Контроллер заряда солнечных батарей: Контроллеры заряда акб для солнечных батарей

Содержание

Как выбрать контроллер заряда для солнечной батареи? © Солнечные.RU

Если Вы знакомы с особенностями солнечных батарей, а именно с тем, что они представляют собой источники тока, что как раз и необходимо для зарядки аккумуляторов, то может возникнуть следующий вопрос.

Зачем вообще нужен контроллер заряда для солнечной батареи? И действительно, достаточно просто соединить солнечную батарею с аккумулятором, и при наличии хоть какого-то света, а еще лучше — Солнца, от солнечной батареи пойдет зарядный ток в аккумулятор и без использования контроллера.

Так для чего же тогда покупать контроллер заряда, какие функции он выполняет и в чем отличие разных типов контроллеров (MPPT, PWM, ON/OFF)? Попробуем разобраться с этим.

Итак, что будет, если не применять его совсем? При прямом подключении солнечной батареи к аккумулятору пойдет зарядный ток и напряжение на клеммах аккумулятора начнет постепенно расти. Пока оно не достигнет предельного напряжения зарядки (которое зависит от типа аккумулятора и его температуры), прямое подключение будет равнозначно присутствию контроллера моделей PWM или ON/OFF, поскольку в этом режиме эти модели просто соединяют вход и выход.

При достижении предельного напряжения (около 14 Вольт), ON/OFF контроллер, который является самым дешевым из всех типов, просто отключит солнечную батарею от аккумулятора и заряд прекратится, хотя в реальности аккумулятор заряжен еще не полностью и для полной зарядки требует поддержания на нем предельного напряжения в течение еще нескольких часов. Эту задачу решает PWM контроллер, который при помощи широтно-импульсного преобразования (ШИМ или, по английски — PWM) понижает напряжение солнечной батареи до нужного значения и поддерживает его.

Если же Вы не используете никакого контроллера, то Вам нужно постоянно следить при помощи вольтметра за зарядным напряжением и в нужный момент отключить солнечную батарею. И если Вы забудете ее отключить, то это приведет к перезаряду, выкипанию электролита и сокращению срока службы аккумуляторов. Однако, если Вы и отключите ее вовремя или же используете простой ON/OFF контроллер, аккумуляторы останутся заряженными не полностью (примерно на 90%), а регулярный недозаряд в конечном итоге приведет к значительному сокращению их срока службы.

Существуют еще два важных фактора, которые должны быть учтены при заряде аккумуляторов. Качественные контроллеры заряда обязательно должны учитывать температуру аккумулятора и иметь температурную компенсацию зарядных напряжений, а также иметь выбор типа аккумуляторной батареи (AGM, GEL, жидко-кислотный), поскольку разные типы имеют разные зарядные кривые (разные напряжения в одних и тех же режимах). Отметим также, что для температурной компенсации может использоваться как встроенный температурный датчик, так и выносной. При использовании выносного температурного датчика, точность работы контроллера повышается.

Подведем промежуточный итог.

Мы рассмотрели вариант отказа от контроллера заряда, а также использование двух типов контроллеров — PWM и ON/OFF и пришли к выводу, что наилучшим из перечисленных вариантов является PWM тип. При этом крайне важно наличие у него температурной компенсации и возможности выбора типа аккумуляторных батарей.

Окончание

тестирование контроллера заряда / Хабр

Привет geektimes!

В предыдущей части была рассмотрена и проверена работа платы BMS, обеспечивающей корректный заряд литий-ионного аккумулятора. Китайская почта наконец доставила Solar charge controller, так что пора протестировать и его.

Результаты тестирования под катом.

Контроллер заряда (Solar charge controller)

Данное устройство является основным во всей системе — именно контроллер обеспечивает взаимодействие всех компонентов — солнечной панели, нагрузки и батареи (он нужен, только если мы хотим именно накапливать энергию в батарее, если отдавать энергию сразу в электросеть, нужен другой тип контроллера grid tie).

Контроллеров на небольшие токи (10-20А) на рынке довольно-таки много, но т.к. в нашем случае используется литиевая батарея вместо свинцовой, то нужно выбирать контроллер с настраиваемыми (adjustable) параметрами. Был куплен контроллер, как на фото, цена вопроса от 13$ на eBay до 20-30$ в зависимости от жадности местных продавцов. Контроллер гордо называется «Intelligent PWM Solar Panel Charge Controller», хотя по сути вся его «интеллектуальность» заключается в возможности задания порогов заряда и разряда, и конструктивно он не сильно отличается от обычного DC-DC конвертора.

Подключение контроллера весьма просто, у него всего 3 разъема — для солнечной панели, нагрузки и аккумулятора соответственно. В качестве нагрузки в моем случае была подключена светодиодная лента на 12В, аккумулятор все тот же тестовый с Hobbyking. Также на контроллере есть 2 USB-разъема, от которых можно заряжать различные устройства.

Все вместе выглядело так:

Перед тем как использовать контроллер, его надо настроить. Контроллеры этой модели продаются в разных модификациях для разных типов батарей, отличия скорее всего лишь в предустановленных параметрах. Для моей литиевой батареи c тремя ячейками (3S1P) я установил следующие значения:

Как можно видеть, напряжение отключения заряда (PV OFF) установлено на 12.5В (исходя из 4.2В на ячейку можно было поставить 12.6, но небольшой недозаряд положительно сказывается на количестве циклов батареи). Следующие 2 параметра — отключение нагрузки, в моем случае настроено на 10В, и повторное включение заряда на 10.5В. Минимальное значение можно было поставить и меньше, до 9.6В, небольшой запас был оставлен для работы самого контроллера, который питается от той же батареи.

Тестирование

С разрядом проблем ожидаемо не было. Заряда батареи хватило чтобы зарядить планшет, также горела светодиодная лента, и при пороговом напряжении в 10В, лента погасла — контроллер отключил нагрузку, чтобы не разряжать батарею ниже заданного порога.

А вот с зарядом все пошло не совсем так. Вначале все было хорошо, и максимальная мощность по ваттметру составила около 50Вт, что вполне неплохо. Но ближе к концу заряда подключенная в качестве нагрузки лента стала сильно мерцать. Причина ясна и без осциллографа — две BMS не очень дружат между собой. Как только напряжение на одной из ячеек достигает порога, BMS отключает батарею, из-за чего отключается и нагрузка и контроллер, затем процесс повторяется. Да и учитывая что пороговые напряжения уже заданы в контроллере, вторая плата защиты по сути и не нужна.

Пришлось вернуться к плану «Б» — поставить на батарею только плату балансировки, оставив контроллеру управление зарядом. Плата 3S balance board выглядит так:

Бонус этого балансира еще и в том, что он в 2 раза дешевле.

Конструкция получилась даже проще и красивее — балансир занял свое «законное» место на балансировочном разъеме батареи, к контроллеру батарея подключена через силовой разъем.
Все вместе выглядит примерно так:

Больше никаких неожиданностей не было. Когда напряжение на батарее поднялось до 12.5В, потребляемая от панелей мощность упала практически до нуля а напряжение увеличилось до максимума «холостого хода» (22В), т.е. заряд больше не идет.

Напряжение на 3х ячейках батареи в конце заряда составило 4.16В, 4.16В и 4.16В, что дает в сумме 12.48В, к контролю заряда, как и к балансиру претензий нет.

Заключение

Система работает, почти как и ожидалось. Днем электроэнергия может накапливаться, вечером ее можно использовать. В финальной версии батарея будет заменена на блок из элементов 18650, которые уже описывались в предыдущей части. Емкость батареи можно увеличить до 20Ач, больше для балконной системы уже избыточно. Если же приобрести другой балансир, можно использовать и LiFePo4-аккумуляторы, достаточно установить нужные пороги напряжений в контроллере. Однако в моем случае, смысла в этом скорее всего нет — стоимость LiFePo4 на 10-20Ач составляет 80-100$, что уже сопоставимо со стоимостью Grid Tie контроллера, который я собираюсь протестировать в дальнейшем.

Продолжение в следующей части.

Еще исключительно для тестов (понятно что экономического смысла в этом нет) была заказана батарея ионисторов на 12В, благо цены падают и сейчас они относительно дешевые. Будет интересно проверить, на сколько хватит их заряда. Stay tuned.

Примечание: показанная на фото батарея от Hobbyking была поставлена исключительно для теста. Эти батареи не тестировались для постоянного использования в подобных системах, также их не рекомендуется оставлять без присмотра.

Более-менее окончательная версия батареи выглядит вот так:

Это 12 ячеек 18650, соединенных в группы параллельно по 4. Примерная емкость батареи около 12ач, этого хватает для зарядки разных гаджетов и для вечернего освещения комнаты светодиодной лентой. В батарее используются элементы Panasonic, те же что и в автомобилях Tesla S, надежность данных ячеек можно считать вполне хорошей.

Для желающих посмотреть видео-версию, ролик выложен в youtube.

Контроллер солнечной панели — схема подключения своими руками МРРТ, ШИМ

Для чего нужен контроллер заряда для солнечной батареи?

Аккумуляторы, которые используются в комплекте солнечных батарей для накопления заряда, имеют ряд собственных особенностей. Они нуждаются в создании определенных условий в процессе зарядки. Необходимо своевременно ограничить ток и напряжение, не допустить слишком сильного разряда и исключить перезарядку АКБ. Обеспечить эти условия может специальное устройство, наблюдающее за блоком батарей и своевременно прекращающее все процессы, когда они достигают критических значений.

Это устройство — контроллер солнечной батареи, обеспечивающий сохранность и долговечность аккумуляторов. Обойтись без этих приборов невозможно, так как бесконтрольный заряд или разрядка всегда заканчиваются выходом АКБ из строя.

Задачи, которые решают контроллеры заряда для солнечных батарей:

  • выполнение диспетчерских функций, определение текущего режим работы и изменение его при возникновении соответствующих условий
  • ограничение величины заряда, предотвращение излишнего поглощения электроэнергии
  • наблюдение за расходованием и своевременный перевод батарей в режим зарядки

Есть контроллеры, совмещающие функции источника питания. К ним подключаются низковольтные потребители, например — осветительные приборы или иная нагрузка подобного типа. Такие системы работают в малом составе и не используются в качестве полноценного источника питания для бытовой или хозяйственной техники.

Применяемые на практике виды

Существует две разновидности контроллеров, применяемых в солнечных системах:

  • PWM (в русскоязычных источниках их иногда именуют ШИМ — широтно-импульсная модуляция)
  • MPPT (аббревиатура с английского Maximum Power Point Tracking — отслеживание максимальной границы мощности)

Контроллеры, созданные на базе ШИМ, считаются устаревшими. Некоторые модели уже сняли с производства, но в продаже еще много образцов таких приборов. Они вполне эффективны и работоспособны, но по функциональным возможностям уступают новым и более совершенным контроллерам MPPT.

Специалисты отмечают, что старые виды контроллеров больше подходят для частных солнечных батарей, рассчитанных на питание сравнительно небольшого количества потребителей. Новые образцы ориентированы на работу с большими количествами панелей, дающих значительное количество энергии.

Их недостатком считают:

  • высокая цена, ограничивающая возможности массового покупателя
  • сложность настройки, требующей участия опытного специалиста

Контроллеры типа MPPT широко рекламируют, но получить заметный выигрыш в производительности и эффективности можно только на больших и мощных солнечных комплексах.

Структурные схемы контроллеров

Разбираться в принципиальных схемах приборов могут не все пользователи. Но это и не обязательно, вполне достаточно понять принцип их работы на уровне блоков или узлов прибора. Рассмотрим структурные схемы двух разновидностей контроллеров:

Устройства PWM

На входе контроллера установлен стабилизатор и токоограничивающий резистор. Этим достигается защита от превышения входного сигнала и нарушения режима работы устройства. Допустимый уровень входного сигнала у каждого прибора свой, он указан в паспортных данных. Значение определяется спецификой контроллера, зависит от особенностей схемы и параметров прибора.

После этого ток проходит через блок из двух силовых транзисторов, где происходит преобразование значений напряжения и тока. Управление этими процессами производится через микросхему драйвера, при помощи чипа контроллера. Сам драйвер предназначен для коррекции режима работы транзисторов. Одна из основных задач — регулировка уровня мощности нагрузки, предотвращающая глубокий разряд аккумуляторов.

Помимо этих компонентов в состав схемы входит датчик температуры. Он обеспечивает поддержание заданного температурного режима работы прибора, ограничивая его мощность по необходимости. Перегрев весьма опасен для контроллера, поэтому датчик относят к основным узлам схемы.

Приборы MPPT

Контроллер заряда аккумулятора от солнечной батареи, созданный по схеме MPPT, представляет собой более сложное устройство, чем PWM. Увеличено количество узлов и деталей, поскольку более тщательное выполнение алгоритмов работы требует определенных ресурсов. Основная функция устройства заключается в определении максимальной мощности солнечных батарей в текущих условиях и соответствующей перенастройке их работы.

Компараторы производят сопоставление значений напряжения и тока, определяя максимально возможную выходную мощность. По умолчанию сканирование происходит 1 раз в 2 часа, но режим можно перенастроить на более частую проверку.

Производится определение точки максимальной мощности (ТММ), определяющей напряжение, при котором выходные показатели будут максимально высокими. Заряд АКБ происходит в 4 этапа:

  • объемный. Это первый этап после ночного перерыва. Аккумуляторы активно накапливают энергию, используя всю энергию солнечных батарей
  • повышающий. Начинается сразу по достижении максимального заряда аккумуляторов. Напряжение заряда снижается, чтобы исключить нагрев и выделение газов. Этот режим, как правило, длится 1-3 часа, после чего следует переход на следующую стадию зарядки
  • плавающий. Этот этап необходим для поддержания заряда на максимальном уровне и недопущения перегрева или газоотделения, а также снижения количества накопленной энергии. Если нагрузка начинает требовать повышенной отдачи, контроллер переводит систему из плавающего режима в повышающий. Как только мощность на выходе упадет, будет вновь задействован плавающий режим
  • выравнивание. Этап, при котором происходит выравнивание плотности электролита, восстановление состояния электродов, переработка сульфата свинца

Работа контроллеров MPPT зависит от окружающей температуры. В жару выработка энергии падает, при сильном охлаждении процессы в аккумуляторах замедляются, что грозит выходом их из строя. Встроенный датчик температуры постоянно контролирует состояние и дает команду на соответствующую корректировку режима работы.

Использование контроллеров MPPT рекомендовано при мощности системы от 200 В или при нестабильном производстве энергии. Постоянное определение максимальной эффективности улучшает работу комплекса и позволяет обходиться без установки дополнительных модулей.

Способы подключения контроллеров

Перед подключением необходимо убедиться, что напряжение солнечных панелей не превышает номинал контроллера. Если оно больше, надо сменить прибор на более мощный, способный работать с высокими показателями тока и напряжения.

Перед началом работ надо выделить для установки контроллера место с соответствующими условиями — сухое, чистое, отапливаемое. Не должно быть контакта с солнечными лучами, не допускается наличие поблизости механизмов, создающих вибрацию.

PWM

Порядок подключения контроллеров PWM состоит из следующих этапов:

  • присоединение аккумуляторов к соответствующим клеммам прибора. Важно проследить за соблюдением полярности
  • в точке подключения плюсового провода необходимо установить предохранитель
  • к соответствующим контактам подключить провода от солнечных панелей, соблюдая полярность
  • на выход нагрузки включить сигнальную лампу

Важно! Нарушать эту последовательность нельзя. Если сначала подключить солнечные модули, можно вывести контроллер солнечного заряда из строя, поскольку ему будет некуда отдавать полученное напряжение.

Кроме этого, не допускается присоединение на контакты, предназначенные для соединения с нагрузкой, инвертора. Его можно присоединять только к блоку АКБ.

MPPT

Принцип подключения этих контроллеров не отличается от вышеизложенного, но могут потребоваться некоторые дополнения. Например, на мощных системах необходимо использовать кабель, выдерживающий плотность проходящего тока не менее 4 ампер на квадратный миллиметр сечения.

Перед присоединением рекомендуется еще раз выполнить несложный расчет (разделить максимальное значение силы тока на 4 и прибавить около 10-15 % на запас прочности). Это позволит обеспечить штатную работу коммутации, исключить нагрев и опасность возникновения пожара.

Перед началом подключения надо вынуть предохранители из солнечных панелей и блока АКБ. После соединения контроллера с аккумуляторами и солнечными модулями производится подключение заземляющего контура и датчика температуры. Проверяют правильность всех соединений, после чего обратно устанавливают предохранители и включают систему.

Простейшие контроллеры типа Откл/Вкл (или On/Off)

Контроллеры такого типа работают только на запуск или остановку зарядки АКБ при падении или повышении заряда. Они не учитывают дополнительные условия работы, не определяют оптимальный режим, выполняя только функции триггера, настроенного на переключение при достижении минимального и максимального значений.

Такие контроллеры в настоящее время сняты с производства и давно не используются, хотя в некоторых системах их еще можно встретить. Единственным достоинством можно назвать простоту схемы, делающую работу прибора надежной и устойчивой. Подключение выполняется путем присоединения входных и выходных проводов к аккумуляторам и солнечным панелям, никакой дополнительной коммутации не имеется.

Что лучше выбрать?

Выбор типа контроллера производится исходя из мощности и производительности системы. Если они невелики, можно ограничиться установкой контроллера PWM. Это дешевле и проще.

Однако, если комплект выдает значительную мощность и обеспечивает питание чувствительных приборов потребления, лучшим решением станет использование контроллера MPPT. Он гораздо дороже, но способен настроить максимально эффективную работу комплекса оборудования. В любом случае, окончательный выбор обусловлен возможностями владельца и особенностями имеющегося солнечного комплекса.

Видео-инструкция по сборке своими руками

Цены и где купить?

Контроллер заряда солнечной батареи: виды, схема, как выбрать

Альтернативная энергетика с каждым годом распространяется все шире. Соответственно растет спрос на солнечные батареи и контроллеры заряда для аккумуляторов. И это не удивительно, ведь одним из классических примеров свободной энергии является энергия солнца. Ее используют тремя основными способами:

  1. Гелиоколлектор.
  2. Солнечный концентратор.
  3. Солнечная батарея.

Если первые два метода заключаются в концентрировании и передачи тепла, то третий позволяет преобразовать солнечный свет в электроэнергию. Однако в альтернативной энергетике есть одна существенная проблема, чтобы в ней разобраться, нужно провести аналогию с классическими методами «добычи» электроэнергии.

Дело в том, что в привычных ТЭЦ и АЭС генератор приводит в движение паровая турбина, на ГЭС – течение воды. Это процесс беспрерывный. В случае альтернативной энергетики все немного иначе. Ни ветер, ни солнце не светит постоянно. Бывает штиль, облачность, ночь, в конце концов. А электроэнергия, в большей степени, требуется именно в темное время суток. Как же быть? Необходимо запасти ее в аккумуляторы.

Для чего нужен контроллер заряда для солнечной батареи?

Контроллер для солнечных батарей

Аккумуляторы были изобретены для того, чтобы в них запасать энергию. Поэтому они нашли широчайшее применение в альтернативной энергетике, в установках малых и крупных масштабов. Но есть ряд проблем:

  1. Солнечный свет в течение светлого времени суток имеет разную интенсивность.
  2. В зависимости от схемы соединений вашей СЭС на выходных клеммах панелей может быть разная величина напряжений.

Контроллер заряда солнечной батареи как раз и нужен для того, чтобы преобразовать энергию, которую отдают устройства в правильный для аккумулятора «вид». С его помощью потоки энергии распределяются таким образом, чтобы обеспечить зарядку приборов в правильном режиме.

Устройство не только помогает зарядить аккумулятор, но и благодаря тому, что этот процесс становится достаточно оптимизированным – срок ее жизни значительно продлевается.

к содержанию ↑

Виды контроллеров для солнечной батареи

Виды контроллеров заряда солнечной батареи

В современном мире выделяют три типа контроллеров:

– On-Off;

– ШИМ;

– MPPT-контроллер;

On-Off – это простейшее решение для заряда, такой контроллер напрямую подключает солнечные батареи к аккумулятору, когда его напряжение достигнет 14,5 вольта. Однако такое напряжение не свидетельствует о полном заряде аккумулятора. Для этого нужно какое-то время поддерживать ток, чтобы АКБ набрала необходимую для полного заряда энергию. В результате вы получаете хронический недозаряд аккумуляторов и сокращение их срока службы.

ШИМ-контроллеры поддерживают нужное напряжение для зарядки аккумулятора просто «срезая» лишнее. Таким образом, зарядка прибора происходит вне зависимости от напряжения, выдаваемого солнечной батареей. Главное условие, чтобы оно было выше, чем необходимое для заряда. Для аккумуляторов на 12 В, напряжение в полностью заряженном состоянии находится на уровне 14.5 В, а в разряженном около 11. Этот тип контроллеров является более простым, чем MPPT, однако, обладает меньшим КПД. Они позволяют наполнить АКБ на 100% от емкости, что дает значительное преимущество перед системами типа «On-Off».

MPPT-контроллер – имеет более сложное устройство, способное анализировать режим работы солнечной батареи. Его название в полном виде звучит, как «Maximum power point tracking», что на русском языке значит – «Отслеживание точки максимальной мощности». Мощность, которую выдает панель, очень зависит от количества света, который на нее падает.

Дело в том, что ШИМ-контроллер никак не анализирует состояние панелей, а лишь формирует необходимые напряжения для зарядки АКБ. MPPT отслеживает его, а также токи, выдаваемые солнечной панелью, и формирует выходные параметры оптимальные для заряда накопительных элементов питания. Таким образом, снижается ток во входной цепи: от солнечной панели до контроллера, и рациональнее используется энергия.

Виды контроллеров солнечных панелейк содержанию ↑

Что такое Точка Максимальной Мощности?

ВАХ элементов солнечной панели не линейна. Она способна выдавать номинальные токи до определенного выходного напряжения. При достижении нужных параметров ток, отдаваемый батареей, снижается. Точкой Максимальной Мощности называется состояние, когда панель дает максимальные напряжение и ток, после этой точки при повышении выходного напряжения падает и ток. MPPT-контроллер стремится использовать именно тот режим солнечной батареи, при котором созданы условия для достижения ТММ. Исходя из этого, следует, что мощность, отдаваемая такими приборами, будет выше.

Однако существует один нюанс, о котором внимательные читатели уже могли догадаться. Если ШИМ-контроллер независимо ни от чего выдает свои Вольты и Амперы, аккумуляторы будут заряжаться даже при минимальном освещении панели, когда ее выходные параметры малы. Тогда как MTTP контроллер может просто не отреагировать на это. Также существуют отдельные модели с возможностью настройки и адаптации под разные условия окружающей среды.

Внимание! Использование этого типа контроллеров может дать прирост эффективности установки (КПД) до 30%.

к содержанию ↑

Можно ли обойтись без контроллера?

Грамотно выбранный контроллер снижает дальнейшие вложения на обслуживания вашей системы альтернативного электроснабжения. Неправильные процессы заряда аккумулятора ведут к снижению его ресурса. Что будет если не использовать контроллеров вообще? В случае, когда солнечная батарея подключается напрямую к АКБ, ток заряда не будет контролированным. Дело в том, что напряжение в точке максимальной мощности для 12-ти вольтных моделей солнечных панелей достигает значений выше 15,5 вольт. Большой ток заряда вызовет закипание ячеек в аккумуляторах, что повлечет за собой выделение тепла и повреждение целостности батарей.

Правильный режим заряда сохранит ресурс устройства, и вам не нужно будет проводить неплановую замену.

к содержанию ↑

На что смотреть при выборе?

При покупке контроллера заряда нужно учитывать:

  • Мощность установки.
  • Количество батарей.
  • Напряжение системы (12, 24 вольта, или иные, в зависимости от конструкции и соединения панелей).
  • Ток заряда.

Некоторые батареи продаются с возможностью использования в цепях 12 и 24 вольта, например, BlueSolar MPPT.

Ток заряда – характеризует скорость зарядки ваших АКБ. Обычно его выбирают по формуле «Емкость/10», т.е. для аккумулятора емкостью в 50 А/ч достаточно тока в 5 А. Однако, если у вас стоит целая батарея аккумуляторов, общей емкостью в 200 А/ч, тогда понадобится контроллер способный выдать ток до 20 А, это минимум.

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос эксперту

Важно! Лучше если ваш контроллер будет выдавать ток, превышающий предполагаемый на 20 процентов, т. е. для описанной выше ситуации нужно примерно 25 А. Если вы установите слишком слабый контроллер заряда, возникнут проблемы с тем, что мощность солнечных панелей будет чрезмерной, при этом аккумуляторы не успеют зарядиться. Тогда как нагрузка будет высаживать их с расчетной скоростью.

к содержанию ↑

Вывод

Контроллер заряда не только сэкономит деньги, но и обеспечит нормальный режим работы всей системы. А это позволит вам пользоваться электричеством без перебоев и подключения городской электросети, то есть автономно. Опыт различных энтузиастов показывает, что MPPT контроллеры лучше работают в условиях хорошей освещенности панелей и яркого солнца, а ШИМ-контроллеры – при пасмурной погоде и слабом солнце. При этом результаты неоднозначны и идут споры о пригодности тех или иных контроллеров для работы в различных ситуациях.

Предыдущая

Альтернативные источникиЧем хороши солнечные батареи для отопления дома

Следующая

Альтернативные источникиКак выбрать аккумуляторы для солнечных батарей

Спасибо, помогло!Не помогло

Контроллер заряда для солнечных батарей Remote Power SDRC1024

Контроллер заряда для солнечных батарей Remote Power SDRC1024

Простой и надежный контроллер заряда Remote Power идеально подойдёт для малых систем на базе солнечных модулей мощностью до 130 Ватт (240Вт при использовании 24В аккумуляторов). Контроллер имеет встроенный таймер включения нагрузки, который идеально подходит для для применения в уличных фонарях на солнечных батареях, а также в любых других приборах, чья работа связана со сменой времени суток. Данный контроллер заряда обеспечит эффективный заряд аккумулятора и автоматическое включение светильников, фонарей на солнечных батареях или прожекторов. Таймер можно настроить как на простое включение после наступления сумерек, так и на работу нагрузки в течение определённого периода с момента наступления темноты (от 1 до 13 часов).

Невысокая цена контроллера в нашем магазине обоснована прямыми поставками непосредственно с завода-производителя — компании Remote Power, без посредников. Следует отметить, что продукция данного производителя ничем не уступает по качеству контроллерам, изготовленными признанным лидером рынка компонентов для солнечной энергетики — компании EPSolar, но существенно выигрывает в цене. Массовое производство на автоматических линиях позволяет обеспечивать стабильно высокое качество контроллеров Remote Power, что выгодно отличает их от продуктов, выпущенных безымянными китайскими производителями. Покупая контроллеры Remote Power Вы приобретаете современное изделие, четко выполняющее все заявленные функции по доступной цене.

Важно:
Напряжение подключенных солнечных батарей должно соответствовать напряжению аккумуляторной батареи. Не допускается использовать цепочки солнечных модулей с повышенным напряжением.

Технические характеристики:

Модель SDRC1024
Артикул производителя: SDRC1024
Номинальный ток заряда аккумуляторов 10A
Номинальный ток нагрузки 10A
Номинальное напряжение системы 12/24В авто
Собственное потребление ≤6мA
Падение напряжения цепи заряда ≤0.26 В
Падение напряжения цепи нагрузки ≤0.15 В
Защита от перезаряда 17В; ×2/24В
Рабочая температура -35℃ ~ +55℃
Напряжение ускоренного заряда 14.6B;×2/24В
Постоянное напряжение заряда 14.4В; ×2/24В
Напряжение поддерживающего заряда 13.6В; ×2/24В
Возвратное напряжение 13.2В;×2/24В
Температурная компенсация -5мВ/℃/2В
Индикация пониженного напряжения 12.0В; ×2/24В
Напряжение переразряда 11.1В(без нагрузки), изменяется в реальном времени в зависимости от нагрузки; ×2/24В
Напряжение включения после переразряда 12.6В; ×2/24В
Режимы PWM; напряжение разряда, регулируемое в зависимости от нагрузки

Контроллер заряда солнечной батареи

В этой статье мы поговорим о том, для чего нужен контроллер солнечных батарей, какие бывают разновидности и как выбрать такое устройство.

Для чего нужен солнечный контроллер?

Как уже было сказано, контроллер заряда является ключевым элементом гелиосистемы. Это электронное устройство, работающее на базе чипа, который контролирует работу системы и управляет зарядом аккумулятора. Контроллеры для солнечных батарей не допускают полной разрядки аккумулятора и его излишнего заряда. Когда заряд аккумуляторной батареи находится на максимальном уровне, то величина тока от фотоэлементов уменьшается. В результате подаётся ток, необходимый для компенсации саморазряда. Если аккумулятор чрезмерно разряжен, то контроллер отключит от него нагрузку.

Итак, можно обобщить функции, которые выполняет контроллер солнечных батарей:

  • многостадийный заряд аккумулятора;
  • отключение зарядки или нагрузки при максимальном заряде или разряде, соответственно;

  • включение нагрузки, когда заряд батареи восстановлен;

  • автоматическое включение тока с фотоэлементов для зарядки аккумулятора.

Можно сделать вывод, что подобное устройство продлевает срок службы аккумуляторов и недопускает их поломку.

На что же следует обратить внимание при выборе контроллера для солнечных батарей?

Основные характеристики изложены ниже:

Входное напряжение. Максимальное напряжение, указанное в техническом паспорте, должно быть на 20 процентов выше напряжения «холостого хода» батареи фотоэлементов. Это требование появилось из-за того, что производители часто ставят завышенные параметры контроллеров в спецификациях. Кроме того, при высокой солнечной активности напряжение солнечных модулей может быть выше, чем указано в документации;

Номинальный ток. Для контроллера типа PWM номинал по току должен на 10 процентов превышать ток короткого замыкания батареи. Контроллер типа MPPT нужно подбирать по мощности. Его мощность должен быть равна или выше напряжения гелиосистемы умноженного на ток регулятора на выходе. Напряжение системы берётся для разряженных аккумуляторов. В период высокой солнечной активности к полученной мощности следует прибавить 20 процентов про запас.

Не нужно экономить на этом запасе. Ведь экономия может плачевно сказаться в период высокой солнечной инсоляции. Система может выйти из строя и убытки будут гораздо больше.

Виды контроллеров.

Контроллеры On/Off.

Эти модели являются самыми простыми из всего класса контроллеров заряда для солнечных батарей.

Модели типа On/Off предназначены для того, чтобы отключать заряд аккумулятора, когда достигается верхний предел напряжения. Обычно это 14,4 вольта. В результате предотвращается перегрев и излишний заряд.

С помощью контроллеров On/Off не получится обеспечить полную зарядку аккумуляторной батареи. Ведь здесь отключение происходит в том момент, когда достигнут максимальный ток. А процесс зарядки до полной ёмкости ещё необходимо поддерживать несколько часов. Уровень заряда в момент отключения находится где-то 70 процентов от номинальной ёмкости. Естественно, что это негативно отражается на состоянии аккумулятора и снижает срок его эксплуатации.

Контроллеры PWM

В поисках решения неполной зарядки аккумулятора в системе с устройствами On/Off были разработаны блоки управления, основанные на принципе широтно-импульсной модуляции (сокращённо ШИМ) заряжающего тока. Смысл работы такого контроллера заключается в том, что он понижает заряжающий ток, когда достигается предельное значение напряжения. При таком подходе заряд аккумулятора доходит практически до 100 процентов. Эффективность процесса увеличивается до 30 процентов.

Есть модели PWM, которые умеют в зависимости от температуры ОС регулировать ток. Это хорошо сказывается на состоянии аккумулятора, уменьшается нагрев, лучше принимается заряд. Процесс становится регулируемым в автоматическом режиме.

ШИМ контроллеры заряда для солнечных батарей специалисты рекомендуют применять в тех регионах, где наблюдается высокая активность солнечных лучей. Их часто можно встретить в гелиосистемах маленькой мощности (менее двух киловатт). Как правило, в них работают аккумуляторные батареи небольшой ёмкости.

Регуляторы типа MPPT

Контроллеры заряда МРРТ сегодня являются самыми совершенными устройствами для регулирования процесса заряда аккумуляторной батареи в гелиосистемах. Эти модели увеличивают эффективность генерации электричества на одних и тех же солнечных батареях. Принцип работы устройств MPPT основан на определении точки максимального значения мощности.

MPPT в постоянном режиме следит за током и напряжением в системе. На основании этих данных микропроцессор подсчитывает оптимальное отношение параметров для того, чтобы достигнуть максимальной выработки по мощности. При регулировке напряжения и учитывается даже этап процесса зарядки. MPPT контроллеры солнечных батарей даже позволяют снимать большое напряжение с модулей, затем преобразовывая его в оптимальное. Под оптимальным понимается то, которое обеспечивает полную зарядку АКБ.

Если оценивать работу MPPT по сравнению с PWM, то эффективность функционирования гелиосистемы возрастёт от 20 до 35 процентов. К плюсам также стоит отнести возможность работы при затенении солнечной панели до 40 процентов. Благодаря возможности поддержания высокого значения напряжения на выходе контроллера можно использовать проводку небольшого сечения. А также можно поставить солнечные панели и блок на большее расстояние, чем в случае с PWM.

Некоторые особенности контроллеров заряда солнечных батарей

В заключение нужно сказать ещё о нескольких особенностях контроллеров заряда. В современных системах они имеют ряд защит для повышения надёжности работы. В таких устройствах могут быть реализованы следующие виды защиты:

  • От неправильного подключения полярности;

  • От коротких замыканий в нагрузке и на входе;

  • От молнии;

  • От перегрева;

  • От входных перенапряжений;

  • От разряда аккумулятора в ночное время.

Кроме того, в них устанавливаются всевозможные электронные предохранители. Чтобы облегчить эксплуатацию гелиосистем, контроллеры заряда имеют информационные дисплеи. На них отображается информация о состоянии аккумуляторной батареи и системы в целом. Здесь могут быть такие данные, как:

  • Степень заряда, напряжение АКБ;

  • Ток, отдаваемый фотоэлементами;

  • Ток для заряда батареи и в нагрузке;

  • Запасённые и отданные ампер-часы.

На дисплее может также выдаваться сообщение о понижении заряда, предупреждение об отключении питания в нагрузку.

Контроллеры заряда солнечных батарей| Калининград

Контроллеры заряда используются совместно с солнечными панелями для создания правильного режима заряда аккумуляторов, контролируя интенсивность тока в зависимости от степени заряженности. Тем самым они обеспечивают защиту АКБ от избыточного заряда или глубокого разряда, приводящих к преждевременной поломке аккумулятора (вскипанию электролита, разбуханию, изменению формы батареи). Контроллеры отслеживают напряжение аккумулятора и регулируют ток его заряда, а так же отключают нагрузку при чрезмерном разряде. Применение данных устройств продлевает срок службы одной из самых дорогостоящих частей системы автономного электроснабжения — аккумуляторных батарей.

Виды солнечных контроллеров

Контроллеры ШИМ (PWM) используют технологию широтно-импульсной модуляции для обеспечения оптимального значения тока заряда. Они имеют небольшую стоимость, среди них есть очень компактные и легкие модели. Для зарядки батарей с использованием контроллеров данного типа ток от солнечных батарей должен быть достаточно большим, то есть панель должна быть хорошо освещена.

Контроллеры ТММ (MPPT) используют технологию поиска точки максимальной мощности фотоэлектрической панели. Данная технология дает увеличение эффективности солнечных батарей примерно на 15-35%, что позволяет поддерживать требуемый ток заряда аккумуляторов в более широких условиях освещенности.

Основные технические характеристики

Максимальное напряжение на входе от солнечных панелей. Рассчитывается по максимальному напряжению холостого хода массива панелей с запасом 20%.

Максимальный ток на входе. Для PWM устройств рассчитывается по току короткого замыкания подключаемых панелей с 10% запасом. МРРТ устройства рассчитываются по суммарной мощности подключаемых панелей, делённой на напряжение подключаемых аккумуляторов.  

Рабочее напряжение – это допустимое напряжение подключаемых батарейных блоков, например 12, 23, 36, 48, 96 Вольт.

Основы управления солнечным зарядом

| Северная Аризона Wind & Sun

Купите наш выбор контроллеров заряда от солнечных батарей здесь .

Что такое контроллер заряда от солнечных батарей?

Контроллер заряда или регулятор заряда — это, по сути, регулятор напряжения и / или тока, предназначенный для предотвращения перезарядки аккумуляторов. Он регулирует напряжение и ток, идущие от солнечных панелей к батарее. Большинство панелей «12 вольт» выдают от 16 до 20 вольт, поэтому, если нет регулирования, батареи будут повреждены из-за перезарядки.Большинству аккумуляторов для полной зарядки требуется от 14 до 14,5 вольт.

Всегда ли нужен контроллер заряда?

Не всегда, но обычно. Как правило, нет необходимости в контроллере заряда с небольшими частями обслуживания или панелях постоянного заряда, таких как панели от 1 до 5 Вт. Приблизительное правило состоит в том, что если панель выдает около 2 Вт или меньше на каждые 50 ампер-часов батареи, то она вам не нужна.

Например, стандартный залитый аккумулятор для гольф-кара составляет около 210 ампер-часов.Таким образом, чтобы поддерживать последовательную пару из них (12 В) только для обслуживания или хранения, вам понадобится панель мощностью около 4,2 Вт. Популярные 5-ваттные панели достаточно близки и не нуждаются в контроллере. Если вы обслуживаете батареи AGM глубокого разряда, такие как Concorde Sun Xtender, вы можете использовать панель меньшего размера на 2–2 Вт.

Почему панели на 12 вольт — это 17 вольт?

Тогда возникает очевидный вопрос — «почему панели не созданы только для того, чтобы выдавать 12 вольт». Причина в том, что если вы это сделаете, панели будут обеспечивать питание только в прохладном, идеальном состоянии и на ярком солнце.В большинстве случаев это не то, на что можно рассчитывать. Панели должны обеспечивать дополнительное напряжение, чтобы, когда солнце находится низко в небе, или у вас сильная дымка, облачность или высокие температуры *, вы все равно получаете некоторую мощность от панели. Полностью заряженная «12-вольтовая» батарея составляет около 12,7 вольт в состоянии покоя (примерно от 13,6 до 14,4 в режиме зарядки), поэтому панель должна выдавать как минимум столько же в худших условиях.

* Вопреки интуиции, солнечные батареи лучше всего работают при более низких температурах.Грубо говоря, панель мощностью 100 Вт при комнатной температуре будет панелью на 83 Вт при температуре 110 градусов.

Подробная информация о контроллерах заряда MPPT.

Контроллер заряда регулирует напряжение на выходе панели от 16 до 20 вольт до уровня, необходимого для батареи в данный момент. Это напряжение будет варьироваться от 10,5 до 14,6, в зависимости от состояния заряда батареи, типа батареи, режима работы контроллера и температуры. (см. полную информацию о напряжениях аккумуляторов в нашем разделе о аккумуляторах).

Использование панелей высокого напряжения (стяжки) с аккумуляторами

Почти все фотоэлектрические панели мощностью более 140 Вт НЕ являются стандартными 12-вольтовыми панелями и не могут (или, по крайней мере, не должны) использоваться со стандартными контроллерами заряда. Напряжения на решетчатых панелях сильно различаются, обычно от 21 до 60 вольт или около того. Некоторые из них представляют собой стандартные панели на 24 В, но большинство — нет.

Что происходит при использовании стандартного контроллера

Standard (то есть все, кроме типов MPPT), часто будет работать с панелями высокого напряжения, если не превышено максимальное входное напряжение контроллера заряда.Однако вы потеряете много энергии — от 20 до 60% от номинальной мощности вашей панели. Органы управления зарядкой принимают выходной сигнал панелей и подают ток в батарею до тех пор, пока батарея не будет полностью заряжена, обычно от 13,6 до 14,4 вольт. Панель может выдавать только определенное количество ампер, поэтому, хотя напряжение снижается, скажем, с 33 вольт до 13,6 вольт, сила тока на панели не может превышать номинальный ток — так что с панелью 175 Вт, рассчитанной на 23 вольт / 7,6 ампер, вы получите только 7.6 ампер при 12 вольт или около того в батарею. Закон Ома гласит, что ватт — это вольт x ампер, поэтому ваша 175-ваттная панель потребляет только около 90 ватт в батарее.

Использование контроллера MPPT с панелями высокого напряжения

Единственный способ получить полную мощность от солнечных панелей с высоковольтной сеткой — это использовать контроллер MPPT. См. Ссылку выше для получения подробной информации о контроле заряда MPPT. Поскольку большинство элементов управления MPPT могут потреблять до 150 В постоянного тока (некоторые могут быть выше, до 600 В постоянного тока) на стороне входа солнечной панели, вы часто можете последовательно соединить две или более панели высокого напряжения, чтобы уменьшить потери в проводе или использовать провод меньшего .Например, с упомянутой выше 175-ваттной панелью 2 из них последовательно дадут вам 46 вольт при 7,6 ампер на контроллер MPPT, но контроллер преобразует это примерно до 29 ампер при 12 вольт.

Типы контроллеров зарядного устройства
Элементы управления зарядкой

бывают всех форм, размеров, функций и цен. Они варьируются от небольшого блока управления на 4,5 А (Sunguard) до программируемых контроллеров MPPT от 60 до 80 А с компьютерным интерфейсом. Часто, если требуются токи более 60 ампер, два или более блока от 40 до 80 ампер подключаются параллельно.Наиболее распространенные элементы управления, используемые для всех систем на батарейках, находятся в диапазоне от 4 до 60 ампер, но некоторые из новых элементов управления MPPT, такие как Outback Power FlexMax, достигают 80 ампер.

Элементы управления зарядкой бывают 3 основных типов (с некоторым перекрытием):

Простое одно- или двухступенчатое управление , в котором используются реле или шунтирующие транзисторы для управления напряжением в один или два этапа. По сути, они просто замыкают или отключают солнечную панель при достижении определенного напряжения. С практической точки зрения это динозавры, но некоторые из них все еще встречаются на старых системах, а некоторые из супердешевых продаются в Интернете.Их единственная реальная претензия на славу — их надежность — у них так мало компонентов, что сломать нечего.

3-ступенчатый и / или PWM , такие как Morningstar, Xantrex, Blue Sky, Steca и многие другие. Сейчас это в значительной степени отраслевой стандарт, но иногда вы все еще можете встретить некоторые из старых типов шунтов / реле, например, в очень дешевых системах, предлагаемых дискаунтерами и массовыми маркетологами.

Отслеживание точки максимальной мощности (MPPT), например, производства Midnite Solar, Xantrex, Outback Power, Morningstar и других.Это лучшие контроллеры с соответствующими ценами, но с эффективностью в диапазоне от 94% до 98% они могут сэкономить значительные деньги на более крупных системах, поскольку они обеспечивают на 10–30% больше энергии для батареи. Для получения дополнительной информации см. Нашу статью о MPPT.

Большинство контроллеров поставляются с каким-либо индикатором: простым светодиодом, серией светодиодов или цифровыми индикаторами. Многие новые модели, такие как Outback Power, Midnite Classic, Morningstar MPPT и другие, теперь имеют встроенные компьютерные интерфейсы для мониторинга и управления.В самых простых обычно есть всего пара маленьких светодиодных ламп, которые показывают, что у вас есть питание и что вы получаете какой-то заряд. Большинство тех, у кого есть измерители, будут показывать как напряжение, так и ток, исходящий от панелей, и напряжение батареи. Некоторые также показывают, какой ток снимается с клемм НАГРУЗКИ.

Все контроллеры заряда, которые мы имеем в наличии, относятся к трехступенчатым ШИМ-модулям и модулям MPPT. (на самом деле «4-этап» — это своего рода рекламный ажиотаж — раньше его называли эквалайзером, но кто-то решил, что 4-й этап лучше, чем 3-й).А сейчас мы даже видим такую, которая рекламируется как «5-ступенчатая» ….

Что такое эквализация?

Equalization делает то, что подразумевает название — он пытается уравновесить — или сделать все ячейки в батарее или блоке батарей точно равным зарядом. По сути, это период перезаряда, обычно в диапазоне от 15 до 15,5 вольт. Если у вас некоторые ячейки в цепочке ниже, чем другие, они все будут загружены на полную мощность. В залитых батареях он также выполняет важную функцию размешивания жидкости в батареях, вызывая пузырьки газа.Конечно, в трейлере или лодке это обычно не имеет для вас большого значения, если вы не стояли на стоянке в течение нескольких месяцев, поскольку обычное движение приведет к тому же результату. Кроме того, в системах с небольшими панелями или крупногабаритными аккумуляторными системами вам может не хватить тока, чтобы действительно сильно пузыриться. Во многих автономных системах аккумуляторы также могут быть уравновешены с помощью генератора + зарядного устройства.

Что такое ШИМ?

Довольно много регуляторов заряда имеют режим «ШИМ». ШИМ расшифровывается как широтно-импульсная модуляция. ШИМ часто используется как один из методов подзарядки.Вместо стабильного выходного сигнала контроллера он посылает на батарею серию коротких зарядных импульсов — очень быстрое переключение «включено-выключено». Контроллер постоянно проверяет состояние батареи, чтобы определить, насколько быстро посылать импульсы и какой длины (ширины) они будут. В полностью заряженном аккумуляторе без нагрузки он может просто «тикать» каждые несколько секунд и посылать на аккумулятор короткий импульс. В разряженной батарее импульсы будут очень длинными и почти непрерывными, или контроллер может перейти в режим «полного включения».Контроллер проверяет уровень заряда аккумулятора между импульсами и каждый раз настраивается сам.

Обратной стороной ШИМ является то, что он также может создавать помехи в радиоприемниках и телевизорах из-за генерируемых им резких импульсов. Если у вас проблемы с шумом от вашего контроллера, см. Эту страницу.

Что такое выход «нагрузка» или «отключение при низком напряжении»?

Некоторые контроллеры также имеют выход «LOAD» или LVD, который можно использовать для небольших нагрузок, таких как небольшие приборы и освещение.Преимущество заключается в том, что клеммы нагрузки имеют низковольтный разъединитель, поэтому он отключит все, что подключено к клеммам нагрузки, и не позволит разрядить аккумулятор слишком сильно. Выход НАГРУЗКА часто используется для небольших некритических нагрузок, таких как освещение. Некоторые из них, такие как Schneider Electric C12, также можно использовать в качестве контроллера освещения, чтобы включать свет в темноте, но контроллер освещения Morningstar SLC обычно является лучшим выбором для этого. Не используйте выход LOAD для работы любых инверторов, кроме очень маленьких.Инверторы могут иметь очень высокие импульсные токи и могут привести к выходу контроллера из строя.

Большинству систем функция LVD не нужна — она ​​может управлять только небольшими нагрузками. В зависимости от номинала контроллера это может быть от 6 до 60 ампер. Вы не можете запустить любой инвертор, кроме самого маленького, с выхода НАГРУЗКА. На некоторых контроллерах, таких как серия Morningstar SS, выход нагрузки может использоваться для управления сверхмощным реле для управления нагрузкой, запуска генератора и т. Д. Выход LOAD или LVD чаще всего используется в RV и удаленных системах, таких как камеры, мониторы и сайты сотовой связи, где нагрузка невелика и сайт не обслуживается.

Какие терминалы «Sense» на моем контроллере?

Некоторые контроллеры заряда имеют пару «сенсорных» терминалов. Сенсорные клеммы пропускают очень низкий ток, самое большее около 1/10 миллиампера, поэтому нет падения напряжения. Что он делает, так это «смотрит» на напряжение батареи и сравнивает его с тем, что выдает контроллер. Если есть падение напряжения между контроллером заряда и аккумулятором, он немного поднимет выходной сигнал контроллера для компенсации.

Они используются только тогда, когда у вас есть длинный провод между контроллером и аккумулятором.Эти провода не пропускают ток и могут быть довольно маленькими — от №20 до №16 AWG. Мы предпочитаем использовать №16, потому что его нелегко разрезать или случайно раздавить. Они подключаются к клеммам SENSE на контроллере и к тем же клеммам, что и два провода зарядки на конце батареи.

Что такое «Монитор системы батарей»?

Системные мониторы аккумуляторных батарей, такие как Bogart Engineering TriMetric 2025A, не являются контроллерами. Вместо этого они контролируют вашу систему батарей и дают вам довольно хорошее представление о состоянии вашей батареи, а также о том, что вы используете и генерируете.Они отслеживают общее количество ампер-часов в батареях и разрядах, состояние заряда батареи и другую информацию. Они могут быть очень полезны для средних и крупных систем для точного отслеживания того, что ваша система делает с различными источниками зарядки. Они несколько излишни для небольших систем, но являются своего рода забавной игрушкой, если вы хотите увидеть, что делает каждый усилитель :-). Новая модель TriMetric PentaMetric также имеет компьютерный интерфейс и многие другие функции.

Чтобы получить полный список всех наших контроллеров заряда, узнать цены или сделать заказ в Интернете, посетите нашу страницу Контроллеры заряда в нашем интернет-магазине.Информацию о мониторах батарей, измерителях и шунтах см. На нашей странице «Измерители и мониторы».

Что такое контроллер заряда от солнечных батарей

altE Storeon

Контроллер заряда солнечной батареи управляет мощностью, поступающей в аккумуляторную батарею от солнечной батареи. Это гарантирует, что батареи глубокого цикла не будут перезаряжаться в течение дня, и что энергия не обратится к солнечным панелям за ночь и не разрядит батареи. Некоторые контроллеры заряда доступны с дополнительными возможностями, такими как управление освещением и нагрузкой, но управление питанием является его основной задачей.

Контроллер заряда солнечной батареи доступен в двух различных технологиях: PWM и MPPT. То, как они работают в системе, сильно отличается друг от друга. Контроллер заряда MPPT дороже, чем контроллер заряда PWM, и часто стоит заплатить дополнительные деньги.

ШИМ-контроллер заряда от солнечных батарей

ШИМ-контроллер заряда солнечной энергии означает «широтно-импульсная модуляция». Они работают путем прямого подключения солнечной батареи к батарее. Во время массовой зарядки, когда есть непрерывное соединение от массива к батарее, выходное напряжение массива «понижается» до напряжения батареи.По мере того, как батарея заряжается, напряжение батареи повышается, поэтому выходное напряжение солнечной панели также увеличивается, используя больше солнечной энергии во время зарядки. В результате вам необходимо убедиться, что номинальное напряжение солнечной батареи соответствует напряжению батареи. * Обратите внимание, что когда мы говорим о солнечной панели 12 В, это означает, что панель предназначена для работы с батареей 12 В. Фактическое напряжение 12 В солнечной панели при подключении к нагрузке близко к 18 В (вольт при максимальной мощности).Это связано с тем, что для зарядки аккумулятора требуется источник более высокого напряжения. Если аккумулятор и солнечная панель запускаются при одинаковом напряжении, аккумулятор не будет заряжаться.

Солнечная панель 12 В может заряжать аккумулятор 12 В. Солнечная панель на 24 В или солнечная батарея (две панели на 12 В, соединенные последовательно) необходимы для батареи на 24 В, а для батареи на 48 В требуется массив на 48 В. Если вы попытаетесь зарядить аккумулятор 12 В с помощью солнечной панели 24 В, вы потеряете более половины мощности панели. Если вы попытаетесь зарядить батарею на 24 В с помощью солнечной панели на 12 В, вы потеряете 100% потенциала панели и также можете разрядить батарею.

Контроллер заряда от солнечных батарей MPPT

Контроллер заряда солнечной батареи MPPT означает «отслеживание максимальной мощности». Он измеряет напряжение Vmp на панели и преобразует напряжение фотоэлектрической панели в напряжение батареи. Поскольку мощность, подаваемая на контроллер заряда, равна мощности контроллера заряда, когда напряжение падает, чтобы соответствовать батарее, ток возрастает, поэтому вы используете больше доступной мощности от панели. Вы можете использовать солнечную батарею с более высоким напряжением, чем аккумулятор, например, солнечные панели с сеткой на 60 ячеек номиналом 20 В, которые более доступны.С помощью солнечной панели на 20 В вы можете заряжать батарею на 12 В, или две последовательно подключенные батареи могут заряжать до 24 В, а три последовательно могут заряжать батарею до 48 В. Это открывает широкий спектр солнечных панелей, которые теперь можно использовать для автономной солнечной системы.


Посмотрите наше видео о том, что такое солнечный контроллер заряда и как его рассчитать для автономной солнечной энергосистемы, здесь:

Также посмотрите наше видео о различиях между контроллерами заряда PWM и MPPT:


Основные характеристики контроллера заряда от солнечных батарей:

  • Многоступенчатая зарядка аккумуляторной батареи — изменяет установленную мощность для аккумуляторов в зависимости от уровня заряда для более здоровых аккумуляторов.
  • Защита от обратного тока — не дает солнечным панелям разряжать батареи в ночное время, когда от солнечных панелей нет энергии.
  • Отключение при низком напряжении — отключает подключенную нагрузку, когда батарея разряжена, и включает ее, когда батарея заряжается снова.
  • Управление освещением — включает и выключает подключенный свет в зависимости от сумерек и рассвета. Многие контроллеры можно настраивать, позволяя настраивать их на несколько часов или всю ночь, или где-то посередине.
  • Дисплей — может отображать напряжение батарейного блока, состояние заряда, ток, поступающий от солнечной панели.

Купите контроллер заряда от солнечных батарей этих великих брендов прямо сейчас!

Или позвоните нам сегодня по телефону 877-878-4060 , чтобы узнать, какой контроллер солнечного заряда лучше всего подходит для вашего приложения!

.

Руководство покупателя — нужен ли мне контроллер заряда солнечной энергии с ШИМ или MPPT?

Зачем нужен контроллер солнечного заряда

Посмотреть все контроллеры заряда от солнечных батарей: Щелкните здесь

Контроллер заряда солнечной батареи (часто называемый регулятором) похож на обычное зарядное устройство, т.е.е. он регулирует ток, протекающий от солнечной панели в батарею, чтобы избежать перезарядки батарей. (Если вам не нужно понимать причины, прокрутите до конца простую блок-схему) . Как и в случае с обычным качественным зарядным устройством, используются различные типы аккумуляторов, можно выбрать напряжение поглощения, напряжение холостого хода, а иногда также можно выбрать периоды времени и / или остаточный ток. Они особенно подходят для литий-железо-фосфатных батарей, так как после полной зарядки контроллер остается на установленном плавающем или удерживающем напряжении около 13.6 В (3,4 В на элемент) до конца дня.

Наиболее распространенный профиль заряда — это та же основная последовательность, что и на качественном сетевом зарядном устройстве, то есть объемный режим> режим абсорбции> плавающий режим. Вход в режим оптовой заправки происходит по адресу:

  • восход утром
  • , если напряжение батареи падает ниже определенного напряжения в течение более установленного периода времени, например 5 секунд (повторный вход)

Этот возврат в режим большой емкости хорошо работает со свинцово-кислотными аккумуляторами, поскольку падение и падение напряжения хуже, чем для литиевых аккумуляторов, которые поддерживают более высокое и стабильное напряжение на протяжении большей части цикла разряда.

Литиевые батареи (LiFePO4) не получают выгоды от повторного входа в объемный режим в течение дня, так как внутреннее сопротивление литиевых батарей увеличивается при высоком (и низком) состоянии заряда, как показано оранжевыми вертикальными линиями в таблице ниже и необходимо только время от времени балансировать ячейки, что может быть сделано только вокруг напряжения поглощения. Связанная с этим причина состоит в том, чтобы избежать быстрого и большого изменения напряжения, которое будет происходить в этих регионах при включении и выключении больших нагрузок.

Литиевые батареи

не имеют определенного «напряжения холостого хода», и поэтому «напряжение холостого хода» контроллера должно быть установлено равным или чуть ниже «напряжения колена заряда» (как указано в таблице ниже) заряда LiFePO4. профиль, т.е. 3,4 В на элемент или 13,6 В для аккумулятора 12 В. Контроллер должен удерживать это напряжение в течение оставшейся части дня после полной зарядки аккумулятора.

Разница между контроллерами заряда солнечных батарей PWM и MPPT

Суть различия:

  • С ШИМ-контроллером ток выводится из панели чуть выше напряжения батареи, тогда как
  • С контроллером MPPT ток выводится из панели на панели «максимальное напряжение питания» (подумайте о контроллере MPPT как о «интеллектуальном преобразователе постоянного тока в постоянный»)

Вы часто видите лозунги типа «вы получите 20% или более энергии, собираемой контроллером MPPT».Эта дополнительная плата на самом деле значительно различается, и ниже приводится сравнение, предполагая, что панель находится на полном солнце, а контроллер находится в режиме объемной зарядки. Игнорирование падений напряжения и использование простой панели и простой математики в качестве примера:

Максимальный ток питания панели (Имп.) = 5,0 А

Максимальное напряжение питания панели (Vmp) = 18 В

Напряжение аккумулятора = 13 В (напряжение аккумулятора может варьироваться от 10,8 В до 14,4 В в режиме абсорбционной зарядки).При 13 В усилитель панели будет немного выше, чем максимальный усилитель мощности, скажем, 5,2 А

.

С контроллером PWM потребляемая мощность панели составляет 5,2 А * 13 В = 67,6 Вт. Это количество энергии будет потребляться независимо от температуры панели, при условии, что напряжение панели остается выше напряжения батареи.

С контроллером MPPT мощность панели составляет 5,0 А * 18 В = 90 Вт, т.е. на 25% больше. Однако это слишком оптимистично, поскольку напряжение падает с ростом температуры; Таким образом, если предположить, что температура панели повышается, скажем, на 30 ° C выше температуры стандартных условий испытаний (STC), составляющей 25 ° C, и напряжение падает на 4% на каждые 10 ° C, т.е.е. всего 12%, тогда мощность, потребляемая MPPT, будет 5 А * 15,84 В = 79,2 Вт, то есть на 17,2% больше мощности, чем у ШИМ-контроллера.

Таким образом, наблюдается увеличение сбора энергии с помощью контроллеров MPPT, но процентное увеличение сбора значительно варьируется в течение дня.

Различия в работе ШИМ и MPPT:

ШИМ:

Контроллер ШИМ (широтно-импульсной модуляции) можно рассматривать как (электронный) переключатель между солнечными панелями и батареей:

  • Переключатель находится в положении ВКЛ, когда режим зарядки находится в режиме объемной зарядки
  • Переключатель «щелкает» ВКЛ и ВЫКЛ по мере необходимости (широтно-импульсная модуляция), чтобы поддерживать напряжение батареи на уровне напряжения поглощения
  • Выключатель находится в положении ВЫКЛ в конце поглощения, в то время как напряжение батареи падает до плавающего напряжения
  • Переключатель снова включается и выключается по мере необходимости (широтно-импульсная модуляция), чтобы удерживать напряжение батареи на уровне плавающего напряжения

Обратите внимание, что когда переключатель находится в положении ВЫКЛ, напряжение панели будет равным напряжению холостого хода (Voc), а когда переключатель включен, напряжение панели будет равно напряжению батареи + напряжение между панелью и контроллером будет падать.

Лучшая панель для ШИМ-контроллера:

Лучшая панель для ШИМ-контроллера — это панель с напряжением, которое чуть выше, чем требуется для зарядки аккумулятора, и с учетом температуры, как правило, панель с Vmp (максимальное напряжение питания) около 18 В для зарядки аккумулятора. Аккумулятор 12 В. Их часто называют панелями на 12 В, хотя их напряжение в напряжении около 18 В.

MPPT:

Контроллер MPPT можно рассматривать как «интеллектуальный преобразователь постоянного тока в постоянный», т.е.е. он понижает напряжение панели (следовательно, можно использовать «домашние панели») до напряжения, необходимого для зарядки аккумулятора. Ток увеличивается в той же пропорции, что и падение напряжения (без учета потерь на нагрев в электронике), как в обычном понижающем преобразователе постоянного тока в постоянный.

«Умный» элемент в преобразователе постоянного тока в постоянный — это мониторинг точки максимальной мощности панели, которая будет меняться в течение дня в зависимости от силы света и угла наклона, температуры панели, затенения и состояния панели (ей).Затем «умные устройства» регулируют входное напряжение преобразователя постоянного тока в постоянный — на «инженерном языке» он обеспечивает согласованную нагрузку на панель.

Лучшая панель для контроллера MPPT:

Для согласования панели с контроллером MPPT рекомендуется проверить следующее:

  1. Напряжение холостого хода панели (Voc) должно быть ниже допустимого напряжения.
  2. Voc должен быть выше «пускового напряжения», чтобы контроллер «сработал».
  3. Максимальный ток короткого замыкания панели (Isc) должен находиться в пределах указанного диапазона
  4. Максимальная мощность массива — некоторые контроллеры допускают «завышение размера», например.g Redarc Manager 30 может иметь до 520 Вт

Выбор подходящего солнечного контроллера / регулятора

ШИМ — хороший недорогой вариант:

• для небольших систем

• где эффективность системы не критична, например, капельная зарядка.

• для солнечных панелей с максимальным напряжением питания (Vmp) до 18 В для зарядки аккумулятора 12 В (36 В для аккумулятора 24 В и т. Д.).

Контроллер MPPT лучший:

• Для более крупных систем, где целесообразно использование дополнительных 20% * или более энергии

• Когда напряжение солнечной батареи существенно выше, чем напряжение батареи e.г. с помощью домашних панелей для зарядки аккумуляторов 12В

* Контроллер MPPT даст более высокую отдачу по сравнению с контроллером PWM при увеличении напряжения панели. Т.е. панель eArche мощностью 160 Вт, использующая 36 обычных монокристаллических ячеек с максимальной мощностью 8,4 А, будет обеспечивать около 8,6 А при 12 В; в то время как панель мощностью 180 Вт, имеющая еще 4 ячейки, будет обеспечивать такую ​​же силу тока, но 4 дополнительных ячейки увеличивают напряжение панели на 2 В. Контроллер PWM не будет собирать дополнительную энергию, но контроллер MPPT будет собирать дополнительные 11.1% (4/36) от панели 180 Вт.

По тому же принципу для всех панелей, использующих элементы SunPower с более чем 32 ячейками, требуется контроллер заряда MPPT, в противном случае контроллер PWM будет собирать ту же энергию с панелей с 36, 40, 44 ячейками, что и с панели с 32 ячейками.

НАЖМИТЕ ЗДЕСЬ, чтобы увидеть продукты

Характеристики и опции солнечного контроллера заряда

Смарт Bluetooth
Контроллеры

Victron SmartSolar имеют встроенный Bluetooth для удаленного мониторинга MPPT путем сопряжения его со смартфоном или другим устройством через приложение Victron.

НАЖМИТЕ ЗДЕСЬ, чтобы увидеть продукты

Контроллеры Boost MPPT

Контроллеры заряда

Genasun «Boost» MPPT позволяют заряжать батареи, которые имеют более высокое напряжение, чем панель.

НАЖМИТЕ ЗДЕСЬ, чтобы увидеть продукты

Комбинированное зарядное устройство MPPT и DC-DC

Функция MPPT является естественным дополнением к функции зарядного устройства DC-DC, и есть несколько качественных брендов, которые предоставляют ее в стадии разработки.
Один блок можно использовать отдельно, поскольку он автоматически переключается между зарядкой генератора и зарядкой от солнечной энергии. Для более крупных систем мы предпочитаем использовать отдельный контроллер MPPT для фиксированных панелей на крыше и использовать комбинированный MPPT / DC-DC с переносными панелями. В этом случае разъем Андерсона размещается на внешней стороне автофургона, который затем подключается к солнечному входу блока MPPT / DC-DC.

Обратите внимание, что емкость аккумулятора должна быть достаточной, чтобы суммарный зарядный ток от одновременной зарядки от генератора переменного тока и солнечных панелей на крыше не превышал максимальный зарядный ток, рекомендованный производителями.

НАЖМИТЕ ЗДЕСЬ, чтобы увидеть продукты

Варианты дешевле

Дешевые контроллеры могут быть помечены как MPPT, но тестирование показало, что некоторые из них на самом деле являются контроллерами PWM.
Дешевые контроллеры могут не иметь защиты аккумулятора от перенапряжения, что может привести к перезарядке аккумулятора и потенциальному повреждению аккумулятора, поэтому покупатель будет осторожен.

Несколько солнечных зарядных устройств

При правильном подключении можно добавить несколько солнечных зарядных устройств (любая комбинация типа и мощности) для зарядки аккумулятора.Правильная проводка означает, что каждое солнечное зарядное устройство в идеале подключается отдельно и непосредственно к клеммам аккумулятора. Этот идеальный случай означает, что каждый контроллер «видит» напряжение батареи и на него не влияет ток, исходящий от других контроллеров заряда. Контроллеры, очевидно, не будут иметь идентичных зарядных характеристик и могут иметь разные настройки; и они будут заряжаться в соответствии со своими запрограммированными характеристиками. Эта ситуация ничем не отличается от зарядки аккумулятора от сети / генератора одновременно с зарядкой от солнечной батареи.В современных контроллерах ток не будет течь обратно от батареи к контроллеру (за исключением очень небольшого тока покоя).

Простая блок-схема

Мне нужен контроллер солнечного заряда

Vmp солнечной панели больше:
— 19 В для батареи 12 В
— 34 В для батареи 24 В
— 49 В для батареи 36 В
— 64 В для батареи 48 В

Vmp солнечной панели находится в пределах:
— 17-19 В для батареи 12 В
— 30-34 В для батареи 24 В
— 43-49 В для батареи 36 В
— 56-64 В для батареи 48 В

Vmp солнечной панели меньше:
— 13 В для батареи 12 В
— 26 В для батареи 24 В
— 41 В для батареи 36 В
— 43 В для батареи 48 В

Щелкните ссылки для получения дополнительной информации о том, как выбирать между брендами.

Размер контроллера заряда от солнечных батарей

и как выбрать один

Контроллеры заряда солнечных батарей являются важным компонентом каждой солнечной установки. Они защищают компоненты аккумуляторной батареи и гарантируют, что все работает эффективно и безопасно на протяжении всего срока службы вашей системы.

ЧТО ТАКОЕ КОНТРОЛЛЕРЫ СОЛНЕЧНОГО ЗАРЯДА?

Контроллер заряда в вашей солнечной установке находится между источником энергии (солнечные панели) и аккумулятором (батареями).Контроллеры заряда предотвращают перезарядку аккумуляторов, ограничивая количество и скорость заряда аккумуляторов. Они также предотвращают разряд батареи, отключая систему, если запасенная мощность падает ниже 50 процентов емкости, и заряжают батареи при правильном уровне напряжения. Это помогает продлить срок службы батарей и сохранить их здоровье.

КАК РАБОТАЮТ КОНТРОЛЛЕРЫ СОЛНЕЧНОГО ЗАРЯДА?

В большинстве контроллеров заряда ток заряда проходит через полупроводник, который действует как вентиль для управления током.Контроллеры заряда также предотвращают перезарядку ваших батарей, уменьшая поток энергии к батарее, когда она достигает определенного напряжения. Чрезмерный заряд аккумуляторов может быть особенно опасным для самой батареи, поэтому контроллеры заряда особенно важны.

Контроллеры заряда также предлагают некоторые другие важные функции, включая защиту от перегрузки, отключение при низком напряжении и блокировку обратных токов.

Защита от перегрузки: Контроллеры заряда обеспечивают важную функцию защиты от перегрузки.Если ток, протекающий в ваши батареи, намного выше, чем может выдержать цепь, ваша система может перегрузиться. Это может привести к перегреву или даже возгоранию. Контроллеры заряда предотвращают возникновение этих перегрузок. В более крупных системах мы также рекомендуем двойную защиту с автоматическими выключателями или предохранителями.

Отключение при низком напряжении: Это работает как автоматическое отключение некритических нагрузок от батареи, когда напряжение падает ниже определенного порога.Он автоматически подключится к аккумулятору во время зарядки. Это предотвратит чрезмерную разрядку.

Блок обратных токов: Панели солнечных батарей прокачивают ток через батарею в одном направлении. Ночью панели, естественно, могут пропускать часть этого тока в обратном направлении. Это может вызвать небольшую разрядку аккумулятора. Контроллеры заряда предотвращают это, действуя как клапан.

ВАМ ВСЕГДА НУЖЕН КОНТРОЛЛЕР СОЛНЕЧНОГО ЗАРЯДА?

Обычно да.Вам не нужен контроллер заряда с небольшими панелями мощностью от 1 до 5 Вт. Если панель выдает 2 Вт или меньше на каждые 50 ампер-часов батареи, вам, вероятно, не понадобится контроллер заряда. Что-нибудь помимо этого, и вы делаете.


Что повлияет на мое решение при выборе контроллера заряда?

При покупке контроллера заряда следует учитывать следующие факторы:

• Ваш бюджет

• Срок службы технологии

• Климат, в котором будет установлена ​​ваша система: некоторые контроллеры заряда лучше работают в более холодном климате.

• Сколько у вас солнечных панелей и насколько высоки ваши потребности в энергии

• Размер, количество и тип батарей, которые вы используете в своей системе


Подробнее:

Факторы, которые следует учитывать при принятии решения о покупке контроллера заряда

РАЗЛИЧНЫЕ ТИПЫ СОЛНЕЧНЫХ КОНТРОЛЛЕРОВ ЗАРЯДА

Следует учитывать два основных типа контроллеров заряда: более дешевые, но менее эффективные контроллеры заряда с широтно-импульсной модуляцией (ШИМ) и высокоэффективные контроллеры заряда с отслеживанием точки максимальной мощности (MPPT).Обе технологии широко используются, защищают аккумулятор и обычно имеют срок службы около 15 лет, хотя этот срок может варьироваться от продукта к продукту.

Контроллеры заряда с широтно-импульсной модуляцией: лучше всего подходят для небольших систем
Стоимость: 20-60 долларов
Подходит для:
Тем, у кого небольшие системы (фургоны, дома на колесах, крошечные дома), тем, кто живет в более теплом климате Контроллеры заряда с широтно-импульсной модуляцией существуют дольше, проще и дешевле контроллеров MPPT.Контроллеры PWM регулируют поток энергии к батарее, постепенно уменьшая ток, что называется «широтно-импульсной модуляцией». В отличие от обеспечения стабильного выхода, контроллеры заряда с широтно-импульсной модуляцией подают серию коротких зарядных импульсов на батарею.

Когда аккумуляторы полностью заряжены, контроллеры заряда с ШИМ-сигналом продолжают подавать небольшое количество энергии, чтобы поддерживать ваши аккумуляторы полными. Это двухступенчатое регулирование идеально подходит для системы, которая может потреблять мало энергии.Контроллеры PWM лучше всего подходят для небольших приложений, потому что система солнечных панелей и батареи должны иметь соответствующие напряжения. Ток выводится из панели чуть выше напряжения батареи.

Многие контроллеры заряда PWM поставляются с разнообразным набором дополнительных функций. Контроллер заряда Renogy Wanderer 10A PWM может использоваться с батареей 12 В или 24 В или аккумуляторным блоком и оснащен функциями самодиагностики и электронной защиты для предотвращения повреждений в результате ошибок установки или сбоев системы.


Плюсы:

• Дешевле контроллеров MPPT

• Лучше всего подходит для небольших систем, где эффективность не так критична.

• Лучше всего подходит для теплой солнечной погоды

• Обычно более длительный срок службы из-за меньшего количества компонентов, которые могут сломаться.

• Лучше всего работает, когда аккумулятор почти полностью заряжен.


Минусы:

• Менее эффективен, чем контроллеры MPPT

• Поскольку солнечные панели и батареи должны иметь напряжение, соответствующее этим контроллерам, они не идеальны для больших и сложных систем

Контроллеры слежения за максимальной мощностью : лучший вариант для тех, кому нужна высокоэффективная система
Стоимость: 100-729 долларов
Подходит для:
Тех, у кого большие системы (коттеджи, дома, коттеджи), тех, кто живет в более холодном климате

Контроллеры заряда с отслеживанием точки максимальной мощности эффективно используют полную мощность ваших солнечных панелей для зарядки ваших батарей.С контроллерами MPPT ток выводится из панели при максимальном напряжении питания, но они также ограничивают свою выходную мощность, чтобы батареи не перезаряжались. Контроллеры заряда MPPT будут контролировать и регулировать свой вход, чтобы регулировать ток от вашей солнечной системы. В результате общая выходная мощность увеличится, и вы можете рассчитывать на КПД 90% или выше.

Например, если становится облачно, ваш контроллер заряда MPPT уменьшит количество потребляемого тока, чтобы поддерживать желаемое напряжение на выходе панели.Когда снова становится солнечно, контроллер MPPT снова пропускает больше тока от солнечной панели.


Плюсы:

• Высокоэффективный

• Лучше всего подходит для более крупных систем, в которых ценно дополнительное производство энергии.

• Лучше всего работать в более холодной и облачной среде

• Идеально подходит для ситуаций, когда напряжение солнечной батареи выше, чем напряжение батареи

• Лучше всего работает при низком заряде аккумулятора


Минусы:

• Дороже, чем контроллеры ШИМ

• Обычно более короткий срок службы из-за большего количества компонентов


Подробнее:

• Типы контроллеров заряда

Что нужно знать о контроллерах заряда от солнечных батарей MPPT

В чем разница между контроллерами заряда MPPT и PWM?

КАК ИЗМЕНИТЬ РАЗМЕР КОНТРОЛЛЕРА ЗАРЯДА

Когда дело доходит до размеров контроллера заряда, вы должны принять во внимание, используете ли вы контроллер PWM или MPPT.Неправильно выбранный контроллер заряда может привести к потере до 50% солнечной энергии.

Размеры контроллеров заряда зависят от силы тока вашей солнечной батареи и напряжения солнечной системы. Обычно вы хотите убедиться, что у вас есть контроллер заряда, который достаточно велик, чтобы обрабатывать мощность и ток, производимые вашими панелями. Обычно контроллеры заряда бывают на 12, 24 и 48 вольт. Номинальная сила тока может составлять от одного до 60 ампер, а номинальное напряжение — от шести до 60 вольт.Если вы еще не измерили свою систему или не рассчитали свои потребности в энергии, мы рекомендуем использовать калькулятор солнечных батарей Renogy . Это поможет вам определить размер солнечных панелей, а также всех других компонентов вашей системы.

Если бы в вашей солнечной системе было 12 вольт, а у вас 14 ампер, вам понадобился бы контроллер заряда солнечной батареи, который имел бы как минимум 14 ампер. Однако из-за факторов окружающей среды вам необходимо учесть дополнительные 25%, доведя минимальный ток, который должен иметь этот контроллер зарядного устройства, до 17.5 ампер. В этом случае вам понадобится контроллер заряда на 12 В и 20 А. Вот еще некоторые особенности, основанные на типе контроллера заряда, который вы установили в своей системе.

Размер контроллера заряда PWM: Контроллеры PWM не могут ограничивать свой выходной ток. Они просто используют массив current. Следовательно, если солнечная батарея может производить ток 40 ампер, а контроллер заряда, который вы используете, рассчитан только на 30 ампер, то контроллер может быть поврежден.Очень важно убедиться, что ваш контроллер заряда соответствует вашим панелям, совместим с ними и имеет соответствующий размер.

При взгляде на контроллер заряда есть ряд вещей, которые следует изучить в его списке спецификаций или на этикетке. Контроллер PWM будет иметь показания для него, например, контроллер PWM на 30 ампер. Это показывает, сколько ампер может выдержать контроллер, в приведенном выше случае — 30 ампер. Как правило, в контроллере PWM вы хотите обратить внимание на две вещи: номинальную силу тока и напряжение.

Во-первых, мы хотим посмотреть на номинальное напряжение системы. Это расскажет нам, с какими батареями напряжения совместим контроллер. В этом случае вы можете использовать аккумуляторные батареи на 12 В или 24 В. Контроллер не сможет работать с чем-либо, что выше, например, с аккумулятором на 48 В.

Во-вторых, смотрим на номинальный ток АКБ. Допустим, в этом примере у вас есть контроллер заряда мощностью 30 А. Мы рекомендуем коэффициент безопасности не менее 1,25, то есть вы умножаете ток от панелей на 1.2 или под наклоном.

В-третьих, мы можем посмотреть на максимальное количество солнечной энергии. Это говорит вам, сколько вольт вы можете подать на контроллер. Этот контроллер не может принимать напряжение более 50 вольт. Давайте посмотрим на две панели по 100 Вт, соединенные последовательно, что в сумме дает 22,5 В (напряжение холостого хода) x 2 = 45 вольт. В этом случае можно подключить эти две панели последовательно.

В-четвертых, мы можем посмотреть на терминалы. Каждый контроллер обычно имеет максимальный размер датчика для терминала.Это важно при покупке проводки для вашей системы.

Наконец, посмотрите на тип батареи. Это говорит нам, какие батареи совместимы с контроллером заряда. Это важно проверить, поскольку вы не хотите, чтобы батареи не заряжались с помощью блока управления.

Размер контроллера заряда MPPT: Поскольку контроллеры MPPT ограничивают свой выход, вы можете сделать массив сколь угодно большим, и контроллер будет ограничивать этот выход. Однако это означает, что ваша система не так эффективна, как могла бы быть, поскольку у вас есть панели, которые не используются должным образом.Контроллеры MPPT будут иметь для него показания ампер, например, контроллер MPPT на 40 ампер. Даже если ваши панели могут вырабатывать ток 80 А, контроллер заряда MPPT будет производить ток только 40 А, несмотря ни на что.

Контроллеры MPPT будут иметь для него показания ампер, например, контроллер MPPT на 40 ампер. У них также будет номинальное напряжение, но, в отличие от ШИМ, номинальное входное напряжение намного выше, чем у аккумуляторов, которые он будет заряжать. Это связано с особой способностью контроллера MPPT понижать напряжение до напряжения аккумуляторной батареи, а затем увеличивать ток, чтобы компенсировать потерянную мощность.Вам не нужно использовать высокое входное напряжение, если вы хотите избежать последовательного соединения в небольших системах, но это очень полезно для больших систем.

Допустим, на этикетке контроллера указано, что он может работать с батареями на 12 В или 24 В. Найдите значение Rov. Например, если это Ров-40, это означает, что он рассчитан на ток 40 ампер.

В-третьих, мы можем посмотреть максимальное входное напряжение солнечной батареи. Например, если контроллер MPPT может принимать входное напряжение 100 вольт, он затем возьмет это (до) 100 вольт и снизит его до аккумулятора на 12 В или 24 В.Допустим, у вас есть 4 последовательно соединенных панели по 100 Вт, каждая с напряжением холостого хода 22,5 В. Эти 4 последовательно соединенных будут 4 x 22,5 В = 90 В, которые контроллер может принять.

МОЖЕТЕ ЛИ ВЫ ИСПОЛЬЗОВАТЬ БОЛЬШЕ ОДНОГО КОНТРОЛЛЕРА ЗАРЯДА?

Вы можете использовать несколько контроллеров заряда с одним блоком аккумуляторов в ситуациях, когда одного контроллера заряда недостаточно для обработки выходной мощности вашей солнечной панели. Фактически, для контроллеров заряда MPPT это может быть лучший способ подключения вашей системы, поскольку массивы имеют разные точки максимальной мощности.Наличие двух контроллеров может оптимизировать общую выходную мощность.

Однако мы рекомендуем использовать контроллеры заряда одного и того же типа, если вы используете более одного. Поэтому, если у вас есть один контроллер заряда MPPT, все ваши контроллеры заряда должны быть MPPT. Кроме того, вы должны убедиться, что все ваши контроллеры имеют одинаковый вход для настройки батареи.

ЧТО ТАКОЕ ВЕРХНИЙ ПРЕДЕЛ НАПРЯЖЕНИЯ?

Все контроллеры заряда имеют верхний предел напряжения. Это относится к максимальному уровню напряжения, с которым контроллеры могут безопасно работать.Убедитесь, что вы знаете, каков верхний предел напряжения ваших контроллеров. В противном случае вы можете сгореть контроллер заряда солнечной батареи или создать другие риски для безопасности.

ОБЫЧНЫЕ ОШИБКИ КОНТРОЛЛЕРА ЗАРЯДА

Из-за того, что солнечная установка имеет множество различных компонентов, в процессе установки может быть легко допустить ошибку. Вот несколько часто совершаемых ошибок, когда дело доходит до контроллеров заряда солнечных батарей.

• Не подключайте нагрузку переменного тока к контроллеру заряда.К выходу контроллера заряда следует подключать только нагрузки постоянного тока.

• Некоторые низковольтные приборы необходимо подключать непосредственно к аккумуляторной батарее.

• Контроллер заряда всегда следует устанавливать рядом с батареей, поскольку точное измерение напряжения батареи является важной частью функций контроллера заряда солнечной батареи.

В чем различия между контроллерами заряда RENOGY?

Renogy производит три основные модели контроллеров заряда: Wanderer, Voyager и Rover.

Wanderer Model (ШИМ-контроллер заряда)
Модели Wanderer предназначены для небольших и простых солнечных систем. Их можно использовать со многими типами аккумуляторных батарей, включая заливные, гелевые, герметичные или литий-фосфатные. Обе модели совместимы с системами на 12 или 24 В.

Wanderer 10A: Может поддерживать до 120 Вт на 12 В или 240 Вт на 24 В. Контроллер также имеет встроенные USB-порты 5V 2A для зарядки USB-устройств, ЖК-экран и несколько светодиодных индикаторов для отображения информации о работе системы.Порт Bluetooth отсутствует, поэтому данное устройство несовместимо с дополнительным модулем Bluetooth.

Wanderer 30A: Может поддерживать до 400 Вт в системах 12 В. Wanderer 30A не имеет встроенных USB-портов или ЖК-экрана, но предлагает несколько светодиодных индикаторов для отображения информации о работе системы. Эта модель также имеет порт bluetooth.


Модель Voyager (ШИМ-контроллер заряда)
Voyager — единственный водонепроницаемый контроллер заряда Renogy, который идеально подходит для использования вне помещений.

Voyager 20A: Может поддерживать до 240 Вт в системе 12 В. Он оснащен ЖК-экраном и несколькими светодиодными индикаторами для отображения информации о работе системы, совместим с семью различными типами аккумуляторов, включая литий-ионные, литий-железо-фосфатные, LTO, гелевые, AGM, заливные и кальциевые, в системе 12 В. -этапная зарядка. На Voyager нет порта bluetooth.

Также доступен дополнительный датчик температуры для контроля температуры батареи.Когда аккумулятор расположен на умеренном расстоянии от контроллера заряда, настоятельно рекомендуется использовать датчик температуры.

Модель ровера (контроллер заряда MPPT)
Rover был разработан для наиболее эффективной и современной солнечной энергетической системы. Его можно использовать с залитыми, гелевыми, герметичными или литий-железо-фосфатными батареями. Модели на 20 А, 30 А и 40 А совместимы с системами на 12 или 24 В. Модели 60A и 100A могут поддерживать системы 36V или 48V. Каждая из моделей Rover имеет ЖК-экран и несколько светодиодных индикаторов, настраиваемые параметры и коды ошибок, а также четырехступенчатую зарядку и температурную компенсацию для увеличения срока службы батареи и повышения производительности вашей системы.У всех роверов также есть порт Bluetooth.

Rover 20A: Может поддерживать до 260 Вт на 12 В или 520 Вт на 24 В.

Rover 30A: Может поддерживать до 400 Вт на 12 В или 800 Вт на 24 В.

Rover 40A: Может поддерживать до 520 Вт на 12 В или 1040 Вт на 24 В.

Rover 60A: Может поддерживать до 800 Вт на 12 В, 1600 Вт на 24 В, 2400 Вт на 36 В или 3200 Вт на 48 В.

Rover 100A: Может поддерживать до 1300 Вт на 12 В, 2600 Вт на 24 В, 3900 Вт на 36 В или 5200 Вт на 48 В.

КАК ВЫ МОЖЕТЕ УДАЛЕННО МОЙ КОНТРОЛЛЕР ЗАРЯДА?

Как упоминалось выше, некоторые модели контроллеров заряда имеют ЖК-экраны и светодиодные индикаторы для мониторинга системы с устройства. Если вы хотите удаленно контролировать свою систему, где бы вы ни находились, вам повезло. Удаленный мониторинг вашего контроллера заряда никогда не был таким простым, благодаря модулю данных для контроллеров заряда Renogy. Модуль Renogy DM-1 4G LTE может подключаться к некоторым контроллерам заряда Renogy через порт RS232 и может быть сопряжен с приложением для мониторинга 4G Renogy.

Приложение, доступное для смартфонов и планшетов, позволяет удобно контролировать систему и удаленно изменять системные параметры с помощью устройства в любом месте, где доступна сетевая услуга 4G LTE. Модуль данных Renogy доступен с годовой предоплатой обслуживания в сети 4G LTE T-Mobile. Вы также можете приобрести модуль без предоплаты и добавить его к существующему тарифному плану сотовой связи через своего оператора мобильной связи. В настоящее время приложение доступно только в сетях T-Mobile и AT&T.

ЗАКЛЮЧЕНИЕ

Независимо от того, находитесь ли вы в доме на колесах или в автономной кабине, контроллеры заряда станут неотъемлемой частью вашей солнечной установки. Проведя исследование и взвесив варианты, прежде чем вкладывать средства, вы убедитесь, что вы выберете контроллер, который подходит вам и вашей системе.

Как выбрать контроллер заряда солнечной энергии для вашей фотоэлектрической системы

Дуглас Граббс, инженер по приложениям, Morningstar Corporation

В своих основных формах солнечные фотоэлектрические системы — это очень простая задача.Подключите солнечную панель к нагрузке постоянного тока, и она будет работать, пока не сядет солнце. Подключите солнечные панели к инвертору, подключенному к сети, и, пока светит солнце, энергия будет подаваться в сеть. Все довольно просто — пока солнце не перестанет светить.

Сложнее становится накопление энергии, которое используется, когда солнце не светит или когда сеть не работает. Для хранения электроэнергии для дальнейшей полезной работы требуются батареи, подключенные к солнечной фотоэлектрической системе. После добавления аккумулятора контроллер заряда становится одним из наиболее важных компонентов системы.

Любому, кто отключается от сети или желает использовать гибридную систему, которая может продавать вырабатываемую солнечными батареями электроэнергию в течение дня и хранить эту энергию для использования ночью, во время отключения электроэнергии или в часы пик, будет нуждаться в контроллере заряда солнечной батареи.

Контроллер заряда ProStar PWM от Morningstar

Что делает контроллер заряда солнечной батареи

Думайте о солнечном контроллере заряда как о регуляторе. Он подает питание от фотоэлектрической батареи на нагрузку системы и аккумуляторную батарею.Когда аккумуляторная батарея почти заполнена, контроллер будет снижать зарядный ток, чтобы поддерживать напряжение, необходимое для полной зарядки аккумулятора, и поддерживать его на высоком уровне. Имея возможность регулировать напряжение, солнечный контроллер защищает аккумулятор. Ключевое слово — «защищает». Батареи могут быть самой дорогой частью системы, а контроллер солнечного заряда защищает их как от перезаряда, так и от недозаряда.

Вторая роль может быть более сложной для понимания, но работа аккумуляторов в «частичном состоянии заряда» может значительно сократить их срок службы.Длительные периоды частичного заряда приводят к сульфатированию пластин свинцово-кислотных аккумуляторов и значительному сокращению срока службы, а химический состав литиевых аккумуляторов в равной степени уязвим для хронической недозарядки. Фактически, разряд батарей может быстро их убить. Поэтому контроль нагрузки для подключенных электрических нагрузок постоянного тока очень важен. Переключатель низкого напряжения (LVD), включенный в контроллер заряда, защищает батареи от чрезмерной разрядки.

Перезарядка всех типов аккумуляторов может нанести непоправимый ущерб.Избыточная зарядка свинцово-кислотных аккумуляторов может вызвать чрезмерное выделение газа, которое может фактически «вскипятить» воду, повредив пластины аккумулятора, обнажив их. В худшем случае перегрев и высокое давление могут стать причиной взрыва при выпуске.

Обычно меньшие контроллеры заряда включают в себя схему управления нагрузкой. На более крупных контроллерах, таких как Morningstar TriStar, отдельные переключатели и реле управления нагрузкой также могут использоваться для управления нагрузкой постоянного тока до 45 или 60 ампер. Наряду с контроллером заряда драйвер реле также обычно используется для включения и выключения реле для управления нагрузкой.Драйвер реле включает четыре отдельных канала для определения приоритета более критических нагрузок, чтобы они работали дольше, чем менее критические нагрузки. Это также полезно для автоматического управления запуском генератора и уведомления о тревоге.

Более совершенные контроллеры заряда солнечной батареи также могут контролировать температуру и регулировать зарядку аккумулятора для соответствующей оптимизации заряда. Это называется температурной компенсацией, при которой происходит зарядка более высокого напряжения при низких температурах и более низкого напряжения при высоких температурах.

Многие контроллеры заряда солнечных батарей включают локальный и удаленный мониторинг данных.Morningstar предлагает варианты последовательной связи, поэтому контроллеры можно контролировать локально или удаленно с помощью совместимого коммуникационного оборудования. Кроме того, возможна связь через Ethernet для локального мониторинга в локальной сети или удаленно через Интернет.

По этим и другим причинам солнечный контроллер можно рассматривать как сердце и мозг системы. Он обеспечивает длительную работоспособность батареи при любых условиях эксплуатации, а также обеспечивает функции контроля критической нагрузки и мониторинга системы.

Два основных типа контроллера заряда

Хотя контроллеры заряда бывают самых разных цен, номинальных мощностей и функций, все они попадают в одну из двух основных категорий: широтно-импульсная модуляция (PWM) и отслеживание точки максимальной мощности (MPPT).

Типы

PWM относительно просты, в них используется переключатель между фотоэлектрической решеткой и батареей. Переключатель может быстро открываться и закрываться, таким образом, имея возможность пульсировать или «дросселировать» электричество, поступающее от солнечной панели, чтобы уменьшить ток заряда по мере того, как батареи становятся полностью заряженными.Поскольку контроллеры ШИМ работают только с переключателем, напряжение массива во время работы равно напряжению батареи. Это означает, что вам необходимо использовать солнечные панели номинального напряжения с ШИМ-контроллером (панели с 36 ячейками для номинала 12 В и панели с 72 ячейками для номинала 24 В).

Даже при номинальном напряжении, ШИМ-контроллер будет работать ниже максимального напряжения питания (Vmp). Когда на улице холодно или когда напряжение батареи падает, ШИМ-контроллер будет работать значительно ниже Vmp и максимальной мощности (Pmp) солнечной батареи.Чтобы в полной мере использовать максимальную выходную мощность фотоэлектрического массива, вам понадобится контроллер MPPT.

Контроллеры

MPPT сравнительно сложнее. Они могут регулировать (или отслеживать) входное напряжение и ток фотоэлектрической матрицы, чтобы найти оптимальное рабочее напряжение, которое будет генерировать наибольшую мощность в данный момент. Ниже приведены графики зависимости тока от напряжения (IV) и тока от мощности (IP) для фотоэлектрической батареи с номинальным напряжением. Постоянно отслеживая и работая на Vmp, контроллер MPPT сможет генерировать больше энергии, чем контроллер PWM во время массовой зарядки.

Контроллеры

MPPT также могут использоваться с фотоэлектрическими массивами с более высоким напряжением, превышающим номинальное напряжение. Это позволяет использовать различные солнечные фотоэлектрические панели, которые могут стоить меньше или быть более оптимальными по размеру. Например, 60-ячеечные модули стоят меньше, чем 36-ячеечные, и имеют более удобный размер для монтажа, чем более крупные 72-ячеечные модули. Массивы с более высоким напряжением также позволяют использовать меньшее количество параллельных цепочек, что приводит к меньшему количеству предохранителей блока сумматора, меньшему току массива и меньшему падению напряжения, поэтому можно использовать меньшие провода, а это означает, что контроллеры MPPT могут сэкономить деньги за счет сокращения дорогостоящей медной проводки, особенно для более длинных проводов массива. работает.

Обратите внимание: хотя технология MPPT дороже, она не обязательно лучше. Для системы правильного размера контроллеры MPPT и PWM отлично справятся с поддержанием заряда батарей. Выбор PWM или MPPT действительно зависит от приложения и местоположения.

Контроллер заряда TriStar MPPT от Morningstar

Если нет длинных проводов и используются солнечные модули с номинальным напряжением, ШИМ-контроллер часто является лучшим выбором. То же самое верно и для мест, где также может быть много постоянного и надежного солнечного света — в пустынях или тропиках.В этих местах контроллеры PWM являются правильным инструментом для работы, поскольку некоторая потеря солнечной энергии не является критичной. Любое преимущество использования контроллера MPPT может быть минимальным, поскольку напряжение массива ниже в теплых условиях. Еще одно соображение — размер системы. Контроллеры PWM часто используются в небольших, чувствительных к стоимости системах, где дополнительные затраты на MPPT не окупаются.

В местах с переменным солнечным светом, колеблющимися температурами и затенением, в северных или южных широтах со снегопадом зимой MPPT намного более желателен, поскольку он может максимизировать производительность в сложных условиях.Все сводится к правильному инструменту для работы.

На что обратить внимание в контроллере заряда

Важно правильно выбрать контроллер заряда с точки зрения размера и характеристик. Для удаленных систем очень важны надежность и производительность. Более дешевые солнечные контроллеры часто не самые надежные и могут не соответствовать жизненно важным требованиям к зарядке. Низкая производительность или надежность могут в конечном итоге привести к тому, что стоимость контроллера солнечной батареи во много раз превысит стоимость замены батарейного блока, посещения объекта и потери рабочего времени.

Контроллеры заряда солнечных батарей должны быть спроектированы так, чтобы выдерживать удары, поскольку они справляются с большим количеством тепла и должны управлять им должным образом. Преимущество небольших контроллеров заряда в том, что они безвентиляторные — они избавляются от тепла за счет простого пассивного охлаждения. Исключая вентилятор, они получают три преимущества:

  1. Более высокая надежность — вентиляторы имеют движущиеся части, обычно это единственный компонент с движущимися частями на контроллере заряда. Устраните вентилятор, и вы устраните одну из наиболее частых точек отказа.
  2. Более длительный срок службы — вентиляторы втягивают грязь, пыль и даже насекомых, которые могут забить внутренние части контроллера заряда и сократить срок его службы.
  3. Повышенная эффективность — Вентиляторы требуют электричества для работы, и это электричество поступает от солнечной энергии, протекающей от панелей. Вентиляторы — это «паразитная нагрузка» в системе, отводящая и потребляющая мощность, которую можно было бы использовать в другом месте.

В некоторых более крупных контроллерах (включая все контроллеры Morningstar) также используется пассивное охлаждение без вентиляторов, включая усовершенствованную термомеханическую конструкцию и программное обеспечение.Они предпочтительны в удаленных критически важных установках, где обслуживание нечасто, а замена затруднительна.

Контроллеры заряда меньшего размера часто имеют только предустановленные настройки заряда. Если эти предустановки не обеспечивают достаточного удовлетворения требований к зарядке аккумулятора, можно выбрать контроллер с дополнительными параметрами настроек. Пользовательские настройки могут быть простыми корректировками уставок напряжения, конкретных приложений или условий. Например, система, которая не имеет большого количества циклов, может быть настроена с уменьшенным суточным временем поглощения, которое представляет собой количество времени до того, как батарея перейдет в плавучее состояние.

Контроллеры

Select Morningstar также имеют индивидуальные параметры настройки для ежедневного управления включением / выключением освещения. Этот тип управления автоматически регулирует включение / выключение освещения независимо от времени года, поэтому свет будет включаться, когда темнеет вечером, и / или утром, прежде чем станет светло.

Каким бы ни было ваше приложение, местоположение или бюджет, наиболее важным шагом в управлении инвестициями в солнечную батарею + является трата времени и внимание на выбор подходящего контроллера заряда.За последнюю четверть века компания Morningstar продала более 4 миллионов контроллеров заряда в 100 странах, и пока ни один клиент не сказал нам, что хотел бы сэкономить на этом критически важном компоненте системы.


Дуглас Граббс (Douglas Grubbs) — инженер по приложениям в Morningstar Corporation, который предоставляет приложения для продуктов и техническую поддержку продаж, а также обеспечивает соответствие техническим и электрическим нормам. Он имеет более чем 11-летний опыт работы в фотоэлектрической индустрии. До прихода в Morningstar Дуглас разрабатывал сетевые солнечные фотоэлектрические системы для интеграторов на северо-востоке, а также отвечал за исследования и разработки солнечных фотоэлектрических систем в муниципальном колледже округа Бакс, преподавая курсы начального уровня.Его прошлый опыт включает почти десять лет работы в Федеральной комиссии по связи (FCC) в качестве инженера-электронщика. Дуглас получил степень бакалавра естественных наук в Университете Мэриленда и ранее был сертифицированным специалистом по установке солнечных фотоэлектрических систем, сертифицированным NABCEP.


Заявление об ограничении ответственности: Мы не можем предоставить консультации по конкретным потребностям вашего проекта. Свяжитесь с производителями контроллеров заряда для получения дополнительной информации или помогите друг другу в разделе комментариев ниже.

Лучшие контроллеры заряда от солнечных батарей в 2021 году [Обзоры, цены и характеристики]

Лучшие контроллеры заряда в 2021 году: наш выбор

  • Лучший контроллер заряда MPPT (универсальный): Midnite Classic
  • Лучший контроллер заряда высокой мощности: Outback FM100 AFCI
  • Лучший контроллер заряда для удаленных / промышленных солнечных систем: Morningstar TriStar
  • Лучший контроллер заряда для жилых автофургонов и морских судов: Victron SmartSolar

Сегодня мы продолжаем серию сравнения продуктов, выбирая лучшие контроллеры заряда для солнечных батарей на рынке в 2021 году. .Контроллеры заряда являются центральным компонентом солнечных систем на основе батарей, отвечающим за управление зарядом вашей аккумуляторной батареи.

Контроллеры заряда солнечных батарей играют ключевую роль в системах на основе батарей:

  • регулируют напряжение и ток батареи для предотвращения перезарядки
  • компенсируют влияние температуры
  • поддерживают непрерывную подзарядку батарей после их полной зарядки

В этой статье мы отобрали лучшие контроллеры заряда солнечных батарей для различных областей применения.Мы начнем с нашего любимого универсального выбора для автономных солнечных систем, а затем порекомендуем некоторые варианты для мощных цепей, удаленных / промышленных приложений, а также мобильных жилых автофургонов и морских систем.

Обзор: Лучшие контроллеры заряда от солнечных батарей на рынке в 2021 году

Лучший контроллер заряда MPPT: Midnite Classic
Лучший контроллер заряда высокой мощности: Outback FM100 AFCI
Лучший контроллер заряда для удаленного / промышленного использования: Morningstar TriStar
Лучшая зарядка Контроллер для жилых автофургонов / морских судов: Victron SmartSolar

Лучший универсальный контроллер заряда для автономных домов: Midnite Classic

Макс.
Classic 150 Classic 200 Classic 250
Цена (по состоянию на 2 / 21/20) $ 725 $ 725 $ 825
Напряжение постоянного тока аккумулятора 12В / 24В / 48В 12В / 24В / 48В 12В / 24В / 48В
200 В 250 В
Макс.мощность 86A-96A 65A-79A 43A-61A
Тип 9 0805 MPPT MPPT MPPT

На наш взгляд, серия Midnite Classic является лучшим контроллером заряда MPPT на рынке.

Начиная с 725 долларов за стандартный Classic 150, Midnite Classic часто является лучшим соотношением цены и качества для автономной системы, так как он стоит на несколько сотен долларов меньше, чем контроллеры аналогичного размера.

БЕСПЛАТНОЕ руководство по началу работы

Classic включает в себя несколько замечательных функций, которые обычно можно найти в более дорогих контроллерах:

  • Защита от дугового замыкания / замыкания на землю, которая повышает безопасность и помогает соответствовать последним нормам и требованиям
  • Встроенный -в порт Ethernet для онлайн-мониторинга через веб-сайт MyMidnite компании Midnite
  • Два программируемых дополнительных входа / выхода, которые можно использовать для управления такими вещами, как вентилятор батареи или отклоняющей нагрузкой (которая перенаправляет электроэнергию на другой источник, когда аккумуляторная батарея заполнена)

Classic доступен в трех различных размерах, с моделями с более высоким напряжением (Classic 200 и 250) для систем с длинными проводами.Более высокое фотоэлектрическое напряжение может помочь уменьшить размер проводов на больших расстояниях, что снижает падение напряжения.

Помимо солнечных батарей, стандартная линейка контроллеров Classic может использоваться для ветро- и гидроэнергетики. MidNite также предлагает Classic SL только для солнечных батарей для каждого напряжения (150-SL, 200-SL и 250-SL), который поставляется с оптимизированным меню для работы только на солнечной энергии. Однако мы не рекомендуем Classic SL в большинстве случаев, потому что он не включает защиту от дугового замыкания или порт Ethernet для мониторинга.

Наш вердикт: Midnite Classic — лучший контроллер заряда для автономных домов на рынке в 2021 году. Это отличная цена благодаря сочетанию высокой выходной мощности и многофункционального дизайна по более низкой цене, чем другие аналогичные контроллеры. .

Лучший контроллер заряда высокой мощности: Outback FM100 AFCI

  • Напряжение постоянного тока батареи: 24 В / 36 В / 48 В
  • Вход: 300 В
  • Выход: 100 А
  • Тип: MPPT
  • Цена: 925 $

При 100 ампер Outback FM100 AFCI — один из самых мощных доступных контроллеров.Как и Classic, он имеет защиту от дугового замыкания и замыкания на землю, что дает вам самую безопасную систему с соблюдением действующих норм.

На один контроллер заряда FM100 можно установить до 7000 ватт фотоэлектрических модулей, а более высокое входное напряжение позволяет использовать более длинные цепочки панелей.

Высокое напряжение также снижает проблемы, связанные с падением напряжения, что в конечном итоге может сделать систему более рентабельной. Более высокое напряжение сводит к минимуму расходы на баланс системы (BOS), позволяя вам тратить меньше на проводку, объединительные коробки и предохранители — затраты, которые, безусловно, увеличиваются, особенно при более длительных прокладках проводки.

FREE Solar Battery Guide

FM100 можно настроить с помощью пульта дистанционного управления Outback Mate3s, а их онлайн-мониторинг Optics RE позволяет удаленно просматривать производительность системы и изменять настройки. Его можно объединить в сеть вместе с инверторами Outback, мониторами батарей и дополнительными контроллерами, используя их концентратор, чтобы вы могли контролировать и управлять своей системой под одной крышей.

Этот контроллер заряда особенно хорошо подходит для больших систем, где несколько контроллеров собраны вместе.Входное напряжение 300 В постоянного тока минимизирует затраты на BOS, а высокая выходная мощность сокращает общее количество контроллеров. Все может быть объединено в сеть с помощью концентратора Outback HUB для легкой настройки и мониторинга.

Лучший контроллер заряда для удаленного / промышленного автономного питания: Morningstar TriStar

Линия Morningstar TriStar представлена ​​в нескольких конфигурациях:

9080 PWM 9080 MP 4 MPPT
TS-45 TS-60 TS-30-MPPT TS-45-MPPT TS-60-MPPT
Цена (по состоянию на 21.02.20) $ 176 $ 232 $ 385 $ 479 $ 599
12 В / 24 В / 48 В 12 В / 24 В / 48 В 12 В / 24 В / 48 В 12 В / 24 В / 48 В 12 В / 24 В / 48 В
Макс. 150V 150V
Макс.выпуск 45A 60A 30A 45A 60A
Тип PWM MPP

Доступный в размерах до 60 ампер, Morningstar TriStar — наш выбор в качестве лучшего контроллера заряда для удаленных систем, недоступных для планового обслуживания.

Контроллеры заряда Morningstar обычно используются для удаленных автономных приложений, включая телекоммуникации, удаленное видео и наблюдение, мониторинг оборудования и окружающей среды, а также любые другие приложения, требующие надежного питания в удаленном месте.

Одной из особенностей, которая способствует надежности TriStar, является использование пассивного охлаждения. В отличие от большинства контроллеров, в которых используются вентиляторы, которые могут продувать воздух и пыль по контуру, TriStar использует большие металлические радиаторы для охлаждения контроллера.

В результате получается более прочный и надежный контроллер, который идеально подходит для удаленных приложений, где система недоступна для обслуживания.

Доступно несколько дополнительных принадлежностей, включая лицевую панель счетчика, драйвер реле и интерфейс связи. TS 60 MPPT включает порт Ethernet, а другие модели могут добавлять EMC-1 для удаленного мониторинга.

Для высоковольтных систем Morningstar производит 600-вольтовые контроллеры заряда Tristar MPPT в нескольких различных моделях, которые идеально подходят для удаленных приложений, где длина проводов постоянного тока очень длинная.Они также предлагают модель, предназначенную для модернизации сетевых инверторов на 600 В, чтобы установить резервную аккумуляторную батарею в существующую сетевую систему.

Morningstar имеет прочную репутацию в автономной солнечной отрасли, и их контроллеры — отличный вариант для любых требований к удаленному питанию.

Лучший контроллер заряда для мобильных автономных систем (жилых автофургонов и морских судов): Victron SmartSolar

75/10 75/15 100/20 100/50 150/60 150/100 250/100
Цена (на 21.02.20) $ 93 $ 99 $ 155 $ 275 $ 454 $ 660 $ 784
$ 784
12 В / 24 В 12 В / 24 В 12 В / 24 В 12 В / 24 В 12 В / 24 В / 36 В / 48 В 12 В / 24 В / 36 В / 48 В 12 В / 24 В / 36 В / 48 В
Макс.вход 75V 75V 100V 100V 150V 150V 250V
Макс. 100 A
Тип MPPT MPPT MPPT MPPT MPPT MPPT MPPT
9000ictron MPPT

Контроллер заряда Наша любимая линейка устройств для зарядки серия контроллеров.

Victron предлагает полную линейку контроллеров заряда MPPT в диапазоне от 75 вольт / 10 ампер до 250 вольт / 100 ампер. Одна интересная функция, включенная во все зарядные устройства Victron SmartSolar MPPT, — это интеграция Bluetooth, которую можно использовать с приложением Victron Connect для локального мониторинга и управления.

Victron предлагает ряд аксессуаров для своих контроллеров заряда, в том числе:

  • Монитор батареи BMV
  • Система отключения BatteryProtect
  • Сотовый модем
  • Дистанционное управление и сетевые концентраторы

Вся система может быть подключена к центральному концентратору который может объединять в сеть несколько контроллеров MPPT и контролировать все части вашей системы, вплоть до резервуаров для воды и топлива.

Для этих функций мониторинга требуется монитор Victron GX, например Color Control GX, Venus GX или Cerbo GX (только что выпущенный — страница продукта скоро появится!). В зависимости от области применения для некоторых систем потребуется адаптер датчика резистивного резервуара VE.Can или одно из более крупных устройств GX.

Victron имеет многолетний опыт работы в автономной отрасли со специализацией в морских и других мобильных приложениях, что делает их нашим любимым выбором для жилых автофургонов и морских солнечных систем.

Как выбрать лучший контроллер заряда для работы

Когда вы оцениваете свои варианты, вот что следует учитывать:

MPPT vs.Контроллеры заряда с ШИМ

MPPT (отслеживание максимальной мощности) — это новая и более эффективная технология. По мере увеличения мощности и напряжения солнечных панелей все больше и больше панелей требуют контроллеров заряда MPPT.

С контроллерами MPPT поступающая солнечная энергия поступает с относительно более высоким напряжением, а напряжение понижается контроллером для правильной зарядки аккумулятора. Входящий ток пропорционально увеличивается с минимальными потерями, в результате получается высокоэффективное солнечное зарядное устройство.

Контроллеры заряда с ШИМ (широтно-импульсной модуляцией) основаны на более старых, менее эффективных технологиях и требуют согласования напряжения солнечной панели с напряжением батареи. Например, если вы хотите запустить солнечную панель с номинальным напряжением 12 В через контроллер заряда с ШИМ, вам понадобится аккумуляторная батарея на 12 В.

ШИМ-контроллеры не так эффективны и могут терять около 20% входящей мощности из-за потери эффективности. Например, панель на 100 Вт / 12 В будет выдавать около 5.5 ампер при 18 вольт в пиковом режиме. Использование ШИМ-контроллера снизит выходную мощность до 14,5 В при 5,5 А или примерно 80 Вт (14,5 В x 5,5 А = 80 Вт).

Вы также ограничены в выборе оборудования и должны использовать солнечные панели с номинальным напряжением 12 или 24 В. Как правило, контроллеры PWM меньше по размеру и имеют серьезные ограничения в отношении используемых опций оборудования, поскольку панели должны иметь то же напряжение, что и аккумуляторная батарея.

По этим причинам большинство наших частных клиентов предпочитают контроллеры MPPT для более крупных систем.Контроллеры заряда PWM по-прежнему распространены для небольших приложений, таких как жилые дома, небольшие автономные кабины и удаленные промышленные объекты, требующие скромного количества энергии.

Совместимость оборудования

Контроллеры заряда должны соответствовать солнечному оборудованию с аналогичными электрическими характеристиками. Чтобы выбрать правильный контроллер, посмотрите на следующие атрибуты:

  • Входное напряжение: максимальное напряжение, которое может выдержать контроллер. Обычно колеблется от 100 до 600 В постоянного тока для контроллеров заряда MPPT.
  • Напряжение аккумуляторной батареи: напряжение контроллера заряда должно быть совместимо с напряжением аккумуляторной батареи. Большинство небольших контроллеров рассчитаны на 12/24/36/48 В. Для более крупных контроллеров обычно можно установить напряжение 12/24/36/48 В.
  • Ток: максимальных зарядных ампера, например 100 ампер для FM100 AFCI
  • Тип батареи: убедитесь, что контроллер заряда рассчитан на работу с типом батарей, которые вы будете использовать (большинство контроллеров заряда разработаны для свинцово-кислотных аккумуляторов, поэтому этот момент особенно важен для Li-ion.)

Соответствие нормам и безопасность

Убедитесь, что контроллер сертифицирован на соответствие местным строительным нормам и правилам безопасности. Обратите внимание на следующее:

  • UL, внесенный в список UL 1741
  • UL 458 (для мобильных приложений)
  • Защита от замыкания на землю (GFCI)
  • Защита от дугового замыкания (AFCI)

Онлайн-мониторинг

Большинство контроллеров могут подключаться к портал мониторинга, чтобы вы могли удаленно проверять производительность вашей системы.Изучите совместимые порталы мониторинга, чтобы убедиться, что в них есть все функции, необходимые для управления производительностью вашей системы. В некоторых случаях для удаленного мониторинга и управления потребуется дополнительное оборудование.

Связь

Многие контроллеры заряда могут подключаться к сети с инверторами, мониторами аккумуляторной батареи, автоматическим запуском генератора, литий-ионными аккумуляторами и т. Д. Проверьте сетевые возможности контроллера, чтобы убедиться, что он совместим с другими частями вашей системы.

Вспомогательное управление

Вспомогательное управление позволяет контроллеру динамически выключать и включать другие компоненты системы на основе параметров, установленных конечным пользователем.Это полезно для управления подключенными устройствами, такими как автоматические выключатели запуска генератора, переключение нагрузки и т. Д. Обычно это требует добавления реле соответствующего номинала для управления вашими устройствами.

Эффективность и самопотребление

Сам контроллер заряда потребляет электроэнергию, а это означает, что его обработка сигналов неэффективна на 100%. Ищите контроллеры заряда с низким энергопотреблением и высокой эффективностью. Большинство контроллеров заряда MPPT имеют КПД 98% или лучше, в то время как контроллеры PWM и более дешевые варианты MPPT отстают от этой отметки.

Нужна помощь в проектировании вашей системы?

Проектирование солнечной системы — сложный процесс. Это особенно верно для автономных систем, где несовместимые части могут разрушить дорогостоящий аккумуляторный блок, если система правильно рассчитана, введена в эксплуатацию или обслуживается должным образом.

Если вам нужна помощь в разработке аккумуляторной системы, позвоните нам и получите бесплатную консультацию по проектированию. На сегодняшний день наши специалисты по солнечной энергии разработали более 10 000 систем, и многие из нас специализируются на автономном проектировании. Мы поможем вам разработать солнечную систему на батарейках, которая будет работать как мечта.

Выбор правильного контроллера заряда

Выбор эффективного и правильно спроектированного контроллера заряда является ключом к долговечности и эффективности всей вашей фотоэлектрической системы на основе батарей. Оптимизируя мощность, поступающую от ваших солнечных модулей, вы станете намного ближе, чтобы компенсировать использование традиционной электросети или другого источника энергии. Кроме того, вы защитите свой аккумуляторный блок и тем самым защитите себя от любых непредвиденных и ненужных затрат на замену.Ваш контроллер солнечного заряда — это предмет, в который стоит инвестировать и исследовать при проектировании своей системы. Вам нужно будет выбрать вариант, который является масштабируемым и соответствует вашим потребностям в электроэнергии, а также убедитесь, что у вас достаточно аккумуляторной батареи для солнечных модулей, которые вы выбрали для установки. CED Greentech может посоветовать вам все, от оптимизации вашей существующей системы до того, как установить солнечные модули, и до выбора правильного оборудования, соответствующего вашим потребностям.

Контроллеры заряда солнечных батарей имеют номинальные характеристики и размеры в зависимости от тока солнечной батареи и напряжения системы.Чаще всего используются контроллеры на 12, 24 и 48 В. Номинальная сила тока обычно составляет от 1 до 80 ампер, напряжение — от 6 до 600 вольт.

Например, если один модуль в вашей 48-вольтовой системе выдает 8,05 А, а используются две параллельные цепочки модулей, ваша система будет вырабатывать 16,1 А при 48 Вольт. Определенные факторы, такие как отражение света или эффект облачности через нерегулярные промежутки времени, могут повышать уровень тока. Это обычное дело. Поэтому мы увеличиваем силу тока контроллера заряда на 25%, доведя минимальную силу тока контроллера до 20.13. Мы переходим в наш каталог и находим контроллер на 30 ампер, который очень похож. Нет проблем с контроллером большего размера, если не считать дополнительных затрат. Это позволит вам в будущем увеличить размер вашей системы, если ваша нагрузка изменится или вы обнаружите, что вам нужно немного больше энергии.

Контроллеры заряда MPPT

Вверху: Контроллер заряда Conext MPPT 60150 от Schneider Electric

Внизу: FlexMax 60 Outback Power, контроллер заряда MPPT

Раньше вы предполагали, что номинальное напряжение вашей батареи и солнечного модуля будет одинаковым, и что вы также выбираете это напряжение для своего контроллера заряда.Однако эта школа мысли больше не используется широко, поскольку более эффективная технология зарядки, называемая отслеживанием точки максимальной мощности (MPPT), стала широко доступной для многих моделей контроллеров заряда. Основная особенность этой технологии заключается в том, что она позволяет вам иметь массив солнечных модулей с гораздо более высоким напряжением, чем напряжение вашей аккумуляторной батареи. Контроллер заряда MPPT по своей конструкции преобразует более высокое напряжение в более низкое напряжение.

Контроллеры заряда

MPPT обладают дополнительным преимуществом, так как позволяют сэкономить немного денег на расходах на проводку.Большим преимуществом установки солнечных модулей с более высоким напряжением является то, что вы можете использовать проводку меньшего диаметра в контроллере заряда. Во многих случаях массив солнечных модулей может находиться на расстоянии более 100 футов (или более!) От контроллера заряда, поэтому снижение стоимости проводки до минимума обычно является важной целью для всего проекта. Когда вы удваиваете напряжение (например, с 12 до 24 или 48 вольт), вы каждый раз уменьшаете ток, проходящий по проводам, вдвое, что означает, что вы используете гораздо меньше меди, что экономит ваши деньги.

Пример определения размера контроллера заряда MPPT

Например, у вас может быть массив солнечных модулей мощностью 3000 Вт, который работает при 93,3 В постоянного тока, а ваш аккумуляторный блок — на 48 В постоянного тока. Контроллеры заряда MPPT рассчитываются по выходной силе тока, с которой они могут работать, а не по входному току от массива солнечных модулей. Чтобы определить выходной ток, с которым должен справиться контроллер заряда, мы используем очень простую формулу мощности в ваттах:

Мощность = Вольт x Ампер

Здесь мы знаем, что мощность 3000 Вт, аккумуляторная батарея 48 вольт, поэтому:

3000 Вт = 48 вольт x ампер

, что дает нам:

А = 3000 Вт / 48 В

Ампер = 62.5А

Мы по-прежнему хотим отрегулировать это значение на 25%, чтобы учесть любые особые условия, которые могут привести к тому, что массив солнечных модулей будет производить больше энергии, чем обычно рассчитано (например, из-за отражения солнечного света от снега, воды, необычно ярких условий , так далее). Итак, 62,5А, увеличенный на 25%, составляет 78,13А. В этом случае мы, вероятно, выберем контроллер заряда MPPT на 80 А, например FlexMax 80 от Outback Power.

Еще одно преимущество контроллеров заряда MPPT

Поскольку контроллеры заряда MPPT могут обрабатывать более высокое входное напряжение от массива солнечных модулей, чем напряжение аккумуляторной батареи, вы также можете использовать эти контроллеры заряда с солнечными модулями, напряжение которых не соответствует типичному напряжению вашей системы (т.е. 12, 24 или 48 В). Например, у вас может быть солнечный модуль с номинальным напряжением 31,1 вольт, а также контроллер заряда и аккумуляторная батарея мощностью 48 вольт с контроллером заряда MPPT.

Имейте в виду, что контроллеры заряда MPPT имеют предел максимального напряжения системы, с которым они могут справиться от массива солнечных модулей. Важно убедиться, что нет условий, при которых напряжение массива солнечных модулей не превысит этот предел или вы потенциально можете повредить контроллер.Вы хотите убедиться, что напряжение холостого хода солнечной батареи не превышает этого значения. Вы также хотите дать себе небольшой запас прочности, чтобы учесть возможность того, что напряжение массива действительно будет увеличиваться по мере того, как он становится холоднее. Если вы дадите себе погрешность 25%, все будет в порядке.

Вот пример:

Мы будем использовать двенадцать солнечных модулей SolarWorld 250 Вт на 31,1 В с четырьмя параллельными цепочками по три последовательно для номинального напряжения 93.3 вольта и аккумуляторная батарея на 48 вольт. Мы хотели бы использовать контроллер заряда Schneider Conext MPPT 60 150. Если мы посмотрим на страницу спецификации модуля, то увидим, что каждый модуль имеет напряжение холостого хода 37,8 В. Это означает, что массив имеет в три раза больше, потому что есть 3 последовательно соединенных модуля. Таким образом, напряжение холостого хода массива составляет 37,8 В x 3 = 113,4 В. Увеличим это значение на 25% и получим 141,75 В. Теперь мы посмотрим на характеристики Conext MPPT 60 150 и увидим, что он может потреблять максимум 150 вольт.141,75 В <150 В, так что готово!

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *