На схеме батарея: Батарейки в электрических цепях

Содержание

Батарейки в электрических цепях

 

 

Полярность цилиндрической батарейки      Условное графическое обозначение
и условное графическое обозначение.       батарейки на схеме в соответствии с ГОСТ.

Обозначение батарейки на электрических схемах содержит короткую черту, обозначающую отрицательный полюс и длинную черту – положительный полюс. Одиночную батарейку, используемую для питания прибора, на схемах обозначают латинской буквой G, а батарею, состоящую из нескольких батареек буквами GB.

Примеры использования обозначения батареек в схемах.

Самое простое условное графическое обозначение батарейки или аккумулятора в соответствии с ГОСТ использовано в схеме 1. Более информативное обозначение батареи в соответствии с ГОСТ использовано в схеме 2, здесь отражено количество батареек в составе групповой батареи, указано напряжение батареи и положительный полюс.

ГОСТ допускает использовать обозначение батареи, примененное в схеме 3.

Часто в бытовой технике встречается использование нескольких цилиндрических батареек. Включение различного количества последовательно соединенных батареек позволяет получать источники питания, обеспечивающие различное напряжение. Такой батарейный источник питания дает напряжение равное сумме напряжений всех входящих батареек.

Последовательное соединение трех батареек с напряжением 1,5 вольта обеспечивает напряжение питания прибора величиной 4,5 вольта.

При последовательном включении батареек, ток, отдаваемый в нагрузку, сокращается из-за возрастающего внутреннего сопротивления источника питания.

Подключение батареек к пульту дистанционного управления телевизором.

Например, мы сталкиваемся с последовательным включением батареек при их замене в пульте управления телевизором.
Параллельное включение батареек используется редко. Преимущество параллельного включения состоит в увеличении тока нагрузки, собранного таким образом источника питания. Напряжение включенных параллельно батареек остается прежним, равным номинальному напряжению одной батарейки, а ток разряда увеличивается пропорционально количеству объединенных батарей. Несколько слабых батареек можно заменить на одну более мощную, поэтому для маломощных батареек использовать параллельное включение бессмысленно. Параллельно включать есть смысл только мощные батарейки, из-за отсутствия или дороговизны батарейки с еще большим током разряда.

Параллельное включение батареек.

Такое включение имеет недостаток. Батарейки не могут иметь точно совпадающее напряжение на контактах при отключенной нагрузке. У одной батарейки это напряжение может составлять 1,45 вольта, а у другой 1,5 вольта. Это вызовет протекание тока от батарейки с большим напряжением к батарейке с меньшим.

Будет происходить разряд при установке батареек в отсеки прибора при отключенной нагрузке. В дальнейшем при такой схеме включения саморазряд происходит быстрее, чем при последовательном включении.
Комбинируя последовательное и параллельное соединение батареек можно получить различную мощность источника батарейного питания.

Литература:

ГОСТ 2.768-90 Обозначения условные графические в схемах источники  электрохимические, электротермические и тепловые.

Обозначение солнечной батареи на схеме

Графические изображения элементов в электрических схемах представлены в нескольких соответствующих ГОСТах, по группам. Имеют избыточность для практической работы в КИП и А.
Поэтому здесь сделана выборка из наиболее широко распространенных в КИП и А электрических и электронных элементов, с указанием ГОСТа в котором они определены.

На странице приведены наиболее часто применяемые условные графические обозначения радиоэлементов в принципиальных электрических схемах + фото и описание.

Для понимания принципиальных электрических схем необходимо ознакомиться с входящими в них радиоэлементами, знать область применения и принцип действия электротехнических устройств. Для условных графических обозначений различных радиоэлементов используются стандартизованные геометрические символы.

Наиболее часто применяемые условные графические обозначения радиоэлементов в принципиальных электрических схемах приведены в следующей таблице: Радиодетали с названиями и обозначении на схеме. Отметим также, что все радио элементы в электрических схемах имеют буквенное обозначение и порядковый номер (в схемах номера радиоэлементов размещают сверху-вниз и слева-направо).

Для того чтобы правильно прочитать и понять, что означает та или иная схема или чертеж, связанные с электричеством, необходимо знать, как расшифровываются изображенные на них значки и символы. Большое количество информации содержат буквенные обозначения элементов в электрических схемах, определяемые различными нормативными документами. Все они отображаются латинскими символами в виде одной или двух букв.

Однобуквенная символика элементов

Буквенные коды, соответствующие отдельным видам элементов, наиболее широко применяющихся в электрических схемах, объединяются в группы, обозначаемые одним символом. Буквенные обозначения соответствуют ГОСТу 2.710-81. Например, буква «А» относится к группе «Устройства», состоящей из лазеров, усилителей, приборов телеуправления и других.

Точно так же расшифровывается группа, обозначаемых символом «В». Она состоит из устройств, преобразующих неэлектрические величины в электрические, куда не входят генераторы и источники питания. Эта группа дополняется аналоговыми или многоразрядными преобразователями, а также датчиками для указаний или измерений. Сами компоненты, входящие в группу, представлены микрофонами, громкоговорителями, звукоснимателями, детекторами ионизирующих излучений, термоэлектрическими чувствительными элементами и т.д.

Все буквенные обозначения, соответствующие наиболее распространенным элементам, для удобства пользования объединены в специальную таблицу:

Первый буквенный символ, обязательный для отражения в маркировке

Группа основных видов элементов и приборов

Элементы, входящие в состав группы (наиболее характерные примеры)

A

Лазеры, мазеры, приборы телеуправления, усилители.

B

Аппаратура для преобразования неэлектрических величин в электрические (без генераторов и источников питания), аналоговые и многозарядные преобразователи, датчики для указаний или измерений

Микрофоны, громкоговорители, звукосниматели, детекторы ионизирующих излучений, чувствительные термоэлектрические элементы.

C

D

Микросборки, интегральные схемы

Интегральные схемы цифровые и аналоговые, устройства памяти и задержки, логические элементы.

E

Различные виды осветительных устройств и нагревательных элементов.

F

Обозначение предохранителя на схеме, разрядников, защитных устройств

Плавкие предохранители, разрядники, дискретные элементы защиты по току и напряжению.

G

Источники питания, генераторы, кварцевые осцилляторы

Аккумуляторные батареи, источники питания на электрохимической м электротермической основе.

H

Устройства для сигналов и индикации

Индикаторы, приборы световой и звуковой сигнализации

K

Контакторы, реле, пускатели

Реле напряжения и тока, реле времени, электротепловые реле, магнитные пускатели, контакторы.

L

Дроссели, катушки индуктивности

Дроссели в люминесцентном освещении.

M

Двигатели постоянного и переменного тока.

P

Измерительные приборы и оборудование

Счетчики, часы, показывающие, регистрирующие и измерительные приборы.

Q

Выключатели и разъединители в силовых цепях

Силовые автоматические выключатели, короткозамыкатели, разъединители.

R

Варисторы, переменные резисторы, терморезисторы, потенциометры.

S

Коммутационные устройства в цепях сигнализации, управления, измерительных приборах

Различные типы выключателей и переключателей, а также выключатели, срабатывающие действием различных факторов.

T

Стабилизаторы, трансформаторы напряжения и тока.

U

Различные типы преобразователей и устройства связи

Выпрямители, модуляторы, демодуляторы, дискриминаторы, преобразователи частоты, инверторы.

V

Полупроводниковые и электровакуумные приборы

Диоды, тиристоры, транзисторы, стабилитроны, электронные лампы.

W

Антенны, линии и элементы, работающие на сверхвысоких частотах.

Антенны, волноводы, диполи.

X

Гнезда, токосъемники, штыри, разборные соединения.

Y

Механические устройства с электромагнитным приводом

Тормоза патроны, электромагнитные муфты.

Z

Оконечные устройства, ограничители, фильтры

Кварцевые фильтры, линии моделирования.

Буквенные обозначения из двух символов

Для более точной расшифровки и обозначении элементов на электрических схемах используются двухбуквенные, а в некоторых случаях и многобуквенные обозначения. Маркировка выполняется не только символом общего кода элемента, но и дополнительными буквами, более полно раскрывающими характеристики каждого элемента. С целю упорядочения подобной символики также создана таблица в соответствии с ГОСТом 2.710-81:

Первый буквенный символ, обязательный для отражения в маркировке

Группа основных видов элементов и приборов

Элементы, входящие в состав группы (наиболее характерные примеры)

Символы двухбуквенного кода

A

Устройства общего назначения

B

Различные виды аналоговых или многозарядных преобразователей, указательные или измерительные датчики, устройства, преобразующие неэлектрические величины в электрические, за исключением генераторов и источников питания

BA

BB

Детекторы ионизирующих элементы

BD

BE

BF

BC

BK

BL

BM

BP

BQ

Датчики частоты вращения – тахогенераторы

BR

BS

BV

C

D

Интегральные схемы, микросборки

Схемы интегральные аналоговые

DA

Схемы интегральные, цифровые, логические элементы

DD

Устройства хранения информации

DS

DT

E

EK

EL

ET

F

Защитные устройства, предохранители, разрядники

Дискретные элементы токовой защиты мгновенного действия

FA

Дискретные элементы токовой защиты инерционного действия

FP

FU

Дискретные элементы защиты по напряжению, разрядники

FV

G

Генераторы и другие источники питания

GB

H

Индикаторные и сигнальные элементы

Приборы звуковой сигнализации

HA

HG

Приборы световой сигнализации

HL

K

Контакторы, пускатели, реле

KA

KH

KK

Контакторы, магнитные пускатели

KM

KT

KV

L

Дроссели, катушки индуктивности

Дроссели люминесцентных светильников

LL

M

P

Измерительные приборы и оборудование (недопустимо использование маркировки РЕ)

PA

PC

PF

Счетчики активной энергии

PI

Счетчики реактивной энергии

PK

PR

PS

Измерители времени действия, часы

PT

PV

PW

Q

Выключатели и разъединители в силовых цепях

QF

QK

QS

R

RK

RP

RS

RU

S

Коммутационные устройства в цепях измерения, управления и сигнализации

Выключатели и переключатели

SA

SB

SF

Выключатели, срабатывающие под действием различных факторов:

SL

SP

– от положения (путевые)

SQ

– от частоты вращения

SR

SK

T

TA

TS

TV

U

Устройства связи, преобразователи неэлектрических величин в электрические

UB

UR

UI

Выпрямители, генераторы частоты, инверторы, преобразователи частоты

UZ

V

Приборы полупроводниковые и электровакуумные

VD

VL

VT

VS

W

Антенны, линии и элементы СВЧ

WE

WK

WS

WT

WU

WA

X

Скользящие контакты, токосъемники

XA

XP

XS

XT

XW

Y

Механические устройства с электромагнитным приводом

YA

Тормоза с электромагнитными приводами

YB

Муфты с электромагнитными приводами

YC

Электромагнитные патроны или плиты

YH

Z

Ограничители, устройства оконечные, фильтры

ZL

ZQ

Кроме того, в ГОСТе 2. 710-81 определены специальные символы для обозначения каждого элемента.

Условные графические обозначения электронных компонентов в схемах

ГОСТ 2.768-90 Единая система конструкторской документации. Обозначения условные графические в схемах. Источники электрохимические, электротермические и тепловые

Текст ГОСТ 2.768-90 Единая система конструкторской документации. Обозначения условные графические в схемах. Источники электрохимические, электротермические и тепловые

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

Единая система конструкторской документации

ОБОЗНАЧЕНИЯ УСЛОВНЫЕ ГРАФИЧЕСКИЕ В СХЕМАХ Источники электрохимические, электротермические и тепловые

ГОСТ
2.768-90

Unified system of design documentation. Graphical symbols for diagrams. Electrochemical, electrothermal and heat sources

MKC 01.080.40 31.180 ОКСТУ 0002

Дата введения 01.01.92

Настоящий стандарт распространяется на схемы изделий всех отраслей промышленности, выполняемые вручную или автоматизированным способом, и устанавливает условные графические обозначения электрохимических, электротермических и тепловых источников и генераторов мощности.

1. Условные графические обозначения электрохимических источников должны соответствовать приведенным в табл. 1.

Таблица 1

Наименование

Обозначение

1. Гальванический элемент (первичный или вторичный)

П римечание. Допускается знаки полярности не указывать

(06-15-01)

2. Батарея, состоящая из гальванических элементов

П римечание. Батарею из гальванических элементов допускается обозначать так же, как в п. 1. При этом над обозначением проставляют значение напряжения батареи, например напряжение 48 В

—1|||||- или —1|——\\—

(06-15-02) (06-15-03)

48 В

3. Батарея с отводами от элементов, например батарея номинального напряжения 12 В, номинальной емкости 84 Ач с отводами 10 В и 8 В

8V10B

4. Батарея, состоящая из гальванических элементов с переключаемым отводом

—«I—н ib

5. Батарея, состоящая из гальванических элементов с двумя переключаемыми отводами, например батарея номинального напряжения 120 В с номинальной емкостью 840 А ч

Издание официальное ★

Перепечатка воспрещена

2.

П П

(08-06-05)

3. Условные графические обозначения источников тепла должны соответствовать приведенным в табл. 3.

Таблица 3

Наименование

1. Источник тепла, основной символ (06—17—01)

Обозначение

2. Радиоизотопный источник тепла (06-17-02)

3. Источник тепла, использующий горение (06-17-03)

А

4. Источник тепла, использующий неионизирующее излучение

*

4. Условные графические обозначения генераторов мощности должны соответствовать приведенным в табл. 4.

Таблица 4

Наименование

1. Генератор мощности, основной символ (06-16-01)

2. Термоэлектрический генератор с источником тепла, использующим горение

(06-18-01)

3. Термоэлектрический генератор с источником тепла, использующим неионизирующее излучение (06-18-02)

4. Термоэлектрический генератор с радиоизотопным источником тепла (06-18-03)

5. Термоионический полупроводниковый генератор с источником тепла, использующим неионизирующее излучение (06-18-04)

6. Термоионический полупроводниковый генератор с радиоизотопным источником тепла (06-18-05)

7. Генератор с фотоэлектрическим преобразователем (06-18-06)

Обозначение

Примечания:

1. Числовые обозначения, указанные в скобках после наименования или под условным графическим обозначением, по Международному идентификатору.

2. Соотношения размеров (на модульной сетке) основных условных графических обозначений приведены в приложении.

ПРИЛОЖЕНИЕ

Справочное

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. ВНЕСЕН Государственным комитетом СССР по управлению качеством продукции и стандартам

2. Постановлением Государственного комитета СССР по управлению качеством продукции и стандартам от 26.10.90 № 2706 стандарт Совета Экономической Взаимопомощи СТ СЭВ 653—89 «Единая система конструкторской документации СЭВ. Обозначения условные графические в электрических схемах. Источники электрохимические, электротермические и тепловые» введен в действие непосредственно в качестве государственного стандарта СССР с 01. 01.92

3. СТАНДАРТ СООТВЕТСТВУЕТ стацдарту МЭК 617-6—83 в части табл. 1, 3, 4, за исключением пи. 3—5 табл. 1 и и. 4 табл. 3, и стандарту МЭК 617-8—83 в части табл. 2, за исключением и. 2 табл. 2

4. ПЕРЕИЗДАНИЕ. Ноябрь 2004 г.

Три схемы соединения аккумуляторных батарей для электропитания

Аккумуляторные батареи (АКБ) в зависимости от их назначения собираются из определенного количества аккумулирующих энергию элементов. Схема соединения

аккумуляторных батарей при этом зависит от того, какая преследуется цель. Это может быть увеличение емкости батареи, повышение напряжения либо сочетание обеих этих параметрических характеристик устройства.

В основном батареи собирают последовательно-параллельно, а сами сборки служат для промежуточного или резервного хранения электроэнергии

Известны и повсеместно применяются 3 варианта соединения отдельных аккумуляторов в батарею: последовательное, параллельное и смешанное или комбинированное.

Повышение рабочего напряжения батареи

Аккумуляторы электрической энергии имеют различное рабочее напряжение. Варьироваться оно может в очень широком диапазоне: от 0,5 до 48 Вольт. В то же время, для обеспечения автономного питания приборов, запуска двигателей внутреннего сгорания, питания электроприводной техники требуется другой диапазон напряжений. Повысить рабочее напряжение автономного источника тока можно последовательным соединением нескольких аккумуляторов в батарею.

Схемы и формулы при последовательном соединении батарей

При последовательном соединении коммутируются разнополярные клеммы аккумулятора. Плюсовой вывод предыдущего устройства соединяется с минусовым выводом последующего. Суммарное рабочее напряжение батареи при таком способе будет равно сумме рабочих напряжений коммутированных источников тока. Это значит, что для получения АКБ с рабочим напряжением 12 В необходимо последовательно соединить 4 трехвольтных источника либо 10 аккумуляторов с рабочим напряжением 1,2 В. Емкость скомплектованной последовательным соединением источников не изменяется и остается равной емкости каждого включенного в схему аккумулятора.

Очевидным и наглядным примером такого способа комплектации батареи могут служить автомобильные АКБ. В них отдельные источники, именуемые банками, объединены в общем корпусе и последовательно соединены свинцовыми шинами. Выбор в качестве материала для соединительных шин свинца объясняется просто: аккумуляторные электроды также изготавливаются из свинца. Шины, интегрированные в коммуникационную схему, соединяются с электродами на молекулярном уровне, а не механически. Это позволят избежать возникновения электрохимических коррозионных процессов.

Увеличение емкости источника питания

Нередки технические условия, когда от источника питания при сохранении рабочего напряжения требуется повышенная емкость. В таких случаях для комплектования батареи применяется параллельное соединение аккумуляторов. Такой способ коммутирования позволяет в разы, а в особо ответственных случаях – в десятки раз увеличить суммарную емкость питающего устройства.

Параллельное соединение батарей с формулами

Параллельное соединение осуществляется путем коммутации однополюсных выводов источников тока: плюсовой и минусовой выводы предыдущего аккумулятора соединяются с одноименными выводами последующего. Суммарная электрическая емкость скомпонованной таким способом коммутации батареи будет равна сумме электрических емкостей входящих в схему отдельных источников. Это значит, что при соединении трех аккумуляторных батарей с номинальной емкостью 60 А*ч получится устройство, имеющее электрическую емкость 180 А*ч.

В качестве примера подключения аккумуляторных батарей параллельной коммутацией можно привести источники бесперебойного либо аварийного питания приборов и аппаратуры. Параллельно подключаются АКБ большегрузных автомобилей и тяжелой специальной техники с большим объемом двигателя. Большой распространение параллельная коммутация получила на флоте: здесь параллельно соединенные устройства питания применяются для запуска вспомогательных дизелей, работы освещения, систем связи и жизнеобеспечения в аварийных ситуациях.

Повышение напряжения с одновременным увеличением емкости АКБ

Ярким примером смешанного или комбинированного соединения аккумуляторов в комплекс с необходимыми показателями рабочего напряжения и электрической емкости служат источники питания машин с электрическим приводом.

ВАЖНО! При увеличении емкости аккумуляторных батарей увеличиваются и токи. Правильно подбирайте сечения проводов! Используйте негорючие или самозатухающие провода.

Тяговые аккумуляторные батареи для обеспечения работы приводных и управляющих двигателей электроприводных машин и механизмов комплектуются именно по такой схеме. Достаточно подробно о способах соединения АКБ изложено в этом видео:

Комбинированное соединение подразумевает использование в коммутационной схеме одновременно последовательного и параллельного способов подключения. Возможны два варианта:

1. Сначала методом последовательного соединения источников подготавливаются батареи с требуемым рабочим напряжением. На втором этапе параллельно коммутируется необходимое количество подготовленных сборок для обеспечения потребной электрической емкости.

2. Во втором варианте параллельной коммутацией предварительно набираются батареи с требуемой емкостью. После этого устройства соединяются последовательно до достижения необходимого рабочего напряжения.

Схема последовательно-параллельного соединения аккумуляторных батарей наиболее часто применяемая, так как современные батареи для автономного энергообеспечения домов имеют номинальное напряжение 3,4 В

Комплектование АКБ комбинированным способом позволяет формировать источники питания, напряжение и электрическая емкость которых ограничивается только занимаемым ими рабочим пространством.

Особенности комплектования батарей аккумуляторов

Все три способа соединения отдельных источников питания в комплекс подчиняются не сложным, но важным для эффективной и долгосрочной эксплуатации правилам.

Последовательно-параллельная схема подключения на примере литий-ионных батарей

Пролонгированная работа батареи и ее экономическая целесообразность может быть обеспечена при соблюдении следующих правил:

  • электрическая емкость включаемых в комплекс источников не должна отличаться на величину, превышающую 5% от номинальной;
  • рабочие напряжения отдельных элементов батареи должны находиться в разумном соотношении;
  • эксплуатационное техническое состояние включаемых в комплекс автономного питания элементов должно быть максимально сбалансированным;
  • сечение коммутационных линий и шин должно быть рассчитано с учетом токовых нагрузок как внутри батареи, так и во внешних электрических цепях.

Ассортимент предлагаемых рынком источников питания при грамотном подходе позволяет создавать аккумуляторные батареи со всеми необходимыми для надежного использования характеристиками.

12. Источники питания, электродвигатели, линии связи — Условные графические обозначения на электрических схемах — Компоненты — Инструкции


Для автономного питания радиоэлектронной аппаратуры широко используют электрохимические источники тока — гальванические элементы и аккумуляторы. Буквенный код элементов питания — G. УГО [11] напоминает символ конденсатора постоянной ёмкости — параллельные линии разной длины: короткая обозначает отрицательный полюс, длинная — положительный (рис. 12.1, G1). Знаки полярности на схемах можно не указывать.

 

 

 
 Поскольку для питания приборов чаще всего требуется напряжение, большее того, что обеспечивает один элемент или аккумулятор, их соединяют в батарею. Буквенный код в этом случае — GB. Батарею обозначают упрощенно: изображают только крайние элементы, а наличие остальных показывают штриховой линией (см. рис. 12.1, GB1). ГОСТ допускает изображать батарею и совсем просто — символом одного элемента (GB2 на рис. 12.1). Рядом с позиционным обозначением в любом случае указывают напряжение батареи.

 

 Отводы от части элементов показывают линиями электрической связи, продолжающими черточки, которые обозначают их положительные полюсы (см. рис. 12.1, GB3). В местах присоединения линий-отводов к символам положительных полюсов ставят точки.

 
 На основе символа электрохимического элемента строятся УГО так называемых солнечных фотоэлементов и батарей. Отличительные признаки УГО этих источников тока — корпус в виде кружка или овала и знак фотоэлектрического эффекта (см. рис. 12.1, G2, GB4), На месте буквы п в УГО солнечной батареи можно указывать число образующих ее элементов.
Для защиты от перегрузок по току или коротких замыканий в нагрузке в электронных устройствах часто используют плавкие предохранители. Код этих устройств — латинские буквы FU. УГО [12] напоминает постоянный резистор (и имеет те же размеры 4×10 мм), отличие заключается только в проходящей через весь прямоугольник линии, символизирующей сгорающую при перегрузке металлическую нить (рис. 12.2, FU1). Рядом с УГО предохранителя, как правило, указывают ток, на который он рассчитан, а иногда и его тип.

 
 В аппаратуре с высоковольтным питанием для защиты некоторых элементов от опасных для них перенапряжений применяют разрядники (код — буква F). В простейшем случае — это два электрода, установленных на изоляционном основании на определенном расстоянии один от другого (иногда технологически это печатный проводник, разделенный на две части просечкой в печатной плате насквозь). Символ искрового промежутка — две встречно направленные стрелки (см. рис. 12.2, F1). Если же такое устройство выполнено в виде самостоятельного изделия, используют УГО, показанное на рис. 12.2 под позиционным обозначением F2. УГО вакуумного разрядника получают, заключая символ искрового промежутка в символ баллона электровакуумного прибора (F3).

 
 В устройствах автоматики и телемеханики, в бытовой радиоаппаратуре для привода различных механизмов применяют электродвигатели. В бытовых магнитофонах и проигрывателях — это чаше всего асинхронные двигатели переменного тока и коллекторные двигатели постоянного тока. Первые из них обычно имеют коротко-замкнутый ротор в виде так называемой «беличьей клетки» и статор с двумя обмотками: рабочей (или основной) и фазосдвигающей (последовательно с ней включают конденсатор, благодаря чему создается вращающееся магнитное поле). УГО такого двигателя состоит из окружности (ротор) и двух статорных обмоток (рис. 12.3, M1). Символ основной обмотки помешают над ротором, а фазосдвигающей — справа от него, под углом 90° к символу основной. Рядом с УГО обычно указывают тип двигателя [13].

 
 Если необходимый сдвиг фазы создается короткозамкнутым витком на полюсе статора, его изображают в виде замкнутой накоротко обмотки, развернутой по отношению к символу основной на угол 45° (см. рис. 12.3, M2).

 
 В электродвигателях постоянного тока на статоре устанавливают постоянные магниты, а обмотку размешают на роторе. Для автоматической коммутации ее секций при вращении ротора используют узел, состоящий из двух щеток и нескольких пластин. Все эти особенности конструкции отражены и в УГО коллекторного двигателя, показанном на рис. 12.3 {M3): здесь окружность, как и ранее, символизирует ротор, касающиеся его узкие прямоугольники — щетки, а светлая П-образная скобка — постоянные магниты на статоре.

 

 Линии электрической связи (ЛЭС) символизируют на схемах реальные электрические соединения между радиокомпонентами и узлами [14]. Для удобства прослеживания этих соединений на схемах ЛЭС чертят, как правило, только в горизонтальном и вертикальном направлениях. Исключение составляют лишь схемы некоторых функциональных узлов, начертание которых давно стало традиционным (измерительные и выпрямительные мосты, мультивибраторы и т. п.).

 

 
 Для удобства чтения схем символы элементов стараются расположить и сориентировать таким образом, чтобы ЛЭС имели возможно меньшее число изломов и пересечений. Если же избежать пересечения не удается, его делают под углом 90° (рис. 12.4, а), изменяя при необходимости направление одной из ЛЭС. В местах пересечений, символизирующих электрическое соединение в виде пайки, сварки, скрутки ставят жирные точки (см. рис. 12.4, б). Аналогично поступают и в тех случаях, когда необходимо показать ответвления от той или иной ЛЭС (см. рис. 12.4, в). Ответвляющиеся ЛЭС допускается проводить на чертеже под углами, кратными 15°. Использовать в качестве точек присоединения ЛЭС элементы УГО, имеющие вид точки (например, переключателей с нейтральным средним положением), излома линий (контакты кнопок и переключателей) и их пересечений (выводы эмиттера и коллектора в местах пересечения с окружностью корпуса и т. п.), нельзя.

 

 При изображении ЛЭС с ответвлениями в несколько параллельных идентичных цепей (рис. 12.4, г) можно использовать следующий прием: показать на схеме лишь одну цепь, а наличие остальных указать Г-образными ответвлениями, рядом с которыми указать общее число параллельных целей, включая изображенную (см. рис. 12.4, д).

 
 Необходимость экранирования того или иного соединения показывают штриховыми линиями по обе стороны от ЛЭС (см. рис. 12.4, е, ж) или небольшим штриховым кружком (см. рис. 12.4, и). Ответвление от линии, символизирующей экранирующую оплетку, допускается изображать как с точкой, так и без нее. Соединение с общим проводом устройства (корпусом) показывают отрезком утолщенной линии на конце ответвления (см. рис. 12.4, х, ц).

 
 Если в общий экран помещены несколько проводов, соответствующие ЛЭС объединяют знаком, изображенным на рис. 12. 4, к. Если же разместить эти ЛЭС рядом не удается, поступают, как показано на рис. 12.4, л: от символа экрана проводят линию со стрелками, указывающими на те из них, которые находятся в общем экране. Экран, в который заключены детали того или иного устройства, изображают в виде замкнутого контура, охватывающего их символы (см. рис. 12.4, м).

 
Аналогичные приемы используют и в случаях, если группа ЛЭС символизирует соединение многопроводным кабелем или скрученными проводами. Знак кабеля в виде овала применяют для объединения идущих рядом ЛЭС (см. рис. 12.4, н), кружок со стрелками — для объединения ЛЭС, перемежающихся другими (см. рис. 12.4, п). Точно так же применяют знак скрутки — наклонную линию с засечками на концах (см. рис. 12.4, о,р).

 
Линию электрической связи, символизирующую гибкое соединение (например, гибкий провод, соединяющий измерительный прибор со щупом), изображают волнистой линией (см. рис. 12.4, с).

 
 Для передачи сигналов на высоких частотах используют коаксиальные кабели (см. рис. 12.4, m). Поскольку знак коаксиальной структуры практически символизирует внешний проводник, от него, как и от символа экранирования, при необходимости делают ответвление (см. рис. 12.4, у). В обозначении ЛЭС, выполненной коаксиальным кабелем лишь частично, знак видоизменяют: касательную к кружку направляют только в его сторону. Пример, показанный на рис. 12.4, ф, означает, что коаксиальная структура в данном случае имеется левее знака.

 
 Число ЛЭС на принципиальных схемах сложных электронных устройств очень часто бывает большим. Если к тому же они идут параллельно одна другой и неоднократно меняют направление, то иногда проследить связь между элементами становится очень трудно. Для облегчения чтения схем ГОСТ рекомендует разбивать параллельно идущие ЛЭС на подгруппы из трех линий каждая (считая сверху) и отделять их увеличенными интервалами (рис. 12.5, а).

 
 Однако и этого иногда оказывается недостаточно, если к тому же большое число параллельных ЛЭС сильно загромождает схему и увеличивают её размеры. В подобном случае можно слить параллельные ЛЭС в одну утолщенную линию групповой связи (ЛГС). При выполнении принципиальных схем автоматизированным способом допускается линию групповой связи не утолщать. У входа и выхода из ЛГС каждой ЛЭС присваивается порядковый номер (рис. 12.5, б). Чтобы не спутать эти линии с ЛЭС, просто пересекающей ЛГС, расстояние между соседними линиями, отходящими в разные стороны, должно быть не меньше 2 мм.

 

 

Для облегчения поиска отдельных ЛЭС допускается показывать их направление с помощью излома под углом 45° (рис. 12.5, в). При этом точка излома должна быть удалена от ЛГС не менее чем на 3 мм, а наклонные участки соседних ЛЭС, изображенных по одну сторону от нее, не должны иметь пересечений и общих точек.

Последовательное и параллельное соединения источников тока

Решение:
Внутреннее сопротивление элементов

Сопротивление параллельно включенных резисторов

Общая э. д. с. элементов e0=2e Согласно закону Ома для полной цепи

15 Сопротивления резисторов R1 и R2 и э. д. с. ε1 и ε2 источников тока в схеме, изображенной на рис. 127, известны. При какой э.д.с. ε3 третьего источника ток через резистор R3 не течет?

Решение:
Выберем направления токов I1, I2 и I3 через резисторы R1, R2 и R3, указанные на рис. 363. Тогда I3=I1+I2. Разность потенциалов между точками а и b будет равна

Если

Исключая I1 находим

16 Цепь из трех одинаковых последовательно соединенных элементов с э.д.с. ε и внутренним сопротивлением r замкнута накоротко (рис. 128). Какое напряжение покажет вольтметр, подключенный к зажимам одного из элементов?

Решение:
Рассмотрим ту же схему без вольтметра (рис. 364). Из закона Ома для полной цепи находим

Из закона Ома для участка цепи между точками а и b получим

Подключение вольтметра к точкам, разность потенциалов между которыми равна нулю, ничего не может изменить в цепи. Поэтому вольтметр будет показывать напряжение, равное нулю.

17 Источник тока с э.д.с. ε0 включен в схему, параметры которой даны на рис. 129. Найти э.д.с. ε источника тока и направление его подключения к выводам а и b, при которых ток через резистор с сопротивлением R2 не идет.

Решение:
Подключим источник тока к выводам а и b и выберем направления токов, указанные на рис. 365. Для узла е имеем I=I0+I2. При обходе контуров aefb и ecdf по часовой стрелке получим

Используя условие I2 = 0, находим

Знак минус показывает, что полюсы источника тока на рис. 365 нужно поменять местами.

18 Два элемента с одинаковыми э.д.с. ε включены в цепь последовательно. Внешнее сопротивление цепи R = 5 Ом. Отношение напряжения на зажимах первого элемента к напряжению на зажимах второго элемента равно 2/3. Найти внутренние сопротивления элементов r1 и r2, если r1=2r2.

Решение:


19 Два одинаковых элемента с э.д.с. ε=1,5 В и внутренним сопротивлением r = 0,2 Ом замкнуты на резистор, сопротивление которого составляет в одном случае R1=0,2 Oм, В другом — R2 = 20 Ом. Как нужно соединить элементы (последовательно или параллельно) в первом и во втором случаях, чтобы получить наибольший ток в цепи?

Решение:
При параллельном соединении двух элементов внутреннее сопротивление и э.д.с. равны r/2 и ε при последовательном соединении они равны 2r и 2ε. Через резистор R при этом текут токи

Отсюда видно, что I2>I1, если R/2+r<R+r/2, т. е. если r1=r; следовательно, токи при параллельном и последовательном соединениях одинаковы. Во втором случае R2>r.Поэтому ток больше при последовательном соединении.

20 Два элемента с э.д.с. ε1=4В и ε2 = 2В и внутренними сопротивлениями r1 = 0,25 Ом и r2 = 0,75 Ом включены в схему, изображенную на рис. 130. Сопротивления резисторов R1 = 1 Ом и R2 = 3 Ом, емкость конденсатора С=2 мкФ. Найти заряд на конденсаторе.

Решение:


21 К батарее из двух параллельно включенных элементов с э.д.с. ε1 и ε2 и внутренними сопротивлениями r1 и r2 подключен резистор с сопротивлением R. Найти ток I, текущий через резистор R, и токи I1 и I2 в первом и втором элементах. При каких условиях токи в отдельных цепях могут быть равными нулю или изменять свое направление на обратное?

Решение:
Выберем направления токов, указанные на рис. 366. Для узла b имеем I-I1-I2=0. При обходе контуров abef и bcde по часовой стрелке получим

Из этих уравнений находим

Ток I=0 тогда, когда изменена полярность включения одного из элементов и, кроме того, выполнено условие

Ток I1=0 при

а ток I2 = 0 при

Токи I1 и I2 имеют направления, указанные на рис.366, если

Они меняют свое направление при

22 Батарея из n одинаковых аккумуляторов, соединенных в одном случае последовательно, в другом— параллельно, замыкается на резистор с сопротивлением R. При каких условиях ток, текущий через резистор, в обоих случаях будет один и тот же?

Решение:
При n(R-r) = R-r. Если R=r, то число элементов произвольно; если R№r, задача не имеет решения (n=1).

23 Батарея из n = 4 одинаковых элементов с внутренним сопротивлением r=2 Ом, соединенных в одном случае последовательно, в другом — параллельно, замыкается на резистор с сопротивлением R=10Ом. Во сколько раз показание вольтметра н одном случае отличается от показания вольтметра в другом случае? Сопротивление вольтметра велико по сравнению с R и r.

Решение:

где V1 — показание вольтметра при последовательном соединении элементов, V2-при параллельном.

24 Как изменится ток, текущий через резистор с сопротивлением R = 2 Ом, если n =10 одинаковых элементов, соединенных последовательно с этим резистором, включить параллельно ему? Э.д.с. элемента ε = 2 В, его внутреннее сопротивление r = 0,2 Ом.

Решение:


25 Батарея составлена из N=600 одинаковых элементов так, что n групп соединены последовательно и в каждой из них содержится т элементов, соединенных параллельно. Э.д.с. каждого элемента ε = 2 В, его внутреннее сопротивление r = 0,4 Ом. При каких значениях n и m батарея, будучи замкнута на внешнее сопротивление R = 0,6 Ом, отдаст во внешнюю цепь максимальную мощность? Найти при этом ток, текущий через сопротивление R.

Решение:
Общее число элементов N=nm (рис. 367). Ток во внешней цепи

где r/m— внутреннее сопротивление группы из т параллельно соединенных элементов, а nr/m — внутреннее сопротивление n групп, соединенных последовательно. Максимальная мощность отдается во внешнюю цепь при равенстве сопротивления R внутреннему сопротивлению батареи элементов nr/m, т. е.

При этом через сопротивление R течет точек I=46 А.

26 Емкость аккумулятора Qo=80А⋅ч. Найти емкость батареи из n = 3 таких аккумуляторов, включенных последовательно и параллельно.

Решение:
При последовательном соединении через все аккумуляторы батареи течет один и тот же ток, поэтому все они разрядятся в течение одного и того же времени. Следовательно, емкость батареи будет равна емкости каждого аккумулятора:
При параллельном соединении n аккумуляторов через каждый из них течет 1/n часть общего тока; поэтому при том же разрядном токе в общей цепи батареи будет разряжаться в n раз дольше, чем один аккумулятор, т. е. емкость батареи в п раз больше емкости отдельного аккумулятора:

Заметим, однако, что энергия

отдаваемая батареей в цепь, и при последовательном и при параллельном соединении n аккумуляторов в n раз больше энергии, отдаваемой одним аккумулятором. Это происходит потому, что при последовательном соединении э. д. с. батареи в n раз больше э. д. с. одного аккумулятора, а при параллельном соединении э.д.с. батареи остается той же, что и для каждого аккумулятора, но Q увеличивается в n раз.

27 Найти емкость батареи аккумуляторов, включенных по схеме, изображенной на рис.131. Емкость каждого аккумулятора Q0=64 А⋅ч.

Решение:
Каждая группа из пяти аккумуляторов, включенных последовательно, имеет емкость

Три параллельно включенные группы дают общую емкость батареи

28 Мост для измерения сопротивлений сбалансирован так, что ток через гальванометр не идет (рис. 132). Ток в правой ветви I=0,2 А. Найти напряжение V на зажимах источника тока. Сопротивления резисторов R1 = 2 Ом, R2 = 4 Ом, R3 = 1 Ом.

Решение:

29 Найти токи, протекающие в каждой ветви цепи, изображенной на рис. 133. Э.д.с. источников тока ε1 = 6,5 В и ε2 = 3,9 В. Сопротивления резисторов R1=R2=R3=R4=R5=R6=R=10 Ом.

Решение:
Составляем уравнения Кирхгофа в соответствии с направлениями токов, указанными на рис. 133: I1 + I2 — I3 = 0 для узла b;
I3 — I4 — I5 =0 для узла h; I5 — I1 — I6 = 0 для узла f: при этом

Для контура abfg (обход по часовой стрелке),

Для контура bcdh (обход против часовой стрелки) и

для контура hdef (обход по часовой стрелке). Решая эту систему уравнений с учетом, что все сопротивления одинаковы и равны R=10 Ом, получим

Отрицательные значения токов I2, I4 и I6 показывают, что при данных э. д.с. источников и сопротивлениях резисторов эти токи текут в стороны, противоположные указанным на рис. 133.

Химические источники тока.

Обозначение на схеме и устройство химических источников тока

К химическим источникам тока причисляют гальванические элементы и аккумуляторы. Есть и другие химические источники тока, но они менее распространены. В обиходе гальванический элемент получил название батарейка. Это не совсем верное определение, так как батарейкой можно назвать несколько отдельных гальванических элементов соединённых вместе – это и есть батарея питания или батарейка.

Узнайте подробнее о правильном соединении элементов питания.

На принципиальных схемах гальванический элемент обозначается так.

Так обозначают один гальванический элемент или один элемент аккумулятора.

Но поскольку номинальное напряжение на одном гальваническом элементе обычно не более 1,5 вольта, их соединяют в батареи питания. Батарея питания на принципиальной схеме обозначается вот так.

Здесь показано, что батарея питания состоит из двух отдельных гальванических элементов. Общее напряжение на полюсах этой составной батареи — 3 вольта из расчёта, что каждый из элементов имеет на полюсах напряжение 1,5 вольта. Также на схемах можно встретить и такое обозначение.

Это тоже условное изображение батареи питания или батарейки на принципиальной схеме, только здесь не уточняется, сколько именно гальванических элементов используется в батарее, а указано лишь общее напряжение на полюсах батареи.

Одиночный аккумуляторный элемент обозначается на схемах так же, как и отдельный гальванический элемент. Номинальное напряжение одного аккумуляторного элемента обычно составляет около 1,25 вольт. Чтобы получить аккумулятор с большим напряжением аккумуляторные элементы соединяют вместе – получается аккумуляторная батарея или просто аккумулятор. Обозначение аккумуляторной батареи на схемах такое же, как и батареи, составленной из гальванических элементов.

Чем гальванический элемент отличается от аккумулятора?

Дело в том, что гальванический элемент сам является источником постоянного тока, который образуется за счёт необратимой химической реакции. Гальванический элемент причисляют к первичным источникам тока.

Аккумулятор является так называемым вторичным источником тока. Почему? Потому, что перед тем, как использовать аккумулятор, его нужно предварительно зарядить от источника постоянного тока — зарядника. Только после полной зарядки аккумулятор сможет питать электронное устройство. Отличительным качеством аккумуляторов является то, что их можно заряжать и разряжать много раз. В отличие от аккумулятора, гальваническая батарея питания после своего полного разряда не может быть использована повторно.

Какие существуют батарейки?

Наибольшее распространение в настоящее время получили щелочные батареи питания. Их ещё называют алкалиновыми – производное от английского слова alkaline – «щелочь».

Работа щелочной батарейки основана на окислительно-восстановительной химической реакции между цинком и диоксидом марганца. Результатом, а точнее полезным продуктом этой реакции является электрический постоянный ток и тепло, которое не используется. Электрическая ёмкость щелочной батарейки составлет около 1700 — 3000 мАч. По величине своей ёмкости, щелочные батарейки лидируют по сравнению с солевыми батарейками, электроёмкость которых меньше и составляет 550 — 1100 мАч.

Щелочная батарейка устроена следующим образом. Взглянем на рисунок.

Корпусом элемента является никелированный стальной стакан. Он же является плюсовым контактом батарейки «+». Активная масса представляет собой смесь диоксида марганца (MnO2) и графита. Анодная паста – это смесь порошка цинка (Zn) и густого щелочного электролита. Электролитом обычно служит раствор гидроксида калия (KOH). Анодная паста отделена от активной массы сепаратором. Сепаратор разделяет реагенты, исключая их перемешивание и нейтрализацию заряда. Также сепаратор пропитан электролитом.

Отрицательный потенциал снимается с латунного стержня, который окружён анодной пастой. Стальная тарелка контактирует с латунным стержнем – токосъёмником и является отрицательным контактом элемента «».

Прокладка изолирует никелированный стальной стакан от стальной тарелки, препятствуя тем самым короткому замыканию. Кроме этого прокладка сдерживает давление газа, который в незначительном количестве образуется при химической реакции. В толще прокладки имеется защитный клапан или по-другому предохранительная мембрана. Защитный клапан служат для того, чтобы при чрезмерном давлении газа сработать и выпустить его наружу. Это предотвращает взрыв щелочного элемента, но и приводит к его разгерметизации. Как правило, разгерметизация приводит к течи электролита.

Иногда, забыв вынуть уже подсевшие батарейки, через некоторое время можно обнаружить, что в батарейном отсеке появилась какая-то жидкость. Это и есть потёкший электролит. Он может вызвать коррозию контактов. Поэтому на упаковке с батарейками можно найти предупреждение о том, что севшие элементы нужно вынимать из электроприборов. Теперь вы знаете, зачем это нужно делать.
Итак, с устройством разобрались, теперь поговорим о том, как работает щелочной элемент.

Как работает щелочной элемент.

Для начала, маленькое отступление…
Как вы заметили, почему то анодная паста соединяется с помощью токосъёмника с отрицательным контактом элемента – стальной тарелкой. А ведь анод – это «+». Получается нестыковочка…

В чём тут дело? А дело в том, что в электронике есть один каламбур. По умолчанию, за направление тока в электрической цепи считается направление от плюса (анода) к минусу (катоду) – так повелось ещё с тех времён, когда электроника ещё зарождалась.

Но ведь электрический ток, как известно, это упорядоченное движение электронов, которые имеют отрицательный заряд. И поэтому, ток течёт оттуда, где есть избыток электронов, в направлении, где есть нехватка отрицательных зарядов (это и есть плюс – недостаток электронов). При этом получается, что ток течёт в реальности от отрицательного контакта к положительному. Именно поэтому образуется эта нестыковка, которая порой вводит начинающих радиолюбителей в ступор.

В электрохимии анодом принято считать тот электрод, на котором происходит процесс окисления. Так вот в щелочной батарейке (и не только) на аноде в результате окисления образуется избыток электронов. То есть по сути – это катод, «минус». Но, как уже говорилось, в электрохимии всё наоборот. Итак, электроны вырабатываются анодной пастой – смесью цинкового порошка (Zn) и густого электролита (раствора KOH).

Катодом же считается электрод, где происходит реакция восстановления. Далее электроны, которые были получены в результате реакции окисления, проходят по электрической цепи электронного прибора, и возвращаются опять в батарейку, но уже на катод, где эти электроны используются для восстановительной химической реакции. Катод – это диоксид марганца. Токоприёмником катода служит никелированный стальной стакан, который контактирует с активной массой – диоксидом марганца (MnO2).

Вот такая игра в наоборот. Напомню ещё раз, что в электронике за направление тока в цепи считается направление от плюса-«анода» к минусу-«катоду». В электрохимии всё наоборот. С этим и связаны особенности в названии реагентов химического источника тока.

Можно ли заряжать батарейки?

Также часто можно слышать вопрос: «Можно ли заряжать батарейки?» Ответим: «Лучше не стоит». Дело в том, что для вырабатывания электрической энергии в батарейках используется необратимая химическая реакция. Поэтому батарейка и является первичным источникам тока.

А вот в аккумуляторах используется обратимая химическая реакция, которая позволяет заряжать и разряжать их множество раз. Поэтому аккумуляторы и называют вторичными источниками тока.

Несмотря на это, известно, что щелочные элементы допускают перезарядку, т.е. их можно зарядить и использовать повторно. Но такие, перезаряжаемые щелочные элементы имеют свою особую конструкцию. Также стоит отметить, что даже такие элементы нельзя перезаряжать много раз, обычно не более 25. В широкой продаже такие щелочные элементы не встречаются. Их маркируют как Rechargeable Alkaline Manganese.

Из всего этого следует, что заряжать обычные щелочные батарейки категорически не стоит. Такие эксперименты могут завершиться взрывом батарейки и разбрызгиванием электролита. А это не есть гуд +опасно для здоровья .

Чтобы замедлить химическую реакцию в щелочном элементе и, тем самым, продлить срок её хранения и снизить саморазряд батареи, в них раньше добавляли кадмий и ртуть. Эти вещества замедляли химическую реакцию, и цинк окислялся медленнее. Но, из-за токсичности ртути и кадмия их сейчас не используют, а применяют другие, менее вредные ингибиторы.

На многих батарейках можно даже увидеть надпись – 0% кадмия и ртути или 0% Hg & Cd. Это своеобразный маркетинговый ход, как бы намекающий на то, что данные батарейки безопасны.

Если вы с успехом дошли до этих строк, то теперь вас можно поздравить, ведь теперь вы знаете, как устроена и работает щелочная батарейка. И поэтому её и не обязательно разбирать . Кроме щелочных элементов питания существуют и другие, но об их устройстве мы расскажем в другой раз.

 

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

 

Как работают батареи? Детали, типы и терминология (со схемой)

Без батарей не было бы сотовых телефонов, часов, планшетов, слуховых аппаратов, фонарей, электромобилей или спутников связи — и этот список можно продолжить. Первый аккумулятор был изобретен более 200 лет назад, и с тех пор эти гениальные устройства стали незаменимыми в нашей повседневной жизни.

Что такое аккумулятор?

Проще говоря, аккумулятор — это любое устройство, которое может обеспечить переносной временный источник электроэнергии.

В электрической цепи батареи служат источником энергии, создавая разность потенциалов, которая приводит в движение электрический ток. Когда ток проходит по цепи, он передает энергию любым подключенным к ней устройствам. В такой цепи протекает постоянный ток. Другими словами, ток идет в одном непрерывном направлении.

И наоборот, питание от электростанции поступает через розетки в вашем доме и выдается в виде переменного тока.Этот тип тока меняет направление с определенной частотой для питания устройств.

Как работают батареи

Типичная батарея состоит из одной или нескольких ячеек, которые имеют катод (положительный полюс) на одном конце и анод (отрицательный полюс) на другом конце. Химические реакции, содержащиеся внутри, вызывают накопление электрического заряда на клеммах, создавая электрический потенциал через узлы за счет высвобождения химической энергии.

Химические реакции в батарее вызывают накопление электронов на аноде.Это создает электрический потенциал между катодом и анодом. Электроны хотят добраться до катода, чтобы нейтрализовать заряд, но они не могут сделать это, путешествуя через электролитический материал внутри самой батареи. Вместо этого электроны легко проходят через провод, соединяющий анод с катодом.

В конце концов, химические процессы, создающие избыток электронов в аноде, останавливаются, и батарея умирает. Однако с аккумуляторными батареями (также называемыми вторичными батареями) этот процесс можно обратить вспять, подключив батареи к зарядным устройствам после того, как они разрядятся.Зарядка аккумулятора меняет направление потока электронов на противоположный за счет использования другого источника питания. Химические процессы в батарее могут быть обращены вспять из-за этой дополнительной энергии, и батарея снова сможет питать цепь самостоятельно.

Создайте свою собственную лимонную батарею!

Отличный способ лучше понять, как работает батарея, — это создать свою собственную батарею дома с лимоном, цинковым гвоздем и медной монетой и использовать ее для питания маленькой лампочки.

Вставьте медную монету в одну сторону лимона и вставьте гальванизированный (оцинкованный) гвоздь в другую сторону (убедившись, что два предмета не соприкасаются внутри лимона).Гвоздь будет служить положительным электродом (катодом), а монета — отрицательным электродом (анодом). Лимонный сок служит электролитом. Затем вы можете подключить вольтметр к лимонной батарее, чтобы увидеть, какое напряжение она создает. При необходимости вы можете последовательно подключить несколько лимонных батарей, чтобы создать напряжение, достаточное для питания маленькой лампочки.

Различные типы батарей

Батареи бывают разных форм, размеров, составов и напряжений.Вот некоторые из наиболее распространенных типов:

  • Перезаряжаемые батареи, используемые в обычных бытовых электронных устройствах. К ним относятся литий-ионные батареи, никель-кадмиевые и металлогидридные никель (NiMH). Названия батарей указывают на содержащиеся в них электролиты.
  • Свинцово-кислотные батареи также можно перезаряжать, но они используются для более тяжелых условий эксплуатации (например, в качестве автомобильных аккумуляторов).
  • Батареи, которые обычно не перезаряжаются, включают щелочные батареи или цинково-угольные батареи с сухими элементами.

% PDF-1.5 % 89 0 obj> эндобдж xref 89 76 0000000016 00000 н. 0000002452 00000 н. 0000001816 00000 н. 0000002530 00000 н. 0000002654 00000 н. 0000003177 00000 н. 0000003526 00000 н. 0000004058 00000 н. 0000004584 00000 н. 0000005115 00000 н. 0000005400 00000 н. 0000006025 00000 н. 0000006090 00000 н. 0000006295 00000 н. 0000006622 00000 н. 0000006686 00000 н. 0000006846 00000 н. 0000006893 00000 н. 0000006957 00000 н. 0000007004 00000 н. 0000007288 00000 н. 0000007374 00000 н. 0000007876 00000 н. 0000013412 00000 п. 0000013798 00000 п. 0000014167 00000 п. 0000014455 00000 п. 0000014830 00000 п. 0000020351 00000 п. 0000020768 00000 п. 0000020882 00000 п. 0000021224 00000 п. 0000022475 00000 п. 0000022733 00000 п. 0000022934 00000 п. 0000023287 00000 п. 0000026956 00000 п. 0000027571 00000 п. 0000032829 00000 н. 0000038520 00000 п. 0000043730 00000 п. 0000048792 00000 п. 0000053797 00000 п. 0000058856 00000 п. 0000059151 00000 п. 0000060917 00000 п. 0000061282 00000 п. 0000061436 00000 п. 0000061661 00000 п. 0000062031 00000 п. 0000065753 00000 п. 0000066124 00000 п. 0000066193 00000 п. 0000066257 00000 п. 0000066982 00000 п. 0000067609 00000 п. 0000069621 00000 п. 0000069908 00000 н. 0000069976 00000 п. 0000070495 00000 п. 0000070588 00000 п. 0000075741 00000 п. 0000081716 00000 п. 0000082560 00000 п. 0000083366 00000 п. 0000084220 00000 п. 0000085167 00000 п. 0000085730 00000 п. 0000086082 00000 п. 0000086173 00000 п. 0000086492 00000 п. 0000087091 00000 п. 0000087328 00000 п. 0000087489 00000 н. 0000087852 00000 п. 0000089428 00000 п. трейлер ] >> startxref 0 %% EOF 91 0 obj> поток xb«b«Oc`g`cdd @

BatteriesAndButter.com: Батареи и масло — Справочная таблица монетных батарей

** 0 **

Размер монеты Схема батареи

Модель батареи * Размер (мм) Вес (г) Номинальная мощность
(мАч)
Напряжение

CR1025

10 х 2.5

0,7

30

3

CR1216 12,5 х 1,6 0,7 25 3
CR1220 12,5 х 2 1,2 35 3
CR1225 12,5 х 2.5 0,9 50 3
CR1612 16 х 1,2 0,8 40 3
CR1616 16 х 1,6 1,2 50 3
CR1620 16 х 2 1,3 75 3
CR1632 16 х 3.2 1,8 125 3
CR2012 20 х 1,2 1,4 55 3
CR2016 20 х 1,6 1,6 90 3
CR2025 20 х 2,5 2,5 165 3
CR2032 20 х 3.2 3,1 220 3

CR2320

23 х 2

3

130

3

CR2325 23 х 2,5 3 190 3

CR2330

23 x 3

4

265

3

CR2335 23 х 3.5 4 300 3
CR2354 23 х 5,4 5,9 560 3
CR2412 24 х 1,2 2 100 3
CR2430 24,5 х 3 4,6 290 3
CR2450 24.5 х 5 6,3 620 3
CR2477 24,5 х 7,7 10,5 1000 3
CR3032 30 х 3,2 7,1 500 3
CR927 9,5 х 2,7 0,51 30 3

* Большинство брендов используют соглашение CR.Duracell может использовать вместо него префикс DL или без префикса. Energizer может использовать ECR.

Префикс CR указывает на химический состав LiMnO 2 диоксид марганца. Суффикс BR указывает на химический состав полиуглерода и монофторида лития Li- (CF) x .

Авторские права 2020 от Batteries и Butter.com

Общие сведения о конфигурациях батарей | Аккумулятор

Что такое банк батарей? Нет, аккумуляторные банки — это не какие-то финансовые учреждения.Блок батарей — это результат соединения двух или более батарей вместе для одного приложения. Что это дает? Ну, подключив батареи, вы можете увеличить напряжение, силу тока или и то, и другое. Когда вам нужно больше мощности, вместо того, чтобы обзавестись огромным супертанкером с батареей для дома на колесах. Например, вы можете построить аккумуляторную батарею, используя мощную аккумуляторную батарею AGM для автофургона, кемпинга или прицепа.

Первое, что вам нужно знать, это то, что существует два основных способа успешного соединения двух или более батарей: первый — через серию, а второй — параллельный.Начнем с метода серий, сравнивая серию и параллель.

Как подключить батареи последовательно: При последовательном подключении батарей добавляется напряжение двух батарей, но сохраняется одинаковая сила тока (также известная как ампер-часы). Например, эти две 6-вольтовые батареи, соединенные последовательно, теперь вырабатывают 12 вольт, но их общая емкость по-прежнему составляет 10 ампер.

Для последовательного соединения батарей используйте перемычку для соединения отрицательной клеммы первой батареи с положительной клеммой второй батареи.Используйте другой набор кабелей для подключения открытых положительных и отрицательных клемм к вашему приложению.

При подключении аккумуляторов: Никогда не перекрещивайте оставшиеся разомкнутые положительный и открытый отрицательный полюсы друг с другом, так как это приведет к короткому замыканию аккумуляторов и вызовет повреждение или травму.

Убедитесь, что подключаемые батареи имеют одинаковое напряжение и емкость. В противном случае у вас могут возникнуть проблемы с зарядкой и сокращение срока службы батареи.

Как подключить батареи параллельно: Другой тип подключения — параллельно.Параллельное соединение увеличит ваш номинальный ток, но напряжение останется прежним. На «параллельной» диаграмме мы вернулись к 6 вольт, но ампер увеличился до 20 Ач. Важно отметить, что из-за увеличения силы тока аккумуляторов вам может потребоваться более прочный кабель, чтобы кабели не перегорели.

Чтобы соединить батареи параллельно, используйте перемычку для соединения положительных клемм и другую перемычку для соединения отрицательных клемм обеих батарей друг с другом.Отрицательный к отрицательному и положительный к положительному. Вы МОЖЕТЕ подключить нагрузку к ОДНОЙ из батарей, и она будет разряжать обе батареи одинаково. Однако предпочтительный метод поддержания уровня заряда батарей — это подсоединение к плюсу на одном конце аккумуляторного блока и к минусу на другом конце блока.

Также возможно подключение аккумуляторов последовательно и параллельно. Это может показаться запутанным, но мы объясним ниже. Таким образом вы можете увеличить выходное напряжение и номинальный ток в ампер / час.Чтобы сделать это успешно, вам понадобится как минимум 4 батарейки.

Если у вас есть два набора батарей, уже подключенных параллельно, вы можете соединить их вместе, чтобы сформировать серию. На диаграмме выше у нас есть аккумуляторная батарея, которая выдает 12 вольт и рассчитана на 20 ампер-часов.

Не теряйся сейчас. Помните, что электричество проходит через параллельное соединение так же, как и в одиночной батарее. Разницы не видно. Таким образом, вы можете последовательно соединить два параллельных соединения, как две батареи.Требуется только один кабель; мост между положительной клеммой одного параллельного банка и отрицательной клеммой другого параллельного банка.

Это нормально, если к терминалу подключено более одного кабеля. Необходимо успешно строить такие аккумуляторные батареи.

Теоретически вы можете подключить столько батарей вместе, сколько захотите. Но когда вы начинаете собирать путаницу из батарей и кабелей, это может сбивать с толку, а путаница может быть опасной.Помните о требованиях к вашему приложению и придерживайтесь их. Также используйте батареи той же мощности. По возможности избегайте смешивания и соответствия размеров батарей.

Всегда помните о безопасности и следите за своими связями. Если это поможет, сделайте схему ваших батарейных блоков, прежде чем пытаться их построить. Удачи!


Краткий справочник по словарю:

Ампер-час — это единица измерения электрической емкости аккумулятора.Стандартный номинал усилителя рассчитан на 20 часов.

Напряжение представляет собой давление электричества. Некоторые приложения требуют большего «давления», что означает более высокое напряжение.

Выберите более мощный аккумулятор

Была ли эта информация полезной? Подпишитесь, чтобы получать обновления и предложения.

Батарейки для начинающих в электронике

Создано: 30 июля 2012 г.

В учебных курсах для начинающих на этом веб-сайте мы используем батарею на девять вольт (9 В) с макетными схемами.

Можно использовать одну батарею 9 В или держатель батареи, содержащий шесть ячеек по 1,5 В. Для любой из этих батарей требуется зажим (соединитель), который имеет два провода для подключения батареи к цепи.

На этой фотографии показаны батарейный зажим и две разные батареи 9 В:

Красный провод зажима аккумулятора — это положительный провод, а черный провод — отрицательный.

Символ батареи

Обозначение батареи, показанное ниже, используется для обозначения батареи на принципиальных схемах.

Длинная вертикальная линия символа батареи представляет собой положительный полюс батареи и обычно отмечена знаком плюс (+).

Полярность батареи

Убедитесь, что аккумулятор правильно подключен в цепь. Это означает, что положительный полюс батареи должен быть подключен к той части цепи, которая отмечена на схеме как положительная. Он будет отмечен либо символом батареи, либо текстом — например, + 9В

Отрицательный полюс батареи должен быть подключен к той части цепи, которая отмечена отрицательным знаком либо символом батареи, либо 0 В или GND.

При использовании держателя батареи для сборки батарейного блока из ячеек 1,5 В обязательно соблюдайте полярность, указанную на держателе батареи. Это означает, что вы должны вставить элементы в держатель батареи, как показано на пластиковом держателе батареи:

Зажим аккумулятора соединяется с двумя выводами аккумулятора — он может двигаться только в одном направлении.

Зажим аккумулятора вставлен в аккумулятор:

Советы и подсказки

Не снимайте зажим аккумулятора, когда он не используется, чтобы провода не соприкасались друг с другом и не закорачивали аккумулятор.

Будьте осторожны, помещая аккумулятор в контейнер, содержащий любые токопроводящие предметы, так как они могут замкнуть клеммы аккумулятора вместе.

Купить аккумуляторные батареи и зарядное устройство.

Если на концах двух выводов батареи нет оголенного провода, используйте боковые кусачки, чтобы удалить часть изоляции, чтобы батарею можно было подключить к макетной плате. На видео ниже показано, как это сделать.

При использовании боковых резаков для снятия изоляции не прикладывайте слишком сильное давление на боковые ножи, так как в конечном итоге вы перережете медные проводники.Сначала потренируйтесь на каком-нибудь старом проводе, чтобы не сделать выводы зажима аккумулятора слишком короткими, если вы прорежете слишком много раз. Приложите достаточно давления, чтобы прорезать часть изоляции, а затем удерживайте давление, когда будете снимать пластик.


Как отремонтировать аккумулятор для ноутбука — Battery University

Узнайте о проблемах и ограничениях ремонта «умных» аккумуляторов

Большинство аккумуляторов для ноутбуков интеллектуальны и состоят из «химической батареи», которой управляет «цифровая батарея».«Распространенным протоколом является шина управления системой, более известная как SMBus.

Типичная батарея SMBus имеет пять или более подключений батареи, состоящих из положительных и отрицательных клемм батареи, термистора, часов и данных. Соединения часто немаркированы; однако положительный и отрицательный полюсы обычно расположены на внешних краях разъема, а внутренние контакты служат для установки часов и данных. (Однопроводная система объединяет часы и данные.) По соображениям безопасности отдельный провод термистора выводится наружу.На рисунке 1 показана батарея с шестью разъемами.

Рисунок 1: Клеммное соединение типичного аккумулятора ноутбука

Положительные и отрицательные клеммы обычно размещаются снаружи; Нормы по расположению остальных контактов отсутствуют.

Предоставлено Cadex


Некоторые батареи оснащены твердотельным переключателем, который обычно находится в положении «выключено», и на клеммах батареи нет напряжения.Если подключить клемму переключателя к земле или потянуть ее вверх, аккумулятор часто включается. Если это не сработает, пакету может потребоваться код для активации. Производители аккумуляторов хранят эти проприетарные коды в тщательно охраняемом секрете, к которому не имеет доступа даже обслуживающий персонал.

С помощью вольтметра найдите положительную и отрицательную клеммы аккумулятора и установите полярность. Если напряжение отсутствует, твердотельный переключатель может быть в положении «выключено» и его необходимо активировать. Подключите вольтметр к внешним клеммам, возьмите резистор на 100 Ом (другие значения также могут подойти), подключите один конец к земле, а другим концом прикоснитесь к каждой клемме, наблюдая за вольтметром.Повторите, привязав резистор к положительному потенциалу напряжения. Если нет ответа, возможно, батарея разряжена или заблокирована кодом. Резистор на 100 Ом достаточно низкий, чтобы задействовать цифровую цепь, и достаточно высокий, чтобы защитить батарею от возможного короткого замыкания.

Установление подключения к клеммам аккумулятора теперь должно позволить зарядку. Если зарядный ток прекращается через 30 секунд, может потребоваться код активации. Некоторые производители аккумуляторов добавляют переключатель окончания срока службы аккумулятора, который выключает аккумулятор при достижении определенного возраста или количества циклов.Они утверждают, что удовлетворенность клиентов и безопасность могут быть гарантированы только регулярной заменой батареи. Имейте в виду, что такая политика также меняет инвентарь.

Если возможно, подключите термистор во время зарядки и разрядки, чтобы защитить аккумулятор от возможного перегрева. С помощью омметра найдите внутренний термистор. Наиболее распространенными термисторами являются 10 кОм NTC, который показывает 10 кОм при 20 ° C (68 ° F). NTC означает отрицательный температурный коэффициент, означающий, что сопротивление уменьшается с повышением температуры.Для сравнения, положительный температурный коэффициент (PTC) вызывает увеличение сопротивления. Достаточно согреть батарею рукой, чтобы обнаружить небольшое изменение сопротивления резистора при поиске правильной клеммы на батарее.

После ремонта указатель уровня топлива может не работать, давать неточные данные или давать неверную информацию. Батареи может потребоваться какой-то процесс инициализации / калибровки путем полной зарядки и разрядки аккумулятора для сброса флагов. «Флаг» — это точка измерения, позволяющая отметить и записать событие.(См. BU-603: Как откалибровать «умную» батарею).

Цепи некоторых интеллектуальных батарей необходимо поддерживать в рабочем состоянии во время замены элементов. Отключение напряжения всего на долю секунды может стереть важные данные из памяти. Аналогия — операция на открытом сердце, когда врачи должны поддерживать жизнь всех органов пациента. Потерянные данные могут содержать значение резистора оцифрованного шунта, который отвечает за счетчик кулонов, и другие данные.

Для обеспечения непрерывной работы при замене ячеек подайте вторичное напряжение того же уровня напряжения через резистор 100 Ом на схему перед отключением.Удалите внешнее питание только после того, как цепь снова получит напряжение от новых ячеек. Кроме того, некоторые микросхемы топливомеров проходят к каждой ячейке. Их необходимо собрать в правильной последовательности, начиная с первой ячейки, затем с второй, третьей и так далее.

Вам также необходимо знать о проблемах соответствия. В отличие от других регулируемых стандартов, SMBus допускает вариации, и это может вызвать проблемы. Отремонтированный аккумулятор SMBus необходимо проверить на совместимость с зарядным устройством. Батареи для критически важных применений, таких как здравоохранение, обычно заменяются и не ремонтируются.См. Также www.sbs-forum.org и www.acpi.info.

Простые инструкции по ремонту аккумуляторных блоков

  • Подключайте только совпадающие по емкости ячейки. Не смешивайте элементы с разным химическим составом.
  • Никогда не заряжайте и не разряжайте литий-ионные аккумуляторы без присмотра без исправной схемы защиты. Каждая ячейка должна контролироваться индивидуально с помощью схемы защиты.
  • Включите датчик температуры, который прерывает зарядный ток при сильном нагреве.
  • Примените медленную зарядку к отремонтированной батарее, чтобы привести все ячейки в норму.
  • Обратите внимание при использовании неизвестного бренда. Повышенная температура указывает на аномалию.
  • Литий-ионный аккумулятор чувствителен к обратной поляризации. Соблюдайте правильную полярность.
  • Не заряжайте литий-ионный аккумулятор, который имеет физические повреждения, вздулся или некоторое время находился при напряжении менее 1,5 В на элемент.
  • Проверить отремонтированный аккумулятор на саморазряд. Внутренние дефекты часто имеют высокий саморазряд.

Последнее изменение: 17 окт.2020 г.

*** Пожалуйста, прочтите относительно комментариев ***

Комментарии предназначены для «комментирования», открытого обсуждения среди посетителей сайта. Battery University отслеживает комментарии и понимает важность выражения точек зрения и мнений на общем форуме. Однако при общении необходимо использовать соответствующий язык, избегая спама и дискриминации.

Если у вас есть предложение или вы хотите сообщить об ошибке, воспользуйтесь формой «свяжитесь с нами» или напишите нам по адресу: BatteryU @ cadex.com. Нам нравится получать от вас известия, но мы не можем ответить на все запросы. Мы рекомендуем размещать свой вопрос в разделах комментариев для Battery University Group (BUG).

Предыдущий урок Следующий урок

Или перейти к другой артикуле

Батареи как источник питания Схема подключения управления батареями

для типичных приложений

Считаете эту статью полезной?
Подпишитесь на нашу рассылку новостей!

Аккумуляторы — это сердце электрических систем на любом судне или транспортном средстве.Правильное управление батареями, включая переключение и зарядку, важно для безопасной и надежной работы. На следующих основных схемах электропроводки показано, как батареи, переключатели батарей и реле автоматической зарядки соединяются вместе от простой конфигурации с одной батареей / одним двигателем до системы с двумя двигателями, одним генератором и четырьмя батареями. Для получения более подробных инструкций по подключению проконсультируйтесь с квалифицированным морским электриком или в одной из многих книг по этой теме.

Приведенные ниже схемы предназначены только для справки.Проконсультируйтесь с сертифицированным специалистом по морской электротехнике ABYC по вопросам проектирования системы и защиты цепей.

Выбрать систему

1 Батарея 1 Двигатель 2 Батарея 1 Двигатель 2 Батарея 2 Двигатель 3 Батарея 2 Двигатель 4 Батарея 2 Двигатель 1 Генератор

Переключает отдельную батарею на одну группу нагрузки

Выключатель батареи ВКЛ / ВЫКЛ

Сохраняет энергию батареи для запуска

1 Батарея ВКЛ-ВЫКЛ Выключатель
1 Низковольтный разъединитель

Переключает изолированные блоки батарей на все нагрузки или объединяет блоки батарей на все нагрузки

1 Селекторный переключатель батареи
1 Реле автоматической зарядки

Одновременно переключает два изолированных блока батарей или объединяет блоки батарей для всех нагрузок.

1 Выключатель батареи Dual Circuit Plus ™
1 Реле автоматической зарядки

Может изолировать вышедшую из строя батарею

3 Двухпозиционных переключателя батареи
1 Реле автоматической зарядки

Домашняя батарея используется совместно с одним двигателем. Одна аккумуляторная батарея двигателя находится в резерве.


2 Селекторных переключателя батареи
1 Реле автоматической зарядки

Двигатели используют одну батарею. Батарея дома в резерве.

1 переключатель батареи Dual Circuit Plus ™
1 реле автоматической зарядки

Может изолировать вышедшую из строя батарею.

3 переключателя батареи ВКЛ / ВЫКЛ
1 реле автоматической зарядки

Простое управление — можно подключать батареи параллельно для дополнительной пусковой мощности.

2 двухконтурных переключателя плюс батареи
2 реле автоматической зарядки

Может изолировать любой источник батареи от любых батарей.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *