Материал с низкой теплопроводностью: Ученые открыли материал с самой низкой теплопроводностью

Содержание

Ученые открыли материал с самой низкой теплопроводностью

https://ria.ru/20210715/teploprovodnost-1741391973.html

Ученые открыли материал с самой низкой теплопроводностью

Ученые открыли материал с самой низкой теплопроводностью — РИА Новости, 15.07.2021

Ученые открыли материал с самой низкой теплопроводностью

Британские и французские ученые синтезировали новый неорганический материал с самой низкой на сегодняшний день теплопроводностью. По мнению авторов, это… РИА Новости, 15.07.2021

2021-07-15T21:00

2021-07-15T21:00

2021-07-15T21:00

наука

технологии

великобритания

химия

физика

/html/head/meta[@name=’og:title’]/@content

/html/head/meta[@name=’og:description’]/@content

https://cdn23.img.ria.ru/images/07e5/07/0f/1741376784_0:401:1392:1184_1920x0_80_0_0_e989180d69619a141bcde475f93aa833.jpg

МОСКВА, 15 июл — РИА Новости. Британские и французские ученые синтезировали новый неорганический материал с самой низкой на сегодняшний день теплопроводностью. По мнению авторов, это открытие будет иметь решающее значение для разработки термоэлектрических материалов нового поколения. Результаты исследования опубликованы в журнале Science.Примерно семьдесят процентов всей энергии, производимой в мире, расходуется в виде тепла. Для сокращения этих потерь необходимы материалы с низкой теплопроводностью. Разработка новых и более эффективных термоэлектрических материалов, которые могут преобразовывать тепло в электричество, считается ключевым вопросом перехода на источники чистой энергии.Исследователи из Ливерпульского университета вместе с коллегами из Университетского колледжа Лондона, британской национальной лаборатории Резерфорда — Эплтона и французской лаборатории кристаллографии и материаловедения CRISMAT путем дизайна на атомном масштабе создали новый материал, обладающий уникально низкой теплопроводностью.Материал объединяет две разные атомные структуры, каждая из которых замедляет скорость передачи тепла сквозь твердое тело. Самой сложной задачей было соединить обе структуры в одном материале, так как для этого нужно точно контролировать расположение каждого атома.Подбирая экспериментальным путем химические варианты различных атомных расположений, ученые интуитивно ожидали получить среднее значение физических свойств двух компонентов, но синергетический эффект превзошел их ожидания.»Обнаруженный нами материал имеет самую низкую теплопроводность среди всех неорганических твердых тел и проводит тепло почти так же плохо, как воздух», — приводятся в пресс-релизе Ливерпульского университета слова руководителя исследования профессора Мэтта Россейнски (Matt Rosseinsky).Если принять теплопроводность стали за единицу, то показатель титанового стержня составит 0,1; вода и строительного кирпича — 0,01; воздуха — 0,0005; а нового материала — 0,001.Сначала авторы определили механизмы, ответственные за снижение теплопередачи в каждой из двух структур, а потом создали комбинированную компоновку атомов, имеющую имеет гораздо более низкую теплопроводность, чем любой из двух исходных материалов.»Захватывающий вывод этого исследования состоит в том, что можно улучшить свойства материала, используя атомистические взаимодействия, — говорит еще один из авторов статьи доктор Джон Алария (Jon Alaria), научный сотрудник химического факультетаЛиверпульского университета и Института возобновляемых источников энергии Стивенсона. — Помимо переноса тепла, эта стратегия может быть применена к другим важным фундаментальным физическим свойствам, таким как магнетизм и сверхпроводимость, обеспечивающим меньшее энергопотребление и более эффективную передачу электричества».По мнению авторов, их открытие представляет собой прорыв в управлении тепловым потоком на атомном масштабе и имеет большое значение как для фундаментального понимания свойств материалов, так и для практического применения в термоэлектрических устройствах, например, для разработки термоизолирующих покрытий.

https://ria.ru/20201224/ekran-1590713308.html

https://ria.ru/20210616/sverkhprovodnik-1737244365.html

великобритания

РИА Новости

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

2021

РИА Новости

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

Новости

ru-RU

https://ria.ru/docs/about/copyright.html

https://xn--c1acbl2abdlkab1og.xn--p1ai/

РИА Новости

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

https://cdn25.img.ria.ru/images/07e5/07/0f/1741376784_0:270:1392:1314_1920x0_80_0_0_2ff0d6390b219f4514dab73413f22c0b.jpg

РИА Новости

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

РИА Новости

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

технологии, великобритания, химия, физика

МОСКВА, 15 июл — РИА Новости. Британские и французские ученые синтезировали новый неорганический материал с самой низкой на сегодняшний день теплопроводностью. По мнению авторов, это открытие будет иметь решающее значение для разработки термоэлектрических материалов нового поколения. Результаты исследования опубликованы в журнале Science.

Примерно семьдесят процентов всей энергии, производимой в мире, расходуется в виде тепла. Для сокращения этих потерь необходимы материалы с низкой теплопроводностью. Разработка новых и более эффективных термоэлектрических материалов, которые могут преобразовывать тепло в электричество, считается ключевым вопросом перехода на источники чистой энергии.

Исследователи из Ливерпульского университета вместе с коллегами из Университетского колледжа Лондона, британской национальной лаборатории Резерфорда — Эплтона и французской лаборатории кристаллографии и материаловедения CRISMAT путем дизайна на атомном масштабе создали новый материал, обладающий уникально низкой теплопроводностью.

Материал объединяет две разные атомные структуры, каждая из которых замедляет скорость передачи тепла сквозь твердое тело. Самой сложной задачей было соединить обе структуры в одном материале, так как для этого нужно точно контролировать расположение каждого атома.

Подбирая экспериментальным путем химические варианты различных атомных расположений, ученые интуитивно ожидали получить среднее значение физических свойств двух компонентов, но синергетический эффект превзошел их ожидания.

24 декабря 2020, 12:27НаукаУченые создали материал для смартфонов, который умеет регенерироваться

«Обнаруженный нами материал имеет самую низкую теплопроводность среди всех неорганических твердых тел и проводит тепло почти так же плохо, как воздух», — приводятся в пресс-релизе Ливерпульского университета слова руководителя исследования профессора Мэтта Россейнски (Matt Rosseinsky).

Если принять теплопроводность стали за единицу, то показатель титанового стержня составит 0,1; вода и строительного кирпича — 0,01; воздуха — 0,0005; а нового материала — 0,001.

Сначала авторы определили механизмы, ответственные за снижение теплопередачи в каждой из двух структур, а потом создали комбинированную компоновку атомов, имеющую имеет гораздо более низкую теплопроводность, чем любой из двух исходных материалов.

«Захватывающий вывод этого исследования состоит в том, что можно улучшить свойства материала, используя атомистические взаимодействия, — говорит еще один из авторов статьи доктор Джон Алария (Jon Alaria), научный сотрудник химического факультета

Ливерпульского университета и Института возобновляемых источников энергии Стивенсона. — Помимо переноса тепла, эта стратегия может быть применена к другим важным фундаментальным физическим свойствам, таким как магнетизм и сверхпроводимость, обеспечивающим меньшее энергопотребление и более эффективную передачу электричества».

По мнению авторов, их открытие представляет собой прорыв в управлении тепловым потоком на атомном масштабе и имеет большое значение как для фундаментального понимания свойств материалов, так и для практического применения в термоэлектрических устройствах, например, для разработки термоизолирующих покрытий.

16 июня, 15:41НаукаОткрыт новый топологический сверхпроводник

Теплопроводность строительных материалов, что это, таблица

Последние годы при строительстве дома или его ремонте большое внимание уделяется энергоэффективности. При уже существующих ценах на топливо это очень актуально. Причем похоже что дальше экономия будет приобретать все большую важность. Чтобы правильно подобрать состав и толщин материалов в пироге ограждающих конструкций (стены, пол, потолок, кровля) необходимо знать теплопроводность строительных материалов. Эта характеристика указывается на упаковках с материалами, а необходима она еще на стадии проектирования. Ведь надо решить из какого материала строить стены, чем их утеплять, какой толщины должен быть каждый слой.  

Содержание статьи

Что такое теплопроводность и термическое сопротивление

При выборе строительных материалов для строительства необходимо обращать внимание на характеристики материалов. Одна из ключевых позиций — теплопроводность. Она отображается коэффициентом теплопроводности. Это количество тепла, которое может провести тот или иной материал за единицу времени. То есть, чем меньше этот коэффициент, тем хуже материал проводит тепло. И наоборот, чем выше цифра, тем тепло отводится лучше.

Диаграмма, которая иллюстрирует разницу в теплопроводности материалов

Материалы с низкой теплопроводностью используются для утепления, с высокой — для переноса или отвода тепла. Например, радиаторы делают из алюминия, меди или стали, так как они хорошо передают тепло, то есть имеют высокий коэффициент теплопроводности. Для утепления используются материалы с низким коэффициентом теплопроводности — они лучше сохраняют тепло. В случае если объект состоит из нескольких слоев материала, его теплопроводность определяется как сумма коэффициентов всех материалов. При расчетах, рассчитывается теплопроводность каждой из составляющих «пирога», найденные величины суммируются. В общем получаем теплоизоляцонную способность ограждающей конструкции (стен, пола, потолка).

Теплопроводность строительных материалов показывает количество тепла, которое он пропускает за единицу времени

Есть еще такое понятие как тепловое сопротивление. Оно отображает способность материала препятствовать прохождению по нему тепла. То есть, это обратная величина по отношению к теплопроводности. И, если вы видите материал с высоким тепловым сопротивлением, его можно использовать для теплоизоляции. Примером теплоизоляционных материалов может случить популярная минеральная или базальтовая вата, пенопласт и т.д. Материалы с низким тепловых сопротивлением нужны для отведения или переноса тепла. Например, алюминиевые или стальные радиаторы используют для отопления, так как они хорошо отдают тепло.

Таблица теплопроводности теплоизоляционных материалов

Чтобы в доме было проще сохранять тепло зимой и прохладу летом, теплопроводность стен, пола и кровли должна быть не менее определенной цифры, которая рассчитывается для каждого региона. Состав «пирога» стен, пола и потолка, толщина материалов берутся с таким учетом чтобы суммарная цифра была не меньше  (а лучше — хоть немного больше) рекомендованной для вашего региона.

Коэффициент теплопередачи материалов современных строительных материалов для ограждающих конструкций

При выборе материалов надо учесть, что некоторые из них (не все) в условиях повышенной влажности проводят тепло гораздо лучше. Если при эксплуатации возможно возникновение такой ситуации на продолжительный срок, в расчетах используют теплопроводность для этого состояния. Коэффициенты теплопроводности основных материалов, которые используются для утепления, приведены в таблице.

Наименование материалаКоэффициент теплопроводности Вт/(м·°C)
В сухом состоянииПри нормальной влажностиПри повышенной влажности
Войлок шерстяной0,036-0,0410,038-0,0440,044-0,050
Каменная минеральная вата 25-50 кг/м30,0360,0420,,045
Каменная минеральная вата 40-60 кг/м30,0350,0410,044
Каменная минеральная вата 80-125 кг/м30,0360,0420,045
Каменная минеральная вата 140-175 кг/м30,0370,0430,0456
Каменная минеральная вата 180 кг/м30,0380,0450,048
Стекловата 15 кг/м30,0460,0490,055
Стекловата 17 кг/м30,0440,0470,053
Стекловата 20 кг/м30,040,0430,048
Стекловата 30 кг/м30,040,0420,046
Стекловата 35 кг/м30,0390,0410,046
Стекловата 45 кг/м30,0390,0410,045
Стекловата 60 кг/м30,0380,0400,045
Стекловата 75 кг/м30,040,0420,047
Стекловата 85 кг/м30,0440,0460,050
Пенополистирол (пенопласт, ППС)0,036-0,0410,038-0,0440,044-0,050
Экструдированный пенополистирол (ЭППС, XPS)0,0290,0300,031
Пенобетон, газобетон на цементном растворе, 600 кг/м30,140,220,26
Пенобетон, газобетон на цементном растворе, 400 кг/м30,110,140,15
Пенобетон, газобетон на известковом растворе, 600 кг/м30,150,280,34
Пенобетон, газобетон на известковом растворе, 400 кг/м30,130,220,28
Пеностекло, крошка, 100 — 150 кг/м30,043-0,06
Пеностекло, крошка, 151 — 200 кг/м30,06-0,063
Пеностекло, крошка, 201 — 250 кг/м30,066-0,073
Пеностекло, крошка, 251 — 400 кг/м30,085-0,1
Пеноблок 100 — 120 кг/м3
0,043-0,045
Пеноблок 121- 170 кг/м30,05-0,062
Пеноблок 171 — 220 кг/м30,057-0,063
Пеноблок 221 — 270 кг/м30,073
Эковата0,037-0,042
Пенополиуретан (ППУ) 40 кг/м30,0290,0310,05
Пенополиуретан (ППУ) 60 кг/м30,0350,0360,041
Пенополиуретан (ППУ) 80 кг/м30,0410,0420,04
Пенополиэтилен сшитый0,031-0,038
Вакуум0
Воздух +27°C. 1 атм
0,026
Ксенон0,0057
Аргон0,0177
Аэрогель (Aspen aerogels)0,014-0,021
Шлаковата0,05
Вермикулит0,064-0,074
Вспененный каучук0,033
Пробка листы 220 кг/м30,035
Пробка листы 260 кг/м30,05
Базальтовые маты, холсты0,03-0,04
Пакля0,05
Перлит, 200 кг/м30,05
Перлит вспученный, 100 кг/м30,06
Плиты льняные изоляционные, 250 кг/м30,054
Полистиролбетон, 150-500 кг/м30,052-0,145
Пробка гранулированная, 45 кг/м30,038
Пробка минеральная на битумной основе, 270-350 кг/м30,076-0,096
Пробковое покрытие для пола, 540 кг/м30,078
Пробка техническая, 50 кг/м30,037

Часть информации взята нормативов, которые прописывают характеристики определенных материалов (СНиП 23-02-2003, СП 50.13330.2012, СНиП II-3-79* (приложение 2)). Те материал, которые не прописаны в стандартах, найдены на сайтах производителей. Так как стандартов нет, у разных производителей они могут значительно отличаться, потому при покупке обращайте внимание на характеристики каждого покупаемого материала.

Таблица теплопроводности строительных материалов

Стены, перекрытия, пол, делать можно из разных материалов, но так повелось, что теплопроводность строительных материалов обычно сравнивают с кирпичной кладкой. Этот материал знаю все, с ним проще проводить ассоциации. Наиболее популярны диаграммы, на которых наглядно продемонстрирована разница между различными материалами. Одна такая картинка есть в предыдущем пункте, вторая — сравнение кирпичной стены и стены из бревен — приведена ниже. Именно потому для стен из кирпича и другого материала с высокой теплопроводностью выбирают теплоизоляционные материалы. Чтобы было проще подбирать, теплопроводность основных строительных материалов сведена в таблицу.

Сравнивают самые разные материалы
Название материала, плотностьКоэффициент теплопроводности
в сухом состояниипри нормальной влажностипри повышенной влажности
ЦПР (цементно-песчаный раствор)0,580,760,93
Известково-песчаный раствор0,470,70,81
Гипсовая штукатурка0,25
Пенобетон, газобетон на цементе, 600 кг/м30,140,220,26
Пенобетон, газобетон на цементе, 800 кг/м30,210,330,37
Пенобетон, газобетон на цементе, 1000 кг/м30,290,380,43
Пенобетон, газобетон на извести, 600 кг/м30,150,280,34
Пенобетон, газобетон на извести, 800 кг/м30,230,390,45
Пенобетон, газобетон на извести, 1000 кг/м30,310,480,55
Оконное стекло0,76
Арболит0,07-0,17
Бетон с природным щебнем, 2400 кг/м31,51
Легкий бетон с природной пемзой, 500-1200 кг/м30,15-0,44
Бетон на гранулированных шлаках, 1200-1800 кг/м30,35-0,58
Бетон на котельном шлаке, 1400 кг/м30,56
Бетон на каменном щебне, 2200-2500 кг/м30,9-1,5
Бетон на топливном шлаке, 1000-1800 кг/м30,3-0,7
Керамическийй блок поризованный0,2
Вермикулитобетон, 300-800 кг/м30,08-0,21
Керамзитобетон, 500 кг/м30,14
Керамзитобетон, 600 кг/м30,16
Керамзитобетон, 800 кг/м30,21
Керамзитобетон, 1000 кг/м30,27
Керамзитобетон, 1200 кг/м30,36
Керамзитобетон, 1400 кг/м30,47
Керамзитобетон, 1600 кг/м30,58
Керамзитобетон, 1800 кг/м30,66
ладка из керамического полнотелого кирпича на ЦПР0,560,70,81
Кладка из пустотелого керамического кирпича на ЦПР, 1000 кг/м3)0,350,470,52
Кладка из пустотелого керамического кирпича на ЦПР, 1300 кг/м3)0,410,520,58
Кладка из пустотелого керамического кирпича на ЦПР, 1400 кг/м3)0,470,580,64
Кладка из полнотелого силикатного кирпича на ЦПР, 1000 кг/м3)0,70,760,87
Кладка из пустотелого силикатного кирпича на ЦПР, 11 пустот0,640,70,81
Кладка из пустотелого силикатного кирпича на ЦПР, 14 пустот0,520,640,76
Известняк 1400 кг/м30,490,560,58
Известняк 1+600 кг/м30,580,730,81
Известняк 1800 кг/м30,70,931,05
Известняк 2000 кг/м30,931,161,28
Песок строительный, 1600 кг/м30,35
Гранит3,49
Мрамор2,91
Керамзит, гравий, 250 кг/м30,10,110,12
Керамзит, гравий, 300 кг/м30,1080,120,13
Керамзит, гравий, 350 кг/м30,115-0,120,1250,14
Керамзит, гравий, 400 кг/м30,120,130,145
Керамзит, гравий, 450 кг/м30,130,140,155
Керамзит, гравий, 500 кг/м30,140,150,165
Керамзит, гравий, 600 кг/м30,140,170,19
Керамзит, гравий, 800 кг/м30,18
Гипсовые плиты, 1100 кг/м30,350,500,56
Гипсовые плиты, 1350 кг/м30,230,350,41
Глина, 1600-2900 кг/м30,7-0,9
Глина огнеупорная, 1800 кг/м31,4
Керамзит, 200-800 кг/м30,1-0,18
Керамзитобетон на кварцевом песке с поризацией, 800-1200 кг/м30,23-0,41
Керамзитобетон, 500-1800 кг/м30,16-0,66
Керамзитобетон на перлитовом песке, 800-1000 кг/м30,22-0,28
Кирпич клинкерный, 1800 — 2000 кг/м30,8-0,16
Кирпич облицовочный керамический, 1800 кг/м30,93
Бутовая кладка средней плотности, 2000 кг/м31,35
Листы гипсокартона, 800 кг/м30,150,190,21
Листы гипсокартона, 1050 кг/м30,150,340,36
Фанера клеенная0,120,150,18
ДВП, ДСП, 200 кг/м30,060,070,08
ДВП, ДСП, 400 кг/м30,080,110,13
ДВП, ДСП, 600 кг/м30,110,130,16
ДВП, ДСП, 800 кг/м30,130,190,23
ДВП, ДСП, 1000 кг/м30,150,230,29
Линолеум ПВХ на теплоизолирующей основе, 1600 кг/м30,33
Линолеум ПВХ на теплоизолирующей основе, 1800 кг/м30,38
Линолеум ПВХ на тканевой основе, 1400 кг/м30,20,290,29
Линолеум ПВХ на тканевой основе, 1600 кг/м30,290,350,35
Линолеум ПВХ на тканевой основе, 1800 кг/м30,35
Листы асбоцементные плоские, 1600-1800 кг/м30,23-0,35
Ковровое покрытие, 630 кг/м30,2
Поликарбонат (листы), 1200 кг/м30,16
Полистиролбетон, 200-500 кг/м30,075-0,085
Ракушечник, 1000-1800 кг/м30,27-0,63
Стеклопластик, 1800 кг/м30,23
Черепица бетонная, 2100 кг/м31,1
Черепица керамическая, 1900 кг/м30,85
Черепица ПВХ, 2000 кг/м30,85
Известковая штукатурка, 1600 кг/м30,7
Штукатурка цементно-песчаная, 1800 кг/м31,2

Древесина — один из строительных материалов с относительно невысокой теплопроводностью. В таблице даны ориентировочные данные по разным породам. При покупке обязательно смотрите плотность и коэффициент теплопроводности. Далеко не у всех они такие, как прописаны в нормативных документах.

НаименованиеКоэффициент теплопроводности
В сухом состоянииПри нормальной влажностиПри повышенной влажности
Сосна, ель поперек волокон0,090,140,18
Сосна, ель вдоль волокон0,180,290,35
Дуб вдоль волокон0,230,350,41
Дуб поперек волокон0,100,180,23
Пробковое дерево0,035
Береза0,15
Кедр0,095
Каучук натуральный0,18
Клен0,19
Липа (15% влажности)0,15
Лиственница0,13
Опилки0,07-0,093
Пакля0,05
Паркет дубовый0,42
Паркет штучный0,23
Паркет щитовой0,17
Пихта0,1-0,26
Тополь0,17

Металлы очень хорошо проводят тепло. Именно они часто являются мостиком холода в конструкции. И это тоже надо учитывать, исключать прямой контакт используя теплоизолирующие прослойки и прокладки, которые называются термическим разрывом. Теплопроводность металлов сведена в другую таблицу.

НазваниеКоэффициент теплопроводности НазваниеКоэффициент теплопроводности
Бронза22-105Алюминий202-236
Медь282-390Латунь97-111
Серебро429Железо92
Олово67Сталь47
Золото318

Как рассчитать толщину стен

Для того чтобы зимой в доме было тепло, а летом прохладно, необходимо чтобы ограждающие конструкции (стены, пол, потолок/кровля) должны иметь определенное тепловое сопротивление. Для каждого региона эта величина своя. Зависит она от средних температур и влажности в конкретной области.

Термическое сопротивление ограждающих
конструкций для регионов России

Для того чтобы счета за отопление не были слишком большими, подбирать строительные материалы и их толщину надо так, чтобы их суммарное тепловое сопротивление было не меньше указанного в таблице.

Расчет толщины стены, толщины утеплителя, отделочных слоев

Для современного строительства характерна ситуация, когда стена имеет несколько слоев. Кроме несущей конструкции есть утепление, отделочные материалы. Каждый из слоев имеет свою толщину. Как определить толщину утеплителя? Расчет несложен. Исходят из формулы:

Формула расчета теплового сопротивления

R — термическое сопротивление;

p — толщина слоя в метрах;

k — коэффициент теплопроводности.

Предварительно надо определиться с материалами, которые вы будете использовать при строительстве. Причем, надо знать точно, какого вида будет материал стен, утепление, отделка и т.д. Ведь каждый из них вносит свою лепту в теплоизоляцию, и теплопроводность строительных материалов учитывается в расчете.

Сначала считается термическое сопротивление конструкционного материала (из которого будет строится стена, перекрытие и т.д.), затем «по остаточному» принципу подбирается толщина выбранного утеплителя. Можно еще принять в расчет теплоизоляционных характеристики отделочных материалов, но обычно они идут «плюсом» к основным. Так закладывается определенный запас «на всякий случай». Этот запас позволяет экономить на отоплении, что впоследствии положительно сказывается на бюджете.

Пример расчета толщины утеплителя

Разберем на примере. Собираемся строить стену из кирпича — в полтора кирпича, утеплять будем минеральной ватой. По таблице тепловое сопротивление стен для региона должно быть не меньше 3,5. Расчет для этой ситуации приведен ниже.

  1. Для начала просчитаем тепловое сопротивление стены из кирпича. Полтора кирпича это 38 см или 0,38 метра, коэффициент теплопроводности кладки из кирпича 0,56. Считаем по приведенной выше формуле: 0,38/0,56 = 0,68. Такое тепловое сопротивление имеет стена в 1,5  кирпича.
  2. Эту величину отнимаем от общего теплового сопротивления для региона: 3,5-0,68 = 2,82. Эту величину необходимо «добрать» теплоизоляцией и отделочными материалами.

    Рассчитывать придется все ограждающие конструкции

  3. Считаем толщину минеральной ваты. Ее коэффициент теплопроводности 0,045. Толщина слоя будет: 2,82*0,045 = 0,1269 м или 12,7 см. То есть, чтобы обеспечить требуемый уровень утепления, толщина слоя минеральной ваты должна быть не меньше 13 см.

Если бюджет ограничен, минеральной ваты можно взять 10 см, а недостающее покроется отделочными материалами. Они ведь будут изнутри и снаружи. Но, если хотите, чтобы счета за отопление были минимальными, лучше отделку пускать «плюсом» к расчетной величине. Это ваш запас на время самых низких температур, так как нормы теплового сопротивления для ограждающих конструкций считаются по средней температуре за несколько лет, а зимы бывают аномально холодными. Потому теплопроводность строительных материалов, используемых для отделки просто не принимают во внимание.

Металлы с низкой теплопроводностью — Морской флот

Примеси в медных сплавах

отсюда

Примеси, содержащиеся в меди (и, естественно, взаимодействующие с ней), подразделяют на три группы.

Образующие с медью твердые растворы

К таким примесям относятся алюминий, сурьма, никель, железо, олово, цинк и др. Данные добавки существенно снижают электро- и теплопроводность. К маркам, которые преимущественно используются для производства токопроводящих элементов, относятся М0 и М1. Если в составе медного сплава содержится сурьма, то значительно затрудняется его горячая обработка давлением.

Не растворяющиеся в меди примеси

Сюда относятся свинец, висмут и др. Не влияющие на электропроводность основного металла, такие примеси затрудняют возможность его обработки давлением.

Примеси, образующие с медью хрупкие химические соединения

К этой группе относятся сера и кислород, который снижает электропроводность и прочность основного металла. Наличие серы в медном сплаве значительно облегчает его обрабатываемость при помощи резания.

ПРУЖИННЫЕ СПЛАВЫ НА МЕДНОЙ ОСНОВЕ

ООО ВПО ПромМеталл http://bronza555.ru/
[email protected] +7-903-798-09-70 (звоните!)
Складскую справку можно скачать здесь
ВВЕДЕНИЕ

Пружинные сплавы относятся к особой группе в основном металлических материалов, обладающих кроме обязательных для них высоких механических свойств, получаемых либо холодной пластической деформацией, либо методами дисперсионного упрочнения [1], еще и величиной сопротивления малым пластическим деформациям, или пределом упругости. Читать далее →

Таблица теплопроводности металлов и сплавов

Температуропроводность металлов

В таблице представлены значения коэффициента температуропроводности чистых металлов в зависимости от температуры. Температуропроводность металлов указана в интервале температуры от -250 до 1600°С в размерности м 2 /с.

Рассмотрены следующие металлы: алюминий, кадмий, натрий, серебро, калий, никель, свинец, кобальт, бериллий, литий, сурьма, висмут, магний, цинк, вольфрам, олово, сурьма, железо, платина, золото, медь, родий, молибден, тантал, иридий.

По значениям температуропроводности в таблице можно выделить металлы с наибольшим и наименьшим значением этого свойства. Наименьшей температуропроводностью обладает такой металл, как висмут, его коэффициент температуропроводности при температуре 50°С равен 6,8 м 2 /с. Температуропроводность чистого серебра равна 158,3 м 2 /с при 100°С. Этот металл имеет наиболее высокое значение этой характеристики.

Следует отметить, что по мере роста температуры металла, величина его температуропроводности уменьшается, за исключением платины и кобальта.

Источник:
Промышленные печи. Справочное руководство для расчетов и проектирования. 2–е издание, дополненное и переработанное, Казанцев Е.И. М., «Металлургия», 1975.- 368 с.

Свойства алюминия: плотность, теплопроводность, теплоемкость Al

отсюда

Теплопроводность и плотность алюминия

В таблице представлены теплофизические свойства алюминия Al в зависимости от температуры. Свойства алюминия даны в широком диапазоне температуры — от минус 223 до 1527°С (от 50 до 1800 К).

Как видно из таблицы, теплопроводность алюминия при комнатной температуре равна около 236 Вт/(м·град), что позволяет применять этот материал для изготовления радиаторов и различных теплоотводов.

Кроме алюминия, высокой теплопроводностью обладает также медь. У какого металла теплопроводность больше? Известно, что теплопроводность алюминия при средних и высоких температурах все-таки меньше, чем у меди, однако, при охлаждении до 50К, теплопроводность алюминия существенно возрастает и достигает значения 1350 Вт/(м·град). У меди же при такой низкой температуре значение теплопроводности становится ниже, чем у алюминия и составляет 1250 Вт/(м·град).

Алюминий начинает плавиться при температуре 933,61 К (около 660°С), при этом некоторые его свойства претерпевают значительные изменения.
Значения таких свойств, как температуропроводность, плотность алюминия и его теплопроводность значительно уменьшаются.

Плотность алюминия в основном определяется его температурой и имеет зависимость от агрегатного состояния этого металла. Например, при температуре 27°С плотность алюминия равна 2697 кг/м 3 , а при нагревании этого металла до температуры плавления (660°С), его плотность становится равной 2368 кг/м 3 . Снижение плотности алюминия с ростом температуры обусловлено его расширением при нагревании.

Теплопроводность сплавов меди. Температура плавления латуни и бронзы

Теплопроводность латуни и бронзы

В таблице приведены значения теплопроводности латуни, бронзы, а также медно-никелевых сплавов (константана, копели, манганина и др.) в зависимости от температуры — в интервале от 4 до 1273 К.

Теплопроводность латуни, бронзы и других сплавов на основе меди при нагревании увеличивается. По данным таблицы, наибольшей теплопроводностью из рассмотренных сплавов при комнатной температуре обладает латунь Л96. Ее теплопроводность при температуре 300 К (27°С) равна 244 Вт/(м·град).

Также к медным сплавам с высокой теплопроводностью можно отнести: латунь ЛС59-1, томпак Л96 и Л90, томпак оловянистый ЛТО90-1, томпак прокатный РТ-90. Кроме того, теплопроводность латуни в основном выше теплопроводности бронзы. Следует отметить, что к бронзам с высокой теплопроводностью относятся: фосфористая, хромистая и бериллиевая бронзы, а также бронза БрА5.

Медным сплавом с наименьшей теплопроводностью является марганцовистая бронза — ее коэффициент теплопроводности при температуре 27°С равен 9,6 Вт/(м·град).

Теплопроводность цветных металлов и технических сплавов

ВПО ПромМеталл (бронза, латунь, медь) +7-903-798-09-70 Александр Иванович
складскую справку скачать можно здесь

отсюда

В таблице представлены значения теплопроводности металлов (цветных), а также химический состав металлов и технических сплавов в интервале температуры от 0 до 600°С.

Цветные металлы и сплавы: никель Ni, монель, нихром; сплавы никеля (по ГОСТ 492-58): мельхиор НМ81, НМ70, константан НММц 58,5-1,54, копель НМ 56,5, монель НМЖМц и К-монель, алюмель, хромель, манганин НММц 85-12, инвар; магниевые сплавы (по ГОСТ 2856-68), электрон, платинородий; мягкие припои (по ГОСТ 1499-70): олово чистое, свинец, ПОС-90, ПОС-40, ПОС-30, сплав Розе, сплав Вуда. Читать далее →

Теплопроводность представляет собой физическую величину, которая определяет способность материалов проводить тепло. Иными словами, теплопроводность представляет собой способность субстанций передавать кинетическую энергию атомов и молекул другим субстанциям, находящиеся в непосредственном контакте с ними. В СИ эта величина измеряется во Вт/(К*м) (Ватт на Кельвин-метр), что эквивалентно Дж/(с*м*К) (Джоуль на секунду-Кельвин-метр).

Понятие теплопроводности

Она является интенсивной физической величиной, то есть величиной, которая описывает свойство материи, не зависящей от количества последней. Интенсивными величинами также являются температура, давление, электропроводность, то есть эти характеристики одинаковы в любой точке одного и того же вещества. Другой группой физических величин являются экстенсивные, которые определяются количеством вещества, например, масса, объем, энергия и другие.

Противоположной величиной для теплопроводности является теплосопротивляемость, которая отражает способность материала препятствовать переносу проходящего через него тепла. Для изотропного материала, то есть материала, свойства которого одинаковы во всех пространственных направлениях, теплопроводность является скалярной величиной и определяется, как отношение потока тепла через единичную площадь за единицу времени к градиенту температуры. Так, теплопроводность, равная одному ватту на метр-Кельвин, означает, что тепловая энергия в один Джоуль переносится через материал:

  • за одну секунду;
  • через площадь один метр квадратный;
  • на расстояние один метр;
  • когда разница температур на поверхностях, находящихся на расстоянии один метр друг от друга в материале, равна один Кельвин.

Понятно, что чем больше значение теплопроводности, тем лучше материал проводит тепло, и наоборот. Например, значение этой величины для меди равно 380 Вт/(м*К), и этот металл в 10 000 раз лучше переносит тепло, чем полиуретан, теплопроводность которого составляет 0,035 Вт/(м*К).

Перенос тепла на молекулярном уровне

Когда материя нагревается, увеличивается средняя кинетическая энергия составляющих ее частиц, то есть увеличивается уровень беспорядка, атомы и молекулы начинают более интенсивно и с большей амплитудой колебаться около своих равновесных положений в материале. Перенос тепла, который на макроскопическом уровне можно описать законом Фурье, на молекулярном уровне представляет собой обмен кинетической энергией между частицами (атомами и молекулами) вещества, без переноса последнего.

Это объяснение механизма теплопроводности на молекулярном уровне отличает его от механизма термической конвекции, при котором имеет место перенос тепла за счет переноса вещества. Все твердые тела обладают способностью к теплопроводности, в то время как тепловая конвекция возможна только в жидкостях и газах. Действительно, твердые вещества переносят тепло в основном за счет теплопроводности, а жидкости и газы, если есть температурные градиенты в них, переносят тепло в основном за счет процессов конвекции.

Теплопроводность материалов

Ярко выраженной способностью проводить тепло обладают металлы. Для полимеров свойственна невысокая теплопроводность, а некоторые из них практически не проводят тепло, например, стекловолокно, такие материалы называются теплоизоляторами. Чтобы существовал тот или иной поток тепла через пространство, необходимо наличие некоторой субстанции в этом пространстве, поэтому в открытом космосе (пустое пространство) теплопроводность равна нулю.

Каждый гомогенный (однородный) материал характеризуется коэффициентом теплопроводности (обозначается греческой буквой лямбда), то есть величиной, которая определяет, сколько тепла нужно передать через площадь 1 м², чтобы за одну секунду, пройдя через толщу материала в один метр, температура на его концах изменилась на 1 К. Это свойство присуще каждому материалу и изменяется в зависимости от его температуры, поэтому этот коэффициент измеряют, как правило, при комнатной температуре (300 К) для сравнения характеристики разных веществ.

Если материал является неоднородным, например, железобетон, тогда вводят понятие полезного коэффициента теплопроводности, который измеряется согласно коэффициентам однородных веществ, составляющих этот материал.

В таблице ниже приведены коэффициенты теплопроводности некоторых металлов и сплавов во Вт/(м*К) для температуры 300 К (27 °C):

  • сталь 47—58;
  • алюминий 237;
  • медь 372,1—385,2;
  • бронза 116—186;
  • цинк 106—140;
  • титан 21,9;
  • олово 64,0;
  • свинец 35,0;
  • железо 80,2;
  • латунь 81—116;
  • золото 308,2;
  • серебро 406,1—418,7.

В следующей таблице приведены данные для неметаллических твердых веществ:

  • стекловолокно 0,03—0,07;
  • стекло 0,6—1,0;
  • асбест 0,04;
  • дерево 0,13;
  • парафин 0,21;
  • кирпич 0,80;
  • алмаз 2300.

Из рассматриваемых данных видно, что теплопроводность металлов намного превышает таковую для неметаллов. Исключение составляет алмаз, который обладает коэффициентом теплопередачи в пять раз больше, чем медь. Это свойство алмаза связано с сильными ковалентными связями между атомами углерода, которые образуют его кристаллическую решетку. Именно благодаря этому свойству человек чувствует холод при прикосновении к алмазу губами. Свойство алмаза хорошо переносить тепловую энергию используется в микроэлектронике для отвода тепла из микросхем. А также это свойство используется в специальных приборах, позволяющих отличить настоящий алмаз от подделки.

В некоторых индустриальных процессах стараются увеличить способность передачи тепла, чего достигают либо за счет хороших проводников, либо за счет увеличения площади контакта между составляющими конструкции. Примерами таких конструкций являются теплообменники и рассеиватели тепла. В других же случаях, наоборот, стараются уменьшить теплопроводность, чего достигают за счет использования теплоизоляторов, пустот в конструкциях и снижения площади контакта элементов.

Коэффициенты теплопередачи сталей

Способность передавать тепло для сталей зависит от двух главных факторов: состава и температуры.

Простые углеродные стали при увеличении содержания углерода снижают свой удельный вес, в соответствии с которым также уменьшается и их способность переносить тепло от 54 до 36 Вт/(м*К) при изменении процента углерода в стали от 0,5 до 1,5%.

Нержавеющие стали содержат в своем составе хром (10% и больше), которые вместе с углеродом образует сложные карбиды, препятствующие окислению материала, а также повышает электродный потенциал металла. Теплопроводность нержавейки невелика в сравнении с другими сталями и колеблется от 15 до 30 Вт/(м*К) в зависимости от ее состава. Жаропрочные хромоникелевые стали обладают еще более низкими значениями этого коэффициента (11—19 Вт/(м*К).

Другим классом являются оцинкованные стали с удельным весом 7 850 кг/м3, которые получают путем нанесения покрытий на сталь, состоящих из железа и цинка. Так как цинк легче проводит тепло, чем железо, то и теплопроводность оцинкованной стали будет относительно высокой в сравнении с другими классами стали. Она колеблется от 47 до 58 Вт/(м*К).

Теплопроводность стали при различных температурах, как правило, не изменяется сильно. Например, коэффициент теплопроводности стали 20 при увеличении температуры от комнатной до 1200 °C снижается от 86 до 30 Вт/(м*К), а для марки стали 08Х13 увеличение температуры от 100 до 900 °C не изменяет ее коэффициент теплопроводности (27—28 Вт/(м*К).

Факторы, влияющие на физическую величину

Способность проводить тепло зависит от ряда факторов, включая температуру, структуру и электрические свойства вещества.

Температура материала

Влияние температуры на способность проводить тепло различается для металлов и неметаллов. В металлах проводимость главным образом связана со свободными электронами. Согласно закону Видемана—Франца теплопроводность металла пропорциональна произведению абсолютной температуры, выраженной в Кельвинах, на его электропроводность. В чистых металлах с увеличением температуры уменьшается электропроводность, поэтому теплопроводность остается приблизительно постоянной величиной. В случае сплавов электропроводность мало изменяется с ростом температуры, поэтому теплопроводность сплавов растет пропорционально температуре.

С другой стороны, передача тепла в неметаллах главным образом связана с колебаниями решетки и обмене решеточными фононами. За исключением кристаллов высокого качества и низких температур, путь пробега фононов в решетке значительно не уменьшается при высоких температурах, поэтому и теплопроводность остается постоянной величиной во всем температурном диапазоне, то есть является незначительной. При температурах ниже температуры Дебая способность неметаллов проводить тепло, наряду с их теплоемкостью, значительно уменьшается.

Фазовые переходы и структура

Когда материал испытывает фазовый переход первого рода, например, из твердого состояния в жидкое или из жидкого в газ, то его теплопроводность может измениться. Ярким примером такого изменения является разница этой физической величины для льда (2,18 Вт/(м*К) и воды (0,90 Вт/(м*К).

Изменения кристаллической структуры материалов также влияют на теплопроводность, что объясняется анизотропными свойствами различных аллотропных модификаций вещества одного и того же состава. Анизотропия влияет на различную интенсивность рассеивания решеточных фононов, основных переносчиков тепла в неметаллах, и в различных направлениях в кристалле. Здесь ярким примером является сапфир, проводимость которого изменяется от 32 до 35 Вт/(м*К) в зависимости от направления.

Электрическая проводимость

Теплопроводность в металлах изменяется вместе с электропроводностью согласно закону Видемана—Франца. Это связано с тем, что валентные электроны, свободно перемещаясь по кристаллической решетке металла, переносят не только электрическую, но и тепловую энергию. Для других материалов корреляция между этими типами проводимости не является ярко выраженной, ввиду незначительного вклада электронной составляющей в теплопроводность (в неметаллах основную роль в механизме передачи тепла играют решеточные фононы).

Процесс конвекции

Воздух и другие газы являются, как правило, хорошими теплоизоляторами при отсутствии процесса конвекции. На этом принципе основана работа многих теплоизолирующих материалов, содержащих большое количество небольших пустот и пор. Такая структура не позволяет конвекции распространяться на большие расстояния. Примерами таких материалов, полученных человеком, являются полистирен и силицидный аэрогель. В природе на том же принципе работают такие теплоизоляторы, как шкура животных и оперение птиц.

Легкие газы, например, водород и гель, имеют высокие значения теплопроводности, а тяжелые газы, например, аргон, ксенон и радон, являются плохими проводниками тепла. Например, аргон, инертный газ, который тяжелее воздуха, часто используется в качестве теплоизолирующего газового наполнителя в двойных окнах и в электрических лампочках. Исключением является гексафторид серы (элегаз), который является тяжелым газом и обладает относительно высокой теплопроводностью, ввиду его большой теплоемкости.

17. Теплоемкость и теплопроводность металлов и сплавов

Теплоемкость – это способность вещества поглощать теплоту при нагреве. Ее характеристикой является удельная теплоемкость – количество энергии, поглощаемой единицей массы при нагреве на один градус. От величины теплопроводности зависит возможность появления трещин в металле. Если теплопроводность низкая, то риск возникновения трещин увеличивается. Так, легированные стали имеют теплопроводность, которая в пять раз меньше, чем теплопроводность меди и алюминия. Размер теплоемкости влияет на уровень расходуемого топлива на нагрев заготовки до определенной температуры.

У металлических сплавов удельная теплоемкость находится в пределах 100-2000 Дж/(кг*К). У большинства металлов теплоемкость составляет 300–400 Дж/(кг*К). Теплоемкость металлических материалов растет с повышением температуры. Полимерные материалы, как правило, имеют удельную теплоемкость 1000 Дж/(кг?К) и более.

Электрические свойства материалов характеризуются наличием носителей зарядов электронов или ионов и свободой их передвижения под действием электрического поля.

Высокие энергии ковалентной и ионной связи сообщают материалам с этими типами связи свойства диэлектрика. Их слабая электрическая проводимость обусловлена влиянием примесей, причем под влиянием влаги, образующей с примесями проводящие растворы, электропроводность таких материалов возрастает.

Материалы с разными типами связи имеют различные температурные коэффициенты электросопротивления: у металлов он положителен, у материалов с ковалентным и ионным типом связи – отрицателен. При нагреве металлов концентрация носителей зарядов – электронов не увеличивается, а сопротивление их движению возрастает из-за увеличения амплитуд колебаний атомов. В материалах с ковалентной или ионной связью при нагреве концентрация носителей зарядов повышается настолько, что нейтрализуется влияние помех от увеличения колебаний атомов.

Теплопроводностью называется перенос тепловой энергии в твердых телах, жидкостях и газах при макроскопической неподвижности частиц. Перенос теплоты происходит от более горячих частиц к холодным и подчиняется закону Фурье.

Теплопроводность зависит от типа межатомной связи, температуры, химического состава и структуры материала. Теплота в твердых телах переносится электронами и фононами.

Механизм передачи теплоты, в первую очередь, определяется типом связи: в металлах теплоту переносят электроны; в материалах с ковалентным или ионным типом связи – фононы. Самым теплопроводным является алмаз. В полупроводниках при весьма незначительной концентрации носителей заряда теплопроводность17б осуществляется в основном фононами. Чем совершеннее кристаллы, тем выше их теплопроводность. Монокристаллы лучше проводят теплоту, чем поликристаллы, так как границы зерен и другие дефекты кристаллической структуры рассеивают фононы и увеличивают электросопротивление. Кристаллическая решетка создает периодическое энергетическое пространство, в котором передача теплоты электронами или фононами облегчена по сравнению с аморфным состоянием.

Чем больше примесей содержит металл, мельче зерна и больше искажена кристаллическая решетка, тем меньше теплопроводность. Чем больше размеры зерен, тем выше теплопроводность. Легирование вносит искажение в кристаллические решетки твердых растворов и понижает теплопроводность по сравнению с чистым металлом – основой сплава. Структурные составляющие, представляющие дисперсные смеси нескольких фаз (эвтектики, эвтектоиды), снижают теплопроводность. Структуры с равномерным распределением частиц фаз имеют меньшую теплопроводность, чем основа сплава. Предельным видом подобной структуры является пористый материал. По сравнению с твердыми телами газы являются теплоизоляторами.

Графит имеет высокую теплопроводность. При передаче теплоты параллельно слоям атомов углерода базисной плоскости теплопроводность графита превышает теплопроводность меди более чем в 2 раза

Разветвленные пластины графита в сером чугуне имеют структуру монокристалла, и поэтому он имеет высокую теплопроводность. Высокопрочный чугун с шаровидным графитом при той же объемной доле графита имеет теплопроводность 25…40 Вт/м*К, что почти вдвое меньше по сравнению с серым чугуном.

При нагреве теплопроводности сталей разных классов сближаются. Стекло имеет низкую теплопроводность. Полимерные материалы плохо проводят теплоту, теплопроводность большинства термопластов не превышает 1,5 Вт/(мОК).

Теплопроводность может меняться также, как и электропроводность в случае, если электронная теплопроводность металла составляет l e. Тогда любые изменения, происходящие в химическом и фазовом составе и структуре сплава влияют на теплопроводность также, как и на электропроводность (по правилу Видемана-Франца).

При отдалении состава сплава от чистых компонентов происходит понижение теплопроводности. Исключение составляют, например, медно-никелевые сплавы, в которых происходят обратные явления.

Материалы с низкой теплопроводностью

Комфорт и уют в доме во многом зависят от грамотно рассчитанного теплообмена ещё на этапе строительства. Для этого учитывают всё. Чтобы расчёты были более точными, а сделать их было гораздо легче, применяется таблица теплопроводности строительных материалов. С её помощью можно рассчитать, насколько тепло будет в доме и насколько экономнее получится его отопление. Рассмотрим основные параметры теплопроводности различных материалов и методику вычисления подобной величины общей конструкции.

Что такое теплопроводность, термическое сопротивление и коэффициент теплопроводности

Что же за «зверь» − теплопроводность? Если «расшифровать» сложное физическое определение, то можно получить следующее пояснение. Теплопроводность – свойство, которым обладают все строительные материалы. Характеризуется способностью отдавать тепло от нагретого предмета более холодному. Чем быстрее и интенсивнее это происходит, тем холоднее сам материал, соответственно, и строение из него нуждается в более интенсивном обогреве. Что не очень эффективно, особенно в денежном плане.

Для оценки величины теплопроводности используются специальные коэффициенты, которые уже заранее выявлены. ГОСТ 30290-94 контролирует методы определения подобной характеристики. Последняя нераздельно связана с термическим сопротивлением, которое означает сопротивление слоя теплоотдачи. В случае многослойного материала оно рассчитывается как сумма термических сопротивлений отдельных слоёв. Сама же эта величина равна отношению толщины слоя к коэффициенту.

ИСТ-1 – прибор для определения теплопроводности

Внимание! Для упрощённого расчёта теплосопротивления стены в сети можно найти калькулятор с доступным и понятным интерфейсом.

Как видите, в определении теплопроводности нет ничего сложного и непонятного. Зная все подобные характеристики будущих материалов, можно составить «энергоэффективный бутерброд», но только при условии учёта всех обстоятельств, которые будут влиять на теплоэффективность каждого слоя конструкции.

Основные параметры, от которых зависит величина теплопроводности

Не все строительные материалы одинаково теплоэффективны. На это влияют следующие факторы:

    Пористая структура материала говорит о том, что подобное строение неоднородно, а поры наполнены воздухом. Тепловые массы, перемещаясь через такие прослойки, теряют минимум своей энергии. Поэтому пенобетон именно с замкнутыми порами считается хорошим теплоизолятором.

Замкнутые поры пенобетона наполнены воздухом, который по праву считается лучшим теплоизолятором
Повышенная плотность материала гарантирует более тесную взаимосвязь частиц друг с другом. Соответственно, уравновешивание температурного баланса происходит намного быстрее. По этой причине плотный материал обладает большим коэффициентом проводимости тепла. Поэтому железобетон считается одним из самых «холодных» материалов.

Высокая плотность даёт хорошую прочность железобетону, но также и «обделяет» его теплоэффективностью

  • Влажность – злокачественный фактор, повышающий скорость прохождения тепла. Поэтому так важно качественно произвести гидроизоляцию необходимых узлов здания, грамотно организовать вентиляцию и использовать максимально инертные к намоканию строительные материалы.
  • Зная, что такое проводимость тепла, и какие факторы на неё влияют, можно смело пробовать применять свои знания для расчётов будущих строительных конструкций. Для этого нужно знать коэффициенты используемых материалов.

    Коэффициент теплопроводности строительных материалов – таблицы

    Теплоизоляционные свойства материалов прекрасно демонстрируют сводные таблицы, в которых представлены нормативные показатели.

    Таблица коэффициентов теплоотдачи материалов. Часть 1

    Но эти таблицы теплопроводности материалов и утеплителей учли далеко не все значения. Рассмотрим подробнее теплоотдачу основных строительных материалов.

    Таблица теплопроводности кирпича

    Как уже успели убедиться, кирпич – не самый «тёплый» стеновой материал. По теплоэффективности он отстаёт от дерева, пенобетона и керамзита. Но при грамотном утеплении из него получаются уютные и тёплые дома.

    Но не все виды кирпича имеют одинаковый коэффициент теплопроводности (λ). Например, у клинкерного он самый большой – 0,4−0,9 Вт/(м·К). Поэтому строить из него что-то нецелесообразно. Чаще всего его применяют при дорожных работах и укладке пола в технических зданиях. Самый малый коэффициент подобной характеристики у так называемой теплокерамики – всего 0,11 Вт/(м·К). Но подобное изделие также отличается и большой хрупкостью, что максимально минимизирует область его применения.

    Неплохое соответствие прочности и теплоэффективности у силикатных кирпичей. Но кладка из них также нуждается в дополнительном утеплении, и в зависимости от региона строительства, возможно, ещё и в утолщении стены. Ниже приведена сравнительная таблица значений проводимости тепла различными видами кирпичей.

    Теплопроводность разных видов кирпичей

    Таблица теплопроводности металлов

    Теплопроводность металлов не менее важна в строительстве, например, при выборе радиаторов отопления. Также без подобных значений не обойтись при сварке ответственных конструкций, производстве полупроводников и различных изоляторов. Ниже приведены сравнительные таблицы проводимости тепла различных металлов.

    Теплоэффективность разных видов металлов. Часть 1 Теплоэффективность разных видов металлов. Часть 2 Теплоэффективность разных видов металлов. Часть 3

    Таблица теплопроводности дерева

    Древесина в строительстве негласно относится к элитным материалам для возведения домов. И это не только из-за экологичности и высокой стоимости. Самые низкие коэффициенты теплопроводности у дерева. При этом подобные значения напрямую зависят от породы. Самый низкий коэффициент среди строительных пород имеет кедр (всего 0,095 Вт/(м∙С)) и пробка. Из последней строить дома очень дорого и проблемно. Но зато пробка для покрытия пола ценится из-за своей невысокой проводимости тепла и хороших звукоизоляционных качеств. Ниже представлены таблицы теплопроводности и прочности различных пород.

    Проводимость тепла дерева Прочность разных пород древесины

    Таблица проводимости тепла бетонов

    Бетон в различных его вариациях является самым распространённым строительным материалом на сегодня, хотя и не является самым «тёплым». В строительстве различают конструкционные и теплоизоляционные бетоны. Из первых возводят фундаменты и ответственные узлы зданий с последующим утеплением, из вторых строят стены. В зависимости от региона к таковым либо применяется дополнительное утепление, либо нет.

    Сравнительная таблица теплоизоляционных бетонов и теплопроводности различных стеновых материалов

    Наиболее «тёплым» и прочным считает газобетон. Хотя это не совсем так. Если сравнивать структуру пеноблоков и газобетона, можно увидеть существенные различия. У первых поры замкнутые, когда же у газосиликатов большинство их открытые, как бы «рваные». Именно поэтому в ветреную погоду неутеплённый дом из газоблоков очень холодный. Эта же причина делает подобный лёгкий бетон более подверженным к воздействиям влаги.

    Какой коэффициент теплопроводности у воздушной прослойки

    В строительстве зачастую используют воздушные ветронепродуваемые прослойки, которые только увеличивают проводимость тепла всего здания. Также подобные продухи необходимы для вывода влаги наружу. Особое внимание проектированию подобных прослоек уделяется в пенобетонных зданиях различного назначения. У подобных прослоек также есть свой коэффициент теплопроводности в зависимости от их толщины.

    Таблица проводимости тепла воздушных прослоек

    Калькулятор расчёта толщины стены по теплопроводности

    На практике подобные данные применяют часто и не только профессиональными проектировщиками. Нет ни одного закона, запрещающего самостоятельно создавать проект своего будущего дома. Главное, чтобы тот соответствовал всем нормативам и СНиПам. Чтобы рассчитать теплопроводность стены, можно воспользоваться специальным калькулятором. Подобное «чудо прогресса» можно как установить к себе на компьютер в качестве приложения, так и воспользоваться услугой онлайн.

    Окно расчёта калькулятора

    В нём нет премудростей. Просто выбираешь необходимые данные и получаешь готовый результат.

    Расчёт толщины стен с использованием глиняного обыкновенного кирпича на цементно-песчаном растворе

    Существуют и более сложные калькуляторы расчёта, где учитываются все слои стен, пример подобного расчётного «механизма» показан на фото ниже.

    Расчёт проводимости тепла всех прослоек стен

    Конечно, теплоэффективность будущего здания – это вопрос, требующий пристального внимания. Ведь от него зависит, насколько тепло будет в доме и насколько экономно будет его отапливать. Для каждого климатического региона существуют свои нормы коэффициентов теплопроводности ограждающих конструкций. Можно рассчитать самостоятельно теплоэффективность, но если возникают проблемы, лучше обратиться за помощью к специалистам.

    Теплопроводность.

    Так что же такое теплопроводность? С точки зрения физики теплопроводность – это молекулярный перенос теплоты между непосредственно соприкасающимися телами или частицами одного тела с различной температурой, при котором происходит обмен энергией движения структурных частиц (молекул, атомов, свободных электронов).

    Можно сказать проще, теплопроводность – это способность материала проводить тепло. Если внутри тела имеется разность температур, то тепловая энергия переходит от более горячей его части к более холодной. Передача тепла происходит за счет передачи энергии при столкновении молекул вещества. Происходит это до тех пор, пока температура внутри тела не станет одинаковой. Такой процесс может происходить в твердых, жидких и газообразных веществах.

    На практике, например в строительстве при теплоизоляции зданий, рассматривается другой аспект теплопроводности, связанный с передачей тепловой энергии. В качестве примера возьмем “абстрактный дом”. В “абстрактном доме” стоит нагреватель, который поддерживает внутри дома постоянную температуру, скажем, 25 °С. На улице температура тоже постоянная, например, 0 °С. Вполне понятно, что если выключить обогреватель, то через некоторое время в доме тоже будет 0 °С. Все тепло (тепловая энергия) через стены уйдет на улицу.

    Чтобы поддерживать температуру в доме 25 °С, нагреватель должен постоянно работать. Нагреватель постоянно создает тепло, которое постоянно уходит через стены на улицу.

    Коэффициент теплопроводности.

    Количество тепла, которое проходит через стены (а по научному – интенсивность теплопередачи за счет теплопроводности) зависит от разности температур (в доме и на улице), от площади стен и теплопроводности материала, из которого сделаны эти стены.

    Для количественной оценки теплопроводности существует коэффициент теплопроводности материалов. Этот коэффициент отражает свойство вещества проводить тепловую энергию. Чем больше значение коэффициента теплопроводности материала, тем лучше он проводит тепло. Если мы собираемся утеплять дом, то надо выбирать материалы с небольшим значением этого коэффициента. Чем он меньше, тем лучше. Сейчас в качестве материалов для утепления зданий наибольшее распространение получили утеплители из минеральной ваты, и различных пенопластов. Набирает популярность новый материал с улучшенными теплоизоляционными качествами – Неопор.

    Коэффициент теплопроводности материалов обозначается буквой ? (греческая строчная буква лямбда) и выражается в Вт/(м2*К). Это означает, что если взять стену из кирпича, с коэффициентом теплопроводности 0,67 Вт/(м2*К), толщиной 1 метр и площадью 1 м2., то при разнице температур в 1 градус, через стену будет проходить 0,67 ватта тепловой энергии. Если разница температур будет 10 градусов, то будет проходить уже 6,7 ватта. А если при такой разнице температур стену сделать 10 см, то потери тепла будут уже 67 ватт. Подробней о методике расчета теплопотерь зданий можно посмотреть здесь.

    Следует отметить, что значения коэффициента теплопроводности материалов указываются для толщины материала в 1 метр. Чтобы определить теплопроводность материала для любой другой толщины, надо коэффициент теплопроводности разделить на нужную толщину, выраженную в метрах.

    В строительных нормах и расчетах часто используется понятие “тепловое сопротивление материала”. Это величина обратная теплопроводности. Если, на пример, теплопроводность пенопласта толщиной 10 см – 0,37 Вт/(м2*К), то его тепловое сопротивление будет равно 1 / 0,37 Вт/(м2*К) = 2,7 (м2*К)/Вт.

    Коэффициент теплопроводности материалов.

    Ниже в таблице приведены значения коэффициента теплопроводности для некоторых материалов применяемых в строительстве.

    Точные данные позволит получить таблица теплопроводности строительных материалов. Правильное возведение зданий способствует оптимальным климатическим параметрам в помещении.

    Строительство каждого объекта лучше начинать с планировки проекта и тщательного расчета теплотехнических параметров. Точные данные позволит получить таблица теплопроводности строительных материалов. Правильное возведение зданий способствует оптимальным климатическим параметрам в помещении. А таблица поможет правильно подобрать сырье, которое будут использоваться для строительства.

    Назначение теплопроводности

    Теплопроводность является показателем передачи тепловой энергии от нагреваемых предметов в помещении к предметам с более низкой температурой. Процесс теплообмена производится, пока температурные показатели не уравняются. Для обозначения тепловой энергии используется специальный коэффициент теплопроводности строительных материалов. Таблица поможет увидеть все требуемые значения. Параметр обозначает, сколько тепловой энергии пропускается через единицу площади в единицу времени. Чем больше данное обозначение, тем качественнее будет теплообмен. При возведении зданий необходимо применять материал с минимальным значением тепловой проводимости.

    Коэффициент теплопроводности это такая величина, которая равна количеству теплоты, проходящей через метр толщины материала за час. Использование подобной характеристики обязательно для создания лучшей теплоизоляции. Теплопроводность следует учесть при подборе дополнительных утепляющих конструкций.

    Что оказывает влияние на показатель теплопроводности?

    Теплопроводность определяется такими факторами:

    • Пористость определяет неоднородность структуры. При пропуске тепла через такие материалы процесс охлаждения незначительный;

    • Повышенное значение плотности влияет на тесные соприкосновения частиц, что способствует более быстрому теплообмену;

    • Повышенная влажность увеличивает данный показатель.

    Использование значений коэффициента теплопроводности на практике.

    Материалы представлены конструкционными и теплоизоляционными разновидностями. Первый вид обладает большими показателями теплопроводности. Они применяются для строительства перекрытий, ограждений и стен.

    При помощи таблицы определяются возможности их теплообмена. Чтобы данный показатель был достаточно низким для нормального микроклимата в помещении стены из некоторых материалов должны быть особенно толстыми. Чтобы этого избежать, рекомендуется использовать дополнительные теплоизолирующие компоненты.

    Показатели теплопроводности для готовых построек. Виды утеплений.

    При создании проекта нужно учитывать все способы утечки тепла. Оно может выходить через стены и крышу, а также через полы и двери. Если вы неправильно проведете расчеты проектирования, то придется довольствоваться только тепловой энергией, полученной от отопительных приборов. Здания, построенные из стандартного сырья: камня, кирпича либо бетона нужно дополнительно утеплять.

    Дополнительная теплоизоляция проводится в каркасных зданиях. При этом деревянный каркас придает жесткости конструкции, а утепляющий материал прокладывается в пространство между стойками. В зданиях из кирпича и шлакоблоков утепление производится снаружи конструкции.

    Выбирая утеплители необходимо обращать внимание на такие факторы, как уровень влажности, влияние повышенных температур и типа сооружения. Учитывайте определенные параметры утепляющих конструкций:

    • Показатель теплопроводности оказывает влияние на качество теплоизолирующего процесса;

    • Влагопоглощение имеет большое значение при утеплении наружных элементов;

    • Толщина влияет на надежность утепления. Тонкий утеплитель помогает сохранить полезную площадь помещения;

    • Важна горючесть. Качественное сырье имеет способность к самозатуханию;

    • Термоустойчивость отображает способность выдерживать температурные перепады;

    • Экологичность и безопасность;

    • Звукоизоляция защищает от шума.

    В качестве утеплителей применяются следующие виды:

    • Минеральная вата устойчива к огню и экологична. К важным характеристикам относится низкая теплопроводность;

    • Пенопласт – это легкий материал с хорошими утеплительными свойствами. Он легко устанавливается и обладает влагоустойчивостью. Рекомендуется для применения в нежилых строениях;

    • Базальтовая вата в отличие от минеральной отличается лучшими показателями стойкости к влаге;

    • Пеноплэкс устойчив к влажности, повышенным температурам и огню. Имеет прекрасные показатели теплопроводности, прост в монтаже и долговечен;

    • Пенополиуретан известен такими качествами, как негорючесть, хорошие водоотталкивающие свойства и высокая пожаростойкость;

    • Экструдированный пенополистирол при производстве проходит дополнительную обработку. Обладает равномерной структурой;

    • Пенофол представляет из себя многослойный утепляющий пласт. В составе присутствует вспененный полиэтилен. Поверхность пластины покрывается фольгой для обеспечения отражения.

    Для теплоизоляции могут применяться сыпучие типы сырья. Это бумажные гранулы или перлит. Они имеют стойкость к влаге и к огню. А из органических разновидностей можно рассмотреть волокно из древесины, лен или пробковое покрытие. При выборе, особое внимание уделяйте таким показателям как экологичность и пожаробезопасность.

    ОБРАТИТЕ ВНИМАНИЕ! При конструировании теплоизоляции, важно продумать монтаж гидроизолирующей прослойки. Это позволит избежать высокой влажности и повысит сопротивляемость теплообмену.

    Таблица теплопроводности строительных материалов: особенности показателей.

    Таблица теплопроводности строительных материалов содержит показатели различных видов сырья, которое применяется в строительстве. Используя данную информацию, вы можете легко посчитать толщину стен и количество утеплителя.

    Как использовать таблицу теплопроводности материалов и утеплителей?

    В таблице сопротивления теплопередаче материалов представлены наиболее популярные материалы. Выбирая определенный вариант теплоизоляции важно учитывать не только физические свойства, но и такие характеристики как долговечность, цена и легкость установки.

    Знаете ли вы, что проще всего выполнять монтаж пенооизола и пенополиуретана. Они распределяются по поверхности в виде пены. Подобные материалы легко заполняют полости конструкций. При сравнении твердых и пенных вариантов, нужно выделить , что пена не образует стыков.

    Значения коэффициентов теплопередачи материалов в таблице.

    При произведении вычислений следует знать коэффициент сопротивления теплопередаче. Данное значение является отношением температур с обеих сторон к количеству теплового потока. Для того чтобы найти теплосопротивление определенных стен и используется таблица теплопроводности.

    Все расчеты вы можете провести сами. Для этого толщина прослойки теплоизолятора делится на коэффициент теплопроводности. Данное значение часто указывается на упаковке, если это изоляция. Материалы для дома измеряются самостоятельно. Это касается толщины, а коэффициенты можно отыскать в специальных таблицах.

    Коэффициент сопротивления помогает выбрать определенный тип теплоизоляции и толщину слоя материала. Сведения о паропроницаемости и плотности можно посмотреть в таблице.

    При правильном использовании табличных данных вы сможете выбрать качественный материал для создания благоприятного микроклимата в помещении. опубликовано econet.ru

    Понравилась статья? Тогда поддержи нас, жми:

    Какой дом теплее::EPLAN.HOUSE

        
    Алюминий (ГОСТ 22233-83)2600221897
    Асбест волокнистый4700.161050
    Асбестоцементный лист16000.41500
    Асбошифер с высоким содержанием асбеста18000.17…0.35
    Асбошифер с 10-50% асбеста18000.64…0.52
    Асбоцемент войлочный1440.078
    Асфальт1100…21100.71700…2100
    Асфальтобетон (ГОСТ 9128-84)21001.051680
    Аэрогель (Aspen aerogels)110…2000.014…0.021700
    Базальт2600…30003.5850
    Бакелит12500.23
    Береза510…7700.151250
    Бетон на гравии или щебне из природного камня24001.51840
    Бетон на каменном щебне2200…25000.9…1.5
    Бетон на песке1800…25000.7710
    Бетон силикатный плотный18000.81880
    Бетон термоизоляционный5000.18
    Битумы нефтяные строительные и кровельные (ГОСТ 6617-76, ГОСТ 9548-74)1000…14000.17…0.271680
    Блок газобетонный400…8000.15…0.3
    Блок керамический поризованный0.2
    Бумага700…11500.141090…1500
    Бут1800…20000.73…0.98
    Вата минеральная легкая500.045920
    Вата минеральная тяжелая100…1500.055920
    Вермикулит (в виде насыпных гранул) ГОСТ 12865-67100…2000.064…0.076840
    Вермикулит вспученный (ГОСТ 12865-67) — засыпка100…2000.064…0.074840
    Вермикулитобетон300…8000.08…0.21840
    Воздух сухой при 20°С1.2050.02591005
    Газо- и пенобетон, газо- и пеносиликат280…10000.07…0.21840
    Гипс формованный сухой1100…18000.431050
    Гипсокартон500…9000.12…0.2950
    Гипсоперлитовый раствор0.14
    Глина1600…29000.7…0.9750
    Глина огнеупорная18001.04800
    Гравий (наполнитель)18500.4…0.93850
    Гравий керамзитовый (ГОСТ 9759-83) — засыпка200…8000.1…0.18840
    Гравий шунгизитовый (ГОСТ 19345-83) — засыпка400…8000.11…0.16840
    Гранит (облицовка)2600…30003.5880
    Грунт 10% воды1.75
    Грунт 20% воды17002.1
    Грунт песчаный1.16900
    Грунт сухой15000.4850
    Грунт утрамбованный1.05
    Дуб вдоль волокон7000.232300
    Дуб поперек волокон (ГОСТ 9462-71, ГОСТ 2695-83)7000.12300
    Дюралюминий2700…2800120…170920
    Железо787070…80450
    Железобетон25001.7840
    Известняк (облицовка)1400…20000.5…0.93850…920
    Изделия из вспученного перлита на битумном связующем (ГОСТ 16136-80)300…4000.067…0.111680
    Изделия пенобетонные400…5000.19…0.22
    Камень керамический поризованный Braer 14,3 НФ и 10,7 НФ810…8400.14…0.185
    Камни многопустотные из легкого бетона500…12000.29…0.6
    Камни полнотелые из легкого бетона DIN 18152500…20000.32…0.99
    Камень строительный22001.4920
    Картон асбестовый изолирующий720…9000.11…0.21
    Картон гофрированный7000.06…0.071150
    Картон плотный600…9000.1…0.231200
    Картон пробковый1450.042
    Картон строительный многослойный (ГОСТ 4408-75)6500.132390
    Картон термоизоляционный (ГОСТ 20376-74)5000.04…0.06
    Каучук вспененный820.033
    Каучук натуральный9100.181400
    Кедр красный500…5700.095
    Керамзит800…10000.16…0.2750
    Керамзитовый горох900…15000.17…0.32750
    Керамзитобетон легкий500…12000.18…0.46
    Керамзитобетон на керамзитовом песке и керамзитопенобетон500…18000.14…0.66840
    Керамзитобетон на перлитовом песке800…10000.22…0.28840
    Керамика1700…23001.5
    Кирпич доменный (огнеупорный)1000…20000.5…0.8
    Кирпич красный плотный1700…21000.67840…880
    Кирпич красный пористый15000.44
    Кирпич клинкерный1800…20000.8…1.6
    Кирпич облицовочный18000.93880
    Кирпич пустотелый0.44
    Кирпич силикатный с тех. пустотами0.7
    Кирпич силикатный щелевой0.4
    Кирпич строительный800…15000.23…0.3800
    Кладка бутовая из камней средней плотности20001.35880
    Кладка газосиликатная630…8200.26…0.34880
    Кладка из газосиликатных теплоизоляционных плит5400.24880
    Кладка из глиняного обыкновенного кирпича на цементно-перлитовом растворе16000.47880
    Кладка из глиняного обыкновенного кирпича (ГОСТ 530-80) на цементно-песчаном растворе18000.56880
    Кладка из керамического пустотного кирпича на цементно-песчаном растворе1000…14000.35…0.47880
    Кладка из малоразмерного кирпича17300.8880
    Кладка из пустотелых стеновых блоков1220…14600.5…0.65880
    Кладка из силикатного 11-ти пустотного кирпича на цементно-песчаном растворе15000.64880
    Кладка из силикатного 14-ти пустотного кирпича на цементно-песчаном растворе14000.52880
    Кладка из силикатного кирпича (ГОСТ 379-79) на цементно-песчаном растворе18000.7880
    Кладка из ячеистого кирпича13000.5880
    Клен620…7500.19
    Краска масляная (эмаль)1030…20450.18…0.4650…2000
    Лед -20°С9202.441950
    Лед 0°С9172.212150
    Линолеум поливинилхлоридный многослойный (ГОСТ 14632-79)1600…18000.33…0.381470
    Линолеум поливинилхлоридный на тканевой подоснове (ГОСТ 7251-77)1400…18000.23…0.351470
    Липа, (15% влажности)320…6500.15
    Лиственница6700.13
    Листы асбестоцементные плоские (ГОСТ 18124-75)1600…18000.23…0.35840
    Листы гипсовые обшивочные (сухая штукатурка) ГОСТ 62668000.15840
    Листы пробковые легкие2200.035
    Маты, холсты базальтовые25…800.03…0.04
    Маты минераловатные прошивные (ГОСТ 21880-76) и на синтетическом связующем (ГОСТ 9573-82)50…1250.048…0.056840
    МБОР-5, МБОР-5Ф, МБОР-С-5, МБОР-С2-5, МБОР-Б-5 (ТУ 5769-003-48588528-00)100…1500.038
    Мел1800…28000.8…2.2800…880
    Медь (ГОСТ 859-78)8500407420
    Мрамор (облицовка)28002.9880
    Настил палубный6300.211100
    Опилки древесные200…4000.07…0.093
    Пакля1500.052300
    Панели стеновые из гипса DIN 1863600…9000.29…0.41
    Паркет дубовый18000.421100
    Паркет штучный11500.23880
    Паркет щитовой7000.17880
    Пенобетон300…12500.12…0.35840
    Пенопласт ПС-11000.037
    Пенопласт ПС-4700.04
    Пенопласт ПХВ-1 (ТУ 6-05-1179-75) и ПВ-1 (ТУ 6-05-1158-78)65…1250.031…0.0521260
    Пенопласт резопен ФРП-165…1100.041…0.043
    Пенополистирол (ГОСТ 15588-70)400.0381340
    Пенополистирол (ТУ 6-05-11-78-78)100…1500.041…0.051340
    Пенополистирол Пеноплэкс22…470.03…0.0361600
    Пенополиуретан (ТУ В-56-70, ТУ 67-98-75, ТУ 67-87-75)40…800.029…0.0411470
    Пенополиуретановые листы1500.035…0.04
    Пенополиэтилен0.035…0.05
    Пенополиуретановые панели0.025
    Пеностекло легкое100..2000.045…0.07
    Пеностекло или газо-стекло (ТУ 21-БССР-86-73)200…4000.07…0.11840
    Пенофол44…740.037…0.039
    Пергамент0.071
    Пергамин (ГОСТ 2697-83)6000.171680
    Перекрытие армокерамическое с бетонным заполнением без штукатурки1100…13000.7850
    Перекрытие из железобетонных элементов со штукатуркой15501.2860
    Перекрытие монолитное плоское железобетонное24001.55840
    Перлит2000.05
    Перлит вспученный1000.06
    Песок 0% влажности15000.33800
    Песок 10% влажности0.97
    Песок 20% влажности1.33
    Песок для строительных работ (ГОСТ 8736-77)16000.35840
    Песок речной мелкий15000.3…0.35700…840
    Песчаник обожженный1900…27001.5
    Пихта450…5500.1…0.262700
    Плита бумажная прессованая6000.07
    Плита пробковая80…5000.043…0.0551850
    Плитка облицовочная, кафельная20001.05
    Плиты алебастровые0.47750
    Плиты из гипса ГОСТ 64281000…12000.23…0.35840
    Плиты древесно-волокнистые и древесно-стружечные (ГОСТ 4598-74, ГОСТ 10632-77)200…10000.06…0.152300
    Плиты из керзмзито-бетона400…6000.23
    Плиты из полистирол-бетона ГОСТ Р 51263-99200…3000.082
    Плиты из стеклянного штапельного волокна на синтетическом связующем (ГОСТ 10499-78)500.056840
    Плиты из ячеистого бетона ГОСТ 5742-76350…4000.093…0.104
    Плиты льнокостричные изоляционные2500.0542300
    Плиты минераловатные на битумной связке марки 200 ГОСТ 10140-80150…2000.058
    Плиты минераловатные на синтетическом связующем марки 200 ГОСТ 9573-962250.054
    Плиты минераловатные повышенной жесткости ГОСТ 22950-952000.052840
    Плиты минераловатные повышенной жесткости на органофосфатном связующем
    (ТУ 21-РСФСР-3-72-76)
    2000.064840
    Плиты минераловатные полужесткие на крахмальном связующем125…2000.056…0.07840
    Плиты мягкие, полужесткие и жесткие минераловатные на синтетическом и битумном связующих (ГОСТ 9573-82, ГОСТ 10140-80, ГОСТ 12394-66)50…3500.048…0.091840
    Плиты пенополистирольные ГОСТ 15588-86 безпрессовые30…350.038
    Плиты пенополистирольные (экструзионные) ТУ 2244-001-47547616-00320.029
    Плиты строительный из пористого бетона500…8000.22…0.29
    Плиты фибролитовые (ГОСТ 8928-81) и арболит (ГОСТ 19222-84) на портландцементе300…8000.07…0.162300
    Покрытие ковровое6300.21100
    Покрытие синтетическое (ПВХ)15000.23
    Пол гипсовый бесшовный7500.22800
    Поливинилхлорид (ПВХ)1400…16000.15…0.2
    Поликарбонат (дифлон)12000.161100
    Полипропилен (ГОСТ 26996– 86)900…9100.16…0.221930
    Полистирол УПП1, ППС10250.09…0.14900
    Полистиролбетон (ГОСТ 51263)150…6000.052…0.1451060
    Полистиролбетон модифицированный на композиционном малоклинкерном вяжущем в стеновых блоках и плитах200…5000.052…0.1051060
    Полистиролбетон модифицированный монолитный на портландцементе250…3000.075…0.0851060
    Полиуретан12000.32
    Полихлорвинил1290…16500.151130…1200
    Полиэтилен высокой плотности9550.35…0.481900…2300
    Полиэтилен низкой плотности9200.25…0.341700
    Пробка гранулированная техническая450.0381800
    Пробка минеральная на битумной основе270…3500.073…0.096
    Пробковое покрытие для полов5400.078
    Ракушечник1000…18000.27…0.63835
    Раствор гипсоперлитовый6000.14840
    Раствор известковый16500.85920
    Раствор известково-песчаный1400…16000.78840
    Раствор легкий LM21, LM36700…10000.21…0.36
    Раствор сложный (песок, известь, цемент)17000.52840
    Раствор цементно-песчаный1800…20000.6…1.2840
    Раствор цементно-перлитовый800…10000.16…0.21840
    Резина мягкая0.13…0.161380
    Резина твердая обыкновенная900…12000.16…0.231350…1400
    Резина пористая160…5800.05…0.172050
    Рубероид (ГОСТ 10923-82)6000.171680
    Сланец2600…33000.7…4.8
    Слюда вспученная1000.07
    Слюда поперек слоев2600…32000.46…0.58880
    Слюда вдоль слоев2700…32003.4880
    Снег свежевыпавший120…2000.1…0.152090
    Снег лежалый при 0°С400…5600.52100
    Сосна и ель вдоль волокон5000.182300
    Сосна и ель поперек волокон (ГОСТ 8486-66, ГОСТ 9463-72)5000.092300
    Сосна смолистая 15% влажности600…7500.15…0.232700
    Сталь стержневая арматурная (ГОСТ 10884-81)785058482
    Стекло оконное (ГОСТ 111-78)25000.76840
    Стекловата155…2000.03800
    Стекловолокно1700…20000.04840
    Стеклопластик18000.23800
    Стеклотекстолит1600…19000.3…0.37
    Стружка деревянная прессованая8000.12…0.151080
    Толь (ГОСТ 10999-76)6000.171680
    Тополь350…5000.17
    Торфоплиты275…3500.1…0.122100
    Туф (облицовка)1000…20000.21…0.76750…880
    Туфобетон1200…18000.29…0.64840
    Фанера клееная (ГОСТ 3916-69)6000.12…0.182300…2500
    Фибролит (GreenBoard)4500.0632100
    Целлофан0.1
    Цементные плиты1.92
    Черепица бетонная21001.1
    Черепица глиняная19000.85
    Черепица из ПВХ асбеста20000.85
    Штукатурка гипсовая8000.3840
    Штукатурка известковая16000.7950
    Штукатурка из синтетической смолы11000.7
    Штукатурка из полистирольного раствора3000.11200
    Штукатурка перлитовая350…8000.13…0.91130
    Штукатурка сухая0.21
    Штукатурка утепляющая5000.2
    Штукатурка фасадная с полимерными добавками18001880
    Штукатурка цементная0.9
    Штукатурка цементно-песчаная18001.2
    Щебень и песок из перлита вспученного (ГОСТ 10832-83) — засыпка200…6000.064…0.11840
    Эбонит вспученный6400.032
    Эковата35…600.032…0.0412300
    Энсонит (прессованный картон)400…5000.1…0.11

    Таблица теплопроводности строительных материалов: коэффициенты

    ПОДЕЛИТЕСЬ
    В СОЦСЕТЯХ

    Любое строительство независимо от его размера всегда начинается с разработки проекта. Его цель – спроектировать не только внешний вид будущего строения, еще и просчитать основные теплотехнические характеристики. Ведь основной задачей строительства считается сооружение прочных, долговечных зданий, способных поддерживать здоровый и комфортный микроклимат, без лишних затрат на отопление. Несомненную помощь при выборе сырья, используемого для возведения постройки, окажет таблица теплопроводности строительных материалов: коэффициенты.

    Тепло в доме напярямую зависит от коэффициента теплопроводности строительных материалов

    Что такое теплопроводность?

    Теплопроводность – это процесс передачи энергии тепла от нагретых частей помещения к менее теплым. Такой обмен энергией будет происходить, пока температура не уравновесится. Применяя это правило к ограждающим системам дома, можно понять, что процесс теплопередачи определяется промежутком времени, за который происходит выравнивание температуры в комнатах с окружающей средой. Чем это время больше, тем теплопроводность материала, применяемого при строительстве, ниже.

    Отсутствие теплоизоляции дома скажется на температуре воздуха внутри помещения

    Для характеристики проводимости тепла материалами используют такое понятие, как коэффициент теплопроводности. Он показывает, какое количество тепла за одну единицу временного промежутка пройдет через одну единицу площади поверхности. Чем выше подобный показатель, тем сильнее теплообмен, значит, постройка будет остывать значительно быстрее. То есть при сооружении зданий, домов и прочих помещений необходимо использовать материалы, проводимость тепла которых минимальна.

    Сравнительные характеристики теплопроводности и термического сопротивления стен, возведенных из кирпича и газобетонных блоков

    Что влияет на величину теплопроводности?

    Тепловая проводимость любого материала зависит от множества параметров:

    1. Пористая структура. Присутствие пор предполагает неоднородность сырья. При прохождении тепла через подобные структуры, где большая часть объема занята порами, охлаждение будет минимальным.
    2. Плотность. Высокая плотность способствует более тесному взаимодействию частиц друг с другом. В результате теплообмен и последующее полное уравновешивание температур происходит быстрее.
    3. Влажность. При высокой влажности окружающего воздуха или намокании стен постройки, сухой воздух вытесняется капельками жидкости из пор. Теплопроводность в подобном случае значительно увеличивается.

    Теплопроводность, плотность и водопоглощение некоторых строительных материалов

    Применение показателя теплопроводности на практике

    В строительстве все материалы условно подразделяются на теплоизоляционные и конструкционные. Конструкционное сырье отличается наибольшими показателями теплопроводности, но именно его применяют для постройки стен, перекрытий, прочих ограждений. Согласно таблице теплопроводности строительных материалов, при возведении стен из железобетона, для низкого теплообмена с окружающей средой толщина конструкции должна быть около 6 метров. В таком случае строение получится огромным, громоздким и потребует немалых затрат.

    Наглядный пример — при какой толщине различных материалов их коэффициент теплопроводности будет одинаковым

    Поэтому при возведении постройки следует отдельное внимание уделять дополнительным теплоизолирующим материалам. Слой теплоизоляции может не понадобиться только для построек из дерева или пенобетона, но даже при использовании подобного низкопроводного сырья толщина конструкции должна быть не менее 50 см.

    Нужно знать! У теплоизоляционных материалов значения показателя теплопроводности минимальны.

    Теплопроводность готового здания. Варианты утепления конструкций

    При разработке проекта постройки необходимо учесть все возможные варианты и пути потери тепла. Большое его количество может уходить через:

    • стены – 30%;
    • крышу – 30%;
    • двери и окна – 20%;
    • полы – 10%.

    Теплопотери неутепленного частного дома

    При неверном расчете теплопроводности на этапе проектирования, жильцам остается довольствоваться только 10% тепла, получаемого от энергоносителей. Именно поэтому дома, возведенные из стандартного сырья: кирпича, бетона, камня рекомендуют дополнительно утеплять. Идеальная постройка согласно таблице теплопроводности строительных материалов должна быть выполнена полностью из теплоизолирующих элементов. Однако малая прочность и минимальная устойчивость к нагрузкам ограничивает возможности их применения.

    Нужно знать! При обустройстве правильной гидроизоляции любого утеплителя высокая влажность не повлияет на качество теплоизоляции и сопротивление постройки теплообмену будет значительно выше.

    Сравнительный график коэффициентов теплопроводности некоторых строительных материалов и утеплителей

    Самым распространенным вариантом сочетание несущей конструкции из высокопрочных материалов с дополнительным слоем теплоизоляции. Сюда можно отнести:

    1. Каркасный дом. При его постройке каркасом из древесины обеспечивается жесткость всей конструкции, а укладка утеплителя производится в пространство между стойками. При незначительном уменьшении теплообмена в некоторых случая может потребоваться утепление еще и снаружи основного каркаса.
    2. Дом из стандартных материалов. При выполнении стен из кирпича, шлакоблоков, утепление должно проводиться по наружной поверхности конструкции.

    Необходимая тепло- и гидроизоляция для сохранения тепла в частном доме

    Таблица теплопроводности строительных материалов: коэффициенты

    В этой таблице собраны показатели теплопроводности самых распространенных строительных материалов. Пользуясь подобными справочниками, можно без проблем рассчитать необходимую толщину стен и применяемого утеплителя.

    Таблица коэффициента теплопроводности строительных материалов:

    Таблица теплопроводности строительных материалов: коэффициенты

    Теплопроводность строительных материалов (видео)

    ОЦЕНИТЕ
    МАТЕРИАЛ Загрузка… ПОДЕЛИТЕСЬ
    В СОЦСЕТЯХ

    СМОТРИТЕ ТАКЖЕ

    REMOO В ВАШЕЙ ПОЧТЕ

    Теплопроводность строительных материалов — таблица утеплителей, сравнение

    Любое строительство независимо от его размера всегда начинается с разработки проекта. Его цель – спроектировать не только внешний вид будущего строения, еще и просчитать основные теплотехнические характеристики. Ведь основной задачей строительства считается сооружение прочных, долговечных зданий, способных поддерживать здоровый и комфортный микроклимат, без лишних затрат на отопление. Несомненную помощь при выборе сырья, используемого для возведения постройки, окажет таблица теплопроводности строительных материалов: коэффициенты.

    Тепло в доме напярямую зависит от коэффициента теплопроводности строительных материалов

    Что такое теплопроводность?

    Теплопроводность – это процесс передачи энергии тепла от нагретых частей помещения к менее теплым. Такой обмен энергией будет происходить, пока температура не уравновесится. Применяя это правило к ограждающим системам дома, можно понять, что процесс теплопередачи определяется промежутком времени, за который происходит выравнивание температуры в комнатах с окружающей средой. Чем это время больше, тем теплопроводность материала, применяемого при строительстве, ниже.

    Отсутствие теплоизоляции дома скажется на температуре воздуха внутри помещения

    Для характеристики проводимости тепла материалами используют такое понятие, как коэффициент теплопроводности. Он показывает, какое количество тепла за одну единицу временного промежутка пройдет через одну единицу площади поверхности. Чем выше подобный показатель, тем сильнее теплообмен, значит, постройка будет остывать значительно быстрее. То есть при сооружении зданий, домов и прочих помещений необходимо использовать материалы, проводимость тепла которых минимальна.

    Сравнительные характеристики теплопроводности и термического сопротивления стен, возведенных из кирпича и газобетонных блоков

    Основные характеристики утеплителей

    Соотношение качества утеплителя, в зависимости от его толщины
    При выборе утеплителей нужно обращать внимание на разные факторы: тип сооружения, наличие воздействия высоких температур, открытого огня, характерный уровень влажности. Только после определения условий использования, а также уровня теплопроводности применяемых материалов для сооружения определенной части конструкции, нужно смотреть на характеристики конкретного утеплителя:

    • Теплопроводность. От этого показателя напрямую зависит качество проведенного утеплительного процесса, а также необходимое количество материала для обеспечения желаемого результата. Чем ниже теплопроводность, тем эффективнее использование утеплителя.
    • Влагопоглощение. Показатель особо важен при утеплении внешних частей конструкции, на которые может периодически воздействовать влага. К примеру, при утеплении фундамента в грунтах с высокими водами или повышенным уровнем содержания воды в своей структуре.
    • Толщина. Применение тонких утеплителей позволяет сохранить внутреннее пространство жилого сооружения, а также напрямую влияет на качество утепления.
    • Горючесть. Это свойство материалов особенно важно при использовании для понижения теплопроводной способности наземных частей сооружения жилых домов, а также зданий специального назначения. Качественная продукция отличается способностью к самозатуханию, не выделяет при воспламенении ядовитых веществ.
    • Термоустойчивость. Материал должен выдерживать критические температуры. К примеру, низкие температуры при наружном использовании.
    • Экологичность. Нужно прибегать к использованию материалов безопасных для человека. Требования к этому фактору может изменяться в зависимости от будущего назначения сооружения.
    • Звукоизоляция. Это дополнительное свойство утеплителей в некоторых ситуациях позволяет добиться хорошего уровня защиты помещения от шума, а также посторонних звуков.

    Когда используется при сооружении определенной части конструкции материал с низкой теплопроводностью, то можно покупать самый дешевый утеплитель (если это позволят предварительные расчеты).
    Важность конкретной характеристики напрямую зависит от условий использования и выделенного бюджета.

    Что влияет на величину теплопроводности?

    Тепловая проводимость любого материала зависит от множества параметров:

    • Пористая структура. Присутствие пор предполагает неоднородность сырья. При прохождении тепла через подобные структуры, где большая часть объема занята порами, охлаждение будет минимальным.
    • Плотность. Высокая плотность способствует более тесному взаимодействию частиц друг с другом. В результате теплообмен и последующее полное уравновешивание температур происходит быстрее.
    • Влажность. При высокой влажности окружающего воздуха или намокании стен постройки, сухой воздух вытесняется капельками жидкости из пор. Теплопроводность в подобном случае значительно увеличивается.
    • Теплопроводность, плотность и водопоглощение некоторых строительных материалов

    Монтаж и эффективность в эксплуатации

    Монтаж ППУ – быстро и легко.

    Сравнение характеристик утеплителей должно осуществляться с учетом монтажа, ведь это тоже важно. Легче всего работать с жидкой теплоизоляцией, такой как ППУ и пеноизол, но для этого требуется специальное оборудование. Также не составляет труда укладка эковаты (целлюлозы) на горизонтальные поверхности, например, при или чердачного перекрытия. Для напыления эковаты на стены мокрым методом также нужны специальные приспособления.

    Пенопласт укладывается как по обрешетке, так и сразу на рабочую поверхность. В принципе, это касается и плит из каменной ваты. Причем укладывать плитные утеплители можно и на вертикальные, и на горизонтальные поверхности (под стяжку в том числе). Мягкую стекловату в рулонах укладывают только по обрешетке.

    В процессе эксплуатации теплоизоляционный слой может претерпевать некоторых нежелательных изменений:

    • напитать влагу;
    • дать усадку;
    • стать домом для мышей;
    • разрушиться от воздействия ИК лучей, воды, растворителей и прочее.

    Кроме всего вышеуказанного, важное значение имеет пожаробезопасность теплоизоляции. Сравнение утеплителей, таблица группы горючести:

    Применение показателя теплопроводности на практике

    В строительстве все материалы условно подразделяются на теплоизоляционные и конструкционные. Конструкционное сырье отличается наибольшими показателями теплопроводности, но именно его применяют для постройки стен, перекрытий, прочих ограждений. Согласно таблице теплопроводности строительных материалов, при возведении стен из железобетона, для низкого теплообмена с окружающей средой толщина конструкции должна быть около 6 метров. В таком случае строение получится огромным, громоздким и потребует немалых затрат.

    Наглядный пример — при какой толщине различных материалов их коэффициент теплопроводности будет одинаковым

    Поэтому при возведении постройки следует отдельное внимание уделять дополнительным теплоизолирующим материалам. Слой теплоизоляции может не понадобиться только для построек из дерева или пенобетона, но даже при использовании подобного низкопроводного сырья толщина конструкции должна быть не менее 50 см.

    Сравнение с помощью таблицы

    NНаименованиеПлотностьТеппопроводностьЦена , евро за куб.м.Затраты энергии на
    кг/куб.мминмаксЕвросоюзРоссияквт*ч/куб. м.
    1целлюлозная вата30-700,0380,04548-9615-306
    2древесноволокнистая плита150-2300,0390,052150800-1400
    3древесное волокно30-500,0370,05200-25013-50
    4киты из льняного волокна300,0370,04150-20021030
    5пеностекло100-1500.050,07135-1681600
    6перлит100-1500,050.062200-40025-30230
    7пробка100-2500,0390,0530080
    8конопля, пенька35-400,040.04115055
    9хлопковая вата25-300,040,04120050
    10овечья шерсть15-350,0350,04515055
    11утиный пух25-350,0350,045150-200
    12солома300-4000,080,12165
    13минеральная (каменная) вата20-800.0380,04750-10030-50150-180
    14стекповопокнистая вата15-650,0350,0550-10028-45180-250
    15пенополистирол (безпрессовый)15-300.0350.0475028-75450
    16пенополистирол экструзионный25-400,0350,04218875-90850
    17пенополиуретан27-350,030,035250220-3501100

    Показатель теплопроводных свойств является основным критерием при выборе утеплительного материала. Остается только сравнить ценовые политики разных поставщиков и определить необходимое количество.

    Утеплитель – один из основных способов получить сооружение с необходимой энергоэффективностью. Перед его окончательным выбором точно определите условия использования и, вооружившись приведенной таблицей, совершите правильный выбор.

    Теплопроводность готового здания. Варианты утепления конструкций

    При разработке проекта постройки необходимо учесть все возможные варианты и пути потери тепла. Большое его количество может уходить через:

  • стены – 30%;
  • крышу – 30%;
  • двери и окна – 20%;
  • полы – 10%.
  • Теплопотери неутепленного частного дома

    При неверном расчете теплопроводности на этапе проектирования, жильцам остается довольствоваться только 10% тепла, получаемого от энергоносителей. Именно поэтому дома, возведенные из стандартного сырья: кирпича, бетона, камня рекомендуют дополнительно утеплять. Идеальная постройка согласно таблице теплопроводности строительных материалов должна быть выполнена полностью из теплоизолирующих элементов. Однако малая прочность и минимальная устойчивость к нагрузкам ограничивает возможности их применения.

    Сравнительный график коэффициентов теплопроводности некоторых строительных материалов и утеплителей

    Самым распространенным вариантом сочетание несущей конструкции из высокопрочных материалов с дополнительным слоем теплоизоляции. Сюда можно отнести:

  • Каркасный дом. При его постройке каркасом из древесины обеспечивается жесткость всей конструкции, а укладка утеплителя производится в пространство между стойками. При незначительном уменьшении теплообмена в некоторых случая может потребоваться утепление еще и снаружи основного каркаса.
  • Дом из стандартных материалов. При выполнении стен из кирпича, шлакоблоков, утепление должно проводиться по наружной поверхности конструкции.
  • Необходимая тепло- и гидроизоляция для сохранения тепла в частном доме

    Сравнение паропроницаемости утеплителей

    Высокая паропроницаемость=отсутствие конденсата.

    Паропроницаемость – это способность материала пропускать воздух, а вместе с ним и пар. То есть теплоизоляция может дышать. На этой характеристике утеплителей для дома последнее время производители акцентируют много внимания. На самом деле высокая паропроницаемость нужна только при . Во всех остальных случаях данный критерий не является категорически важным.

    Характеристики утеплителей по паропроницаемости, таблица:

    Сравнение утеплителей для стен показало, что самой высокой степенью паропроницаемости обладают натуральные материалы, в то время как у полимерных утеплителей коэффициент крайне низок. Это свидетельствует о том, что такие материалы как ППУ и пенопласт обладают способностью задерживать пар, то есть выполняют . Пеноизол – это тоже своего рода полимер, который изготавливается из смол. Его отличие от ППУ и пенопласта заключается в структуре ячеек, которые открытие. Иными словами, это материал с открытоячеистой структурой. Способность теплоизоляции пропускать пар тесно связан со следующей характеристикой – поглощение влаги.

    Таблица теплопроводности строительных материалов: коэффициенты

    В этой таблице собраны показатели теплопроводности самых распространенных строительных материалов. Пользуясь подобными справочниками, можно без проблем рассчитать необходимую толщину стен и применяемого утеплителя.

    Таблица коэффициента теплопроводности строительных материалов:

    Таблица теплопроводности строительных материалов: коэффициенты

    Обзор гигроскопичности теплоизоляции

    Высокая гигроскопичность – это недостаток, который нужно устранять.

    Гигроскопичность – способность материала впитывать влагу, измеряется в процентах от собственного веса утеплителя. Гигроскопичность можно назвать слабой стороной теплоизоляции и чем выше это значение, тем серьезнее потребуются меры для ее нейтрализации. Дело в том, что вода, попадая в структуру материала, снижает эффективность утеплителя. Сравнение гигроскопичности самых распространенных теплоизоляционных материалов в гражданской строительстве:

    Сравнение гигроскопичности утеплителей для дома показало высокое влагопоглощение пеноизола, при этом данная теплоизоляция обладает способностью распределять и выводить влагу. Благодаря этому, даже намокнув на 30%, коэффициент теплопроводности не уменьшается. Несмотря на то, что у минеральной ваты процент поглощения влаги низкий, она особенно нуждается в защите. Напитав воды, она удерживает ее, не давая выходить наружу. При этом способность предотвращать теплопотери катастрофически снижается.

    Чтобы исключить попадание влаги в минвату используют пароизоляционные пленки и диффузионные мембраны. В основном полимеры устойчивы к длительному воздействию влаги, за исключением обычного пенополистирола, он быстро разрушается. В любом случае вода ни одному теплоизоляционному материалу на пользу не пошла, поэтому крайне важно исключить или минимизировать их контакт.

    Разновидности и описание

    На выбор потребителей предлагаются материалы с различными механическими свойствами.

    От этого во многом зависит удобство монтажа и свойства. По данному показателю различают:

    1. Пеноблоки
      . Изготавливаются из бетона со специальными добавками. В результате химической реакции структура получается пористой.
    2. Плиты.
      Строительный материал различной толщины и плотности изготавливается при помощи прессования или склеивания.
    3. Вата.
      Продается в рулонах и характеризуется волокнистой структурой.
    4. Гранулы (крошка).
      с пеновеществами различной фракции.

    Важно знать:

    подбор материала осуществляется с учетом свойств, стоимости и предназначения. Применение одинакового утеплителя для стен и чердачного перекрытия не позволит получить желаемый эффект, если не указано, что он предназначен для конкретной поверхности.

    Сырьем для утеплителей могут выступать различные вещества. Они все делятся на две категории:

    • органические на основе торфа, камыша, древесины;
    • неорганические — изготавливаются из вспененного бетона, минералов, асбестосодержащих веществ и др.

    Особенности применения

    Прежде чем определиться с материалами для отделки частного дома или квартиры, необходимо правильно рассчитать толщину слоя конкретного утеплителя.

    1. Для горизонтальных поверхностей (пол, потолок) можно использовать практически любой материал. Применение дополнительного слоя с высокой механической прочностью обязательно.
    2. Цокольные перекрытия рекомендуется утеплять стройматериалами с низкой гигроскопичностью. Повышенная влажность должна быть учтена.
      В противном случае утеплитель под воздействием влаги частично или полностью потеряет свойства.
    3. Для вертикальных поверхностей (стены) необходимо использовать материалы плитно-листового типа. Насыпные или рулонные со временем будут проседать, поэтому необходимо тщательно продумать способ крепежа.

    Если задумано индивидуальное строительство

    При возведении дома важно учитывать технические характеристики всех составляющих (материала для стен, кладочного раствора, будущего утепления, гидроизоляционных и пароотводящих плёнок, финишной отделки).

    Для понимания, какие стены наилучшим образом будут сохранять тепло, нужно проанализировать коэффициент теплопроводности не только материала для стен, но и строительного раствора, что видно из таблицы ниже:

    Номер п/пМатериал для стен, строительный растворКоэффициент теплопроводности по СНиП
    1.Кирпич0,35 – 0,87
    2.Саманные блоки0,1 – 0,44
    3.Бетон1,51 – 1,86
    4.Пенобетон и газобетон на основе цемента0,11 – 0,43
    5.Пенобетон и газобетон на основе извести0,13 – 0,55
    6.Ячеистый бетон0,08 – 0,26
    7.Керамические блоки0,14 – 0,18
    8.Строительный раствор цементно-песчаный0,58 – 0,93
    9.Строительный раствор с добавлением извести0,47 – 0,81

    Важно
    . Из приведённых в таблице данных видно, что у каждого строительного материала довольно большой разброс в показателях коэффициента теплопроводности.
    Это связано с несколькими причинами:

    • Плотность. Все утеплители выпускаются или укладываются (пеноизол, эковата) различной плотности. Чем ниже плотность (больше присутствует воздуха в теплоизоляционной структуре), тем ниже проводимость тепла. И, наоборот, у очень плотных утеплителей этот коэффициент выше.
    • Вещество, из которого производят (основа). Например, кирпич бывает силикатным, керамическим, глиняным. От этого зависит и коэффициент теплопроводности.
    • Количество пустот. Это касается кирпича (пустотелый и полнотелый) и теплоизоляции. Воздух – самый худший проводник тепла. Коэффициент его теплопроводимости – 0,026. Чем больше пустот, тем ниже этот показатель.

    Строительный раствор хорошо проводит тепло, поэтому любые стены рекомендуется утеплять.

    Сравнение основных показателей

    Чтобы понять, насколько эффективным будет тот или иной утеплитель, необходимо сравнить основные показатели материалов. Это можно сделать, просмотрев таблицу 1.

    МатериалПлотность кг/м3ТеплопроводностьГигроскопичностьМинимальный слой, см
    Пенополистирол30-40Очень низкаяСредняя10
    Пластиформ50-60НизкаяОчень низкая2
    60-70НизкаяСредняя5
    Пенопласт35-50Очень низкаяСредняя10
    25-32низкаянизкая20
    35-125НизкаяВысокая10-15
    130Низкаявысокая15
    500ВысокаяНизкая20
    Ячеистый бетон400-800ВысокаяВысокая20-40
    Пеностекло100-600Низкаянизкая10-15

    Таблица 1 Сравнение теплоизоляционных свойств материалов

    При этом многие отдают предпочтение пластиформу, минеральной вате или ячеистому бетону. Это связанно с индивидуальными предпочтениями, особенностями монтажа и некоторыми физическими свойствами.

    Теплопроводность обычных материалов

    В этой статье представлены данные о теплопроводности для ряда распространенных материалов. Теплопроводность измеряет способность материала пропускать тепло через проводимость.

    Теплопроводность измеряет способность материала пропускать тепло через проводимость. Теплопроводность материала сильно зависит от состава и структуры. Вообще говоря, плотные материалы, такие как металлы и камень, являются хорошими проводниками тепла, в то время как вещества с низкой плотностью, такие как газ и пористая изоляция, плохо проводят тепло.

    Теплопроводность материалов требуется для анализа сетей теплового сопротивления при исследовании теплопередачи в системе.

    Дополнительную информацию см. В статье «Значения теплопроводности для других металлов и сплавов».

    В следующих таблицах показаны значения теплопроводности для обычных веществ.

    Материал Температура
    Теплопроводность
    Температура
    Теплопроводность
    Почвы и земля
    Глина 20 0.600 68 0,347
    Гравий 20 2,50 68 1,44
    Недра (Влажность 8%) 20 0,900 68 0,520
    Грунт, сухой песок 20 0,300 68 0,173
    Влажный песок (Влажность 8%) 20 0,600 68 0,347
    Строительные материалы
    Кирпич (здание) 20 0.720 68 0,416
    Кирпич (глинозем) 430 3,10 806 1,79
    Клинкер (цемент) 20 0,700 68 0,404
    Бетон, тяжелый 20 1,30 68 0,751
    Бетон, изоляция 20 0,207 68 0,120
    Бетон легкий 20 0.418 68 0,242
    Стекло 20 0,935 68 0,540
    Дерево 20 0,170 68 0,098
    Изоляция
    Асбест 0 0,160 32 0,092
    100 0,190 212 0,110
    200 0.210 392 0,121
    Силикат кальция 20 0,046 68 0,027
    Пробка 30 0,043 86 0,025
    Стекловолокно 20 0,042 68 0,024
    Магнезия 85% 20 0,070 68 0,040
    Магнезит 200 3.80 392 2,20
    Слюда 50 0,430 122 0,248
    Rockwool 20 0,034 68 0,020
    Резина, мягкая 20 0,130 68 0,075
    Твердая резина 0 0,150 32 0,087
    Опилки 20 0.052 68 0,030
    Уретановая пена (жесткая) 20 0,026 68 0,015
    Прочие твердые вещества
    Алмаз 20 2300 68 1,329
    Графит 0 151 32 87,2
    Кожа человека 20 0,370 68 0.214
    Жидкости
    Уксусная кислота, 50% 20 0,350 68 0,202
    Ацетон 30 0,170 86 0,098
    Анилин 20 0,170 68 0,098
    Бензол 30 0,160 86 0,092
    Хлорид кальция, 30% 30 0.550 86 0,318
    Этанол, 80% 20 0,240 68 0,139
    Глицерин, 60% 20 0,380 68 0,220
    Глицерин, 40% 20 0,450 68 0,260
    Гептан 30 0,140 86 0,081
    Ртуть 20 8.54 68 4,93
    28 8,36 82 4,83
    Серная кислота, 90% 30 0,360 86 0,208
    Серная кислота, 60 % 30 0,430 86 0,248
    Вода 20 0,613 68 0,354
    30 0.620 86 0,358
    60 0,660 140 0,381
    Газы
    Воздух 0 0,024 32 0,014
    20 0,026 68 0,015
    100 0,031 212 0,018
    Диоксид углерода 0 0,015 32 0.009
    Этан 0 0,018 32 0,010
    Этилен 0 0,017 32 0,010
    Гелий 20 0,152 68 0,088
    Водород 0 0,170 32 0,098
    Метан 0 0,029 32 0.017
    Азот 0 0,024 32 0,014
    Кислород 0 0,024 32 0,014
    Вода (пар) 100 0,025 212 0,014
    Статья создана: 5 ноября 2013 г.
    Теги статьи

    Недавно обнаруженный неорганический материал имеет самую низкую теплопроводность

    Мы все знаем, что мир отчаянно нуждается в переходе на возобновляемые источники энергии, но многие из нас забывают, что нам также необходимо сделать наши энергетические системы более эффективными.

    В настоящее время, по оценкам, 70 процентов всей энергии, которую мы производим в мире, теряется в виде тепла — часто на самих электростанциях. Это серьезная проблема, которую можно хотя бы частично решить за счет улучшения термоэлектрических материалов, которые могут уменьшить потери тепла, а также улавливать потерянную тепловую энергию.

    Теперь исследователи под руководством Ливерпульского университета в Великобритании сделали важный шаг к этой цели, открыв новый неорганический материал с самой низкой теплопроводностью, о которой когда-либо сообщалось.

    Фактически, при комнатной температуре материал замедляет передачу тепла почти так же, как и воздух.

    Новый материал имеет формулу Bi 4 O 4 SeCl 2 (название не броское, мы знаем), и его создание является «прорывом в управлении тепловым потоком в атомном масштабе», пресс релиз объясняет.

    «Обнаруженный нами материал имеет самую низкую теплопроводность среди всех неорганических твердых тел и почти так же плохо проводит тепло, как и сам воздух», — говорит химик и руководитель группы Мэтт Россейнски из Ливерпульского университета.

    «Значение этого открытия имеет большое значение как для фундаментального научного понимания, так и для практического применения в термоэлектрических устройствах, которые собирают отходящее тепло, и в качестве термобарьерных покрытий для более эффективных газовых турбин».

    Если принять теплопроводность стали за 1, то и вода, и строительный кирпич будут иметь теплопроводность 0,01. Воздух будет около 0,0005, а новый материал — всего 0,001.

    Что особенно интересно, так это то, что этот материал был создан с помощью хитроумного расположения слоев атомов, и команда говорит, что они могут использовать ту же технику для добавления дополнительных свойств.

    В будущем это может означать создание материалов, которые не только невероятно устойчивы к нагреву, но также являются сверхпроводниками электричества — два свойства, которые будут чрезвычайно полезны для энергосистемы.

    «Помимо переноса тепла, эта стратегия может быть применена к другим важным фундаментальным физическим свойствам, таким как магнетизм и сверхпроводимость, что приведет к снижению энергопотребления и более эффективной транспортировке электричества», — поясняет физик Джон Алария.

    Неорганические материалы — это материалы, которые не содержат углерода, а этот был сделан из BiOCl и Bi 2 O 2 Se.Как следует из названия, это соединение висмута, кислорода, селена и хлора.

    Чтобы создать новый проводящий материал, команда обнаружила два разных расположения атомов в этих материалах, что привело к плохой теплопроводности.

    Затем они изучили механизмы, ответственные за замедление нагрева в каждой из этих схем, и нашли способ объединить их таким образом, чтобы они могли комбинировать эффекты замедления нагрева вместо простого усреднения разницы.

    На изображении ниже вы можете увидеть визуальное представление двух различных атомных схем, представленных желтым и синим цветом, которые в сочетании наиболее эффективно замедляют движение тепла через материал.

    Два атомных расположения (желтый и синий) объединились, чтобы создать материал. (Ливерпульский университет)

    В результате Bi 4 O 4 SeCl 2 является гораздо более слабым проводником тепла, чем любой из двух устройств по отдельности, обеспечивая теплопроводность при комнатной температуре всего 0.1 Вт K −1 м −1 . Другими словами, материал — это сумма больше, чем его части.

    Важно отметить, что это исследование рассматривало только теплопроводность нового материала и не рассматривало другие эффекты, такие как электропроводность или магнетизм. Поэтому пока не ясно, можно ли использовать этот материал в реальных приложениях, таких как вычисления или в электросети.

    Но теперь, когда мы знаем, как наслоить атомы таким сложным способом, это открывает большой потенциал для новых материалов, которые берут эти свойства теплопроводности и сочетают их с другими желательными характеристиками для улучшения термоэлектрических характеристик или открытия сверхпроводимости.

    «Этот потенциал для оптимизации множества свойств иллюстрирует, как синергия между модульными блоками с совместимым соединением может обеспечить химическое генерирование и управление функцией», — пишут исследователи.

    Исследование опубликовано в журнале « Science».

    Теплопроводность — выбранные материалы и газы

    Теплопроводность — это свойство материала, которое описывает способность проводить тепло. Теплопроводность может быть определена как

    «количество тепла, передаваемого через единицу толщины материала — в направлении, нормальном к поверхности единицы площади — из-за единичного температурного градиента в условиях устойчивого состояния»

    Теплопроводность Единицами измерения являются [Вт / (м · К)] в системе СИ и [БТЕ / (час фут ° F)] в британской системе мер.

    См. Также изменения теплопроводности в зависимости от температуры и давления , для: воздуха, аммиака, двуокиси углерода и воды

    Теплопроводность для обычных материалов и продуктов:

    33 90033 900 0,1 — 0,223333
    Теплопроводность
    k —
    Вт / (м · К)

    Материал / вещество Температура
    25 o C
    (77 o F)
    125 18 C 908
    (257 o F)
    225 o C
    (437 o F)
    Ацетали 0.23
    Ацетон 0,16
    Ацетилен (газ) 0,018
    Акрил 0,2
    Воздух, атмосфера (газ) 0,0262 0,0333 0,0398
    Воздух, высота 10000 м 0,020
    Агат 10,9
    Спирт 0.17
    Глинозем 36 26
    Алюминий
    Алюминий Латунь 121
    Оксид алюминия 30
    Аммиак (газ) 0,0249 0,0369 0,0528
    Сурьма 18,5
    Яблоко (85.6% влажности) 0,39
    Аргон (газ) 0,016
    Асбестоцементная плита 1) 0,744
    Асбестоцементные листы 1) 0,166
    Асбестоцемент 1) 2,07
    Асбест в рыхлой упаковке 1) 0.15
    Асбестовая плита 1) 0,14
    Асфальт 0,75
    Бальсовое дерево 0,048
    Битум7
    Слои битума / войлока 0,5
    Говядина постная (влажность 78,9%) 0.43 — 0,48
    Бензол 0,16
    Бериллий
    Висмут 8,1
    Битум 0,17
    Доменный газ (газ) 0,02
    Шкала котла 1,2 — 3,5
    Бор 25
    Латунь
    Бризовый блок 0.10 — 0,20
    Кирпич плотный 1,31
    Кирпич огневой 0,47
    Кирпич изоляционный 0,15
    Кирпич обыкновенный (Строительный кирпич ) 0,6 -1,0
    Кирпичная кладка плотная 1,6
    Бром (газ) 0,004
    Бронза
    Руда бурого железа 0.58
    Масло (влажность 15%) 0,20
    Кадмий
    Силикат кальция 0,05
    Углерод 1,7
    Двуокись углерода (газ) 0,0146
    Окись углерода 0,0232
    Чугун
    Целлюлоза, хлопок, древесная масса и регенерированные 0.23

    Ацетат целлюлозы, формованный, лист

    0,17 — 0,33
    Нитрат целлюлозы, целлулоид 0,12 — 0,21
    Цемент, Портленд 0,29
    Цемент, строительный раствор 1,73
    Керамические материалы
    Мел 0.09
    Древесный уголь 0,084
    Хлорированный полиэфир 0,13
    Хлор (газ) 0,0081
    Хром никелевая сталь 16,3
    Хром
    Оксид хрома 0,42
    Глина, от сухой до влажной 0.15 — 1,8
    Глина насыщенная 0,6 — 2,5
    Уголь 0,2
    Кобальт
    Треск (влажность 83% содержание) 0,54
    Кокс 0,184
    Бетон, легкий 0,1 — 0,3
    Бетон, средний 0.4 — 0,7
    Бетон, плотный 1,0 — 1,8
    Бетон, камень 1,7
    Константан 23,3
    Медь
    Кориан (керамический наполнитель) 1,06
    Пробковая плита 0,043
    Пробка, повторно гранулированная 0.044
    Пробка 0,07
    Хлопок 0,04
    Вата 0,029
    Углеродистая сталь
    Хлопок Изоляция из шерсти 0,029
    Купроникель 30% 30
    Алмаз 1000
    Диатомовая земля (Сил-о-сел) 0.06
    Диатомит 0,12
    Дуралий
    Земля, сухая 1,5
    Эбонит 0,17
    11,6
    Моторное масло 0,15
    Этан (газ) 0.018
    Эфир 0,14
    Этилен (газ) 0,017
    Эпоксидная смола 0,35
    Этиленгликоль 0,25
    Перья 0,034
    Войлок 0,04
    Стекловолокно 0.04
    Волокнистая изоляционная плита 0,048
    Древесноволокнистая плита 0,2
    Кирпич огнеупорный 500 o C 1,4
    Фтор (газ) 0,0254
    Пеностекло 0,045
    Дихлордифторметан R-12 (газ) 0.007
    Дихлордифторметан R-12 (жидкость) 0,09
    Бензин 0,15
    Стекло 1.05
    Стекло, жемчуг, сухой 0,18
    Стекло, жемчуг, насыщенный 0,76
    Стекло, окно 0.96
    Стекло, вата Изоляция 0,04
    Глицерин 0,28
    Золото
    Гранит 1,7 — 4,0
    Графит 168
    Гравий 0,7
    Земля или почва, очень влажная зона 1.4
    Земля или почва, влажная зона 1,0
    Земля или почва, сухая зона 0,5
    Земля или почва, очень сухая зона 0,33
    Гипсокартон 0,17
    Волос 0,05
    ДВП высокой плотности 0.15
    Лиственные породы (дуб, клен ..) 0,16
    Hastelloy C 12
    Гелий (газ) 0,142
    Мед ( 12,6% влажности) 0,5
    Соляная кислота (газ) 0,013
    Водород (газ) 0,168
    Сероводород (газ) 0.013
    Лед (0 o C, 32 o F) 2,18
    Инконель 15
    Слиток железа 47-58
    Изоляционные материалы 0,035 — 0,16
    Йод 0,44
    Иридий 147
    Железо
    Оксид железа 0 .58
    Капок изоляция 0,034
    Керосин 0,15
    Криптон (газ) 0,0088
    Свинец
    , сухой 0,14
    Известняк 1,26 — 1,33
    Литий
    Магнезиальная изоляция (85%) 0.07
    Магнезит 4,15
    Магний
    Магниевый сплав 70-145
    Мрамор 2,08 — 2,94
    Ртуть, жидкость
    Метан (газ) 0,030
    Метанол 0.21
    Слюда 0,71
    Молоко 0,53
    Изоляционные материалы из минеральной ваты, шерстяные одеяла .. 0,04
    Молибден
    Монель
    Неон (газ) 0,046
    Неопрен 0.05
    Никель
    Оксид азота (газ) 0,0238
    Азот (газ) 0,024
    Закись азота (газ) 0,0151
    Нейлон 6, Нейлон 6/6 0,25
    Масло, машинное смазывание SAE 50 0,15
    Оливковое масло 0.17
    Кислород (газ) 0,024
    Палладий 70,9
    Бумага 0,05
    Парафиновый воск 0,25
    Торф 0,08
    Перлит, атмосферное давление 0,031
    Перлит, вакуум 0.00137
    Фенольные литые смолы 0,15
    Формовочные смеси фенолоформальдегид 0,13 — 0,25
    Фосфорбронза 110 Pinch29 159
    Шаг 0,13
    Каменный уголь 0.24
    Гипс светлый 0,2
    Гипс, металлическая планка 0,47
    Гипс песочный 0,71
    Гипс, деревянная планка 0,28
    Пластилин 0,65 — 0,8
    Пластмассы вспененные (изоляционные материалы) 0.03
    Платина
    Плутоний
    Фанера 0,13
    Поликарбонат 0,19
    Полиэстер 900
    Полиэтилен низкой плотности, PEL 0,33
    Полиэтилен высокой плотности, PEH 0.42 — 0,51
    Полиизопрен натуральный каучук 0,13
    Полиизопреновый каучук 0,16
    Полиметилметакрилат 0,17 — 0,25
    Полипропилен
    Полистирол вспененный 0,03
    Полистирол 0.043
    Пенополиуретан 0,03
    Фарфор 1,5
    Калий 1
    Картофель, сырая мякоть 0,55
    900 Пропан (газ) 0,015
    Политетрафторэтилен (ПТФЭ) 0,25
    Поливинилхлорид, ПВХ 0.19
    Стекло пирекс 1.005
    Кварц минеральный 3
    Радон (газ) 0,0033
    Красный металл
    Рений
    Родий
    Порода, твердая 2-7
    Порода, вулканическая порода (туф) 0.5 — 2,5
    Изоляция из минеральной ваты 0,045
    Канифоль 0,32
    Резина, ячеистая 0,045
    Резина натуральная 0,13
    Рубидий
    Лосось (влажность 73%) 0,50
    Песок сухой 0.15 — 0,25
    Песок влажный 0,25 — 2
    Песок насыщенный 2-4
    Песчаник 1,7
    Опилки 0,08
    Селен
    Овечья шерсть 0,039
    Аэрогель кремнезема 0.02
    Кремниевая литьевая смола 0,15 — 0,32
    Карбид кремния 120
    Кремниевое масло 0,1
    Серебро
    Шлаковая вата 0,042
    Сланец 2,01
    Снег (температура <0 o C) 0.05 — 0,25
    Натрий
    Хвойные породы (пихта, сосна ..) 0,12
    Почва, глина 1,1
    Почва, с органическими вещество 0,15 — 2
    Грунт, насыщенный 0,6 — 4

    Припой 50-50

    50

    Сажа

    0.07

    Насыщенный пар

    0,0184
    Пар низкого давления 0,0188
    Стеатит 2
    Сталь углеродистая
    Сталь, нержавеющая сталь
    Изоляция из соломенных плит, сжатая 0,09
    Пенополистирол 0.033
    Диоксид серы (газ) 0,0086
    Сера кристаллическая 0,2
    Сахара 0,087 — 0,22
    Тантал
    Смола 0,19
    Теллур 4,9
    Торий
    Древесина, ольха 0.17
    Лес, ясень 0,16
    Лес, береза ​​ 0,14
    Лес, лиственница 0,12
    Лес, клен 0,16
    Древесина дубовая 0,17
    Древесина осина 0,14
    Древесина оспа 0.19
    Древесина, бук красный 0,14
    Древесина, сосна красная 0,15
    Древесина, сосна белая 0,15
    Древесина ореха 0,15
    Олово
    Титан
    Вольфрам
    Уран
    Пенополиуретан 0.021
    Вакуум 0
    Гранулы вермикулита 0,065
    Виниловый эфир 0,25
    Вода 0,606
    Вода, пар (пар) 0,0267 0,0359
    Пшеничная мука 0.45
    Белый металл 35-70
    Древесина поперек волокон, белая сосна 0,12
    Древесина поперек волокон, бальза 0,055
    Древесина поперек волокон, сосна желтая, древесина 0,147
    Дерево, дуб 0,17
    Шерсть, войлок 0.07
    Древесная вата, плита 0,1 — 0,15
    Ксенон (газ) 0,0051
    Цинк

    1) Асбест плохо для здоровья человека, когда крошечные абразивные волокна попадают в легкие, где они могут повредить легочную ткань. Это, по-видимому, усугубляется курением сигарет, в результате чего возникают мезотелиома и рак легких.

    Пример — кондуктивная теплопередача через алюминиевый бак по сравнению с баком из нержавеющей стали

    Кондуктивная теплопередача через стенку ванны может быть рассчитана как

    q = (k / s) A dT (1)

    или, альтернативно,

    q / A = (к / с) dT

    где

    q = теплопередача (Вт, БТЕ / ч)

    A = площадь поверхности (м ( Вт / мК, БТЕ / (ч фут ° F) )

    dT = t 1 — t 2 = разница температур ( o C, o F)

    с = толщина стены (м, фут)
    9000 3

    Калькулятор теплопроводности

    k = теплопроводность (Вт / мК, БТЕ / (час фут ° F) )

    s = толщина стенки (м, фут)

    A = площадь поверхности (м 2 , фут 2 )

    dT = t 1 — t 2 = разница температур ( o C, o F)

    Примечание! — общая теплопередача через поверхность определяется «общим коэффициентом теплопередачи », который в дополнение к кондуктивной теплопередаче зависит от

    Кондуктивная теплопередача через алюминиевую стенку горшка толщиной 2 мм — разница температур 80
    o C

    Теплопроводность алюминия составляет 215 Вт / (м · К) (из таблицы выше).Кондуктивная теплопередача на единицу площади может быть рассчитана как

    q / A = [(215 Вт / (м · K)) / (2 10 -3 м)] (80 o C)

    = 8600000 (Вт / м 2 )

    = 8600 (кВт / м 2 )

    Кондуктивная теплопередача через стенку емкости из нержавеющей стали толщиной 2 мм — разница температур 80
    o C

    Теплопроводность нержавеющей стали 17 Вт / (м · К) (из таблицы выше).Кондуктивная теплопередача на единицу площади может быть рассчитана как

    q / A = [(17 Вт / (м · K)) / (2 10 -3 м) ] (80 o C)

    = 680000 (Вт / м 2 )

    = 680 (кВт / м 2 )

    Недавно разработанный материал имеет чрезвычайно низкую теплопроводность

    Новый материал сверхрешетки Bi 4 O 4 SeCl 2 , разработанный группой ученых из Соединенного Королевства и Франции, сочетает в себе два различных расположения атомов, каждый из которых замедляет скорость, с которой тепло движется через структуру твердого тела.

    Структура материала сверхрешетки Bi 4 O 4 SeCl 2 . Изображение предоставлено Ливерпульским университетом.

    «Обнаруженный нами материал имеет самую низкую теплопроводность среди всех неорганических твердых тел и почти так же плохо проводит тепло, как и сам воздух», — сказал старший автор, профессор Мэтт Россейнски, научный сотрудник химического факультета Ливерпульского университета.

    «Значение этого открытия имеет большое значение как для фундаментального научного понимания, так и для практического применения в термоэлектрических устройствах, улавливающих отходящее тепло, и в качестве термобарьерных покрытий для более эффективных газовых турбин.”

    Профессор Россейнски и его коллеги определили механизмы, ответственные за снижение теплопередачи в двух компонентах, BiOCl и Bi 2 O 2 Se, путем измерения и моделирования теплопроводности их структур.

    «Объединить эти механизмы в одном материале сложно, потому что мы должны точно контролировать, как атомы расположены внутри него», — сказали они.

    «Интуитивно мы ожидаем получить среднее значение физических свойств двух компонентов.”

    «Выбирая подходящие химические границы раздела между каждым из этих различных атомных расположений, мы экспериментально синтезировали материал, сочетающий их оба».

    Новый материал с двумя комбинированными компоновками имеет чрезвычайно низкую теплопроводность 0,1 Вт / К * м при комнатной температуре, что намного ниже, чем у любого из исходных материалов с одной компоновкой.

    Этот неожиданный результат показывает синергетический эффект химического контроля расположения атомов в структуре и является причиной того, что свойства всей структуры превосходят свойства двух отдельных частей.

    Разработка новых и более эффективных термоэлектрических материалов, которые могут преобразовывать тепло в электричество, считается ключевым источником чистой энергии.

    «Захватывающее открытие этого исследования состоит в том, что можно улучшить свойства материала, используя дополнительные физические концепции и соответствующее атомистическое взаимодействие», — сказал доктор Джон Алария, исследователь факультета физики Ливерпульского университета.

    «Помимо переноса тепла, эта стратегия может быть применена к другим важным фундаментальным физическим свойствам, таким как магнетизм и сверхпроводимость, что приведет к снижению энергопотребления и более эффективному переносу электричества.”

    Работа группы опубликована в журнале Science .

    _____

    Куинн Д. Гибсон и др. . Низкая теплопроводность в модульном неорганическом материале с анизотропией связывания и несоответствием. Science , опубликовано в Интернете 15 июля 2021 г .; DOI: 10.1126 / science.abh2619

    10 лучших теплопроводных материалов

    Теплопроводность — это мера способности материала пропускать через него тепло. Материалы с высокой теплопроводностью могут эффективно передавать тепло и легко забирать тепло из окружающей среды.Плохие теплопроводники сопротивляются тепловому потоку и медленно извлекают тепло из окружающей среды. Теплопроводность материала измеряется в ваттах на метр на градус Кельвина (Вт / м • К) в соответствии с рекомендациями S.I (Международная система).

    10 лучших измеряемых теплопроводных материалов и их значения приведены ниже. Эти значения проводимости являются средними из-за разницы в теплопроводности в зависимости от используемого оборудования и среды, в которой были получены измерения.

    Материалы теплопроводящие

    1. Бриллиант — 2000 — 2200 Вт / м • K

      Алмаз является ведущим теплопроводным материалом, и его значения проводимости, измеренные в 5 раз, выше, чем у меди, наиболее производимого металла в Соединенных Штатах. Атомы алмаза состоят из простой углеродной основы, которая представляет собой идеальную молекулярную структуру для эффективной теплопередачи. Часто материалы с простейшим химическим составом и молекулярной структурой имеют самые высокие значения теплопроводности.

      Diamond — важный компонент многих современных портативных электронных устройств. Их роль в электронике — способствовать рассеиванию тепла и защищать чувствительные части компьютера. Высокая теплопроводность алмазов также оказывается полезной при определении подлинности камней в ювелирных изделиях. Добавление небольшого количества алмаза в инструменты и технологии может сильно повлиять на свойства теплопроводности.

    2. Серебро — 429 Вт / м • K

      Серебро — относительно недорогой и распространенный теплопроводник.Серебро входит в состав многих бытовых приборов и является одним из самых универсальных металлов из-за его ковкости. 35% серебра, производимого в США, используется для производства электрических инструментов и электроники (US Geological Survey Mineral Community 2013). Вспомогательный продукт серебра, серебряная паста, пользуется все большим спросом из-за его использования в экологически чистых источниках энергии. Серебряная паста используется в производстве фотоэлектрических элементов, которые являются основным компонентом солнечных батарей.

    3. Медь — 398 Вт / м • K

      Медь — наиболее часто используемый металл для производства токопроводящих приборов в США.Медь имеет высокую температуру плавления и умеренную скорость коррозии. Это также очень эффективный металл для минимизации потерь энергии при передаче тепла. Металлические кастрюли, трубы для горячей воды и автомобильные радиаторы — все это приборы, в которых используются проводящие свойства меди.

    4. Золото — 315 Вт / м • K

      Золото — редкий и дорогой металл, который используется для специальных проводящих применений. В отличие от серебра и меди, золото редко тускнеет и может выдерживать большие количества коррозии.

    5. Нитрид алюминия — 310 Вт / м • K

      Нитрид алюминия часто используется в качестве замены оксида бериллия. В отличие от оксида бериллия, нитрид алюминия не представляет опасности для здоровья при производстве, но по-прежнему демонстрирует химические и физические свойства, аналогичные оксиду бериллия. Нитрид алюминия — один из немногих известных материалов, предлагающих электрическую изоляцию наряду с высокой теплопроводностью. Он обладает исключительной стойкостью к тепловому удару и действует как электрический изолятор в механической стружке.

    6. Карбид кремния — 270 Вт / м • K

      Карбид кремния — это полупроводник, состоящий из сбалансированной смеси атомов кремния и углерода. При изготовлении и сплаве кремний и углерод соединяются, образуя чрезвычайно твердый и прочный материал. Эта смесь часто используется в качестве компонента автомобильных тормозов, турбинных машин и стальных смесей.

    7. Алюминий — 247 Вт / м • K

      Алюминий обычно используется в качестве экономичной замены меди.Хотя алюминий не такой проводящий, как медь, его много, и с ним легко манипулировать из-за его низкой температуры плавления. Алюминий является важным компонентом светильников L.E.D (светоизлучающих диодов). Медно-алюминиевые смеси набирают популярность, поскольку они могут использовать свойства как меди, так и алюминия и могут производиться с меньшими затратами.

    8. Вольфрам — 173 Вт / м • K

      Вольфрам имеет высокую температуру плавления и низкое давление пара, что делает его идеальным материалом для приборов, которые подвергаются воздействию высоких уровней электричества.Химическая инертность вольфрама позволяет использовать его в электродах, являющихся частью электронных микроскопов, без изменения электрических токов. Он также часто используется в лампах и как компонент электронно-лучевых трубок.

    9. Графит 168 Вт / м • K

      Графит — это распространенная, недорогая и легкая альтернатива другим углеродным аллотропам. Его часто используют в качестве добавки к смесям полимеров для улучшения их теплопроводных свойств. Батареи — знакомый пример устройства, использующего высокую теплопроводность графита.

    10. Цинк 116 Вт / м • K

      Цинк — один из немногих металлов, которые можно легко комбинировать с другими металлами для создания металлических сплавов (смеси двух или более металлов). 20% цинковых приборов в США состоят из цинковых сплавов. При цинковании используется 40% производимого чистого цинка. Цинкование — это процесс нанесения цинкового покрытия на сталь или железо, которое предназначено для защиты металла от атмосферных воздействий и ржавчины.

    Список литературы

    Мохена, Т.К., Мочане, М. Дж., Сефади, Дж. С., Мотлунг, С. В., и Андала, Д. М. (2018). Теплопроводность полимерных композитов на основе графита. Влияние теплопроводности на энергетические технологии. doi: 10.5772 / intechopen.75676
    Нитрид алюминия. (нет данных). Получено с https://precision-ceramics.com/materials/aluminium-nitride/

    .

    База данных материалов Thermtest. https://thermtest.com/materials-database

    Автор: Каллиста Уилсон, младший технический писатель Thermtest

    Низкая теплопроводность — обзор

    Низкая теплопроводность

    Тепло — это форма энергии, которая всегда движется от более высокой к более низкой температуре.Низкий показатель теплопроводности жесткого пенополиуретана, один из самых низких показателей среди обычно используемых изоляционных материалов, позволяет эффективно удерживать тепловой поток.

    Прочность

    Хороший баланс между весом, механической прочностью и изоляционными свойствами пенополиуретана (CORAFOAM®) демонстрирует его универсальность в качестве изоляционного материала. Эти качества позволяют использовать его в приложениях, где требуется изоляция с сочетанием несущих, ударопрочных, весовых и компактных свойств, а также простоты установки и обслуживания.

    Этот пенополиуретан обеспечивает очень благоприятное соотношение физико-механических свойств по сравнению с плотностью; Дальнейшее улучшение общих свойств достигается при приклеивании к облицовочным материалам, таким как металл или гипсокартон.

    Легкость

    Жесткие пенополиуретаны — это ячеистые материалы. Пена состоит из маленьких пузырьков, наполненных вспенивающим агентом, который обеспечивает хорошие изоляционные свойства. Полиуретановая матрица отвечает за удержание всех ячеек вместе: чем больше количество полимера, удерживающего структуру, тем выше плотность.Фактически, в 1 кубическом метре пены только 4% от общего объема занято полимером, в то время как оставшиеся 96% заполнены вспенивающим агентом (это относится к типичной пене 40–45 кг / м 3 ) Легкость пены позволяет легко транспортировать, обрабатывать и устанавливать.

    Низкое водопоглощение и низкая водопроницаемость

    Теплопроводность воды в 10-20 раз выше, чем у обычно используемых изоляционных материалов, поэтому очевидно, насколько важно не допускать попадания воды в воду. пакет изоляции.Присутствие воды, помимо потери эффективности изоляции, приводит к увеличению веса, риску коррозии металлических поверхностей и образованию льда всякий раз, когда температура опускается ниже точки замерзания.

    В последнем случае возможен риск повреждения изоляционного пакета, что отрицательно скажется на изоляционных свойствах. Закрытая пористая структура жесткого пенополиуретана гарантирует низкое водопоглощение; Тем не менее, предусмотрена установка барьера для паров влаги, чтобы изоляция могла выдерживать самые строгие требования.

    Стабильность размеров

    Стабильный по размерам материал является основным требованием для достижения надлежащих изоляционных свойств. Изменение размера изоляционного материала может быть обратимым или необратимым: изменение размера из-за простого теплового сжатия / расширения обычно обратимо, в то время как изменение размера из-за комбинированного воздействия экстремальных температур, воды, влаги и механических нагрузок составляет необратимый компонент.

    Фактически, все материалы меняют размер при нагревании или охлаждении: величина изменения зависит от химического состава материала.Таким образом, каждый материал имеет свой коэффициент теплового расширения: этот параметр измеряет, насколько материалы сжимаются или расширяются при изменении температуры. Изменения размеров из-за коэффициента теплового расширения обратимы.

    Благодаря своему химическому составу, хорошим механическим свойствам, пониженному поглощению влаги, структуре с закрытыми ячейками и химической стойкости жесткие пенополиуретаны демонстрируют значительную стабильность размеров.

    Химическая стойкость

    Химический состав жесткого пенополиуретана обеспечивает превосходную стойкость к широкому спектру химикатов, растворителей и масел.

    Совместимость

    Жесткий пенополиуретан совместим с большим количеством вспомогательных материалов, включая бумагу, фольгу, стекловолокно, алюминий и битум. Сочетание жесткого пенополиуретана с этими материалами улучшает общие свойства, позволяя использовать его в качестве полуструктурных панелей и облицовки. Кроме того, правильный выбор штукатурки или фольги улучшает изоляционные свойства пены за счет образования защитных барьеров для влаги, что полезно в условиях высокой влажности.

    Диапазон рабочих температур

    Жесткий пенополиуретан может использоваться в приложениях, которые испытывают исключительно высокие температуры, от –200 ° C до + 130 ° C. Тем не менее, каждый пенополиуретан имеет свой температурный диапазон применения, поэтому важно дважды проверить указания в технических паспортах, прежде чем выбирать наиболее удобное решение.

    Огнестойкость

    Жесткие пенополиуретаны представляют собой органические соединения.Все органические вещества являются горючими материалами, хотя воспламеняемость и скорость горения жестких полиуретановых пен могут быть улучшены для соответствия различным изоляционным применениям, а состав пен может быть составлен в соответствии с самыми строгими стандартами противопожарной защиты.

    Какие металлы лучше всего проводят тепло? | Metal Supermarkets

    Теплопроводность измеряет способность металла проводить тепло. Это свойство различается в зависимости от типа металла, и его важно учитывать в приложениях, где часто встречаются высокие рабочие температуры.

    В чистых металлах теплопроводность остается примерно такой же при повышении температуры. Однако в сплавах теплопроводность увеличивается с температурой.

    Какие металлы лучше всего проводят тепло?

    Обычные металлы, ранжированные по теплопроводности
    Рейтинг Металл Теплопроводность [БТЕ / (ч · фут⋅ ° F)]
    1 Медь 223
    2 Алюминий 118
    3 Латунь 64
    4 Сталь 17
    5 бронза 15

    Как видите, из наиболее распространенных металлов медь и алюминий имеют самую высокую теплопроводность, а сталь и бронзу — самую низкую.Теплопроводность — очень важное свойство при выборе металла для конкретного применения. Поскольку медь является отличным проводником тепла, она хороша для теплообменников, радиаторов и даже днища кастрюль. Поскольку сталь плохо проводит тепло, она подходит для использования в высокотемпературных средах, таких как двигатели самолетов.

    Вот некоторые важные области применения, для которых требуются металлы, хорошо проводящие тепло:

    • Теплообменники
    • Радиаторы
    • Посуда

    Теплообменники

    Теплообменник — это обычное применение, где важна хорошая теплопроводность.Теплообменники выполняют свою работу, передавая тепло для нагрева или охлаждения.

    Медь — популярный выбор для теплообменников в промышленных объектах, систем кондиционирования воздуха, охлаждения, резервуаров для горячей воды и систем теплых полов. Его высокая теплопроводность позволяет теплу быстро проходить через него. Медь имеет дополнительные свойства, желательные для теплообменников, включая устойчивость к коррозии, биологическому обрастанию, нагрузкам и тепловому расширению.

    Алюминий также может использоваться в некоторых теплообменниках как более экономичная альтернатива.

    Теплообменники обычно используются в следующих ситуациях:

    Промышленные объекты

    Теплообменники на промышленных объектах включают ископаемые и атомные электростанции, химические предприятия, опреснительные установки и морские службы.

    На промышленных предприятиях медно-никелевый сплав используется для изготовления трубок теплообменника. Сплав имеет хорошую коррозионную стойкость, что защищает от коррозии в морской среде. Он также обладает хорошей устойчивостью к биологическому обрастанию, чтобы избежать образования водорослей и морского мха.Алюминиево-латунный сплав имеет аналогичные свойства и может использоваться как альтернатива.

    Солнечные системы термального водоснабжения

    Солнечные водонагреватели — это экономичный способ нагрева воды, в котором для передачи солнечной тепловой энергии воде используется медная трубка. Медь используется из-за ее высокой теплопроводности, устойчивости к воздушной и водной коррозии и механической прочности.

    Газовые водонагреватели

    Газо-водяные теплообменники передают тепло, выделяемое газовым топливом, воде.Они распространены в жилых и коммерческих котлах. Для газовых водонагревателей предпочтительным материалом является медь из-за ее высокой теплопроводности и простоты изготовления.

    Принудительное воздушное отопление и охлаждение

    Тепловые насосы, использующие воздух, давно используются для отопления жилых и коммерческих помещений. Они работают за счет теплообмена воздух-воздух через испарительные агрегаты. Их можно использовать в дровяных печах, котлах и печах. Опять же, медь обычно используется из-за ее высокой теплопроводности.

    Радиаторы

    Радиаторы — это тип теплообменника, который передает тепло, генерируемое электронным или механическим устройством, в движущуюся охлаждающую жидкость. Жидкость отводит тепло от устройства, позволяя ему остыть до желаемой температуры. Используются металлы с высокой теплопроводностью.

    В компьютерах

    радиаторы используются для охлаждения центральных процессоров или графических процессоров. Радиаторы также используются в мощных устройствах, таких как силовые транзисторы, лазеры и светодиоды (светодиоды).

    Радиаторы предназначены для увеличения площади поверхности, контактирующей с охлаждающей жидкостью.

    Алюминиевые сплавы являются наиболее распространенным материалом для теплоотвода. Это потому, что алюминий стоит меньше меди. Однако медь используется там, где требуется более высокий уровень теплопроводности. В некоторых радиаторах используются комбинированные алюминиевые ребра с медным основанием.

    Посуда

    Металл с хорошей теплопроводностью чаще используется в быту в посуде. Когда вы разогреваете еду, вы не хотите ждать весь день.Вот почему медь используется для изготовления дна высококачественной посуды, потому что металл быстро проводит тепло и равномерно распределяет его по своей поверхности.

    Однако, если у вас ограниченный бюджет, вы можете использовать алюминиевую посуду в качестве альтернативы. Для разогрева еды может потребоваться немного больше времени, но ваш кошелек будет вам благодарен!

    Metal Supermarkets — крупнейший в мире поставщик мелкосерийного металла с более чем 85 магазинами в США, Канаде и Великобритании.Мы эксперты по металлу и обеспечиваем качественное обслуживание клиентов и продукцию с 1985 года.

    В Metal Supermarkets мы поставляем широкий ассортимент металлов для различных областей применения. В нашем ассортименте: нержавеющая сталь, легированная сталь, оцинкованная сталь, инструментальная сталь, алюминий, латунь, бронза и медь.

    Наша горячекатаная и холоднокатаная сталь доступна в широком диапазоне форм, включая пруток, трубы, листы и пластины. Мы можем разрезать металл в точном соответствии с вашими требованиями.

    Посетите одно из наших 80+ офисов в Северной Америке сегодня.

    .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *