Расчет площади воздуховодов и фасонных изделий, калькулятор воздуховодов и фасонных частей
Прямой участок воздуховода
Площадь воздуховода прямоугольного сечения
Исходные данные:
Итоги расчета:
Стоимость, руб:Добавить в спецификацию
Отвод
Площадь отвода круглого сечения
Исходные данные:
Угол, αУгол, αο
-1530456090м
Итоги расчета:
Стоимость, руб:Добавить в спецификацию
Площадь отвода прямоугольного сечения
Угол, αο
-1530456090м
Итоги расчета:
Стоимость, руб:Добавить в спецификацию
Переход
Исходные данные:
Итоги расчета:
Стоимость, руб:Добавить в спецификацию
Исходные данные:
Итоги расчета:
Стоимость, руб:Добавить в спецификацию
Исходные данные:
Итоги расчета:
Стоимость, руб:Добавить в спецификацию
Врезка
Исходные данные:
Итоги расчета:
Стоимость, руб:Добавить в спецификацию
Площадь круглой врезки с воротником
Итоги расчета:
Стоимость, руб:Добавить в спецификацию
Площадь прямоугольной врезки с воротником
Исходные данные:
Добавить в спецификацию
Тройник
Площадь тройника круглого сечения
Исходные данные:
Добавить в спецификацию
Площадь тройника круглого сечения
Исходные данные:
Добавить в спецификацию
Площадь тройника прямоугольного сечения
Исходные данные:
Итоги расчета:
Стоимость, руб:Площадь тройника прямоугольного сечения
Исходные данные:
Итоги расчета:
Стоимость, руб:Утка прямоугольного сечения
Площадь утки со смещением в 1-ой плоскости
Исходные данные:
Итоги расчета:
Стоимость, руб:Площадь утки со смещением в 2-х плоскостях
Исходные данные:
Итоги расчета:
Стоимость, руб:Добавить в спецификацию
Вытяжные зонты над оборудованием
Площадь зонта островного типа
Исходные данные:
Итоги расчета:
Стоимость, руб:Добавить в спецификацию
Площадь зонта пристенного типа
Исходные данные:
Итоги расчета:
Стоимость, руб:Добавить в спецификацию
Сохранить текущие расчеты
Сохранить
Сохраненные спецификации
У вас еще нет сохраненных спецификаций
Расчет площади воздуховодов и вентиляционных систем а так же фасонных изделий
Эффективность функционирования вентиляционных систем зависит от правильного подбора отдельных элементов и оборудования. Расчет площади воздуховода производится с целью обеспечения требуемой кратности смены воздуха в каждом помещении в зависимости от его назначения. Принудительная и естественная вентиляция требует отдельных алгоритмов проектных работ, но имеет общие направления. Во время определения сопротивления воздушному потоку учитывается геометрия и материал изготовления воздуховодов, их общая длина, кинематическая схема, наличие ответвлений. Дополнительно выполняется расчет потерь тепловой энергии для обеспечения благоприятного микроклимата и снижения затрат на содержание здания в зимний период времени.
Расчет площади сечения выполняется на основе данных по аэродинамическому расчету воздуховодов. С учетом полученных значений производится:
- Подбор оптимальных размеров поперечных сечений воздуховодов с учетом нормативных допустимых скоростей движения воздушного потока.
- Определение максимальных потерь давления в системе вентиляции в зависимости от геометрии, скорости движения и особенностей схемы воздуховода.
Последовательность расчета вентиляционных систем
1.Определение расчетных показателей отдельных участков общей системы. Участки ограничиваются тройниками или технологическими заслонками, расход воздуха по длине всего участка стабильный. Если от участка есть ответвления, то их расход по воздуху суммируется, а для участка определяется общий. Полученные значения отображаются на аксонометрической схеме.
2.Выбор магистрального направления системы вентиляции или отопления. Магистральный участок имеет самый большой расход воздуха среди всех выделенных во время расчетов. Он должен быть наиболее протяженным из всех последовательно расположенных отдельных участков и отводов. Согласно нормативным документам нумерация участков начинается с наименее нагруженного и продолжается по возрастанию воздушного потока.
Примерная схема системы вентиляции с обозначениями ответвлений и участков
3.Параметры сечений расчетных участков системы вентиляции подбираются с учетом рекомендованных стандартами скоростей в воздуховодах и жалюзийных решетках. Согласно государственным стандартам скорость воздуха в магистральных трубопроводах ≤ 8 м/с, в ответвлениях ≤ 5 м/с, в решетках жалюзи ≤ 3 м/с.
С учетом имеющихся предварительных условий выполняются расчеты по вентиляционной системе.
Общие потери давления в воздуховодах:
Расчет прямоугольных воздуховодов по потере давления:
R – удельные потери на трение о поверхность воздуховода;
L – длина воздуховода;
n – поправочный коэффициент в зависимости от показателей шероховатости воздуховодов.
Удельные потери давления для круглых сечений определяются по формуле:
λ – коэффициент величины гидравлического сопротивления трения;
d – диаметр сечения воздуховода;
Рд – фактическое давление.
Для расчета коэффициента сопротивления трения для круглого сечения трубы применяется формула:
Во время расчетов допускается использование таблиц, в которых на основании вышеизложенных формул определены практические потери на трение, показатели динамического давления и расход воздуха для различных скоростей потока для воздуховодов круглой формы.
Нужно иметь в виду, что показатели фактического расхода воздуха в прямоугольном и круглом воздуховодах с одинаковой площадью сечений неодинаковы даже при полном равенстве скоростей движения воздушного потока. Если температура воздуха превышает +20°С, то нужно пользоваться поправочными коэффициентами на трение и местное сопротивление.
Расчет системы вентиляции состоит из расчета основной магистрали и всех ответвлений, подключенных к ней. При этом нужно добиваться положения, чтобы скорость движения воздуха постоянно возрастала по мере приближения к всасывающему или нагнетающему вентилятору. Если схема воздуховода не позволяет учесть потери ответвлений, а их значения не превышают 10% общего потока, то разрешается использовать диаграмму для гашения избыточного давления. Коэффициент сопротивления воздушным потокам диафрагмы рассчитывается по формуле:
Приведенные выше расчеты воздуховодов пригодны для использования следующих типов вентиляции:
- Вытяжной.
Используется для удаления из производственных, торговых, спортивных и жилых помещений отработанного воздуха. Дополнительно может иметь специальные фильтры для очистки выбрасываемого наружу воздуха от пыли или вредных химических соединений, могут монтироваться внутри или снаружи помещений.
- Приточной. В помещения подается подготовленный (нагретый или очищенный) воздух, может иметь специальные приспособления для понижения уровня шума, автоматизации управления и т. д.
- Приточно/вытяжной. Комплекс оборудования и устройств для подачи/удаления воздуха из помещений различного назначения, может иметь установки рекуперации тепла, что значительно сокращает затраты на поддержание в помещениях благоприятного микроклимата.
Движение воздушных потоков по воздуховодам может быть горизонтальным, вертикальным или угловым. С учетом архитектурных особенностей помещений, их количества и размеров воздуховоды могут монтироваться в несколько ярусов в одном помещении.
Расчет площади сечения трубопровода
После того как определена скорость движения воздуха по воздуховодам с учетом требуемой кратности обмена, можно рассчитывать параметры сечения воздуховодов по формуле S=R\3600v, где S – площадь сечения воздуховода, R – расход воздуха в м3/час, v – скорость движения воздушного потока, 3600 – временной поправочный коэффициент. Площадь сечения позволяет определить диаметр круглого воздуховода по формуле:
Если в помещении смонтирован воздуховод квадратного сечения, то его рассчитывают по формуле de = 1.30 x ((a x b)0.625 / (a + b)0.25).
de – эквивалентный диаметр для круглого воздуховода в миллиметрах;
a и b длина сторон квадрата или прямоугольника в миллиметрах. Для упрощения расчетов пользуйтесь переводной таблицей № 1.
Таблица № 1
Для вычисления эквивалентного диаметра овальных воздуховодов используется формула d = 1.55 S0.625/P0.2
S – площадь сечения воздуховода овального воздуховода;
P – периметр трубы.
Площадь сечения овальной трубы вычисляется по формуле S = π×a×b/4
S – площадь сечения овального воздуховода;
π = 3,14;
a = большой диаметр овального воздуховода;
b = меньший диаметр овального воздуховода.
Подбор овального или квадратного воздуховодов по скорости движения воздушного потокаДля облегчения подбора оптимального параметра проектировщики рассчитали готовые таблицы. С их помощью можно выбрать оптимальные размеры воздуховодов любого сечения в зависимости от кратности обмена воздуха в помещениях. Кратность обмена подбирается с учетом объема помещения и требований СанПин.
Расчет параметров воздуховодов и систем естественной вентиляцииВ отличие от принудительной подачи/удаления воздуха для естественной вентиляции важны показания разницы давления снаружи и внутри помещений. Расчет сопротивления и выбор направления надо делать таким способом, чтобы гарантировать минимальную потерю давления потока.
При расчетах выполняется увязка существующих гравитационных давлений с фактическими потерями давления в вертикальных и горизонтальных воздуховодах.
Классификаций исходных данных во время проведения расчетов сечения воздуховодовВо время расчетов нужно принимать во внимание требования действующего СНиПа 2.04.05-91 и СНиПа 41-01-2003. Расчет систем вентиляции по диаметру воздуховодов и используемому оборудованию должен обеспечивать:
- Нормируемые показатели по чистоте воздуха, кратности обмена и показателям микроклимата в помещениях.
Выполняется расчет мощности монтируемого оборудования. При этом уровень шума и вибрации не может превышать установленных пределов для зданий и помещений с учетом их назначения.
- Системы должны быть ремонтнопригодными, во время проведения плановых регламентных работ технологический цикл функционирования предприятий не должен нарушаться.
- В помещениях с агрессивной средой предусматриваются только специальные воздуховоды и оборудование, исключающее искрообразование. Горячие поверхности должны дополнительно изолироваться.
Нормативы расчетных условий для определения сечения воздуховодов
Расчет площади воздуховодов должен обеспечивать:
- Надлежащие условия по чистоте и температурному режиму в помещениях. Для помещений с избытком теплоты обеспечивать его удаление, а в помещениях с недостатком теплоты минимизировать потери теплого воздуха. При этом следует придерживаться экономической целесообразности выполнения названных условий.
- Скорость движения воздуха в помещениях не должна ухудшать комфортность пребывания в помещениях людей.
При этом принимается во внимание обязательная очистка воздуха в рабочих зонах. В струе входящего в помещение воздуха скорость движения Nх определяется по формуле Nх = Кn × n. Максимальная температура входящего воздуха определяется по формуле tx = tn + D t1, а минимальная по формуле tcx = tn + D t2. Где: nn, tn – нормируемая скорость воздушного потока в м/с и температура воздуха на рабочем месте в градусах Цельсия, К =6 (коэффициент перехода скорости воздуха на выходе из воздуховода и в помещении), D t1, D t2 – максимально допустимое отклонение температуры.
- Предельную концентрацию вредных для здоровья химических соединений и взвешенных частиц согласно ГОСТ 12.1.005-88. Дополнительно нужно учитывать последние постановления Госнадзора.
- Параметры наружного воздуха. Регулируются в зависимости от технологических особенностей производственного процесса, конкретного назначения сооружения и зданий. Показатели концентрации взрывоопасных соединений и веществ должны отвечать требованиями противопожарных государственных органов.
Монтаж вентиляционных систем с принудительной подачей/удалением воздуха нужно делать только в тех случаях, когда характеристики естественной вентиляции не могут обеспечивать требуемых параметров по чистоте и температурному режиму в помещениях или здания имеют отдельные зоны с полным отсутствием естественного притока воздуха. Для некоторых помещений площадь воздуховодов подбирается с таким условием, чтобы в помещениях постоянно поддерживался подпор и исключалась подача наружного воздуха. Это касается приямков, подвалов и иных помещений, в которых есть вероятность скапливания вредных веществ. Дополнительно воздушное охлаждение должно присутствовать на рабочих местах, которые имеют тепловое облучение более 140 Вт/м2.
Требования к системам вентиляцииЕсли расчетные данные по системам вентиляции понижают температуру в помещениях до +12°С, то в обязательном порядке нужно предусматривать одновременное отопление. К системам присоединяются отопительные агрегаты соответствующей мощности с целью доведения температурных значений до нормированных государственными стандартами. Если вентиляция монтируется в производственных зданиях или общественных помещениях, в которых постоянно пребывают люди, то нужно предусматривать не менее двух приточных и двух вытяжных постоянно действующих агрегатов. Размер площади воздуховодов должен обеспечивать расчетную величину воздушных потоков. Для соединенных или смежных помещений допускается иметь две системы вытяжки и одну систему притока или наоборот.
Если помещения должны вентилироваться в круглосуточном режиме, то к смонтированным воздуховодам обязательно нужно подключать резервное (аварийное) оборудование. Дополнительные ответвления должны учитываться, по ним делается отдельный расчет площади. Резервный вентилятор можно не устанавливать лишь в случаях если:
- После выхода из строя системы вентиляции есть возможность быстро остановить рабочий процесс или вывести людей из помещения.
- Технические параметры аварийной вентиляции полностью обеспечивают требования по чистоте и температуре воздуха в помещениях.
Общие требования к воздуховодамРасчет окончательных параметров воздуховодов должен предусматривать возможность:
- Монтажа противопожарных клапанов вертикальном или горизонтальном положении.
- Установки на межэтажных площадках воздушных затворов. Конструктивные особенности устройств должны гарантировать выполнение нормативных требований по аварийному перекрытию отдельных ответвлений вентиляционной системы и предотвращению распространения дыма или огня по всему зданию. При этом длина участка, на котором присоединяются затворы, не должна быть менее двух метров.
- К каждому поэтажному коллектору может присоединяться не более пяти воздуховодов. Узел соединения создает дополнительное сопротивление воздушному потоку, эту особенность нужно учитывать во время расчета размеров.
- Установку систем автоматической противопожарной сигнализации. Если привод сигнализации монтируется внутри воздуховода, то при определении его оптимального диаметра следует принимать во внимание уменьшение эффективного диаметра и появление дополнительного сопротивления воздушному потоку из-за завихрений.
Такие же требования выдвигаются при установке обратных клапанов, предупреждающих протекание вредных химических соединений из одного производственного помещения в другое.
Воздуховоды из негорючих материалов должны устанавливаться для систем вентиляции с отсосом пожароопасных продуктов или с температурой более +80°С. Главные транзитные участки вентиляции должны быть металлическими. Кроме того, металлические воздуховоды монтируются на чердачных помещениях, в технических комнатах, в подвалах и подпольях.
Общие потери воздуха для фасонных изделий определяются по формуле:
Где р – удельные потери давления на квадратный метр развернутого сечения воздуховода, ∑Ai – обща развернутая площадь. В пределах одной схемы монтажа системы вентиляции потери можно принимать по таблице.
Во время расчетов размеров воздуховодов в любом случае понадобится инженерная помощь, сотрудники нашей компании имеют достаточно знаний для решения всех технических вопросов.
Расчет площади воздуховодов и фасонных изделий: точные методики
Вентиляция жилища играет очень важную роль, поддерживая необходимый для человека микроклимат. От того, насколько правильно она спроектирована и выполнена, зависит здоровье проживающих в доме. Однако не только проект имеет значение. Очень важно правильно высчитать параметры воздушных магистралей. Сегодня речь пойдёт о такой работе, как расчёт площади воздуховодов и фасонных изделий, что необходимо для правильного воздухообмена квартиры или частного дома. Мы узнаем, как вычислить скорость воздуха в шахтах, что на этот параметр влияет, а также разберём, какие программы можно использовать для более точных вычислений.
Для чего производится расчёт площади воздуховодов и фасонных изделий
Правильный проект систем вентиляции – это лишь полдела. Если ошибиться в расчёте квадратуры воздуховодов, то может получиться обратный эффект – идеальная план-схема есть, а оттока или притока воздуха нет. Подобные просчёты могут привести к тому, что в помещениях будет повышенная влажность, которая приведёт к появлению грибка, плесени и неприятному запаху.
Очень важно! Если домашний мастер не уверен в своих силах, боится не справиться с вычислениями, то лучше обратиться за инженерной помощью в расчёте воздуховодов. Лучше заплатить за работу профессионалу, чем впоследствии кусать локти.
Данные, необходимые для расчёта параметров воздуховода
Высчитать площадь воздуховодов можно по различным параметрам. Это могут быть:
- санитарно-гигиенические нормы (СанПиН),
- количество проживающих,
- площадь помещений.
При этом вычисления проводятся как для всего жилища в целом, так и для каждой комнаты в частности. Существуют различные способы вычислений. Можно воспользоваться формулами, которые мы обязательно рассмотрим в сегодняшней статье, однако, проще всего воспользоваться специальным онлайн-калькулятором площади поверхности воздуховодов. В нём уже заложены все необходимые алгоритмы и формулы. Ещё одним плюсом программы является отсутствие человеческого фактора – можно не волноваться, что в вычисления закрадётся ошибка.
Как рассчитать площадь воздуховода с использованием формул
Для того чтобы правильно выполнить все расчёты, нужно первым делом определиться с сечением фасонных изделий. Они могут быть:
- в форме квадрата или прямоугольника:
- круглые (реже овальные).
Рассмотрим, какие формулы применимы для тех или иных вычислений. Начнём с квадратных или прямоугольных изделий.
Как посчитать площадь воздуховода прямоугольного сечения: формулы и расшифровки обозначений
Формула площади воздуховода, необходимой для правильного устройства вентиляции, довольно проста:
S = A × B, где
- S – площадь, м²,
- А – ширина короба, м,
- В – высота, м.
С круглым воздуховодом немного иная ситуация.
Расчёт площади круглого воздуховода: нюансы вычислений
Круглые вентиляционные шахты обладают лучшей пропускной способностью – воздух не встречает на своём пути никаких препятствий. К тому же монтаж круглых деталей намного проще, чем квадратных или прямоугольных. Вычисления площади производятся по формуле:
S = π × D2/ 4, где:
- S – площадь, м²,
- π – постоянная величина, равная 3,14,
- D – диаметр, м.
Мнение экспертаАндрей ПавленковИнженер-проектировщик ОВиК (отопление, вентиляция и кондиционирование) ООО ‘АСП Северо-Запад’Спросить у специалистаЧем короче вентиляционные каналы, тем лучше система будет выполнять свою задачу. Следует учесть, что с увеличением размеров шахт снижается скорость потока воздуха и шум, производимый при передвижении воздушных масс. Расчёты прямых участков следует производить отдельно, не стоит забывать о потере давления в сети.
Расчёт фасонных частей воздуховодов – как он производится и что следует учесть
Вычисления площади фасонных частей воздуховодов без специальной программы под силу только опытным инженерам-проектировщикам. Сегодня целые отделы различных институтов работают над усовершенствованием программ-калькуляторов, способных до миллиметра рассчитать площади воздуховодов и фасонных изделий, учитывая малейшие изменения углов изгибов и прочие нюансы.
В сети Интернет можно найти множество подобных программ, способных произвести вычисления с минимальными погрешностями. И подобные калькуляторы выходят практически ежедневно. Они позволяют не только высчитать необходимые параметры, но и сделать развёртку всех деталей воздуховода. Многие спросят – для чего это нужно? В наш век высоких технологий появилось такое новшество, как 3D-принтер. На него с компьютера отправляем развёртку нашей вентиляции и в результате получаем идеально подогнанные вентиляционные каналы с необходимыми параметрами.
Редакция Seti.guru предлагает уважаемому читателю воспользоваться онлайн-калькулятором расчёта площади воздуховодов и фасонных изделий. Всё, что требуется от пользователя,− это верно внести запрашиваемые параметры в соответствующие поля и нажать кнопку «Рассчитать». Остальное программа выполнит за вас.
Как высчитать сечение воздуховода в квадратных метрах
Ошибка в вычислениях этого параметра вентиляционной системы может быть фатальной. Уменьшение необходимого показателя неизбежно приведёт к повышению давления в шахтах, а значит, появится посторонний гул, который довольно сильно раздражает. Это значит, что вычисления необходимо производить внимательно, не упуская ни малейшей детали, не округляя цифры. Расчёт квадратных метров производится по формуле:
S = L × k / w, где
- S – площадь сечения, м²,
- L – расход воздуха, м³/ч,
- k – скорость, с которой движется воздушный поток, м/с,
- w– коэффициент расчёта, который равен 2,778.
Расчёт скорости воздуха в воздуховоде: как его выполнить
Для этих вычислений используем формулу:
w = L / 3600 × S, где
- L – расход воздуха, м³/час,
- S – сечение вентиляционного короба, м².
Однако при этом стоит знать ещё и кратность воздухообмена, которая является одним из важнейших параметров. Если говорить простым языком, то это количество воздуха, которое должно пройти через 1 м3 за 1 час. Можно воспользоваться существующими таблицами, но данные в них усреднены, поэтому самостоятельные вычисления по формуле будут куда как точнее. Для расчёта необходимо знать объём комнаты в м3 (W) и высчитанный объём воздуха, попадающий в помещение в течение часа (V). В этом случае используется формула:N = V / W.
Онлайн-калькулятор расчёта необходимого сечения воздуховода
Как высчитать потери давления воздуха на прямых участках
Для вычисления этого параметра применяется формула, которая немного сложнее предыдущих:
P = R × L + Ei × V2 × Y / 2, где:
- P – давление воздуха в воздуховоде,
- R – потери давления на трение в воздуховоде,
- L – протяжённость вентиляционной шахты,
- Ei – сумма потерь давления на местные сопротивления (отводы, переходы, ответвления и т.
п.),
- V – скорость воздуха в вентиляционной системе,
- Y – плотность воздушных масс по каналу.
Сопротивление сети воздуховода и его расчёты
Не стоит надеяться на то, чтобы рассчитать сопротивление сети самостоятельно. Такая работа под силу только программам. Найти подходящую, обладающую высокой точностью вычислений в сети тоже вряд ли получится. Это значит, что если есть желание получить точный результат, придётся обращаться в проектные бюро.
Сложностей здесь действительно много. Сопротивление создают не только углыи ответвления. Квадратное или прямоугольное сечение также увеличивает сопротивление воздуха. От этого параметра зависит производительность, которой должен обладать вентилятор для принудительной циркуляции воздуха.
Полезная информация! При отсутствии вентилятора и слабой циркуляции воздуха (недостаточно интенсивной вытяжке) можно пойти на хитрость. Необходимо увеличить длину вентиляционной трубы на крыше. Чем выше она будет находиться, тем интенсивнее будет работать вытяжка.
Каким образом рассчитать количество материалов для воздуховода и фасонных частей
Никакого смысла в расчётах количества материалов вручную нет – это займёт довольно большое количество времени, да и ошибиться при подсчётах очень легко. В сети Интернет существует множество программ, которые сделают это за вас в автоматическом режиме. Достаточно просто загрузить проект. Некоторые подобные программы способны высчитать количество фасонных деталей даже по первичным данным.
Нагреватель в сети: для чего он нужен, и как рассчитать его мощность
Если планируется приточная вентиляция, то в зимнее время без подогрева воздуха не обойтись. Современные системы позволяют регулировать производительность вентилятора, что помогает в холодное время года. Убавив силу приточки, можно добиться не только экономии электроэнергии на меньшем расходе вентилятора, но и воздух, медленнее проходя через нагреватель, будет теплее. Однако вычисления температуры нагрева наружного воздуха всё же необходимы. Их производят по формуле:
ΔТ = 2,98 × Р / L, где:
- Р – потребляемая мощность нагревателя, который должен повысить температуру воздуха с улицы до 18°С (Вт),
- L – производительность вентилятора (м3/ч).
Подводя итоги
Проектирование и последующий монтаж систем вентиляции – процесс трудоёмкий и не всегда выполнимый самостоятельно. Такая работа требует особых знаний и навыков. Конечно, сегодня существует множество программ, помогающих спроектировать вентиляционные магистрали, однако они не могут заменить инженерной мысли. Оптимальным вариантом будет доверить всю работу, от начала до конца, настоящим профессионалам. Но проблема в том, что в наши дни начали появляться проектные конторы, работники в которых совершенно не знакомы с инженерным делом. Хотя подобная ситуация наблюдается и в других отраслях. По этой причине прежде чем доверить какой-либо фирме разработку проекта вентиляционной системы для своего дома, постарайтесь узнать о ней как можно больше. В идеале будет пообщаться с их клиентами, дома которых уже обжиты. Только в этом случае можно надеяться на тот результат, которого вы ожидаете.
Редакция Seti.guru надеется, что сегодняшняя статья была интересна и полезна нашему уважаемому читателю. Если у вас остались вопросы, их можно задать в обсуждениях ниже, наша команда с удовольствием на них ответит в максимально короткие сроки. Если у вас есть опыт в монтаже вентиляционных систем или их проектировании (неважно, положительный или отрицательный), просим вас поделиться им с другими читателями. Это будет полезно начинающим домашним мастерам, делающим первые шаги в области устройства вентиляции. А мы напоследок, по уже сложившейся доброй традиции, предлагаем посмотреть короткий видеоролик по сегодняшней теме, который вам точно будет интересен.
Загрузка…Вышла версия 2013.11 программного обеспечения MagiCAD
Главная НовостиОпубликовано: 23 декабря 2013 г.
Группа компаний CSoft сообщает о выпуске разработчиком, компанией Progman Oy, новой версии программного обеспечения MagiCAD, предназначенного для проектирования и расчета внутренних инженерных коммуникаций. MagiCAD объединяет в себе удобный чертежный инструмент и мощное расчетное ядро. В состав программного продукта входит несколько сотен тысяч единиц оборудования с реальными физическими характеристиками (представлено оборудование ведущих европейских и китайских производителей).
MagiCAD работает на платформе AutoCAD или Revit MEP.
В состав линейки программных продуктов MagiCAD входят следующие модули:
- MagiCAD Вентиляция — проектирование систем вентиляции и кондиционирования;
- MagiCAD Трубопроводы — проектирование систем отопления, теплохолодоснабжения, внутреннего водопровода и канализации, внутреннего газоснабжения;
- MagiCAD Электроснабжение — проектирование систем электроснабжения и электроосвещения;
- MagiCAD Спринклеры — проектирование систем водяного пожаротушения;
- MagiCAD Помещение — теплотехнический расчет и анализ зданий и сооружений;
- MagiCAD Схематика — проектирование схем электротехнических цепей различной сложности.
MagiCAD 2013.11 предлагает новые функции, которые вне зависимости от стоящих перед вами проектных задач помогут использовать рабочее время наиболее эффективно.
Новое в MagiCAD 2013.4 для AutoCAD и Revit MEP
- В новой версии MagiCAD инструмент Менеджер лицензий интегрирован в интерфейс самой программы, что обеспечивает пользователям более удобный доступ к лицензионной информации и управлению лицензиями.
- Добавлена поддержка фанкойлов различных производителей с возможностью присоединения одновременно к воздуховодам и трубопроводам.
- В MagiCAD Трубопроводы появилась возможность использовать модели коллекторов с необходимыми расчетными характеристиками.
Новое в MagiCAD 2013.11 для AutoCAD
- В новой версии MagiCAD пользователи могут задавать произвольный путь к файлам проекта, что позволяет, например, сохранять их на различных серверах и предоставляет пользователям более гибкий подход к хранению проектных данных.
- MagiCAD предлагает новый инструмент управления проектом, который позволяет руководителям проекта управлять проектными данными, в том числе редактировать содержание файлов проекта и списки оборудования без запуска самой программы.
- В MagiCAD Вентиляция и MagiCAD Трубопроводы появилась возможность создавать собственные символы непосредственно из AutoCAD, без подключения сторонних редакторов символов.
- В новой версии MagiCAD реализован целый ряд улучшений, касающихся функций редактирования, которые значительно ускоряют работу проектировщика, оптимизируя использование уже имеющихся в проекте объектов, например, быстрое изменение длины шейки или направления решетки ВРУ, функции копирования и изменения направления участка сети воздуховодов и трубопроводов при копировании и пр.
- Добавлена поддержка импорта в модуль MagiCAD Помещение архитектурных элементов (стены, двери, окна и пр.) в формате IFC, что позволяет более точно импортировать архитектуру здания, например, из проекта Revit.
- Появилась возможность редактировать длину переходов воздуховодов при помощи команды Изменить свойства. Пользователь также может выбрать, будет ли замена произведена с использованием реальной модели компонента или типового элемента воздуховода.
- В MagiCAD Вентиляция добавлена возможность производить расчет общей площади воздуховодов по европейскому стандарту EN 14239:2004.
- В MagiCAD Электроснабжение добавлена поддержка трехмерных моделей лотков-коробов открытого типа.
Новое в MagiCAD 2013.4 для Revit MEP
- Новая архитектура параметрических семейств MagiCAD для Revit второго поколения предоставляет пользователям больше возможностей управлять размерами объекта, быстро изменять направление решетки, менять размер шейки ВРУ и др.
- В новой версии MagiCAD для Revit появилась возможность экспортировать модель полностью, с сохранением технических характеристик и функционала, исключив при этом имена и тэги производителей оборудования.
Это позволит пользователю быстро подготавливать и формировать необходимую информацию, например, при создании тендерной документации.
- Новый инструмент Менеджер листов предоставляет пользователям удобные функции по подготовке листов чертежей различного размера и формата для вывода на печать, оснащенные маркерами положения и масштаба, что в дальнейшем обеспечит совместимость и точную подгонку печатных листов.
- В MagiCAD Трубопроводы добавлена поддержка отдельного класса оборудования для систем газоснабжения, включая поддержку принадлежности к системе, ярлыки, тексты, оборудование, спецификации и пр.
- Добавлена возможность использовать свободное значение для углов в функциях создания обвода, при необходимости опускать или поднимать на определенную высоту воздуховод, трубу или кабельный лоток или присоединять их под определенным углом с использованием врезки или тройника.
- Новый функционал MagiCAD позволяет использовать различные данные из других проектов (например, серии трубопроводов, шаблоны отчетов и пр.
), сравнивать их с данными текущего проекта и при необходимости добавлять или объединять с новым проектом.
- В модулях MagiCAD Вентиляция, Трубопроводы и Электроснабжение добавлены собственные инструменты черчения воздуховодов, трубопроводов и кабельных конструкций. С их помощью значительно быстрее происходит определение опций черчения, таких как выбор типа соединения (врезка или тройник), возможность добавлять изоляцию в процессе черчения. Кроме того, появилась возможность быстро просматривать все параметры черчения в едином диалоговом окне.
- Теперь можно устанавливать соединения между круглыми и прямоугольными воздуховодами с использованием врезок и тройников.
- В MagiCAD Вентиляция появилась возможность создавать эксцентричные переходы между двумя воздуховодами, в том числе в случаях, когда воздуховоды смещены относительно друг друга (горизонтально или вертикально). Помимо этого, MagiCAD подбирает подходящую модель компонента из имеющихся баз данных фасонных частей воздуховодов.
- В MagiCAD Трубопроводы добавлена возможность задавать отдельно зону помещения, на которой будет располагаться напольное отопление. Если отключить эту опцию, то по умолчанию будет выбираться все помещение целиком.
- В функции создания строительных отверстий MagiCAD реализована поддержка новых типов семейств структурных элементов, таких как балки, колонны, ферма и пр.
- Функция IFC-экспорта MagiCAD теперь поддерживает слои IFC, названия и типы, а также экспорт обобщенной модели систем.
Получить подробную информацию о ценах, а также приобрести программное обеспечение от компании Progman Oy вы можете по e-mail [email protected] или по телефону +7 (495) 913-2222.
Получите дополнительную информацию у специалистов Группы компаний CSoft
или заполните форму
Системы вентиляции и кондиционирования в Кирове и Кировской области
×Вентиляция для зала и кухни в ресторане и кафе
Вентиляция в ресторане
Установить систему вентиляции в ресторане – более сложная задача, чем где-либо. Она устанавливается с целью обеспечения комфортных условий не только для работников, но и для посетителей. Согласитесь, даже если повар заведения готовит шикарные блюда, но в самом заведении жарко или дурно пахнет, посетителей от этого точно не станет больше. Люди ценят комфорт в помещении не меньше, чем вкус подаваемой еды.
Решить проблему качественного вентилирования всех помещений ресторана поможет только сложная система. Понадобится мощная вытяжная система для кухни и надежная приточная для зала с посетителями. Однако все упирается в особенности планировки помещения, количества и размера комнат. Подобрать оптимальную систему конкретно для вашего помещения поможет только квалифицированный специалист.
Обращайтесь в компанию «Восток», если хотите получить профессиональные услуги по установке вентиляционной системы для своего ресторана.
Вентиляция для кухни ресторана
Главная задача, которая стоит перед кухонной вентиляцией – эффективное удаление запахов от приготовления пищи и очистка воздуха в помещении. Особенно тщательно следует проследить, чтобы запахи из кухни не попадали в зал для посетителей.
Главное оборудование, которое отвечает за качественное удаление всех запахов из кухни, — вытяжной зонт. От того, насколько правильно будет рассчитана его мощность, особенности его монтажа, будет зависеть комфортность условий работы всех сотрудников.
Однако вытяжные зонты действуют лишь в определенных областях помещения. Чтобы обеспечить вентилирование всего помещения, понадобится полноценная система. Она поможет регулировать температуру, следить за влажностью воздуха и осуществлять воздухообмен. И при этом приточная система должна работать вместе с вытяжным зонтом. Эти компоненты дополняют друг друга, обеспечивая наибольшую эффективность очистки воздуха и удаления неприятных запахов.
При их проектировании необходимо сделать грамотные расчеты мощности, чтобы обеспечивать наибольшую эффективность без лишних энергозатрат.
Это довольно сложная задача и по силам она только специалистам. Для консультации по этому вопросу обращайтесь в компанию «Восток». Наши специалисты будут рады помочь с установкой такой системы. Компания работает по Кирову и Кировской области.
Кондиционеры в ресторане
Согласно санитарным нормам, содержание углекислого газа в помещении, где находятся люди, не должно превышать 0,1% от общего объема воздуха. Содержание кислорода должно находиться на отметке 21%, а допустимая влажность может колебаться в районе 50-60%. Если не соблюдать эти условия, люди будут чувствовать дискомфорт, головные боли и общую слабость.
Владельцам общепита, в частности ресторанов, важно, чтобы посетители и работники находились в оптимальных условиях. И тут без правильно подобранной и установленной системы кондиционирования не обойтись.
Если речь идет о небольшом заведении, то отлично справится бытовая спил-система. Но вот для больших заведений понадобятся установки посерьезнее – полупромышленные, например, мульти сплит-системы. Их большой плюс заключается в том, что к внешнему может подключаться разное количество внутренних блоков, что позволяет подбирать оптимальные варианты в зависимости от размеров помещения, планировки и высоты потолков.
Однако если брать в расчет специфику ресторанных помещений, идеальным вариантом для них станет приточно-вытяжная вентиляция. Она убьет сразу 2-х зайцев – будет работать как вытяжка на кухне, и обеспечит комфортный воздухообмен в залах для посетителей. А еще в нее можно встроить канальный кондиционер и обеспечить комфортную температуру летом. Но такую систему необходимо предусматривать еще на этапе проектирования.
Если хотите оптимальную систему вентиляции для своего ресторана, обращайтесь в компанию «Восток». Опытные специалисты сделают все необходимые замеры и, исходя из планировки и размеров помещения, подберут оптимальный для вас вариант.
Кондиционирование кухни ресторана
Для современных ресторанов и кафе основным показателем престижности является высокий сервис. И речь идет не только вкусной пище и внутреннем интерьере заведения. Не менее важно и состояние микроклимата всего помещения. Для этих целей используют системы кондиционирования. Но так как современные рестораны – это сложная система внутренних отделений (зала, кухни, обслуживающих помещений), самостоятельно подобрать оптимальную систему кондиционирования невероятно сложно.
А если учесть, что для заведений, связанных с пищевой отраслью, всегда предъявляются самые высокие санитарно-эпидемиологические нормы, обращение к специалисту становится неизбежным.
Решить проблему помогут независимые системы кондиционирования и вентиляции. Одна будет предназначена для кухни, вторая – для зала с посетителями. Такое разделение – обязательно с точки зрения соблюдения санитарных норм.
На кухнях, как правило, устанавливаются довольно мощные вытяжные системы, чтобы обеспечить нормальное удаление избытков тепла и влаги от оборудования. А приточная вентиляция служит для компенсации удаляемого воздуха, не в меньшей степени. В залы же наоборот подается немного больше притока чем вытяжки, чтобы воздух проходил на кухню, а не из нее.
Кухни довольно сложно правильно охладить, не затратив на это большое количество энергии. Ведь воздух за счет вентиляции в помещении может меняться по 10 раз в час, но специалисты ООО «Восток» смогут справиться и с данной задачей. С залами все немного проще, и эту задачу мы тоже сможем решить! Обращайтесь в компанию «Восток», если хотите купить и установить оптимальную систему кондиционирования для своего заведения!
Тонкости правильной установки воздуховодов
Повороты правильной установки воздуховодов
Автор: Реми Керн — Полевой консультант — Уровень 4
25 января 2017 г.
Воздуховоды служат для распределения воздуха, кондиционированного системами отопления, вентиляции и кондиционирования (HVAC) по всему зданию. Если не правильно спроектировать или установить, последствия могут оказаться дорогостоящими и потенциально опасными для вашего здоровья.Негерметичные воздуховоды могут привести к ухудшению качества воздуха в помещении (IAQ). Фактически, «в последние годы сравнительные исследования рисков, проведенные EPA и его Научно-консультативным советом (SAB), неизменно относили загрязнение воздуха в помещениях к пяти основным экологическим рискам для здоровья населения» (epa. gov). В дополнение к проблемам с качеством воздуха в помещении, неправильно установленные воздуховоды могут привести к потере энергии, чрезмерному износу системы отопления, вентиляции и кондиционирования воздуха и увеличению дискомфорта для жителей здания.
Системы воздуховодов состоят из систем возврата, приточного и вытяжного воздуха:
· Возврат: Передает воздух в систему HVAC для кондиционирования воздуха.
· Поставка: Распределяет кондиционированный воздух по всему зданию.
· Выхлоп: Обеспечивает вентиляцию системы.
Приточный, возвратный и вытяжной воздуховоды имеют как общие, так и специфические особенности, которые часто упускаются из виду при установке. Значительная часть проблем с воздушным потоком в воздуховоде является результатом неправильного толкования или игнорирования применимых норм, стандартов или спецификаций производителя, поскольку они применяются к интеграции воздуховодов в системы подачи, возврата и вытяжки ОВК. Цель этой статьи — научить вас и помочь предотвратить некоторые из наиболее распространенных несоответствий в конструкции и установке в полевых условиях, которые наши инспекторы наблюдают в полевых условиях. К ним относятся:
· Плотные изгибы и обжим вокруг ближайшего строительного материала для достижения соединений компонентов.
· Чрезмерная длина воздуховода.
· Крепление и герметизация каналов на соединениях с компонентами.
· Изменения в размере или направлении воздуховода.
Неправильная интерпретация или игнорирование применимых норм, стандартов или спецификаций производителя для установки воздуховодов — не единственные факторы, которые могут способствовать неправильной установке системы воздуховодов. Часто наши инспекторы наблюдают, как электрические подрядчики возлагают ответственность за вытяжной вентилятор и установку корпуса в рамках их объема работ, поскольку вентиляторы являются устройствами с электрическим приводом. Большинство электриков недостаточно хорошо обучены требованиям к воздушному потоку или установке вытяжных каналов. Наши инспекторы также наблюдали, как другие специалисты повреждают воздуховоды или изменяют пропускную способность воздуха при строительстве других систем вокруг воздуховодов.
1. Плавные изгибы и опрессовка
Воздуховод для кондиционированного воздуха и вытяжной воздуховод страдают от общей проблемы при установке: воздушный поток в воздуховоде уменьшается при установке с гибкими воздуховодами. Два наиболее распространенных нарушителя тесно связаны: резкие изгибы при изменении направления и обжатие каналов на других компонентах торговли.Изгибы в воздуховоде должны быть плавными, чтобы предотвратить потерю воздушного потока из-за турбулентности, возникающей в результате резкого изменения направления.
Нарушение воздушного потока на поворотах в открытых чердачных пространствах обычно происходит там, где изменение направления на 90 градусов резко установлено или где есть только одна опора, обычно расположенная на самом повороте. В других случаях это может происходить, когда прямая соединительная манжета на пыльнике (определяемая как переход между внутренним сердечником воздуховода и регистром) используется вместо 45- или 90-градусного соединения манжеты, встроенного в пыльник в таких областях, как концевые заделки. возле неглубокого чердака в конце стены.Это может значительно уменьшить воздушный поток, поскольку он заканчивается в регистре. Если спираль проволоки (см. Рис. 1), поддерживающая канал, будет повреждена или изогнута, состояние обжатия со временем ухудшится, поскольку проволока поддается силе тяжести. Следующие фотографии иллюстрируют эти типичные неправильные условия:
Воздуховод, показанный на Приложении 3 (справа), представлял собой канал с радиусом 10 дюймов, однако выдувная изоляция сверху сжала воздуховод до размера менее 7 дюймов, когда он приблизился к пыльнику.Это создавало «узкое место» для воздушного потока, а также создавало турбулентность из-за изменения формы в воздуховоде, что еще больше уменьшало эффективный воздушный поток.
Жизнеспособным, хотя и немного менее «экономичным» средством для решения этой проблемы является изменение стиля башмаков или использование колена из листового металла, чтобы приспособиться к ограничениям труднодоступных мест с одновременным максимальным потоком воздуха из воздуховода и пыльника к регистру, поскольку показано в примерах ниже:
Ниже приведены дополнительные примеры крутых изгибов, вызванных неправильной установкой и неправильно выбранными компонентами:
Отраслевые решения для гибок
Совет по воздуховодам (ADC), ранее известный как Совет по диффузии воздуха, является признанным органом отраслевых стандартов HVAC для распространения сведений об установке гибких воздуховодов и показателей эффективности для эффективности и качества (на которые регулярно ссылаются правительственные учреждения, архитекторы, инженеры, производители и подрядчики HVAC). Что касается изгибов, диаметр часто меняется, в результате чего установщик должен тщательно определять диаметр на каждом изгибе. ADC рекомендует использовать для изгибов не более одного диаметра воздуховода с опорами до и после изгибов (см. Приложение 8 ниже). Такая практика уменьшит проблему падения давления, вызванную сужением и турбулентностью, а также улучшит воздушный поток.
The Air Conditioning Contractors of America (ACCA) — еще одна ассоциация по стандартизации, которая создает стандарты для проектирования, обслуживания, установки, тестирования и производительности внутренних экологических систем . На иллюстрации ниже показан отрывок из диаграммы ACCA «Понимание трения» , где резкий и крутой изгиб создает чрезмерную турбулентность, влияющую на пропускную способность воздушного потока за пределами этой точки:
Изгибы на вытяжных каналах
Приточные и возвратные воздуховоды — не единственные воздуховоды, в которых может наблюдаться падение давления в результате резких изгибов и опрессовки. Вытяжные воздуховоды регулируются теми же принципами движения воздуха, что и для кондиционированных воздуховодов в рекомендациях ADC, и возникают те же проблемы, возникающие из-за неправильной установки.Распространенное заблуждение состоит в том, что вытяжной вентилятор «может справиться» с потерей давления, возникающей при резких поворотах сразу после выхода из вентиляторного блока. При этом не учитывается возникающая турбулентность, которая требует избыточного давления для полного открытия обратного клапана (устройство, которое позволяет потоку воздуха в одном направлении и предотвращает обратный поток воздуха), и, как следствие, дополнительно сокращает отрегулированную длину пробега. Кроме того, вытяжные вентиляторы часто устанавливаются направленными в сторону от наружного вентиляционного отверстия, что создает ненужные изгибы (и длину, которые мы рассмотрим позже в этой статье).Как упоминалось ранее в этой статье, неправильная установка вытяжных вентиляторов и соединений воздуховодов часто является результатом того, что подрядчик по электрике несет ответственность за вытяжной вентилятор и установку корпуса в его / ее объеме работ из-за того, что вентиляторы работают от электричества.
устройство. В то время как общее расположение вентилятора часто можно проверить на чертежах, направление выхода вентилятора обычно невозможно (если не указано в механических схемах).
В дополнение к перечисленным отраслевым стандартам, большинство производителей вытяжного оборудования используют свои собственные методы установки воздуховодов, которые совпадают с отраслевыми стандартами или превосходят их.Например, Broan ® и NuTone ® указывают в Руководстве по надлежащим воздуховодам для увеличения производительности вытяжного вентилятора на «Ориентируйте корпус вентилятора так, чтобы выходное отверстие вентилятора было направлено в направлении точки выхода. Самая важная часть воздуховода — это первые 24 дюйма из корпуса, в этом первоначальном воздуховоде не должно быть изгибов ». К сожалению, стремление обеспечить своевременную доставку готового продукта часто не позволяет выделить время для чтения каких-либо инструкций и руководств, предоставленных конкретными производителями. На фотографиях ниже показан пример неправильной установки и выдержки из Руководства по надлежащим воздуховодам:
Обжим
Обжим происходит, когда воздуховод изгибается или иным образом деформируется из-за промышленных компонентов, таких как каркас, водопровод, электричество и даже воздуховоды из листового металла. Это не только препятствует потоку и увеличивает трение, но и часто нарушает способность внутреннего сердечника воздуховода сохранять целостность своей формы из-за плоского изгиба или перекручивания проволоки (спирали), которая поддерживает круглую форму воздуховода.Это еще больше необратимо уменьшит пропускную способность воздуховода в течение нескольких лет, прежде чем потеря потока станет заметной. ADC подчеркивает необходимость избегать обжима в своих рекомендациях : «Воздуховоды не должны обжиматься относительно балок или элементов фермы, труб, проводов и т. Д., Поскольку это увеличивает потерю давления и уменьшает поток воздуха». , как показано ниже:
На фотографиях ниже показано несколько примеров опрессовки, которая может значительно уменьшить поток воздуха, подаваемого из воздуховодов в регистр:
Во избежание обжима рекомендуется правильное планирование пути и размещения стволов и ответвлений воздуховодов на чердаках на этапе проектирования механической части, а также во время установки.Дополнительное внимание необходимо уделить всем компонентам (в частности, воздуховодам), которые устанавливаются в пролетах балок перекрытия и стенных желобах. Настоятельно рекомендуется проверять изометрические детали на планах расположения систем отопления, вентиляции и кондиционирования, водопровода, электрических компонентов и непроницаемых элементов каркаса и сравнивать их друг с другом, чтобы убедиться, что для всех компонентов предусмотрено достаточно места и путей. Для удовлетворения потребностей компонента может потребоваться изменение местоположения и / или увеличение глубины балок. Отсеки балок предоставляют ограниченное пространство для интеграции нескольких компонентов, включая другие воздуховоды, и могут создавать значительные проблемы с обжимом, как показано на фотографии ниже:
2. Чрезмерная длина
Еще одним распространенным явлением, которое увеличивает трение и уменьшает поток воздуха, является установка слишком длинного гибкого воздуховода как в кондиционированных, так и в вытяжных системах. Длина воздуховода должна быть достаточной только для подачи кондиционированного воздуха в определенное место или комнату или для вывода отработанного воздуха наружу при первой возможности.Более длинные воздуховоды могут увеличить размер воздухообрабатывающего устройства, необходимого для подачи тех же кубических футов в минуту (кубических футов в минуту), или система HVAC может не обеспечить подачу рассчитанных кубических футов в минуту во все места. Чрезмерно длинные участки приточного воздуховода когда-то обычно использовались для размещения регистров в местах, где наблюдается наибольший кондуктивный обмен тепловой энергией с внешней средой, как правило, возле окон и дверей с одним стеклом. Этим проходам в местах расположения наружных стен не хватало изоляционных качеств, которые обычно присущи современным компонентам и рекомендуемым методам установки.Для приточных и возвратных воздуховодов использование коротких ответвлений воздуховодов от расположенных в центре магистральных воздуховодов является практикой, рекомендованной отраслевыми стандартами HVAC. Агентство по охране окружающей среды (EPA) заявляет в своем документе Energy Star® «Правильные / компактные воздуховоды», : «Основная цель конструкции воздуховодов — обеспечить надлежащее распределение воздуха по всему жилому дому. Чтобы достичь этого энергоэффективным способом, воздуховоды должны иметь такие размеры и планировку, чтобы облегчить воздушный поток и минимизировать трение, турбулентность, а также потери и тепловыделение.Оптимальная система распределения воздуха имеет воздуховоды «правильного размера», минимальное количество участков, максимально гладкие внутренние поверхности и наименьшее количество изменений направления и размера ».
Не только неоправданно длинные участки уменьшают воздушный поток из-за увеличенной длины, установщики часто не вытягиваются полностью, натягивая эти участки туго (растягивая или затягивая), что создает продольное сжатие и приводит к потере воздушного потока из-за трение. Это сжатие воздуховода увеличивает коэффициент трения в 2-4 раза в соответствии с ADC, как показано ниже:
Далее в ADC указано: «Тщательно учесть длину воздуховода, потери на изгиб, ожидаемые провисания или трассировку, потери при установке и т. Д.Поскольку все гибкие воздуховоды не похожи друг на друга, используйте данные производителя гибких воздуховодов о потерях на трение для определения размеров воздуховодов, когда это возможно. Если данные недоступны, используйте общую диаграмму потерь на трение в гибком воздуховоде, приведенную в Руководстве ACCA D. » Нередко избыток протока приводит к «змейке»; сочетание чрезмерных изгибов и длины воздуховода, что значительно увеличивает отрегулированную «эквивалентную» длину воздуховода. Это часто происходит из-за того, что воздуховод проложен вокруг препятствий, а также из-за того, что установщик не смог удалить лишний материал, особенно когда предварительно отрезанные отрезки поставляются подрядчиком HVAC своим установщикам, как показано в примере ниже:
3.Крепление и пломбирование
Еще одна упускаемая из виду и часто неправильно понимаемая часть установки гибких воздуховодов — это крепление и герметизация. В текущих и прошлых редакциях Единого механического кодекса (UMC) и Международного механического кодекса (IMC) говорится, что крепежные детали и герметизирующие компоненты должны: « соответствовать UL 181 и должны устанавливаться в соответствии с Национальными требованиями Подрядчика по обработке листового металла и кондиционирования воздуха. Ассоциация (SMACNA) — Стандарты конструкции воздуховодов для систем отопления, вентиляции и кондиционирования воздуха — металлические и гибкие » руководство.
Компоненты герметика, внесенные в список UL 181A и B / FX, должны быть нанесены на ленту с максимальным интервалом в 6 дюймов, или, в случае мастики, на контейнере. Лента, внесенная в список UL, имеет надлежащую адгезию и исключительную прочность на сдвиг, необходимые для эффективного удержания на месте в течение всего срока службы системы отопления, вентиляции и кондиционирования воздуха. Тем не менее, нет ничего необычного в том, что некоторые подрядчики HVAC пытаются срезать углы в финансовом отношении из-за повышения стоимости ленты, внесенной в списки UL. В приведенном ниже примере разница в стоимости была причиной применения ленты, не указанной в списке:
Крепежные детали для гибких неметаллических воздуховодов должны быть установлены путем их герметизации, а затем механического закрепления с помощью тяговой ленты, как указано в SMACNA в подразделе S3.33, в котором говорится: «Неметаллический гибкий воздуховод должен быть прикреплен к рукаву или воротнику с помощью стяжной ленты. Если диаметр манжеты канала превышает 12 дюймов (305 мм), вытяжная лента должна располагаться за бортом металлической манжеты ». Эти натяжные ленты лучше всего закрепить на месте с помощью инструмента для натяжения нейлоновых стяжек.
К сожалению, установщики нередко закрепляют только внешнюю сердцевину гибкого кондиционированного воздуховода тяговой лентой, оставляя только внутреннюю сердцевину запечатанной и неэффективно соединенной лентой или мастикой.Кроме того, гибкие вытяжные каналы часто остаются незакрепленными или неправильно закрепляются одним винтом, хотя и регулируются теми же правилами и отраслевыми рекомендациями, что и приточный и возвратный каналы. Как кондиционированные воздуховоды, так и вытяжные каналы, которые не герметизированы или закреплены должным образом, в конечном итоге будут иметь проблемы с утечкой.
Эти проблемы, уже присутствующие на ранней стадии грубого строительства, могут не проявиться во время испытаний воздуховодов и вытяжных шкафов на регистрах и вытяжных вентиляторах на заключительных этапах строительства — за исключением самых серьезных случаев.Обеспечение кондиционированного и вытяжного воздушного потока с помощью механических компонентов увеличенного размера может обеспечить начальное окно приемлемых испытаний, но отказы могут произойти спустя годы. Воздуховод будет продолжать разрушаться в тех точках, где изначально была нарушена структурная стабильность формы воздуховода, в сочетании с уменьшенным потоком воздуха из-за стареющего механического оборудования, а также из-за разъединения и утечки неэффективных соединений. Сторонняя программа обеспечения качества может легко выявить такие проблемы для строителя.
Заключение
Полагаться исключительно на ваши профессиональные навыки и знания или на представителей вашей местной юрисдикции при оценке этих условий, а также каждого соединения и пересечения компонентов нереально. Хотя нанятые вами торговые подрядчики могут быть хорошо осведомлены, большинство из них не проверяет каждую установку своих сотрудников с помощью внутренней гарантии качества. Строительные отделы несут ответственность только за наблюдение на основе минимального соответствия нормам и правилам для очень небольшой выборки.
Лучшее место для снижения риска — это еще до начала вертикального строительства. Технический обзор вашей строительной документации на предмет повторяющихся «горячих точек», проблем с конструктивностью и производительностью — это настоятельно рекомендуемый первый шаг. Еще один способ минимизировать этот риск и решить такие проблемы до того, как они станут проблемой, — заключить договор с независимой сторонней консультационной фирмой для проверки согласованности методов строительства, таких как размещение, герметизация и крепление воздуховодов, а также предоставление уведомления для эти недостатки наблюдались вовлеченными сторонами.Компания Quality Built настоятельно рекомендует всем строителям и ремонтникам нового строительства проводить независимую оценку применяемых методов и компонентов, установленных на их объектах, независимо от того, кого вы выберете для оказания этих услуг.
Обзор технического планаQuality Built. Программы TM и обзора объема работ предоставляют нашим клиентам всесторонний анализ их проектной документации; поиск ошибок, полноты спецификаций, противоречивых и / или отсутствующих деталей и многого другого.Компания Quality Built также проверяет методы строительства для наших клиентов с помощью проверенной временем программы обеспечения качества QB Builder Link ® . Мы также можем предоставить этот бесценный ресурс нашим клиентам в виде настраиваемой внутренней программы контроля качества, использующей то же проприетарное приложение, которое используют наши собственные инспекторы (поддерживается на платформах мобильных устройств IOS и Android). Кроме того, мы также можем предоставить нашим клиентам «общую картину» всех систем в рамках отдельных проектов и подразделений, используя нашу программу оценки рисков.Наша команда криминалистов также может составить краткий отчет путем анализа на месте условий, вызывающих озабоченность как в готовой, так и в необработанной продукции. Чтобы еще больше проверить эффективность конструкции HVAC, мы также проводим полевую проверку HERS на соответствие стандартам. Сертифицированная система оценки энергопотребления качественного дома (HERS ® ) посетит объект для проведения полевых проверок и диагностических испытаний, чтобы заполнить соответствующие сертификаты полевых и диагностических испытаний системы отопления и охлаждения (CF3R).CalGreen Compliance — еще одна услуга, которую мы можем предложить нашим клиентам из Калифорнии.
Об авторе
Реми Керн — старший специалист по оценке рисков, рецензент технического плана и полевой консультант четвертого уровня в компании Quality Built.
Remi обладает высокой квалификацией и имеет аккредитацию в строительной отрасли. Он был сертифицированным экспертом по планам Международного совета кодексов, строительным инспектором, инспектором по сантехнике и механике более десяти лет.Кроме того, с 2011 года он является сертифицированным инспектором по устранению плесени, сертифицированным MICRO. Реми — разносторонний профессионал, имеющий практический опыт работы в различных отраслях с конца 1980-х годов. В настоящее время он проводит консультации на местах по оценке рисков, связанных с качеством, на национальном уровне и с 2005 года работает в компании Quality Built на различных должностях. Реми является эффективным коммуникатором и стремится предоставлять нашим клиентам услуги высочайшего качества.
Вы можете связаться с Реми по телефону [адрес электронной почты]
. Ссылки
Hart and Cooley — http: // www.hartandcooley.com/flex-duct (изображение в разрезе)
Air Diffusion Council — Гибкие воздуховоды и стандарты установки, 5-е издание — Глава 4
Air Diffusion Council — http://www.f flexibleduct.org/ADC_Info.asp
The Подрядчики по кондиционированию воздуха Америки (ACCA) — Понимание диаграммы трения Рис. 3
Подрядчики по кондиционированию воздуха Америки (ACCA) — Руководство D (Проектирование воздуховодов в жилых помещениях)
Подрядчики по кондиционированию воздуха Америки (ACCA) — http: // www .acca.org / about-acca
Broan® и NuTone® — Руководство по правильным каналам для повышения производительности вытяжного вентилятора
Агентство по охране окружающей среды (EPA) — Energy Star® Правильные / компактные воздуховоды
Единый механический код
Международный механический код
HVAC | ServiceTitan
Слишком большой или слишком маленький размер воздуховода HVAC может вызвать проблемы, аналогичные тем, которые случаются, когда технический персонал устанавливает блок HVAC неправильного размера.Чтобы проверить точность измерений, многие технические специалисты полагаются на бесплатные инструменты калькулятора размеров воздуховодов, такие как воздуховоды.
Использование воздуховода неправильного размера для помещения может привести к преждевременному износу компонентов HVAC и, вероятно, увеличит расходы клиентов на электроэнергию. Неправильный размер воздуховода также может вызвать недостаточный приток воздуха в определенные зоны и вызвать нежелательный шум. Ни один из этих сценариев не приводит к удовлетворению клиентов после того, как они заплатили большие деньги за новую, более эффективную систему отопления, вентиляции и кондиционирования воздуха или модернизированные воздуховоды.
Бесплатный онлайн-инструмент для воздуховодовКалькулятор размера воздуховода, широко известный как воздуховод, зависит от таких факторов, как размер обогреваемого или охлаждаемого помещения, скорость воздушного потока, потери на трение и доступное статическое давление в воздуховоде. Система HVAC. Экономьте время на работе и меньше выполняйте вычисления вручную, используя наш бесплатный онлайн-сервис ServiceTitan Ductulator, который позволяет легко рассчитать воздуховод нужного размера для ваших проектов.
Ниже мы рассмотрим различные формулы, которые вам нужно будет вычислить и ввести в калькулятор воздуховода.
Рисунок Площадь помещений в квадратных метрах
Таблица размеров воздуховодов в первую очередь зависит от площади дома или офиса, но, что более важно, размера каждой отдельной комнаты в здании.
Чтобы рассчитать площадь прямоугольной или квадратной комнаты, просто умножьте длину и ширину комнаты. Вы также можете обратиться к плану здания, чертежам зонирования, хранящимся в местном отделении планирования, или к недавнему списку недвижимости для этого помещения, если таковой имеется.
Итак, если размер комнаты 10 на 10 футов, общая площадь равна 100 квадратных футов. Для комнат, которые не являются идеально квадратными или прямоугольными, например, L-образной формы, разделите комнату на секции и просуммируйте площадь каждой секции.
Определение размера воздуховода по скорости воздуха
Скорость воздуха или воздушный поток измеряется в кубических футах в минуту (CFM) и прямо пропорциональна размеру воздуховода. Вы должны найти воздуховод CFM в каждой комнате, чтобы определить размер устанавливаемых воздуховодов.Важно проводить расчеты для каждой комнаты, иначе температура, скорее всего, будет неравномерной по всему дому или офису.
Чтобы рассчитать CFM в воздуховоде для каждой комнаты, вы должны сначала выполнить расчет нагрузки HVAC для всего дома и для каждой комнаты, используя ручной метод J.
Воспользуйтесь бесплатным калькулятором нагрузки ServiceTitan HVAC, чтобы вычислить точное количество БТЕ в час, необходимое каждой комнате для достаточного отопления и охлаждения, а также допустимую нагрузку для всего дома или здания.
Требуемый размер блока HVAC
Вы также должны определить, какой размер оборудования HVAC будет работать лучше всего для удовлетворения потребностей в энергии для помещения, на основе расчетов нагрузки HVAC для всего дома или всего офиса.
Чтобы рассчитать необходимый размер оборудования, разделите нагрузку HVAC для всего здания на 12 000. Одна тонна равна 12 000 БТЕ, поэтому, если дому или офису требуется 24 000 БТЕ, потребуется 2-тонная установка HVAC. Если вы получили нечетное число, например 2,33 для допустимой нагрузки 28000 БТЕ, округлите до 2.5-тонный агрегат.
Чтобы использовать калькулятор CFM в воздуховоде, необходимо затем рассчитать расчетный расход воздуха в оборудовании в CFM. Умножьте требуемый тоннаж (который вы только что вычислили выше) на 400 кубических футов в минуту, что является средней производительностью блока HVAC. Для 2-тонного блока HVAC общий объем CFM оборудования составляет 800.
ПРИМЕЧАНИЕ. Средний выходной поток воздуха в режиме охлаждения составляет от 350 до 400 куб. Футов в минуту. На воздушный поток отопительного сезона требуется примерно 65 процентов воздушного потока, необходимого для охлаждения. Поэтому, чтобы обеспечить достаточный воздушный поток как для охлаждения, так и для обогрева, используйте верхний порог 400 куб. Фут / мин при обращении к таблице размеров воздуховодов для ресурса куб. Фут / мин.
Формула расчета CFM в воздуховоде
После того, как вы выполните расчеты нагрузки и определите требуемую мощность оборудования, примените эту формулу расчета CFM в воздуховоде для определения потребности в каждой комнате:
CFM в помещении = (нагрузка помещения / нагрузка всего дома) ✕ Оборудование CFMВ качестве примера скажем, что для помещения A требуется 2 000 БТЕ тепла на основе расчетов нагрузки системы отопления, вентиляции и кондиционирования воздуха для каждой комнаты, а для всего дома требуется 24 000 БТЕ, что требует 2-тонной печи со скоростью 800 кубических футов в минуту.
24000 БТЕ ÷ 12000 БТЕ в 1 тонне = 2 тонны ✕ 400 куб. Футов в минуту на тонну = 800 куб.СОВЕТ: Для нагрева или охлаждения от 1 до 1,25 квадратных футов площади пола требуется примерно 1 куб. Фут / мин. Воздуха. Чтобы охладить помещения с большим количеством окон или под прямыми солнечными лучами, требуется около 2 куб. Футов в минуту.
Изобразите коэффициент потерь на трениеКоэффициент трения (FR) поможет вам выбрать диаметр и форму воздуховодов, которые вы можете использовать, без отрицательного воздействия на оптимальный воздушный поток.Он рассчитывается путем деления доступного статического давления (ASP) на общую эффективную длину (TEL) и умножения на 100, чтобы показать, какой перепад давления система может выдержать на 100 футов эффективной длины. Вам нужна более высокая скорость трения, потому что это означает, что вы можете использовать меньшие, более узкие воздуховоды, чем в проекте HVAC, спроектированном с более низкой скоростью трения, что требует больших воздуховодов. При низком коэффициенте трения один неисправный компонент может серьезно затруднить воздушный поток, потому что меньше места для ошибки.
Обратитесь к таблице CFM воздуховода в технических характеристиках производителя HVAC, чтобы определить внешнее статическое давление воздуходувки для этой конкретной модели HVAC. Обычно он отображается в виде диаграммы CFM для HVAC, которая разбивает различные настройки вентилятора и общие CFM, необходимые для дома или здания.
Общее внешнее статическое давление (TESP) измеряется в дюймах водяного столба (wc или iws). Как показывает опыт, в большинстве систем коэффициент трения по умолчанию составляет 0,05 дюйма вод. самостоятельно, чтобы получить более точное измерение.
Отсюда вычтите падение давления, создаваемое любыми компонентами, которые вы планируете добавить в систему распределения воздуха, такими как внешние змеевики, фильтры, решетки, регистры и заслонки. Метод Manual D, который фокусируется на том, как проектировать системы воздуховодов, предлагает использовать 0,03 iwc для регистра подачи, возвратной решетки и балансировочной заслонки. Воздушные фильтры обычно указывают предполагаемое падение давления на упаковке продукта или на веб-сайте производителя.
Этот вычет дает вам доступное статическое давление (ASP) или бюджет статического давления, с которым вы работаете при проектировании системы воздуховодов.Вы не можете превышать ASP, иначе система будет обеспечивать неправильный воздушный поток и со временем вызовет проблемы с оборудованием.
ASP влияет на размер воздуховодов HVAC. Чем меньше статическое давление, тем больше требуется воздуховод. Если прогнозируемая скорость кажется слишком высокой для системы, выберите следующий по величине размер воздуховода.
Общая эффективная длина воздуховодов
Общая эффективная длина (TEL) равна измеренной длине от самого дальнего выхода подачи через оборудование и до самого дальнего выхода возврата, плюс эквивалентная длина всех витков и фитингов.Скорость трения рассчитывается на основе падения давления на 100 футов.
TEL учитывает перепады давления, возникающие из-за трещин, поворотов и других фитингов в плане воздуховодов HVAC. Вместо того, чтобы пытаться рассчитать все эти отдельные случаи потери давления, специалисты по HVAC измеряют длину прямого участка воздуховода, которая создаст такое же падение давления, что называется эффективной длиной. Каждый фитинг имеет эффективную длину, равную перепаду давления в эквивалентном прямом воздуховоде.
Чтобы сконфигурировать TEL, сложите эффективную длину всех фитингов в наиболее ограниченном участке и добавьте это число к длине прямых участков между возвратом и подачей в этом участке. Зная TEL, вы готовы рассчитать коэффициент трения, который инструмент для измерения размеров воздуховодов HVAC использует для определения размеров всех стволов и ответвлений воздуховодов.
Скорость трения = (ASP X 100) ÷ TELВот пример расчета скорости трения:
Измеренная длина прямого воздуховода = 50 футов
Эквивалентные длины витков и фитингов между началом и концом прямого воздуховода : 150 футов
50 футов + 150 футов = 200 футов TEL
Внешнее статическое давление воздухоподготовителя при 1000 кубических футов в минуту = 0.5 дюймов вод. Ст.
Вычесть статические падения для компонентов = 0,03 дюйма вод. Ст. Для регистра, 0,03 дюйма вод. Ст. Для решетки и 0,15 дюйма вод. Ст. Для фильтра: 0,5 — 0,03 — 0,03 — 0,15 = 0,29 дюйма вод. 100) ÷ 200 = 0,145 футов вод. Планируете ли вы установить прямоугольный или круглый воздуховод HVAC?
Помните, что выбор материала воздуховода также влияет на сопротивление воздушному потоку и статическое давление, поэтому расчеты размеров гибких воздуховодов немного отличаются от воздуховодов из листового металла.Гибкий воздуховод CFM будет измерять меньше, чем воздушный поток в листовом металле и для воздуховодов из стекловолокна с покрытием. Жесткий листовой металл обеспечивает наименьшее сопротивление потоку воздуха. Гибкий воздуховод CFM меняется в зависимости от способа его установки: производительность резко снижается, если он не растягивается полностью, или из-за резких поворотов и поворотов.
В ServiceTitan Ductulator выберите тип и форму воздуховода, который вы планируете использовать, чтобы получить правильные соответствующие измерения в таблице размеров воздуховода.
Хотите развивать свой бизнес в сфере HVAC? Узнайте больше о том, что программное обеспечение HVAC может сделать для вас, запланировав демонстрацию сегодня.
Подрядчики справляются с ростом бизнеса с помощью этого мощного инструмента.
Подробнее
Заявление об отказе от ответственности* По добросовестным оценкам, калькулятор размеров воздуховода предназначен исключительно для общих информационных целей. Мы не гарантируем точность этой информации. Обратите внимание, что другие внешние факторы могут повлиять или исказить рекомендации этого инструмента. Для получения точных значений проконсультируйтесь с лицензированным специалистом по отоплению и кондиционированию воздуха или инженером-строителем.
Что такое система HVAC и как она работает?
Что такое система отопления, вентиляции и кондиционирования и как она работает?
7 января 2019 г.
Что такое система HVAC?
В первую очередь, HVAC означает отопление, вентиляцию и кондиционирование воздуха. Эта система обеспечивает отопление и охлаждение жилых и коммерческих зданий. Вы можете найти системы HVAC где угодно, от частных домов до подводных лодок, где они обеспечивают средства для экологического комфорта. Становясь все более популярными в новом строительстве, эти системы используют свежий воздух снаружи для обеспечения высокого качества воздуха в помещении.V в HVAC или вентиляции — это процесс замены или обмена воздуха в помещении. Это обеспечивает лучшее качество воздуха в помещении и включает удаление влаги, дыма, запахов, тепла, пыли, переносимых по воздуху бактерий, углекислого газа и других газов, а также контроль температуры и пополнение запасов кислорода.
Как работает система HVAC
Три основные функции системы HVAC взаимосвязаны, особенно при обеспечении приемлемого качества воздуха в помещении и теплового комфорта.Ваша система отопления и кондиционирования воздуха часто является одной из самых сложных и обширных систем в вашем доме, но когда она перестанет работать, вы скоро узнаете! Ваша система HVAC состоит из девяти частей, которые вы должны знать: возврат воздуха, фильтр, выпускные отверстия, воздуховоды, электрические элементы, наружный блок, компрессор, змеевики и вентилятор.
Возврат воздуха
Возврат воздуха — это часть вашей системы, которая отмечает начальную точку цикла вентиляции. Этот возврат всасывает воздух, втягивает его через фильтр, а затем направляет в основную систему.Совет от профессионала: не забывайте часто вытирать пыль со своих возвратных фильтров, так как на фильтрах легко может скапливаться мусор и пыль.
Фильтр
Ваш фильтр — вторая часть возвратного воздушного потока, через которую проходит воздух. Совет от профессионала: не забывайте регулярно менять фильтры, чтобы ваша система оставалась в отличной форме.
Выхлопные отверстия
Другая часть вашей системы — это выхлопные отверстия, через которые удаляются выхлопные газы, создаваемые системой отопления. Совет от профессионала: ежегодно проверяйте дымоход или вентиляционную трубу и при необходимости настраивайте их.
Воздуховоды
Ваши воздуховоды — это каналы, по которым проходит нагретый или охлажденный воздух. Совет профессионала: очищайте воздуховоды каждые 2–5 лет, чтобы все оставалось в рабочем состоянии.
Электрические элементы
Эта часть вашей системы может быть немного сложнее, но часто проблемы возникают в первую очередь именно здесь. Совет от профессионала: если что-то не работает, проверьте термостат на предмет срабатывания выключателя или разряженных батарей.
Наружный блок
Это, вероятно, та часть вашей системы, о которой вы думаете, когда кто-то упоминает систему HVAC.В наружном блоке находится вентилятор, обеспечивающий приток воздуха. Совет от профессионала: держите устройство подальше от мусора и растительности, так как это может вызвать серьезные проблемы, если растения попадут в вентилятор.
Компрессор
Компрессор, являющийся частью наружного блока, отвечает за преобразование хладагента из газа в жидкость и отправку его в змеевики. Совет от профессионала: если что-то не работает, проверьте компрессор. Часто это причина многих сбоев системы.
Змеевики
Обычно это другая часть наружного блока. Змеевики охлаждают проходящий через него воздух с небольшой помощью хладагента.Совет от профессионала: ежегодно проверяйте катушки. Если они замерзли, вы можете проверить уровень вашего фильтра и / или хладагента.
Воздуходувка
Воздуходувка всасывает теплый воздух через основную часть агрегата. Совет от профессионала: чем эффективнее проходит воздух, тем прочнее будет ваша система.
Что входит в систему HVAC
Поскольку теперь мы знаем, что HVAC означает отопление, вентиляцию и кондиционирование воздуха, мы знаем, что это три основные части, входящие в состав всей системы.
Под нагревательным элементом обычно понимается печь или котел. Он включает в себя систему трубопроводов для жидкости, несущей тепло, или воздуховод, если вы работаете с системой принудительной подачи воздуха.
Вентиляционный элемент бывает естественным или принудительным, и когда он принудительный, он чаще всего также используется для очистки воздуха.
Как многие из нас знают, третий и последний элемент системы HVAC — это кондиционирование воздуха, которое является полной противоположностью отопления. Основной упор делается на удаление существующего тепла из интерьера дома.
В чем разница между системами отопления, вентиляции и кондиционирования воздуха
Удивительно, но мы часто получаем этот вопрос. Так в чем же разница между HVAC и кондиционером, спросите вы? Ну, кондиционирование воздуха на самом деле является последней частью того, что означает HVAC, но они часто используются взаимозаменяемо по отношению к любому типу нагревательного или охлаждающего устройства в доме. Подумайте о HVAC как о всеобъемлющем понятии, а о кондиционировании воздуха как об одной части пазла.
Какой бренд HVAC лучший?
В мире HVAC есть немало лидеров, но здесь, в Brennan Heating & Air Conditioning, мы устанавливаем только Lennox, и это по ряду причин.Прежде всего, Lennox производит качественную продукцию уже более века. Кроме того, Lennox хорошо известен своей репутацией и предлагает высокоэффективные продукты. Наконец, Lennox предоставляет всем своим клиентам информацию, необходимую им для принятия решения о своих следующих инвестициях в улучшение дома.
Сколько лет прослужит система HVAC
Теперь, когда вы точно понимаете, из чего состоит система HVAC, вы, вероятно, задаетесь вопросом, как долго прослужит вам новая.Это действительно зависит от оборудования, чтобы знать, как долго прослужит система. Но если вы будете выполнять рекомендованное вам ежегодное обслуживание, ваше оборудование прослужит вам долгие годы. Вы хотите заменить существующую систему отопления, вентиляции и кондиционирования воздуха? Или, может быть, вы хотите добавить еще один? Позвоните своим местным специалистам по отоплению и кондиционированию воздуха в Brennan Heating & Air Conditioning!
Категории: Без категорииИзмерение расхода воздуха — Как измерить скорость воздуха в воздуховоде?
Расчет расхода через воздуховоды, трубы, вытяжки и дымовые трубы (для наших целей все вместе называемые воздуховодами) никогда не был трудным.Площадь поперечного сечения воздуховода умножается на среднюю скорость воздуха, чтобы найти объем за время или скорость потока. Простой.Сбор данных для точного и точного измерения скорости воздуха в воздуховодах был сложной задачей. А плохие процедуры сбора данных приводят к ошибкам в балансировке воздуховодов. В прошлом время измерения расхода воздуха с помощью анемометров было ограничено.
Новейшие микропроцессорные приборы обеспечивают точный сбор данных измерения расхода воздуха в воздуховоде ОВК, даже до того, как терпение специалистов по ОВКВ иссякнет.
Как измерить скорость воздуха в воздуховоде?
Более точный вопрос заключается в том, как получить измерение среднего расхода в различных поперечных сечениях воздуховода.Физика относительно проста:
- Воздух замедляется трением при контакте с краем воздуховода
- Наибольшая скорость воздуха достигается в условиях ламинарного потока в середине поперечного сечения без трения
- Профиль скорости воздуховода зависит от формы воздуховода (минимизация стенок периметра для достижения площади поперечного сечения) и силы, толкающей воздух
С учетом этих фактов, из скольких измерений расхода воздуха можно составить хорошую базу данных?
Линии сетки, которые определяют точки измерения расхода в воздуховоде, являются пересекающимися. Логлинейный метод обеспечивает высокую точность (± 3%) суммирования расхода за счет измерения расхода воздуха, предпочтительно ближайшего к краям пространства воздуховода. Теперь вопрос в том, как измерить куб. метр в воздуховоде? Это будет зависеть от формы самого воздуховода.
Воздуховоды круглые
Бревно линейно-траверсное для круглых каналов, трехдиаметрный подход.Логлинейная траверса для круглых каналов, подход по два диаметра. Три поперечины диаметром, равномерно разнесенные под углом 60 °, образуют шесть кусков пирога в круглом воздуховоде. Для каждого радиуса производятся три измерения расхода воздуха: по краю; одна треть к центру; две трети к центру. Обратите внимание, что воздух, наиболее подверженный трению, кажется чрезмерно представленным.В общей сложности восемнадцать показаний точно описывают расход воздуха.
В случае, когда можно измерить только два хода, установите их под углом 90 градусов и возьмите пять образцов на каждом радиусе.Первые четыре равномерно распределяются по первой половине радиуса, начиная с края и двигаясь к центру. Пятая точка на две трети ближе к центру.
Эти двадцать точек данных не дадут такого точного среднего значения, как восемнадцать с тремя обходами, но результаты приемлемы.
Воздушный поток в прямоугольных или квадратных воздуховодах
Пример линейной траверсы с 25 точками для прямоугольных воздуховодов. Точность требует от минимум двадцати пяти точек данных до максимум сорока девяти.Сторона воздуховода менее тридцати дюймов требует пяти пересечений. Сторона воздуховода больше тридцати шести требует семи пересечений. Шесть для длины посередине.Для этих воздуховодов требуется как минимум шестнадцать измерений около края (около 7% общего расстояния), а остальные девять должны быть равномерно распределены по сетке. Обратите внимание, что шестьдесят четыре процента точек данных прямоугольного воздуховода будут расположены близко к стенкам воздуховода, в то время как только тридцать три процента точек данных круглого воздуховода отражают трение со стенками.Это измерение демонстрирует эффективность круглого воздуховода. Что, кстати, не означает, что раунд — всегда лучшее решение.
Соберите данные по этим показаниям и просто вычислите среднее значение. Или позвольте вашему микропроцессору сделать работу. Вы рассчитали скорость воздушного потока в воздуховоде.
Как измерить площадь поперечного сечения
Звучит достаточно просто: длина умножается на ширину или радиус в квадрате, умноженный на пи.Три слова: запомните решетку.
Если решетка не используется, коэффициент применения равен 1,00. Таким образом, площадь поперечного сечения воздуховода не изменилась.
Если решетка имеет квадратную форму, умножьте общую площадь на 0,88. Решетка радиатора изменена в 0,78 раза; и решетка из стальных полос калибра 0,73.
Решетка служит для замедления скорости воздуха, а также для его рассеивания. Помните об этом факторе.
Приборы для измерения расхода воздуха HVAC
Вы измерили расход воздуха, чистую площадь поперечного сечения и умножили их на расход.
Q = FAV, где:
F = коэффициент применения (см. Таблицу)
A = обозначенная площадь в квадратных футах
Тип решетки | Фактор применения, F | Обозначенный участок |
Нет | 1,00 | Площадь воздуховода полностью |
Квадрат с перфорацией | 0,88 | Свободная (дневная) площадь |
Штанга | 0.78 | Площадь ядра |
Стальная полоса | 0,73 | Площадь ядра |
Мы считаем важным, чтобы технический персонал понимал теорию измерения расхода воздуха в воздуховодах, чтобы распознать, когда точка данных вряд ли будет правильной, ошибочное показание или расчет не кажутся правильными и должны быть проверены дважды.В сегодняшней среде «результат — сейчас» эти новые технологии ускоряют процесс. Ваш опыт будет дважды проверять процесс, но этот инструментарий быстро собирает и дважды проверяет необработанные данные.
Новые модели усовершенствованы в том, как рассчитывается расход воздуха и выводится в удобном для использования формате. Балансировка воздуховодов стала менее трудоемкой и более эффективной, больше науки, чем искусства.
Основные принципы проектирования воздуховодов, часть 1
Когда дело доходит до отопления и охлаждения домов, принудительное распределение воздуха имеет решающее значение.Да, мой канадский друг Роберт Бин из Healthy Heating использует лучистую энергию как для обогрева, так и для охлаждения, а мой техасский друг Кристоф Ирвин выпил этот кулаид и установил то, что может быть первой системой лучистого охлаждения в Техасе. Тем не менее, даже если системы лучистого распределения полностью возьмут верх, нам все равно потребуются системы принудительных воздуховодов. Почему? Потому что нам все еще нужно подавать воздух для вентиляции и, во влажном климате, например, на юго-востоке США, для осушения.
Итак, если мы собираемся перемещать воздух через воздуховоды, нам нужно понимать физику воздуха и то, как мы заставляем его выполнять наши приказы.В этой серии статей я расскажу вам об этом. Сегодня я начну с того, что вы делаете в процессе проектирования HVAC, прежде чем перейти к этапу проектирования воздуховода (Руководство D), а также с физики воздушного потока, когда он ограничен воздуховодами. Я дополню это статьями о процессе, который мы используем при проектировании систем воздуховодов, включая доступное статическое давление, эквивалентную длину и выбор фитингов.
Готовы?
До конструкции воздуховода
Проектирование системы воздуховодов важно, но сначала нужно выполнить несколько важных шагов.Номер один — это расчет нагрузки по обогреву и охлаждению с использованием протокола, такого как Руководство J * ACCA или Справочник основ ASHRAE. * Вы должны знать, сколько тепла и холода вам нужно для каждой комнаты (в БТЕ / час). Затем эти требования к БТЕ в час немедленно переводятся в требования к расходу воздуха в каждой комнате в кубических футах в минуту (куб.фут / мин). Это делается автоматически в используемом нами программном обеспечении (RightSuite Universal от WrightSoft).
После того, как вы узнаете количество БТЕ / час и куб.футов в минуту для здания, вам необходимо выбрать правильное оборудование для отопления и охлаждения.В этом вам поможет протокол ACCA Manual S *. Это нечто большее, чем просто поиск оборудования, отвечающего всем нагрузкам на отопление и охлаждение дома. Убедитесь, что вы приспосабливаетесь к дизайнерским условиям дома и снаружи. В идеале у вас есть таблицы данных производителя, которые помогут вам разобраться.
Тогда вы готовы приступить к проектированию системы воздуховодов.
Вес воздуха
Первое, что вам нужно знать, это то, что воздух имеет вес.Дэвид Хилл сделал несколько замечательных презентаций по проектированию воздуховодов в Летнем лагере Building Science Summer Camp, и это его отправная точка. (См. Превосходное резюме выступления Майкла Чендлера в Летнем лагере Хилла в 2011 году о Green Building Advisor.) На фотографии ниже Хилл держит блок в 1 кубический фут, который, по его словам, весил бы почти 0,1 фунта, если бы он был воздухом. Фактическое значение составляет 0,0807 фунта при стандартной температуре и давлении.
Если у вас кондиционер на 2,5 тонны, номинальный расход воздуха будет 1000 кубических футов в минуту.(Здесь правило — 400 кубических футов в минуту на тонну.) Это означает, что воздуходувка должна пропускать через систему около 81 фунта воздуха в минуту. Чтобы переместить вес, нужно потрудиться.
Ну, вообще-то, если вы помните свой вводный урок физики, вы знаете, что это не совсем так. Вы можете перемещать вес бесплатно, если перемещаете его горизонтально и без какого-либо сопротивления. Требуется работа, чтобы поднять его против силы тяжести или толкнуть в любом направлении против трения. И это подводит нас к…
Физика воздушного потока
Если вы вынесете вентилятор во двор в тихий день и включите его, вы получите максимальный поток воздуха.Если вы возьмете тот же вентилятор и вдуваете воздух в картонную трубку, он должен работать против давления, которое создается в этом пространстве. Чем больше вы уменьшаете размер этой трубки, или удлиняете ее, или поворачиваете вместе с ней воздух, тем больше создается статическое давление. И чем больше уменьшается воздушный поток.
Это основной принцип, с которым вы должны работать при проектировании воздуховодов. Ранее я писал о двух факторах, влияющих на уменьшение потока воздуха в воздуховодах. Один из них — трение. Когда воздух движется по воздуховоду, он взаимодействует с поверхностями.Чем более гладкая эта внутренняя поверхность, тем лучше для воздушного потока. Чем шероховатее поверхность, тем больше замедляется движение воздуха.
Второй фактор — турбулентность. Обычно это происходит, когда вы пропускаете воздух через фитинги или когда вы поворачиваете воздух. С жестким воздуховодом воздух поворачивается с помощью фитингов, но, к сожалению, это не всегда происходит с гибким воздуховодом.
Когда воздух выходит из обработчика воздуха, с ним происходит несколько вещей. Его отправляют в разные комнаты в доме.По мере того, как он проходит через систему каналов «ствол-ответвление», количество продолжает уменьшаться, потому что часть его отводится по каждой ветви на пути к концу.
Каждая секция воздуховода, каждый фитинг, каждый поворот воздуха добавляет сопротивление этому воздушному потоку из-за трения и турбулентности. Решетки и регистры, фильтры и балансировочные демпферы также добавляют сопротивления. Это сопротивление приводит к снижению статического давления или падению давления.
Итак, начнем с нагнетателя с высоким давлением.К тому времени, как воздух выходит из приточных отверстий, это давление упало до нуля (относительно давления в помещении).
Следующий этап проектирования воздуховодов
В следующей статье я подробнее расскажу об этих перепадах давления и о том, как они определяют доступное статическое давление, которое затем приводит к общей эффективной длине нашей системы воздуховодов. Вы можете перейти к другим статьям этой серии по ссылкам ниже.
Купить руководства ACCA на Amazon *
Другие статьи из серии Duct Design:
Конструкция воздуховода 2 — Доступное статическое давление
Конструкция воздуховода 3 — Общая полезная длина
Конструкция воздуховода 4 — Расчет коэффициента трения
Конструкция воздуховода 5 — Определение размеров воздуховодов
Статьи по теме
Две основные причины снижения потока воздуха в воздуховодах
Заболевание гибких протоков не препятствует воздушному потоку
Наука о провисании — гибкий воздуховод и воздушный поток
Секрет эффективного движения воздуха через вашу систему воздуховодов — Моя статья о презентации Овальных воздуховодов в Летнем лагере Дэвида Хилла 2015 года
Изображение предоставлено: Верхнее фото: Energy Vanguard; вес аэрофотоснимка Дэвида Хилла; рисунок турбулентности из «Понимания диаграммы трения» ACCA (который, по-видимому, больше не доступен).
* Это ссылки Amazon Associate. Вы платите ту же цену, что и обычно, но Energy Vanguard взимает небольшую комиссию, если вы совершаете покупку после перехода по ссылке.
Избегайте этих 5 ошибок при проектировании воздуховодов
Обновляете коммерческое пространство и хотите улучшить кондиционирование воздуха в процессе? Когда работа будет сделана, хотите ли вы, чтобы в вашем помещении была комфортная и постоянная температура? Как насчет хорошего качества воздуха? Энергоэффективность? Если вы это сделаете, то стоит запланировать обновления вашей системы отопления, вентиляции и кондиционирования воздуха и ее конструкции воздуховодов на ранних этапах процесса ремонта, чтобы избежать ошибок.
Вы, вероятно, не осознавали, что ваша система HVAC и ее система воздуховодов — это то, о чем вам нужно подумать, еще до того, как архитектор завершит планы. Узнайте, как улучшить систему кондиционирования воздуха с помощью улучшенной конструкции воздуховодов и почему вам нужны специалисты по HVAC, участвующие в процессе ремонта на раннем этапе.
Последствия плохой конструкции воздуховодов
По данным Министерства энергетики США, средняя эффективность системы воздуховодов ОВК составляет около 60 процентов. Это означает, что воздух не проходит через ваше пространство и вашу систему отопления, вентиляции и кондиционирования воздуха, как должен, что приводит к всевозможным нежелательным последствиям, в том числе:
- Горячие и холодные точки, сквозняки и душный воздух в вашем помещении из-за затрудненного воздушного потока.
- Дополнительный износ вашего кондиционера, так как он должен работать дольше и усерднее работать, чтобы компенсировать недостатки конструкции воздуховодов, что приводит к большему количеству поломок и сокращению срока службы оборудования.
- Плохое качество воздуха, из-за которого обитатели вашего помещения подвергаются повышенному воздействию пыли, загрязняющих веществ, паров и даже плесени из-за слишком высокой влажности.
- Несбалансированное давление воздуха, из-за которого запахи остаются, двери хлопают сами по себе и отвлекают уровни шума в вашем помещении.
Связанная статья: Проблемы с кондиционированием воздуха из-за плохого воздушного потока.
5 Распространенных ошибок проектирования воздуховодов
Правильная конструкция воздуховодов обеспечивает такой уровень воздушного потока, который необходим вашей системе HVAC для эффективной работы и обеспечения желаемого и ожидаемого комфорта в отремонтированном помещении. Вот некоторые из распространенных ошибок проектирования воздуховодов, которые препятствуют работе вашего кондиционера:
ОШИБКА ПРИ ДИЗАЙНЕ КАНАЛОВ №1: заниженный размер
Подрядчики могут совершить ошибку, не приняв во внимание тип имеющейся у вас системы кондиционирования воздуха, требования к нагрузке. разные помещения, в которых расположены воздуховоды и оборудование, а также материалы, из которых они были построены.Все эти факторы влияют на правильный размер ваших воздуховодов, и неправильный выбор часто означает, что размер ваших воздуховодов HVAC недостаточен. (См. Ниже советы о том, как это сделать.)
ОШИБКА ПРИ ДИЗАЙНЕ КАНАЛОВ № 2: Слишком длинные участки
Если расположение оборудования HVAC и системы воздуховодов не оптимизировано на этапе планирования, оборудование может оказаться далеко. из охлаждаемого помещения. Это может потребовать протяженных воздуховодов, из-за которых вашей системе HVAC будет сложно перемещать кондиционированный воздух в определенные области внутри помещения.
ОШИБКА ПРИ ПРОЕКТИРОВАНИИ КАНАЛОВ № 3: Острые изгибы
Так же, как длинные участки препятствуют потоку воздуха, слишком острые или слишком многочисленные изгибы воздуховодов также уменьшают количество воздуха, который фактически достигает охлаждаемого пространства.
ОШИБКА КОНСТРУКЦИИ КАБЕЛЕЙ №4: Утечки воздуха
Неправильно герметизированные или опертые воздуховоды для кондиционирования воздуха могут привести к утечке охлажденного воздуха в стены, где это не принесет никакой пользы обитателям вашего помещения.
ПРОЕКТНАЯ ОШИБКА № 5: Отсутствие возврата
Чтобы поддерживать сбалансированное давление и движение воздуха, ваша система воздуховодов нуждается в обратных вентиляционных отверстиях для воздуха в помещении, который будет втягиваться обратно в систему HVAC.Недостаточная отдача — распространенный недостаток конструкции воздуховодов, который приводит к жалобам на комфорт.
6 советов по правильному проектированию воздуховодов
Чтобы убедиться, что ваши воздуховоды спроектированы должным образом, начните с привлечения опытного профессионала по проектированию систем отопления, вентиляции и кондиционирования воздуха на ранних этапах процесса проектирования ремонта. Опытный профессионал будет работать с архитектором и подрядчиком, чтобы сделать следующее:
1. Выберите лучшее место для оборудования HVAC и воздуховодов. При правильном планировании оборудование HVAC должно располагаться в центре помещения, чтобы обеспечить как можно более короткие участки воздуховода.Воздуховоды должны располагаться во внутренних стенах и потолках, чтобы минимизировать потери кондиционированного воздуха. Для максимальной эффективности избегайте установки воздуховодов на чердаках и в без кондиционированных подвесных помещениях.
2. Детальный расчет нагрузки. Особенно, когда в вашем помещении есть разные комнаты или зоны с различными требованиями к обогреву и охлаждению, важно, чтобы расчет нагрузки производился индивидуально для каждой комнаты, а не только для всего пространства в целом.
Статья по теме: 4 причины, по которым вам нужен дизайн HVAC для вашей установки кондиционирования воздуха.
3. Обдумайте тип вашего оборудования и вспомогательные системы. Для некоторых типов систем кондиционирования воздуха, таких как тепловые насосы, требуются воздуховоды большего размера. Если ваша система включает очистители воздуха с фильтрами с активированным углем, они также влияют на воздушный поток и могут потребовать более крупных воздуховодов и / или дополнительных возвратов воздуха.
4. Используйте подходящие материалы, фурнитуру и опоры. Материалы воздуховодов могут различаться в зависимости от требований и бюджета, но убедитесь, что установщик использует подходящие материалы для ваших нужд.Гибкие воздуховоды (часто называемые «гибкими») из армированного пластика проще и дешевле в установке, но они не такие прочные и долговечные, как листовой металл.
Для получения дополнительной информации об использовании гибких воздуховодов прочтите статью ACHRNews о конструкции воздуховодов.
Если для вас очень важны тихая работа и энергоэффективность, вы можете выбрать воздуховод из прессованного стекловолокна, который более дорогой, но очень тихий и эффективный.
5.Выберите правильный размер и расположение воздуховода. После того, как все системные переменные определены, ваш специалист по проектированию систем отопления, вентиляции и кондиционирования воздуха может определить наиболее эффективную компоновку воздуховода и рассчитать правильный размер воздуховода. Чтобы учесть все необходимые факторы, многие профессионалы используют инструмент под названием ACCA Manual D.
6. Обеспечьте надлежащее уплотнение воздуховодов. Знаете ли вы, что из-за неправильной герметизации стыков воздуховодов может быть потеряно до 20 процентов кондиционированного воздуха? Проблема усугубляется использованием высокоэффективных систем, которые дольше работают при меньшей мощности.Воздух находится в воздуховодах в течение более длительного периода времени, поэтому через негерметичные соединения может выйти больше воздуха. Убедитесь, что стыки воздуховодов герметизированы мастичной резинкой или лентой с металлической основой, чтобы предотвратить утечки.
Прочитав это, вы обеспокоены тем, что у вашего установщика систем отопления, вентиляции и кондиционирования воздуха может не быть опыта для работы с вашим проектом воздуховодов? Для чего-то столь же важного, как ремонт, для получения желаемых результатов может потребоваться найти более знающего и опытного поставщика.
Смена продавца может показаться пугающей, но это не обязательно.Узнайте, как сделать это без стресса, из нашего бесплатного руководства: «Доверие к контракту: переход к новому поставщику услуг HVAC».
HVAC Apps — 10 самых популярных приложений, которые мы любим
«Единственное устойчивое конкурентное преимущество — это способность быстрее учиться и применять правильные вещи».
— Уэйн Ходгинс
Большинство выездных сервисных работников расхваливают преимущества мобильных приложений, позволяющих им повысить продуктивность и предоставлять им доступ к информации, необходимой им для выполнения своей работы.Сегодняшние работники HVAC могут легко обратиться к своему мобильному устройству для выполнения расчетов и определения размеров материалов, справочных терминов и руководств, подготовки к экзамену HVAC и многого другого. Существует множество приложений HVAC на выбор, но не все они одинаковы, поэтому мы просмотрели iTunes и Google Play в поисках приложений с самым высоким рейтингом, которые вам стоит попробовать. Вот наши фавориты:
Приложение HVAC Buddy, доступное как для iOS, так и для Android, представляет собой приложение для заправки хладагента и диагностики HVAC.Если специалист по HVAC обслуживает оборудование, он или она может использовать это приложение, чтобы понять, какую заправку хладагента использовать. Приложение также содержит графики целевых значений перегрева и переохлаждения и таблицы давление-температура для 71 хладагента, поэтому оно невероятно полезно. Если вы загрузили это приложение и оно вам понравилось, вы можете попробовать другие приложения от HVAC Buddy, такие как HVAC Buddy Psychrometric, HVAC Buddy Pressure и HVAC Duct Calc Buddy.
The Complete HVAC Dictionary — Free — отличный инструмент как для новичков, так и для профессионалов в области HVAC.Это приложение, доступное для устройств Android, позволяет ссылаться на более 3000 терминов по отоплению, вентиляции и кондиционированию воздуха. Это также отличный ресурс для студентов HVAC.
Один из обозревателей назвал приложение HyTools «настоящим спасителем». Доступное для загрузки как в iTunes, так и в магазине Google Play, приложение выполняет множество гидравлических расчетов, которые полезны для оптимизации систем отопления, вентиляции и кондиционирования воздуха, от расхода — настройки клапана — падения давления, размера и предварительной настройки клапана, оценки мощности радиатора и т. Д.
Нам нравится приложение HVAC Thermostats для Android, потому что оно дает профессионалам HVAC удобство иметь более 400 руководств для термостатов HVAC от известных брендов, в том числе от ведущих брендов, таких как Honeywell, Lennox, Nest и White Rogers. Любое руководство может быть сохранено на вашем мобильном устройстве или отправлено клиенту или члену команды по электронной почте. Если вы ищете аналогичное приложение для iPhone, попробуйте термостаты HVAC (см. Руководства от A до Z).
Специалисты по HVAC, работающие с системами вентиляции, найдут приложение HVAC Duct Sizer, доступное для пользователей iOS и Android, удобным для быстрого и простого определения размеров воздуховодов.Приложение было разработано Carmel Software Corporation, лидером в области программного обеспечения для проектирования систем отопления, вентиляции и кондиционирования воздуха, и признано любимым мобильным приложением читателей журнала Contracting Business. Нам нравится, что приложение позволяет настраивать, чтобы пользователи могли указывать определенные параметры, такие как форма воздуховода, температура и давление воздуха.
Приложение HVAC Air Change Tool экономит время и усилия специалистов по HVAC, рассчитывая воздухообмен за час, исходя из объема помещения в кубических футах и кубических футах в минуту (CFM).Приложение простое, но оно делает именно то, что должно.
Для тех, кто в настоящее время проходит обучение по программе отопления, вентиляции и кондиционирования воздуха (HVAC) или готовится к экзамену HVAC, приложение HVAC Flashcards, доступное как для iOS, так и для Android за 4,99 доллара, является отличным приложением для загрузки. Приложение включает в себя 1000 готовых карточек из 5 категорий, которые охватывают все темы экзамена HVAC, поэтому студенты могут учиться и проверять свои знания. Дополнительным преимуществом для пользователей iPhone является возможность создавать свои собственные карточки и хранить их локально и в Интернете.
Пользователи Android, которым требуется бесплатное приложение для подготовки к экзамену HVAC, могут обратиться к приложению HVAC Practice Test. Как и в приложении HVAC Flashcards, у вас будет доступ к карточкам, различным режимам обучения и практическим тестам. Нам также нравится, что это приложение поддерживает автономный режим, поэтому вы можете использовать его, где бы вы ни находились.
Приложение Ultimate Pipe Size, доступное для телефонов Android, является полезным инструментом для расчета как размера трубы, так и падения давления. Его скачивают не только профессионалы не только в области HVAC, но и в машиностроении и химической инженерии.
Приложение HVAC Professional Formulator предоставляет профессионалам в области HVAC с iPhone и iPad доступ к более чем 200 формулам, а также диаграммам и преобразованиям в различных областях отрасли HVAC, от котлов, энергии, отопления, влажности, нагрузок, насосов, пара, дымоходов и многого другого. Профессионалы HVAC, заинтересованные в получении полного Международного механического кодекса, также получают это, купив это приложение за 7,99 доллара США.