Сила тока и мощность тока. Simpleinfo – все сложное простыми словами!
07 Сентября 2017
7667
Подведем итоги по разделу. Обратим внимание на некоторые важные вещи и еще разберем пройденный материал.
1.В какую сторону течет ток?
Если вы обратили внимание, во всех предыдущих статьях, направление тока обозначено от (-) к (+), то есть с отрицательного полюса к положительному. Но в статье про закон Ома, мы указали с положительного полюса к отрицательному. В статье Электрическая проводимость мы выяснили, что носителем заряда являются отрицательно заряженные частицы, под воздействие поля происходит упорядоченное движение отрицательно заряженных частиц.
Таким образом направление движения тока с отрицательного полюса к положительному. Но в схематике (при разборе схем) и в быту используется направление от положительного к отрицательному. Как я понимаю это пришло с древности, пока точно не понимали, как движутся частицы.
наведите или кликните мышкой, для анимации
наведите или кликните мышкой, для анимации
Мы же, при разборе радиоэлементов, чтобы понять, как они работают будем использовать с отрицательного к положительному. А при разборе схем, с положительного полюса к отрицательному.
2. Более простой разбор электрической цепи. Сколько потребляет нагрузка?
Мы теперь знаем, что такое замкнутая электрическая цепь. И как течет по нему ток. Также выяснили, что в цепи существует определенная сила тока, напряжение тока, сопротивление нагрузки или нагрузок, а также возникает выработка мощности. Теперь на практике выясним более подробнее.
Нужно запомнить, что чаще всего в электрической цепи, мы можем изменять напряжение тока и сопротивление нагрузки или нагрузок. К примеру, если у нас регулируемый источник питания, мы можем установить регулятор напряжения к отметке 5 В или 12 В. Если используются батарейки, можем взять 2 “пальчиковых” батарейки, это 3 В. Либо можем использовать 3 батарейки, таким образом уже будет 4,5 В. Что касается нагрузки, мы можем подключить 1 лампу накаливания или 2 и т.д., что приведет к изменению общего сопротивления нагрузки. А сила тока будет подстраиваться согласно закону Ома.
Силу тока нужно представлять себе так: показатель силы тока в цепи — это “потребление” нагрузки. Чем больше сила тока в цепи, чем больше потребляется ток нагрузкой. Давайте рассмотрим на примере, если взять две одинаковые аккумуляторные батареи и присоединить к ним разные нагрузки. Быстрее сядет та батарея, в цепи которой было больше силы тока.
Теперь возникает вопрос, если, меняя нагрузку, мы можем менять “потребление” тока, то значит меняя напряжение, мы также можем повлиять на “потребление” тока, то есть на силу тока. Так и есть, если мы увеличим напряжение, увеличится и ток в нагрузке. Но тут необходимо быть осторожным, так как если слишком большой ток пройдет через нагрузку, он может его испортить, так же наоборот, если недостаток тока, то устройство может не работать или работать плохо.
3. Чем отличается сила тока от мощности тока?
Еще раз вспоминаем, что такое сила тока и мощность тока.
Сила тока — это прохождение частиц за единицу времени, выше мы с вами представили силу тока, как «потребление» нагрузки. К примеру, чтобы зажечь лампочку нужно создать в цепи 0,2 Ампера силы тока. Еще проще говоря, какая нужна сила, чтобы совершить, какое-то действие. (Зажечь лапочку, крутить двигатель, греть электроплиту и т.д.)
Мощность тока – это работа, которая выполняется за единицу времени нагрузкой. То есть, когда вращается двигатель — он совершает работу, когда электроплита греет — он совершает работу, когда лампочка горит – он так же совершает работу. Получается сила тока нам дает возможность выполнить работу, как бы отдавая свою энергию в нагрузку, далее нагрузка совершает ту или иную работу. При этом чем мощнее нагрузка, тем больше нужны заряды, соответственно больше силы тока в цепи. Более мощные нагрузки, выполняют больше работы. К примеру мощные электродвигатели сильнее крутятся, мощные лампочки ярче горят.
Таким образом, сила тока это, потребление тока нагрузкой или необходимое количества тока, для получения выработки мощности нагрузки. Мощность тока, это работа нагрузки за единицу времени. Сила тока и мощность тока взаимосвязаны. Что бы не путаться в голове нужно держать две вещи:
- 1. В источниках питания пишут, показатель силы тока, то есть, сколько он сможет отдать.
- 2. В нагрузках, в электроприборах пишут потребление в мощностях, то есть сколько ему нужно.
наведите или кликните мышкой, для анимации
Закон Ома.
Закон Ома.Программа КИП и А
В программу «КИП и А», в разделе «Электрика» включен блок расчета закона Ома для постоянного и переменного тока. Сначала немного теории..
Для постоянного тока
Закон Ома определяет зависимость между током (I), напряжением (U) и сопротивлением (R) в участке электрической цепи. Наиболее популярна формулировка:
Сила тока в участке цепи прямо пропорциональна напряжению и обратно пропорциональна электрическому сопротивлению данного участка цепи,
I = U / R | где | I — сила тока, измеряемая в Амперах, (A) |
U — напряжение, измеряемое в Вольтах, (V) | ||
R — сопротивление, измеряется в Омах, (Ω) |
Закон Ома, является основополагающим в электротехнике и электронике. Без его понимания также не представляется работа подготовленного специалиста в области КИП и А. Когда-то была даже распространена такая поговорка, — «Не знаешь закон Ома, — сиди дома..».
Помимо закона Ома, важнейшим является понятие электрической мощности
Мощность постоянного тока (P) равна произведению силы тока (I) на напряжение (U), т.е.
P = I × U | где | P — эл. мощность, измеряемая в Ваттах, (W) |
I — сила тока, измеряемая в Амперах, (A) | ||
U — напряжение, измеряемое в Вольтах, (V) |
Комбинируя эти две формулы, выведем зависимость между силой тока, напряжением, сопротивлением и мощностью, и создадим таблицу:
Сила тока, | I= | U/R | P/U | √(P/R) |
Напряжение, | U= | I×R | P/I | √(P×R) |
R= | U/I | P/I² | U²/P | |
Мощность, | P= | I×U | I²×R | U²/R |
Практический пример использования таблицы: Покупая в магазине утюг, мощностью 1 кВт (1 кВт = 1000 Вт), высчитываем на какой минимальный ток должна быть рассчитана розетка в которую предполагается включать данную покупку:
Несмотря на то, что утюг включается в сеть переменного тока, пренебрегаем его реактивным сопротивлением (см. ниже), и используем упрощенную формулу для постоянного тока. Находим в таблице I = P / U. Получаем: 1000 кВт / 220 В (напряжение сети) = 4,5 Ампера. Это и есть минимальный ток, который должна выдерживать розетка, при подключении к ней нагрузки мощностью 1 кВт.
Наиболее распространенные множительные приставки:
- Сила тока, Амперы (A): 1 килоампер (1 kА) = 1000 А. 1 миллиампер (1 mA) = 0,001 A. 1 микроампер (1 µA) = 0,000001 A.
- Напряжение, Вольты (V): 1 киловольт (1kV) = 1000 V. 1 милливольт (1 mV) = 0,001 V. 1 микровольт (1 µV) = 0,000001 V.
- Сопротивление, Омы (Om): 1 мегаом (1 MOm) = 1000000 Om. 1 килоом (1 kOm) = 1000 Om.
- Мощность, Ватты (W): 1 мегаватт (1 MW) = 1000000 W. 1 киловатт (1 kW) = 1000 W. 1 милливатт (1 mW) = 0,001 W.
Для переменного тока
В цепи переменного тока закон Ома может иметь некоторые особенности, описанные ниже.
Импеданс, Z
В цепи переменного тока, сопротивление кроме активной (R), может иметь как емкостную (C), так и индуктивную (L) составляющие. В этом случае вводится понятие
Последовательное включение R, L, C
Параллельное включение R, L, C
Также, полное сопротивление, Z зависит не только от емкостной (C), индуктивной (L) и активной (R) составляющих, но и от частоты переменного тока.
Импеданс, Полное сопротивление, Z | |
При последовательном включении R, L, C | При параллельном включении R, L, C |
Z=√(R2+(ωL-1/ωC)2) | Z=1/ √(1/R2+(1/ωL-ωC)2) |
где, | |
ω = 2πγ — циклическая, угловая частота; γ — частота переменного тока. |
Коэффициент мощности, Cos(φ)
Коэффициент мощности, в самом простом понимании, это отношение активной мощности (P) потребителя электрической энергии к полной (S) потребляемой мощности, т. е.
Cos(φ) = P / S
Он также показывает насколько сдвигается по фазе переменный ток, протекающий через нагрузку, относительно приложенного к ней напряжения.
Чем ближе Cos(φ) к единице, тем меньше потерь энергии в электрической цепи.
Исходя из вышеперечисленных понятий импеданса Z и коэффициента мощности Cos(φ), характерных для переменного тока, выведем формулу закона Ома, коэффициента мощности и их производные для цепей переменного тока:
I = U / Z | где | I — сила переменного тока, измеряемая в Амперах, (A) |
U — напряжение переменного тока, измеряемое в Вольтах, (V) | ||
Z — полное сопротивление (импеданс), измеряется в Омах, (Ω) |
Производные формулы:
Сила тока, | I= | U/Z | P/(U×Cos(φ)) | √(P/Z) |
Напряжение, | U= | I×Z | P/(I×Cos(φ)) | √(P×Z) |
Полное сопротивление, импеданс | Z= | U/I | P/I² | U²/P |
Мощность, | P= | I²×Z | I×U×Cos(φ) | U²/Z |
Программа «КИП и А» имеет в своем составе блок расчета закона Ома как для постоянного и переменного тока, так и для расчета импеданса и коэффициента мощности Cos(φ). Скриншоты представлены на рисунках внизу:
Закон Ома для постоянного тока
Закон Ома для переменного тока
Расчет полного сопротивления
Расчет коэффициента мощности Cos(φ)
Мощность переменного тока. Мощность тока через катушку, резистор, конденсатор
Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев
Темы кодификатора ЕГЭ: переменный ток, вынужденные электромагнитные колебания.Переменный ток несёт энергию. Поэтому крайне важным является вопрос о мощности в цепи переменного тока.
Пусть и — мгновенные значение напряжения и силы тока на данном участке цепи. Возьмём малый интервал времени — настолько малый, что напряжение и ток не успеют за это время сколько-нибудь измениться; иными словами, величины и можно считать постоянными в течение интервала .
Пусть за время через наш участок прошёл заряд (в соответствии с правилом выбора знака для силы тока заряд считается положительным, если он переносится в положительном направлении, и отрицательным в противном случае). Электрическое поле движущихся зарядов совершило при этом работу
Мощность тока — это отношение работы электрического поля ко времени, за которое эта работа совершена:
(1)
Точно такую же формулу мы получили в своё время для постоянного тока. Но в данном случае мощность зависит от времени, совершая колебания вместе током и напряжением; поэтому величина (1) называется ещё мгновенной мощностью.
Из-за наличия сдвига фаз сила тока и напряжение на участке не обязаны совпадать по знаку (например, может случиться так, что напряжение положительно, а сила тока отрицательна, или наоборот). Соответственно, мощность может быть как положительной, так и отрицательной. Рассмотрим чуть подробнее оба этих случая.
1. Мощность положительна: . Напряжение и сила тока имеют одинаковые знаки. Это означает, что направление тока совпадает с направлением электрического поля зарядов, образующих ток. В таком случае энергия участка возрастает: она поступает на данный участок из внешней цепи (например, конденсатор заряжается).
2. Мощность отрицательна: . Напряжение и сила тока имеют разные знаки. Стало быть, ток течёт против поля движущихся зарядов, образующих этот самый ток.
Как такое может случиться? Очень просто: электрическое поле, возникающее на участке, как бы «перевешивает» поле движущихся зарядов и «продавливает» ток против этого поля. В таком случае энергия участка убывает: участок отдаёт энергию во внешнюю цепь (например, конденсатор разряжается).
Если вы не вполне поняли, о чём только что шла речь, не переживайте — дальше будут конкретные примеры, на которых вы всё и увидите.
Мощность тока через резистор
Пусть переменный ток протекает через резистор сопротивлением . Напряжение на резисторе, как нам известно, колеблется в фазе с током:
Поэтому для мгновенной мощности получаем:
(2)
График зависимости мощности (2) от времени представлен на рис. 1. Мы видим, что мощность всё время неотрицательна — резистор забирает энергию из цепи, но не возвращает её обратно в цепь.
Рис. 1. Мощность переменного тока через резистор
Максимальное значение нашей мощности связано с амплитудами тока и напряжения привычными формулами:
На практике, однако, интерес представляет не максимальная, а средняя мощность тока. Это и понятно. Возьмите, например, обычную лампочку, которая горит у вас дома. По ней течёт ток частотой Гц, т. е. за секунду совершается колебаний силы тока и напряжения. Ясно, что за достаточно продолжительное время на лампочке выделяется некоторая средняя мощность, значение которой находится где-то между и . Где же именно?
Посмотрите ещё раз внимательно на рис. 1. Не возникает ли у вас интуитивное ощущение, что средняя мощность соответствует «середине» нашей синусоиды и принимает поэтому значение ?
Это ощущение совершенно верное! Так оно и есть. Разумеется, можно дать математически строгое определение среднего значения функции (в виде некоторого интеграла) и подтвердить нашу догадку прямым вычислением, но нам это не нужно. Достаточно интуитивного понимания простого и важного факта:
среднее значение квадрата синуса (или косинуса) за период равно .
Этот факт иллюстрируется рисунком 2.
Рис. 2. Среднее значение квадрата синуса равно
Итак, для среднего значения мощности тока на резисторе имеем:
(3)
В связи с этими формулами вводятся так называемые действующие (или эффективные) значения напряжения и силы тока (на самом деле это есть не что иное, как средние квадратические значения напряжения и тока. Такое у нас уже встречалось: средняя квадратическая скорость молекул идеального газа (листок «Уравнение состояния идеального газа»):
(4)
Формулы (3), записанные через действующие значения, полностью аналогичны соответствующим формулам для постоянного тока:
Поэтому если вы возьмёте лампочку, подключите её сначала к источнику постоянного напряжения , а затем к источнику переменного напряжения с таким же действующим значением , то в обоих случаях лампочка будет гореть одинаково ярко.
Действующие значения (4) чрезвычайно важны для практики. Оказывается, вольтметры и амперметры переменного тока показывают именно действующие значения (так уж они устроены). Знайте также, что пресловутые вольт из розетки — это действующее значение напряжения бытовой электросети.
Мощность тока через конденсатор
Пусть на конденсатор подано переменное напряжение . Как мы знаем, ток через конденсатор опережает по фазе напряжение на :
Для мгновенной мощности получаем:
График зависимости мгновенной мощности от времени представлен на рис. 3.
Рис. 3. Мощность переменного тока через конденсатор
Чему равно среднее значение мощности? Оно соответствует «середине» синусоиды и в данном случае равно нулю! Мы видим это сейчас как математический факт. Но интересно было бы с физической точки зрения понять, почему мощность тока через конденсатор оказывается нулевой.
Для этого давайте нарисуем графики напряжения и силы тока в конденсаторе на протяжении одного периода колебаний (рис. 4).
Рис. 4. Напряжение на конденсаторе и сила тока через него
Рассмотрим последовательно все четыре четверти периода.
1. Первая четверть, . Напряжение положительно и возрастает. Ток положителен (течёт в положительном направлении), конденсатор заряжается. По мере увеличения заряда на конденсаторе сила тока убывает.
Мгновенная мощность положительна: конденсатор накапливает энергию, поступающую из внешней цепи. Эта энергия возникает за счёт работы внешнего электрического поля, продвигающего заряды на конденсатор.
2. Вторая четверть, . Напряжение продолжает оставаться положительным, но идёт на убыль. Ток меняет направление и становится отрицательным: конденсатор разряжается против направления внешнего электрического поля.В конце второй четверти конденсатор полностью разряжен.
Мгновенная мощность отрицательна: конденсатор отдаёт энергию. Эта энергия возвращается в цепь: она идёт на совершение работы против электрического поля внешней цепи (конденсатор как бы «продавливает» заряды в направлении, противоположном тому, в котором внешнее поле «хочет» их двигать).
3. Третья четверть, . Внешнее электрическое поле меняет направление: напряжение отрицательно и возрастает по модулю. Сила тока отрицательна: идёт зарядка конденсатора в отрицательном направлении.
Ситуация полностью аналогична первой четверти, только знаки напряжения и тока — противоположные. Мощность положительна: конденсатор вновь накапливает энергию.
4. Четвёртая четверть, . Н
основные понятия, нахождение через силу тока и сопротивление
При проектировании схем различных устройств радиолюбителю необходимо производить точные расчеты c помощью измерительных приборов и формул. В электротехнике используются формулы для вычислений величин электричества (формулы напряжения, сопротивления, силы тока и так далее).
Общие сведения об электрическом токе
Электрическим током является процесс движения заряженных частиц (свободных электронов), имеющий вектор направленности. Частицы перемещаются под действием напряженности электрического поля, имеющей векторное направление. Это поле совершает работу по перемещению этих частиц. Влияют на работу электрического поля сила тока, напряжение и сопротивление.
Физический смысл
Под физическим смыслом понимается работа тока на участке, соотносящаяся с величиной заряда. Положительный заряд перемещается из одной точки, обладающей одним потенциалом, в другую, причем потенциал в этой точке отличается от предыдущего. В результате этого и возникает разность потенциалов, именуемая напряжением или ЭДС (электродвижущей силой).
Для полного понимания этого физического процесса и выяснения физического смысла напряжения необходимо провести аналогию с трубой. Допустим, труба наполнена водой и к ней прикручен кран для слива воды. Эта труба также оборудована краном для заливания воды с помощью мощного насоса.
Для демонстрации аналогии нужно открыть кран полностью, вода начнет выливаться и можно сделать вывод о незначительном давлении. Во втором случае спускной кран открыт не полностью и происходит набор воды при помощи насоса. В трубе создается давление и напор усиливается. Насос, создающий давление, и является в этом примере напряженностью электрического поля.
Электричество, если его не контролировать и не знать о пагубном влиянии на организм человека, способно создать множество проблем начиная от сгорания приборов и пожаров, и заканчивая угрозой жизни и здоровью человека. Техника безопасности очень важна в любой сфере.
Пагубное влияние на человека
Электричество очень опасно и является причиной несчастных случаев. Радиолюбители подвержены риску поражения электрическим током довольно часто. Некоторые радиолюбители пробуют наличие напряжения пальцами и пренебрегают техникой безопасности. Большинство из них считает опасным для жизни напряжение от 500 В, а 110 и 220 — не наносящими вреда здоровью. Удары от маломощных источников тока (маломощный силовой трансформатор, конденсатор), по их мнению, являются неопасными.
Согласно технике безопасности при работах с электричеством, они ошибаются, но есть и другая сторона этого вопроса: организм каждого человека индивидуален, обладает разными параметрами. Из этого утверждения следует, что смертельные характеристики электричества (напряжение и ток) индивидуальны для каждого человека. Одних может ударить 36 В, а других не пробивает и 220 В.
Действие электричества на организм человека зависит от нескольких факторов: силы и частоты, времени и пути прохождения через организм, сопротивления организма или участка тела, по которому протекает ток.
Исследованиями ученых установлено, что величина смертельного тока, поражающего сердце, составляет более 100 мА. Токи от 50 мА до 100 мА вызывают потерю сознания при кратковременном касании к поверхности, которая проводит ток. Токи до 50 мА могут стать причиной травм, например, падения с лестницы, выпускания из рук токоведущего проводника и т. д.
Влияние на фактор поражения еще оказывает и сопротивление тела человека. Сопротивление для каждого индивида определить сложно и диапазон его составляет от 30 кОм до 200 кОм. Эта величина зависит от множества факторов: толщины кожи, влажности тела и окружающей среды, усталости, нервно-эмоционального состояния, болезни и других факторов. Сопротивление резко уменьшается при повышенной влажности воздуха и работе на влажных участках.
Формула расчета напряжения, опасного для жизни, предполагая, что Rч = 2кОм и I = 60 мА, выглядит так: U = I * R = 0,06 * 2000 = 120 В. В этой ситуации опасным напряжением можно считать 120 В и выше.
Частота тока является еще одной опасной характеристикой, обладающей поражающим действием. При увеличении частоты опасность уменьшается прямо пропорционально. Ток оказывает и тепловое действие, поэтому считать высокочастотные токи безопасными нельзя.
Травмы, происходящие из-за электричества, называются электротравмами. Каждая из них несет в себе меньшую или большую опасность. Наиболее опасными являются травмы, полученные от электрической дуги, которая обладает высокой температурой от 5 тыс. до 12 тыс. градусов по Цельсию. Виды электрических травм:
- Электрические ожоги происходят при тепловом воздействии на ткани организма человека, по которым течет ток.
- Обожженные участки на коже возникают при прямом контакте ее с токоведущей частью проводника. Пораженный участок приобретает серый или бледно-серый цвет.
- Металлизация кожи — пропитывание кожи частицами металла при коротком замыкании или сварке.
- Механические повреждения — самопроизвольная судорога мышц, приводящая к падению. При падении происходят переломы, ушибы вывихи суставов и т. д.
- Электроофтальмия — воспаление слизистой оболочки глаз при воздействии излучения электрической дуги.
Существует еще один вид поражения — электрический удар. Этот вид поражения можно условно разделить на 5 групп: без потери сознания; с потерей сознания, связанной с нарушением сердечной деятельности или без нее; клиническая смерть и электрический шок.
Единицы измерения
Работа электрического поля по перемещению заряда измеряется в Дж (Джоуль), заряд в Кл (кулон). Вот, как обозначается напряжение или его единица измерения: отношение этих величин (работа по перемещению в Дж к электрическому заряду в Кл) и является разностью потенциалов, измеряется в вольтах (В) и обозначается U. Разность потенциалов бывает:
- Переменной (амплитуда и полярность изменяются с течением времени, в зависимости от характерной частоты).
- Постоянной (имеет постоянное значение амплитуды и полярность есть величина постоянная).
А также у единиц измерения есть приставки, например, кВ (Киловольт = 1000В) и МВ (мегавольт = 1000000В). Существуют о совсем низкие значения, например, мВ (милливольт = 0,001В).
Цепи переменного и постоянного тока
В цепях постоянного и переменного тока U обладает различными свойствами и производит иные влияния на проводники. Для постоянного напряжения существуют законы по вычислению его характеристик, но для переменного способы вычисления показателей заметно отличаются. Разберем более подробно все различия и сходства.
Расчет и анализ цепей выполняется при помощи закона Ома: сила тока полной цепи прямо пропорциональна напряжению и обратно пропорциональна сумме сопротивлений цепи и источника питания.
Следствие из закона при условии пренебрежения внутренним сопротивлением источника электричества: сила тока участка цепи прямо пропорциональна ЭДС и обратно пропорциональна сопротивлению этого участка.
Запись закона Ома, из которого следует формула напряжения, тока и сопротивления: I = U / (Rц + Rвн), где I — сила тока, U — ЭДС, Rц — сопротивление цепи, Rвн — внутреннее сопротивление источника питания.
Формула силы тока через сопротивление и напряжение: I = U / Rц.
Формула напряжения электрического тока: U = I * Rц.
Для расчета мощности необходимо U умножить на I: P = U * I = U * U / R, где P — мощность.
Переменное однофазное напряжение
В цепях для переменного тока происходят совершенно другие явления и процессы, для них справедливы другие законы. Различают такие основные виды:
- Мгновенное (разность потенциалов в конкретный промежуток времени: u = u (t)).
- Амплитудное значение (максимальное значение мгновенного U в момент времени: u (t) = Uм * sin (wt + f), где w — угловая частота, t — конкретный момент времени и f — угол начальной фазы напряжения).
- Среднее значение (для синусоиды равно нулю).
- Среднеквадратичное — Uq (U за весь период колебаний и для синусоиды имеет вид: Uq = 0,707 * Uм).
- Средневыпрямленное — Uv (среднее значение модуля U: Um примерно равно 0,9 * Uq).
В цепях 3-фазного тока различают 2 вида напряжений: линейное (фаза-фаза) и фазное (фаза-ноль). При соединении в цепь «треугольником» фазное и линейное U равны. В случае соединения «звездой» — фазное в 1,732050808 раз меньше линейного.
Рекомендации по выбору прибора
Для расчетов необходимо измерять значения величин электричества. Существуют специальные приборы, которые помогают произвести точные расчеты. Для измерения разности потенциалов применяют вольтметр.
Вольтметр (вольт — единица измерения ЭДС, метр — измеряю) — прибор для измерения ЭДС в цепи, подключаемый параллельно участку, на котором необходимо провести замер.
Для конкретного случая необходимо применять тот или иной прибор. Для более точных расчетов приобретаются приборы с высоким классом точности. Классификация вольтметров:
- Принцип действия: электромеханические (стрелочные) и электронные.
- Назначение: постоянного и переменного тока, импульсные, селективные и универсальные.
- Конструктивное исполнение: щитовые, переносные и стационарные.
Аналоговый электромеханический вольтметр имеет большие погрешности измерений в высокоомных цепях, но отлично зарекомендовал себя в низкоомных цепях и возможностью модернизации (увеличение значений измерения U за счет добавочного резистора).
Выпрямительный вольтметр обладает более высоким классом точности. Состоит из самого измерительного прибора (обладает чувствительностью к постоянному току) и выпрямительного устройства. Они получили не очень широкое распространение из-за высоких погрешностей, и применяются в качестве сигнальных приборов (примерное значение U).
Цифровые вольтметры применяются в комбинированных приборах-мультиметрах. Поступающее напряжение на клеммы (измерительные щупы) прибора преобразовывается в сигнал при помощи аналого-цифрового преобразователя (АЦП). Происходит отображение на цифровом табло. Этот вид приборов получил широкое применение благодаря высокой точности и универсальности.
Импульсный вольтметр необходимо применять при измерении амплитуд импульсных сигналов и одиночных импульсов.
Основным применением фазочувствительных вольтметров является измерение квадратурных составляющих комплексного напряжения (наличие мнимой и действительной частей) первичной гармоники. Они, как правило, снабжены 2-мя индикаторами для выявления мнимой и действительной частей. Они получили широкое применение в измерении АФХ (амплитудно-фазовая характеристика) для подбора деталей и настройки усилителей.
Для измерения номинала постоянного напряжения используются вольтметры подгруппы В2 (вольтметры для постоянного напряжения), а также В7 (универсальные).
Для определения переменного напряжения необходимо использовать устройства из подгруппы В3 или универсального типа (В7). Однако часто в этих вольтметрах применяются специальные преобразователи из переменного напряжения в постоянное.
В3 и В7 рассчитаны только для определения среднеквадратического гармонического напряжения. В этих электроизмерительных приборах возможно применение детекторов (преобразователей): пикового, выпрямительного и квадратичного. Оптимальным вариантом является вольтметр на квадратичном детекторе, при этом измеряемое значение выдается напрямую без всяких преобразований. Измерительные приборы на пиковых и выпрямительных детекторах пересчитывают значения, тем самым уменьшая точность измерений. Для измерения периодического негармонического напряжения выбирают вольтметр на квадратичном детекторе.
Таким образом, расчет напряжения играет важную роль в электротехнике. Расчеты для переменных и постоянных цепей электрического тока существенно отличаются, в результате чего необходимо определить сначала тип тока, а затем производить расчеты. Но также необходимо соблюдать технику безопасности при работах с электричеством. Ведь ее основные положения основаны на горьком опыте человечества.
как связаны между собой напряжение, ток и сопротивление
Добавлено 30 сентября 2020 в 00:30
Сохранить или поделиться
Первая и, возможно, самая важная взаимосвязь между током, напряжением и сопротивлением называется законом Ома, который был открыт Георгом Симоном Омом и опубликован в его статье 1827 года «Гальваническая цепь, исследованная математически».
Напряжение, ток и сопротивление
Электрическая цепь образуется, когда создается проводящий путь, позволяющий электрическому заряду непрерывно перемещаться. Это непрерывное движение электрического заряда по проводникам цепи называется током, и о нем часто говорят как о «потоке», как о потоке жидкости через полую трубу.
Сила, побуждающая носители заряда «течь» по цепи, называется напряжением. Напряжение – это особая мера потенциальной энергии, которая всегда относительна между двумя точками. Когда мы говорим об определенной величине напряжения, присутствующего в цепи, мы имеем в виду измерение потенциальной энергии для перемещения носителей заряда из одной конкретной точки этой цепи в другую конкретную точку. Без упоминания двух конкретных точек термин «напряжение» не имеет значения.
Ток, как правило, проходит через проводники с некоторой степенью трения или противодействия движению. Это противодействие движению правильнее называть сопротивлением. Величина тока в цепи зависит от величины напряжения и величины сопротивления в цепи, препятствующего прохождению тока. Как и напряжение, сопротивление – это величина, измеряемая между двумя точками. По этой причине величины напряжения и сопротивления часто указываются как «между» двумя точками в цепи.
Единицы измерения: вольт, ампер и ом
Чтобы иметь возможность делать осмысленные утверждения об этих величинах в цепях, нам нужно уметь описывать их количества так же, как мы могли бы количественно определить массу, температуру, объем, длину или любые другие физические величины. Для массы мы можем использовать единицы «килограмм» или «грамм». Для температуры мы можем использовать градусы Фаренгейта или градусы Цельсия. В таблице ниже приведены стандартные единицы измерения электрического тока, напряжения и сопротивления:
Величина | Символ | Единица измерения | Сокращение единицы измерения |
---|---|---|---|
Ток | I | Ампер | А |
Напряжение | V | Вольт | В |
Сопротивление | R | Ом | Ом |
«Символ», присвоенный каждой величине, представляет собой стандартную букву латинского алфавита, используемую для представления этой величины в формулах. Подобные стандартизированные буквы распространены во всех физических и технических дисциплинах и признаны во всем мире. «Сокращение единицы измерения» для каждой величины представляет собой алфавитный символ(ы), используемый в качестве сокращенного обозначения конкретной единицы измерения.
Каждая единица измерения названа в честь известного экспериментатора в области электричества: ампер в честь француза Андре М. Ампера, вольт в честь итальянца Алессандро Вольта, а ом в честь немца Георга Симона Ома.
Математический символ для каждой величины также имеет значение. «R» для сопротивления и «V» для напряжения говорят сами за себя («Resistance» и «Voltage», соответственно), тогда как «I» для тока кажется немного странным. Предполагается, что буква «I» должна представлять «интенсивность» («Intensity»)(потока заряда). Судя по исследованиям, которые мне удалось провести, кажется, что есть некоторые разногласия по поводу значения слова «I». Другой символ напряжения, «E», означает «электродвижущую силу» («Electromotive force»). Символы «E» и «V» по большей части взаимозаменяемы, хотя в некоторых текстах «E» зарезервировано для обозначения напряжения на источнике (таком как батарея или генератор), а «V»– для обозначения напряжения на любом другом элементе.
Все эти символы выражаются заглавными буквами, за исключением случаев, когда величина (особенно напряжение или ток) описывается в терминах короткого периода времени (так называемые «мгновенные» значения). Например, напряжение батареи, которое стабильно в течение длительного периода времени, будет обозначаться заглавной буквой «E», тогда как пиковое напряжения при ударе молнии в тот самый момент, когда она попадает в линию электропередачи, скорее всего, будет обозначаться строчной буквой «е» (или строчной буквой «v»), чтобы отметить это значение как имеющееся в один момент времени. Это же соглашение о нижнем регистре справедливо и для тока: строчная буква «i» представляет ток в некоторый момент времени. Однако большинство измерений в цепях постоянного тока, которые стабильны во времени, будут обозначаться заглавными буквами.
Кулон и электрический заряд
Одна из основных единиц электрических измерений, которую часто преподают в начале курсов электроники, но нечасто используют впоследствии, – это кулон – единица измерения электрического заряда, пропорциональная количеству электронов в несбалансированном состоянии. Один кулон заряда соответствует 6 250 000 000 000 000 000 электронов. Символом количества электрического заряда является заглавная буква «Q», а единица измерения кулонов обозначается «Кл». Единица измерения тока, ампер, равна 1 кулону заряда, проходящему через заданную точку в цепи за 1 секунду. В этом смысле, ток – это скорость движения электрического заряда через проводник.
Как указывалось ранее, напряжение – это мера потенциальной энергии на единицу заряда, доступная для стимулирования протекания тока из одной точки в другую. Прежде чем мы сможем точно определить, что такое «вольт», мы должны понять, как измерить эту величину, которую мы называем «потенциальной энергией». Общей метрической единицей измерения энергии любого вида является джоуль, равный количеству работы, совершаемой силой в 1 ньютон при движении на 1 метр (в том же направлении). В этих научных терминах 1 вольт равен 1 джоулю электрической потенциальной энергии на (деленному на) 1 кулон заряда. Таким образом, 9-вольтовая батарея выделяет 9 джоулей энергии на каждый кулон заряда, проходящего через цепь.
Эти единицы и символы электрических величин станут очень важны, когда мы начнем исследовать отношения между ними в цепях.
Формула закона Ома
Основное открытие Ома заключалось в том, что величина электрического тока, протекающего через металлический проводник в цепи, при любой заданной температуре прямо пропорциональна напряжению, приложенному к нему. Ом выразил свое открытие в виде простого уравнения, описывающего взаимосвязь напряжения, тока и сопротивления:
\[E=IR\]
В этом алгебраическом выражении напряжение (E) равно току (I), умноженному на сопротивление (R). Используя алгебру, мы можем преобразовать это уравнение в других два варианта, решая его для I и R соответственно:
\[I = \frac{E}{R}\]
\[R = \frac{E}{I}\]
Анализ простых схем с помощью закона Ома
Давайте посмотрим, как эти формулы работают, чтобы помочь нам анализировать простые схемы:
Рисунок 1 – Пример простой схемыВ приведенной выше схеме есть только один источник напряжения (батарея слева) и только один источник сопротивления току (лампа справа). Это позволяет очень легко применить закон Ома. Если мы знаем значения любых двух из трех величин (напряжения, тока и сопротивления) в этой цепи, мы можем использовать закон Ома для определения третьей.
В этом первом примере мы вычислим величину тока (I) в цепи, учитывая значения напряжения (E) и сопротивления (R):
Рисунок 2 – Пример 1. Известны напряжение источника и сопротивление лампыКакая величина тока (I) в этой цепи?
\[I = \frac{E}{R} = \frac{12 \ В}{3 \ Ом} = 4 \ А\]
Во втором примере мы вычислим величину сопротивления (R) в цепи, учитывая значения напряжения (E) и тока (I):
Рисунок 3 – Пример 2. Известны напряжение источника и ток в цепиКакое сопротивление (R) оказывает лампа?
\[R = \frac{E}{I} = \frac{36 \ В}{4 \ А} = 9 \ Ом\]
В последнем примере мы рассчитаем величину напряжения, подаваемого батареей, с учетом значений тока (I) и сопротивления (R):
Рисунок 4 – Пример 3. Известны ток в цепи и сопротивление лампыКакое напряжение обеспечивает батарея?
\[E = IR = (2 \ А)(7 \ Ом) = 14 \ В\]
Метода треугольника закона Ома
Закон Ома – очень простой и полезный инструмент для анализа электрических цепей. Он так часто используется при изучении электричества и электроники, что студент должен запомнить его. Если вы не очень хорошо умеете работать с формулами, то для его запоминания существует простой прием, помогающий использовать его для любой величины, зная две других. Сначала расположите буквы E, I и R в виде треугольника следующим образом:
Рисунок 5 – Треугольник закона ОмаЕсли вы знаете E и I и хотите определить R, просто удалите R с картинки и посмотрите, что осталось:
Рисунок 6 – Закон Ома для определения RЕсли вы знаете E и R и хотите определить I, удалите I и посмотрите, что осталось:
Рисунок 7 – Закон Ома для определения IНаконец, если вы знаете I и R и хотите определить E, удалите E и посмотрите, что осталось:
Рисунок 8 – Закон Ома для определения EВ конце концов, вам придется научиться работать с формулами, чтобы серьезно изучать электричество и электронику, но этот совет может облегчить запоминание ваших первых вычислений. Если вам удобно работать с формулами, всё, что вам нужно сделать, это зафиксировать в памяти E = IR и вывести из нее две другие формулы, когда они вам понадобятся!
Резюме
- Напряжение измеряется в вольтах, обозначается буквами «E» или «V».
- Сила тока измеряется в амперах, обозначается буквой «I».
- Сопротивление измеряется в омах, обозначается буквой «R».
- Закон Ома: E = IR; I = E/R; R = E/I
Оригинал статьи:
Теги
Закон ОмаЗарядКулонОбучениеСила токаСопротивлениеСхемотехникаЭлектрический токЭлектрическое напряжениеСохранить или поделиться
Электрический ток — Физика — Теория, тесты, формулы и задачи
Оглавление:
Основные теоретические сведения
Электрический ток. Сила тока. Сопротивление
К оглавлению…
В проводниках при определенных условиях может возникнуть непрерывное упорядоченное движение свободных носителей электрического заряда. Такое движение называется электрическим током. За направление электрического тока принято направление движения положительных свободных зарядов, хотя в большинстве случае движутся электроны – отрицательно заряженные частицы.
Количественной мерой электрического тока служит сила тока I – скалярная физическая величина, равная отношению заряда q, переносимого через поперечное сечение проводника за интервал времени t, к этому интервалу времени:
Если ток не постоянный, то для нахождения количества прошедшего через проводник заряда рассчитывают площадь фигуры под графиком зависимости силы тока от времени.
Если сила тока и его направление не изменяются со временем, то такой ток называется постоянным. Сила тока измеряется амперметром, который включается в цепь последовательно. В Международной системе единиц СИ сила тока измеряется в амперах [А]. 1 А = 1 Кл/с.
Средняя сила тока находится как отношение всего заряда ко всему времени (т.е. по тому же принципу, что и средняя скорость или любая другая средняя величина в физике):
Если же ток равномерно меняется с течением времени от значения I1 до значения I2, то можно значение среднего тока можно найти как среднеарифметическое крайних значений:
Плотность тока – сила тока, приходящаяся на единицу поперечного сечения проводника, рассчитывается по формуле:
При прохождении тока по проводнику ток испытывает сопротивление со стороны проводника. Причина сопротивления – взаимодействие зарядов с атомами вещества проводника и между собой. Единица измерения сопротивления 1 Ом. Сопротивление проводника R определяется по формуле:
где: l – длина проводника, S – площадь его поперечного сечения, ρ – удельное сопротивление материала проводника (будьте внимательны и не перепутайте последнюю величину с плотностью вещества), которое характеризует способность материала проводника противодействовать прохождению тока. То есть это такая же характеристика вещества, как и многие другие: удельная теплоемкость, плотность, температура плавления и т.д. Единица измерения удельного сопротивления 1 Ом·м. Удельное сопротивление вещества – табличная величина.
Сопротивление проводника зависит и от его температуры:
где: R0 – сопротивление проводника при 0°С, t – температура, выраженная в градусах Цельсия, α – температурный коэффициент сопротивления. Он равен относительному изменению сопротивления, при увеличении температуры на 1°С. Для металлов он всегда больше нуля, для электролитов наоборот, всегда меньше нуля.
Диод в цепи постоянного тока
Диод – это нелинейный элемент цепи, сопротивление которого зависит от направления протекания тока. Обозначается диод следующим образом:
Стрелка в схематическом обозначении диода показывает, в каком направлении он пропускает ток. В этом случае его сопротивление равно нулю, и диод можно заменить просто на проводник с нулевым сопротивлением. Если ток течет через диод в противоположном направлении, то диод обладает бесконечно большим сопротивлением, то есть не пропускает ток совсем, и является разрывом в цепи. Тогда участок цепи с диодом можно просто вычеркнуть, так как ток по нему не идет.
Закон Ома. Последовательное и параллельное соединение проводников
К оглавлению…
Немецкий физик Г.Ом в 1826 году экспериментально установил, что сила тока I, текущего по однородному металлическому проводнику (то есть проводнику, в котором не действуют сторонние силы) сопротивлением R, пропорциональна напряжению U на концах проводника:
Величину R принято называть электрическим сопротивлением. Проводник, обладающий электрическим сопротивлением, называется резистором. Это соотношение выражает закон Ома для однородного участка цепи: сила тока в проводнике прямо пропорциональна приложенному напряжению и обратно пропорциональна сопротивлению проводника.
Проводники, подчиняющиеся закону Ома, называются линейными. Графическая зависимость силы тока I от напряжения U (такие графики называются вольт-амперными характеристиками, сокращенно ВАХ) изображается прямой линией, проходящей через начало координат. Следует отметить, что существует много материалов и устройств, не подчиняющихся закону Ома, например, полупроводниковый диод или газоразрядная лампа. Даже у металлических проводников при достаточно больших токах наблюдается отклонение от линейного закона Ома, так как электрическое сопротивление металлических проводников растет с ростом температуры.
Проводники в электрических цепях можно соединять двумя способами: последовательно и параллельно. У каждого способа есть свои закономерности.
1. Закономерности последовательного соединения:
Формула для общего сопротивления последовательно соединенных резисторов справедлива для любого числа проводников. Если же в цепь последовательно включено n одинаковых сопротивлений R, то общее сопротивление R0 находится по формуле:
2. Закономерности параллельного соединения:
Формула для общего сопротивления параллельно соединенных резисторов справедлива для любого числа проводников. Если же в цепь параллельно включено n одинаковых сопротивлений R, то общее сопротивление R0 находится по формуле:
Электроизмерительные приборы
Для измерения напряжений и токов в электрических цепях постоянного тока используются специальные приборы – вольтметры и амперметры.
Вольтметр предназначен для измерения разности потенциалов, приложенной к его клеммам. Он подключается параллельно участку цепи, на котором производится измерение разности потенциалов. Любой вольтметр обладает некоторым внутренним сопротивлением RB. Для того чтобы вольтметр не вносил заметного перераспределения токов при подключении к измеряемой цепи, его внутреннее сопротивление должно быть велико по сравнению с сопротивлением того участка цепи, к которому он подключен.
Амперметр предназначен для измерения силы тока в цепи. Амперметр включается последовательно в разрыв электрической цепи, чтобы через него проходил весь измеряемый ток. Амперметр также обладает некоторым внутренним сопротивлением RA. В отличие от вольтметра, внутреннее сопротивление амперметра должно быть достаточно малым по сравнению с полным сопротивлением всей цепи.
ЭДС. Закон Ома для полной цепи
К оглавлению…
Для существования постоянного тока необходимо наличие в электрической замкнутой цепи устройства, способного создавать и поддерживать разности потенциалов на участках цепи за счет работы сил неэлектростатического происхождения. Такие устройства называются источниками постоянного тока. Силы неэлектростатического происхождения, действующие на свободные носители заряда со стороны источников тока, называются сторонними силами.
Природа сторонних сил может быть различной. В гальванических элементах или аккумуляторах они возникают в результате электрохимических процессов, в генераторах постоянного тока сторонние силы возникают при движении проводников в магнитном поле. Под действием сторонних сил электрические заряды движутся внутри источника тока против сил электростатического поля, благодаря чему в замкнутой цепи может поддерживаться постоянный электрический ток.
При перемещении электрических зарядов по цепи постоянного тока сторонние силы, действующие внутри источников тока, совершают работу. Физическая величина, равная отношению работы Aст сторонних сил при перемещении заряда q от отрицательного полюса источника тока к положительному к величине этого заряда, называется электродвижущей силой источника (ЭДС):
Таким образом, ЭДС определяется работой, совершаемой сторонними силами при перемещении единичного положительного заряда. Электродвижущая сила, как и разность потенциалов, измеряется в вольтах (В).
Закон Ома для полной (замкнутой) цепи: сила тока в замкнутой цепи равна электродвижущей силе источника, деленной на общее (внутреннее + внешнее) сопротивление цепи:
Сопротивление r – внутреннее (собственное) сопротивление источника тока (зависит от внутреннего строения источника). Сопротивление R – сопротивление нагрузки (внешнее сопротивление цепи).
Падение напряжения во внешней цепи при этом равно (его еще называют напряжением на клеммах источника):
Важно понять и запомнить: ЭДС и внутреннее сопротивление источника тока не меняются, при подключении разных нагрузок.
Если сопротивление нагрузки равно нулю (источник замыкается сам на себя) или много меньше сопротивления источника, то тогда в цепи потечет ток короткого замыкания:
Сила тока короткого замыкания – максимальная сила тока, которую можно получить от данного источника с электродвижущей силой ε и внутренним сопротивлением r. У источников с малым внутренним сопротивлением ток короткого замыкания может быть очень велик, и вызывать разрушение электрической цепи или источника. Например, у свинцовых аккумуляторов, используемых в автомобилях, сила тока короткого замыкания может составлять несколько сотен ампер. Особенно опасны короткие замыкания в осветительных сетях, питаемых от подстанций (тысячи ампер). Чтобы избежать разрушительного действия таких больших токов, в цепь включаются предохранители или специальные автоматы защиты сетей.
Несколько источников ЭДС в цепи
Если в цепи присутствует несколько ЭДС подключенных последовательно, то:
1. При правильном (положительный полюс одного источника присоединяется к отрицательному другого) подключении источников общее ЭДС всех источников и их внутреннее сопротивление может быть найдено по формулам:
Например, такое подключение источников осуществляется в пультах дистанционного управления, фотоаппаратах и других бытовых приборах, работающих от нескольких батареек.
2. При неправильном (источники соединяются одинаковыми полюсами) подключении источников их общее ЭДС и сопротивление рассчитывается по формулам:
В обоих случаях общее сопротивление источников увеличивается.
При параллельном подключении имеет смысл соединять источники только c одинаковой ЭДС, иначе источники будут разряжаться друг на друга. Таким образом суммарное ЭДС будет таким же, как и ЭДС каждого источника, то есть при параллельном соединении мы не получим батарею с большим ЭДС. При этом уменьшается внутреннее сопротивление батареи источников, что позволяет получать большую силу тока и мощность в цепи:
В этом и состоит смысл параллельного соединения источников. В любом случае при решении задач сначала надо найти суммарную ЭДС и полное внутреннее сопротивление получившегося источника, а затем записать закон Ома для полной цепи.
Работа и мощность тока. Закон Джоуля-Ленца
К оглавлению…
Работа A электрического тока I, протекающего по неподвижному проводнику с сопротивлением R, преобразуется в теплоту Q, выделяющееся на проводнике. Эту работу можно рассчитать по одной из формул (с учетом закона Ома все они следуют друг из друга):
Закон преобразования работы тока в тепло был экспериментально установлен независимо друг от друга Дж.Джоулем и Э.Ленцем и носит название закона Джоуля–Ленца. Мощность электрического тока равна отношению работы тока A к интервалу времени Δt, за которое эта работа была совершена, поэтому она может быть рассчитана по следующим формулам:
Работа электрического тока в СИ, как обычно, выражается в джоулях (Дж), мощность – в ваттах (Вт).
Энергобаланс замкнутой цепи
К оглавлению…
Рассмотрим теперь полную цепь постоянного тока, состоящую из источника с электродвижущей силой ε и внутренним сопротивлением r и внешнего однородного участка с сопротивлением R. В этом случае полезная мощность или мощность, выделяемая во внешней цепи:
Максимально возможная полезная мощность источника достигается, если R = r и равна:
Если при подключении к одному и тому же источнику тока разных сопротивлений R1 и R2 на них выделяются равные мощности то внутреннее сопротивление этого источника тока может быть найдено по формуле:
Мощность потерь или мощность внутри источника тока:
Полная мощность, развиваемая источником тока:
КПД источника тока:
Электролиз
К оглавлению…
Электролитами принято называть проводящие среды, в которых протекание электрического тока сопровождается переносом вещества. Носителями свободных зарядов в электролитах являются положительно и отрицательно заряженные ионы. К электролитам относятся многие соединения металлов с металлоидами в расплавленном состоянии, а также некоторые твердые вещества. Однако основными представителями электролитов, широко используемыми в технике, являются водные растворы неорганических кислот, солей и оснований.
Прохождение электрического тока через электролит сопровождается выделением вещества на электродах. Это явление получило название электролиза.
Электрический ток в электролитах представляет собой перемещение ионов обоих знаков в противоположных направлениях. Положительные ионы движутся к отрицательному электроду (катоду), отрицательные ионы – к положительному электроду (аноду). Ионы обоих знаков появляются в водных растворах солей, кислот и щелочей в результате расщепления части нейтральных молекул. Это явление называется электролитической диссоциацией.
Закон электролиза был экспериментально установлен английским физиком М.Фарадеем в 1833 году. Закон Фарадея определяет количества первичных продуктов, выделяющихся на электродах при электролизе. Итак, масса m вещества, выделившегося на электроде, прямо пропорциональна заряду Q, прошедшему через электролит:
Величину k называют электрохимическим эквивалентом. Он может быть рассчитан по формуле:
где: n – валентность вещества, NA – постоянная Авогадро, M – молярная масса вещества, е – элементарный заряд. Иногда также вводят следующее обозначение для постоянной Фарадея:
Электрический ток в газах и в вакууме
К оглавлению…
Электрический ток в газах
В обычных условиях газы не проводят электрический ток. Это объясняется электрической нейтральностью молекул газов и, следовательно, отсутствием носителей электрических зарядов. Для того чтобы газ стал проводником, от молекул необходимо оторвать один или несколько электронов. Тогда появятся свободные носителя зарядов — электроны и положительные ионы. Этот процесс называется ионизацией газов.
Ионизировать молекулы газа можно внешним воздействием — ионизатором. Ионизаторами может быть: поток света, рентгеновские лучи, поток электронов или α-частиц. Молекулы газа также ионизируются при высокой температуре. Ионизация приводит к возникновению в газах свободных носителей зарядов — электронов, положительных ионов, отрицательных ионов (электрон, объединившийся с нейтральной молекулой).
Если создать в пространстве, занятом ионизированным газом, электрическое поле, то носители электрических зарядов придут в упорядоченное движение – так возникает электрический ток в газах. Если ионизатор перестает действовать, то газ снова становится нейтральным, так как в нем происходит рекомбинация – образование нейтральных атомов ионами и электронами.
Электрический ток в вакууме
Вакуумом называется такая степень разрежения газа, при котором можно пренебречь соударением между его молекулами и считать, что средняя длина свободного пробега превышает линейные размеры сосуда, в котором газ находится.
Электрическим током в вакууме называют проводимость межэлектродного промежутка в состоянии вакуума. Молекул газа при этом столь мало, что процессы их ионизации не могут обеспечить такого числа электронов и ионов, которые необходимы для ионизации. Проводимость межэлектродного промежутка в вакууме может быть обеспечена лишь с помощью заряженных частиц, возникших за счет эмиссионных явлений на электродах.
Что такое напряжение, ток, сопротивление: разбираемся на примерах
Не имея определенных начальных знаний об электричестве, тяжело себе представить, как работают электрические приборы, почему вообще они работают, почему надо включать телевизор в розетку, чтобы он заработал, а фонарику хватает маленькой батарейки, чтобы он светил в темноте.
И так будем разбираться во всем по порядку.
Электричество
Электричество – это природное явление, подтверждающее существование, взаимодействие и движение электрических зарядов. Электричество впервые было обнаружено еще в VII веке до н.э. греческим философом Фалесом. Фалес обратил внимание на то, что если кусочек янтаря потереть о шерсть, он начинает притягивать к себе легкие предметы. Янтарь на древнегреческом – электрон.
Вот так и представляю себе, сидит Фалес, трет кусок янтаря о свой гиматий (это шерстяная верхняя одежда у древних греков), а затем с озадаченным видом смотрит, как к янтарю притягиваются волосы, обрывки ниток, перья и клочки бумаги.
Данное явление называется статическим электричеством. Вы можете повторить данный опыт. Для этого хорошенько потрите шерстяной тканью обычную пластмассовую линейку и поднесите ее к мелким бумажным кусочкам.
Следует отметить, что долгое время это явление не изучалось. И только в 1600 году в своем сочинении «О магните, магнитных телах и о большом магните – Земле» английский естествоиспытатель Уильям Гилберт ввел термин – электричество. В своей работе он описал свои опыты с наэлектризованными предметами, а также установил, что наэлектризовываться могут и другие вещества.
Далее на протяжении трех веков самые передовые ученые мира исследуют электричество, пишут трактаты, формулируют законы, изобретают электрические машины и только в 1897 году Джозеф Томсон открывает первый материальный носитель электричества – электрон, частицу, благодаря которой возможны электрические процессы в веществах.
Электрон – это элементарная частица, имеет отрицательный заряд примерно равный -1,602·10-19 Кл (Кулон). Обозначается е или е–.
Напряжение
Чтобы заставить перемещаться заряженные частицы от одного полюса к другому необходимо создать между полюсами разность потенциалов или – Напряжение. Единица измерения напряжения – Вольт (В или V). В формулах и расчетах напряжение обозначается буквой V. Чтобы получить напряжение величиной 1 В нужно передать между полюсами заряд в 1 Кл, совершив при этом работу в 1 Дж (Джоуль).
Для наглядности представим резервуар с водой расположенный на некоторой высоте. Из резервуара выходит труба. Вода под естественным давлением покидает резервуар через трубу. Давайте условимся, что вода – это электрический заряд, высота водяного столба (давление) – это напряжение, а скорость потока воды – это электрический ток.
Таким образом, чем больше воды в баке, тем выше давление. Аналогично с электрической точки зрения, чем больше заряд, тем выше напряжение.
Начнем сливать воду, давление при этом будет уменьшаться. Т.е. уровень заряда опускается – величина напряжения уменьшается. Такое явление можно наблюдать в фонарике, лампочка светит все тусклее по мере того как разряжаются батарейки. Обратите внимание, чем меньше давление воды (напряжение), тем меньше поток воды (ток).
Электрический ток
Электрический ток – это физический процесс направленного движения заряженных частиц под действием электромагнитного поля от одного полюса замкнутой электрической цепи к другому. В качестве частиц, переносящих заряд, могут выступать электроны, протоны, ионы и дырки. При отсутствии замкнутой цепи ток невозможен. Частицы способные переносить электрические заряды существуют не во всех веществах, те в которых они есть, называются проводниками и полупроводниками. А вещества, в которых таких частиц нет – диэлектриками.
Принято считать направление тока от плюса к минусу, при этом электроны движутся от минуса к плюсу!
Единица измерения силы тока – Ампер (А). В формулах и расчетах сила тока обозначается буквой I. Ток в 1 Ампер образуется при прохождении через точку электрической цепи заряда в 1 Кулон (6,241·1018 электронов) за 1 секунду.
Вновь обратимся к нашей аналогии вода – электричество. Только теперь возьмем два резервуара и наполним их равным количеством воды. Отличие между баками в диаметре выходной трубы.
Откроем краны и убедимся, что поток воды из левого бака больше (диаметр трубы больше), чем из правого. Такой опыт – явное доказательство зависимости скорости потока от диаметра трубы. Теперь попробуем уравнять два потока. Для этого добавим в правый бак воды (заряд). Это даст большее давление (напряжение) и увеличит скорость потока (ток). В электрической цепи в роли диаметра трубы выступает сопротивление.
Проведенные эксперименты наглядно демонстрируют взаимосвязь между напряжением, током и сопротивлением. Подробнее о сопротивлении поговорим чуть позже, а сейчас еще несколько слов о свойствах электрического тока.
Если напряжение не меняет свою полярность, плюс на минус, и ток течет в одном направлении, то – это постоянный ток и соответственно постоянное напряжение. Если источник напряжения меняет свою полярность и ток течет то в одном направлении, то в другом – это уже переменный ток и переменное напряжение. Максимальные и минимальные значения (на графике обозначены как Io) – это амплитудные или пиковые значения силы тока. В домашних розетках напряжение меняет свою полярность 50 раз в секунду, т.е. ток колеблется то туда, то сюда, получается, что частота этих колебаний составляет 50 Герц или сокращенно 50 Гц. В некоторых странах, например в США принята частота 60 Гц.
Сопротивление
Электрическое сопротивление – физическая величина, определяющая свойство проводника препятствовать (сопротивляться) прохождению тока. Единица измерения сопротивления – Ом (обозначается Ом или греческой буквой омега Ω). В формулах и расчетах сопротивление обозначается буквой R. Сопротивлением в 1 Ом обладает проводник к полюсам которого приложено напряжение 1 В и протекает ток 1 А.
Проводники по-разному проводят ток. Их проводимость зависит, в первую очередь, от материала проводника, а также от сечения и длины. Чем больше сечение, тем выше проводимость, но, чем больше длина, тем проводимость ниже. Сопротивление – это обратное понятие проводимости.
На примере водопроводной модели сопротивление можно представить как диаметр трубы. Чем он меньше, тем хуже проводимость и выше сопротивление.
Сопротивление проводника проявляется, например, в нагреве проводника при протекании в нем тока. Причем, чем больше ток и меньше сечение проводника – тем сильнее нагрев.
Мощность
Электрическая мощность – это физическая величина, определяющая скорость преобразования электроэнергии. Например, вы не раз слышали: «лампочка на столько-то ватт». Это и есть мощность потребляемая лампочкой за единицу времени во время работы, т.е. преобразовании одного вида энергии в другой с некоторой скоростью.
Источники электроэнергии, например генераторы, также характеризуется мощностью, но уже вырабатываемой в единицу времени.
Единица измерения мощности – Ватт (обозначается Вт или W). В формулах и расчетах мощность обозначается буквой P. Для цепей переменного тока применяется термин Полная мощность, единица измерения – Вольт-ампер (В·А или V·A), обозначается буквой S.
И в завершение про Электрическую цепь. Данная цепь представляет собой некоторый набор электрических компонентов, способных проводить электрический ток и соединенных между собой соответствующим образом.
Что мы видим на этом изображении – элементарный электроприбор (фонарик). Под действием напряжения U (В) источника электроэнергии (батарейки) по проводникам и другим компонентам обладающих разными сопротивлениями R (Ом) от плюса к минусу течет электрический ток I (А) заставляющий светиться лампочку мощностью P (Вт). Не обращайте внимания на яркость лампы, это из-за плохого давления и малого потока воды батареек.
Фонарик, что представлен на фотографии, собран на базе конструктора «Знаток». Данный конструктор позволяет ребенку в игровой форме познать основы электроники и принцип работы электронных компонентов. Поставляется в виде наборов с разным количеством схем и разного уровня сложности.
Знать связь между мощностью и сопротивлением
Чтобы представить себе соотношение мощности и сопротивления, подумайте об источнике постоянного напряжения или батарее. Когда в цепи большое сопротивление, может протекать очень небольшой ток, поэтому батарея выдает очень мало энергии, и резистор не будет слишком горячим из-за меньшей мощности. Однако, если вы уменьшите сопротивление, будет течь больше тока, и резистор станет теплее, потому что мы увеличили мощность.{2} R \]
Где I — электрический ток, измеренный в амперах или А.
Что такое мощность?
Мы определяем мощность как способность тела выполнять работу за единицу времени. Например, человек A выполняет 30 Дж работы за 2 часа, а другой человек B выполняет такой же объем работы за 3 часа, поэтому здесь, если мы воспользуемся следующей формулой:
Мощность = Работа / время
Случай 1: 30 / 2 = 15 Вт
Случай 2: 30/2 = 10 Вт
Мы видим, что мощность человека A больше, чем мощность человека B.Таким образом, мощность A больше, чем мощность B.
Однако с точки зрения электричества мощность определяется как произведение тока и напряжения.
P = VI
Где
В — разность потенциалов, измеряемая в вольтах.
I измеряется в амперах.
Что такое сопротивление?
При движении на высокой скорости мы должны замедлить нашу машину на некотором расстоянии до ограничителей скорости, иначе наша машина будет прыгать с большим рывком.Итак, здесь наша высокоскоростная машина — это максимальный ток, протекающий по цепи (дороге), а выключатель скорости — это сопротивление, позволяющее избежать аварий или коротких замыканий в наших домах.
Итак, сопротивление — это препятствие, подключенное к цепи, чтобы избежать перетекания заряда через цепь. Он измеряется в Ом, где мы обозначаем его омегой или Ом.
Формула мощности и сопротивления
Мы заметили, что приведенные выше формулы описывают соотношение между мощностью и сопротивлением.{2} R \]
Здесь мы видим, что электрическая мощность прямо пропорциональна сопротивлению при поддержании постоянного I. {2}} {R} \]
Отсюда мы видим, что мощность P обратно пропорциональна сопротивлению R .
Отсюда мы можем сделать следующие выводы:
Для любой постоянной разницы потенциалов
Когда мощность в цепи высокая, сопротивление будет меньше.
Однако, если мощность низкая, сопротивление будет высоким.
Формула сопротивления мощности
Получение формулы мощности и сопротивления поможет нам понять концепцию связи мощности и сопротивления.
В физике мощность и сопротивление можно связать с помощью двух формул, которые мы подробно обсудим в этой статье.
Мы знаем, что электрическая мощность или P является мерой электрического тока I с q кулонами заряда, проходящими через разность потенциалов V (в вольтах) за время t секунд. {2}} {R} \]
Из приведенных выше выводов мы получили следующий вывод:
Мощность и сопротивление в электронике
В электронике мы определяем мощность как скорость выполнения работы.Итак, какие работы ведутся в области электроники? Это обычная повседневная работа или что-то еще? Опишем это простым утверждением:
Мы определяем сопротивление как сопротивление потоку электронов в цепи. Это означает, что чем больше препятствие, тем больше работы выполняется в единицу времени, чтобы заставить их течь, то есть тем больше энергии требуется, чтобы сделать их легким течением.
Из приведенного выше утверждения мы не можем отрицать тот факт, что соотношение между мощностью и сопротивлением пропорционально.
Закон Ома: определение и взаимосвязь между напряжением, током и сопротивлением — Видео и стенограмма урока
Закон Ома
Взаимосвязь между напряжением, током и сопротивлением описывается законом Ома . Это уравнение, i = v / r , говорит нам, что ток, i , протекающий по цепи, прямо пропорционален напряжению, v , и обратно пропорционален сопротивлению, r .Другими словами, если мы увеличим напряжение, то увеличится и ток. Но, если увеличить сопротивление, то ток уменьшится. Мы увидели эти концепции в действии с садовым шлангом. Увеличение давления привело к увеличению потока, но изгиб шланга увеличил сопротивление, что привело к уменьшению потока.
Как написано здесь уравнение, было бы легко использовать закон Ома, чтобы вычислить ток, если бы мы знали напряжение и сопротивление.Но что, если бы мы вместо этого захотели вычислить напряжение или сопротивление? Один из способов сделать это — переставить члены уравнения для решения других параметров, но есть более простой способ. Приведенная выше диаграмма даст нам соответствующее уравнение для решения любого неизвестного параметра без использования алгебры. Чтобы использовать эту диаграмму, мы просто закрываем параметр, который пытаемся найти, чтобы получить правильное уравнение. Это станет более понятным, когда мы начнем его использовать, поэтому давайте рассмотрим несколько примеров.
Закон Ома в действии
Ниже представлена простая электрическая схема, которую мы будем использовать для выполнения наших примеров. Наш источник напряжения — это аккумулятор, подключенный к лампочке, которая обеспечивает сопротивление электрическому току. Для начала предположим, что наша батарея имеет напряжение 10 вольт, электрическая лампочка имеет сопротивление 20 Ом, и нам нужно вычислить ток, протекающий по цепи. Используя нашу диаграмму, мы закрываем параметр, который мы пытаемся найти, то есть ток, или i , и это оставляет нам напряжение v над сопротивлением r .Другими словами, чтобы найти ток, нам нужно разделить напряжение на сопротивление. Делая математику, 10 вольт, разделенные на 20 Ом, дают половину ампера тока, протекающего в цепи.
Теперь давайте увеличим напряжение, чтобы посмотреть, что происходит с током. Мы будем использовать ту же лампочку, но перейдем на 20-вольтовую батарею.Используя то же уравнение, что и раньше, мы разделим 20 вольт на 20 Ом, и мы получим 1 ампер тока. Как мы видим, удвоение напряжения привело к удвоению тока. Это имеет смысл, когда мы думаем о садовом шланге. Если бы мы увеличили давление в шланге, можно было бы ожидать, что поток воды также увеличится. Всегда полезно перепроверить свою работу, спросив, соответствуют ли результаты тому, что вы ожидали.
Если бы мы увеличили сопротивление лампочки, что бы вы ожидали, что произойдет с током? Чтобы выяснить это, давайте поменяем существующую лампочку на другую с сопротивлением 40 Ом.Поскольку мы все еще ищем ток, мы используем то же уравнение, что и раньше. Разделив 20 вольт на 40 Ом, мы получим половину ампера тока. Этот результат говорит нам, что удвоение сопротивления уменьшило ток вдвое. Вы этого ожидали? Если вернуться к нашему шлангу, логично предположить, что перегиб в шланге уменьшит поток воды, точно так же, как увеличение сопротивления в цепи уменьшит ток.
До сих пор мы только рассчитали ток в цепи, но что, если бы кто-то поменял нашу лампочку, когда мы не смотрели, и нам нужно было вычислить сопротивление новой? Что ж, мы знаем, что напряжение нашей батареи составляет 20 вольт, и мы можем измерить ток в цепи с помощью инструмента, называемого амперметром, поэтому все, что осталось, — это выполнить некоторые вычисления.Используя нашу диаграмму, мы скрываем параметр, который мы пытаемся найти, а именно сопротивление, r . Схема теперь показывает нам, что нам нужно разделить напряжение на ток. Если наш амперметр измерил ток в 5 ампер, протекающий по цепи, то сопротивление будет равно 20 вольт, разделенным на 5 ампер, что составляет 4 Ом
Наконец, представьте, что кто-то заменил нашу батарею, и нам нужно выяснить ее напряжение.Процесс почти такой же. Мы знаем, что наша новая лампочка имеет сопротивление 4 Ом, и мы можем измерить ток в цепи с помощью амперметра. Используя диаграмму, мы покрываем напряжение v , которое говорит нам, что нам нужно умножить ток на сопротивление. Если бы амперметр измерил ток в 3 ампера, тогда напряжение было бы 3 ампера, умноженным на 4 Ом, что составляет 12 вольт. Вот и все. Зная любые два из трех параметров, мы всегда можем вычислить третий, используя закон Ома.
Резюме урока
Закон Ома определяет соотношение между напряжением, током и сопротивлением в электрической цепи: i = v / r . Ток прямо пропорционален напряжению и обратно пропорционален сопротивлению. Это означает, что увеличение напряжения приведет к увеличению тока, а увеличение сопротивления приведет к уменьшению тока. Зная любые два из трех параметров, мы можем вычислить третий, неизвестный параметр.Мы можем сделать это, переставив члены в уравнении закона Ома или используя диаграмму, приведенную выше в уроке. Скрытие параметра, который мы пытаемся найти, показывает нам соответствующее уравнение с использованием двух известных параметров.
Результаты обучения
По завершении этого урока вы сможете:
- Описывать взаимосвязь между напряжением, током и сопротивлением, используя закон Ома
- Напишите уравнение закона Ома
- Объясните, как можно найти любую из трех переменных в уравнении закона Ома, если вы знаете две другие.
- Рассчитайте любую из трех переменных, используя уравнение закона Ома
Калькулятор закона Ома
Наш калькулятор закона Ома — это удобный небольшой инструмент, который поможет вам найти взаимосвязь между напряжением, током и сопротивлением в данном проводнике.Формула закона Ома и формула напряжения в основном используются в электротехнике и электронике. Кроме того, если вы знаете, как рассчитать мощность, вы можете найти его очень полезным при изучении электронных схем. Все эти расчеты вы производите с помощью нашего Калькулятора Ом.
В оставшейся части статьи вы найдете:
- Формула закона Ома
- Как пользоваться формулой напряжения
- Какое уравнение для мощности
- Как рассчитать мощность
- Закон Ома для анизотропных материалов
Формула закона Ома
Закон Ома — один из основных законов физики.Он описывает взаимосвязь между напряжением, силой тока (также известной как ток) и сопротивлением. Напряжение относится к разности потенциалов между двумя точками электрического поля. Сила тока связана с потоком носителей электрического заряда, обычно электронов или электронно-дефицитных атомов. Последний термин, сопротивление, — это сопротивление вещества потоку электрического тока.
ЗаконОма гласит, что ток течет по проводнику со скоростью, которая пропорциональна напряжению между концами этого проводника.Другими словами, соотношение между напряжением и током постоянно:
I / V = const
Формулу закона Ома можно использовать для расчета сопротивления как отношения напряжения и тока. Его можно записать как:
R = V / I
Где:
- R — сопротивление
- В — напряжение
- I — текущий
Сопротивление выражается в омах. И устройство, и правило названы в честь Георга Ома — физика и изобретателя закона Ома.
Помните, что формула закона Ома относится только к веществам, которые способны вызывать энергию. такие как металлы и керамика. Однако есть много других материалов, для которых нельзя использовать формулу закона Ома, например, полупроводники и изоляторы. Закон Ома также действует только при определенных условиях, например, при фиксированной температуре.
Ищете практическое применение закона Ома? Обязательно ознакомьтесь с калькулятором светодиодного резистора!
Формула напряжения
Формула напряжения — это одно из трех математических уравнений, связанных с законом Ома.Это формула, приведенная в предыдущем абзаце, но переписанная так, чтобы вы могли рассчитать напряжение на основе тока и сопротивления, то есть формула напряжения является произведением тока и сопротивления. Уравнение:
В = ИК
Это значение измеряется в вольтах.
Какое уравнение мощности?
Другая величина, которую вы можете вычислить на основании закона Ома, — это мощность. Мощность — это произведение напряжения и тока, поэтому уравнение выглядит следующим образом:
P = V x I
С помощью этой формулы вы можете рассчитать, например, мощность лампочки.Если вы знаете, что напряжение батареи составляет 18 В,
, а ток составляет 6A
, вы можете, что мощность будет 108, со следующим расчетом:
P = 6A x 18V = 108 Вт
Как рассчитать мощность?
Если вы все еще не знаете, как рассчитать мощность по приведенным формулам, или просто хотите сэкономить время, вы можете использовать наш калькулятор закона Ома. Структура этого инструмента не слишком сложна, просто введите любые два из четырех значений, чтобы получить два других.Калькулятор закона Ома основан на формуле мощности вместе с формулой закона Ома. Все, что вам нужно сделать, чтобы получить значение мощности, это набрать:
- Напряжение (в вольтах)
- Ток (выраженный в амперах)
Затем калькулятор закона Ома выдаст вам два значения — сопротивление, выраженное в омах, и мощность, выраженное в ваттах. Если вам нужен этот результат в другом устройстве, вы можете использовать наш калькулятор ватт в амперы.
Закон Ома для анизотропных материалов
Существует еще одна версия закона Ома, в которой используются электрические свойства проводника.Некоторые предпочитают его предыдущей формуле из-за его размерного вида. Электропроводящие материалы подчиняются закону Ома, когда удельное сопротивление материалов не зависит от величины и направления приложенного электрического поля.
Вы можете найти следующую формулу, если нажмете кнопку Расширенный режим
:
ρ = E / J
, где
ρ
— удельное сопротивление проводящего материала.E
— вектор электрического поля.J
— вектор плотности тока.
Что касается изотропных материалов, лучше использовать первую формулу, поскольку она намного менее сложна. Изотропные материалы — это материалы с одинаковыми электрическими свойствами во всех направлениях, например металлы и стекло. Эта формула может пригодиться при работе с анизотропными материалами, такими как дерево или графит.
2.2.4 Закон Ома и почему мы заботимся о сопротивлении
2.2.4 Закон Ома и почему мы заботимся о сопротивлении
Устройство, известное нам как тостер, на удивление простое.Он состоит в основном из провода, по которому пропускается ток. Проволока нагревается, поджаривая хлеб. Вот и все!
Но почему нагревается провод? Ответ в том, что провод имеет некоторое сопротивление. Когда ток проходит через материал с некоторым сопротивлением, материал нагревается. Это тепло в первую очередь является рассеянием некоторой части электроэнергии, проходящей через материал. Это рассеяние мощности в виде тепла называется «потерями» в электросети.
Сопротивление материала, через который проходит ток, помогает определить потери, но это не единственный фактор. Напряжение, при котором энергия проходит через материал, также имеет значение, как и величина тока.
Это соотношение четко резюмировано в законе Ома, который гласит, что напряжение равно произведению тока и сопротивления, или V = I × R. Закон Ома используется для определения величины напряжения, необходимого для перемещения заданного количества тока (I) через некоторый материал с заданным сопротивлением (R).
Между тем, вспомните наше определение мощности: P = I × V. По сути, это количество мощности, передаваемой в цепи, подобной той, что была в нашем последнем упражнении.
Мы можем включить закон Ома в наше определение мощности, чтобы получить:
P = I × V = I × (I × R) = I2 × R
Это уравнение описывает количество мощности, рассеиваемой в цепи. Он также описывает количество потерь. Таким образом, закон Ома говорит нам, что потери будут увеличиваться пропорционально квадрату тока.Таким образом, если мы сохраним постоянное напряжение и удвоим ток, потери увеличатся в четыре раза.
Чтобы понять важность этого, предположим, что мы пропускаем 1000 ампер тока через цепь с падением напряжения 100 В. Итак, у нас есть мощность 100 кВт. Потери в цепи будут пропорциональны I2 × R, или 10002 × R в этом случае.
Но, если бы мы хотели 100 кВт мощности, мы могли бы сделать это по-другому, пропустив 100 А через цепь при напряжении 1000 В. Сопротивление в цепи не изменится, но потери в цепи теперь будут равны пропорционально 100 2 × R.
Таким образом, увеличивая напряжение (и уменьшая ток) в 10 раз, мы уменьшили наши потери в 100 раз. Это объясняет причину, по которой у нас есть сеть переменного тока вместо сети постоянного тока. Помните, что в технологии питания постоянного тока Эдисона напряжение в источнике должно быть близко к напряжению в точке потребления. Но с помощью технологии переменного тока, разработанной Tesla и Westinghouse, мощность может генерироваться и передаваться при очень высоких напряжениях, а затем снижаться до более низких напряжений в точке потребления.Это имело два больших преимущества: во-первых, можно было существенно снизить потери при передаче, а во-вторых, для домов и предприятий было намного безопаснее использовать электроэнергию низкого напряжения, а не высокого напряжения.
Законы Ома и Ватта | SpazzTech
Что такое закон Ома и закон Ватта ?:
Закон Ома определяет одно из самых фундаментальных соотношений в электронике. Это соотношение между напряжением, током и сопротивлением.Закон Ватта определяет еще одно из самых фундаментальных соотношений в электронике. Это соотношение между мощностью и величинами, определенное законом Ома. Мы не сможем углубиться в электронику, пока эти концепции не будут поняты.
Вольт:
Единицей измерения параметра напряжения является вольт. Символ, который используется для обозначения вольт, — это буква «V». В зависимости от ситуации используются как верхний, так и нижний регистры.Символом параметра напряжения также является буква «V». Если бы электрическая цепь представляла собой садовый шланг, напряжение было бы аналогично давлению в шланге. Единица V равна количеству энергии в Джоулях, необходимой для перемещения одного кулона электронов между двумя точками. Напряжение иногда называют «потенциалом», потому что оно способно перемещать эти электроны.
Ампер или Ампер:
Единицей измерения параметра тока является ампер.Ампер часто сокращается до ампер. Символ, используемый для обозначения усилителя, — это буква «А». В зависимости от ситуации используются как верхний, так и нижний регистр. Символ, используемый для представления параметра тока, — это буква «I». Если бы электрическая цепь представляла собой садовый шланг, ток был бы подобен скорости потока воды в шланге. Единица A равна количеству кулонов, проходящих через контур за одну секунду.
Ом:
Единицей измерения параметра сопротивления является ом.Для обозначения сопротивления используется символ Ω. Символ, используемый для обозначения параметра сопротивления, — это буква «R». Если бы электрическая цепь была садовым шлангом, сопротивление было бы любым клапаном или другим ограничением в шланге. Единица Ω равна сопротивлению, которое существует, когда 1 А протекает между двумя точками с напряжением 1 В между этими двумя точками. Это составляет основу форм закона Ома, приведенных в следующем разделе.
Формы закона Ома:
Мощность:
Ватт чаще всего используется для измерения мощности в электронике.Символ, используемый для обозначения ватта, — это заглавная буква «W». По сути, мощность — это скорость выполнения работы. Фактически, один ватт равен одному джоулю в секунду. Из определений, данных для вольт и ампер, приведенных выше, мы можем сказать, что один ватт также равен одному вольту, умноженному на один ампер, потому что вольт — это мера джоулей на кулон, а ампер — мера кулонов в секунду. Кулоны сокращаются, и у нас остаются джоули в секунду.
Формы закона Ватта:
Объединенная взаимосвязь закона Ома и закона Ватта Настенная диаграмма:
Объединив закон Ома и закон Ватта, нам нужно знать только две величины, чтобы определить две другие.Эти величины представляют собой напряжение (В) в вольтах, ток (I) в амперах, сопротивление (R) в омах и мощность (P) в ваттах. Все отношения между этими количествами приведены в таблице ниже.
© Copyright 2014-2017 SpazzTech LLC. Все права защищены
Напряжение, ток, сопротивление и закон Ома | ОРЕЛ
С возвращением, молодой мастер электроники.В нашем предыдущем блоге мы узнали о простой схеме и ее месте в нашем мире электроники. Но чтобы понять истинную сущность электричества, нужно понять, как управлять и измерять напряжение, ток и сопротивление. Вот здесь и появляется этот блог. Мы поднялись на самые высокие вершины, чтобы найти правильную аналогию, объясняющую природу того, как электричество работает в цепи. И вместо того, чтобы проводить еще одну аналогию с водой, мы подумали, что будем более личными, с нашими телами в движении.
Напряжение — все дело в потенциале
Представьте, что вы просыпаетесь утром. Вы лежите в постели, хотите еще несколько часов поспать, но знаете, что настало время для страшной утренней пробежки. Вы знаете, что это хорошо для вас, и вы будете чувствовать себя прекрасно, когда начнете двигаться, но каждое утро вам нужно делать выбор. Вы можете либо остаться в постели и поспать немного дольше, либо встать и начать двигаться.
Это сущность напряжения; все дело в разнице потенциалов.У всех нас есть потенциал, и когда дело доходит до бега, этот потенциал заключается в том, чтобы сделать выбор: бегать или спать. Если вы не решите бежать сегодня утром, ваш потенциал будет бездействовать, но если вы это сделаете, то этот потенциал вырвется наружу, заставляя вас бежать на несколько миль и заряжая энергией остаток дня.
Напряжение в сети
Подобно наличию потенциала движения или отсутствия, напряжение накапливает электрическую энергию с потенциалом движения .Именно эта сила напряжения побуждает электроны течь по цепи и заставляет их работать час за часом.
Voltage повсюду и ждет, пока мы задействуем его потенциал. Посмотрите на каждую неиспользуемую розетку в вашем доме — в розетках гудит напряжение, готовые сделать за вас работу. Но, как и при выборе бежать, у вас есть выбор, подключать ли этот источник напряжения к вашей розетке. Если оставить его в покое, то напряжение останется там, где оно есть, никогда не реализуя свой полный потенциал.
В электрической цепи напряжение измеряется путем определения так называемой разности потенциалов между двумя точками с помощью мультиметра. Возьмем, например, 9-вольтовую батарею. Если вы измеряете положительный и отрицательный полюсы, вы получите разность потенциалов 9 вольт (или близкую к ней). Положительный конец измеряется при 9 В, а отрицательный конец — при 0 В. Минус два числа, и вы получите свою разность потенциалов.
Вы можете использовать мультиметр, чтобы быстро измерить напряжение или разность потенциалов в батарее.(Источник изображения)
Напряжение бывает двух разных форм: постоянное (постоянный ток) напряжение, которое обеспечивает постоянный поток отрицательного электричества, или переменное напряжение, которое постоянно переключается с отрицательного на положительное. Вот символы, которые вы хотите найти на схеме для постоянного, переменного напряжения и батареи:
Вот некоторые символы напряжения, на которые следует обратить внимание на следующей схеме: батареи, постоянный и переменный ток.
Отец напряжения — Алессандро Вольта
Человек часа, которому приписывают открытие напряжения — Алессандро Вольта (Источник изображения)
Человеком, первым обнаружившим напряжение, был итальянский физик Алессандро Вольта.Он также обнаружил массу других интересных вещей, в том числе:
- Обнаружение того, что, если вы смешиваете метан с воздухом, вы можете создать электрическую искру, которая положила начало знаменитому ныне двигателю внутреннего сгорания.
- Обнаружение того, что электрический потенциал, хранящийся в конденсаторе, пропорционален его электрическому заряду.
- Volta также принадлежит к созданию первой электрической батареи, названной Voltaic Pile, которая позволила ученым того времени создавать устойчивый поток электронов.
Пример гальванической батареи, впервые созданной Вольтой, позволяющей ученым создавать устойчивый поток электронов. (Источник изображения)
ОднакоVolta не был лишен своих причуд. Пока ему не исполнилось четыре года, он не произнес ни слова, и его родители опасались, что он либо умственно отсталый. Хорошо, что они ошибались!
Ток — плывя по течению
Возвращаясь к нашей аналогии с бегом, представьте, что вы сделали выбор в пользу утренней пробежки.Вы в обуви и шортах и выходите за дверь, чтобы отправиться в путь. На этом этапе у вас есть какое-то движение, когда вы начинаете бег, поток.
Вот ток, движущийся в наших телах, кто знал, что электричество может быть таким личным?
Может быть, через час пробежки вы начнете быстро бежать, готовые бежать на несколько миль. Когда вы бежите, ваши умные часы точно измеряют, как далеко вы прошли и как быстро вы прошли. Этот процесс запуска и измерения процесса — вот что такое Current .
Ток в электричестве
Как и шаги для завершения утренней пробежки, ток — это постоянное движение или поток электричества в цепи . Электрический ток, протекающий по вашей цепи, всегда измеряется в амперах или амперах. Но что держит этот ток в движении?
Это напряжение, о котором мы говорили ранее. Точно так же, как вам нужно сказать себе, чтобы продолжать бегать, когда вы устали, напряжение является движущей силой тока, которая поддерживает его движение.Есть две школы мысли о том, как ток течет в цепи; Обычный поток или Электронный поток , давайте посмотрим на оба:
Обычный поток — Обычный поток был первым в период научных открытий, когда люди не понимали электроны и то, как они текут в цепи. В рамках этой модели предполагалось, что электричество перетекает с положительного на отрицательный.
Обычный поток с электричеством, протекающим от положительной отрицательной стороны батареи.
Вы все еще увидите, что этот менталитет используется в схемах и сегодня, и хотя он не совсем точен, его немного легче понять, чем Electron Flow. В конце концов, если мы вернемся к нашей аналогии с бегом, вы начнете с положительного источника энергии и бежите до тех пор, пока энергия не иссякнет. Это отношение положительное к отрицательному, как и многое в жизни.
Электронный поток — Электронный поток был продолжением обычного потока. Эта модель точно описывает электроны как движущиеся в противоположном направлении, от отрицательного к положительному.Поскольку электроны по своей природе отрицательны, они всегда будут выходить из отрицательного и бесконечно пытаться найти свой путь к положительной стороне источника питания с низким напряжением.
И более текущий поток электронов, при этом электроны текут, как в действительности, от отрицательного к положительному.
Имеет ли значение, каким образом вы показываете ток, протекающий в цепи? Не совсем. Вы, вероятно, увидите, что это представлено в обоих направлениях, если взглянуть на множество схем. Взгляните на диоды или транзисторы на следующей схеме, которую вы исследуете; все они будут указывать в направлении обычного потока.
Человек, стоящий за течением — Андре-Мари Ампер
Андре-Мари Ампер, самоучка, человек, совершивший гораздо больше, чем просто открытие Ампера. (Источник изображения)
Ампер был французским физиком и математиком, а также одним из основоположников науки о классическом электромагнетизме. Вы можете поблагодарить Ampere за несколько замечательных вещей, в том числе:
- Его главное открытие — демонстрация того, что провод, по которому проходит электрический ток, может притягивать или отталкивать другой провод, по которому также течет ток, без использования физических магнитов.
- Он также был первым, кто высказал идею о существовании частицы, которую мы все признаем электроном.
- Он также организовал химические элементы по их свойствам в периодической таблице за полвека до того, как появилась современная периодическая таблица Менделеева.
Интересный факт об образовании Ампера — у него не было никакого формального образования! Вместо этого отец позволял ему делать то, что ему заблагорассудится, узнавая что угодно. Хотя это могло вызвать лень и чрезмерное увлечение видеоиграми у остальных из нас, Ампер обнаружил естественную любовь к знаниям, пожирая столько книг из семейной библиотеки, сколько мог, и даже заучивая страницы из энциклопедии.
Сопротивление — это материальный мир
Наша последняя концепция — Сопротивление. Представьте себя снова на беговой дорожке, по какой поверхности вы бежите? Если вам повезет, то вы, возможно, путешествуете по мягкой траве или грунтовой дороге. Или, может быть, вы предпочитаете твердость улицы или тротуара. Но что, если он начнет литься наружу? Тогда вы можете застрять в густой грязи
Независимо от того, по какой дороге вы бежите, ваши ноги сталкиваются с некоторым сопротивлением, когда вы продолжаете двигаться вперед.Естественно, не все пути сопротивления созданы равными. Бег по грязи значительно снижает вашу способность к бегу по сравнению с бегом по грунтовой дороге или улице. В этом вся суть сопротивления, тяга и тяга материального мира.
Сопротивление электричеству
Какой бы материал ни проходил через электричество, он столкнется с трением, препятствующим его движению. Проще говоря, сопротивление замедляет ток . Хотя в электрической цепи есть определенные компоненты, такие как резистор, единственная задача которого — сопротивление электричеству, любой физический материал будет оказывать некоторое сопротивление.
Вы обнаружите, что сопротивление измеряется в Ом Ом, и оно напрямую связано с током и напряжением. Вот простой пример: чем больше у вас сопротивление, тем меньше тока может протекать по цепи. Это похоже на бег: чем гуще грязь, тем медленнее ты будешь бежать. Обратное также работает, если вы увеличиваете напряжение, чтобы ваш ток двигался быстрее, чем ваше сопротивление будет иметь меньшее влияние на вашу схему.
Мастер сопротивления — Георг Симон Ом
Георг Ом — Человек, который объединил напряжение, , ток и сопротивление в знаменитом теперь законе Ома.(Источник изображения)
Г-н Ом был немецким физиком и математиком, и именно в те годы, когда он был школьным учителем, он начал свои исследования с использованием новой электрической батареи, изобретенной Вольтой. С помощью собственного оборудования Ом смог обнаружить прямую зависимость между напряжением, приложенным к проводнику (например, медному проводу), и возникающим в результате электрическим током. Это стало известно как известный ныне закон Ома, на который мы все сегодня полагаемся.
Интересно отметить, что Ом представил свои открытия в своей первой книге «Гальваническая цепь, исследуемая математически», но колледж, в котором он работал в то время, не заботился об этом.Так что же сделал Ом? Он уволился и устроился на новую работу в Политехническую школу Нюрнберга. К счастью, именно здесь его работа привлекла заслуженное внимание.
Объединяем все вместе с законом Ома
Хорошо, пришло время объединить все наши концепции. Вот с чем нам предстоит работать:
- Напряжение (В) — это накопленное электричество, имеющее потенциал для движения. Когда этот потенциал активируется, напряжение действует как своего рода давление, проталкивая ток по цепи.
- Ток (I) — Поток электричества в цепи. Его можно измерить непосредственно в амперах, и существует две школы мысли о том, как протекает ток — обычный поток и электронный поток.
- Сопротивление (R) — Сопротивление, с которым электричество сталкивается, просто протекая через какой-то физический материал. Измеряется в Ом.
Собирая все это вместе, мы приходим к закону Ома:
В этом уравнении V = напряжение, I = ток и R = сопротивление.Гибкость закона Ома впечатляет, и его можно использовать для нахождения любого из этих трех значений, когда известны только два из них. Давайте рассмотрим пример, чтобы увидеть, как это работает.
Использование треугольника Ома
Посмотрите на треугольник Ома ниже. Он дает простое и наглядное представление о том, как можно манипулировать законом Ома, чтобы получить нужные ответы. Чтобы использовать его, все, что вам нужно сделать, это скрыть букву значения, которое вам нужно выяснить, а оставшиеся буквы покажут вам, как этого добиться.
Треугольник Ома, ваш удобный инструмент, чтобы точно определить, какой вариант закона Ома необходимо использовать.
Взгляните на схему ниже. У нас есть батарея 9V, подключенная к светодиоду и резистору. Единственная проблема заключается в том, что нам нужно выяснить, каково значение резистора.
Наша тренировочная схема, чтобы познакомиться с законом Ома. Мы можем использовать известные значения ампер и вольт, чтобы получить значение резистора.
Для этого давайте посмотрим на треугольник Ома.Закрыв R, мы видим, что у нас V над I или V, деленное на I. Итак, разделив эти два числа, мы получим номинал нашего резистора. Давайте подставим эти числа в это уравнение: R = V / I.
- Начнем с самого очевидного, у нашей батареи напряжение 9 вольт.
- Глядя на техническое описание нашего светодиода, мы можем увидеть рекомендуемый максимальный ток 16 мА (миллиампер), который преобразуется в 0,016 ампер.
- Подставляя эти два числа в наше уравнение, мы получаем R = 9V / 0.016A, что равно 473,68. Это означает, что для включения светодиода нам понадобится резистор на 473 Ом!
Сопротивление бесполезно
Понимать, как напряжение, ток и сопротивление работают вместе, было не так уж сложно, не так ли? Мы надеемся, что в следующий раз, когда вы отправитесь на утреннюю пробежку, у вас будет новый взгляд на электричество. Почувствуйте, как ваши ноги летят по тротуару или грязи, и помните, что это сопротивление. А когда вы проверяете, как далеко вы пробежали, то наблюдаете за движущимся потоком! И та сила, которая вытащила вас из постели и заставила бежать? Напряжение.
Готовы сделать свою первую схему сегодня? Попробуйте Autodesk EAGLE бесплатно!
КалькуляторВт, Вольт, Ампер, Ом | Расчет мощности, тока, напряжения и сопротивления
Калькулятор Вт, В, А и Ом:
Ватт — единица мощности, Ампер — единица тока, Вольт — единица напряжения, а Ом — единица сопротивления, здесь просто введите любые два значения четырехэлементного элемента, а затем нажмите вычислить, вы получите немедленный результат. из оставшихся двух элементов.
Кроме того, вы можете легко изменить множитель значения, такой как килограмм, мега или микро, милли и т. Д. Эта опция доступна для всех параметров.
Напряжение, ток и сопротивление — три основных элемента, которые отвечают за передачу энергии в любую электрическую цепь.
В этой статье мы собираемся изучить взаимосвязь между током, напряжением, сопротивлением и мощностью.
Рассмотрим,
R = сопротивление в Ом
I = ток в амперах
В = напряжение в вольтах
P = мощность в ваттах.
Посмотрите на указанные ниже
Расчет сопротивления питания, тока и напряжения:
Расчет сопротивления по напряжению и току:
Сопротивление (R) в омах равно напряжению (В) в вольтах, деленному на ток (I) в амперах, поэтому формула будет иметь вид
Сопротивление = Напряжение / Ток
R = V / I
Ом = Вольт / Ампер
Расчет сопротивления по напряжению и мощности:
Сопротивление (R) в омах равно квадрату напряжения (В) в вольтах, деленного на мощность (P) в ваттах, следовательно, формула будет иметь вид
.Сопротивление = Напряжение 2 / Мощность
R = V 2 / P
Сопротивление = Вольт² / Вт
Расчет сопротивления по току и мощности:
Сопротивление (R) в омах равно мощности (P) в ваттах, деленной на квадрат силы тока (I) в амперах.следовательно, формула будет,
R = P / I 2
Сопротивление = мощность / ток 2
Ом = Вт / А²
Расчет тока по напряжению и сопротивлению:
Ток (I) в амперах равен напряжению (В) в вольтах, деленному на сопротивление (R) в омах. Следовательно, формула будет:
Ток = Напряжение / Сопротивление
I = V / R
Ампер = Вольт / Ом
Расчет тока по напряжению и мощности:
Ток (I) в амперах равен мощности (P) в ваттах, деленной на напряжение (V) в вольтах.Следовательно, формула будет:
Ток = Мощность / Напряжение
I = P / V
Ампер = Ватт / Вольт
Текущий расчет по сопротивлению и мощности:
Ток (I) в амперах равен квадратному корню из мощности (P) в ваттах, деленному на сопротивление (R) в омах. Следовательно, формула будет:
Ток = √ (мощность / сопротивление)
I = √ (P / R)
ампер = √ (Вт / Ом)
Расчет напряжения от силы тока и сопротивления:
Напряжение (В) в вольтах равно произведению силы тока (I) в амперах и сопротивления (R) в омах.Следовательно, формула будет:
Напряжение = ток * сопротивление
В = I * R
Вольт = Ампер * Ом
Расчет напряжения по амперам и мощности:
Напряжение (В) в вольтах равно мощности (P) в ваттах, деленной на ток (I) в амперах, поэтому формула будет иметь вид
Напряжение = Мощность / Ток
В = P / I
Вольт = Ватт / Ампер
Расчет напряжения по сопротивлению и мощности:
Напряжение (В) в вольтах равно квадратному корню из мощности (P) в ваттах, умноженной на сопротивление (R) в омах.Следовательно, формула будет:
Напряжение = √ (Мощность * сопротивление)
В = √ (P * R)
Вольт = √ (Вт * Ом)
Расчет мощности по напряжению и току:
Мощность (P) в ваттах — это ток I в амперах, умноженный на напряжение в вольтах, поэтому формула будет иметь вид
.Мощность = Ток * Напряжение
P = V * I
Ватт = Вольт * Ампер
Расчет мощности по сопротивлению и току:
Мощность (P) в ваттах — это сопротивление в омах, умноженное на квадрат тока.Формула
Мощность = Ток 2 * сопротивление
P = I 2 * R
Ватт = Ампер 2 * Ом
Расчет мощности по сопротивлению и напряжению:
Мощность (P) в ваттах равна квадрату напряжения, деленному на сопротивление. Формула
Мощность = Напряжение 2 / сопротивление
P = V 2 / R
Ватт = Вольт 2 / Ом
.