20 идей для создания светильников своими руками
В этой статье мы вас вдохновим различными идеями для создания светильников своими руками. И главное, предложим источники света, которые легко и удобно оформить в самые необычные дизайнерские решения. Вам не нужно будет думать, где найти светодиоды, платформу для наклеивания их, паять провода и делать другие технические вещи. Мы уже подумали за вас и освобождаем вам время для фантазий и светлых идей оформления светильника!
Своими руками из дерева, металла, ткани, бумаги, пластика или ниток реализуют невероятные замыслы. Пример создания светильника из пластмассовых стаканчиков:
Светильник напольный своими руками из бумажных стаканчиков и гирлянды.
Настольный светодиодный светильник своими руками из картона. Внутри спрятана led лампочка.
Потолочный светильник своими руками под старину.
Светильник для потолка своими руками из дерева и металлических терок.
Настенный светодиодный светильник своими руками из бумаги (оригами).
Настенный LED светильник из фанеры.
Применение декоративных самодельных светильников
Самодельные светильники отлично выполняют роль декоративного освещения. Их редко используют для основного освещения. Для изготовления используются материалы плохо пропускающие свет, а источники света ограничены размером или мощностью. Чтобы избежать повреждения конструкции, в качестве источника света рекомендуется использовать слабо нагревающиеся светодиодные лампы или ленты, которые, в отличии от ламп накаливания, угрозы возгорания не несут.
Самодельные светильники в качестве основного освещения
В качестве основного освещения самодельные светильники все чаще используются благодаря технологичным, мощным и безопасным источникам света.
Самодельный светильник на основе светодиодного светильника Армстронг 595х595.
Светодиодный светильник для основного освещения.
Лампа потолочная своими руками из бумаги. светодиодные матрицы OPPLE безопасны как источник света в данной конструкции, так как не нагревается.
Как сделать своими руками светодиодный светильник?
Например, тонкие (5 мм) светодиодные светильники 600х600 (система армстронг) можно взять в качестве основы.
Светодиодная панель Армстронг Slim Panel EcoMax II OPPLE
Светодиодный самодельный светильник на основе светодиодной панели Армстронг 600х600.
Мощной альтернативой стали светодиодные модули для изготовления светильников своими руками из подручных средств. Множество размеров и форм позволяет создавать напольные, настенные, потолочные или подвесные светильники необычного дизайна и высокой мощности. Используется для ремонта старого светильника или для разработки своей собственной уникальной световой конструкции.
Светодиодные модули OPPLE Led Module для ремонта и замены старой лампы или создания своими руками нового светильника.
Модуль из светодиодов с регулировкой температуры света и пультом дистанционного управления.
Драйвер и вся необходимая электроника уже встроены в светодиодные матрицы OPPLE. В отличие от светодиодных лент, матрица (модуль) подключаются напрямую к сети 220 вольт. Светодиодный модуль OPPLE компактен в размерах, имеет продуманное охлаждение, а каждый светодиод на нём оснащен собственной линзой для наиболее равномерного распределения света.
Линза на каждом светодиоде для наиболее равномерного распределения света.
Маленький модуль на 12 Вт (аналог 95 Вт) подходит для декоративных самодельных светильников:
Декоративный светодиодный светильник из дерева под старину.
Светильник подвесной своими руками из бумаги (оригами кусудама).
Для самых ярких решений разработан модуль на 80 Вт (аналог 600 Вт) с пультом дистанционного управления, регулировкой яркости (встроенный диммер) и изменяемой температурой света от теплого света (3000 К) до холодного (6000 К).
Как сделать из подручных материалов яркий светодиодный светильник с пультом управления, регулировкой яркости и температуры света от теплого до холодного.
Оригинальные светильники стало возможно сделать технологичными и еще более необычными благодаря различным световым настройкам. Теперь можно играть температурой света (от желтого до белого) и регулировать яркость света.
Важно, что у светодиодных модулей OPPLE продуманная система охлаждения и они почти не нагреваются. Это даёт возможность создавать дизайнерские решения из любимых материалов: светильники из дерева, подвесные светильники из бумаги, настенные светильники из фанеры, напольные из подручных материалов. Теперь как никогда просто создавать своими руками самодельные LED светильники.
Светодиодный модуль OPPLE.
Настольная лампа (ночник) из дерева (фанеры) своими руками.
Самодельный светодиодный (ЛЕД) светильник из бумаги.
Потолочный подвесной светильник в стиле лофт сделанный своими руками.
Накладная лампа самодельная из ткани.
Идея самодельного LED светильника из перьев.
Как сделать кованый светильник своими руками.
Выберите свой светодиодный модуль для самодельного светильникаКогда готов самодельный светильник, матрицы OPPLE из светодиодов прекрасно дополнят результат творчества высокотехнологичным акцентом. Маломощные светодиодные модули для декоративных светильников или яркие с пультом дистанционного управления подойдут для больших светильников из группы основного освещения. Используйте их для создания оригинальных как потолочных, так и настенных или настольных ламп и светильников. Один пульт может управлять сразу несколькими матрицами OPPLE. Светодиодные матрицы подключаются напрямую в сеть 220 В и дополнительных доработок не требуют.
Другие интересные проекты и обзоры:
LED светильники своими руками
Постепенно приборы освещения переходят на светодиодные лампы. Произошло это не сразу, был затяжной переходный период с применением так называемых экономок – компактных газоразрядных лампочек со встроенным блоком питания (драйвером) и стандартным патроном Е27 или Е14.
Такие лампы широко применяются и сегодня, поскольку их стоимость в сравнение с LED источниками света не такая «кусачая».
При неплохом балансе цены и экономичности (разница в цене с обычными лампами накаливания со временем окупается за счет экономии электроэнергии), газоразрядные источники света имеют ряд недостатков:
Недостатка два:
- Направленность светового потока предъявляет высокие требования при конструировании рассеивателя.
- Все-таки они дорого стоят (речь идет о качественных брендах, безымянные изделия среднего уровня вполне доступны).
Если ценовой вопрос регулируется подбором производителя, то конструктивные особенности не всегда позволяют просто заменить лампу в любимой люстре. Разумеется, есть богатый выбор классических грушевидных LED ламп, которые подходят под любой размер.
Но именно в этой конструкции кроется «засада».
Перед нами качественная (при этом относительно недорогая) лампа с яркостью свечения 1000 Lm (эквивалент 100 ваттной лампы накаливания), и потребляемой мощностью 13 Вт. У меня такие LED источники света работают по много лет, светят приятным теплым светом (температура 2700 K), и никакой деградации яркости со временем не наблюдается.
Но для мощного света, требуется серьезное охлаждение. Поэтому корпус у этой лампы на 2/3 состоит из радиатора. Он пластиковый, не портит внешний вид, и достаточно эффективен. Из конструкции следует главный недостаток – реальным источником света является полусфера в верхней части лампы. Это затрудняет подбор светильника – не в каждой рожковой люстре такая лампа будет выглядеть гармонично.
Есть лишь один выход – покупать готовые LED светильники, конфигурация которых изначально рассчитана под конкретные источники света.
Ключевое слово – покупать. А куда девать любимые торшеры, люстры и прочие светильники в квартире?
Поэтому было принято решение конструировать LED лампы самостоятельно
Основной критерий – минимизация стоимости.
Есть два основных направления при разработке светодиодных источников света:
1. Применение маломощных (до 0.5 Вт) светодиодов. Их требуется много, можно сконфигурировать любую форму. Не нужен мощный радиатор (мало греются). Существенный недостаток – более кропотливая сборка.
2. Использование мощных (1 Вт – 5 Вт) LED элементов. Эффективность высокая, трудозатраты в разы меньше. Но точечное излучение требует подбора рассеивателя, и для реализации проекта нужны хорошие радиаторы.
Для экспериментальных конструкций я выбрал первый вариант. Самое недорогое «сырье»: 5 мм светодиоды с рассеиванием 120° в прозрачном корпусе. Их называют «соломенная шляпа».
Характеристики следующие:- прямой ток = 20 мА (0.02 А)
- падение напряжения на 1 диоде = 3,2-3,4 вольта
- цвет – теплый белый
Такое добро продается по 3 рубля пучок на любом радиорынке.
В качестве блоков питания (точнее сказать источников тока), я решил использовать проверенную схему с гасящим (балластным) конденсатором. Достоинства такого драйвера – экстремальная дешевизна, и минимальное потребление энергии. Поскольку нет ШИМ контроллера, или линейного стабилизатора тока – лишняя энергия в атмосферу не уходит: в этой схеме нет элементов с рассеивающим тепло радиатором.
Недостаток – отсутствие стабилизации тока. То есть, при нестабильном напряжении электросети, яркость свечения будет меняться. У меня в розетке ровно 220 (+/- 2 вольта), поэтому такая схема в самый раз.
Элементная база тоже не из дорогих.
- диодные мосты серии КЦ405А (можно любые диоды, хоть Шоттки)
- пленочные конденсаторы с напряжением 630 вольт (с запасом)
- 1-2 ваттные резисторы
- электролитические конденсаторы 47 mF на 400 вольт (можно взять емкость побольше, но это выходит за рамки экономности)
- такие мелочи, как макетная плата и предохранители, обычно есть в арсенале любого радиолюбителя
Чтобы не изобретать корпус с патроном Е27, используем сгоревшие (еще один повод от них отказаться) экономки.
После аккуратного (на улице!) извлечения колбы со ртутными парами, остается прекрасная заготовка для творчества.
Основа основ – расчет и принцип работы токового драйвера с гасящим конденсатором
Типовая схема изображена на иллюстрации:
Как работает схема:
Резистор R1 ограничивает скачок тока при подаче питания, пока схема не стабилизируется (около 1 секунды). Значение от 50 до 150 Ом. Мощность 2 Вт.
Резистор R2 обеспечивает работу балластного конденсатора. Во-первых, он его разряжает при отключении питания. Как минимум для того, чтобы вас не тряхнуло током при выкручивании лампочки. Вторая задача – не допустить токового броска в случае, когда полярность заряженного конденсатора и первой полуволны 220 вольт не совпадают.
Собственно, гасящий конденсатор С1 – основа схемы. Он является своеобразным фильтром тока. Подбирая емкость, можно установить любой ток в цепи. Для наших диодов он не должен превышать 20 мА в пиковых значениях напряжения сети.
Далее работает диодный мост (все-таки светодиоды – это элементы с полярностью).
Электролитический конденсатор C2 нужен для предотвращения мерцания лампы. Светодиоды не имеют инертности при включении-выключении. Поэтому глаз будет видеть мерцание с частотой 50 Гц. Кстати, этим грешат дешевые китайские лампы. Проверяется качество конденсатора с помощью любого цифрового фотоаппарата, хоть смартфона. Посмотрев на горящие диоды через цифровую матрицу, можно увидеть моргание, неразличимое для человеческого глаза.
Кроме того, этот электролит дает неожиданный бонус: светильники выключаются не сразу, а с благородным медленным затуханием, пока емкость не разрядится.
200 – это константа (частота сети 50Гц * 4)
1,41 – константа
С – емкость конденсатора С1 (гасящего) в фарадах
U сети – предполагаемое напряжение сети (в идеале – 220 вольт) U led – суммарное падение напряжения на светодиодах (в нашем случае – 3,3 вольта, помноженное на количество LED элементов)Подбирая количество светодиодов (с известным падением напряжения) и емкость гасящего конденсатора, надо добиться требуемого тока. Он должен быть не выше указанного в характеристиках светодиодов. Именно силой тока вы регулируете яркость свечения, и обратно пропорционально – срок жизни светодиодов.
Для удобства можно создать формулу в Exel.
Схема проверена неоднократно, первый экземпляр собран почти 3 года назад, трудится в светильнике на кухне, сбоев в работе не было.
Переходим к практической реализации проектов. Количество LED элементов и емкость конденсатора в отдельных схемах обсуждать нет смысла: проекты индивидуальные для каждого светильника. Рассчитывались строго по формуле. Приведенная выше схема на 60 светодиодов с конденсатором на 68 микрофарад – не просто пример, а реальный расчет для тока в цепи 15 мА (для продления жизни светикам).
LED лампа в рожковую люстру
Выпотрошенный патрон от экономки используем в качестве корпуса для схемы и несущей конструкции. В этом проекте я не использовал макетную плату, собрал драйвер на кругляше из ПВХ толщиной 1 мм. Получилось как раз в размер. Два конденсатора – по причине подбора емкости: не нашлось нужного количества микрофарад в одном элементе.
В качестве корпуса для размещения LED элементов использована баночка от йогурта. В конструкции также использовал обрезки листов вспененного ПВХ 3 мм.
После сборки получилось аккуратно и даже красиво. Такое расположение патрона связано с формой люстры: рожки направлены вверх, на потолок.
Далее размещаем светодиоды: по схеме 150 шт. Протыкаем пластик шилом, трудозатраты: один полноценный вечер.
Забегая вперед, скажу: материал корпуса себя не оправдал, слишком тонкий. Следующий светильник был изготовлен из листового ПВХ 1 мм. Для придания формы рассчитал развертку конуса на те же 150 диодов.
Получилось не так изящно, но надежно, и отлично держит форму. Лампа полностью скрыта в рожке люстры, поэтому внешность не столь важна.
Собственно, установка.
Светит равномерно, в глаза не бьёт.
Люмены не мерял, по ощущениям – ярче, чем лампа накаливания 40 Вт, немного слабее 60 Вт.
LED лампа в плоский потолочный светильник на кухню
Идеальный донор для подобного проекта. Все светодиоды буду расположены в одной плоскости.
Рисуем шаблон, вырезаем матрицу для размещения LED элементов. При таком диаметре плоский лист ПВХ будет деформироваться. Поэтому я использовал донышко от пластикового ведра из-под строительных смесей. По внешнему контуру есть ребро жесткости.
Диоды устанавливаются с помощью привычного шила: 2 дырки по разметке.
Светильник рассчитан на 120 LED элементов, разбитых на 2 группы по 60 шт., для надежности схемы. Изготавливаем 2 одинаковых драйвера.
Монтируем их на диэлектрических проставках с обратной стороны.
Для крепления диска, в центре устанавливаем подиум из ПВХ.
Вешаем светильник на потолок, включаем – все работает.
Для оценки яркости: по углам расположены 4 фирменных LED лампы от IKEA, со светоотдачей по 400 Lm.
LED светильник для санузла
Тоже легко реализуемый проект. Извлекаем содержимое светильника, устанавливаем матрицу на 30 светодиодов, и соответствующий драйвер.
Свет мягкий, равномерный, для данной «комнаты» более чем достаточно.
Настольная лампа
В качестве корпуса использован колпачок от дезодоранта.
Патрон Е27 традиционно от сгоревшей экономки.
В корпус вместилось 55 светодиодов.
Получилось компактно и аккуратно.
В настольной лампе «инсталляция» смотрится, как родная.
И светит вполне уверенно.
LED освещение компьютерного столаРебенок, вдохновленный успехами папы, попросил подсветку для компьютерного стола. Была найдена какая-то изящная коробочка, в которую поместился драйвер.
В качестве корпуса я применил короб для прокладки кабеля. Размер профиля: 10*10 мм.
Чтобы свет не бил в глаза, а был направлен сверху вниз, конструкция разместилась на уголке со стороной 25 мм, из белого ПВХ.
Итог:
Все работы выполнены из компонентов, которые практически ничего не стоят. Кроме того, это прекрасный повод попрактиковаться в радиоделе.
схемы, фото, видео — Asutpp
Экономные лампы освещения уже есть практически в каждом доме. Предлагаем рассмотреть, как сделать светодиодный светильник своими руками, какие материалы для этого потребуются, а так же советы о том, по каким критериям их необходимо выбирать.
Пошаговая разработка светодиодного светильника
Первоначально, перед нами стоит задача – проверить работоспособность светодиодов и измерить питающее напряжение сети. При настройке данного устройства для предотвращения поражения электрическим током мы предлагаем использовать разделительный трансформатор 220/220 В. Это так же обеспечит более безопасное проведение измерений при настройке нашего будущего светодиодного светильника.
Нужно учесть, что если какие-либо элементы схемы будут подключены неправильно, возможен взрыв, так что строго следуйте инструкции, приведенной ниже.
Чаще всего проблемы неправильной сборки заключается именно в некачественной спайке компонентов.
При расчетах для измерения падения напряжения тока потребления светодиодов нужно использовать универсальный измерительный мультиметр. В основном такие самодельные светодиодные светильники используются на напряжении 12 В, но наша конструкция будет рассчитана на сетевое напряжение 220 В переменного тока.
Видео: Светодиодный светильник в домашних условиях
Высокая светоотдача достигается на диодах при токе 20-25 мА. Но дешевые светодиоды могут давать неприятное голубоватое свечение, которое еще и очень вредно для глаз, поэтому мы советуем разбавлять самодельный светодиодный светильник небольшим количеством красных светодиодов. На 10 дешевых белых будет достаточно 4 светодиода красного свечение.
Схема довольно проста и разработана для питания светодиодов непосредственно от сети, без дополнительного блока питания. Единственным недостатком такой схемы является то, что все ее компоненты не изолированы от питающей сети и светодиодный светильник не обеспечит защиту от возможного удара током. Так что будьте осторожны при сборке и установке данного светильника. Хотя в дальнейшем схему можно будет модернизировать и изолировать от сети.
Упрощённая схема светильника- Резистор на 100 ОМ при включении защищает схему от бросков напряжения, если его нет, нужно использовать выпрямительный диодный мост большей мощности.
- Конденсатор 400 нФ ограничивает силу тока, которая необходима для нормального свечения светодиодов. При необходимости можно добавить еще светодиодов, если их суммарное потребление тока не превышает предела, установленного конденсатором.
- Убедитесь в том, что используемый конденсатор рассчитан на рабочее напряжение не менее 350 В, оно должно в полтора раза превышать напряжение сети.
- Конденсатор 10 мкФ необходим, чтобы обеспечить стабильный источник света, без мерцаний. Его номинальное напряжение должно быть в два раза больше того, что измеряется на всех последовательно соединенных светодиодах во время работы.
На фото вы видите сгоревшую лампу, которая скоро будет разобрана для светодиодного светильника своими руками.
Перегоревшая лампочкаЛампу разбираем, но очень осторожно, чтобы не повредить цоколь, после этого очищаем его и обезжириваем спиртом или ацетоном . Особое внимание уделяем отверстию. Его очищаем от лишнего припоя и еще раз обрабатываем. Это необходимо для качественной пайки компонентов в цоколе.
Фото: патрон лампыВставляем в него резистор на 100 Oм и два конденсатора по 220 нФ напряжением 400 В.
Фото: резисторы и транзисторТеперь нужно впаять крошечный выпрямитель, мы используем для этих целей обычный паяльник и уже заранее приготовлены диодный мост и обрабатываем поверхность, работаем очень аккуратно, чтобы не повредить ранее установленные детали.
Фото: пайка выпрямителяВ качестве изоляционного слоя модно использовать клей простого монтажного термопистолета. Подойдет так же ПВХ трубка, но желательно воспользоваться специально предназначенным для этого материалом, заполняющим все пространство между деталями и одновременно фиксируя их. У нас получилась готовая основа для будущего светильника.
Фото: клей и патронПосле этих манипуляций приступаем к самому интересному: установки светодиодов. Используем как основу специальную монтажную плату, её можно купить в любом магазине электронных компонентов или даже извлечь из какой-нибудь старой и ненужной техники, предварительно очистив плату от ненужных деталей.
Фото: светодиоды на доскеОчень важно проверить каждую из наших плат на работоспособность, ведь иначе весь труд зря. Особенное внимание уделяем контактам светодиодов, при необходимости их дополнительно очищаем и зауживаем.
Теперь собираем конструктор, нужно припаять все платы, у нас их четыре, к конденсатору. После этой операции снова все изолируем клеем, проверяем соединения диодов между собой. Располагаем платы на одинаковом расстоянии друг от друга, чтобы свет распространялся равномерно.
Соединение светодиодовТакже без дополнительных проводов подпаиваем конденсатор 10 мкФ, это хороший опыт пайки для будущих электриков.
Готовая мини лампаДалее дело за малым: припаиваем резистор на 100 Ом, он может подсоединяться к любой из плат, и изолируем клеем контакты.
Резистор и лампаВсе готово. Мы советуем накрыть нашу лампу абажуром, т.к. светодиоды излучают чрезвычайно яркий свет, который очень бьет по глазам. Если поместить наш самодельный светильник в «огранку» из бумаги, к примеру, или ткани, то получится очень мягкий свет, романтичный ночник или бра в детскую. Поменяв мягкий абажур на стандартный стеклянный, мы получим достаточно яркое свечение, не раздражающее глаз. Это хороший и очень красивый вариант для дома или дачи.
Если вы хотите сделать питание лампы на батарейках или от USB, нужно исключить из схемы конденсатор на 400 нФ и выпрямитель, подключив схему непосредственно к источнику постоянного тока напряжением 5-12 В.
Это неплохой прибор для подсветки аквариума, но нужно подобрать специальную влагозащищенную лампу, ее можно найти посетив любой магазин электромеханических приборов, такие существуют в любом городе, будь-то Челябинск или Москва.
Фото: лампа в действииСветильник в офис
Можно сделать креативный настенный, настольный светильник или напольный торшер в рабочий кабинет из нескольких десятков светодиодов. Но для этого будет поток света будет недостаточен для чтения, здесь нужен достаточный уровень освещенности рабочего места.
Для начала нужно определить количество светодиодов и номинальную мощность.
После выяснить нагрузочную способность выпрямительного диодного моста и конденсатора. Подключаем группу светодиодов на отрицательный контакт диодного моста. Подключаем все светодиоды, как показано на рисунке.
Схема: подключение ламп
Паяем все 60 светодиодов вместе. Если нужно подсоединять дополнительные светодиоды, просто продолжайте последовательную их спайку плюса к минус. Используйте провода, чтобы соединить минус одной группы светодиодов с последующей, пока не завершится весь процесс сборки. Теперь добавьте диодный мост. Подключите его, как показано на рисунке ниже. Положительный вывод к положительному проводу первый группы светодиодов, соедините отрицательный вывод к общему проводу последнего светодиода в группе.
Короткие провода светодиодовДальше нужно подготовить цоколь старой лампочки, отрезав провода от платы и припаять их к входам переменного напряжения на диодном мосте, отмеченные знаком ~. Вы можете использовать пластиковые крепления, винты и гайки для соединения двух плат вместе, если все диоды размещены на отдельных платах. Не забываем залить платы клеем, изолируя их от короткого замыкание. Это достаточно мощный сетевой светодиодный светильник, который прослужит до 100 000 часов непрерывной работы.
Добавляем конденсатор
Если увеличить напряжение питание на светодиодах, для того, чтобы свет был ярче, то светодиоды начнут нагреваться, из-за чего значительно понижается их долговечность. Для того чтобы этого избежать, нужно соединить встраиваемый или настольный светильник на 10 Вт с дополнительным конденсатором. Просто подключите одну сторону цоколя к минусовому выходу мостового выпрямителя а положительный, через дополнительный конденсатор, к плюсовому выводу выпрямителя. Вы можете использовать 40 светодиодов вместо предложенных 60, увеличив тем самым общую яркость лампы.
Видео: как правильно сделать светодиодный светильник своими руками
При желании аналогичный светильник можно сделать и на мощном светодиоде, просто тогда понадобится уже конденсаторы другого номинала.
Как видите, особой сложности сборка или ремонт обычного светодиодного светильника, сделанного своими руками, не представляет. И это не займет много времени и сил. Такая лампа подойдет и как дачный вариант, например для теплицы, ее свет абсолютно безвреден для растений.
Как сделать светодиодный фонарь своими руками: самодельные светодиодные светильники
Светодиод — это полупроводниковое устройство, позволяющее преобразовывать электрический ток в световое излучение. Одна светодиодная лампа на 220 вольт позволяет сэкономить огромное количество электроэнергии. Экономия выходит в 2 раза больше лампы дневного света и в 10 раз, чем лампа накаливания. Если использовать для изготовления такой лампы детали от перегоревшего светильника, можно значительно снизить расходы. Светодиодную лампу своими руками можно собрать достаточно просто. Но не стоит забывать, что для этого необходимо иметь соответствующую квалификацию, так как придётся работать с высоким напряжением.
Преимущества светодиодов
В наше время можно найти огромное количество видов люстр со светодиодными лампами в магазинах. У них есть разные преимущества и недостатки. Модернизация энергосберегающих ламп позволяет воспользоваться всеми преимуществами люминесцентного света. Это касается самых распространённых светильников с цоколем E 27. А старые представители этого семейства были наделены неприятным мерцанием. Люминесцентные источники света — это действительно настоящее чудо. По сравнению с ними лампы накаливания очень сильно сдают свои позиции. Их высокое потребление энергии и низкую светоотдачу не перекрывает высокий индекс цветопередачи.
Долговечность — это главный их плюс. Механически он прочен и надёжен. Известно, что его срок работы может достигать до 100 000 часов. А также они считаются экологически чистыми источниками света в отличие от люминесцентных ламп, которые, в свою очередь, содержат ртуть. Но как известно, у ламп дневного света есть некоторые недостатки:
- Пары, которые содержатся в трубках довольно ядовитые.
- Из-за частого включения-выключения быстро могут выйти из строя.
- Сама конструкция требует определённой утилизации.
Лампу на светодиодах можно считать второй революцией в области освещения. Она работает в 5−10 раз дольше, более экономично и не требует никакой особой утилизации. Хотя есть несущественный недостаток — она намного дороже.
Для того чтобы убрать этот маленький минус и обернуть его в хороший плюс, можно соорудить лампу из светодиодной ленты своими руками. Таким способом можно снизить стоимость источника света. Она будет намного ниже, чем у люминесцентных аналогов. А также такая лампа будет обладать рядом преимуществ:
- Срок службы лампы составит рекордные 100 000 часов, но только при правильной сборке.
- Стоимость самодельного устройства не выше, чем у люминесцентной лампы.
- Эффективность ватт/люмен намного превосходит все аналоги.
Но также имеется один недостаток — на это изделие отсутствует гарантия. Она должна компенсироваться мастерством электрика и точным соблюдением инструкции.
Самодельные светильники
Для создания лампы своими руками имеется огромное количество способов. Использование старого цоколя от прогоревшей люминесцентной лампы является самым распространённым методом. Такие ресурсы имеются в каждом доме, поэтому с их поиском проблем не будет. А также понадобится:
- Диодный мост или выпрямительные диоды 1N4007.
- Цоколь, который можно взять от перегоревшего изделия.
- Непосредственно led. Они продаются в магазинах в виде лент или отдельных светодиодов НК6. Один из этих элементов имеет силу тока примерно 100−120 мА и напряжение около 3−3,3 Вольт.
- А также может потребоваться каркас, на который будут устанавливаться светодиоды. Пластик подойдёт для каркаса. Он не может быть металлическим, токопроводящим и должен быть с теплоустойчивой подложкой.
- Предохранитель, который также можно найти в перегоревшей лампе.
- Конденсатор и его ёмкость.
- Для крепкого скрепления светодиодов к каркасу можно взять суперклей или жидкие гвозди.
В некоторых схемах может и не пригодиться один или два элемента из этого списка. Однако в других могут, наоборот, понадобится новые звенья цепи, например: драйвера или электролиты. В каждом конкретном случае нужно индивидуально составлять список необходимых материалов.
Как сделать светодиодный светильник своими руками
Чтобы приступить к монтажу лампы, необходимо подготовить две испорченные люминесцентные лампы с мощностью в 13 Вт и длиной полметра. Нет никакого смысла покупать новые, лучше всего найти неработающие старые. Но их обязательно нужно проверить на наличие трещин и сколов.
Далее в магазине необходимо приобрести светодиодную ленту. К этому нужно подойти ответственно, так как выбор очень велик. Лучше всего подойдут ленты с естественным или чисто-белым светом. Так как они не изменяют оттенки окружающих предметов и являются сверхяркими. Обычно в этих лентах светодиоды собраны в группы по три штуки. Мощность одной группы — 14 Вт, а напряжение — 12 вольт на метровую ленту.
После чего нужно произвести разборку люминесцентных ламп на составные части. Необходимо действовать очень осторожно — не повредить провода и не разбить трубку, так как в этом случае вырвутся ядовитые пары. Все извлечённые внутренности не стоит выбрасывать. Они могут пригодиться в дальнейшем. Далее необходимо разрезать ленту на участки по 3 диода. После этого стоит достать дорогие и ненужные преобразователи. Большие крепкие ножницы или кусачки лучше всего подойдут для того, чтобы разрезать ленту.
В итоге должно оказаться 22 группы по 3 led или 66 светодиодов, которые должны быть подключены параллельно по всей длине. Чтобы преобразовать переменный ток в постоянный, необходимо стандартное напряжение 220 вольт увеличить до 250 в электрической сети. Это связано с процессом выпрямления. Следующим шагом будет выяснение количества секций светодиодов. Для этого необходимо разделить 250 вольт на 12 вольт (напряжение для 1 группы по 3 шт.). Получив в итоге 20,8 (3), нужно округлить в большую сторону — получится 21 группа. Лучше всего добавить ещё одну группу, так как общее количество светодиодов будет делиться на две лампы. А делить чётное количество намного легче.
Далее понадобится выпрямитель постоянного тока, который можно найти в извлечённых внутренностях люминесцентной лампы. При помощи кусачек извлекаем конденсатор из общей цепи преобразователя. Произвести это действие довольно легко, поскольку он находится отдельно от диодов, стоит только отломить плату.
Воспользовавшись суперклеем и пайкой, необходимо собрать всю конструкцию. Не стоит пытаться уместить все 22 секции в один светильник. Как говорилось выше, нужно найти 2 полуметровые лампы, так как разместить все светодиоды в одной просто невозможно. Не нужно рассчитывать на самоклеящийся слой, который располагается с обратной стороны ленты. Он не сможет прослужить долгое время. Поэтому для закрепления светодиодов лучше воспользоваться суперклеем или жидкими гвоздями.
Подводя итоги, можно разобрать все достоинства собранного изделия. Количество света у получившихся ламп в 1,5 раза больше, чем у аналогов. А вот потребляемая мощность намного меньше, чем у ламп дневного света. Срок службы этого источника света будет примерно в 10 раз больше. И также одно из преимуществ — это направленность света. Он направлен строго вниз и не имеет возможности рассеиваться. Поэтому лучше всего будет использоваться у рабочего стола или на кухне. Однако испускаемый свет не отличается высокой яркостью, но имеет низкое энергопотребление.
Постоянное использование лампы во включённом состоянии за год съест всего 4 кВт энергии. Стоимость потребляемой электроэнергии в год можно сопоставить со стоимостью билета в городском транспорте. Поэтому такие источники света часто используют там, где требуется постоянная подсветка, к примеру:
- Улица.
- Коридор.
- Подсобка.
- Аварийное освещение.
Простая лампочка из светодиодов
Есть другой способ создания светильника. Настольная лампа, люстра или фонарь нуждаются в цоколе E14 или E27. Соответственно, используемые диоды и схема будут отличаться. Сейчас распространены компактные люминесцентные лампы. Для монтажа понадобится один перегоревший патрон, а также изменённый список материалов. Необходимо:
- Перегоревший цоколь E27.
- Светодиоды НК6.
- Драйвер RLD2−1 (блок питания).
- Суперклей.
- Электрическая проводка.
- Кусок картона или пластика для подложки.
- Плоскогубцы, ножницы, паяльник и другие инструменты.
Перейдём к созданию светодиодного модуля своими руками. Для начала надо произвести разборку старого светильника. В люминесцентных лампах цоколь крепится к пластинке с трубками и закрепляется при помощи защёлок. Цоколь можно отсоединить достаточно просто. Необходимо, найдя места с защёлками, поддеть их отвёрткой. Делать нужно всё довольно осторожно, чтобы не повредить трубки. При вскрытии необходимо следить, чтобы электропроводка, которая ведёт к цоколю, осталась цела.
Из верхней части с газоразрядными трубками нужно изготовить пластинку, к которой будут прикрепляться светодиоды. Для этого нужно отсоединить трубки лампочки. В оставшейся пластинке имеется 6 отверстий. Чтобы светодиоды плотно крепились в ней, нужно сделать картонное или пластмассовое «дно», которое также будет изолировать светодиоды. Использовать нужно светодиоды НК6, они многокристальные (по 6 кристаллов в диоде) с параллельным подключением.
Из-за этого источник света получается сверхярким при минимальной мощности. В крышке нужно сделать по 2 отверстия для каждого светодиода. Прокалывать отверстия стоит аккуратно и равномерно, чтобы их расположение соответствовало друг другу и задуманной схеме. Если использовать в качестве «дна» кусок пластмассы, то светодиоды будут закрепляться прочно. А вот в случае применения куска картона потребуется склеить основание со светодиодами при помощи суперклея или жидких гвоздей.
Так как лампочка будет использоваться в сети с напряжением 220 вольт, то потребуется драйвер RLD2−1. К нему можно подсоединить 3 диода по 1 ватту. Для этой лампы ушло 6 светодиодов с мощностью по 0,5 ватт. Из этого следует, что схема соединения будет образовываться из двух последовательно соединённых частей из трёх параллельно подсоединённых светодиодов.
Перед тем как приступить к сборке, нужно изолировать драйвер и плату друг от друга. Для этого можно воспользоваться кусочком картона или пластика. Это позволит избежать короткого замыкания в будущем. Не стоит беспокоиться о перегреве, так как лампа совсем не греется. Осталось собрать конструкцию и испытать её в деле. Из-за белого света лампочка кажется значительно светлее. Световой поток собранного светильника равняется 100−120 люменам. Этого может хватить для освещения маленького помещения (коридора или подсобки).
Виды светильников
Светильники на светодиодах можно разделить на две группы: индикаторные (светодиодные) — используются как индикаторы, поскольку они являются маломощными и неяркими. Зелёные лампочки на маршрутизаторе — это индикаторные светодиоды. Такие диоды есть и на телевизоре. Их применение довольно разнообразно. Например:
- Подсветка панели автомобиля.
- Различные электронные приборы.
- Подсветка компьютерных дисплеев.
Их цвета имеют огромное разнообразие: жёлтый, зелёный, красный, фиолетовый, голубой, белый и даже ультрафиолетовый. Стоит запомнить, что цвет светодиода не зависит от цвета пластика. Он определяется от типа полупроводникового материала, из которого он сделан. В большинстве случаев, чтобы узнать цвет, нужно включить его, так как они выполнены из бесцветного пластика.
Осветительная конструкция используется для освещения чего-либо. Имеет отличия по своей мощности и яркости. А также отличается очень сниженной ценой, поэтому нередко применяется в бытовом и промышленном освещении. Такой вид освещения считается производительным, экологическим и дешёвым. На сегодняшний день уровень развития технологии может позволить производить лампы с большим уровнем светоотдачи на 1 Ватт.
Светодиодный светильник своими руками
Света много не бывает. Приходится работать по вечерам и часто основного освещения не хватает. Выход – использовать дополнительный настольный светильник. Светодиоды дают много света, очень экономичны и долговечны. Поэтому светильник должен быть светодиодным. Его, конечно же, можно купить, но гораздо интереснее сделать его своими руками.
Итак, мне нужен настольный светильник. Буду делать его практически из подручных материалов и простыми инструментами. За идеальным исполнением гнаться мне ни к чему, но и торчащие во все стороны провода – тоже не вариант. Мой выбор – достаточно аккуратное, но предельно практичное исполнение. Питаться светильник будет от бытовой сети 220В.
Для светодиодного настольного светильника нужны светодиоды, драйвер к ним и корпус, где все это будет монтироваться.
Как-то по случаю я приобрел два десятка дешевых одноваттных светодиодов. Пришло их время!
Дешевые белые светодиоды теплого свечения мощностью 1Вт
Спаиваем их в 2 линейки.
Спаянные в линейки светодиоды
В качестве драйвера мне послужит модернизированный балласт энергосберегающей лампы. О подробностях этой переделки читайте в статье «Простой драйвер светодиода от сети 220В».
Драйвер, сделанный из балласта энергосберегающей лампы
Теоретически, мои светодиоды рассчитаны на ток до 350мА при падении напряжения 3В. Но это дешевые NoName светодиоды и я совсем не питаю иллюзий – думаю, реальный рабочий ток не должен превышать половину, т.е. 150мА. К тому же из 20 диодов один оказался сюрпризный (начинал моргать после разогрева). Я решил использовать 2 линейки по 9 светодиодов, соединенные параллельно. Мой «драйвер» настроен так, что будет выдавать примерно 220мА на две линейки – по 110мА на каждую. Получим примерно 6-7Вт света, будет очень экономично и для настольного светильника вполне достаточно.
Светодиоды, даже потребляя всего треть своего максимального тока, греются весьма существенно. Металлический корпус светильника будет весьма кстати. У меня в хозяйстве обнаружился алюминиевый уголок 25*25мм. Соорудим из него коробку 200*50*25мм.
Из этого добра будет собран корпус светильника
Отрезаем куски уголка и с помощью пленочного двухстороннего скотча собираем коробку.
Собранная коробка — корпус светильника
К сожалению, двухсторонний скотч не может заменить полноценное соединение (шурупами, например). Но для временного монтажа или чтобы ничего никуда не разъезжалось – пользоваться им очень удобно.
Получившуюся коробку нужно очень тщательно обработать напильников и мелкой наждачной бумагой – убираем все заусеницы и крупные царапины.
Далее берем вот такое чудо:
Самоклеющаяся пленка — ей будет обтянут корпус светильника
Это зеркальная серебристая и матовая темно-зеленая самоклеящиеся пленки. Пленки очень качественные и с могучим клеем. Ими будет обтянута моя коробка. Получится красиво, плюс, можно будет обойтись без шурупов и всего такого.
На металле не должно быть царапин и неровностей – они проступят через пленку. Перед поклейкой очистите поверхности от пыли и обезжирьте, например, изопропиловым спиртом. Заклеиваем зеркальной пленкой поверхность, где будут светодиоды, и торцевые грани. Получится как-то так.
Корпус светильника обтянут зеркальной пленкой
Чтобы получился настольный светильник, источник света нужно поднять и закрепить над столом. Для этих целей приспособим бесхозную штангу от минигравера. На ее вершине имеется отогнутый в сторону крюк. Он и будет удерживать коробку.
Для этого понадобится небольшой кусок П-обрасного профиля и 2 шурупа, которые, с одной стороны, будут крепить профиль к корпусу и, с другой стороны, служить зацепом и опорой для крюка штанги.
Крепление корпуса светильника к стойке
Прицеливаемся, размечаем и сверлим отверстия, но закреплять пока не будем.
Размечаем и максимально аккуратно вырезаем на пленке места под светодиоды.
Разметка и подготовка мест под светодиоды на корпусе
Светодиоды через термопасту будут передавать тепло прямо в алюминиевый корпус. Линейки светодиодов будут крепиться поперечными стяжками и, там где нужно, суперклеем.
Сверлим отверстия под стяжки и провода питания.
Корпус с подготовленными местами для светодиодов и отверстия для крепежа и проводов питания
Щедро смазав посадочные места термопастой, сажаем линейки светодиодов. Закрепляем их стяжками. В нужных местах используем суперклей.
Светодиоды уже закреплены на корпусе светильника
Внутрь коробки устанавливаем драйвер, выводим и подпаиваем провода питания.
Корпус светильника — что у него будет внутри
Электрические детали сажаются на толстый скотч, дополнительно фиксируются клеем.
Почти все готово. Сверху коробку можно закрыть подходящей пластиковой крышкой. Теперь берем темно-зеленую пленку и затягиваем боковые грани и крышку. Закрепляем и декорируем профиль крепления к штанге.
Вот теперь точно все. Вот что в итоге получилось.
Собранный корпус самодельного светодиодного светильника
Настольный светодиодный светильник в полный рост
Получился практичный и достаточно яркий настольный светодиодный светильник, собранный своими руками. Все предельно просто и потребовало всего несколько часов времени. И света стало больше! 🙂
Светодиодный светильник своими руками из люминесцентного
Технический прогресс двигается вперед с огромной скоростью. Источники света становятся все экономичней и миниатюрнее. Промежуточным звеном между светодиодными лампами и накаливания стали люминесцентные лампочки. Энергосберегайки были достаточно экономичны и долговечны, но зажигались не сразу и требовали времени на прогрев.
У меня на даче в прихожей стоял тонкий плоский люминсцентный светильник толщиной 3 см. Зажигался он очень тускло, уже успеешь раздеться, а он только начинает разгораться, в общем потемки одни. Так как потолок был низкий и отделан потолочной плиткой, толстый ставить было нельзя, головой его быстро снесут. Выбрасывать тоже жалко, выглядит симпатично.
И вот появились в продаже диодные лампы (лет 8 назад), но толщина в 30мм не позволяла за сунуть светодиодку. Поэтому она была разобрана и начинка интегрирована в новое тело.
Содержание
- 1. Характеристики донора
- 2. Разборка донора
- 3. Как сделать светодиодный светильник своими руками?
- 4. Проверяем нагрев
- 5. Результат модернизации
- 6. Ремонт светодиодных светильников своими руками
Характеристики донора
5 месяцев назад ради светодиодных модулей и драйверов в местном магазине были куплены светодиодки ASD на 11W за 103р. штука. Реальная мощность у них оказалась всего 8,5W. При этом они имели ряд значительных недостатков:
- корпус жутко вонял пластиком при нагреве;
- слишком маленький радиатор внутри;
- светодиоды без матовой колбы грелись до 95°, а с ней еще больше;
- в корпусе не было отверстий для вентиляции.
Начинка была хорошая за невысокую цену, но на радиаторе и пластике сильно сэкономили. Часть были разобраны на комплектующие, часть модернизированы и поставлены в кладовку и на лестничную площадку. Еще хочу поставить их в подъезде после того, как поставлю систему видеонаблюдения. А то шпана все таки утащила одну кукурузу, которая освещала домофон.
Разборка донора
Сковорода с источником света
Повторим вышеуказанный процесс модернизации с обычным круглым матовым светильником. Многие из читателей вообще никак не разбираются в светодиодах и не знают принцип работы. А паяльник в руках когда-то держали и очень хочется избавиться от энергосберегаек.
Сделать светодиодный светильник своими руками очень просто. Не надо заморачиваться с поиском пластинки со светодиодами и подбором драйвера к нему. Просто купите диодную лампу на 220В, там уже все есть, продаются везде.
Сперва демонтируем колбу, она бывает из пластика и стекла. Стекло у меня не получалось снять, вклеено сильно и всегда трескалось. Пластик обычно прочный поликарбонат, ломать сложно. Чтобы определить материал, попробуйте поцарапать, стекло не царапается.
Затем достаём модуль с 20 светодиодами SMD 5730 и драйвер с питанием от сети 220V. Белую термопасту обязательно сохраняем, вытирать не надо, она будет использована дальше.
Как сделать светодиодный светильник своими руками?
Перед установкой модуля в корпус светильника, необходимо убрать слой краски, для непосредственного контакта с металлом. Обводим пластинку из алюминия и шкурим этот квадрат.
Сверлим 2 отверстия для крепления пластины, подбираем пару болтов с гайками.
Перепаиваем провода питания, переносим с задней части на переднюю, чтобы они не мешали плотно прижимать.
Плату драйвера изолируем в целях предотвращения замыканий и соблюдения техники безопасности, ведь на ней 220 Вольт. Защитимся от поражений электрическим током при непосредственном прикосновении, и чтобы на корпусе не было фазы, если корпус металлический.
Смазываем дополнительно термопастой. У меня контакт с зашкуренным местом получился плохой, железо не очень толстое и деформировалось. Особенно когда кернил и сверлил. Пятно контакта проверяется по отпечатку пасты, чем больше, тем лучше. У меня получился контакт примерно на 30%, может и этого будет достаточно. Оказалось супруга во время приборки маленький пакетик с белым пластилином (термопаста) выбросила и мазать оказалось нечем. может хватит того, что осталось при разборке.
Проверяем нагрев
..Светодиодный накладной светильник включаем на 30 минут в открытом виде без крышки. Желательно чтобы нагрев не превышал 80°, в светодиодной лампе для дома модуль грелся до 95°. Так как изделие бюджетное, то качественные леды они туда точно не поставили, которые могут длительно работать при таком нагреве.
Если даже будет выше 80°, то это не так страшно, ведь он стоит в кладовке, работаю максимум по 30 минут в день. Таким образом он проработает не 100, а всего 30-50 лет, что тоже очень не плохо.
Конечно, хватило бы и штатного радиатора лампочки, который изначально стоит в ней в абсолютно замкнутых условиях без циркуляции воздуха. На открытом воздухе он охлаждался бы гораздо лучше, и вполне мог обеспечить приемлемую температуру около 80-85°.
Алюминиевый радиатор можно было одеть на керамический патрон с цоколем E27. Можно расправить из цилиндрической формы в плоскую. Но при разгибании алюминий не выдерживает деформации и начинает ломаться, соответственно теплопроводность в таком узком месте становится еще хуже.
Замеры показали в среднем 79,5°, это хороший показатель. Для объективности данных провел еще 10 замеров через различные промежутки времени. Всё в норме.
Результат модернизации
После сборки корпуса изделие получает законченный вид и готово к настенному монтажу, накладным образом.
Ремонт светодиодных светильников своими руками
Чтобы вам было проще разобраться в конструкции светодиодного светильника, считайте, что он конструктивно аналогичен диодной лампе. Как правило, имеет те же недостатки:
- перегрев LED;
- плохой контакт пластины с диодами и радиатора;
- плохая сборка;
- блок питания с плохой стабилизацией тока;
- слишком маленькая система охлаждения;
- колба сделана из матового пластика с низкой светопропускаемостью.
Чтобы определить неисправный элемент своими руками, вам потребуется замерять напряжение на проводах, идущих к диодному модулю:
- если напряжение есть, значит неисправен один из диодов в последовательной цепи;
- напряжения нет, значит проблема в драйвере, источнике тока.
Если есть опыт то можно перепаять самостоятельно. Если опыта нет, то можно обратится к соседу или мастеру.
Простая LED фитолампа для растений своими руками
Сегодня купить светодиодную фитолампу через интернет-магазины не составит труда. Это может быть лампочка с цоколем Е27 под стандартный светильник, мощный прожектор, собранный на COB-матрице или готовый фитосветильник на нескольких светодиодах. Вот только стоимость готовой продукции достойного качества слишком велика. К тому же размер и параметры стандартной подсветки не всегда отвечают требованиям растениеводов. Преодолеть данные препятствия можно, сконструировав светодиодные фитолампы для растений своими руками.
Расчёт необходимого света
Для того чтобы фитосветильник действительно ускорил рост растений, необходимо произвести корректный расчёт его параметров. Главной оптической характеристикой любого источника света является световой поток, который указывает на то, сколько световой мощности (люмен) выдаёт лампа. Его значение указывается на упаковке. В свою очередь, для растений основным показателем является освещённость, указывающая количество люмен в 1 м2.
Расчёт светового потока, необходимого для эффективной подсветки, производят по формуле Ф= E×S/Kи, где:
Ф – световой поток, лм;
E – требуемая освещённость, величина которой задаётся индивидуально для каждого вида растений, лк;
S – площадь, которую следует освещать, м2;
Ки – коэффициент, учитывающий потери света на рассеивание.
В ламповых светильниках с плохим отражателем за счёт отсутствия строго направленного свечения значение Ки может снижать КПД светильника более чем наполовину. Светодиод имеет направленное свечение, угол распространения которого определяется линзой. В связи с этим в светодиодных светильниках отражатель не столь сильно влияет на эффективность осветительной системы в целом, а Ки достигает 0,8–0,9 единиц.
И всё же подсветка рассады светодиодными лампами в домашних условиях зачастую нуждается в отражателе. Особенно это касается фитосветильников, сконструированных на основе светодиодных лент, где отражатель помогает сконцентрировать максимальное количество света на полезной площади.
Не стоит забывать о мощности светодиодного светильника и угле половинной яркости, часто именуемом как угол рассеивания. Иногда, даже правильно собранный фитосветильник оказывается неэффективным. Излишняя удалённость приводит к потерям световой мощности (закон обратных квадратов), а маленький угол рассеивания – к недосветам по краям.
Светодиоды испускают тепло в противоположную сторону относительно излучаемого светового потока. Поэтому их можно максимально приблизить к растениям, оставляя в запасе всего несколько сантиметров.Как сделать фитолампу и что для этого понадобится?
Для изготовления фитолампы своими руками понадобятся:
- светодиоды со специальным спектром излучения;
- источник питания;
- система охлаждения;
- корпус;
- вспомогательный материал и инструмент.
Чипы синих, красных и пурпурных фитосветодиодов встречаются в разных модификациях: в виде дискретных SMD-элементов или COB-матриц. Все они пригодны для изготовления светильника своими руками. Проще всего делать подсветку из готовой светодиодной ленты для растений, разрезав её на несколько отрезков. Сложнее – из отдельных SMD чипов или COB-матриц, для которых потребуется правильный расчёт радиатора.
Источник питания для светодиодов и матриц представляет собой драйвер со стабилизированным постоянным током на выходе, а для светодиодных лент – это источник напряжения +12В соответствующей мощности.
Пассивная система охлаждения является обязательным элементом светильника для растений. Она отвечает за соответствие оптических характеристик излучающих диодов в течение всего срока службы. О форме, размерах и материалах для изготовления радиатора рассказано в отдельной статье. В большинстве самодельных светильников радиатор одновременно является корпусом.
Кроме перечисленных светодиодов, в качестве источников света можно использовать фитодиоды, изготовленные по технологии УСКИ (универсальное сине-красное излучение). Они имеют уникальный спектр излучения, полученный за счёт особого состава люминофора. В данном случае люминофор выполняет функцию избирательного фильтра, пропуская волны преимущественно в синем, красном диапазоне, а также незначительную часть жёлтого и зелёного света. При этом синяя область имеет ширину 380–480 нм с небольшим переходом в ультрафиолет и пиком на длине волны 445 нм. Красная область намного шире, захватывает оранжевый и инфракрасный спектр, доля которых достигает 50%. Общая ширина красного излучения примерно составляет 570–770 нм с максимумом на 640–660 нм.
Благодаря расширенной спектральной характеристике, светодиоды УСКИ идеальны в конструировании ламп для растений своими руками. Светильник на их основе обеспечит растение полным циклом роста: от вегетативного развития до созревания плодов и может применяться для подсветки растений с крайне низкой долей солнечного воздействия.
Применение фитоленты
Чтобы сконструировать простой светодиодный светильник для растений, понадобится фитолента с блоком питания и недорогие детали для корпуса, в качестве которых можно использовать подручный материал. Светильник может иметь любую форму и размер, благодаря гибкости и возможности резать ленту на отрезки, кратные 5 см, а клейкое основание позволяет монтировать её на любую гладкую поверхность.
Оптимальным материалом для корпуса станет тонкая алюминиевая (в крайнем случае, жестяная) пластина, которая послужит прекрасным отводом тепла для светоизлучающих чипов ленты. В углах пластины нужно сделать крепёжные отверстия. Вся конструкция подвешивается на двух декоративных цепочках, которые цепляются за крюки-саморезы, вкрученные в стену. Переставляя звенья цепи можно регулировать высоту.
Мощная фитолампа с цоколем Е27 своими руками
Сделать эффективную и экономичную подсветку для рассады своими руками можно из нескольких светодиодных ламп, которые собирают из отдельных компонентов.
Для этого на нужно купить DIY-набор (например на Aliexpress), включающий все необходимые детали для сборки лампы, а именно:- пластиковый корпус и разборный металлический цоколь Е27;
- алюминиевый радиатор с саморезами;
- плата под smd-светодиоды;
- линзы с углом рассеивания 90° и держатель для них.
Отдельно приобретают синие и красные smd led, драйвер подходящей мощности, легкоплавкий припой и термопасту. Сборку начинают с монтажа светодиодов на плату при помощи фена и паяльника, разогретого до температуры 280°C. После этого к плате припаивают провода от драйвера и кратковременным включением проверяют схему на работоспособность. Убедившись в свечении всех чипов, переходят к сборке корпуса.
В местах контакта платы с радиатором наносят тонкий слой термопасты и прижимают их саморезами. Над всеми светодиодами устанавливают линзы, которые фиксируют держателем с винтами. Внутри пластикового корпуса размещают драйвер, выходные провода которого припаивают к плате, а входные прижимают к центральной и боковой части цоколя.
Одна такая фитолампа способна обеспечить полноценный досвет в вечернее время нескольким комнатным цветкам или рассаде, высаженной на площади до 0,25 м2.
Топ 4 ошибки при самостоятельной сборке фитосветильника
Сделать светодиодную лампу для растений своими руками несложно. Но всегда есть нюансы, о которых следует помнить, начиная со стадии проектирования. Перечислим основные ошибки, которые свойственны начинающим растениеводам:
Покупка дешёвых светодиодов. Каким бы хорошим ни был светильник, если в нём установлены светодиоды низкого качества, то результирующая эффективность будет крайне низкой. У фитосветодиода есть два основных параметра – это световой поток и спектр излучения, измерить которые без специальных приборов невозможно. Этим активно пользуются китайские производители, выдавая обычные синие и красные led за высококачественный продукт. Попасться на подделку очень легко, так как продавцы привлекают потенциальных покупателей всяческими заманчивыми предложениями, скидками и акциями.
Неправильный расчёт системы охлаждения. Эта распространённая ошибка для многих радиолюбителей, в том числе собирающих своими руками светодиодные светильники. Неважно, какой тип охлаждения выбран: пассивный или активный – радиатор должен быть всегда. Тем не менее, в китайских фитолампах мощностью более 20 Вт нередко можно встретить вентилятор, установленный непосредственно на тыльную сторону платы со светодиодами. Такое решение не обеспечивает отвод тепла должным образом. Любая система охлаждения должна состоять из:
- радиатора, способного равномерно рассеивать тепло от чипов;
- термопасты, улучшающей контакт радиатора с подложкой;
- блока защиты для отключения фитолампы при аварийном останове вентилятора.
Низкое качество сборки и комплектующих. С целью удешевления конструкции многие китайские фирмы используют некачественные детали при сборке светодиодных фитоламп. Не стоит ориентироваться на их изделия и пытаться что-либо скопировать. Все комплектующие должны быть надёжно скреплены между собой и иметь определённый запас прочности. Кроме этого корпус светильника не должен препятствовать естественной конвекции воздуха.
Нестабильность выходных параметров источника питания. Подать на светодиод номинальный и, главное, стабильный ток – значит гарантировать продолжительную работу всего светильника. Поэтому экономить на драйвере нельзя. Изготовить драйвер для небольшой светодиодной фитолампы для растений своими руками можно на основе LM317. При этом выходная модность драйвера должна быть в 1,2-1,5 раза больше мощности потребления светодиода.
Подводя итоги
На основании информации из разных источников, включая практические наблюдения и видеорепортажи с обзором различных фитоламп, можно сделать следующий вывод. На сегодняшний день ситуация на российском рынке такова, что выгоднее сделать подсветку для растений своими руками, чем купить готовый продукт. Дешёвые фитолампы имеют много недостатков, а фитосветильники высокого качества многим не по карману. Поэтому самодельный светодиодный светильник – это золотая середина.
Сделайте свою настольную светодиодную лампу: 26 ступеней (с изображениями)
Настольные лампы очень полезны и присутствуют в доме каждого человека. Люди используют их для чтения и учебы. Лампы КЛЛ — это наиболее часто используемые настольные лампы, но проблема с ними в том, что они потребляют слишком много энергии и их необходимо подключать к внешнему источнику питания. Светодиодные лампы намного дешевле и энергоэффективны, но покупка их в Интернете и магазинах стоит более 10 долларов. Что, если бы вы сделали его дома? Что ж, это может быть легко сделано с помощью дешевых и простых электронных компонентов.Так что изготовление их дома позволит скоротать ваше время и сэкономить деньги, так как это будет стоить всего около 5-18 долларов.
Вы, возможно, видели много инструкций по светодиодным лампам, но особенность этой лампы заключается в том, что она очень дешевая, так как в ней используются линейка из нержавеющей стали и картон для создания структуры, которые у большинства людей лежат. Для его изготовления не используется дерево, пластик или акрил, поэтому вам не потребуются специальные режущие инструменты.
Питается от двух герметичных свинцово-кислотных аккумуляторных батарей на 4 В и имеет 36 светодиодов, которые излучают достаточно света, чтобы легко читать в темноте.Он также имеет схему диммера, которая питается от микросхемы 555 ic и используется для изменения яркости лампы с помощью потенциометра. Лампу можно заряжать с помощью адаптера на 9 В.
Хотя я сделал подробное руководство и убедился, что его легко поймут новички, но если у вас есть какие-либо вопросы, связанные с инструкциями, не стесняйтесь спрашивать в любое время, а также помогите мне внести исправления, если я сделал какие-либо ошибки.
__________
Обновление:
Нелегко отвечать на каждый комментарий по такому количеству инструкций, поэтому вы можете связаться со мной для любой помощи / обсуждения / запроса.Мой адрес электронной почты: [email protected]
Чтобы получить больше таких замечательных поделок, подпишитесь на мой канал на YouTube.
Моя страница в Facebook: Сделайте с SA
Получите лучшее из запчастей от GearBest по разумной цене.
Также обратите внимание на текущие продажи:
Рекламная распродажа 3D-принтеров и электронных инструментов Fall
Arduino Best Deals
Creality3D CR — 10 3D-принтер (купон: GBCR10J) $ 396,99
Сделать освещение своими руками проще, чем когда-либо
Работа со светодиодным освещением не должна быть сложной.Вы, вероятно, подумали о крутой идее освещения, которую не пытались реализовать в прошлом. Почему нет? Я считаю, что большинство людей, таких как вы, считают, что они недостаточно образованы или недостаточно квалифицированы, чтобы самостоятельно создать идею светодиодного освещения.
Что ж, у меня для вас новости … Стой, оставь эту мысль «но я не могу». В этом посте я покажу вам, насколько легко можно настроить светодиодное освещение с помощью правильных продуктов!
Что нужно для создания светодиодной лампы
Когда-нибудь хотели построить светодиодную лампу? Теперь вы можете использовать всего 2 части!
С ростом популярности светодиодного освещения многие исследовали и связывались со мной, спрашивая, как создать небольшие светодиодные фонари, светодиодные лампы, светодиодные панельные светильники, даунлайты… вы называете это.Это положит начало обсуждению различных компонентов, необходимых для завершения настройки светодиода:
- Светодиоды для устройств поверхностного монтажа (SMD) или светодиодные модули
- Драйверы постоянного тока
- Источники питания переменного / постоянного тока
- Радиаторы
Этот список по понятным причинам может запутать новичка и сделать этот крутой световой проект головной болью. Прежде чем бросать проект в стопку «Сохранить на потом / Кто-то еще», вы должны знать, что есть способ использовать все эти компоненты для одного простого источника света.Двигателям светодиодных фонарей нужен только источник питания и немного воображения, чтобы создавать светодиодные фонари как для малых, так и для крупных приложений.
Удобные светодиоды — «Светодиодные двигатели»
Что такое светодиодный двигатель? Это светодиодный эквивалент обычной лампы. Световой двигатель обычно состоит из светоизлучающего диода (СИД), установленного на печатной плате с электрическими и механическими креплениями, что означает, что он готов к установке в светильник.
Наши светодиодные двигатели разработаны с учетом перечисленных выше компонентов и объединения их в единый корпус.Это устраняет барьеры для входа для людей, таких же, как и вы, которые хотят разработать систему светодиодного освещения, не лезя через голову. Звучит слишком хорошо, чтобы быть правдой? Посмотрите, как мы разработали эти светодиодные фонари.
Проектирование светодиодных ламп «все в одном»
После множества звонков и запросов здесь, в LEDSupply, я понял, что нам нужно больше светодиодных источников света, которые могли бы использовать постоянный вход 12-24 В постоянного тока и загораться. Гибкие светодиодные ленты отлично подходят для такого использования, но иногда требуется более компактный, прямой и качественный свет.
Я начал сотрудничать с LuxDrive, чтобы создать светодиодный светильник, который работал бы таким образом. В нашем сотрудничестве я хотел, чтобы наши новые продукты имели 4 основные функции.
Бортовые драйверы
При работе со светодиодами SMD требуется драйвер постоянного тока или токоограничивающий резистор. Электрические свойства светодиодных фонарей меняются по мере их нагрева, водитель будет следить за тем, чтобы светодиод оставался на безопасном токе, вместо того, чтобы потреблять слишком много и в конечном итоге выгорать.
Вместо использования внешнего драйвера, целью было встроить небольшие встроенные драйверы на плату светодиодов. Эти небольшие драйверы действуют как переменные резисторы на плате, поэтому вы можете вводить постоянное напряжение постоянного тока (например, 12 вольт), и устройства будут ограничивать ток, разрешенный для протекания через плату.
Это поможет вам в трех основных направлениях:
- Встроенные драйверы означают, что нет необходимости во внешнем драйвере, который может стоить около 10-15 долларов.
- Встроенные драйверы намного меньше, что делает установку более компактной и дискретной.
- Снимает напряжение, связанное с подбором драйвера и вашей светодиодной схемы.
Радиатор не требуется
Светодиоды с радиатором — еще одна область, которая сбивает с толку, когда вы начинаете работать со светодиодным освещением. Светодиоды обычно имеют большое количество энергии, протекающей через очень небольшой источник, что позволяет нагреваться. Радиатор необходим для рассеивания тепла, отводя его от светодиода, чтобы избежать необратимого повреждения.
Радиатор — всегда хорошая идея, но цель заключалась в создании небольших светодиодных фонарей, которым не требовалось ничего, кроме источника питания. Радиаторы имеют тенденцию быть громоздкими и значительно увеличивают размер вашей установки. Когда LuxDrive разработал светодиодную плату, мы проверили температуру и убедились, что эти светодиодные двигатели могут работать без какого-либо радиатора.
Простое подключение светодиодов
«Как мне соединить несколько светодиодов вместе?» Это частый вопрос, который я задаю каждый день. Есть способы подключения светодиодных ламп SMD к последовательным или параллельным цепям.Эти две разные схемы подключения будут очень отличаться друг от друга в электронном виде.
Нашей целью было создать светодиод, который можно было бы просто соединить гирляндой. Это упрощает процесс подключения, поскольку все, о чем вам нужно беспокоиться, — это мощность и убедиться, что ваш источник питания будет обеспечивать достаточную мощность для системы.
Качественный световой поток по доступной цене
Наконец, очень важно было иметь эффективный и яркий светодиод, который позволил бы сделать светодиодный световой двигатель доступным по цене.Этот последний шаг занял больше всего времени, так как нам нужно было найти диод, который был бы достаточно эффективным, чтобы выдавать яркий свет, не подавляя при этом систему.
Большая часть ассортимента LEDSupply — это высокомощные светодиоды, такие как семейство Cree XP и светодиоды Luxeon Rebel. Эти светодиоды излучают много света, но также не подходят для желаемого продукта, потому что:
- Слишком большая мощность (нагрев) — светодиоды высокой мощности работают при более высоких токах возбуждения от 350 мА и выше. Для высокого тока требуются драйверы большего размера, из-за чего светодиодный модуль слишком сильно нагревается и требуется светодиодный радиатор.
- Высокая стоимость — светодиоды высокой мощности стоят дороже и требуют дорогих деталей для создания полного двигателя светодиодного освещения. Это сделает цену слишком высокой, особенно для тех, кто хочет использовать несколько источников света.
Заключение: использование светодиодов средней мощности
О светодиодах высокой мощности не может быть и речи из-за более высокого тока, приводящего к слишком большому нагреву и общей стоимости. Это привело нас к поиску более доступного светодиода с низким током. Наш поиск привел нас к светодиодам средней мощности.
Светодиоды средней мощности работают при более низких токах возбуждения: максимум 180 мА по сравнению с максимумом 1000 + мА для диодов большой мощности. Светодиоды тоже примерно в 10 раз дешевле! Светодиоды средней мощности не такие яркие, но их низкая мощность и стоимость позволили добавить на плату несколько диодов, чтобы сделать их сопоставимыми с выходной мощностью светодиодов высокой мощности.
Nichia 757 — Светодиод, чтобы все это произошло
Nichia 757 — самый привлекательный светодиод средней мощности. Светоотдача была выдающейся, учитывая цену и ограничения низкой мощности.LuxDrive приступил к тестированию диодов средней мощности, построенных на печатных платах со встроенными драйверами.
Тестирование дало положительные результаты, которые успешно достигли всех поставленных целей. Это привело к появлению двух новаторских продуктов для LEDSupply. Двигатели светодиодного освещения, представленные ниже, обладают всеми четырьмя необходимыми характеристиками. Они помогают создать удобный для пользователя светодиод: встроенные драйверы, не требуется радиатор, легко подключаемый и качественный световой поток.
DynaSquare
DynaSquare — это дискретная светодиодная лампа на 12 В, чрезвычайно простая в использовании.Квадратная печатная плата размером 1 дюйм содержит 3 светодиода средней мощности Nichia 757. Использование нескольких диодов средней мощности увеличивает световой поток до 150 люмен, , что сравнимо со светоотдачей мощного светодиода 1-Up. DynaSquare идеально подходит для ламп и светильников, а также для светодиодных панелей и освещения дисплеев.
DynaSquare предлагается в белом цвете с CCT от 2700K до 6500K. Доступны цвета: красный, желтый, синий и зеленый. Пожалуй, наиболее интересными вариантами являются Horticulture 3000K и 5000K DynaSquares.В DynaSquare для садоводства используется матрица с очень широким спектром действия, идеально подходящая для выращивания растений. Не забудьте проверить этот индикатор для небольших приложений для выращивания.
Соединение нескольких светодиодов вместе — создайте свою собственную схему!
DynaSquare спроектирован так, чтобы обеспечить простое соединение между платами. Квадратная плата имеет контактные площадки с каждой из четырех сторон. Это позволяет подавать питание на одну сторону DynaSquare, а затем последовательно подключать несколько светодиодов к любой из трех сторон, как показано ниже.Это обеспечивает гибкость перемещения плат в любом месте, где это необходимо для вашего приложения. Пожалуйста, свяжитесь с нами в LEDSupply, прежде чем объединить более 20 DynaSquares вместе.
DynaSquare также можно подключить параллельно к источнику питания, как показано ниже. Параллельно нет ограничений на количество подключенных к одному источнику питания.
Мощность
DynaSquare обычно питается от 12 В, но может принимать 11-15 В постоянного тока. Это позволяет вам питаться от простого источника переменного / постоянного тока или даже от батареи! Один DynaSquare работает на 1.5 Вт. С выходной мощностью 150 люмен это высокоэффективный светодиод мощностью около 100 люмен на ватт!
Чтобы найти источник питания, просто убедитесь, что ваша мощность покрыта. Для одного DynaSquare это будет легко. Если вы подключаете несколько светодиодов, последовательно или параллельно, убедитесь, что мощность вашего источника питания соответствует требованиям. (1,5 Вт на используемый DynaSquare)
Затемнение
DynaSquare имеет ШИМ диммирование. Это работает с нашим беспроводным диммером PWM или может работать с другими выходными сигналами PWM, просто посмотрите лист данных здесь.
The Duo — Светодиодная лента повышенной яркости
DUO — это светодиодная лента на 24 В, которая является самой яркой светодиодной лентой на нашем сайте с яркостью более 100 люмен на ватт! Duo использует новейшую технологию в светодиодах средней мощности, размещая 48 диодов Nichia 757 на 12-дюймовой жесткой полосе. Двухрядная светодиодная лента излучает 870 люмен на фут при высокой плотности светодиода, поэтому свет выходит равномерно и качественно.
Светодиодная лента DUO предлагается в белом цвете с CCT от 2700K до 6500K.Доступны цвета: красный, желтый, синий и зеленый. Пожалуй, наиболее интересными вариантами являются полосы Horticulture 3000K и 5000K. В вариантах для садоводства используются диоды Nichia 757 с очень широким спектром выходного сигнала. Этот широкий спектр идеален для выращивания растений, и это идеальный свет для выращивания рассады и выращивания растений в помещении.
Модульная конструкция
Duo выпускается в виде 12 дюймов в длину и 0,95 дюйма в ширину. Модульная конструкция ленты позволяет разрезать ее на более мелкие части.Через каждые 3 дюйма есть черная пунктирная линия, которую можно разрезать, чтобы из одного куска сделать несколько светодиодных двигателей.
При самостоятельном разрезании полосы старайтесь разрезать по пунктирной линии. Обычно лучше всего подходят прочные ножницы, кусачки для бумаги или большие кусачки. Если вы хотите доверить разрезание нам, мы предлагаем полосу длиной 3, 6 и 9 дюймов в дополнение к стандартной 12-дюймовой полосе.
Подключение светодиодных лент
Duo сконструирован таким образом, чтобы несколько полосок можно было соединить в гирляндную цепочку.Количество светодиодных лент, соединенных гирляндой, не должно превышать 8 полных 12-дюймовых плат. Другими словами, не соединяйте вместе полоски длиной более 8 футов.
Мощность
Duo принимает входное напряжение 24 В, которое может поступать от источника переменного / постоянного тока или аккумуляторной батареи. 12-дюймовая деталь — это 7,68 Вт (1,92 Вт на 3-дюймовую деталь). При такой мощности полоса будет выдавать 870 люмен… это 113 люмен / ватт! Эта полоса высокой яркости обеспечивает наивысшую эффективность (люмен / ватт) из всей линейки ламп LEDSupply Strip.
При поиске источника питания убедитесь, что он выдает 24 В постоянного тока, и убедитесь, что учитывается общая мощность.
Профессиональный монтаж
С алюминиевым каналом для светодиодных лент эти ленты превращаются в готовый светильник. У нас есть полосовая дорожка шириной 1 дюйм в квадратном или скошенном стиле, которая идеально сочетается с полосой DUO. Каждая дорожка оснащена матовой поликарбонатной линзой для защиты полос и равномерного распределения света. Посмотрите их здесь.
Заключение
С этими двумя новыми продуктами вы можете увидеть, насколько простой может быть установка светодиодов.Просто найдите источник 12 или 24 В и приступайте к реализации той крутой идеи освещения, которую вы так долго откладывали. Если вам нужна моя помощь, позвоните в LEDSupply или напишите по адресу [email protected].
Как всегда, присылайте нам свои творения с этими продуктами. Нам всегда нравится видеть, что делают наши читатели, чтобы воспользоваться преимуществами светодиодного освещения!
DIY Акриловая и деревянная светодиодная лампа, меняющая цвет
Сегодняшний проект Creativity Hero — это светодиодная лампа из дерева и акрила, меняющая цвет.Сочетание дерева, акрила и света идеально сочетается с материалами, дополняющими друг друга.
Я думаю, получилось замечательно!
Посмотрите мое видео на YouTube о том, как я сделал эту светодиодную лампу:
Вот материалы, которые я использовал:
Типы инструментов, которые я использовал:
Раскрытие информации: как партнер Amazon я зарабатываю на соответствующих покупках.
А теперь приступим.
Связано: DIY Интерактивный светодиодный журнальный столик
Шаг 1: Обрезка дерева и акрила по размеру.
Прежде всего, я начал с настройки настольной пилы, установив салазки для поперечной резки и отрегулировав стопорный блок и лезвие, чтобы иметь возможность делать все пропилы.
Для этого проекта я использовал древесину бука толщиной 20 мм и акрил толщиной 5 мм. Основание светильника 16 на 9 см, а значит, все разрезы повторяются.
Только один кусок акрила должен быть больше, примерно 28 на 14 см, который будет размещен вертикально на верхней части основания.Во время резки акрила я заметил, что, когда я режу медленнее, акрил начал плавиться, поэтому мне нужно было двигать салазки быстрее, чтобы получить красивые и чистые разрезы.
Шаг 2: Подготовка акриловой поверхности к гравировке.
После того, как я сделал все разрезы, я перешел к большему куску акрила, который останется на верхней части лампы.
Я положил его на лист бумаги, обвел карандашом контуры и вырезал по линиям. Затем я взял линейку и нарисовал несколько линий.
В результате я хотел получить узор, состоящий из полос одинаковой ширины, но разной длины.
Я сделал все надрезы и получил красивый узор, который перенесу на акрил.
Чтобы прикрепить бумагу к акрилу, я снял защитную пленку с одной стороны и скотчем закрепил ее на месте.
Со стороны, которую я собираюсь гравировать, я не снимал защитную пленку, потому что акрил легко царапается.
Шаг 3: Гравировка акрила с помощью вращающегося инструмента Dremel.
Гравировка на акриле — это техника, которую я попробую впервые, поэтому я выбрала этот простой узор, который поможет мне добиться современного и чистого дизайна лампы.
Для гравировки на акриле я решил использовать свой новый ротационный инструмент Dremel. Я выиграл этот многофункциональный инструмент в качестве главного приза на конкурсе Instructables Workshop Hacks Challenge.
В комплект входит так много аксессуаров и насадок, которые можно использовать в любом проекте, что отлично подходит для производителей и домашних мастеров.
Для этого проекта я прикрепил удлинитель гибкого вала и вставил насадку для гравировки, которая делает гравировку намного проще и точнее.
Теперь я готов начать. Металлическая линейка может очень помочь в построении идеально прямых линий, я настоятельно рекомендую использовать ее для этой цели.
Когда я закончу гравировку, я могу сделать все дополнительные пропилы копировальной пилой. Все разрезы нужно делать под прямым углом, поэтому здесь нужно быть осторожным.
На этом я закончил с большей акриловой частью, поэтому могу перейти к основе.
Шаг 4: Проделываем отверстия в середине основания лампы для светодиодов.
Я отметил центральные точки этих кусков дерева и акрила, которые будут помещены в середину основы.
Отверстия для светодиодов я проделал с помощью коронки диаметром 35 мм, которую я прикрепил к сверлу.
Деревянный лом под ним — отличный способ защитить поверхность стола от повреждений.
Связанный: Как построить деревянную настольную лампу | Сделай сам Проект
Шаг 5: Делаем прорезь в верхней части основания для гравированной акриловой детали.
В верхней части цоколя лампы мне нужно сделать отверстие, достаточно большое, чтобы в него поместилась гравированная акриловая деталь. Расположив акрил вертикально посередине, я обрисовала его контур карандашом. Итак, я просверлил столько отверстий, сколько нужно внутри контура, а затем удалил лишнее с помощью рашпиля.
Светодиодыбудут размещены прямо под акрилом, поэтому мне нужно освободить для них место, вырезав канавку шириной около 10 мм и глубиной 4 мм.
Шаг 6: Работа с нижней частью лампы.
Контроллер светодиодов я помещу в нижнюю часть основания. Несмотря на то, что он довольно большой, я должен найти способ вставить его в нижнюю часть.
Вместо того, чтобы крепить его несколькими винтами, я прикреплю его только горячим клеем, поэтому я вырезаю эти монтажные отверстия, чтобы расплющить коробку.
В этой деревянной детали мне нужно сделать большое отверстие для контроллера. Чтобы сделать отверстие, я просверлил отверстие сверлом 12 мм, а затем вставил в отверстие копировальную пилу, чтобы сделать разрез.С помощью рашпиля я внесла некоторые коррективы.
Теперь я просверливаю 2 отверстия на задней стороне дна, одно большее для адаптера, а другое меньшее для инфракрасного приемника.
Шаг 7: Обрезка светодиодной ленты.
В цоколь лампы помещается светодиодная лента длиной 50 см, поэтому я аккуратно разрезаю ножницами по обозначенным линиям между медными пластинами.
Последний шаг перед сборкой всех деталей — это удаление защитной пленки с акрила.
Шаг 8: Сборка лампы.
Чтобы собрать лампу, я начал сверху и вклеил светодиоды в паз, который я предварительно проделал эпоксидной смолой.
Затем продолжил приклеивать другие части эпоксидной смолой, чтобы не повредить светодиоды. Эпоксидная смола — один из лучших клеев для приклеивания акрила к дереву, и я очень рекомендую его.
Собрав все части вместе, зажимаю и дожидаюсь полного высыхания.
Шаг 9: Шлифовка и нанесение финишного покрытия на основу.
Я временно вставил светодиоды внутрь отверстия, закрыв их малярным скотчем, чтобы можно было шлифовать основание.
Затем я слегка отшлифовал всю основу, чтобы сделать ее красивой и гладкой.
После этого я могу нанести прозрачную отделку, чтобы подчеркнуть естественную красоту дерева.
Шаг 10: Установка светильников.
А теперь перейдем к установке контроллера.
Так как кабель на контроллере немного длинный, мне нужно его отрезать. Я отрезал половину его длины и удалил примерно 1 см внешней изоляции. Он состоит из 4 проводов, 1 общего положительного и 3 отрицательных проводов для каждого из 3 каналов.
Я обнажил концы проводов с помощью приспособлений для зачистки проводов, а затем припаял их на медные контактные площадки светодиодной ленты. Здесь вы можете заметить, что, хотя цвета проводов в порядке, они не соответствуют буквам на медных контактных площадках.Зеленый провод я припаиваю к R, а красный провод к G.
.Чтобы проверить, правильно ли они работают, я подключил к контроллеру адаптер на 12 В.
Все отлично работает, так что могу приклеить контроллер к нижней части основания горячим клеем.
Поэтому я аккуратно разместил светодиоды внутри цоколя. Затем вставил ИК-приемник в отверстие и, наконец, закрепил контроллер на месте, приклеив его горячим клеем.
Чтобы дно не царапало поверхность стола, я вырезаю из войлока квадраты вместо ножек.По 2 квадрата в каждом углу обеспечат достаточно места для контроллера.
Связанный: Как создать 3D-световой короб для вырезки из бумаги | Сделай сам Проект
Шаг 12: Закрепление гравированной акриловой детали в прорези наверху.
Наконец, я снял защитную пленку с гравированной акриловой детали и закрепил ее эпоксидной смолой в гнезде.
С помощью прямоугольной линейки проверяю правильность ее положения и оставляю сохнуть.
Это означает, что светодиодная лампа в комплекте.
Теперь я могу включить его и насладиться этой удивительной лампой, меняющей цвет.
Он очень простой и современный, и я думаю, что он станет прекрасным акцентом в гостиной.
Это был действительно интересный и увлекательный процесс создания такой лампы. Я надеюсь тебе понравится. Если вам нравится, поделитесь и подпишитесь на мой канал YouTube.
DIY Светодиодная лампа (светодиодная лампа)
Светодиодные лампы становятся все более распространенными и заменяют лампы CFL.По мере того, как стоимость светодиодных ламп становится все ниже, люди постепенно переходят на светодиодные лампы в своих домах и офисах. В этом проекте мы попробуем сделать светодиодную лампочку своими руками или светодиодную лампу своими руками, используя старый корпус (корпус) светодиодной лампы.
В этой светодиодной лампочке, сделанной своими руками, очень важна конструкция драйвера светодиода. Как правило, у нас есть два способа разработки драйвера светодиода: с использованием импульсного источника питания или обычного линейного регулятора на основе трансформатора.
Но для этой самодельной светодиодной лампы мы будем спроектировать источник питания без трансформатора, который будет выступать в качестве драйвера светодиода.На самом деле, этот тип блока питания для светодиодных ламп становится все более распространенным (ну, по крайней мере, для светодиодов меньшей мощности).
Предупреждение: Эта самодельная светодиодная лампа работает напрямую от основного источника питания, то есть 230 В переменного тока. Вы должны быть очень осторожны при работе с источником переменного тока.
Предупреждение: Проектирование блока питания без трансформатора без знания того, как работают компоненты, может быть фатальным.
Схема электрических цепей светодиодной лампы DIY
Компоненты, необходимые для светодиодной лампы DIY
- C1 — 135 Дж, 400 В, металлопленочный конденсатор
- B1 — Мостовой выпрямитель (4 диода могут быть подключены в режиме двухполупериодного выпрямителя)
- C2 — Электролитический конденсатор 22 мкФ, 35 В
- R1 — Резистор 100 кОм (1/4 Вт)
- Светодиод от 1 до 12 — Светодиоды 8 мм
ПРИМЕЧАНИЕ: Используйте только металлический пленочный конденсатор с номиналом выше 400 для C1.
Описание компонентов
Конденсатор с номиналом X
Основным компонентом безтрансформаторного источника питания для светодиодной лампы DIY является конденсатор с номиналом X. Это металлический пленочный конденсатор, который часто используется в качестве предохранительного конденсатора.
Конденсатор номиналом X помещается между линией и нейтралью. Если этот конденсатор выходит из строя из-за перенапряжения, выход из строя будет коротким, и избыточный ток приведет к срабатыванию предохранителя, что позволит избежать поражения электрическим током.
Схема самодельной светодиодной лампы
Сначала основное питание подается на металлический пленочный конденсатор.Другой конец конденсатора подключен к входу переменного тока мостового выпрямителя. Для большей безопасности подключите резистор 100 Ом 1 Вт последовательно с конденсатором номиналом X, который будет действовать как предохранитель (на схеме не показан).
ПРИМЕЧАНИЕ: Если у вас нет мостового выпрямителя, вы можете подключить 4 PN переходных диода (например, 1N4007) в режиме двухполупериодного выпрямителя.
Другой вход переменного тока мостового выпрямителя подключен к нейтрали источника питания переменного тока. Выпрямленный выход подается на конденсатор (C2).К конденсатору последовательно подключены 12 светодиодов диаметром 8 мм.
Резистор R1 действует как спускной резистор (он разряжает конденсатор в случае сбоя питания или отказа светодиода).
ПРИМЕЧАНИЕ: Мы разобрали поврежденную светодиодную лампочку, и после реконструкции схемы она была похожа на разработанную нами. Основное отличие состоит в том, что они использовали SMD-компоненты для светодиодов и мостов, а мы использовали сквозные компоненты (по понятным причинам).
Дизайн печатной платы светодиодной лампы «Сделай сам»
Для разработки макета печатной платы светодиодной лампы мы использовали Eagle CAD. На следующем изображении показана компоновка печатной платы светодиодной лампы. Мы сделали печатную плату, используя метод переноса тонера, как упоминалось в этом руководстве: Как сделать свою собственную печатную плату в домашних условиях .
Сборка светодиодной лампы
Соберите все компоненты согласно схеме и припаяйте их. У нас есть пустой светодиодный корпус от старой светодиодной лампы.После сборки платы мы установили плату в корпусе светодиода со всеми проводами.
Работа светодиодной лампы
Теперь мы посмотрим, как работает эта простая светодиодная лампа, сделанная своими руками.
Светодиодам для работы требуется очень меньший ток. Обычно в обычном регулируемом источнике питания на основе трансформатора мы будем регулировать ток с помощью последовательных резисторов. Но в блоке питания без трансформатора ток регулируется или ограничивается конденсатором с номиналом X.
Поскольку этот конденсатор подключен последовательно к источнику переменного тока, общий ток, доступный в цепи, ограничен реактивным сопротивлением конденсатора.
Реактивное сопротивление конденсатора можно рассчитать по следующей формуле:
X C = 1 / 2πFC Ом, где F — частота источника питания, C — емкость конденсатора.
В нашем случае мы использовали конденсатор емкостью 1,3 мкФ. Следовательно, реактивное сопротивление этого конденсатора равно
X C1 = 1 / (2 * π * 50 * 1.3 * 10 -6 ) = 2449,7 ≈ 2450 Ом.
Следовательно, ток через этот конденсатор определяется выражением I = V / X C1 Ампер = 230/2450 = 93,8 мА.
Теперь ограниченный по току переменный ток подается на мостовой выпрямитель. На выходе моста будет 230 В постоянного тока. Это подается на конденсатор фильтра номиналом 35 В. Но размах пульсаций напряжения на конденсаторе C2 составляет около 44 В.
Это дается для 12 светодиодов последовательно, и, следовательно, каждый светодиод потребляет около 3,7 В, что равно номинальному напряжению 8-миллиметрового светодиода.
Что касается мощности, общая выходная мощность светодиодов составляет около 4 Вт.
Важное примечание: Этот проект представляет собой просто демонстрацию того, как сконструировать светодиодную лампочку и как она работает. Метод, упомянутый в этом проекте, может не подходить для практического использования.
Также проект предусматривает работу с питанием от сети переменного тока 230 В. При работе с блоком питания переменного тока необходимо соблюдать особую осторожность.
КАК СДЕЛАТЬ СВЕТОДИОДНЫЙ ЛАМПУ СО СКРЫТЫМ БЕСПРОВОДНЫМ ЗАРЯДНЫМ УСТРОЙСТВОМ
Привет, ребята, спасибо, что заглянули.Я очень взволнован этой самодельной светодиодной лампой со скрытым беспроводным зарядным устройством. Я знаю, что это выглядит безумно простым, и в некоторой степени это так. Приходится немного поработать, но что может быть лучше, чем чувство выполненного долга, когда вы что-то заканчиваете.
Некоторое время назад я нашел портативный USB-фонарик на Amazon, я подумал, что однажды я воспользуюсь им, и тот день настал. Попав в руки, мне нужно было посмотреть, что внутри, поэтому я разобрал его. Это была сплошная светодиодная лента и супер яркая, это был плюс!
Хотите сделать свою собственную светодиодную лампу со скрытым беспроводным зарядным устройством?
Выполните следующие действия, чтобы завершить этот проект.
Посмотреть видео
Как сделать светодиодную лампу со скрытым беспроводным зарядным устройством
Банкноты
О светильнике, использованном в этом проекте- 60 ярких светодиодов
- 3 режима переключения для трех цветовых температур (естественный режим, теплый режим, холодный режим)
- с питанием от USB
- рассчитан на 25000 часов
- Размер лампы 13,5 x 0,59 x 0,31 дюйма (34,3 x 1 дюйм) .5cmx0.8cm)
- В комплект входит: 1 светодиодная лента; 1 х установочный пакет; 1 х отвертка; 1 x Руководство
Доступно на Amazon Нажмите здесь
ШАГ 1
Разрезать детали для лампы своими рукамиКак уже упоминалось, головка лампы выполнена из орехового дерева.См. Список материалов биграммы ниже для измерений. Я хотел, чтобы лампа имела небольшой наклон, поэтому я отрезал под углом 15 градусов на одном конце торцовочной пилой.
ШАГ 2
Использование маршрутизатора для маршрутизации канала
Отцентрируйте канал светодиода на куске ореха, затем обведите его карандашом или маркировочным инструментом. После этого с помощью маршрутизатора проложите участок для канала светодиодов. Я использовал прямую фрезу, чтобы удалить эту секцию. Имейте в виду, что вы всегда можете обрамить головку лампы вокруг светодиода, если у вас нет возможности прокладывать маршрут.
Если вы использовали маршрутизатор, слот имеет два круглых конца от фрезы маршрутизатора. Берем стамеску и вырезаем уголки для канала.
Я использовал кусок клена толщиной ¾ для цоколя лампы. Затем был сокращен до 6 дюймов на 6 дюймов (152,4 мм на 152,4 мм). На базе всегда можно сделать больше, я просто работал с тем, что было под рукой.
ШАГ 3
Просверлите отверстие, чтобы пропустить провод питания светаНайдите центр цоколя лампы, просверлите отверстие от дюйма до 3/8 дюйма, чтобы провод прошел через головку лампы и цоколь.Хорошо работало бурение снизу справа через центр. Затем просверлите еще одно отверстие от канала светодиода вниз под углом к просверленному ранее отверстию.
ШАГ 4
Проложите цоколь лампы для беспроводного зарядного устройстваЭто часть проекта, посвященная общению. Не только маршрутизация, но и попытка заставить ее работать. При использовании маршрутизатора убедитесь, что вы отслеживаете толщину пиломатериала, толщину беспроводного зарядного устройства и количество удаляемого материала.Все зависит от используемого вами беспроводного зарядного устройства, а их много. Этот используется «Blitzwolf» по цене около 8 долларов за штуку, и он работает, но есть несколько из них, которые можно попробовать «нажмите здесь»
Если вы хотите, чтобы основание было как можно более тонким, то вам нужно найти основание толщиной около 0,43 дюйма. В противном случае вы можете добавить глубины основанию. Тот, который я использовал, отлично работает, но из-за того, что я использую на своем телефоне футляр для выдры, он попал и промазал сквозь дерево и футляр.Он работал безупречно без чехла на телефоне.
ШАГ 5
Крепление головки светодиодной лампы к цоколюПроще всего отшлифовать все, когда оно не собрано, поэтому я сделал это первым. Затем я нанес средний датское масло на головку лампы. Убедитесь, что масло не попадает на торец зерна, где оно будет соединяться с основанием.
На этом этапе цоколь лампы не был обработан. Чтобы прикрепить головку к низу, нанесите столярный клей на головку лампы и прикрепите ее к основанию.Если вы смотрели видео, Krazy Glue спонсировала его своим быстросохнущим клеем для дерева. Чтобы было ясно, они не спонсировали этот пост. Мне нравится этот клей; он работает в считанные минуты после нанесения. Поскольку он так быстро застывает, я бы не стал его пробовать на больших проектах, но для быстрого ремонта и небольших деревянных работ стоит попробовать.
Для дополнительной безопасности установите два шурупа диаметром 1 ¼ через основание и в головку лампы. Предварительно просверлите отверстие, чтобы не произошло раскалывания.
ШАГ 6
Установка кабеля питанияСветодиодный светильник поставляется с трехжильным кабелем, который необходимо заменить.Чтобы все было на одном кабеле, я заказал 6-жильный кабель. Один из 6-ти не будет использоваться, поэтому вам понадобится только 5-жильный кабель, но более распространен 6-жильный кабель. В задней части цоколя лампы необходимо просверлить отверстие 1/8, чтобы пропустить провод.
Для освещения требуется три проводника (красный, белый и черный). Зачистите оболочку 6-проводников и протолкните эти провода вверх к месту расположения источника света. Оставьте оставшиеся три внизу.
Я использовал паяльник, чтобы удалить существующие проводники со световой полосы и заменить их один за другим на новые.Затем вы сделаете то же самое на другом конце провода у переключателя, заменив провод на провод. Когда этот шаг будет завершен, протолкните канал вниз в канал, не зажимая провода. Я обнаружил, что легче надеть крышку светодиода перед тем, как вставлять канал в слот.
ШАГ 7
Подключение зарядного устройства USBЕсли вы похожи на меня, то, вероятно, у вас есть несколько USB-микрокабелей. Беспроводное зарядное устройство тоже идет в комплекте.Я предлагаю использовать тот, который может вам не понадобиться, так вы можете вернуть зарядное устройство без каких-либо проблем.
После отрезания Micro USB снимите с него экран. Затем отрежьте белый и зеленый от разъема USB Micro. Красный и черный — все, что вам нужно для этого.
Соедините провода от микро-USB. Подключите желтый к (красному), а зеленый к (черному) на 6-проводнике. Обязательно нанесите припой на стык и закройте соединение термоусадочной трубкой. Остается один проводник; можно отрезать.
На коммутаторе USB будет подключен напрямую к источнику питания (провод, идущий к розетке). Из 6-проводника используйте желтый и зеленый. Припаяйте желтый к (красному), а зеленый к (черному), останется один проводник, вы можете его отрезать.
ШАГ 8
Установка беспроводного зарядного устройстваТеперь подключите кабель Mirco к беспроводному зарядному устройству и приклейте его горячим клеем к основанию. Если у вас провисание проводов, вы можете намотать их на основание.О нижней крышке я особо не говорил. Я использовал кусок толщиной 1/8 дюйма. Вы, наверное, можете обойтись и без этого. Он добавляет твердый слой на дно и больше поверхности для войлочной подушки.
Чтобы закрепить основание, я нанес столярный клей на основание и зажал его. Несмотря на то, что этот кусок имеет толщину 1/8 дюйма, можно также использовать деревянный лист толщиной 1/4 дюйма, и его, скорее всего, легче найти.
Добавив нижнюю часть, я предлагаю добавить фаску снизу, чтобы очистить линию соединения.Наконец, установите войлочную подушку. Войлочная прокладка позволяет получить доступ к устройству и сращиванию проводов. В конструкции этой лампы все заменяемо.
Наконец, нанесите финишное покрытие на основание. Я использовал протираемый поли в качестве финишного покрытия как для цоколя лампы, так и для головки лампы. Теперь вы можете наслаждаться этой настольной лампой. Если вы обнаружите, что здесь что-то непонятно, оставьте комментарий, я обновлю этот пост, и вы получите ответ.
Вы также можете найти меня здесь:
Youtube, Instagram, Pinterest
Поделиться
Умная лампа своими руками.Пошаговое руководство
Пошаговое руководство о том, как перейти от надуманной идеи к рабочему продукту.
Вы когда-нибудь задавали себе следующие вопросы?
Если нет, может, пора. Но если да, то добро пожаловать в клуб! Недавно у нас был внутренний хакатон в EL Passion, и мне в голову пришла интересная идея. Делаем лампу!
Умная лампа. Умная лампа из бетона! Умный светильник из дерева / бетона со светодиодной лентой RGB… И BLUETOOTH!
За два коротких дня после хакатона (с небольшими накладными расходами) мы сделали все!
Все началось с Электроники
Месяца два назад начал баловаться с электроникой.Я хотел расширить свой кругозор, узнать, какие кабели обрезать в случае появления интеллектуальных машин, и расширить свои знания за пределами моих знаний в области фронтенд-инжиниринга. Думаю, большинство из вас понимают.
Я начал с основ, приобрел некоторые компоненты, посмотрел учебные пособия и не мог решить, что делать дальше.
Примерно через два месяца я вспомнил, что приближается хакатон!
Я также недавно видел выступление Стефани Немет на конференции по интерфейсу пользователя, где она показала фантастические вещи, которые можно делать с помощью Arduino и RGB-подсветки.Итак, я решил, что хочу сделать что-нибудь столь же аккуратное.
Но я хотел сделать что-то, что было бы полезным, функциональным и потребовало бы навыков DIY, программирования и электроники.
Я остановился на самом очевидном, что можно сделать с помощью света — лампе. И я нашел идеальную самодельную сборку, которую хотел скопировать.
Лампа DIY из учебника DIY Creators на YouTube
У меня уже была идея. Теперь мне нужна была команда.
Питчинг — Сбор команды
За три дня до хакатона мы обычно проводим питчинг, на котором мы представляем наши идеи остальной части компании и собираем людей, которые будут работать над нашим проектом.Я не лучший продавец, поэтому мой голос звучал примерно так:
Эммм, так что да, я хочу сделать бетонную умную лампу. Большое спасибо.
Несмотря на отсутствие информации, пять человек были заинтересованы в том, чтобы присоединиться к моей команде! У нас был впечатляющий набор навыков:
- Мацей — Я был как генеральный директор группы. Я спланировал сборку, убедился, что у нас есть все необходимое, и помог собрать все части воедино (в прямом и переносном смысле).
- Войтек — Он взял на себя роль начальника отдела электроники.Он спланировал схему, построил прототип и работал с Якубом (iOS), чтобы убедиться, что Bluetooth работает. Он также позаботился о том, чтобы мы не сожгли здание.
- Ула — Начальник отдела плотницких работ и горячего клея по бетону. Она позаботилась о том, чтобы мы все сделали правильно, соблюдали сроки и поработали над деревянным корпусом лампы.
- Ага — Разнорабочий в команде. Она появилась тогда, когда она была нужна нам больше всего, и убедилась, что наша «ручная» часть сборки будет работать.
- Якуб — руководитель отдела мобильной разработки.Удостоверились, что у нас есть потрясающее, родное, кроссплатформенное приложение, но на самом деле только ios, потому что кто-то использует android-lol для управления нашей лампой.
Умная лампа для покупок (версия для ботаников)
Давайте взглянем на список покупок. Я перечислил только то, что мы использовали и постоянно встраивали в лампу. Все дополнительное оборудование, Arduino (прототипирование, загрузка кода в AVR) и компоненты, которые мы сломали, не учитываются.
Общая стоимость: 159 злотых (около 43 долларов США)
Можно было получить все товары по более низкой цене, но в нашем случае это было достаточно срочно.
Доски, бетон, наждачная бумага и другие полезные вещи.
Умная лампа «сделай сам»: пошаговое руководство
Часть 1: Бетонное основание
Строительная фаза проекта была захватывающим испытанием. Первые 2 часа мы обсуждали, как сделать отливку для бетона, которая будет соответствовать следующим требованиям:
- Оставьте место внизу для электроники
- Оставьте два отверстия для ручек оттенка и насыщенности
- Оставьте место для деревянного рычага
У нас получилось что-то вроде этого:
Это выглядит просто, но сделать это оказалось непросто.Для изготовления слепка мы использовали картонную коробку, много серого скотча, коробку «волшебная мышь 2», две пластиковые соломинки и немного горячего клея.
Позже мы смешали и добавили бетон.
Мы не хотели, чтобы слепок деформировался, поэтому использовали больше ленты и четыре литра молока. Мы также вставляем деревянную основу в бетон, чтобы у нас было место для нее позже (хотя мы чуть не забыли об этом). Все это эквивалент «быстрого исправления» в производственных системах, но как говорится:
Если это выглядит глупо, но работает, это не глупо.
Умные люди
Эта цитата стала нашим девизом для остальной части сборки.
У меня нет изображения основы сразу после ее извлечения из гипса, но вот оно после небольшой шлифовки и уже с установленным деревянным рычагом. Мы также добавили силиконовые ножки, чтобы бетон не царапал столешницу.
Часть 2: Деревянная рука
Кронштейн состоит из двух отдельных частей: верха лампы и цоколя с кабелем внутри.Мы соединили их большим винтом, для которого просверлили отверстия как в верхней, так и в нижней частях.
Чудом мы не сожгли офис.
Оказывается, правильно измерить вещи — непросто.
Начали с изготовления верхней части руки
Верхняя часть была довольно сложной задачей, так как требовала тонкой работы с паяльником, но давайте начнем с основ. Мы сделали его из трех кусков дерева, двух тонких (боковин) и квадратного. Сначала мы все склеили, просверлили отверстие под большой винт, который скрепляет верхнюю и нижнюю части.После шлифовки, чтобы компенсировать тот факт, что доски были немного кривыми, Ула покрасил руку, а когда она высохла, я продолжил и начал монтировать на нее светодиодные ленты.
Первым делом я примерил, как разрезать светодиодные ленты. Мы не хотели класть внутрь одну длинную деталь, так как она не давала бы столько света, поэтому, измерив, сколько мы поместимся, я разрезал три полоски, каждая размером 35 см. Затем я припаял основной кабель к первой части светодиодной ленты и использовал термоусадочную трубку для закрепления соединения.
Термоусадочная трубка и паяные соединения, соединяющие две светодиодные ленты.
Приклеив первую полосу к дереву, я понял, что забыл, какие кабели подключал к выходам Красный, Зеленый, Синий и 12 В +. Это была небольшая неудача, но, к счастью, у нас был мультиметр, который позволил нам проверить соединения.
Следующее, что мне нужно было сделать, это спаять две светодиодные ленты последовательно с первой частью. Это заняло у меня некоторое время, но мне удалось это сделать, несмотря на то, что у меня был паяльник за 8 долларов, с наконечником, который уменьшался при каждом использовании.Мы протестировали его, подключив кабель к макетной плате и используя один из поворотных энкодеров для изменения цвета.
Нижняя часть руки тоже была довольно сложной
Нижняя часть кронштейна была сложной, потому что нам пришлось заделывать кабель внутрь нее. Мы подумали о том, чтобы разрезать его пополам, вырезать немного места, а затем собрать все вместе, но это было бы чревато ошибками и потребовало много времени. В конце концов, мы решили приклеить еще три куска дерева, чтобы освободить место для кабеля, как показано на графике.По этой же причине часть внутри основания немного уже.
Нам не хватало нескольких деталей, некоторых кусков дерева и винта, который удерживал бы руку вместе. Мы сделали небольшой перерыв в работе и пошли в магазин, чтобы купить все эти вещи.
Натуральный цвет сосны был не таким уж приятным, поэтому Ула покрасила верхнюю и нижнюю части лампы, чтобы сделать их немного темнее. Мы оставили его сохнуть на ночь, а на следующий день подключили, и он выглядел великолепно!
Процесс покраски.
Расположение кабелей внутри лампы.
Часть 3: Программное обеспечение
Приложение для iOS
Я не участвовал в процессе создания приложения для iOS, поэтому я не могу более подробно разобраться в коде. Якуб взял на себя инициативу и поставил работающее приложение до конца первого дня. На второй день он расширил его, добавив в него более невероятных функций, таких как поддержка «Ambilight», когда при воспроизведении видео лампа синхронизирует цвета с ним (демонстрация в конце статьи).
Были некоторые проблемы с подключением Bluetooth, точнее, один модуль Bluetooth был подключен к iOS, но не к Android, а другой работал наоборот. Сейчас лампа работает только с iOS, но для MVP этого достаточно. А модуль Bluetooth можно легко переключить при необходимости, так как он не припаян на месте.
Код приложения iOS
Исходя из своего опыта, я могу сказать, что приложение выглядит впечатляюще, и скорость, с которой Якуб доставил его, также невероятна!
Код Arduino / ATmega
Весь код с открытым исходным кодом на GitHub.Вы можете пройти через это. Я не собираюсь углубляться в технические детали того, как это работает. Войтек, написавший большую часть кода, больше подходит для этого, поэтому я создал общий обзор того, как все работает. Упрощенный алгоритм выглядит следующим образом:
Переход с Arduino на ATmega
Войтек написал первую версию кода для Arduino, а позже я обновил ее, чтобы она работала на простом чипе ATmega. Отличия минимальны, так как я внес всего два основных изменения:
- Я удалил одно из последовательных соединений — раньше у нас было одно последовательное соединение, которое мы использовали для отладки (печать на консоль на компьютере), а другое — для Bluetooth.Когда мы перешли на ATmega, отладочный модуль нам больше не понадобился, что освободило два контакта и упростило подключение.
- Я изменил расположение выводов — чтобы все лучше поместилось на стрипборде, я изменил физическую компоновку, что потребовало изменения контрольных выводов в коде.
Если вам интересно, вы можете увидеть запрос на вытягивание, который содержит различие всех изменений.
Часть 4: Электроника
Наш план был довольно амбициозным на такое короткое время, но, к счастью, Войтек довольно умен и раньше играл с электроникой, поэтому он был «ведущим» в этой части.
Мы начали с маленьких шагов, тестируя различные решения методом проб и ошибок. Войтек работал над кодом и схемой одновременно и проверял, как все работает. Электронная часть лампы состояла из:
- Микроконтроллер — мозг
- Две ручки с кнопками для управления яркостью, оттенком и насыщенностью
- Модуль Bluetooth для беспроводного управления
- Светодиодная лента для света, да…
Сначала мы использовали Arduino вместо автономного микроконтроллера и поместили все на макетную плату, чтобы упростить процесс разработки.В конце второго дня у нас было все подключено на макетной плате. Bluetooth, поворотные энкодеры и Arduino. Вот как это выглядело на демо-сессии:
Часть 5. Давайте сделаем его меньше!
После хакатона я хотел потратить немного времени и сжать электронику, чтобы она поместилась внутри лампы, чтобы сборка была завершена. Чтобы сжать электронику, мне пришлось:
- Заменить Arduino на ATmega328
- Распланировать соединения на картоне
- Гнездо под пайку для AVR, чтобы мы могли заменить его при необходимости
- Припаять несъемные элементы (транзисторы, розетка постоянного тока и т. Д.))
- Соедините все вместе
Я начал с замены Arduino. Для этого мне пришлось установить загрузчик на ATmega AVR (он тот же, что использует Arduino). Я просмотрел несколько руководств (ссылки под сообщением в блоге) о том, как установить загрузчик и как использовать Arduino в качестве программиста ISP (это позволяет нам загружать программное обеспечение в микроконтроллер без какого-либо дополнительного оборудования). После этого я обновил код, чтобы использовать немного другие контакты, и вуаля!
Затем мне пришлось припаять все это на крохотный картон.
Это был мой первый раз, когда я работал со стрипбордами, и я не мог найти никакого простого программного обеспечения, которое помогло бы с проектированием физических схем, поэтому я пошел по старой школе и спланировал это вручную. Я напечатал лист бумаги с точечной сеткой, где точки представляли отверстия на картоне. Затем я нарисовал все соединения и то, как они должны соответствовать текущей макетной плате.
Чтобы сделать его более понятным и наглядным, я создал рисунок, который представляет схему на доске.
Представление созданного контура. В реальной сборке мне пришлось немного отрегулировать его, чтобы подогнать под все компоненты, но он на 90% похож на тот, что указан выше.
Примерно через десять часов пайки (все еще новичок) и двух обгоревших пальцев (не трогайте компоненты, если что-то пахнет ужасно), мне удалось заставить его работать! Все прошло лучше, чем ожидалось.
Фотография в стадии разработки, чтобы подготовиться к большому открытию!
Все вместе взятые. Белые кабели — это ручки, маленькие провода с черной изоляцией — это подключения светодиодов
Вид снизу.Я использовал тонкую медную проволоку для соединения стыков.
Если вы присмотритесь, то увидите весь клей, который мы использовали.
Готовый продукт!
Посмотрите полную демонстрацию, в которой я рассмотрю все возможности этой лампы. Несмотря на несколько проблем, например кривые поворотные ручки и цвета иногда не отображаются правильно, это работает!
Для меня и, надеюсь, для остальной команды это был один из самых удовлетворительных проектов хакатона.И процесс, и результат были невероятными, мы получили массу удовольствия и многое узнали о работе с деревом, бетоном и электроникой.
Если кто-то хочет построить аналогичную лампу или нуждается в более подробной информации, не стесняйтесь комментировать и спрашивать меня о чем угодно!
ресурса
Вдохновение
Как сделать самодельные цвета на светодиодной полосе с изменяющимся цветом
Почему светодиодная лента застревает на одном цвете?
Если при смене цвета светодиодные ленты застревают на одном цвете, это, вероятно, связано с тем, что вы нажимали кнопку того же цвета, которая достигает пикового значения.Попробуйте использовать кнопку реверса, чтобы отрегулировать его выше или ниже. Если все еще безрезультатно, проверьте контакт ваших контактов и подключите заново. Плохой контакт штифта может помешать полоскам полностью загореться. Кроме того, может выйти из строя пульт дистанционного управления, и вы сможете заменить батарею. В редких случаях контакт разъема может быть неисправен, поэтому мы должны устанавливать его осторожно, не прилагая особых усилий, чтобы избежать поломки контакта, что приведет к неисправности полосовых ламп.
Часть 1. Как сделать самодельные цвета на светодиодных лентах
Светодиодные лентыможно разделить по цвету на одноцветные и многоцветные, последний из которых включает полосы RGB и dreamcolor.Полосы RGB относятся к тому факту, что каждый светодиодный индикатор на полосе состоит из красных, зеленых и синих микросхем, которые могут излучать красный, зеленый или синий свет сами по себе или светиться любым цветом, который вы хотите, когда две или три микросхемы объединить. Световые полоски Lepro MagicColor помещают микросхемы IC на шарики типа RGB, где каждая микросхема IC совпадает с точкой пикселя. Регулируя цвет или яркость каждой точки пикселя, можно добиться богатых анимационных эффектов, таких как бег лошади, водоток, хвост падающей звезды, сканирование и т. Д.Для сравнения, полосы RGB показывают один и тот же цвет в каждый момент и не могут создавать эффекты, такие как бег по воде или скачки.
Получите RGBIC Magic Color LED Strip Lights
Как сделать DIY Цвет на светодиодной полосе
Как правило, хотя у разных производителей пульты дистанционного управления могут немного отличаться, в целом кнопки одинаковы. Здесь мы возьмем пульт дистанционного управления светодиодными лентами Lepro RGB в качестве примера, чтобы описать, как делать светодиодные фонари своими руками.После установки светодиодной ленты выньте пульт и включите его. Вы можете увидеть 20 предустановленных цветов в статическом режиме и выбрать один для своих светодиодных лент.
В области кнопок режима «Сделай сам» нажимайте стрелки вверх и вниз, чтобы увеличить или уменьшить интенсивность красного, зеленого и синего основных цветов и отобразить более насыщенные цвета.
Как сделать персиковый цвет на светодиодных лентах
Если вы хотите, чтобы ваши фары выглядели персиковыми, сначала нажмите «DIY1».
Затем нажмите кнопку регулировки.Нажмите красный, чтобы увеличить его на 7 секунд, зеленый, чтобы уменьшить его на 2 секунды, и синий, чтобы уменьшить его на 2 секунды. Это легко покажет персиковый цвет.
После этого снова нажмите «DIY1», чтобы пульт дистанционного управления автоматически сохранил настройку цвета в режиме «DIY1».
Разве это не просто? Если вы хотите больше цветов, выполните эти шаги и попробуйте много раз.
Кроме того, если вы приобрели интеллектуальную полосу RGB, сделать цвета светодиодной подсветки своими руками стало еще проще. Откройте приложение Lepro LampUX.Независимо от того, хотите ли вы сладкий персиковый цвет или романтический цвет лаванды, стандартная палитра может дать вам нужный цвет одним щелчком, так что вы можете менять стиль комнаты и атмосферу по своему желанию.
Часть 2. Лучшие многоцветные светодиодные ленты
Светодиодные ленточные светильники Lepro RGB, так как они могут отображать множество разных цветов и атмосфер, являются фаворитом среди многих. Между тем, полоски DreamColor также популярны. После выбора режима флуоресценции на одной и той же полосе отображаются разные цвета с разными эффектами.Как правило, полоски dreamcolor больше используются в барах, KTV, сценах и т. Д. Их можно использовать и на домашней вечеринке. Но в качестве фоновой подсветки для зеркал для макияжа или вокруг кровати достаточно полос RGB.
Будь то полоски RGB или dreamcolor, они отлично подходят для создания атмосферы. Ваш выбор зависит от личных, практических потребностей. Прочтите здесь, чтобы узнать больше о светодиодных лентах.