета и посадки во время полета или когда вы ныряете под водой. Давление газа вызывается силой, действующей при столкновении молекул газа с поверхностями объектов ([ссылка]). Хотя сила каждого столкновения очень мала, любая поверхность значительной площади подвергается большому количеству столкновений за короткое время, что может привести к высокому давлению. Фактически, нормальное давление воздуха достаточно велико, чтобы раздавить металлический контейнер, если он не уравновешен равным давлением внутри контейнера.

В этом коротком видеоролике наглядно показано атмосферное давление, в котором показан взрыв железнодорожной цистерны при понижении внутреннего давления.

Кратко объясняется демонстрация этого явления в меньшем масштабе.

Атмосферное давление создается за счет веса столба молекул воздуха в атмосфере над объектом, например, цистерной. На уровне моря это давление примерно такое же, как у взрослого африканского слона, стоящего на коврике, или обычного шара для боулинга, опирающегося на большой палец руки.Это может показаться огромным, и это так, но жизнь на Земле развивалась под таким атмосферным давлением. Если вы на самом деле поместите шар для боулинга на ноготь большого пальца, испытываемое давление будет , вдвое , по сравнению с обычным давлением, и ощущение будет неприятным.

Как правило, давление определяется как сила, действующая на заданную область: P = FA.

Обратите внимание, что давление прямо пропорционально силе и обратно пропорционально площади. Таким образом, давление может быть увеличено либо за счет увеличения силы, либо за счет уменьшения площади, по которой оно применяется; давление можно уменьшить, уменьшив силу или увеличив площадь.

Давайте применим эту концепцию, чтобы определить, кто с большей вероятностью упадет сквозь тонкий лед в [ссылка] — слон или фигурист? Большой африканский слон может весить 7 тонн, опираясь на четыре ноги, каждая из которых имеет диаметр около 1,5 футов (площадь отпечатка 250 в 2 ), поэтому давление, оказываемое каждой ногой, составляет около 14 фунтов / дюйм 2 :

давление на ногу слона = 14000 фунтов слон × 1 слон 4 фута × 1 фут 250 дюймов2 = 14 фунтов / дюйм2

Фигурист весит около 120 фунтов, опираясь на два лезвия конька, каждое с площадью около 2 дюймов. 2 , поэтому давление, оказываемое каждым лезвием, составляет около 30 фунтов / дюйм. 2 :

давление на одно лезвие конька = 120 фунтов на коньках × 1 на коньках 2 лезвия × 1 лезвие 2 дюйма 2 = 30 фунтов / дюйм 2

Даже несмотря на то, что слон более чем в сто раз тяжелее фигуриста, он оказывает менее половины давления и, следовательно, с меньшей вероятностью упадет через тонкий лед.С другой стороны, если фигуристка снимает коньки и стоит босиком (или в обычной обуви) на льду, большая площадь, на которую приходится ее вес, значительно снижает оказываемое давление:

давление на ногу человека = 120 фунтов на конькобежца × 1 на 2 фута × 1 фут 30 дюймов2 = 2 фунта / дюйм2

Единица давления в системе СИ — паскаль (Па) , где 1 Па = 1 Н / м 2 , где N — ньютон, единица силы, определяемая как 1 кг м / с 2 . Один паскаль — это небольшое давление; во многих случаях удобнее использовать единицы килопаскаль (1 кПа = 1000 Па) или бар (1 бар = 100000 Па).В Соединенных Штатах давление часто измеряется в фунтах силы на площади в один квадратный дюйм — фунта на квадратный дюйм (psi) — например, в автомобильных шинах. Давление также можно измерить с помощью прибора атмосфера (атм) , который первоначально представлял среднее атмосферное давление на уровне моря на приблизительной широте Парижа (45 °). [ссылка] предоставляет некоторую информацию об этих и некоторых других распространенных единицах измерения давления.

Единицы давления
Название устройства и сокращение Определение или отношение к другой единице
паскаль (Па) 1 Па = 1 Н / м 2
Рекомендуемый блок IUPAC
килопаскаль (кПа) 1 кПа = 1000 Па
фунтов на квадратный дюйм (psi) Давление воздуха на уровне моря составляет ~ 14.7 фунтов на кв. Дюйм
атмосфера (атм) 1 атм = 101,325 Па
Давление воздуха на уровне моря ~ 1 атм
бар (бар или бар) 1 бар = 100000 Па (точно)
обычно используется в метеорологии
миллибар (мбар или мбар) 1000 мбар = 1 бар
дюймов ртутного столба (дюймы рт. Ст.) 1 дюйм Hg = 3386 Па
используется в авиационной промышленности, а также в некоторых сводках погоды
торр 1 торр = 1760атм
назван в честь Евангелисты Торричелли, изобретателя барометра
миллиметры ртутного столба (мм рт. Ст.) 1 мм рт. Ст. ~ 1 торр

Преобразование единиц давления Национальная метеорологическая служба США сообщает о давлении как в дюймах ртутного столба, так и в миллибарах.Преобразуйте давление 29,2 дюйма рт. Ст. В:

(а) торр

(б) атм

(c) кПа

(d) мбар

Решение Это проблема преобразования единиц измерения. Отношения между различными единицами измерения давления приведены в [ссылка].

(а) 29,2 дюйма рт. Ст. × 25,4 мм1 дюйм × 1 торр 1 мм рт. Ст. = 742 торр

(б) 742 торр × 1 атм 760 торр = 0,976 атм

(c) 742torr × 101,325 кПа 760torr = 98,9 кПа

(d) 98,9 кПа × 1000 Па 1 кПа × 1 бар 100 000 Па × 1000 мбар 1 бар = 989 мбар

Проверьте свои знания Типичное атмосферное давление в Канзас-Сити составляет 740 торр.Что это за давление в атмосферах, миллиметрах ртутного столба, килопаскалях и барах?

Отвечать:

0,974 атм; 740 мм рт. 98,7 кПа; 0,987 бар

Мы можем измерить атмосферное давление, силу, действующую со стороны атмосферы на земную поверхность, с помощью барометра ([ссылка]). Барометр представляет собой стеклянную трубку, которая закрыта с одного конца, заполнена нелетучей жидкостью, такой как ртуть, а затем перевернута и погружена в контейнер с этой жидкостью.Атмосфера оказывает давление на жидкость за пределами трубки, столб жидкости оказывает давление внутри трубки, а давление на поверхности жидкости одинаково внутри и снаружи трубки. Следовательно, высота жидкости в трубке пропорциональна давлению, оказываемому атмосферой.

Если жидкостью является вода, нормальное атмосферное давление будет поддерживать столб воды высотой более 10 метров, что довольно неудобно для изготовления (и считывания) барометра.Поскольку ртуть (Hg) примерно в 13,6 раз плотнее воды, ртутный барометр должен быть только 113,6

высотой с водяной барометр — более подходящий размер. Стандартное атмосферное давление 1 атм на уровне моря (101 325 Па) соответствует столбу ртути высотой около 760 мм (29,92 дюйма). торр изначально задумывался как единица измерения, равная одному миллиметру ртутного столба, но теперь не соответствует точно. Давление, оказываемое жидкостью под действием силы тяжести, известно как гидростатическое давление , p :

p = hρg

, где h — высота жидкости, ρ — плотность жидкости, а g — ускорение свободного падения.

Расчет барометрического давления Покажите расчет, подтверждающий утверждение о том, что атмосферное давление вблизи уровня моря соответствует давлению, оказываемому столбом ртути высотой около 760 мм. Плотность ртути = 13,6 г / см 3 .

Решение Гидростатическое давление определяется формулой p = hρg , при этом h = 760 мм, ρ = 13,6 г / см 3 и g = 9,81 м / с 2 . Включение этих значений в уравнение и выполнение необходимых преобразований единиц даст нам искомое значение.(Примечание: мы ожидаем найти давление ~ 101,325 Па 🙂

101,325 Н / м2 = 101,325 кг · м / с2м2 = 101,325 кг · м · с2

p = (760 мм × 1 м1000 мм) × (13,6 г1см3 × 1 кг1000 г × (100 см) 3 (1 м) 3) × (9,81 м1с2)

= (0,760 м) (13,600 кг / м3) (9,81 м / с2) = 1,01 × 105 кг / мс2 = 1,01 × 105 Н / м2

= 1,01 × 105 Па

Проверьте свои знания Рассчитайте высоту столба воды при 25 ° C, что соответствует нормальному атмосферному давлению. Плотность воды при этой температуре равна 1.0 г / см 3 .

Манометр — устройство, подобное барометру, которое может использоваться для измерения давления газа, находящегося в контейнере. Манометр с закрытым концом представляет собой U-образную трубку с одним закрытым плечом, одним плечом, которое соединяется с измеряемым газом, и нелетучей жидкостью (обычно ртутью) между ними. Как и в случае с барометром, расстояние между уровнями жидкости в двух рукавах трубки ( х на диаграмме) пропорционально давлению газа в баллоне.Манометр с открытым концом ([ссылка]) аналогичен манометру с закрытым концом, но одно из его рукавов открыто для атмосферы. В этом случае расстояние между уровнями жидкости соответствует разнице давлений между газом в емкости и атмосферой.

Расчет давления с помощью манометра с закрытым концом Давление пробы газа измеряется манометром с закрытым концом, как показано справа. Жидкость в манометре — ртуть. Определить давление газа в:

(а) торр

(б) Па

(с) бар

Решение Давление газа равно столбу ртути высотой 26.4 см. (Давление в нижней горизонтальной линии одинаково с обеих сторон трубки. Давление слева обусловлено газом, а давление справа — 26,4 см ртутного столба.) Мы могли бы использовать уравнение p = hρg как в [ссылка], но проще просто преобразовать единицы с помощью [ссылка].

(a) 26,4 см рт. Ст. × 10 мм рт. Ст. 1 см рт. Ст. × 1 торр 1 мм рт. Ст. = 264 торр

(b) 264 торр × 1 атм. 760 торр × 101,325 Па · 1 атм = 35 200 Па

(c) 35 200 Па × 1 бар 100 000 Па = 0.352 бар

Проверьте свои знания Давление пробы газа измеряется манометром с закрытым концом. Жидкость в манометре — ртуть. Определить давление газа в:

(а) торр

(б) Па

(с) бар

Отвечать:

(а) ~ 150 торр; (б) ~ 20 000 Па; (c) ~ 0,20 бар

Расчет давления с помощью манометра с открытым концом Давление пробы газа измеряется на уровне моря с помощью ртутного манометра с открытым концом, как показано справа.Определить давление газа в:

(а) мм рт. Ст.

(б) атм

(c) кПа

Решение Давление газа равно гидростатическому давлению столба ртути высотой 13,7 см плюс давление атмосферы на уровне моря. (Давление в нижней горизонтальной линии одинаково с обеих сторон трубки. Давление слева обусловлено газом, а давление справа — 13,7 см ртутного столба плюс атмосферное давление.)

(a) В мм рт. Ст. Это: 137 мм рт. Ст. + 760 мм рт. Ст. = 897 мм рт. Ст.

(б) 897 мм рт. Ст. × 1 атм. 760 мм рт. Ст. = 1.18 атм

(c) 1,18атм × 101,325 кПа1атм = 1,20 × 102 кПа

Проверьте свои знания Давление пробы газа измеряется на уровне моря ртутным манометром с открытым концом, как показано справа. Определить давление газа в:

(а) мм рт. Ст.

(б) атм

(c) кПа

Отвечать:

(а) 642 мм рт. (б) 0,845 атм; (c) 85,6 кПа

Измерение артериального давления

Артериальное давление измеряется с помощью устройства, называемого сфигмоманометром (греч. sphygmos = «пульс»).Он состоит из надувной манжеты для ограничения кровотока, манометра для измерения давления и метода определения, когда кровоток начинается и когда он становится затрудненным ([ссылка]). С момента своего изобретения в 1881 году он был незаменимым медицинским устройством. Существует много типов сфигмоманометров: ручные, для которых требуется стетоскоп и которые используются медицинскими работниками; ртутные, когда требуется наибольшая точность; менее точные механические; и цифровые, которые можно использовать после небольшого обучения, но у них есть ограничения.При использовании сфигмоманометра манжету надевают вокруг плеча и накачивают до тех пор, пока кровоток полностью не блокируется, а затем медленно отпускают. Когда сердце бьется, кровь, проходящая через артерии, вызывает повышение давления. Это повышение давления, при котором начинается кровоток, составляет систолическое давление пиковое давление в сердечном цикле. Когда давление в манжете сравняется с артериальным систолическим давлением, кровь течет мимо манжеты, создавая слышимые звуки, которые можно услышать с помощью стетоскопа.За этим следует снижение давления, поскольку желудочки сердца готовятся к новому удару. Поскольку давление в манжете продолжает снижаться, звук в конце концов перестает быть слышным; это диастолическое давление наименьшее давление (фаза покоя) в сердечном цикле. Единицы измерения артериального давления тонометра выражаются в миллиметрах ртутного столба (мм рт. Ст.).

Метеорология, климатология и атмосферные науки

На протяжении веков люди наблюдали облака, ветры и осадки, пытаясь определить закономерности и сделать прогнозы: когда лучше сажать и собирать урожай; безопасно ли отправляться в морское путешествие; и многое другое.Сейчас мы сталкиваемся со сложными проблемами, связанными с погодой и атмосферой, которые окажут серьезное влияние на нашу цивилизацию и экосистему. Несколько различных научных дисциплин используют химические принципы, чтобы помочь нам лучше понять погоду, атмосферу и климат. Это метеорология, климатология и атмосферная наука. Метеорология — это изучение атмосферы, атмосферных явлений и атмосферных воздействий на погоду Земли. Метеорологи стремятся понять и предсказать погоду в краткосрочной перспективе, что может спасти жизни и принести пользу экономике.Прогнозы погоды ([ссылка]) являются результатом тысяч измерений атмосферного давления, температуры и т. Д., Которые собираются, моделируются и анализируются в метеорологических центрах по всему миру.

Что касается погоды, системы низкого давления возникают, когда атмосферное давление на поверхности земли ниже, чем в окружающей среде: влажный воздух поднимается и конденсируется, образуя облака. Движение влаги и воздуха в пределах различных погодных фронтов провоцирует большинство погодных явлений.

Атмосфера — это газовый слой, окружающий планету.Атмосфера Земли, имеющая толщину примерно 100–125 км, состоит примерно на 78,1% азота и 21,0% кислорода и может быть подразделена на регионы, показанные на [ссылка]: экзосфера (наиболее удаленная от Земли,> 700 км над уровнем моря. ), термосфера (80–700 км), мезосфера (50–80 км), стратосфера (второй нижний уровень нашей атмосферы, 12–50 км над уровнем моря) и тропосфера (до 12 км над уровнем моря). , примерно 80% атмосферы Земли по массе и слой, в котором происходит большинство погодных явлений).По мере того, как вы поднимаетесь в тропосфере, плотность и температура воздуха снижаются.

Климатология — это изучение климата, усредненных погодных условий за длительные периоды времени с использованием атмосферных данных. Однако климатологи изучают закономерности и эффекты, которые происходят в течение десятилетий, столетий и тысячелетий, а не более короткие временные рамки в часы, дни и недели, как метеорологи. Наука об атмосфере — это еще более широкая область, объединяющая метеорологию, климатологию и другие научные дисциплины, изучающие атмосферу.

Ключевые концепции и резюме

Газы оказывают давление, то есть силу на единицу площади. Давление газа может быть выражено в единицах СИ — паскаль или килопаскаль, а также во многих других единицах, включая торр, атмосферу и бар. Атмосферное давление измеряется с помощью барометра; другие давления газа можно измерить с помощью одного из нескольких типов манометров.

Ключевые уравнения

Химия: упражнения в конце главы

Почему острые ножи более эффективны, чем тупые (Подсказка: подумайте об определении давления)?

Режущая кромка заточенного ножа имеет меньшую площадь поверхности, чем затупившийся нож.Поскольку давление — это сила на единицу площади, острый нож будет оказывать более высокое давление с той же силой и более эффективно прорезать материал.

Почему у некоторых небольших мостов есть ограничения по весу, которые зависят от количества колес или осей у проезжающего транспортного средства?

Почему вам лучше кататься или ползать животом, чем ходить по замерзшему пруду?

Лежа распределяет ваш вес на большую площадь поверхности, оказывая меньшее давление на лед по сравнению со стоянием.Если вы будете меньше нажимать, у вас меньше шансов пробить тонкий лед.

Типичное атмосферное давление в Реддинге, Калифорния, составляет около 750 мм рт. Вычислите это давление в атм и кПа.

Типичное атмосферное давление в Денвере, штат Колорадо, составляет 615 мм рт. Что это за давление в атмосферах и килопаскалях?

Типичное атмосферное давление в Канзас-Сити составляет 740 торр. Что это за давление в атмосферах, миллиметрах ртутного столба и килопаскалях?

Канадские манометры указаны в килопаскалях.Какое значение на таком манометре соответствует 32 фунтам на квадратный дюйм?

Во время высадки викингов на Марс было определено, что атмосферное давление в среднем составляет около 6,50 мбар (1 бар = 0,987 атм). Что это за давление в торр и кПа?

Давление атмосферы на поверхности планеты Венера составляет около 88,8 атм. Сравните это давление в фунтах на квадратный дюйм с нормальным давлением на Земле на уровне моря в фунтах на квадратный дюйм.

Земля: 14,7 фунта на дюйм –2 ; Венера: 1.31 × 10 3 фунтов на дюйм −2

Каталог медицинских лабораторий описывает давление в баллоне газа как 14,82 МПа. Какое давление у этого газа в атмосферах и торр?

Рассмотрите этот сценарий и ответьте на следующие вопросы: Днем в середине августа на северо-востоке США в местной газете появилась следующая информация: атмосферное давление на уровне моря 29,97 дюйма ртутного столба, 1013,9 мбар.

(а) Какое было давление в кПа?

(b) Давление у побережья на северо-востоке США обычно составляет около 30 ° C.0 дюймов рт. Ст. Во время урагана давление может упасть примерно до 28,0 дюймов рт. Ст. Рассчитайте падение давления в торр.

(а) 101,5 кПа; (б) падение 51 торр

Почему необходимо использовать нелетучую жидкость в барометре или манометре?

Давление пробы газа измеряется на уровне моря манометром с закрытым концом. Жидкость в манометре — ртуть. Определить давление газа в:

(а) торр

(б) Па

(с) бар

(а) 264 торр; (b) 35 200 Па; (в) 0.352 бар

Давление пробы газа измеряется манометром с открытым концом, частично показанным справа. Жидкость в манометре — ртуть. Предполагая, что атмосферное давление составляет 29,92 дюйма рт. Ст., Определите давление газа в:

(а) торр

(б) Па

(с) бар

Давление пробы газа измеряется на уровне моря ртутным манометром с открытым концом. При атмосферном давлении 760.0 мм рт. Ст., Определить давление газа в:

(а) мм рт. Ст.

(б) атм

(c) кПа

(а) 623 мм рт. (б) 0,820 атм; (c) 83,1 кПа

Давление пробы газа измеряется на уровне моря ртутным манометром с открытым концом. Предполагая, что атмосферное давление составляет 760 мм рт. Ст., Определите давление газа в:

(а) мм рт. Ст.

(б) атм

(c) кПа

Как использование летучей жидкости повлияет на измерение газа с помощью манометров открытого типа по сравнению сзакрытые манометры?

Для манометра с закрытым концом никаких изменений не наблюдалось бы, поскольку испаренная жидкость будет вносить равные противодействующие давления в обоих рукавах трубки манометра. Однако с манометром с открытым концом будет получено более высокое давление газа, чем ожидалось, поскольку P газ = P атм + P объем жидкости .

Глоссарий

атмосфера (атм)
единица давления; 1 атм = 101,325 Па
бар
(бар или б) единица давления; 1 бар = 100 000 Па
барометр
прибор для измерения атмосферного давления
гидростатическое давление
Давление жидкости под действием силы тяжести
манометр
прибор для измерения давления газа в баллоне
паскаль (Па)
СИ единица давления; 1 Па = 1 Н / м 2
фунтов на квадратный дюйм (psi)
единица давления общепринятая в США
давление
сила на единицу площади
торр
единица давления; 1 торр = 1760 атм


Эта работа находится под лицензией Creative Commons Attribution 4.0 Международная лицензия.

Вы также можете бесплатно скачать по адресу http://cnx.org/contents/85abf193-2bd2-4908-8563-90b8a[email protected]

Атрибуция:

Что вызывает давление газа? | Sciencing

Давление, которое оказывает газ, возникает из-за движения его молекул. Молекулы газа свободно перемещаются, отскакивая от стенок контейнера и друг друга. Когда молекулы отскакивают от препятствия, они передают небольшое количество силы. Изменение направления из-за препятствия приводит к изменению импульса, который толкает препятствие.

Когда многие молекулы меняют импульс относительно стенки контейнера, давление может быть значительным. Импульс пропорционален скорости, а скорость движения молекул зависит от температуры. По мере повышения температуры газа молекулы движутся быстрее, и давление, которое они оказывают, увеличивается. Тот факт, что газы оказывают давление и что давление зависит от температуры газа, можно использовать многими интересными способами для выполнения полезной работы.

TL; DR (слишком долго; не читал)

Давление газа вызвано отражением молекул газа от стенок контейнера и друг от друга.Каждый раз, когда молекула меняет направление из-за удара о стену, изменение импульса приводит к небольшому толчку. Из-за большого количества задействованных молекул толчки в сумме создают заметное давление, которое можно использовать для работы машин и инструментов.

Определение давления газа

Когда молекулы газа отскакивают от стенок своего контейнера, они создают силу. Давление газа определяется как сила, создаваемая газом на единицу площади. В зависимости от цели измерения обычно используются разные единицы.В английской системе единицей давления являются фунты на квадратный дюйм. В метрической системе это ньютоны на квадратный метр, называемые паскалями. В метеорологии атмосфера равна 14,7 фунта на квадратный дюйм или 101,325 килопаскалей.

Как работает давление газа

Газы — это жидкости, то есть они текут из объема с высоким давлением в объем с низким давлением. Объемы, содержащие больше газа или газа при более высокой температуре, имеют более высокое давление, чем объемы, содержащие меньше газа или более холодные.Это означает, что газ можно заставить перетекать из одного контейнера в другой, увеличивая давление в первом контейнере, либо добавляя больше газа, либо нагревая контейнер. Это свойство давления газа лежит в основе многих двигателей и машин, используемых на заводах и транспорте.

Использование давления газа для работы

Примером приложения, в котором для транспортировки используется давление газа, является двигатель автомобиля. Бензин или дизельное топливо добавляется в воздух и сжимается в двигателе.Топливо горит, нагревая газ и создавая давление, которое толкает поршни двигателя. В этом случае тепло от горящего топлива создает давление газа, необходимое для работы двигателя автомобиля.

Для пневмоинструментов в движение машины подается дополнительный воздух, а не тепло. Компрессор подает воздух в воздушный резервуар, который подает воздух под давлением к различным инструментам. Инструменты используют давление воздуха для завинчивания болтов, пробивки отверстий или гвоздей. Воздух поступает из бака высокого давления через инструменты в атмосферу низкого давления.По мере того, как воздух выходит, он приводит в действие инструменты.

Другие примеры действия давления газа можно найти в канистрах с газировкой, автомобильных и велосипедных шинах, аэрозольных баллончиках и огнетушителях. Каждая из молекул, вызывающих давление газа, вносит крошечную силу, которая в сумме может выполнять полезную работу в масштабе физических объектов.

Давление газа

10.2 Давление газа

Цель обучения

  1. Для описания и измерения давления газа.

На макроскопическом уровне полное физическое описание образца газа требует четырех величин: температура (выраженная в кельвинах), объем, (выраженная в литрах), величина, (выраженная в молях) и давление. (в атмосферах). Как мы объясняем в этом разделе и в разделе 10.3 «Взаимосвязь между давлением, температурой, объемом и количеством», эти переменные не являются независимыми от . Если нам известны значения любых , трех, из этих величин, мы можем вычислить четвертое и таким образом получить полное физическое описание газа.Температура, объем и количество обсуждались в предыдущих главах. Теперь обсудим давление и его единицы измерения.

Единицы давления

Любой объект, будь то ваш компьютер, человек или образец газа, воздействует на любую поверхность, с которой он соприкасается. Например, воздух в воздушном шаре оказывает усилие на внутреннюю поверхность воздушного шара, а жидкость, впрыскиваемая в форму, оказывает силу на внутреннюю поверхность формы, точно так же, как стул прикладывает силу к полу из-за его масса и влияние силы тяжести.Если воздух в воздушном шаре нагревается, увеличенная кинетическая энергия газа в конечном итоге приводит к разрыву воздушного шара из-за повышенного давления ( P ). Величина силы (F), приложенная к данной области (A) поверхности: P = F / A. газа, сила ( F, ) на единицу площади ( A, ) поверхности:

Давление зависит от и — приложенной силы, и — размера области, к которой приложена сила. Мы знаем из уравнения 10.1 видно, что приложение той же силы к меньшей площади создает более высокое давление. Например, когда мы используем шланг для мытья автомобиля, мы можем увеличить давление воды, уменьшив размер отверстия шланга большим пальцем.

Единицы давления являются производными от единиц измерения силы и площади. В английской системе единицы силы — фунты, а единицы площади — квадратные дюймы, поэтому мы часто видим давление, выраженное в фунтах на квадратный дюйм (фунт / дюйм 2 , или фунт / кв. Дюйм), особенно среди инженеров.Однако для научных измерений предпочтительны единицы СИ для силы. Единица СИ для давления, производная от единиц СИ для силы (ньютонов) и площади (квадратные метры), — это ньютон на квадратный метр (Н / м 2 ), который называется паскаль (Па). давление. Паскаль — это ньютоны на квадратный метр: Н / м2., По французскому математику Блезу Паскалю (1623–1662):

Уравнение 10.2

1 Па = 1 Н / м 2

Чтобы преобразовать фунты на квадратный дюйм в паскали, умножьте фунты на квадратный дюйм на 6894.757 [1 Па = 1 фунт / кв. Дюйм (6894,757)].

Блез Паскаль (1623–1662)

В дополнение к своим математическим талантам (он изобрел современную теорию вероятностей), Паскаль проводил исследования в области физики, а также был писателем и религиозным философом. Его достижения включают изобретение первого шприца и первого цифрового калькулятора, а также разработку принципа передачи гидравлического давления, который сейчас используется в тормозных системах и гидравлических лифтах.

Пример 2

Предположим, что книга в мягкой обложке имеет массу 2.00 кг, длиной 27,0 см, шириной 21,0 см и толщиной 4,5 см, какое давление он оказывает на поверхность, если оно составляет

  1. лежа?
  2. стоит на краю в книжном шкафу?

Дано: Масса и габариты объекта

Запрошено: давление

Стратегия:

A Вычислите силу, прилагаемую к книге, а затем вычислите площадь, которая соприкасается с поверхностью.

B Подставьте эти два значения в уравнение 10.1, чтобы найти давление, оказываемое на поверхность в каждой ориентации.

Решение:

Сила, прикладываемая книгой, и не зависит от ее ориентации. Вспомните из главы 5 «Энергетические изменения в химических реакциях», что сила, прилагаемая объектом, равна F = ma , где m — это его масса, а a — его ускорение.В гравитационном поле Земли ускорение происходит за счет силы тяжести (9,8067 м / с 2 у поверхности Земли). Таким образом, в единицах СИ сила, прилагаемая книгой, равна

. F = мА = (2,00 кг) (9,8067 м / с 2 ) = 19,6 (кг · м) / с 2 = 19,6 Н
  1. A Мы рассчитали силу как 19,6 Н. Когда книга лежит ровно, площадь составляет (0,270 м) (0.210 м) = 0,0567 м 2 . B Давление, оказываемое горизонтально лежащим текстом, составляет

    P = 19,6 N 0,0567 м2 = 3,46 × 102 Па
  2. A Если книга стоит на конце, сила остается прежней, но площадь уменьшается:

    (21,0 см) (4,5 см) = (0,210 м) (0,045 м) = 9,5 × 10 −3 м 2

    B Давление книги в этом положении, таким образом, составляет

    Р = 19.6 Н9,5 × 10−3 м2 = 2,1 × 103 Па

    Таким образом, давление , оказываемое книгой, изменяется примерно в шесть раз в зависимости от ее ориентации, хотя сила , оказываемая книгой, не меняется.

Упражнение

Какое давление оказывает на пол школьник весом 60,0 кг

  1. при стоянии в лаборатории на плоской подошве в теннисных туфлях (площадь подошвы примерно 180 см. 2 )?
  2. , когда она ступает пяткой вперед на танцпол в туфлях на высоком каблуке (площадь пятки = 1.0 см 2 )?

Ответы:

  1. 3,27 × 10 4 Па (4,74 фунт / дюйм 2 )
  2. 5,9 × 10 6 Па (8,5 × 10 2 фунтов / дюйм 2 )

Атмосферное давление

Наша атмосфера действует так же, как мы оказываем давление на поверхность под действием силы тяжести. Мы живем на дне океана газов, который становится все менее плотным с увеличением высоты.Примерно 99% массы атмосферы находится в пределах 30 км от поверхности Земли, а половина ее находится в пределах первых 5,5 км (рис. 10.3 «Атмосферное давление»). Каждая точка на поверхности Земли испытывает чистое давление, которое называется атмосферное давление . Давление, оказываемое атмосферой, является значительным: колонна 1,0 м 2 , измеренная от уровня моря до верхних слоев атмосферы, имеет массу около 10 000 кг, что дает давление около 100 кПа:

Уравнение 10.3

давление = (1,0 × 104 кг) (9,807 м / с2) 1,0 м2 = 0,98 × 105 Па = 98 кПа

Рисунок 10.3 Атмосферное давление

Каждый квадратный метр поверхности Земли поддерживает столб воздуха высотой более 200 км и весом около 10 000 кг на поверхности Земли, в результате чего давление на поверхности составляет 1,01 × 10 5 Н / м 2 . Это соответствует давлению 101 кПа = 760 мм рт. Ст. = 1 атм.

В английских единицах это около 14 фунтов / дюйм. 2 , но мы так привыкли жить под таким давлением, что даже не замечаем этого. Вместо этого мы замечаем изменений давления на , например, когда наши уши щелкают в быстрых лифтах в небоскребах или в самолетах во время быстрых изменений высоты. Мы используем атмосферное давление разными способами. Мы можем использовать трубочку для питья, потому что при ее всасывании удаляется воздух и, таким образом, уменьшается давление внутри соломинки. Атмосферное давление, оказывающее давление на жидкость в стакане, затем заставляет жидкость подниматься по соломке.

Атмосферное давление можно измерить с помощью барометра. Устройство, используемое для измерения атмосферного давления. Устройство было изобретено в 1643 году одним из учеников Галилея, Евангелистой Торричелли (1608–1647). Барометр может быть изготовлен из длинной стеклянной трубки, закрытой с одного конца. Он наполнен ртутью и помещен вверх дном в емкость с ртутью, не допуская попадания воздуха в трубку. Часть ртути вытечет из трубки, но внутри остается относительно высокий столбик (Рисунок 10.4 «Ртутный барометр»). Почему не заканчивается ртуть? Гравитация, безусловно, оказывает на ртуть в трубке нисходящую силу, но ей противодействует давление атмосферы, которое оказывает давление на поверхность ртути в чашке, что в итоге приводит к выталкиванию ртути вверх в трубку. Поскольку над ртутью внутри трубки в правильно заполненном барометре (он содержит вакуум ) нет воздуха над ртутью, на колонку нет давления. Таким образом, ртуть выходит из трубки до тех пор, пока давление самого ртутного столба точно не уравновесит давление атмосферы.При нормальных погодных условиях на уровне моря две силы уравновешиваются, когда верхняя часть ртутного столба находится примерно на 760 мм выше уровня ртути в чаше, как показано на Рисунке 10.4 «Ртутный барометр». Это значение зависит от метеорологических условий и высоты. В Денвере, штат Колорадо, например, на высоте около 1 мили или 1609 м (5280 футов) высота ртутного столба составляет 630 мм, а не 760 мм.

Рисунок 10.4 Ртутный барометр

Давление, оказываемое атмосферой на поверхность ртутного бассейна, поддерживает столб ртути в трубке высотой около 760 мм.Поскольку точка кипения ртути довольно высока (356,73 ° C), в пространстве над ртутным столбом очень мало паров ртути.

Ртутные барометры использовались для измерения атмосферного давления так долго, что у них есть собственная единица измерения давления: миллиметр ртутного столба (мм рт. Ст.). Единица давления, часто называемая торр., Часто называемая единицей давления торрА. Один торр равен 1 мм рт. Ст. После Торричелли. Стандартное атмосферное давление Атмосферное давление, необходимое для поддержания столба ртути высотой ровно 760 мм, который также называется 1 атмосферой (атм).атмосферное давление, необходимое для поддержания столба ртути высотой ровно 760 мм; это давление также обозначается как 1 атмосфера (атм.). Также называется стандартным атмосферным давлением. Это атмосферное давление, необходимое для поддержания столба ртути высотой ровно 760 мм. Эти единицы также относятся к паскалям:

Уравнение 10.4

1 атм = 760 мм рт. Ст. = 760 торр = 1,01325 × 10 5 Па = 101,325 кПа

Таким образом, давление в 1 атм в точности равно 760 мм рт. Ст. И приблизительно равно 100 кПа.

Пример 3

Один из авторов несколько лет назад посетил национальный парк Роки-Маунтин. После вылета из аэропорта на уровне моря на востоке Соединенных Штатов он прибыл в Денвер (высота 5280 футов), арендовал машину и поехал на вершину шоссе за пределами Эстес-парка (высота 14000 футов). Он заметил, что на этой высоте, где атмосферное давление всего 454 мм рт. Преобразуйте это давление в

  1. атмосфер.
  2. килопаскалей.

Дано: Давление в миллиметрах ртутного столба

Запрошено: Давление в атмосферах и килопаскалях

Стратегия:

Используйте коэффициенты преобразования в уравнении 10.4 для преобразования миллиметров ртутного столба в атмосферу и килопаскали.

Решение:

Из уравнения 10.4 имеем 1 атм = 760 мм рт. Ст. = 101,325 кПа. Таким образом, давление на высоте 14000 футов в атм. Составляет

м / с. P = (454 мм рт. Ст.) (1 атм. 760 мм рт. Ст.) = 0,597 атм.

Давление в кПа определяется по

. P = (0,597 атм) (101,325 кПа1 атм) = 60,5 кПа

Упражнение

Mt. Эверест, расположенный на высоте 29 028 футов над уровнем моря, является самой высокой горой в мире. Нормальное атмосферное давление на этой высоте составляет около 0,308 атм.Преобразуйте это давление в

  1. миллиметров ртутного столба.
  2. килопаскалей.

Ответ: а. 234 мм рт. б. 31,2 кПа

Манометры

Барометры измеряют атмосферное давление, но манометры Устройство, используемое для измерения давления проб газов, содержащихся в аппарате. измерить давление проб газов, содержащихся в аппарате. Ключевой особенностью манометра является U-образная трубка, содержащая ртуть (или иногда другую нелетучую жидкость).Манометр с закрытым концом схематично показан в части (а) на Рисунке 10.5 «Два типа манометров». Когда колба не содержит газа (т. Е. Когда в ней почти вакуум), высота двух столбиков ртути одинакова, потому что пространство над ртутью слева — это почти вакуум (он содержит только следы паров ртути. ). Если газ будет выпущен в колбу справа, он окажет давление на ртуть в правом столбце, и два столбика ртути больше не будут одинаковой высоты.Разница между высотами двух колонн равна давлению газа.

Рисунок 10.5 Два типа манометров

(a) В манометре с закрытым концом пространство над ртутным столбиком слева (эталонное плечо) по существу представляет собой вакуум ( P ≈ 0), а разница в высоте двух столбцов дает давление газа, содержащегося непосредственно в баллоне. (b) В манометре с открытым концом левое (эталонное) плечо открыто для атмосферы ( P ≈ 1 атм), и разница в высоте двух столбцов дает разность между атмосферным давлением и атмосферным давлением. давление газа в баллоне.

Если трубка открыта для атмосферы, а не закрыта, как в манометре с открытым концом, показанном в части (b) на рисунке 10.5 «Два типа манометров», то два столбца ртути имеют одинаковую высоту, только если газ в баллоне имеет давление, равное атмосферному давлению. Если давление газа в баллоне на выше, чем на , ртуть в открытой трубке будет вытесняться газом, давящим вниз на ртуть в другом плече U-образной трубки. Таким образом, давление газа в баллоне складывается из атмосферного давления (измеренного с помощью барометра) и разницы высот двух столбцов.Если газ в баллоне имеет давление на меньше, чем давление атмосферы, то высота ртути будет больше в руке, прикрепленной к баллоне. В этом случае давление газа в баллоне равно атмосферному давлению за вычетом разницы в высоте двух колонн.

Пример 4

Предположим, вы хотите сконструировать манометр с закрытым концом для измерения давления газа в диапазоне 0,000–0,200 атм. Из-за токсичности ртути вы решаете использовать воду, а не ртуть.Какой высоты вам нужен столб воды? (При 25 ° C плотность воды 0,9970 г / см 3 ; плотность ртути 13,53 г / см 3 .)

Дано: Диапазон давления и плотности воды и ртути

Запрошено: высота колонны

Стратегия:

A Вычислите высоту столбика ртути, соответствующего 0.200 атм в миллиметрах ртутного столба. Это высота, необходимая для столбца, заполненного ртутью.

B Из заданных плотностей используйте пропорцию, чтобы вычислить высоту, необходимую для столбца, заполненного водой.

Решение:

A В миллиметрах ртутного столба давление газа 0,200 атм равно

P = (0,200 атм) (760 мм рт. Ст. 1 атм) = 152 мм рт. Ст.

Для ртутного манометра вам понадобится ртутный столбик высотой не менее 152 мм.

B Так как вода менее плотная, чем ртуть, вам потребуется на более высокий столб воды, чтобы достичь того же давления, что и данный столб ртути. Высота, необходимая для заполненного водой столба, соответствующего давлению 0,200 атм, пропорциональна отношению плотности ртути (dHg) к плотности воды (dh3O):

(heighth3O) (dh3O) = (heightHg) (dHg) heighth3O = (heightHg) (dHgdh3O) = (152 мм) (13,53 г / см30,9970 г / см3) = 2.06 × 103 мм h3O = 2,06 м h3O

Этот ответ имеет смысл: для достижения того же давления требуется более высокий столб менее плотной жидкости.

Упражнение

Предположим, вы хотите создать барометр для измерения атмосферного давления в среде, температура которой всегда превышает 30 ° C. Чтобы избежать использования ртути, вы решили использовать галлий, который плавится при 29,76 ° C; плотность жидкого галлия при 25 ° C составляет 6,114 г / см 3 . Какой высоты вам нужен столбик галлия, если P = 1.00 атм?

Ответ: 1,68 м

Ответ на пример 4 также сообщает нам максимальную глубину фермерского колодца, если для откачки воды будет использоваться простой всасывающий насос. Если столб воды высотой 2,06 м соответствует 0,200 атм, то 1,00 атм соответствует высоте столба

h3.06 м = 1.00 атм. 0.200 атм. h = 10.3 м

Всасывающий насос — это просто более сложная версия соломинки: он создает вакуум над жидкостью и использует атмосферное давление, чтобы заставить жидкость подниматься по трубке.Если давление 1 атм соответствует столбу воды 10,3 м (33,8 фута), то при атмосферном давлении физически невозможно поднять воду в колодце выше этого значения. До тех пор, пока не были изобретены электрические насосы для механического выталкивания воды с больших глубин, этот фактор сильно ограничивал место проживания людей, поскольку добывать воду из колодцев глубиной более 33 футов было трудно.

Сводка

Четыре величины должны быть известны для полного физического описания образца газа: температура , объем , количество и давление . Давление — сила на единицу площади поверхности; единицей измерения давления в системе СИ является паскаль (Па) , определяемая как 1 ньютон на квадратный метр (Н / м 2 ). Давление, оказываемое объектом, пропорционально силе, которую он оказывает, и обратно пропорционально площади, на которую действует сила. Давление атмосферы Земли, называемое атмосферным давлением , составляет около 101 кПа или 14,7 фунта / дюйм. 2 на уровне моря. Атмосферное давление можно измерить с помощью барометра , закрытой перевернутой трубки, заполненной ртутью.Высота ртутного столба пропорциональна атмосферному давлению, которое часто указывается в единицах миллиметр ртутного столба (мм рт. Ст.) , также называемый торр . Стандартное атмосферное давление , давление, необходимое для поддержки столба ртути высотой 760 мм, является еще одной единицей давления: 1 атмосфера (атм) . Манометр — это прибор, используемый для измерения давления пробы газа.

Ключевые вынос

  • Давление определяется как сила, действующая на единицу площади; его можно измерить с помощью барометра или манометра.

Концептуальные проблемы

  1. Какие четыре величины должны быть известны, чтобы полностью описать образец газа? Какие единицы обычно используются для каждого количества?

  2. Если приложенная сила постоянна, как изменяется давление, оказываемое объектом, по мере уменьшения площади, на которую действует сила? Как это соотношение применимо в реальном мире к простоте забивания маленького гвоздя по сравнению с большим гвоздем?

  3. По мере увеличения силы, действующей на фиксированную область, давление увеличивается или уменьшается? Имея это в виду, ожидаете ли вы, что тяжелому человеку понадобятся снегоступы большего или меньшего размера, чем более легкому человеку? Объяснять.

  4. Что мы подразумеваем под атмосферным давлением ? Атмосферное давление на вершине горы. Ренье больше или меньше давления в Майами, Флорида? Почему?

  5. Где самое высокое атмосферное давление — пещера в Гималаях, шахта в Южной Африке или пляжный домик во Флориде? У кого самый низкий?

  6. Марс имеет среднее атмосферное давление 0.007 атм. Будет ли на Марсе легче или труднее пить жидкость из соломинки, чем на Земле? Поясните свой ответ.

  7. Давление, оказываемое массой 1,0 кг на площадь 2,0 м 2 , больше или меньше давления, оказываемого массой 1,0 кг на площадь 1,0 м 2 ? Какая разница, если таковая имеется, между давлением атмосферы на поршень 1,0 м 2 и поршень 2.0 м 2 поршневой?

  8. Если бы вы использовали воду в барометре вместо ртути, в чем было бы основное отличие прибора?

Ответ

  1. Поскольку давление определяется как сила на единицу площади ( P = F / A ), увеличение силы на данной площади увеличивает давление.Тяжелому человеку нужны снегоступы большего размера, чем более легкому. Распределение силы, действующей на более тяжелого человека под действием силы тяжести (то есть его веса), на большую площадь уменьшает давление, оказываемое на единицу площади, например квадратный дюйм, и снижает вероятность того, что он погрузится в снег.

Числовые задачи

  1. Рассчитайте давление в атмосфере и килопаскалях в аквариуме, равное 2.0 футов в длину, 1,0 фута в ширину и 2,5 фута в высоту и содержит 25,0 галлонов воды в комнате с температурой 20 ° C; сам резервуар весит 15 фунтов (dh3O = 1,00 г / см 3 при 20 ° C). Если бы резервуар был 1 фут в длину, 1 фут в ширину и 5 футов в высоту, оказывал бы он такое же давление? Поясните свой ответ.

  2. Вычислите давление в паскалях и в атмосферах, оказываемое пакетом молока весом 1.5 кг и имеет основание 7,0 × 7,0 см. Если бы коробка лежала на боку (высота = 25 см), оказывала бы она большее или меньшее давление? Объясните свои рассуждения.

  3. Если атмосферное давление на уровне моря составляет 1,0 × 10 5 Па, какова масса воздуха в килограммах над 1,0 см 2 участком вашей кожи, когда вы лежите на пляже? Если на вершине горы атмосферное давление составляет 8,2 × 10 4 Па, какова масса воздуха в килограммах выше 4?0 см 2 лоскут кожи?

  4. Заполните следующую таблицу:

    атм кПа мм рт. Ст. торр
    1.40
    723
    43,2
  5. Единица давления в системе СИ — паскаль, равная 1 Н / м 2 .Покажите, как произведение массы объекта и ускорения свободного падения приводит к силе, которая при приложении к данной области приводит к давлению в правильных единицах СИ. Какая масса в килограммах, приложенная к площади 1,0 см 2 , требуется для создания давления

    1. 1,0 атм?
    2. 1,0 торр?
    3. 1 мм рт.
    4. 1 кПа?
  6. Если вы сконструировали манометр для измерения давления газа в диапазоне 0.60–1,40 атм при использовании жидкостей, указанных в следующей таблице, какой высоты столбец вам понадобится для каждой жидкости? Плотность ртути 13,5 г / см 3 . На основании полученных результатов объясните, почему ртуть до сих пор используется в барометрах, несмотря на ее токсичность.

    Плотность жидкости (20 ° C) Высота колонны (м)
    изопропанол 0.785
    кокосовое масло 0,924
    глицерин 1,259

Ответ

  1. 5.4 кПа или 5,3 × 10 −2 атм; 11 кПа, 1,1 × 10 −3 атм; та же сила, действующая на меньшую площадь, приводит к большему давлению.

Газы и давление

8.3 Газы и давление

Цель обучения

  1. Опишите газовую фазу.

Газовая фаза уникальна среди трех состояний вещества тем, что есть несколько простых моделей, которые мы можем использовать для предсказания физического поведения всех газов, независимо от их идентичности. Мы не можем сделать это для твердого и жидкого состояний. Фактически, развитие этого понимания поведения газов представляет собой историческую точку раздела между алхимией и современной химией.Первые успехи в понимании поведения газов были сделаны в середине 1600-х годов Робертом Бойлем, английским ученым, основавшим Королевское общество (одну из старейших научных организаций в мире).

Как получается, что мы можем моделировать все газы независимо от их химической идентичности? Ответ содержится в группе утверждений, называемой кинетической теорией газов. Фундаментальная теория поведения газов.:

  • Газы состоят из крошечных частиц, разделенных большими расстояниями.
  • Частицы газа постоянно движутся, сталкиваясь с другими частицами газа и стенками своего контейнера.
  • Скорость частиц газа зависит от температуры газа.
  • Частицы газа не испытывают силы притяжения или отталкивания друг с другом.

Вы обратили внимание, что ни одно из этих утверждений не относится к идентичности газа? Это означает, что все газы должны вести себя одинаково. Газ, который идеально следует этим утверждениям, называется идеальным газом .Большинство газов имеют небольшие отклонения от этих заявлений и называются настоящими газами . Однако существование реальных газов не умаляет значения кинетической теории газов.

В одном из положений кинетической теории упоминаются столкновения. Поскольку частицы газа постоянно движутся, они также постоянно сталкиваются друг с другом и со стенками своего контейнера. При отскоке частиц газа от стенок контейнера действуют силы (Рисунок 8.9 «Давление газа»).Сила, создаваемая частицами газа, разделенная на площадь стенок контейнера, дает давление Сила, разделенная на площадь. Давление — это свойство, которое мы можем измерить для газа, но обычно мы не учитываем давление для твердых тел или жидкостей.

Рисунок 8.9 Давление газа

Давление — это то, что возникает, когда частицы газа отскакивают от стенок контейнера.

Основная единица давления — ньютон на квадратный метр (Н / м 2 ). Эта комбинированная единица переопределяется как паскальА единица давления, равная 1 ньютону силы на квадратный метр площади.(Па). Один паскаль — это не очень большое давление. Более полезная единица измерения давления — барА единица давления, равная 100 000 Па, что составляет 100 000 Па (1 бар = 100 000 Па). Другими распространенными единицами давления являются атмосфера — единица давления, равная среднему атмосферному давлению на уровне моря. (атм), которое первоначально определялось как среднее давление атмосферы Земли на уровне моря; и мм рт. ст. (миллиметры ртутного столба) Единица давления, равная давлению, создаваемому столбом ртути высотой 1 мм., которое представляет собой давление, создаваемое столбом ртути высотой 1 мм. Единица миллиметры ртутного столба также называется торр. Другое название миллиметра ртутного столба., Названная в честь итальянского ученого Евангелиста Торричелли, который изобрел барометр в середине 1600-х годов. Более точное определение атмосферы в торр означает, что в 1 атм приходится ровно 760 торр. Бар равен 1,01325 атм. Учитывая все взаимосвязи между этими единицами давления, возможность преобразования одной единицы давления в другую является полезным навыком.

Пример 3

Напишите коэффициент преобразования, чтобы определить, сколько атмосфер составляет 1 547 мм рт. Ст.

Решение

Поскольку 1 мм рт. Ст. Равняется 1 торр, данное давление также равно 1,547 торр. Поскольку в 1 атм 760 торр, мы можем использовать этот коэффициент преобразования для математического преобразования:

1547 торр × 1 атм 760 торр = 2,04 атм

Обратите внимание на алгебраическое сокращение единиц торра.

Упражнение по развитию навыков

  1. Напишите коэффициент преобразования, чтобы определить, сколько миллиметров ртутного столба находится в 9.65 атм.

Кинетическая теория также утверждает, что нет взаимодействия между отдельными частицами газа. Хотя мы знаем, что в реальных газах действительно существуют межмолекулярные взаимодействия, кинетическая теория предполагает, что частицы газа расположены настолько далеко друг от друга, что отдельные частицы не «чувствуют» друг друга. Таким образом, мы можем рассматривать частицы газа как крошечные частицы материи, идентичность которых не важна для определенных физических свойств.

Упражнение по обзору концепции

  1. Что такое давление и в каких единицах мы его выражаем?

Ответ

  1. Давление — сила на единицу площади; его единицы могут быть паскалями, торрами, миллиметрами ртутного столба или атмосферой.

Ключевые вынос

  • Газовая фаза имеет определенные общие свойства, характерные для этой фазы.

Упражнения

  1. Что такое кинетическая теория газов?

  2. Согласно кинетической теории газов, отдельные частицы газа (всегда, часто, никогда) движутся.

  3. Почему газ оказывает давление?

  4. Почему кинетическая теория газов позволяет нам предполагать, что все газы будут показывать одинаковое поведение?

  5. Расположите следующие величины давления в порядке от наименьшего к наибольшему: 1 мм рт. Ст., 1 Па и 1 атм.

  6. Какая единица давления больше — торр или атмосфера?

  7. Сколько торр в 1,56 атм?

  8. Перевести 760 торр в паскали.

  9. Артериальное давление выражается в миллиметрах ртутного столба.Каким будет артериальное давление в атмосферах, если систолическое артериальное давление пациента составляет 120 мм рт. Ст., А диастолическое артериальное давление — 82 мм рт. (В медицине такое кровяное давление обозначается как «120/82», произносится как «сто двадцать больше восьмидесяти двух».)

  10. В прогнозировании погоды барометрическое давление выражается в дюймах ртутного столба (дюймах ртутного столба), где ровно 25,4 мм рт.Рт. Каково барометрическое давление в миллиметрах ртутного столба, если барометрическое давление указано как 30,21 дюйма ртутного столба?

ответы

  1. Газы состоят из крошечных частиц, разделенных большим расстоянием. Частицы газа постоянно перемещаются, сталкиваясь с другими частицами газа и стенками своего контейнера. Скорость частиц газа связана с температурой газа.Частицы газа не испытывают между собой силы притяжения или отталкивания.

  2. Газ оказывает давление, когда его частицы отскакивают от стенок контейнера.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *