Обозначение двухполюсного автомата в однолинейной схеме: Страница не найдена

Содержание

Обозначение автоматических выключателей на схеме

При проведении электромонтажных работ, важным нюансом является наличие знаний в данной области. Это поможет подключить объект к питанию максимально безопасно. Одним из важнейших устройств в электрической схеме считается защитный автомат. Его задача состоит в отключении питания при появлении короткого замыкания или перегрузки сети. Купить вводной автомат вы можете в нашем Интернет-магазине. В статье мы рассмотрим условное обозначение автоматического выключателя на схеме.

Обозначение автоматов

 

При создании чертежей электросхем принято, чтобы проводилось обозначение автоматического выключателя на схеме по ГОСТу 2.702-2011. Тут содержатся все необходимые правила. Государственные стандарты в однолинейной схеме требуют изображения средств защиты такими комбинациями:

  1. боковое ответвление;
  2. продолжение линии;
  3. крестик после разрыва цепи;
  4. прямая линия электроцепи;
  5. не закрашенный прямоугольник на ответвлении;
  6. разрыв линии.

Устройство для защиты двигателя изображается по-другому. Обозначение автоматических выключателей на схеме выглядит, помимо графических указателей, с использованием буквенного символа. Приспособление, в зависимости от характеристик, изображается в таких вариантах:

Первый представляет собой автомат для управления, который защищает силовые цепи, регулирует работу машин и оборудования. Следующий предназначен для производства, передачи, преобразования и распределении электричества. Последний – это дифавтомат, применяющийся при обеспечении высокой безопасности электроприборов, которые часто используются.

Классификация автоматического выключателя

Подбор электротехнического устройства происходит согласно схеме. Аппарат должен отвечать заявленным требованиям. ГОСТ Р 50030.2-99 показывает, что все защитные автоматы классифицируются на несколько разновидностей по таким критериям как:

  1. среда использования;
  2. тип исполнения;
  3. обслуживание.

Автоматы классифицируются на такие виды:

  • выключатели с накопителем энергии;
  • аварийный;
  • расцепитель тока;
  • блокировщик;
  • необслуживаемый и обслуживаемый;
  • автоматическое управление или ручное;
  • с наличием плавкого предохранителя;
  • газовый, воздушный, вакуумный;
  • токоограничивающий и т.п.

Кроме того, устройства различают по числу полюсов (до 4). К примеру, автоматический выключатель 2п это двухполюсный защитный аппарат. Различают устройства также по номинальной частоте, роду тока и числу фаз.

 

Обозначение УЗО и дифференциального автомата.

На данный момент в ГОСТ нет каких либо рекомендаций относительно условных графических обозначений УЗО и дифференциальных автоматов. Изображения обозначений, которые используют в схемах отличаются друг от друга.

По этому, в данной статье, я хочу дать свои рекомендации и предложить вариант обозначений УЗО и дифференциального автомата, который по моему мнению, будет соответствовать функциональному назначению этих электрических аппаратов.

Функционально УЗО можно определить как быстродействующий выключатель, реагирующий на дифференциальный ток — ток утечки в проводниках, подводящих электроэнергию к защищаемой электроустановке. В качестве датчика дифференциального тока и основного функционального элемента УЗО используется трансформатор тока, который часто называют трансформатором тока нулевой последовательности (что не совсем правильно, но думаю приемлемо).

Из выше сказанного следует что изображение условного обозначения УЗО, должно состоять из обозначения выключателя и трансформатора тока нулевой последовательности, сигнал от которого (ток нулевой последовательности), воздействует на механизм отключения контактной группы аппарата.

Этому требованию подходят следующие обозначения:

Дифференциальный автомат, отличается от УЗО тем, что совмещает в одном электрическом аппарате два устройства, автоматический выключатель и устройство защитного отключения. По этому можно использовать следующее обозначение:

Буквенно-цифровое обозначение УЗО и дифференциальных автоматов, на мой взгляд, можно наносить на схеме следующим образом:


 

Где Q1 и QF1 обозначают функции выключателя и автоматического выключателя соответственно и порядковый номер аппарата в схеме. Значение дифференциального тока, обозначает функцию устройства защитного отключения

Второй вариант буквенно-цифрового обозначения, который часто применяется: QD1 для УЗО и QFD1 для дифференциального автомата. И хотя согласно ГОСТ 2.710 код буквы D обозначает схемы интегральные, более подходящего символа в данном ГОСТ нету. Будем считать, что D, от слова дифференциальный.

Данный вариант условных графических обозначений УЗО и дифференциальных автоматов, до момента публикации каких либо рекомендаций в нормативных документах, на мой взгляд является наиболее приемлемым. Поэтому, я решил включить трафареты рассмотренных выше электрических аппаратов в Комплект для черчения электрических схем.


Диф автомат обозначение на схеме. Обозначение узо на однолинейной схеме

Действующие государственные стандарты (ГОСТ) не регламентируют графическое и буквенное обозначение УЗО (устройства защитного отключения), отсутствуют дополнительные графические символы, позволяющие точнее описать основные функции и свойства стандартного оборудования.

УЗО является одним из основных элементов электрических однолинейных схем, поэтому производителями модульного оборудования и проектировщиками принято следующее условное обозначение для него:

Такое схематическое отображение устройств защитного отключения, наиболее точно показывает его принцип работы и отличает от другого модульного оборудования, если знать, что такое УЗО и как оно работает.

При этом, так как государственные стандарты не регламентируют вид УЗО, обязательно на схемах и планах нужно показывать блок с условными графическими обозначениями (УГО), в котором давать расшифровку и пояснения к графическим элементам, даже если решено использовать иной от представленного вид. Возможность самим разработать условные обозначения, если их нет в стандартах указана в ГОСТ 2.702-2011.

Буквенная маркировка УЗО — QF, если пользоваться правилами их формирования по ГОСТ 2.710-81 ЕСКД «Обозначения буквенно-цифровые в электрических схемах». Это полностью совпадает с обозначением автоматического выключателя и некоторых других модульных устройств, делая однолинейные схемы менее читаемыми и понятными.

Многие вводят свои буквенные обозначения: Q, QFD, QDF и т.д. которые, если опираться на актуальные стандарты, неверны, не раскрывают функции УЗО, но помогают отличать от других элементов защитной автоматики на однолинейных схемах.

Это бывает важно, особенно если на схеме одновременно присутствуют УЗО, и дифавтоматы. Их графические обозначения похожи и не всегда их легко отличить друг от друга.Учитывая, что проектировщики электроустановок нередко максимально упрощают применяемые графические символы, опуская важные детали.

Рассмотрим условное Обозначение дифференциального автоматического автомата на однолинейной схеме и сравним его с УЗО.

rozetkaonline.ru

Если вы решили заменить проводку в квартире, то для начала необходимо составить подробную схему. Для того, чтобы правильно составить схему проводки, необходимо знать, как на схеме должны отображаться все ее основные элементы. Помимо этого, в данной статье будут рассмотрены некоторые типовые схемы проводки в квартире.

Разновидности схем проводки

При собственноручной замене проводки в квартире вам понадобится два варианта схемы – электромонтажная и принципиальная.

Схема, на которой показаны основные электрические связи, существующие между всеми элементами, которые изображены с помощью специальных условных графических и буквенно-цифровых обозначений, называется принципиальной схемой. Принципиальная схема чаще всего изображается однолинейной.

Однолинейной схемой называют такую схему, на которой все фазные провода отображены всего одной линией и не отображается нулевой проводник, а защитные аппараты и нагрузки изображены схематично, без указания схемы их подключения.

На электромонтажной схеме на план квартиры, который изображается в масштабе, наносят все обозначения. На электромонтажной схеме обязательно должно быть указано точное прохождение всех линий, расположение квартирного щита, выключателей, монтажных коробок, освещения и розеток.

Условные обозначения, используемые на схемах проводки для квартиры

Для правильного составления схемы проводки, необходимо знать обозначения различных элементов. Все эти обозначения нормируются ГОСТами и называют их условными графическими обозначениями.

Вот два ГОСТа, которые стоит изучить перед составлением схемы проводки: ГОСТ 2.710-81 «Обозначения буквенно-цифровые в электрических схемах» и ГОСТ 21.614-88 «Изображения условные графические электрооборудования и проводок на планах».

Обозначения, которые применяются на принципиальных схемах

Автомат или выключатель автоматический (ГОСТ 2.755-87). Он обозначается буквами QF.

УЗО, дифавтомат. Обозначается буквами QF.

Электрический счетчик активной мощности (ГОСТ 2.729-68). Обозначается буквами PI.

Силовой щит (ГОСТ21.614-88).

Лампочка накаливания (ГОСТ 2.732-68). Обозначается буквами EL.

Обозначения, которые применяются на электромонтажных схемах

Все данные по этим обозначениям можно найти в ГОСТ 21.614-88.

Накладная розетка, имеющая защитный контакт.

Розетка со скрытой установкой, имеющая защитный контакт.

Примеры схем проводки в квартире

Первая из предложенных схем, является самой простой однолинейной схемой для однокомнатной или двухкомнатной квартиры. Питание квартиры осуществляется от одной фазы через этажный щит. Помимо этого, в квартиру заводится защитное и рабочее заземление с этажного щита. После этого идет двухполюсный вводный автомат, который отключает ноль и фазу. Согласно правил (п.1.5.36 ПУЭ), автомат должен быть установлен до счетчика электроэнергии – «Для того, чтобы можно было безопасно устанавливать и, по необходимости, заменять счетчики в сетях, имеющих напряжение до 380 В, необходимо предусмотреть возможность отключать счетчик с помощью установленных до него предохранителей или коммутационных аппаратов на расстоянии не больше 10 метров. Должна быть возможность снимать напряжение со всех фаз, присоединенных к счетчику».

За счетчиком должна устанавливаться шина, к которой подключаются автоматы освещения и плиты, а также розетки через дифавтомат (УЗО).

Вторая схема несколько сложнее и предназначена для двухкомнатных и трехкомнатных квартир. Такая схема отличается тем, что розетки запитываются через два двухполюсных дифавтомата (УЗО). Благодаря этому для комнат образуется отдельная линия питания и отдельная линия для кухни, туалета, коридора и ванной. На данной схеме электрическая плита запитывается через двухполюсный дифавтомат (УЗО). Делать это необязательно, но желательно, так как это повысит безопасность от попадания под так называемое косвенное напряжение.

Выше показана схема, которая выполнена с обозначением рабочего и защитного заземления. Данная схема является более подробным вариантом предыдущей схемы.

postroy-sam.com

Схема проводки в квартире | Всё для Вашего дома

Первым шагом при смене проводки в квартире является составление схемы. Для составления схемы необходимо познакомиться с тем как отображаются основные элементы на схеме. Так же в этой статье будут приведены несколько типовых схем проводки в квартире.

Виды схем проводки в квартире

При самостоятельно смене проводки в квартире понадобятся два вида схем: принциаиальная и электромонтажная схема.

Принципиальная схема – это схема показывает основные электрические связи между элементами, изброжённых при помощи специальных буквенно-цифровых и условных графических обозначений (УГО). Обычно принципиальная схема изображается однолинейной.

Однолинейная схема – это такая схема, на которой фазные провода отображаются одной линией, нулевой проводник не отображается, а нагрузки и защитные аппараты показаны схематично без схемы их подключения.

Электромонтажная схема – на такой схеме все обозначения наносят на план квартиры, который в свою очередь выполняется в масштабе. Обычно на электромонтажной схеме показано точное размещение квартирного щита, монтажных коробок, выключателей, розеток, освещения и прохождение всех линий.

Условные обозначения на квартирных схемах проводки

Для того чтобы правильно составить схему, нужно знать как обозначаются различные элементы. Эти обозначения называются условными графическими обозначениями (УГО) и нормируются ГОСТами.

Один из них ГОСТ 21.614-88 «Изображения условные графические электрооборудования и проводок на планах». Так же стоит изучить ГОСТ 2.710-81 «Обозначения буквенно-цифровые в электрических схемах».

Ниже приведены УГО основных элементов, которые понадобятся Вам при составлении схемы проводки в квартире.

Обозначения, применяемые на принципиальных схемах

Автоматический выключатель, автомат (ГОСТ 2.755-87). Буквенное обозначение – QF.

Дифавтомат, УЗО. Буквенное обозначение – QF.

Счётчик электрический активной мощности (ГОСТ 2.729-68). Буквенное обозначение – PI.

Щит силовой (ГОСТ 21.614-88).

Лампа накаливания (ГОСТ 2.732-68). Буквенное обозначение – EL.

Обозначения, применяемые на электромонтажных схемах

Все эти обозначения взяты из ГОСТ 21.614-88.

Монтажная коробка, осветительная коробка.

Выключатель накладной.

Выключатель скрытой установки.

Розетка накладная с защитным контактом.

Розетка скрытой установки с защитным контактом.

Пример типовых схем для квартирных проводок

Первая из представленных схем, это простейшая однолинейная схема для одно- или двухкомнатной квартиры. Поитание осуществляется через этажный щиток от одной фазы, так же с этажного щитка в квартиру заводится рабочее и защитное заземление. Далее следует вводный двухполюсный автомат, отключающий фазу и ноль. Вводный автомат устанваливается до щётчика электрической энергии согласно п.1.5.36. ПУЭ, который гласит:

«Для безопасной установки и замены счетчиков в сетях напряжением до 380 В должна предусматриваться возможность отключения счетчика установленными до него на расстоянии не более 10 м коммутационным аппаратом или предохранителями. Снятие напряжения должно предусматриваться со всех фаз, присоединяемых к счетчику».

За счётчиком распологается шина, к которой подключены автоматы плиты и освещения, а так же розетки через УЗО (дифавтомат).

Следующая схема немного сложнее и больше подходит для двух- и трёхкомнатных квартир. Эта схема отличается тем, что розетки запитаны через два двухполюсных УЗО (дифавтомата), таким образом, обеспечивается отдельная линия питания для комнат, и отдельная для ванной, туалета, кухни и коридора. Электрическая плита на этой схеме запитана через двухполюсное УЗО (дифавтомат), это делать не обязательно, но всё же желательно, для обеспечения повышенной безопасности от попадания под косвенное напряжение.

Защита проводки от перепадов напряжения требует использования определённых приборов. Дифференциальный автомат является примером того, как могут сочетаться функции контроля и защиты от перенапряжения и утечки тока.

Что это такое

Дифференциальный трехфазный или однофазный автомат – это устройство, предназначенное для защиты проводки от «потери» превышения максимально допустимых показателей сети. В зависимости от потребности он может работать в режиме УЗО (защищает от удара током) или как обычный автоматический выключатель (в таком случае он отключает напряжение в сети).

Прибор состоит из двух конструктивных частей: контрольной и защитной. Контрольная или рабочая часть является простым выключателем напряжения. В зависимости от типа устройства он может быть двухполюсный или четырёхполюсный. В некоторых моделях используется однополюсный выключатель.

Контрольная часть работает по системе УЗО. При наличии утечки, чтобы защитить бытовую и прочую технику и рабочего при поиске и устранении проблемы, нужно полностью отключить питание. Этот модуль работает в комплексе с рабочим. Происходит последовательное отключение рабочей и контрольной частей диф автомата.

Отличие дифференциального автомата от УЗО заключается в том, что защитное устройство не предназначено для защиты оборудования от перенапряжения или прочих проблем сети. В это же время, 1-, 2-, или 4-полюсный вариант помогает защитить не только рабочих от дифференциального тока, но и технику от коротких замыканий.


Принцип работы

Для того чтобы электрический дифференциальный защитный автомат мог контролировать и распознавать ток, в нем встроен специальный мини-трансформатор. Эта деталь срабатывает, если на питающих проводниках ток поступающий и исходящий, имеют разные показатели. Если же показатели равны – то проблем с проводниками нет.


Фото – принцип работы

В сердечнике трансформатора эти токи образуют магнитные направленные потоки. От их направления соответственно зависит ток вторичной обмотки. Если проводники «упускают» электричество, то на этой катушке ток не будет равняться нулю и сработает магнитоэлектрический переключатель.

Принцип работы дифференциального автомата основан на постоянном сравнении входящих и исходящих направленных потоков, поэтому проверить его очень легко. Если дотронуться к фазному проводнику – то баланс магнитного поля нарушится, и защелка сразу же сработает для отключения напряжения.

Видео: устройство защитного отключения

Как подключить автомат

Очень удобным является то, что схема подключения дифференциального автомата очень похожа на монтаж защитного устройства. Более того, многие электрики рекомендуют устанавливать в сеть также УЗО, но только после дифа, чтобы обеспечить максимальную безопасность.


Фото – пример подключения

Перед тем, как подключить дифференциальный защитный автомат, нужно знать самое главное правило: к устройству подключается фаза и нейтраль только той электрической цепи, которую нужно защищать. В противном случае работа прибора будет некорректной. Это очень важно, потому что ноль после нельзя будет объединить с другими нейтральными кабелями.

Пошаговая инструкция, как выполняется установка и подключение дифференциального автомата Шнайдер Электрик, ИЭК и прочих:

  1. Монтаж осуществляется немного выше линии проводки. В большинстве случаев для этого используется дин-рейка;
  2. Провода подключаются последовательно, при этом строго следите за тем, чтобы не соединять кабели разных цепей. В противном случае работа селективной схемы будет невозможна;
  3. Все металлические выводы нужно заземлять;
  4. После окончания монтажа производится контрольная проверка.

Чем отличается селективная схема от не селективной? У селективного дифференциального автомата (скажем, Schneider Electric, Legrand, IEK или АВВ) обозначение на схеме помечается буквой S (С). Это говорит о том, что при проблеме в одной контролируемой цепи он отключает только её.

В это же время, не селективный автомат (DPN N Vigi, EKF и некоторые модели Декрафт) выключит все цепи, независимо от того, в какой именно утечка.

Как выбрать устройство

Перед тем, как купить дифференциальный автомат, нужно обязательно сделать выбор модели, которая подойдет по всем параметрам Вашей сети. В первую очередь, нужно рассчитать количество ампер. Для этого нужно вычислить суммарную мощность всех приборов одной определённой цепи, после этого разделить полученное число на напряжение сети. Например, если у Вас в цепь включены приборы с мощностью 5 кВт, то уравнение будет выглядеть так:

5 кВт = 5000 Ватт / 220 Вольт = 22, 7 А.

Далее, нужно выбрать самый близкий в большую сторону по номиналу прибор. В нашем случае это 25 А. Аналогично производится расчет дифференциального автомата на 16А (скажем, Elcds С 16 или DS-16), на 12 (АД12), 28 (АД-30) и т. д. Желательно всегда брать немного превышающий расчеты, прибор – это обеспечит дополнительную защиту.

Также очень важна маркировка автомата, она помогает отличить дифференциальный прибор от УЗО, определить его назначение и спектр действия. Обозначение может отличаться в зависимости от производителя, но основные данные должны быть указаны на корпусе устройства. Это номинальное напряжение, сила тока и максимальный показатель тока замыкания для отключения электричества. Эти же характеристики обязательно включает в себя паспорт и сертификат качества.


Чаще всего условное обозначение дифференциального автомата выглядит так (на примере модели ABB):

AC-C 6P 60A/40mA тип 6M:

  1. AC-C – автомат селективный;
  2. 6P – трехфазный четырехполюсный автомат;
  3. Максимальный ток 40 Ампер;
  4. Может обнаружить ток утечки размером в 40 Ампер;
  5. 6M – размер устройства. Этот пункт позволяет установить прибор на дин-рейке.

Нужно отметить, что на российских автоматах маркировка немного другая. Указывается сразу максимально допустимый ток без шифрований. Скажем, СВДТ-60 – это значит, что максимум разрешен ток 60 Ампер.

Цена дифференциальных автоматов зависит от марки и номинальных характеристики. Чем выше показатели – тем дороже будет стоить прибор. Сейчас популярны модели Hager ACA (Германия), Siemens, Moeller, и Легранд. Из отечественных аналогов это АВДТ и СВДТ. Стоимость устройств варьируется от нескольких сотен до тысячи, на неё влияют номинальные показатели.

Пример расчета УЗО.

Обозначение УЗО.

Схема подключения УЗО.

Подключаем к клемме L фазу, к N

Схема УЗО в квартире.

Рис. 1 Схема УЗО в квартире.

Установка УЗО значительно повышает уровень безопасности при работе на электроустановках. Если УЗО обладает высокой чувствительностью (30 мА), то при этом обеспечивается защита от прямого контакта (прикосновения).

Тем не менее, установка УЗО не означает от выполнения обычных мер предосторожности при работе на электроустановках.

Кнопку тест необходимо нажимать регулярно, как минимум один раз в 6 месяцев. Если тест не срабатывает, то надо задуматься о замене УЗО, так как уровень электробезопасности снизился.

Установите УЗО на панели или корпусе. Подключите оборудование в точном соответствии со схемой. Включите все нагрузки, подключенные к защищаемой сети.

Срабатывает УЗО.

Если УЗО срабатывает, выясните, какое устройство является причиной срабатывания, путем последовательного отключения нагрузки (отключаем по очереди эл. оборудование и смотрим результат). При обнаружении такого устройства его необходимо отключить от сети и проверить. Если электрическая линия имеет очень большую длину, обычные токи утечки могут быть достаточно велики. В этом случае имеется вероятность ложных срабатываний. Чтобы избежать этого, необходимо разделить систему, по крайней мере, на два контура, каждый из которых будет защищен своим УЗО. Можно расчитать длинну электрической линии.

При невозможности определения документальным способом суммы токов утечки проводки и нагрузок, можно пользоваться примерным расчетом (в соответствии с СП 31-110-2003), принимая ток утечки нагрузки равным 0,4мА на 1А потребляемой нагрузкой мощности и ток утечки электросети равным 10мкА на один метр длины фазового провода электропроводки.

Пример расчета УЗО.

Для примера рассчитаем УЗО для электроплиты, мощностью 5 кВт, установленную на кухне малогабаритной квартиры.

Примерное расстояние от щитка до кухни может составлять 11 метров, соответственно расчетная утечка проводки составляет 0,11мА. Электроплита, на полной мощности, потребляет (приближенно) 22.7А и обладает расчетным током утечки 9,1мА. Таким образом, сумма токов утечки данной электроустановки составляет 9,21мА. Для защиты от токов утечки можно использовать УЗО с номиналом тока утечки 27,63мА, что округляется до ближайшего большего значения существующих номиналов по диф. току, а именно УЗО 30мА.

Следующим шагом, является определение рабочего тока УЗО. При указанном выше максимальном токе, потребляемым электроплитой, можно использовать номинал (с небольшим запасом) УЗО 25А, или с большим запасом — УЗО 32А.

Таким образом мы расчетно определили номинал УЗО, которое можно использовать для защиты электроплиты: УЗО 25А 30мА или УЗО 32А 30мА. (надо не забыть защитить УЗО автоматическим выключателем 25А для первого номинала УЗО и 25А или 32А для второго номинала).

Обозначение УЗО.

На схеме УЗО обозначается следующим образом рис. 1 однофазное УЗО, рис. 2 -трехфазное УЗО.

Схема подключения УЗО.

Схема подключения УЗО рассмотрим на примере. На фото. 1 показан фрагмент распределительного шкафа.

Фото. 1 Схема подключения трехфазного УЗО с автоматическим выключателем (на фото цифра1 УЗО, 2- автоматический выключатель) и однофазных УЗО (3).

УЗО не защищает от токов короткого замыкания, поэтому его устанавливают в паре с автоматическим выключателем. Что ставить раньше УЗО или автоматический выключатель в данном случае не принципиально. Номинал УЗО должен быть равным или немного больше наминала автоматическо выключателя. Например, автоматический выключатель 16 Ампер, значит, УЗО ставим 16 или 25 А.

Как видно на фото. 1 на трехфазное УЗО (цифра 1) подходят три фазных и нулевой проводник, а после УЗО подключен автоматический выключатель (цифра 2). Потребитель будет подключаться: фазные проводники (красные стрелки) с автоматического выключателя; нулевой проводник (синяя стрелка) — с УЗО.

Под цифрой 3 на фото показаны дифференциальные автоматы, соединенные сборной шиной, принцип работы диф. автомата такой же, как у УЗО, но он дополнительно защищает от токов короткого замыкания и не требует дополнительной защита от КЗ.

А подключение, что у УЗО, что у диф. автоматов одинаковое.

Подключаем к клемме L фазу, к N ноль (обозначения нанесены на корпусе УЗО). Потребители подключаются также.

Схема УЗО в квартире.

Ниже приведена схема использования УЗО в квартире, для дополнительной защиты от поражения электрическим током.

Рис. 1 Схема УЗО в квартире.

В данном случае УЗО ставится до счетчика, на всю группу автоматических выключателей, чем обеспечивается дополнительная защита от поражения электрическим током и возникновения пожара.

Установка УЗО значительно повышает уровень безопасности при работе на электроустановках. Если УЗО обладает высокой чувствительностью (30 мА), то при этом обеспечивается защита от прямого контакта (прикосновения).

Тем не менее, установка УЗО не означает от выполнения обычных мер предосторожности при работе на электроустановках.

Кнопку тест необходимо нажимать регулярно, как минимум один раз в 6 месяцев. Если тест не срабатывает, то надо задуматься о замене УЗО, так как уровень электробезопасности снизился.

Установите УЗО на панели или корпусе. Подключите оборудование в точном соответствии со схемой. Включите все нагрузки, подключенные к защищаемой сети.

Срабатывает УЗО.

Если УЗО срабатывает, выясните, какое устройство является причиной срабатывания, путем последовательного отключения нагрузки (отключаем по очереди эл. оборудование и смотрим результат).

Учимся отличать УЗО от дифференциального автомата – 4 внешних признака

При обнаружении такого устройства его необходимо отключить от сети и проверить. Если электрическая линия имеет очень большую длину, обычные токи утечки могут быть достаточно велики. В этом случае имеется вероятность ложных срабатываний. Чтобы избежать этого, необходимо разделить систему, по крайней мере, на два контура, каждый из которых будет защищен своим УЗО. Можно расчитать длинну электрической линии.

При невозможности определения документальным способом суммы токов утечки проводки и нагрузок, можно пользоваться примерным расчетом (в соответствии с СП 31-110-2003), принимая ток утечки нагрузки равным 0,4мА на 1А потребляемой нагрузкой мощности и ток утечки электросети равным 10мкА на один метр длины фазового провода электропроводки.

Пример расчета УЗО.

Для примера рассчитаем УЗО для электроплиты, мощностью 5 кВт, установленную на кухне малогабаритной квартиры.

Примерное расстояние от щитка до кухни может составлять 11 метров, соответственно расчетная утечка проводки составляет 0,11мА. Электроплита, на полной мощности, потребляет (приближенно) 22.7А и обладает расчетным током утечки 9,1мА. Таким образом, сумма токов утечки данной электроустановки составляет 9,21мА. Для защиты от токов утечки можно использовать УЗО с номиналом тока утечки 27,63мА, что округляется до ближайшего большего значения существующих номиналов по диф. току, а именно УЗО 30мА.

Следующим шагом, является определение рабочего тока УЗО. При указанном выше максимальном токе, потребляемым электроплитой, можно использовать номинал (с небольшим запасом) УЗО 25А, или с большим запасом — УЗО 32А.

Таким образом мы расчетно определили номинал УЗО, которое можно использовать для защиты электроплиты: УЗО 25А 30мА или УЗО 32А 30мА. (надо не забыть защитить УЗО автоматическим выключателем 25А для первого номинала УЗО и 25А или 32А для второго номинала).

Обозначение УЗО.

На схеме УЗО обозначается следующим образом рис. 1 однофазное УЗО, рис. 2 -трехфазное УЗО.

Схема подключения УЗО.

Схема подключения УЗО рассмотрим на примере. На фото. 1 показан фрагмент распределительного шкафа.

Фото. 1 Схема подключения трехфазного УЗО с автоматическим выключателем (на фото цифра1 УЗО, 2- автоматический выключатель) и однофазных УЗО (3).

УЗО не защищает от токов короткого замыкания, поэтому его устанавливают в паре с автоматическим выключателем. Что ставить раньше УЗО или автоматический выключатель в данном случае не принципиально. Номинал УЗО должен быть равным или немного больше наминала автоматическо выключателя. Например, автоматический выключатель 16 Ампер, значит, УЗО ставим 16 или 25 А.

Как видно на фото. 1 на трехфазное УЗО (цифра 1) подходят три фазных и нулевой проводник, а после УЗО подключен автоматический выключатель (цифра 2). Потребитель будет подключаться: фазные проводники (красные стрелки) с автоматического выключателя; нулевой проводник (синяя стрелка) — с УЗО.

Под цифрой 3 на фото показаны дифференциальные автоматы, соединенные сборной шиной, принцип работы диф. автомата такой же, как у УЗО, но он дополнительно защищает от токов короткого замыкания и не требует дополнительной защита от КЗ.

А подключение, что у УЗО, что у диф. автоматов одинаковое.

Подключаем к клемме L фазу, к N ноль (обозначения нанесены на корпусе УЗО). Потребители подключаются также.

Схема УЗО в квартире.

Ниже приведена схема использования УЗО в квартире, для дополнительной защиты от поражения электрическим током.

Рис. 1 Схема УЗО в квартире.

В данном случае УЗО ставится до счетчика, на всю группу автоматических выключателей, чем обеспечивается дополнительная защита от поражения электрическим током и возникновения пожара.

Обозначение узо на схеме по госту

Очень часто неопытные электрики и домашние мастера не знают, как определить, что стоит в щитке – УЗО или дифавтомат. В результате ошибочно можно думать, что электропроводка защищена от перегрузок и утечки тока, хотя на самом деле, от первой небезопасной ситуации защита не предусмотрена, т.к. в щитке стоит обычное устройство защитного отключения. В этой статье мы не только рассмотрим функциональное отличие между двумя этими аппаратами, но и расскажем, как отличить УЗО от дифавтомата визуально.

  • Различие по функциям
  • Визуальная разница

Различие по функциям

Вкратце расскажем, чем устройство защитного отключения отличается от дифференциального автоматического выключателя. Все достаточно просто:

  • УЗО срабатывает только тогда, когда в цепи обнаруживается ток утечки.
  • Дифавтомат включается в себя функции устройства защитного отключения + автоматического выключателя. Итого, дифференциальный автомат срабатывает не только во время утечки тока, но и при коротком замыкании, а также перегрузки сети.
  • В этом основное функциональное отличие между двумя аппаратами. Узнать, что лучше поставить УЗО или дифавтомат, вы можете в нашей соответствующей статье. Сейчас мы расскажем, как по внешнему виду отличить их.

    Визуальная разница

    Сейчас на фото примерах мы будем наглядно показывать, как определить, что именно установлено в щитке. Всего мы расскажем о 4 явных признаках, которые вам нужно обязательно запомнить.

  • Смотрите, что написано на корпусе. Если конечно вы купили дешевую китайскую продукцию, вряд ли на боковой стенке или спереди будет написано, что это такое. Однако все отечественные аппараты, и даже некоторые зарубежные изделия имеют на корпусе четкое обозначение – «выключатель дифференциальный» (он же УЗО) или «автоматический выключатель дифференциального тока» (он же диффавтомат). Этот способ неудобен тем, что для того, чтобы отличить изделия, которые установлены рядом друг с другом, придется снять их с DIN-рейки, иначе название будет закрыто.
  • Еще раз обратите внимание на название. Да, маркировка тоже дает четко понятие о том, что установлено в щитке. Согласно написанному в п.1 полному названию устройств можно понять, что такое «ВД», а что такое «АВДТ». Недостаток этого способа определения – на зарубежных аппаратах может не быть отечественной аббревиатуры, как, к примеру, на продукции Legrand.
  • Смотрим на характеристики. Как на УЗО, так и на дифференциальном автомате, технические характеристики обозначены в виде цифр и букв. Так вот, если вы увидите цифру, а после нее букву «А», к примеру, 16А или 25А, это значит, что в щитке установлено УЗО, на котором обозначен номинальный ток. Если же на корпусе обозначена буква, а потом цифра, к примеру, C16, значит это АВДТ. Буква «С» в этом случае обозначает тип время-токовой характеристики. Подробнее о технических характеристиках автоматических выключателей вы можете узнать в соответствующей статье. Вот по этой методике можно запросто отличить аппараты. На фото ниже еще раз дублируем это правило:
  • Смотрим на схему. Ну и последний, так сказать, контрольный способ, позволяющий отличить УЗО и дифавтомат – посмотреть на схему.

    На схеме дифференциального автомата будут дополнительно обозначены тепловой и электромагнитный расцепитель, которые отсутствуют на схеме выключателя дифференциального. Это отличие тоже является весомым при определении устройства.

  • Основные различия

    Вот мы и предоставили инструкцию для молодых электриков и домашних мастеров. Как вы видите, на самом деле ничего сложного нет, а различие между устройством защитного отключения и дифференциальным автоматом достаточно весомое. Надеемся, теперь вы знаете, как отличить УЗО от дифавтомата визуально!

    Устройство защитного отключения (УЗО) относится к виду выключающих устройств, в основе работы которого лежит автоматическое отключение электросети или ее части, при достижении или превышении определённой отметки дифференциального тока. Его использование в значительной степени повышает электробезопасность потребителя, а также предотвращает возникновение чрезвычайных происшествий, как в домашних условиях, так и на производстве.
    Тем не менее, несмотря на то, что схема включения УЗО на первый взгляд кажется простой, даже малейшие недочёты при подключении могут нанести довольно серьёзный урон. Как не превратить средство защиты в источник неприятностей? Ответ на этот вопрос Вы сможете найти в данной статье.

    Перед тем, как углубиться в вопросы, касающиеся схемы установки УЗО , рассмотрим особенности этих устройств, а также основные требования к ним, на основе которых производится их выбор. В данной статье мы не коснёмся индексации, так как углубление в неё требует серьёзных знаний в области электротехники, а также эта надобность отпадает в связи с тем, что выбор защитного устройства будет совершен исключительно на основе исходных данных. Для этого необходимо выполнить несколько пунктов:

    • Продумать о необходимости подключения отдельного УЗО с автоматом или дифавтомата.
    • Определиться с номинальным током устройства. Для автомата актуально значение данного тока выбирать на одну ступень выше данных тока отсечки, в том же случае, если используется дифавтомат, то указываемое значение должно быть равно току отсечки.
    • С помощью простого расчёта вычислить значение отсечки по экстратоку (перегрузке). Для его расчёта необходимо знать максимально допустимый ток потребления, а затем умножить полученное значение на 1,25. Далее необходимо отталкиваться от таблицы значений стандартного ряда токов. Если результат отличен он указанных параметров, то он округляется в большую сторону.
    • Определить допустимый ток утечки. В обычных устройствах он равен 30 или 100 мА, но бывают и исключения. Выбор будет зависеть от типа проводки.

    Если необходимо использование «пожарного» УЗО, то следует определиться с типом и расположением вторичных «жизненных» устройств.

    Устройство УЗО

    Обозначение УЗО на однолинейной схеме

    Говоря о схемах и проектах, очень важно уметь их правильно прочитать. Как правило, изображение УЗО на графической и проектной документации зачастую выполнено условно, наряду с другими элементами. Это несколько затрудняет понимание принципов работы схемы и отдельных её компонентов в частности. Условное изображение устройства защиты можно сравнить с изображением обычного выключателя, с той лишь разницей, что элемент на нелинейной схеме представлен в виде двух параллельно поставленных выключателей. На однолинейной схеме полюса, провода и элементы не прорисовываются визуально, а изображаются символически.

    Этот момент подробно продемонстрирован на рисунке снизу. На нём изображено двухполюсное УЗО с током утечки 30 мА. На это указывает расположенная в верхней части цифра «2». Около неё можно увидеть пересекающую линию питания косую черту. Двухполюсность устройства дублируется и в нижней части схематического изображения элемента, в качестве двух косых чёрточек.

    Обозначение УЗО на однолинейной схеме

    Разберём типовую схему «квартирного» подключения защитного устройства с учётом наличия счётчика на примере, приведённом на рисунке снизу. Ознакомившись более детально с принципом подключения, можно сделать вывод об оптимальном расположении УЗО, которое должно быть максимально приближенно к вводу. Это должно быть осуществлено таким образом, что бы между ними были расположены счётчик и главный автомат. Тем не менее, существует несколько ограничительных нюансов. Так, например, общее устройство защиты не может быть подключено к системе типа TN-C в связи с её принципиальными особенностями. Устаревший образец советских времён имеет защитный проводник, который напрямую соединён с нейтралью, что и становится причиной «несовместимости».

    Устройство защитного отключения, представляющее собой устаревший образец советских времён с защитным проводником, соединённым с нейтралью, не представляет возможным подключить к ней общее устройство защиты.

    Это лучший пример того, как подключить УЗО с заземлением . Схема также имеет желтые полосы, демонстрирующие принцип подключения дополнительных защитных аппаратов для групп потребителей, которые схематически должны быть расположены за соответствующими им автоматами. При этом номинальный ток каждого вторичного устройства на пару ступней превышает показатель назначенного ему автомата.

    Но всё это характерно для современной электропроводки, с учётом наличия «земли».

    Типовая схема УЗО на примере «квартирной» электросети

    Чтобы в дальнейшем более детально познакомиться с основами УЗО, обозначение на схеме необходимо выучить или по мере изучения статьи возвращаться к ней.

    Подключение УЗО без заземления. Схема и особенности

    Отсутствие контуров заземления в домах – ситуация распространённая, требующая больших усилий и знаний, ведь придётся вспомнить основы электродинамики, но она не является приговором. Главное следовать четырём обобщённым правилам:

    • Проводка типа TN-C не допускает установку дифавтомата или общего УЗО.
    • Следует определить потенциально опасных потребителей и защитить их дополнительным отдельным устройством.
    • Следует выбрать кратчайший «электрический» путь для защитных проводников розеток и розеточных групп на входную нулевую клемму УЗО.
    • Каскадное подключение защитных аппаратов допустимо при условии, что ближайшие к электровводу УЗО являются менее чувствительными, чем оконечные.

    Многие, даже дипломированные, электрики, забыв или банально не зная принципы электродинамики, не задумываются о том, как подключить УЗО без заземления. Схема, предлагаемая ими, выглядит обычно так: ставится общее устройство защиты, а затем все PE (нулевые защитные проводники) заводятся на входной ноль УЗО. С одной стороны, здесь без сомнения видна разумная логическая цепочка, ведь на защитном проводнике не будет происходить коммутация. Но всё гораздо сложнее.

    • В обмотке может произойти кратковременный всплеск тока, компенсирующий разбаланс токов в фазе и нуле, называемый «Анти-дифференциальным» эффектом. Возникает он довольно редко.
    • Более распространённым вариантом является неконтролируемое усиление разбаланса токов, называемое «Супер-дифференциальным» эффектом. Возникновение подобной ситуации заставляет срабатывать устройство защиты без свойственной ему утечки. Тем не менее, это не вызовет серьёзных сбоев или поломок, а лишь принесёт определённый дискомфорт при постоянном «выбивании».

    Сила «эффектов» зависит от длины РЕ. Если его длина превышает два метра, то вероятность несрабатывания УЗО достигает вероятности 1 к 10000. Числовой показатель довольно мал, тем не менее, теория вероятности вещь практически непредсказуемая.

    Схема подключения УЗО в однофазной сети

    Так как в квартирах зачастую используется однофазное подключение сети. В данном случае в качестве защиты оптимально выбирать однофазные двухполюсные УЗО. Существует несколько вариантов схемы подключения для данного устройства, но мы рассмотрим наиболее распространённую, показанную на рисунке ниже.

    Подключение аппарата довольно простое. В паспорте и на приборе указана основная маркировка и точки подключения фазы (L) и нуля (N). На схеме изображены вторичные автоматы, но их установка не является обязательной. Они нужны для распределения подключаемых бытовых приборов и освещения по группам. Таким образом, проблемный участок никак не затронет остальные части или комнаты квартиры. При этом важно учитывать, что установка максимально допустимых токов на автоматах не должна превышать настроек УЗО. Это объясняется отсутствием в устройстве ограничения по току. Внимательно следует отнестись и к подключению фазы с нулём. Невнимательность может привести не только к отсутствию питания микросхемы, но и к поломке устройства защиты.

    Схема включения УЗО в однофазной сети, по мнению специалистов, должна располагаться в непосредственной близости со счетчиком электрической энергии (рядом с источником электропитания)

    Схема подключения УЗО в однофазной сети

    Ошибки и их последствия при подключении УЗО

    Как и любая электрическая схема, схематическое изображение подключения защитного устройства в общую сеть, должно быть составлено, как и прочитано в дальнейшем, без малейших изъянов. Даже самый скромный недочёт может привести к неисправной работе системы в целом или самого УЗО, в то время как серьёзные отклонения могут принести довольно серьёзный ущерб. Ошибки могут быть допущены самые разные, но среди них можно выделить ряд наиболее распространённых:

    • Нейтраль и заземление соединяются после УЗО. В данном случае можно неверно интерпретировать схему, соединив нулевой рабочий проводник , с открытой частью электроустановки или с нулевым защитным проводником. В обоих случаях итог будет идентичен.
    • УЗО может быть подключено неполнофазно. Допущение такой ошибки приведёт к ложному срабатыванию, возникающему, из-за того, что до УЗО нагрузка была подключена к нулевому рабочему проводнику.
    • Пренебрежение правилами соединения в розетках нулевого и заземляющего проводника. Проблема кроется в процессе установки розеток, в котором допускается соединение защитного и нулевого рабочего проводников. При этом устройство будет срабатывать даже тогда, когда в розетку ничего не подключено.
    • Объединение нулей в схеме с двумя устройствам защиты. Распространённой ошибкой является неправильное соединение в зоне защиты нулевых проводников обоих УЗО. Она допускается из-за невнимательности и неудобства электромонтажа внутри стеновой панели. Оплошность приведёт к неконтролируемым выключениям устройств.
    • Применение двух или более УЗО усложняют работу по подключению нулевых проводов. Последствия невнимательности могут быть довольно серьёзными. Не поможет и тестирование, так как при нём работа устройства не вызовет никаких нареканий. Но первое же подключение электроприборов может вызвать ошибку и срабатывание всех УЗО.
    • Невнимательность при подключении фазы и нуля, если они взяты с разных УЗО. Проблема возникает при соединении нагрузки с нулевым проводником, относящимся к другому устройству защиты.
    • Несоблюдение полярности подключения, что выражается в подключении фазы и нуля, соответственно сверху и снизу. Это спровоцирует движение токов в одном направлении, вследствие чего создаются условия для невозможности взаимокомпенсации магнитных потоков. Это говорит о том, что перед покупкой нового УЗО следует внимательно изучить принцип подключения старого, так как расположение клемм может быть отличным.
    • Пренебрежение деталями при подключении трехфазного УЗО. Распространённой ошибкой в подключении четырёхполюсного УЗО является использование клемм одноимённой фазы. Тем не менее, работа однофазных потребителей никак не повлияет на работу такого защитного устройства.

    Чтение схем невозможно без знания условных графических и буквенных обозначений элементов. Большая их часть стандартизована и описана в нормативных документах. Большая их часть была издана еще в прошлом веке а новый стандарт был принят только один, в 2011 году (ГОСТ 2-702-2011 ЕСКД. Правила выполнения электрических схем), так что иногда новая элементная база обозначается по принципу «как кто придумал». И в этом сложность чтения схем новых устройств. Но, в основном, условные обозначения в электрических схемах описаны и хорошо знакомы многим.

    На схемах используют часто два типа обозначений: графические и буквенные, также часто проставляют номиналы. По этим данным многие сразу могут сказать как работает схема. Этот навык развивается годами практики, а для начала надо уяснить и запомнить условные обозначения в электрических схемах. Потом, зная работу каждого элемента, можно представить себе конечный результат работы устройства.

    Для составления и чтения различных схем обычно требуются разные элементы. Типов схем есть много, но в электрике обычно используются:


    Есть еще много других видов электрических схем, но в домашней практике они не используются. Исключение — трасса прохождения кабелей по участку, подвод электричества к дому. Этот тип документа точно понадобится и будет полезным, но это больше план, чем схема.

    Базовые изображения и функциональные признаки

    Коммутационные устройства (выключатели, контакторы и т.д.) построены на контактах различной механики. Есть замыкающий, размыкающий, переключающий контакты. Замыкающий контакт в нормальном состоянии разомкнут, при переводе его в рабочее состояние цепь замыкается. Размыкающий контакт в нормальном состоянии замкнут, а при определенных условиях он срабатывает, размыкая цепь.

    Переключающий контакт бывает двух и трех позиционным. В первом случае работает то одна цепь, то другая. Во втором есть нейтральное положение.

    Кроме того, контакты могут выполнять разные функции: контактора, разъединителя, выключателя и т.п. Все они также имеют условное обозначение и наносятся на соответствующие контакты. Есть функции, которые выполняют только подвижные контакты. Они приведены на фото ниже.

    Основные функции могут выполнять только неподвижные контакты.

    Условные обозначения однолинейных схем

    Как уже говорили, на однолинейных схемах указывается только силовая часть: УЗО, автоматы, дифавтоматы, розетки, рубильники, переключатели и т.д. и связи между ними. Обозначения этих условных элементов могут использоваться в схемах электрических щитов.

    Основная особенность графических условных обозначений в электросхемах в том, что сходные по принципу действия устройства отличаются какой-то мелочью. Например, автомат (автоматический выключатель) и рубильник отличаются лишь двумя мелкими деталями — наличием/отсутствием прямоугольника на контакте и формой значка на неподвижном контакте, которые отображают функции данных контактов. Контактор от обозначения рубильника отличает только форма значка на неподвижном контакте. Совсем небольшая разница, а устройство и его функции другие. Ко всем этим мелочам надо присматриваться и запоминать.

    Также небольшая разница между условными обозначениями УЗО и дифференциального автомата. Она тоже только в функциях подвижных и неподвижных контактов.

    Примерно так же обстоит дело и с катушками реле и контакторов. Выглядят они как прямоугольник с небольшими графическими дополнениями.

    В данном случае запомнить проще, так как есть довольно серьезные отличия во внешнем виде дополнительных значков. С фотореле так совсем просто — лучи солнца ассоциируются со стрелками. Импульсное реле — тоже довольно легко отличить по характерной форме знака.

    Немного проще с лампами и соединениями. Они имеют разные «картинки». Разъемное соединение (типа розетка/вилка или гнездо/штепсель) выглядит как две скобочки, а разборное (типа клеммной колодки) — кружочки. Причем количество пар галочек или кружочков обозначает количество проводов.

    Изображение шин и проводов

    В любой схеме приличествуют связи и в большинстве своем они выполнены проводами. Некоторые связи представляют собой шины — более мощные проводниковые элементы, от которых могут отходить отводы. Провода обозначаются тонкой линией, а места ответвлений/соединений — точками. Если точек нет — это не соединение, а пересечение (без электрического соединения).

    Есть отдельные изображения для шин, но они используются в том случае, если надо графически их отделить от линий связи, проводов и кабелей.

    На монтажных схемах часто необходимо обозначить не только как проходит кабель или провод, но и его характеристики или способ укладки. Все это также отображается графически. Для чтения чертежей это тоже необходимая информация.

    Как изображают выключатели, переключатели, розетки

    На некоторые виды этого оборудования утвержденных стандартами изображений нет. Так, без обозначения остались диммеры (светорегуляторы) и кнопочные выключатели.

    Зато все другие типы выключателей имеют свои условные обозначения в электрических схемах. Они бывают открытой и скрытой установки, соответственно, групп значков тоже две. Различие — положение черты на изображении клавиши. Чтобы на схеме понимать о каком именно типе выключателя идет речь, это надо помнить.

    Есть отдельные обозначения для двухклавишных и трехклавшных выключателей. В документации они называются «сдвоенные» и «строенные» соответственно. Есть отличия и для корпусов с разной степенью защиты. В помещения с нормальными условиями эксплуатации ставят выключатели с IP20, может до IP23. Во влажных комнатах (ванная комната, бассейн) или на улице степень защиты должна быть не ниже IP44. Их изображения отличаются тем, что кружки закрашены. Так что их отличить просто.

    Есть отдельные изображения для переключателей. Это выключатели, которые позволяют управлять включением/выключением света из двух точек (есть и из трех, но без стандартных изображений).

    В обозначениях розеток и розеточных групп наблюдается та же тенденция: есть одинарные, сдвоенные розетки, есть группы из нескольких штук. Изделия для помещений с нормальными условиями эксплуатации (IP от 20 до 23) имеют неокрашенную середину, для влажных с корпусом повышенной защиты (IP44 и выше) середина тонируется темным цветом.

    Условные обозначения в электрических схемах: розетки разного типа установки (открытого, скрытого)

    Поняв логику обозначения и запомнив некоторые исходные данные (чем отличается условное изображение розетки открытой и скрытой установки, например), через некоторое время вы уверенно сможете ориентироваться в чертежах и схемах.

    Светильники на схемах

    В этом разделе описаны условные обозначения в электрических схемах различных ламп и светильников. Тут ситуация с обозначениями новой элементной базы лучше: есть даже знаки для светодиодных ламп и светильников, компактных люминесцентных ламп (экономок). Неплохо также что изображения ламп разного типа значительно отличаются — перепутать сложно. Например, светильники с лампами накаливания изображают в виде кружка, с длинными линейными люминесцентными — длинного узкого прямоугольника. Не очень велика разница в изображении линейной лампы люминесцентного типа и светодиодного — только черточки на концах — но и тут можно запомнить.

    В стандарте есть даже условные обозначения в электрических схемах для потолочного и подвесного светильника (патрона). Они тоже имеют довольно необычную форму — круги малого диаметра с черточками. В общем, в этом разделе ориентироваться легче чем в других.

    Элементы принципиальных электрических схем

    Принципиальные схемы устройств содержат другую элементную базу. Линии связи, клеммы, разъемы, лампочки изображаются также, но, кроме того, присутствует большое количество радиоэлементов: резисторов, емкостей, предохранителей, диодов, тиристоров, светодиодов. Большая часть условных обозначений в электрических схемах этой элементной базы приведена на рисунках ниже.

    Более редкие придется искать отдельно. Но в большинство схем содержит эти элементы.

    Буквенные условные обозначения в электрических схемах

    Кроме графических изображений элементы на схемах подписываются. Это также помогает читать схемы. Рядом с буквенным обозначением элемента часто стоит его порядковый номер. Это сделано для того чтобы потом легко было найти в спецификации тип и параметры.

    В таблице выше приведены международные обозначения. Есть и отечественный стандарт — ГОСТ 7624-55. Выдержки оттуда с таблице ниже.

    Условное обозначение дифференциального автомата на схеме

    Обозначение дифференциального автомата на схеме

    Условное обозначение узо на схеме

    Ни один человек, каким бы талантливым и смекалистым он не был, не сможет научиться понимать электрические чертежи без предварительного знакомства с условными обозначениями, которые используются в электромонтаже практически на каждом шагу. Опытные специалисты утверждают, что шанс стать настоящим профессионалом своего дела может быть только у того электрика, которые досконально изучил и усвоил все общепринятые обозначения, используемые в проектной документации.

    Приветствую всех друзья на сайте «Электрик в доме». Сегодня я бы хотел уделить внимание одному из первоначальным вопросов, с которым сталкиваются все электрики перед монтажом — это проектная документация объекта.

    Кто то составляет ее сам, кому то предоставляет заказчик. Среди множества этой документации можно встретить экземпляры, в которых встречаются различия между условными обозначениями тех или иных элементов. Например в разных проектах один и тот же коммутационный аппарат графически может отображаться по разному. Встречалось такое?

    Понятно, что обсудить обозначение всех элементов в пределах одной статьи невозможно, поэтому тема данного урока будет сужена, и сегодня обсудим и рассмотрим, как выполняется обозначение узо на схеме .

    Каждый начинающий мастер обязан внимательно ознакомиться с общепринятыми ГОСТами и правилами маркировки электрических элементов и оборудования на план-схемах и чертежах. Многие пользователи могут со мной не согласится, аргументируя это тем, что зачем мне знать ГОСТ, я всего лишь занимаюсь установкой розеток и выключателей в квартирах. Схемы должны знать инженера проектировщики и профессора в университетах.

    Уверяю вас это не так. Любой уважающий себя специалист обязан не только понимать и уметь читать электрические схемы. но и должен знать, как графически отображаются на схемах различные коммуникационные аппараты, защитные устройства, приборы учета, розетки и выключатели. В общем, активно применять проектную документацию в своей повседневной работе.

    Обозначение узо на однолинейной схеме

    Основные группы обозначений УЗО (графические и буквенные) используются электромонтерами очень часто. Работа по составлению рабочих схем, графиков и планов требует очень большой внимательности и аккуратности, так как одно-единственное неточное указание или пометка могу привести к серьезной ошибке в дальнейшей работе и стать причиной выхода из строя дорогостоящего оборудования.

    Кроме того, неверные данные могут ввести в заблуждение сторонних специалистов, привлеченных для электромонтажа и стать причиной возникновения сложностей при монтаже электрических коммуникаций.

    В настоящее время любое обозначение узо на схеме может быть представлено двумя способами: графическим и буквенным .

    На какие нормативные документы следует ссылаться?

    Из основных документов для электрических схем, которые ссылаются на графическое и буквенное обозначение коммутационных устройств можно выделить следующие:

    1. — ГОСТ 2.755-87 ЕСКД «Обозначения условные графические в электрических схемах устройства коммутационные и контактные соединения»;
    2. — ГОСТ 2.710-81 ЕСКД «Обозначения буквенно-цифровые в электрических схемах».

    Графическое обозначение УЗО на схеме

    Итак, выше я представил основные документы, по которым регулируется обозначения в электрических схемах. Что нам дают указанные ГОСТы по изучению нашего вопроса? Мне стыдно признаться, но абсолютно ничего. Дело в том, что на сегодняшний день в данных документах отсутствует информация о том, как должно выполняться обозначение узо на однолинейной схеме.

    Действующий на сегодня ГОСТ никаких особых требований к правилам составления и использования графических обозначений УЗО не выдвигает. Именно поэтому некоторые электромонтеры предпочитают использовать для маркировки определенных узлов и устройств свои собственные наборы значений и меток, каждая из которых может несколько отличаться от привычных нашему взгляду значений.

    Для примера давайте рассмотрим, какие обозначения наносятся на корпусе самих устройств. Устройство защитного отключения фирмы hager:

    Или к примеру УЗО от Schneider Electric:

    Чтобы избежать путаницы, предлагаю Вам совместно разработать универсальный вариант обозначений УЗО, которым можно руководствоваться практически в любой рабочей ситуации.

    По своему функциональному назначению устройство защитного отключения можно описать так – это выключатель, который при нормальной работе способен включать/отключать свои контакты и автоматически размыкать контакты при появлении тока утечки. Ток утечки это дифференциальный ток, возникающий при ненормальной работе электроустановки. Какой орган реагирует на дифференциальный ток? Специальный датчик — трансформатор тока нулевой последовательности.

    Если представить все вышеописанное в графической форме, то получается что условное обозначение УЗО на схеме можно представить в виде двух второстепенных обозначений — выключателя и датчика реагирующего на дифференциальный ток (трансформатора тока нулевой последовательности) который воздействует на механизм отключения контактов.

    В этом случае графическое обозначение узо на однолинейной схеме будет выглядеть так.

    Как обозначается дифавтомат на схеме?

    По поводу обозначений дифавтоматов в ГОСТ на данный момент тоже нет данных. Но, исходя из вышеизложенной схемы, дифавтомат графически также можно представить в виде двух элементов — УЗО и автоматического выключателя. В этом случае графическое обозначение дифавтомата на схеме будет выглядеть так.

    Буквенное обозначение узо на электрических схемах

    Любому элементу на электрических схемах присваивается не только графическое обозначение, но и буквенное с указанием позиционного номера. Такой стандарт регулируется ГОСТ 2.710-81 «Обозначения буквенно-цифровые в электрических схемах» и обязателен для применения ко всем элементам в электрических схемах.

    Так, например, согласно ГОСТ 2.710-81 автоматические выключатели принято обозначать путем специального буквенно-цифрового позиционного обозначения таким образом: QF1, QF2, QF3 и т.д. Рубильники (разъединители) обозначаются как QS1, QS2, QS3 и т.д. Предохранители на схемах обозначаются как FU с соответствующим порядковым номером.

    Аналогично, как и с графическими обозначениями, в ГОСТ 2.710-81 нет конкретных данных, как выполнять буквенно-цифровое обозначение УЗО и дифференциальных автоматов на схемах .

    Как быть в таком случае? В этом случае многие мастера используют два варианта обозначений.

    Первый вариант воспользоваться самым удобным буквенно-цифровым обозначением Q1 (для УЗО) и QF1 (для АВДТ), которые обозначают функции выключателей и указывают на порядковый номер аппарата, находящегося в схеме.

    То есть кодировка буквы Q означает – «выключатель или рубильник в силовых цепях», что вполне может быть применима к обозначению УЗО.

    Кодовая комбинация QF расшифровывается как Q – «выключатель или рубильник в силовых цепях», F – «защитный», что вполне может быть применима не только к обычным автоматам, но и к диф.автоматам.

    Второй вариант это использовать буквенно-цифровую комбинацию Q1D — для УЗО и комбинацию QF1D — для дифференциального автомата. По приложению 2 таблицы 1 ГОСТ 2.710 функциональное значение буквы D означает – « дифференцирующий ».

    Я очень часто встречал на реальных схемах такое обозначение QD1 – для устройств защитного отключения, QFD1 – для дифференциальных автоматов.

    Какие можно сделать выводы из вышеописанного?

    Ввиду того что обозначение УЗО и дифференциальных автоматов по ГОСТ отсутствует, информация рассмотренная в данной статье, не относится к нормативным документам обязательным для исполнения, а является всего лишь РЕКОМЕНДАЦИЕЙ. Каждый проектировщик может изображать на схемах эти элементы по своему усмотрению. Для этого нужно всего лишь привести условно графические обозначения (УГО) элементов, их расшифровку и пояснения к схеме. Все эти действия предусматриваются в ГОСТ 2.702-2011.

    Как обозначается узо на однолинейной схеме — пример реального проекта

    Как говорится в известной пословице «лучше один раз увидеть, чем сто раз услышать», поэтому давайте рассмотрим на реальном примере.

    Предположим, что перед нами находится однолинейная схема электроснабжения квартиры. Из всех этих графических обозначение можно выделить следующее:

    Вводное устройство защитного отключения расположено сразу после счетчика. Кстати как вы могли заметить буквенное обозначение УЗО – QD. Еще один пример как обозначается узо:

    Заметьте, что на схеме помимо УГО элементов также наносится их маркировка, то есть: тип устройства по роду тока (А, АС), номинальный ток, дифференциальный ток утечки, количество полюсов. Далее переходим к УГО и маркировке дифференциальных автоматов:

    Розеточные линии на схеме подключаются через диф.автоматы. Буквенное обозначение дифавтомата на схеме QFD1, QFD2, QFD3 и т.д.

    Еще один пример как обозначаются диф.автоматы на однолинейной схеме магазина.

    Вот и все дорогие друзья. На этом наш сегодняшний урок подошел к концу. Надеюсь, данная статья была для вас полезной и Вы нашли здесь ответ на свой вопрос. Если остались вопросы задавайте их в комментариях, с удовольствием отвечу. Давайте делиться опытом, кто как обозначает УЗО и АВДТ на схемах. Буду признателен на репост в соц.сетях))).

    В данной статье рассмотрены несколько примеров подключения УЗО и Дифференциальных автоматов.

    Основным условием при выборе УЗО и диф. автомата является соблюдение селективности ( ПУЭ.РАЗДЕЛ 3 ):

    В электротехнике под «селективностью» понимают совместную работу последовательно включенных аппаратов защиты электрических цепей (автоматические выключатели, УЗО, диф. автомат и т.п.) в случае возникновения аварийной ситуации. На рис. 1 привёден пример работы такой схемы, с учётом общего наминала автоматических выключателей 40 А (4шт. по 10А), вводный автомат 63 А.

    Селективность используется при выборе номинала устройств защиты для отключения от общей системы питания только той ее части, где произошла авария. Это достигается за счет срабатывания только того автоматического выключателя, который защищает аварийную линию питания.

    Во общем, для селективной работы автоматических выключателей при перегрузках нужно, чтобы номинальный ток (In) автоматического выключателя со стороны питания был больше In автоматического выключателя со стороны потребителей.

    Условное обозначение УЗО и дифавтомата на электрических схемах:

    Обозначение УЗО на принципиальных электрических схемах см. рис. 2. Слева – однофазное УЗО с током срабатывания 30 мА, справа – трехфазное УЗО на 100 мА. Сверху развернутое изображение, снизу однолинейное. Число полюсов при однолинейном представлении можно изображать и числом (вверху) и числом черточек. Условное обозначение Дифавтомата на принципиальных схемах см. рис. 3 и на однолинейных схемах рис. 4. Буквенное обозначение QF.

    Схемы включения УЗО:

    По конструкции УЗО различных производителей могут отличаться друг от друга не только параметрами, но и схемами подключения. На рис. 5 приведены наиболее распространенные схемы включения УЗО в различных вариантах:

    Двухполюсные УЗО Рис. 5 (а).

    Четырехполюсные УЗО, в которых резистор, имитирующий дифференциальный ток, подключен в фазное напряжение (Рис. 5 (б).

    Четырехполюсные УЗО, в которых резистор, имитирующий дифференциальный ток, подключен на линейное напряжение (Рис. 5 (в).

    При включении УЗО (дифавтомата) в любом случае смотрите схему, схема подключения приведена на лицевой или боковой поверхности корпуса УЗО, а также в паспорте технического устройства.

    Ниже приведены монтажные схемы подключения УЗО (Рис. 6) и дифавтомата (Рис. 7).

    1. Вводный автомат.
    2. Прибор учёта (электросчетчик).
    3. УЗО или дифавтомат.
    4. Автоматический выключатель (освещения, как правило 6 ÷ 10 А, в зависимости от нагрузки светильников).
    5. Автоматический выключатель (розетки, как правило 16 ÷ 25 А, в зависимости от группы розеток).
    6. Автоматический выключатель (розетка «силовая», 16 ÷ 25 А, в зависимости от нагрузки электроплиты).
    7. Нулевая рабочая N — шина.
    8. Нулевая защитная РЕ — шина.

    Более подробно про системы заземления и зануления см. в разделе

    сайт энергетик, тоэ, формулы, электрика, заземление и т.д.

    Сходство и различия УЗО и дифференциального автоматического выключателя

    • Одинаковый принцип контроля тока утечки – с использованием дифференциального трансформатора тока
    • Одинаковый способ защиты персонала – путем отключения от электрической сети всех рабочих проводников, подходящих к электроустановке с использованием высоконадежного механического расцепителя с мощной контактной группой и механизмом взвода отключающих пружин с индикатором положения.
    • Одинаковый способ проверки работоспособности – путем искусственно создаваемого дифференциального тока с использованием специальной электрической цепи тестирования.
    • Наличие только у УЗО ( дифференциального выключателя ) чувствительного элемента, который не имеет собственного потребления электроэнергии и поэтому всегда сохраняет работоспособность.

    У дифференциального автомата этот чувствительный элемент представляет собой электронное пороговое устройство с источником питания, которое может потерять работоспособность при выходе из строя электронных компонентов, а также при обрыве фазного или нулевого проводника до места установки дифференциального автомата.

    • Наличие только у дифференциального автомата встроенной защиты от перегрузок и всех видов тока короткого замыкания в электрической сети и поэтому наличие у него более мощных силовых контактов с системой дугогашения.

    В отличие от этого, последовательно с УЗО рекомендуется устанавливать автоматический выключатель с номинальным током расцепителя на ступень ниже, чем его номинальный ток, тем самым не допускается отключение токов однофазного короткого замыкания самим УЗО (на токи трехфазного и двухфазного короткого замыкания УЗО не реагирует).

    • Наличие только у дифференциального автомата электромагнита сброса, который надежно сдергивает защелку механизма независимого расцепления. Однако этот электромагнит также запитан от источника питания посредством электронного усилителя с пороговым устройством.

    У УЗО воздействие на механизм свободного расцепления осуществляет магнитоэлектрическая защелка, которая не имеет специального источника питания и поэтому всегда сохраняет работоспособность.

    Электрические схемы и условное графическое обозначение УЗО и дифференциального автомата

    Рис. 1. Дифференциальный выключатель (УЗО): а) электрические схемы б) условное графическое обозначение

    Рис. 2. Дифференциальный автомат: а) электрические схемы б) условное графическое обозначение

    Обозначение автоматического выключателя на схеме

    Для обустройства электроснабжения необходимы проекты чертежей. Чтобы разобраться в чертеже и прочитать его, нужно знать условные обозначения. Автоматический выключатель на схеме указывают по-разному, что часто приводит к недоразумениям, ошибкам при сборке электрощитов и монтаже проводки.

    Условные обозначение электрических элементов и виды схем

    Первоначальный вопрос, с которым обычно сталкивается каждый электрик, – проектная документация помещения или объекта, который необходимо электрифицировать. Прежде чем приступить к монтажу оборудования, квалифицированный специалист должен ознакомиться с сопровождающими документами.

    Оборудование и элементы на схеме могут обозначаться как буквенным, так и графическим изображением. Чертежи разрабатываются в соответствии с ГОСТами и правилами маркировки оборудования и элементов на чертежах и планах. Подробное описание и требования к электрическим схемам приводятся в ГОСТе 2.702-2011 ЕСКД. Кроме графических и буквенных обозначений на схемах проставляют номинальные размеры.

    Есть много типов различных схем. В электрике чаще всего используют три основных вида. Функциональные отображают основные узлы устройства, без подробной детализации. Они выглядят как набор отдельных блоков, связанных между собой определенным образом. Схема дает общее представление о работе объекта.

    Принципиальная схема содержит подробные указания для каждого элемента, его контакты и связи. Она может описывать как отдельное устройство, так и электросеть. На однолинейных схемах указывают силовые цепи. Способ управления и контроль описывают на отдельном листке. Если устройство не сложное, все размещают на одном документе.

    На монтажных схемах указывают элементы и точное их расположение. Если это проводка в квартире или доме, обозначают место установки выключателей, светильников, розеток. Также проставляют расстояния и номиналы. Указывают положение деталей, порядок и способ их соединения.

    Устройство защитного отключения (УЗО) и дифавтомат на схеме не имеют определенного геометрического начертания. Для их графического выполнения используют изображение блоков и динамических блоков. Каждому устройству на схеме присваивают буквенную маркировку и указывают позиционный номер.

    Кроме того, наносят параметры элементов, которые есть в чертеже. Расписывают основные данные об элементе, чтобы не ошибиться при монтаже и подобрать соответствующее устройство. Эти условные знаки применяют для составления чертежей электроснабжения, силового оборудования и электрического освещения. А также в принципиальной однолинейной схеме электрощитов.

    Обозначение автоматического выключателя на схеме

    Условное графическое обозначение автомата на схеме обусловлено ГОСТом 2.755-87 ЕСКД, буквенно-цифровое – ГОСТ 2.710-81 ЕСКД. Особых требований к маркировке нет, поэтому электромонтеры часто используют собственные значения и метки. Можно встретить документацию, когда определение коммутационного аппарата отличается в разных проектах.

    Каждый проектировщик, выполняя схему, может изобразить УЗО на свое усмотрение. Достаточно в пояснениях к схеме указать УГО (условные графические обозначения) и их расшифровку.

    В зависимости от характеристик устройства элементы имеют разные буквенные символы, а также следующие графические обозначения на электрических схемах.

    Автоматические выключатели рекомендуется позиционировать как, QF1, QF2, QF3. Рубильники разъединители – QS1,QS2,QS3. Предохранители на схемах показывают как FU с порядковым номером, где кодировка буквы Q расшифровывается как выключатель или рубильник силовых цепей, а F – защитный. Эта комбинация вполне применима не только к обычным автоматам, но может быть обозначением диф автомата на схеме.

    Для УЗО используют комбинацию QSD, обозначение дифференциального автомата на схеме выглядит как QFD.

    Обозначение УЗО на однолинейной схеме

    Это вид выключающего аппарата, в функции которого входит разъединение сети или ее части, когда произошло превышение определенной отметки дифференциального тока. Устройство способствует повышению электробезопасности, предотвращает возникновение чрезвычайных ситуаций, как в производственной сфере, так и дома. Схема подключения УЗО проста, но недочеты при монтаже могут привести к серьезным неприятностям.

    Так можно обозначить УЗО на принципиальной схеме.

    УЗО вместе с другими элементами в проектной документации чаще всего выполняют условно, что затрудняет расшифровку принципа работы как всей схемы, так и отдельно взятых элементов. Изображение защитного устройства может выглядеть как обычный выключатель. Но на нелинейной схеме он представляет собой два параллельно расположенных выключателя. На однолинейной – элементы, провода и полюса изображаются символически.

    Любое схематическое изображение должно быть правильно составлено, а в дальнейшем прочитано. Самый маленький изъян может привести к неисправности УЗО или всей системы. Важно учитывать следующие часто встречающиеся ошибки:

    • Ноль и заземление соединяются после защитного устройства. Если схема неправильно интерпретирована, нейтраль может быть соединена с открытой частью электроустановки или с нулевым защитным проводником.
    • Если устройство подключено неполнофазно, возникает ложное срабатывание автомата.
    • Неправильное соединение проводников в розетках приводит к срабатыванию устройства, даже если в розетку ничего не включено.
    • Соединение нулевых проводников двух автоматов приводит к неконтролированным отключениям.
    • Распространенной ошибкой является ситуация, когда перепутаны фазы и нули, относящиеся к разным устройствам.
    • Несоблюдение полярности ведет к движению токов в одном направлении. Перед установкой следует внимательно ознакомиться с расположением клемм.

    Всегда выполняется предварительная схема, с учетом возможных ошибок, происходящих в сети. Если документ составлен правильно, работа защитного устройства приносит эффект.

    Важно помнить о технике безопасности. Необходимо периодически проводить осмотр проводов, в случае их повреждения УЗО срабатывает и прекращается подача электроэнергии. Поэтому с ремонтом лучше не медлить.

    Пример реального проекта

    Однолинейная принципиальная схема (ОПС) не что иное, как чертеж плана, например, квартиры. На нем должны быть указаны распределительные группы. Для этого необходимо измерить все стены и выполнить чертеж с соблюдением масштаба. Понадобится несколько копий, что бы на каждой изобразить отдельную группу.

    Распределительные группы – это точки, которые будут подключены к одному автомату квартирного щитка. Всю проводку нельзя подключать к одной группе. В противном случае понадобится мощный кабель, который будет способен выдержать нагрузку всех приборов.

    В зависимости от количества комнат и наличия энергопотребляющих устройств распределительные группы могут выглядеть следующим образом.

    • освещение комнаты, прихожей и кухни;
    • свет и розетки в туалете;
    • розетки в жилой комнате;
    • розетки в коридоре и кухне;
    • электрическая плита.

    Помещения с повышенной влажностью рекомендуется подключать отдельной группой, для которой необходима установка УЗО. Если в квартире есть маленькие дети, защитное устройство подключают на каждую группу.

    Принципиальная, или однолинейная схема необходима для правильного подключения щитовой и распределительных групп.

    В данном примере отражено подключение к трехфазному питанию. Всю квартиру питает вводный кабель из 5 жил, сечением 10 мм2. Фазы пронумерованы, как L1, L2, L3, заземление – PE, которое замыкается с нолем. Вводный автомат (ВА) отключает все автоматы групп, которые маркируются таким же способом.

    Количество фаз определяется по количеству черточек на схеме. Однофазная – , или трехфазная – \. Маркировка провода ВВГ НГ говорит о том, что он с негорящей изоляцией, трехжильный с сечением 1,5 мм2.

    Чертеж дает возможность определиться с количеством и маркой нужных защитных устройств. Подсчитать число выключателей и розеток, а также, сколько метров кабеля потребуется.

    Все соединения проводов должны находиться в распределительных коробках. Рекомендуется для каждого помещения отдельная коробка. Если, например, в кухне располагается газовый котел и другие электроприборы, потребуются две распределительные коробки.

    Особых требований по установлению розеток и выключателей не существует. Их устанавливают так, чтобы было удобно. На кухне и на рабочем месте розетки размещают над столом.

    Стационарную бытовую технику, бойлеры, вытяжки, сушилку для полотенец подключают сразу через клеммники. Интернет и телевизионные розетки можно объединять с электрическими.

    Обозначение дифференциального автомата на схеме

    Дифференциальный автомат совмещает в одном аппарате устройство защитного отключения и автоматический выключатель, чем и отличается от УЗО. В этом случае графическое изображение на схеме выглядит следующим образом.

    Если для УЗО принимаются буквенно-цифровые обозначения Q1, то для АВДТ (автоматический выключатель дифференциального тока) – QF1. Буквы говорят о функциях аппарата, а цифры указывают на его порядковый номер в схеме. Другая буквенная комбинация QF1D, где D обозначает «дифференциальный».

    Основной характеристикой таких устройств является номинальный рабочий ток, при котором автомат остается включенным продолжительное время. Эти показатели строго стандартизированы, а ток может иметь значения: 6 Ампер; 10; 16; 25; 50 и т.д.

    Другая важная характеристика – это быстродействие. Токовый показатель обозначается буквами B, C, D, стоящими перед значением номинального тока. Например, комбинация C16, говорит, что автомат быстродействия C, рассчитан на номинальный ток в 16 Ампер.

    Дифференциальный допустимый показатель укладывается в следующий ряд: 10; 30; 100; 500 миллиампер. На корпусе прибора обозначается знаком «дельта» с цифрой, соответствующей току утечки.

    Эксплуатационные возможности автомата рассчитаны на номинальное напряжение в 220 Вольт для однофазной цепи и 380 для трехфазной.

    Дифавтоматы различают по типам, в зависимости от тока утечки и маркируются такими буквенными индексами:

    • A – реагирующие на утечку переменного или постоянного пульсирующего тока;
    • AC – рассчитанные на срабатывание при утечке с постоянной составляющей;
    • B – тип устройства, включающий обе предыдущие возможности.

    Эта характеристика может маркироваться небольшим рисунком, обозначающим вид тока.

    Устройства работают по селективному признаку, обладают способностью задержки по времени срабатывания. Это обеспечивает выборочное отключение прибора от сети и устойчивость системы защиты. Такая характеристика обозначается буквой S и дает задержку в 200–300 миллисекунд. Маркировка G соответствует 60–80 миллисекундам.

    Так как пусковые токи превышают рабочее значение, защита устроена так, что электромагнитный независимый расцепитель отключает устройство в том случае, когда ток в несколько раз превышает номинальный размер.

    В нормативных документах содержится много специальных шифров и знаков. Большая их часть в быту практически не применяется. Для правильного чтения электрической схемы нужно знать основные обозначения и учитывать некоторые нюансы. Один из них – страна производитель оборудования, кабелей или проводки, так как существует разница в маркировке и условных обозначениях, что затрудняет правильную трактовку чертежа.

    Обозначения в эл. схемах

    Обозначение УЗО и дифференциального автомата.

    На данный момент в ГОСТ нет каких либо рекомендаций относительно условных графических обозначений УЗО и дифференциальных автоматов. Изображения обозначений, которые используют в схемах отличаются друг от друга.

    По этому, в данной статье, я хочу дать свои рекомендации и предложить вариант обозначений УЗО и дифференциального автомата, который по моему мнению, будет соответствовать функциональному назначению этих электрических аппаратов.

    Функционально УЗО можно определить как быстродействующий выключатель, реагирующий на дифференциальный ток – ток утечки в проводниках, подводящих электроэнергию к защищаемой электроустановке. В качестве датчика дифференциального тока и основного функционального элемента УЗО используется трансформатор тока, который часто называют трансформатором тока нулевой последовательности (что не совсем правильно, но думаю приемлемо).

    Из выше сказанного следует что изображение условного обозначения УЗО, должно состоять из обозначения выключателя и трансформатора тока нулевой последовательности, сигнал от которого (ток нулевой последовательности), воздействует на механизм отключения контактной группы аппарата.

    Этому требованию подходят следующие обозначения:

    Дифференциальный автомат, отличается от УЗО тем, что совмещает в одном электрическом аппарате два устройства, автоматический выключатель и устройство защитного отключения. По этому можно использовать следующее обозначение:

    Буквенно-цифровое обозначение УЗО и дифференциальных автоматов, на мой взгляд, можно наносить на схеме следующим образом:

    Где Q1 и QF1 обозначают функции выключателя и автоматического выключателя соответственно и порядковый номер аппарата в схеме. Значение дифференциального тока, обозначает функцию устройства защитного отключения

    Второй вариант буквенно-цифрового обозначения, который часто применяется: QD1 для УЗО и QFD1 для дифференциального автомата. И хотя согласно ГОСТ 2.710 код буквы D обозначает схемы интегральные, более подходящего символа в данном ГОСТ нету. Будем считать, что D, от слова дифференциальный.

    Данный вариант условных графических обозначений УЗО и дифференциальных автоматов, до момента публикации каких либо рекомендаций в нормативных документах, на мой взгляд является наиболее приемлемым. Поэтому, я решил включить трафареты рассмотренных выше электрических аппаратов в Комплект для черчения электрических схем.

    Примеры подключения УЗО и Диф. автоматов

    Вернутся в раздел: УЗО и ДифзащитаЭлектрика

    В данной статье рассмотрены несколько примеров подключения УЗО и Дифференциальных автоматов.

    Основным условием при выборе УЗО и диф. автомата является соблюдение селективности ( ПУЭ.РАЗДЕЛ 3 ):

    В электротехнике под «селективностью» понимают совместную работу последовательно включенных аппаратов защиты электрических цепей (автоматические выключатели, УЗО, диф. автомат и т.п.) в случае возникновения аварийной ситуации. На рис. 1 привёден пример работы такой схемы, с учётом общего наминала автоматических выключателей 40 А (4шт. по 10А), вводный автомат 63 А.

    Селективность используется при выборе номинала устройств защиты для отключения от общей системы питания только той ее части, где произошла авария. Это достигается за счет срабатывания только того автоматического выключателя, который защищает аварийную линию питания.

    Во общем, для селективной работы автоматических выключателей при перегрузках нужно, чтобы номинальный ток (In) автоматического выключателя со стороны питания был больше In автоматического выключателя со стороны потребителей.

    Условное обозначение УЗО и дифавтомата на электрических схемах:

    Обозначение УЗО на принципиальных электрических схемах см. рис. 2. Слева – однофазное УЗО с током срабатывания 30 мА, справа – трехфазное УЗО на 100 мА. Сверху развернутое изображение, снизу однолинейное. Число полюсов при однолинейном представлении можно изображать и числом (вверху) и числом черточек. Условное обозначение Дифавтомата на принципиальных схемах см. рис. 3 и на однолинейных схемах рис. 4. Буквенное обозначение QF.

    Схемы включения УЗО:

    По конструкции УЗО различных производителей могут отличаться друг от друга не только параметрами, но и схемами подключения. На рис. 5 приведены наиболее распространенные схемы включения УЗО в различных вариантах:

    Двухполюсные УЗО Рис. 5 (а).

    Четырехполюсные УЗО, в которых резистор, имитирующий дифференциальный ток, подключен в фазное напряжение (Рис. 5 (б).

    Четырехполюсные УЗО, в которых резистор, имитирующий дифференциальный ток, подключен на линейное напряжение (Рис. 5 (в).

    При включении УЗО (дифавтомата) в любом случае смотрите схему, схема подключения приведена на лицевой или боковой поверхности корпуса УЗО, а также в паспорте технического устройства.

    Ниже приведены монтажные схемы подключения УЗО (Рис. 6) и дифавтомата (Рис. 7).

    1. Вводный автомат.
    2. Прибор учёта (электросчетчик).
    3. УЗО или дифавтомат.
    4. Автоматический выключатель (освещения, как правило 6 ÷ 10 А, в зависимости от нагрузки светильников).
    5. Автоматический выключатель (розетки, как правило 16 ÷ 25 А, в зависимости от группы розеток).
    6. Автоматический выключатель (розетка «силовая», 16 ÷ 25 А, в зависимости от нагрузки электроплиты).
    7. Нулевая рабочая N — шина.
    8. Нулевая защитная РЕ — шина.

    Более подробно про системы заземления и зануления см. в разделе

    Вернутся в раздел: УЗО и ДифзащитаЭлектрика

    Добавить комментарий

    Отменить ответ

    Для отправки комментария вам необходимо авторизоваться.

    Условное обозначение УЗО на схеме

    Ни один человек, каким бы талантливым и смекалистым он не был, не сможет научиться понимать электрические чертежи без предварительного знакомства с условными обозначениями, которые используются в электромонтаже практически на каждом шагу. Опытные специалисты утверждают, что шанс стать настоящим профессионалом своего дела может быть только у того электрика, которые досконально изучил и усвоил все общепринятые обозначения, используемые в проектной документации.

    Приветствую всех друзья на сайте «Электрик в доме». Сегодня я бы хотел уделить внимание одному из первоначальным вопросов, с которым сталкиваются все электрики перед монтажом – это проектная документация объекта.

    Кто то составляет ее сам, кому то предоставляет заказчик. Среди множества этой документации можно встретить экземпляры, в которых встречаются различия между условными обозначениями тех или иных элементов. Например в разных проектах один и тот же коммутационный аппарат графически может отображаться по разному. Встречалось такое?

    Понятно, что обсудить обозначение всех элементов в пределах одной статьи невозможно, поэтому тема данного урока будет сужена, и сегодня обсудим и рассмотрим, как выполняется обозначение узо на схеме.

    Каждый начинающий мастер обязан внимательно ознакомиться с общепринятыми ГОСТами и правилами маркировки электрических элементов и оборудования на план-схемах и чертежах. Многие пользователи могут со мной не согласится, аргументируя это тем, что зачем мне знать ГОСТ, я всего лишь занимаюсь установкой розеток и выключателей в квартирах. Схемы должны знать инженера проектировщики и профессора в университетах.

    Уверяю вас это не так. Любой уважающий себя специалист обязан не только понимать и уметь читать электрические схемы, но и должен знать, как графически отображаются на схемах различные коммуникационные аппараты, защитные устройства, приборы учета, розетки и выключатели. В общем, активно применять проектную документацию в своей повседневной работе.

    Обозначение УЗО на однолинейной схеме

    Основные группы обозначений УЗО (графические и буквенные) используются электромонтерами очень часто. Работа по составлению рабочих схем, графиков и планов требует очень большой внимательности и аккуратности, так как одно-единственное неточное указание или пометка могу привести к серьезной ошибке в дальнейшей работе и стать причиной выхода из строя дорогостоящего оборудования.

    Кроме того, неверные данные могут ввести в заблуждение сторонних специалистов, привлеченных для электромонтажа и стать причиной возникновения сложностей при монтаже электрических коммуникаций.

    В настоящее время любое обозначение узо на схеме может быть представлено двумя способами: графическим и буквенным .

    На какие нормативные документы следует ссылаться?

    Из основных документов для электрических схем, которые ссылаются на графическое и буквенное обозначение коммутационных устройств можно выделить следующие:

    1. – ГОСТ 2.755-87 ЕСКД “Обозначения условные графические в электрических схемах устройства коммутационные и контактные соединения”;
    2. – ГОСТ 2.710-81 ЕСКД “Обозначения буквенно-цифровые в электрических схемах”.

    Графическое обозначение УЗО на схеме

    Итак, выше я представил основные документы, по которым регулируется обозначения в электрических схемах. Что нам дают указанные ГОСТы по изучению нашего вопроса? Мне стыдно признаться, но абсолютно ничего. Дело в том, что на сегодняшний день в данных документах отсутствует информация о том, как должно выполняться обозначение узо на однолинейной схеме.

    Действующий на сегодня ГОСТ никаких особых требований к правилам составления и использования графических обозначений УЗО не выдвигает. Именно поэтому некоторые электромонтеры предпочитают использовать для маркировки определенных узлов и устройств свои собственные наборы значений и меток, каждая из которых может несколько отличаться от привычных нашему взгляду значений.

    Для примера давайте рассмотрим, какие обозначения наносятся на корпусе самих устройств. Устройство защитного отключения фирмы hager:

    Или к примеру УЗО от Schneider Electric:

    Чтобы избежать путаницы, предлагаю Вам совместно разработать универсальный вариант обозначений УЗО, которым можно руководствоваться практически в любой рабочей ситуации.

    По своему функциональному назначению устройство защитного отключения можно описать так – это выключатель, который при нормальной работе способен включать/отключать свои контакты и автоматически размыкать контакты при появлении тока утечки. Ток утечки это дифференциальный ток, возникающий при ненормальной работе электроустановки. Какой орган реагирует на дифференциальный ток? Специальный датчик – трансформатор тока нулевой последовательности.

    Если представить все вышеописанное в графической форме, то получается что условное обозначение УЗО на схеме можно представить в виде двух второстепенных обозначений – выключателя и датчика реагирующего на дифференциальный ток (трансформатора тока нулевой последовательности) который воздействует на механизм отключения контактов.

    В этом случае графическое обозначение узо на однолинейной схеме будет выглядеть так.

    Как обозначается дифавтомат на схеме?

    По поводу обозначений дифавтоматов в ГОСТ на данный момент тоже нет данных. Но, исходя из вышеизложенной схемы, дифавтомат графически также можно представить в виде двух элементов – УЗО и автоматического выключателя. В этом случае графическое обозначение дифавтомата на схеме будет выглядеть так.

    Буквенное обозначение УЗО на электрических схемах

    Любому элементу на электрических схемах присваивается не только графическое обозначение, но и буквенное с указанием позиционного номера. Такой стандарт регулируется ГОСТ 2.710-81 “Обозначения буквенно-цифровые в электрических схемах” и обязателен для применения ко всем элементам в электрических схемах.

    Так, например, согласно ГОСТ 2.710-81 автоматические выключатели принято обозначать путем специального буквенно-цифрового позиционного обозначения таким образом: QF1, QF2, QF3 и т.д. Рубильники (разъединители) обозначаются как QS1, QS2, QS3 и т.д. Предохранители на схемах обозначаются как FU с соответствующим порядковым номером.

    Аналогично, как и с графическими обозначениями, в ГОСТ 2.710-81 нет конкретных данных, как выполнять буквенно-цифровое обозначение УЗО и дифференциальных автоматов на схемах.

    Как быть в таком случае? В этом случае многие мастера используют два варианта обозначений.

    Первый вариант воспользоваться самым удобным буквенно-цифровым обозначением Q1 (для УЗО) и QF1 (для АВДТ), которые обозначают функции выключателей и указывают на порядковый номер аппарата, находящегося в схеме.

    То есть кодировка буквы Q означает – «выключатель или рубильник в силовых цепях», что вполне может быть применима к обозначению УЗО.

    Кодовая комбинация QF расшифровывается как Q – «выключатель или рубильник в силовых цепях», F – «защитный», что вполне может быть применима не только к обычным автоматам, но и к диф.автоматам.

    Второй вариант это использовать буквенно-цифровую комбинацию Q1D – для УЗО и комбинацию QF1D – для дифференциального автомата. По приложению 2 таблицы 1 ГОСТ 2.710 функциональное значение буквы D означает – « дифференцирующий ».

    Я очень часто встречал на реальных схемах такое обозначение QD1 – для устройств защитного отключения, QFD1 – для дифференциальных автоматов.

    Какие можно сделать выводы из вышеописанного?

    Ввиду того что обозначение УЗО и дифференциальных автоматов по ГОСТ отсутствует, информация рассмотренная в данной статье, не относится к нормативным документам обязательным для исполнения, а является всего лишь РЕКОМЕНДАЦИЕЙ. Каждый проектировщик может изображать на схемах эти элементы по своему усмотрению. Для этого нужно всего лишь привести условно графические обозначения (УГО) элементов, их расшифровку и пояснения к схеме. Все эти действия предусматриваются в ГОСТ 2.702-2011.

    Как обозначается УЗО на однолинейной схеме – пример реального проекта

    Как говорится в известной пословице «лучше один раз увидеть, чем сто раз услышать», поэтому давайте рассмотрим на реальном примере.

    Предположим, что перед нами находится однолинейная схема электроснабжения квартиры. Из всех этих графических обозначение можно выделить следующее:

    Вводное устройство защитного отключения расположено сразу после счетчика. Кстати как вы могли заметить буквенное обозначение УЗО – QD. Еще один пример как обозначается узо:

    Заметьте, что на схеме помимо УГО элементов также наносится их маркировка, то есть: тип устройства по роду тока (А, АС), номинальный ток, дифференциальный ток утечки, количество полюсов. Далее переходим к УГО и маркировке дифференциальных автоматов:

    Розеточные линии на схеме подключаются через диф.автоматы. Буквенное обозначение дифавтомата на схеме QFD1, QFD2, QFD3 и т.д.

    Еще один пример как обозначаются диф.автоматы на однолинейной схеме магазина.

    Вот и все дорогие друзья. На этом наш сегодняшний урок подошел к концу. Надеюсь, данная статья была для вас полезной и Вы нашли здесь ответ на свой вопрос. Если остались вопросы задавайте их в комментариях, с удовольствием отвечу. Давайте делиться опытом, кто как обозначает УЗО и АВДТ на схемах. Буду признателен на репост в соц.сетях))).

    Актуальные буквенные и графические обозначения на электрических схемах

    Если для обычного человека восприятие информации происходит при чтении слов и букв, то для слесарей и монтажников их заменяют буквенные, цифровые или графические обозначения. Сложность в том, что пока электрик закончит обучение, устроится на работу, научится чему-то на практике, как появляются новые СНиПы и ГОСТы, согласно которым вносятся коррективы. Поэтому не стоит пытаться выучить всю документацию и сразу же. Достаточно почерпнуть базовые познания, а по ходу трудовых будней добавлять актуальные данные.

    Введение

    Для конструкторов цепей, слесарей КИПиА, электромонтеров, умение прочитать электросхему – ключевое качество и показатель квалификации. Без специальных знаний сходу разобраться в тонкостях проектирования приборов, цепей и способах соединения электроузлов невозможно.

    Условные обозначения можно считать особым криптографическим кодом, поясняющим работу и принцип действия конкретной схемы. В Японии, США и Европе значки существенно отличаются от отечественной маркировки, что необходимо учитывать.

    Виды и типы электрических схем

    Перед тем, как начать изучать существующие обозначения электрооборудования и его соединения, необходимо разобраться с типологией схем. На территории нашей страны введена стандартизация по ГОСТ 2.701-2008 от 1.07.2009 года, согласно «ЕСКД. Схемы. Типы и виды. Общие требования».

    1. Объединенные.
    2. Расположенные.
    3. Общие.
    4. Подключения.
    5. Монтажные соединений.
    6. Полные принципиальные.
    7. Функциональные.
    8. Структурные.

    Среди существующих 10 видов, указанных в данном документе, выделяют:

    1. Комбинированные.
    2. Деления.
    3. Энергетические.
    4. Оптические.
    5. Вакуумные.
    6. Кинематические.
    7. Газовые.
    8. Пневматические.
    9. Гидравлические.
    10. Электрические.

    Для электриков представляет наибольший интерес среди всех вышеперечисленных типов и видов схем, а также самая востребованная и часто используемая в работе – электрическая схема.

    Последний ГОСТ, который вышел, дополнен многими новыми обознвачениями, актуальный на сегодня с шифром 2.702-2011 от 1.01.2012 года. Называется документ «ЕСКД. Правила выполнения электрических схем», ссылается на другие ГОСТы, среди которых упомянутый выше.

    В тексте норматива изложены четкие требования в подробностях к электросхемам всех видов. Поэтому руководствоваться при монтажных работах с электрическими схемами следует именно данным документом. Определение понятия электрической схемы, согласно ГОСТ 2.702-2011 следующее:

    «Под электрической схемой следует понимать документ, содержащий условные обозначения частей изделия и/или отдельных деталей с описанием взаимосвязи между ними, принципов действия от электрической энергии».

    После определения в документе содержатся правила реализации на бумаге и в программных средах обозначений контактных соединений, маркировки проводов, буквенных обозначений и графического изображения электрических элементов.

    Следует заметить, что чаще в домашней практике используются всего три типа электросхем:

    • Монтажные – для прибора изображается печатная плата с расположением элементов при четком указании места, номинала, принципа крепления и подведения к другим деталям. В схемах электропроводки для жилых помещений указывается количество, место расположения, номинал, способ подключения и другие точные указания для монтажа проводов, выключателей, светильников, розеток и т.п.
    • Принципиальные – на них указываются подробно связи, контакты и характеристика каждого элемента для сетей или приборов. Различают полные и линейные принципиальные схемы. В первом случае изображается контроль, управление элементами и сама силовая цепь; в линейной схеме ограничиваются только цепью с изображением остальных элементов на отдельных листах.
    • Функциональные – здесь без детализации физических габаритов и других параметров указывается основные узлы прибора или цепи. Любая деталь может изображаться в виде блока с буквенным обозначением, дополненного связями с другими элементами устройства.

    Графические обозначения в электрических схемах

    • 2.755-87 – графические условные обозначения контактных и коммутационных соединений.
    • 2.721-74 – графические условные обозначения деталей и узлов общего применения.
    • 2.709-89 – графические условные обозначения в электросхемах участков цепей, оборудования, контактных соединений проводов, электроэлементов.

    В нормативе с шифром 2.755-87 применяется для схем однолинейных электрощитов, условные графические изображения (УГО) тепловых реле, контакторов, рубильников, автоматических выключателей, иного коммутационного оборудования. Отсутствует обозначение в нормативах дифавтоматов и УЗО.

    На страницах ГОСТ 2.702-2011 допускается изображение этих элементов в произвольном порядке, с приведением пояснений, расшифровки УГО и самой схемы дифавтоматов и УЗО.
    В ГОСТ 2.721-74 содержатся УГО, применяемые для вторичных электрических цепей.

    ВАЖНО: Для обозначения коммутационного оборудования существует:

    4 базовых изображения УГО

    УГОНаименование
    Замыкающий
    Размыкающий
    Переключающий
    Переключающий с наличием нейтрального положения

    9 функциональных признаков УГО

    ВАЖНО: Обозначения 1 – 3 и 6 – 9 наносятся на неподвижные контакты, 4 и 5 – помещаются на подвижные контакты.

    Основные УГО для однолинейных схем электрощитов

    УГОНаименование
    Тепловое реле
    Контакт контактора
    Рубильник – выключатель нагрузки
    Автомат – автоматический выключатель
    Предохранитель
    Дифференциальный автоматический выключатель
    УЗО
    Трансформатор напряжения
    Трансформатор тока
    Рубильник (выключатель нагрузки) с предохранителем
    Автомат для защиты двигателя (со встроенным тепловым реле)
    Частотный преобразователь
    Электросчетчик
    Замыкающий контакт с кнопкой «сброс» или другим нажимным кнопочным выключателем, с возвратом и размыканием посредством специального привода элемента управления
    Замыкающий контакт с нажимным кнопочным выключателем, с возвратом и размыканием посредством втягивания кнопки элемента управления
    Замыкающий контакт с нажимным кнопочным выключателем, с возвратом и размыканием посредством повторного нажатия на кнопку элемента управления
    Замыкающий контакт с нажимным кнопочным выключателем, с возвратом и размыканием автоматически элемента управления
    Замыкающий контакт с замедленным действием, который инициируется при возврате и срабатывании
    Замыкающий контакт с замедленным действием, который срабатывает только при возврате
    Замыкающий контакт с замедленным действием, который инициируется только при срабатывании
    Замыкающий контакт с замедленным действием, который приводится в работу при возврате и срабатывании
    Замыкающий контакт с замедленным действием, который срабатывает только при возврате
    Замыкающий контакт с замедленным действием, который включается только при срабатывании
    Катушка временного реле
    Катушка фотореле
    Катушка реле импульсного
    Общее обозначение катушки реле или катушки контактора
    Лампочка индикационная (световая), осветительная
    Мотор-привод
    Клемма (разборное соединение)
    Варистор, ОПН (ограничитель перенапряжения)
    Разрядник
    Розетка (разъемное соединение):
    Нагревательный элемент

    Обозначение измерительных электроприборов для характеристики параметров цепи

    УГОНаименование
    PFЧастотомер
    PWВаттметр
    PVВольтметр
    PAАмперметр

    ГОСТ 2.271-74 приняты следующие обозначения в электрощитах для шин и проводов:

    Буквенные обозначения в электрических схемах

    Нормативы буквенного обозначения элементов на электрических схемах описываются в нормативе ГОСТ 2.710-81 с названием текста «ЕСКД. Буквенно-цифровые обозначения в электрических схемах». Здесь не указывается отметка для дифавтоматов и УЗО, что в п. 2.2.12 этого норматива прописывается, как обозначение многобуквенными кодами. Для основных элементов электрощитов приняты следующие буквенные кодировки:

    НаименованиеОбозначение
    Выключатель автоматический в силовой цепиQF
    Выключатель автоматический в управляющей цепиSF
    Выключатель автоматический с дифференциальной защитой или дифавтоматQFD
    Рубильник или выключатель нагрузкиQS
    УЗО (устройство защитного отключения)QSD
    КонтакторKM
    Реле тепловоеF, KK
    Временное релеKT
    Реле напряженияKV
    Импульсное релеKI
    ФоторелеKL
    ОПН, разрядникFV
    Предохранитель плавкийFU
    Трансформатор напряженияTV
    Трансформатор токаTA
    Частотный преобразовательUZ
    АмперметрPA
    ВаттметрPW
    ЧастотомерPF
    ВольтметрPV
    Счетчик энергии активнойPI
    Счетчик энергии реактивнойPK
    Элемент нагреванияEK
    ФотоэлементBL
    Осветительная лампаEL
    Лампочка или прибор индикации световойHL
    Разъем штепсельный или розеткаXS
    Переключатель или выключатель в управляющих цепяхSA
    Кнопочный выключатель в управляющих цепяхSB
    КлеммыXT

    Изображение электрооборудования на планах

    Несмотря на то, что ГОСТ 2.702-2011 и ГОСТ 2.701-2008 учитывает такой вид электросхемы как «схема расположения» для проектирования сооружений и зданий, при этом нужно руководствоваться нормативами ГОСТ 21.210-2014, в которых указывается «СПДС.

    Изображения на планах условных графических проводок и электрооборудования». В документе установлено УГО на планах прокладки электросетей электрооборудования (светильников, выключателей, розеток, электрощитов, трансформаторов), кабельных линий, шинопроводов, шин.

    Применение этих условных обозначений используется для составления чертежей электрического освещения, силового электрооборудования, электроснабжения и других планов. Использование данных обозначений применяется также в принципиальных однолинейных схемах электрощитов.

    Условные графические изображения электрооборудования, электротехнических устройств и электроприемников

    Контуры всех изображаемых устройств, в зависимости от информационной насыщенности и сложности конфигурации, принимаются согласно ГОСТ 2.302 в масштабе чертежа по фактическим габаритам.

    Условные графические обозначения линий проводок и токопроводов

    Условные графические изображения шин и шинопроводов

    ВАЖНО: Проектное положение шинопровода должно точно совпадать на схеме с местом его крепления.

    Условные графические изображения коробок, шкафов, щитов и пультов

    Условные графические обозначения выключателей, переключателей

    На страницах документации ГОСТ 21.210-2014 для кнопочных выключателей, диммеров (светорегуляторов) отдельно отведенного обозначения не предусмотрено. В некоторых схемах, согласно п. 4.7. нормативного акта используются произвольные обозначения.

    Условные графические обозначения штепсельных розеток

    Условные графические обозначения светильников и прожекторов

    Обновленная версия ГОСТ содержит изображения светильников с лампами люминесцентными и светодиодными.

    Условные графические обозначения аппаратов контроля и управления

    Заключение

    Приведенные графические и буквенные изображения электродеталей и электрических цепей являются не полным списком, поскольку в нормативах содержится много специальных знаков и шифров, которые в быту практически не применяются. Для чтения электрических схем потребуется учитывать много факторов, прежде всего – страну производителя прибора или электрооборудования, проводки и кабелей. Существует разница в маркировке и условном обозначении на схемах, что может изрядно сбить с толку.

    Во-вторых, следует внимательно рассматривать такие участки, как пересечение или отсутствие общей сети для расположенных с накладкой проводов. На зарубежных схемах при отсутствии у шины или кабеля общего питания с пересекающими объектами, рисуется полукруговое продолжение в месте соприкосновения. В отечественных схемах это не используется.

    Если схема изображается без соблюдения установленных ГОСТами нормативов, то ее называют эскизом. Но для этой категории также есть определенные требования, согласно которым по приведенному эскизу должно составляться примерное понимание будущей электропроводки или конструкции прибора. Рисунки могут использоваться для составления по ним более точных чертежей и схем, с нужными обозначениями, маркировкой и соблюдением масштабов.

    Условное обозначение автоматического выключателя на схеме гост

    Автоматический выключатель является основным элементом однолинейных схем в электрике.

    В настоящее время встречается масса вариантов того, как проектировщики показывают его на планах и схемах, но далеко не всегда правильно, что нередко приводит к ошибке при сборке электрощитов или монтаже электропроводки.

    Чтобы этого не произошло, необходимо следовать простым правилам отображения автоматов и их маркировки.

    Графический вид автоматов стандартизирован в:

    ГОСТ 2.755-87 ЕСКД «Обозначения условные графические в электрических схемах. Устройства коммутационные и контактные соединения»

    ГОСТ Р МЭК 60617-DB-12M-2015 «Графические символы для схем», который идентичен международному стандарту IEC 60617-DB-12M:2012* «Графические символы для диаграмм» (IEC 60617-DB-12M:2012 «Graphical symbols for diagrams»).

    Согласно этим стандартам условное обозначение автомата на однолинейной схеме выглядит так:

    Оно создано из нескольких графических символов ГОСТа, говорящих об определенных признаках и функциях устройства.
    У однополюсного автомата их три:

    – Замыкающее коммутационное устройство

    Пример простой однолинейной схемы электрощита, состоящего всего из одного такого однополюсного автоматического выключателя:

    Двух-, трех- или четырехполюсный автомат обозначается косыми черточками, размещенными на входящей линии, количество которых соответствует числу полюсов:

    БУКВЕННЫЙ КОД

    Согласно ему автоматы на схемах обозначаются символами – QF :

    Q – Выключатели и разъединители в силовых цепях

    F – Устройства защитные

    За буквенным кодом пишется порядковый номер автомата.


    Трафарет Visio Выключатель автоматический.

    В состав трафарета Visio Выключатель автоматический, входит три варианта условных обозначений выключателей автоматических:

    Условные обозначения автоматических выключателей (вариант 1).

    Базовые символы (вариант 1):

    Трансформация условных обозначений возможна через контекстное меню фигуры путем включения-отключения следующих функциональных символов и их комбинации:

    • Функция выключателя
    • Функция разъединителя
    • Автоматическое отключение
    • Ручной привод
    • возможно отключение линии механической связи
    • для двухполюсных, трехполюсных и четырекполюсных выключателей имеется переключатель для каждого соответственно: 2P ↔ 1P+N, 3P ↔ 2P+N, 4P ↔ 3P+N


    Контекстное меню фигуры условного обозначения выключателя автоматического.

    Некоторые из возможных вариантов трансформации фигуры условного обозначения трехполюсного выключателя:

    Аналогично, можно получить различные конфигурации условных обозначений и для других выключателей данного варианта.

    Любой из символов условного обозначения можно расположить вертикально или горизонтально, а так же поменять местами подвижные и неподвижные контакты.

    Условные обозначения автоматических выключателей (вариант 2).

    Базовые символы (вариант 2):

    Трансформация условных обозначений возможна через контекстное меню фигуры путем включения-отключения следующих функциональных символов и их комбинации:

    • функция выключателя
    • для двухполюсных, трехполюсных и четырекполюсных выключателей имеется переключатель для каждого соответственно: 2P ↔ 1P+N, 3P ↔ 2P+N, 4P ↔ 3P+N
    • переключатель функции расцепителя:
    • электромагнитный;
    • тепловой;
    • тепловой + электромагнитный;
    • остаточного тока (УЗО).


    Контекстное меню фигуры условного обозначения автомата.

    Некоторые из возможных вариантов трансформации фигуры трехполюсного выключателя (вариант 2):


    Варианты условного обозначения автомата трехполюсного

    Аналогично, можно получить различные конфигурации условных обозначений и для других выключателей данного варианта.

    Любой из символов условного обозначения можно расположить вертикально или горизонтально, а так же поменять местами подвижные и неподвижные контакты.

    Условные обозначения автоматических выключателей (вариант 3).

    Любые электрические цепи могут быть представлены в виде чертежей (принципиальных и монтажных схем), оформление которых должно соответствовать стандартам ЕСКД. Эти нормы распространяются как на схемы электропроводки или силовых цепей, так и электронные приборы. Соответственно, чтобы «читать» такие документы, необходимо понимать условные обозначения в электрических схемах.

    Нормативные документы

    Учитывая большое количество электроэлементов, для их буквенно-цифровых (далее БО) и условно графических обозначений (УГО) был разработан ряд нормативных документов исключающих разночтение. Ниже представлена таблица, в которой представлены основные стандарты.

    Таблица 1. Нормативы графического обозначения отдельных элементов в монтажных и принципиальных электрических схемах.

    Номер ГОСТаКраткое описание
    2.710 81В данном документе собраны требования ГОСТа к БО различных типов электроэлементов, включая электроприборы.
    2.747 68Требования к размерам отображения элементов в графическом виде.
    21.614 88Принятые нормы для планов электрооборудования и проводки.
    2.755 87Отображение на схемах коммутационных устройств и контактных соединений
    2.756 76Нормы для воспринимающих частей электромеханического оборудования.
    2.709 89Настоящий стандарт регулирует нормы, в соответствии с которыми на схемах обозначаются контактные соединения и провода.
    21.404 85Схематические обозначения для оборудования, используемого в системах автоматизации

    Следует учитывать, что элементная база со временем меняется, соответственно вносятся изменения и в нормативные документы, правда это процесс более инертен. Приведем простой пример, УЗО и дифавтоматы широко эксплуатируются в России уже более десятка лет, но единого стандарта по нормам ГОСТ 2.755-87 для этих устройств до сих пор нет, в отличие от автоматических выключателей. Вполне возможно, в ближайшее время это вопрос будет урегулирован. Чтобы быть в курсе подобных нововведений, профессионалы отслеживают изменения в нормативных документах, любителям это делать не обязательно, достаточно знать расшифровку основных обозначений.

    Виды электрических схем

    В соответствии с нормами ЕСКД под схемами подразумеваются графические документы, на которых при помощи принятых обозначений отображаются основные элементы или узлы конструкции, а также объединяющие их связи. Согласно принятой классификации различают десять видов схем, из которых в электротехнике, чаще всего, используется три:

    • Функциональная, на ней представлены узловые элементы (изображаются как прямоугольники), а также соединяющие их линии связи. Характерная особенность такой схемы – минимальная детализация. Для описания основных функций узлов, отображающие их прямоугольники, подписываются стандартными буквенными обозначениями. Это могут быть различные части изделия, отличающиеся функциональным назначением, например, автоматический диммер с фотореле в качестве датчика или обычный телевизор. Пример такой схемы представлен ниже. Пример функциональной схемы телевизионного приемника
    • Принципиальная. Данный вид графического документа подробно отображает как используемые в конструкции элементы, так и их связи и контакты. Электрические параметры некоторых элементов могут быть отображены, непосредственно в документе, или представлены отдельно в виде таблицы. Пример принципиальной схемы фрезерного станка

    Если на схеме отображается только силовая часть установки, то она называется однолинейной, если приведены все элементы, то – полной.

    Пример однолинейной схемы

    • Монтажные электрические схемы. В данных документах применяются позиционные обозначения элементов, то есть указывается их место расположения на плате, способ и очередность монтажа. Монтажная схема стационарного сигнализатора горючих газов

    Если на чертеже отображается проводка квартиры, то места расположения осветительных приборов, розеток и другого оборудования указываются на плане. Иногда можно услышать, как такой документ называют схемой электроснабжения, это неверно, поскольку последняя отображает способ подключения потребителей к подстанции или другому источнику питания.

    Разобравшись с электрическими схемами, можем переходить к обозначениям указанных на них элементов.

    Графические обозначения

    Для каждого типа графического документа предусмотрены свои обозначения, регулируемые соответствующими нормативными документами. Приведем в качестве примера основные графические обозначения для разных видов электрических схем.

    Примеры УГО в функциональных схемах

    Ниже представлен рисунок с изображением основных узлов систем автоматизации.

    Примеры условных обозначений электроприборов и средств автоматизации в соответствии с ГОСТом 21.404-85

    Описание обозначений:

    • А – Основные (1) и допускаемые (2) изображения приборов, которые устанавливаются за пределами электрощита или распределительной коробки.
    • В – Тоже самое, что и пункт А, за исключением того, что элементы располагаются на пульте или электрощите.
    • С – Отображение исполнительных механизмов (ИМ).
    • D – Влияние ИМ на регулирующий орган (далее РО) при отключении питания:
    1. Происходит открытие РО
    2. Закрытие РО
    3. Положение РО остается неизменным.
    • Е – ИМ, на который дополнительно установлен ручной привод. Данный символ может использоваться для любых положений РО, указанных в пункте D.
    • F- Принятые отображения линий связи:
    1. Общее.
    2. Отсутствует соединение при пересечении.
    3. Наличие соединения при пересечении.

    УГО в однолинейных и полных электросхемах

    Для данных схем существует несколько групп условных обозначений, приведем наиболее распространенные из них. Для получения полной информации необходимо обратиться к нормативным документам, номера государственных стандартов будут приведены для каждой группы.

    Источники питания.

    Для их обозначения приняты символы, приведенные на рисунке ниже.

    УГО источников питания на принципиальных схемах (ГОСТ 2.742-68 и ГОСТ 2.750.68)

    Описание обозначений:

    • A – источник с постоянным напряжением, его полярность обозначается символами «+» и «-».
    • В – значок электричества, отображающий переменное напряжение.
    • С – символ переменного и постоянного напряжения, используется в тех случаях, когда устройство может быть запитано от любого из этих источников.
    • D – Отображение аккумуляторного или гальванического источника питания.
    • E- Символ батареи, состоящей из нескольких элементов питания.

    Линии связи

    Базовые элементы электрических соединителей представлены ниже.

    Обозначение линий связи на принципиальных схемах (ГОСТ 2.721-74 и ГОСТ 2.751.73)

    Описание обозначений:

    • А – Общее отображение, принятое для различных видов электрических связей.
    • В – Токоведущая или заземляющая шина.
    • С – Обозначение экранирования, может быть электростатическим (помечается символом «Е») или электромагнитным («М»).
    • D – Символ заземления.
    • E – Электрическая связь с корпусом прибора.
    • F – На сложных схемах, из нескольких составных частей, таким образом обозначается обрыв связи, в таких случаях «Х» это информация о том, где будет продолжена линия (как правило, указывается номер элемента).
    • G – Пересечение с отсутствием соединения.
    • H – Соединение в месте пересечения.
    • I – Ответвления.

    Обозначения электромеханических приборов и контактных соединений

    Примеры обозначения магнитных пускателей, реле, а также контактов коммуникационных устройств, можно посмотреть ниже.

    УГО, принятые для электромеханических устройств и контакторов (ГОСТы 2.756-76, 2.755-74, 2.755-87)

    Описание обозначений:

    • А – символ катушки электромеханического прибора (реле, магнитный пускатель и т.д.).
    • В – УГО воспринимающей части электротепловой защиты.
    • С – отображение катушки устройства с механической блокировкой.
    • D – контакты коммутационных приборов:
    1. Замыкающие.
    2. Размыкающие.
    3. Переключающие.
    • Е – Символ для обозначения ручных выключателей (кнопок).
    • F – Групповой выключатель (рубильник).

    УГО электромашин

    Приведем несколько примеров, отображения электрических машин (далее ЭМ) в соответствии с действующим стандартом.

    Обозначение электродвигателей и генераторов на принципиальных схемах (ГОСТ 2.722-68)

    Описание обозначений:

    • A – трехфазные ЭМ:
    1. Асинхронные (ротор короткозамкнутый).
    2. Тоже, что и пункт 1, только в двухскоростном исполнении.
    3. Асинхронные ЭМ с фазным исполнением ротора.
    4. Синхронные двигатели и генераторы.
    • B – Коллекторные, с питанием от постоянного тока:
    1. ЭМ с возбуждением на постоянном магните.
    2. ЭМ с катушкой возбуждения.

    Обозначение электродвигателей на схемах

    УГО трансформаторов и дросселей

    С примерами графических обозначений данных устройств можно ознакомиться на представленном ниже рисунке.

    Правильные обозначения трансформаторов, катушек индуктивности и дросселей (ГОСТ 2.723-78)

    Описание обозначений:

    • А – Данным графическим символом могут быть обозначены катушки индуктивности или обмотки трансформаторов.
    • В – Дроссель, у которого имеется ферримагнитный сердечник (магнитопровод).
    • С – Отображение двухкатушечного трансформатора.
    • D – Устройство с тремя катушками.
    • Е – Символ автотрансформатора.
    • F – Графическое отображение ТТ (трансформатора тока).

    Обозначение измерительных приборов и радиодеталей

    Краткий обзор УГО данных электронных компонентов показан ниже. Тем, кто хочет более широко ознакомиться с этой информацией рекомендуем просмотреть ГОСТы 2.729 68 и 2.730 73.

    Примеры условных графических обозначений электронных компонентов и измерительных приборов

    Описание обозначений:

    1. Счетчик электроэнергии.
    2. Изображение амперметра.
    3. Прибор для измерения напряжения сети.
    4. Термодатчик.
    5. Резистор с постоянным номиналом.
    6. Переменный резистор.
    7. Конденсатор (общее обозначение).
    8. Электролитическая емкость.
    9. Обозначение диода.
    10. Светодиод.
    11. Изображение диодной оптопары.
    12. УГО транзистора (в данном случае npn).
    13. Обозначение предохранителя.

    УГО осветительных приборов

    Рассмотрим, как на принципиальной схеме отображаются электрические лампы.

    Пример того, как указываются лампочки на схемах (ГОСТ 2.732-68)

    Описание обозначений:

    • А – Общее изображение ламп накаливания (ЛН).
    • В – ЛН в качестве сигнализатора.
    • С – Типовое обозначение газоразрядных ламп.
    • D – Газоразрядный источник света повышенного давления (на рисунке приведен пример исполнения с двумя электродами)

    Обозначение элементов в монтажной схеме электропроводки

    Завершая тему графических обозначений, приведем примеры отображения розеток и выключателей.

    Пример изображения на монтажных схемах розеток скрытой установки

    Как изображаются розетки других типов, несложной найти в нормативных документах, которые доступны в сети.

    Обозначение выключатели скрытой установки Обозначение розеток и выключателей

    Буквенные обозначения

    В электрических схемах помимо графических обозначений также используются буквенные, поскольку без последних чтение чертежей будет довольно проблематичным. Буквенно-цифровая маркировка так же, как и УГО регулируется нормативными документами, для электро это ГОСТ 7624 55. Ниже представлена таблица с БО для основных компонентов электросхем.

    Буквенные обозначения основных элементов

    К сожалению, размеры данной статьи не позволяют привести все правильные графические и буквенные обозначения, но мы указали нормативные документы, из которых можно получить всю недостающую информацию. Следует учитывать, что действующие стандарты могут меняться в зависимости от модернизации технической базы, поэтому, рекомендуем отслеживать выход новых дополнений к нормативным актам.

    Примеры подключения УЗО и Диф. автоматов

     Вернутся в раздел:         УЗО и Дифзащита    ⇔    Электрика

    В данной статье рассмотрены несколько примеров подключения УЗО и Дифференциальных автоматов.

    Основным условием при выборе УЗО и диф. автомата является соблюдение селективности (ПУЭ.РАЗДЕЛ 3):

    Рис. 1

       В электротехнике под «селективностью» понимают совместную работу последовательно включенных аппаратов защиты электрических цепей (автоматические выключатели, УЗО, диф. автомат  и т.п.) в случае возникновения аварийной ситуации. На рис. 1 привёден пример работы такой схемы, с учётом общего наминала автоматических выключателей 40 А (4шт. по 10А), вводный автомат 63 А.

       Селективность используется при выборе номинала устройств защиты для отключения от общей системы питания только той ее части, где произошла авария.  Это достигается за счет срабатывания только того автоматического выключателя, который защищает аварийную линию питания.

    Во общем, для селективной работы автоматических выключателей при перегрузках нужно, чтобы номинальный ток (In) автоматического выключателя со стороны питания был больше In автоматического выключателя со стороны потребителей. 

    Условное обозначение УЗО  и дифавтомата на электрических схемах:

      Обозначение УЗО на принципиальных электрических схемах см. рис. 2. Слева – однофазное УЗО с током срабатывания 30 мА, справа – трехфазное УЗО на 100 мА. Сверху развернутое изображение, снизу однолинейное. Число полюсов при однолинейном представлении можно изображать и числом (вверху) и числом черточек. Условное обозначение Дифавтомата на принципиальных схемах см. рис. 3 и на однолинейных  схемах рис. 4. Буквенное обозначение QF.

    Рис. 2

     

     

        Рис. 4
                        Рис. 3    

             

    Схемы включения УЗО:

    Рис. 5, а

      По конструкции УЗО различных производителей могут отличаться друг от друга не только параметрами, но и схемами подключения. На рис. 5 приведены наиболее распространенные схемы включения УЗО в различных вариантах:

     

    Двухполюсные УЗО Рис. 5 (а).

     

    Рис. 5, б

    Четырехполюсные УЗО, в которых резистор, имитирующий дифференциальный ток, подключен в фазное напряжение (Рис. 5 (б).

    Рис. 5, в

    Четырехполюсные УЗО, в которых резистор, имитирующий дифференциальный ток, подключен на линейное напряжение (Рис. 5 (в).

    При включении УЗО (дифавтомата) в любом случае смотрите схему, схема подключения приведена на лицевой или боковой поверхности корпуса УЗО, а также в паспорте технического устройства.

    Ниже приведены монтажные схемы подключения УЗО (Рис. 6) и дифавтомата (Рис. 7).

    Рис. 6

    Рис. 7

    1. Вводный автомат.
    2. Прибор учёта (электросчетчик).
    3. УЗО или дифавтомат.
    4. Автоматический выключатель (освещения, как правило 6 ÷ 10 А, в зависимости от нагрузки светильников).
    5. Автоматический выключатель (розетки, как правило 16 ÷ 25 А, в зависимости от группы розеток). 
    6. Автоматический выключатель (розетка «силовая», 16 ÷ 25 А, в зависимости от нагрузки электроплиты).
    7. Нулевая рабочая N — шина.
    8. Нулевая защитная РЕ — шина.

    Более подробно про системы заземления и зануления см. в разделе 

    Вернутся в раздел:         УЗО и Дифзащита    ⇔    Электрика

    Обозначение дифференциального автомата на схеме

    Примеры подключения УЗО и Диф. автоматов

    Вернутся в раздел: УЗО и ДифзащитаЭлектрика

    В данной статье рассмотрены несколько примеров подключения УЗО и Дифференциальных автоматов.

    Основным условием при выборе УЗО и диф. автомата является соблюдение селективности ( ПУЭ.РАЗДЕЛ 3 ):

    В электротехнике под «селективностью» понимают совместную работу последовательно включенных аппаратов защиты электрических цепей (автоматические выключатели, УЗО, диф. автомат и т.п.) в случае возникновения аварийной ситуации. На рис. 1 привёден пример работы такой схемы, с учётом общего наминала автоматических выключателей 40 А (4шт. по 10А), вводный автомат 63 А.

    Селективность используется при выборе номинала устройств защиты для отключения от общей системы питания только той ее части, где произошла авария. Это достигается за счет срабатывания только того автоматического выключателя, который защищает аварийную линию питания.

    Во общем, для селективной работы автоматических выключателей при перегрузках нужно, чтобы номинальный ток (In) автоматического выключателя со стороны питания был больше In автоматического выключателя со стороны потребителей.

    Условное обозначение УЗО и дифавтомата на электрических схемах:

    Обозначение УЗО на принципиальных электрических схемах см. рис. 2. Слева – однофазное УЗО с током срабатывания 30 мА, справа – трехфазное УЗО на 100 мА. Сверху развернутое изображение, снизу однолинейное. Число полюсов при однолинейном представлении можно изображать и числом (вверху) и числом черточек. Условное обозначение Дифавтомата на принципиальных схемах см. рис. 3 и на однолинейных схемах рис. 4. Буквенное обозначение QF.

    Схемы включения УЗО:

    По конструкции УЗО различных производителей могут отличаться друг от друга не только параметрами, но и схемами подключения. На рис. 5 приведены наиболее распространенные схемы включения УЗО в различных вариантах:

    Двухполюсные УЗО Рис. 5 (а).

    Четырехполюсные УЗО, в которых резистор, имитирующий дифференциальный ток, подключен в фазное напряжение (Рис. 5 (б).

    Четырехполюсные УЗО, в которых резистор, имитирующий дифференциальный ток, подключен на линейное напряжение (Рис. 5 (в).

    При включении УЗО (дифавтомата) в любом случае смотрите схему, схема подключения приведена на лицевой или боковой поверхности корпуса УЗО, а также в паспорте технического устройства.

    Ниже приведены монтажные схемы подключения УЗО (Рис. 6) и дифавтомата (Рис. 7).

    1. Вводный автомат.
    2. Прибор учёта (электросчетчик).
    3. УЗО или дифавтомат.
    4. Автоматический выключатель (освещения, как правило 6 ÷ 10 А, в зависимости от нагрузки светильников).
    5. Автоматический выключатель (розетки, как правило 16 ÷ 25 А, в зависимости от группы розеток).
    6. Автоматический выключатель (розетка «силовая», 16 ÷ 25 А, в зависимости от нагрузки электроплиты).
    7. Нулевая рабочая N — шина.
    8. Нулевая защитная РЕ — шина.

    Более подробно про системы заземления и зануления см. в разделе

    Вернутся в раздел: УЗО и ДифзащитаЭлектрика

    Добавить комментарий

    Отменить ответ

    Для отправки комментария вам необходимо авторизоваться.

    Обозначения в эл. схемах

    Обозначение УЗО и дифференциального автомата.

    На данный момент в ГОСТ нет каких либо рекомендаций относительно условных графических обозначений УЗО и дифференциальных автоматов. Изображения обозначений, которые используют в схемах отличаются друг от друга.

    По этому, в данной статье, я хочу дать свои рекомендации и предложить вариант обозначений УЗО и дифференциального автомата, который по моему мнению, будет соответствовать функциональному назначению этих электрических аппаратов.

    Функционально УЗО можно определить как быстродействующий выключатель, реагирующий на дифференциальный ток – ток утечки в проводниках, подводящих электроэнергию к защищаемой электроустановке. В качестве датчика дифференциального тока и основного функционального элемента УЗО используется трансформатор тока, который часто называют трансформатором тока нулевой последовательности (что не совсем правильно, но думаю приемлемо).

    Из выше сказанного следует что изображение условного обозначения УЗО, должно состоять из обозначения выключателя и трансформатора тока нулевой последовательности, сигнал от которого (ток нулевой последовательности), воздействует на механизм отключения контактной группы аппарата.

    Этому требованию подходят следующие обозначения:

    Дифференциальный автомат, отличается от УЗО тем, что совмещает в одном электрическом аппарате два устройства, автоматический выключатель и устройство защитного отключения. По этому можно использовать следующее обозначение:

    Буквенно-цифровое обозначение УЗО и дифференциальных автоматов, на мой взгляд, можно наносить на схеме следующим образом:

    Где Q1 и QF1 обозначают функции выключателя и автоматического выключателя соответственно и порядковый номер аппарата в схеме. Значение дифференциального тока, обозначает функцию устройства защитного отключения

    Второй вариант буквенно-цифрового обозначения, который часто применяется: QD1 для УЗО и QFD1 для дифференциального автомата. И хотя согласно ГОСТ 2.710 код буквы D обозначает схемы интегральные, более подходящего символа в данном ГОСТ нету. Будем считать, что D, от слова дифференциальный.

    Данный вариант условных графических обозначений УЗО и дифференциальных автоматов, до момента публикации каких либо рекомендаций в нормативных документах, на мой взгляд является наиболее приемлемым. Поэтому, я решил включить трафареты рассмотренных выше электрических аппаратов в Комплект для черчения электрических схем.

    Условное обозначение узо на схеме

    Ни один человек, каким бы талантливым и смекалистым он не был, не сможет научиться понимать электрические чертежи без предварительного знакомства с условными обозначениями, которые используются в электромонтаже практически на каждом шагу. Опытные специалисты утверждают, что шанс стать настоящим профессионалом своего дела может быть только у того электрика, которые досконально изучил и усвоил все общепринятые обозначения, используемые в проектной документации.

    Приветствую всех друзья на сайте «Электрик в доме». Сегодня я бы хотел уделить внимание одному из первоначальным вопросов, с которым сталкиваются все электрики перед монтажом – это проектная документация объекта.

    Кто то составляет ее сам, кому то предоставляет заказчик. Среди множества этой документации можно встретить экземпляры, в которых встречаются различия между условными обозначениями тех или иных элементов. Например в разных проектах один и тот же коммутационный аппарат графически может отображаться по разному. Встречалось такое?

    Понятно, что обсудить обозначение всех элементов в пределах одной статьи невозможно, поэтому тема данного урока будет сужена, и сегодня обсудим и рассмотрим, как выполняется обозначение узо на схеме.

    Каждый начинающий мастер обязан внимательно ознакомиться с общепринятыми ГОСТами и правилами маркировки электрических элементов и оборудования на план-схемах и чертежах. Многие пользователи могут со мной не согласится, аргументируя это тем, что зачем мне знать ГОСТ, я всего лишь занимаюсь установкой розеток и выключателей в квартирах. Схемы должны знать инженера проектировщики и профессора в университетах.

    Уверяю вас это не так. Любой уважающий себя специалист обязан не только понимать и уметь читать электрические схемы, но и должен знать, как графически отображаются на схемах различные коммуникационные аппараты, защитные устройства, приборы учета, розетки и выключатели. В общем, активно применять проектную документацию в своей повседневной работе.

    Обозначение узо на однолинейной схеме

    Основные группы обозначений УЗО (графические и буквенные) используются электромонтерами очень часто. Работа по составлению рабочих схем, графиков и планов требует очень большой внимательности и аккуратности, так как одно-единственное неточное указание или пометка могу привести к серьезной ошибке в дальнейшей работе и стать причиной выхода из строя дорогостоящего оборудования.

    Кроме того, неверные данные могут ввести в заблуждение сторонних специалистов, привлеченных для электромонтажа и стать причиной возникновения сложностей при монтаже электрических коммуникаций.

    В настоящее время любое обозначение узо на схеме может быть представлено двумя способами: графическим и буквенным .

    На какие нормативные документы следует ссылаться?

    Из основных документов для электрических схем, которые ссылаются на графическое и буквенное обозначение коммутационных устройств можно выделить следующие:

    1. – ГОСТ 2.755-87 ЕСКД “Обозначения условные графические в электрических схемах устройства коммутационные и контактные соединения”;
    2. – ГОСТ 2.710-81 ЕСКД “Обозначения буквенно-цифровые в электрических схемах”.

    Графическое обозначение УЗО на схеме

    Итак, выше я представил основные документы, по которым регулируется обозначения в электрических схемах. Что нам дают указанные ГОСТы по изучению нашего вопроса? Мне стыдно признаться, но абсолютно ничего. Дело в том, что на сегодняшний день в данных документах отсутствует информация о том, как должно выполняться обозначение узо на однолинейной схеме.

    Действующий на сегодня ГОСТ никаких особых требований к правилам составления и использования графических обозначений УЗО не выдвигает. Именно поэтому некоторые электромонтеры предпочитают использовать для маркировки определенных узлов и устройств свои собственные наборы значений и меток, каждая из которых может несколько отличаться от привычных нашему взгляду значений.

    Для примера давайте рассмотрим, какие обозначения наносятся на корпусе самих устройств. Устройство защитного отключения фирмы hager:

    Или к примеру УЗО от Schneider Electric:

    Чтобы избежать путаницы, предлагаю Вам совместно разработать универсальный вариант обозначений УЗО, которым можно руководствоваться практически в любой рабочей ситуации.

    По своему функциональному назначению устройство защитного отключения можно описать так – это выключатель, который при нормальной работе способен включать/отключать свои контакты и автоматически размыкать контакты при появлении тока утечки. Ток утечки это дифференциальный ток, возникающий при ненормальной работе электроустановки. Какой орган реагирует на дифференциальный ток? Специальный датчик – трансформатор тока нулевой последовательности.

    Если представить все вышеописанное в графической форме, то получается что условное обозначение УЗО на схеме можно представить в виде двух второстепенных обозначений – выключателя и датчика реагирующего на дифференциальный ток (трансформатора тока нулевой последовательности) который воздействует на механизм отключения контактов.

    В этом случае графическое обозначение узо на однолинейной схеме будет выглядеть так.

    Как обозначается дифавтомат на схеме?

    По поводу обозначений дифавтоматов в ГОСТ на данный момент тоже нет данных. Но, исходя из вышеизложенной схемы, дифавтомат графически также можно представить в виде двух элементов – УЗО и автоматического выключателя. В этом случае графическое обозначение дифавтомата на схеме будет выглядеть так.

    Буквенное обозначение узо на электрических схемах

    Любому элементу на электрических схемах присваивается не только графическое обозначение, но и буквенное с указанием позиционного номера. Такой стандарт регулируется ГОСТ 2.710-81 “Обозначения буквенно-цифровые в электрических схемах” и обязателен для применения ко всем элементам в электрических схемах.

    Так, например, согласно ГОСТ 2.710-81 автоматические выключатели принято обозначать путем специального буквенно-цифрового позиционного обозначения таким образом: QF1, QF2, QF3 и т.д. Рубильники (разъединители) обозначаются как QS1, QS2, QS3 и т.д. Предохранители на схемах обозначаются как FU с соответствующим порядковым номером.

    Аналогично, как и с графическими обозначениями, в ГОСТ 2.710-81 нет конкретных данных, как выполнять буквенно-цифровое обозначение УЗО и дифференциальных автоматов на схемах.

    Как быть в таком случае? В этом случае многие мастера используют два варианта обозначений.

    Первый вариант воспользоваться самым удобным буквенно-цифровым обозначением Q1 (для УЗО) и QF1 (для АВДТ), которые обозначают функции выключателей и указывают на порядковый номер аппарата, находящегося в схеме.

    То есть кодировка буквы Q означает – «выключатель или рубильник в силовых цепях», что вполне может быть применима к обозначению УЗО.

    Кодовая комбинация QF расшифровывается как Q – «выключатель или рубильник в силовых цепях», F – «защитный», что вполне может быть применима не только к обычным автоматам, но и к диф.автоматам.

    Второй вариант это использовать буквенно-цифровую комбинацию Q1D – для УЗО и комбинацию QF1D – для дифференциального автомата. По приложению 2 таблицы 1 ГОСТ 2.710 функциональное значение буквы D означает – « дифференцирующий ».

    Я очень часто встречал на реальных схемах такое обозначение QD1 – для устройств защитного отключения, QFD1 – для дифференциальных автоматов.

    Какие можно сделать выводы из вышеописанного?

    Ввиду того что обозначение УЗО и дифференциальных автоматов по ГОСТ отсутствует, информация рассмотренная в данной статье, не относится к нормативным документам обязательным для исполнения, а является всего лишь РЕКОМЕНДАЦИЕЙ. Каждый проектировщик может изображать на схемах эти элементы по своему усмотрению. Для этого нужно всего лишь привести условно графические обозначения (УГО) элементов, их расшифровку и пояснения к схеме. Все эти действия предусматриваются в ГОСТ 2.702-2011.

    Как обозначается узо на однолинейной схеме – пример реального проекта

    Как говорится в известной пословице «лучше один раз увидеть, чем сто раз услышать», поэтому давайте рассмотрим на реальном примере.

    Предположим, что перед нами находится однолинейная схема электроснабжения квартиры. Из всех этих графических обозначение можно выделить следующее:

    Вводное устройство защитного отключения расположено сразу после счетчика. Кстати как вы могли заметить буквенное обозначение УЗО – QD. Еще один пример как обозначается узо:

    Заметьте, что на схеме помимо УГО элементов также наносится их маркировка, то есть: тип устройства по роду тока (А, АС), номинальный ток, дифференциальный ток утечки, количество полюсов. Далее переходим к УГО и маркировке дифференциальных автоматов:

    Розеточные линии на схеме подключаются через диф.автоматы. Буквенное обозначение дифавтомата на схеме QFD1, QFD2, QFD3 и т.д.

    Еще один пример как обозначаются диф.автоматы на однолинейной схеме магазина.

    Вот и все дорогие друзья. На этом наш сегодняшний урок подошел к концу. Надеюсь, данная статья была для вас полезной и Вы нашли здесь ответ на свой вопрос. Если остались вопросы задавайте их в комментариях, с удовольствием отвечу. Давайте делиться опытом, кто как обозначает УЗО и АВДТ на схемах. Буду признателен на репост в соц.сетях))).

    {SOURCE}

    типов переключателей | Механические, электронные, характеристики

    В этом руководстве мы узнаем, что такое переключатель, какие бывают разные типы переключателей, механические переключатели, электронные переключатели, их символы и многое другое о переключателях.

    Что такое коммутатор?

    Переключатель — это устройство, которое предназначено для прерывания тока в цепи. Проще говоря, выключатель может включать или отключать электрическую цепь. Каждое электрическое и электронное приложение использует по крайней мере один переключатель для включения и выключения устройства.

    Итак, переключатели являются частью системы управления, и без нее управление невозможно. Переключатель может выполнять две функции, а именно полностью ВКЛ (замыкание контактов) или полностью ВЫКЛ (размыкание контактов).

    Когда контакты переключателя замкнуты, переключатель создает замкнутый путь для прохождения тока и, следовательно, нагрузка потребляет энергию от источника. Когда контакты переключателя разомкнуты, нагрузка не будет потреблять мощность, как показано на рисунке ниже.

    Другая важная функция коммутатора — отводить электрический ток в цепи.Рассмотрим следующую схему. Когда переключатель находится в положении A, лампа 1 включается, а пока он находится в положении B, лампа 2 включается.

    Существует множество применений переключателей в самых разных областях, таких как дома, автомобили, промышленность, военная промышленность, аэрокосмическая промышленность и так далее. В домашних и офисных приложениях мы используем простые кулисные переключатели для включения и выключения таких приборов, как освещение, компьютеры, вентиляторы и т.д. электрическая нагрузка из более чем одного места, например, двухсторонний переключатель.

    Характеристики коммутатора

    Прежде чем продолжить и рассмотреть различные типы коммутаторов, давайте рассмотрим некоторые важные моменты, касающиеся характеристик коммутатора.

    • Двумя важными характеристиками переключателя являются его полюса и броски. Столб представляет собой контакт, а бросок представляет собой соединение между контактами. Количество полюсов и ходов используется для описания переключателя.
    • Некоторые стандартные количества полюсов и ходов — одинарные (1 полюс или 1 ход) и двойные (2 полюса или 2 переключателя).
    • Если количество шестов или бросков больше 2, то это число часто используется напрямую. Например, трехполюсный шестицилиндровый переключатель часто обозначается как 3P6T.
    • Другой важной характеристикой переключателя является его действие, то есть, является ли он мгновенным или фиксированным. Мгновенные переключатели (например, кнопки) используются для мгновенного контакта (на короткое время или пока кнопка нажата).
    • Переключатели с фиксацией на руке, удерживают контакт до тех пор, пока он не будет переведен в другое положение.

    Типы переключателей

    В основном переключатели могут быть двух типов. Это:

    Механические переключатели — это физические переключатели, которые необходимо активировать физически, перемещая, нажимая, отпуская или касаясь их контактов.

    Электронные переключатели

    , с другой стороны, не требуют физического контакта для управления цепью. Они активируются действием полупроводника.

    Механические переключатели

    Механические переключатели можно разделить на различные типы в зависимости от нескольких факторов, таких как метод срабатывания (ручные, концевые и технологические переключатели), количество контактов (одноконтактные и многоконтактные переключатели), количество полюсов и ход ( SPST, DPDT, SPDT и т. Д.), принцип действия и конструкция (кнопочный, тумблерный, поворотный, джойстик и т. д.), в зависимости от состояния (мгновенные и заблокированные переключатели) и т. д.

    По количеству полюсов и ходов переключатели подразделяются на следующие типы . Полюс представляет собой количество отдельных силовых цепей, которые можно переключать. Большинство переключателей имеют один, два или три полюса и обозначаются как однополюсные, двухполюсные и трехполюсные.

    Число переходов представляет собой число состояний, в которые ток может проходить через переключатель.Большинство переключателей имеют одно- или двухходовые переключатели, которые обозначаются как одно- и двухходовые переключатели.

    Однополюсный однопозиционный переключатель (SPST)

    • Это основной переключатель включения и выключения, состоящий из одного входного и одного выходного контактов.
    • Он переключает одну цепь и может включать (ВКЛ) или отключать (ВЫКЛ) нагрузку.
    • Контакты SPST могут быть нормально разомкнутыми или нормально замкнутыми.

    Однополюсный двухпозиционный переключатель (SPDT)

    • Этот переключатель имеет три контакта: один входной контакт, а остальные два выходных контакта.
    • Это означает, что он состоит из двух положений ВКЛ и одного положения ВЫКЛ.
    • В большинстве схем эти переключатели используются в качестве переключателей для подключения входа между двумя вариантами выходов.
    • Контакт, который подключен к входу по умолчанию, называется нормально замкнутым контактом, а контакт, который будет подключен во время работы ВКЛ, является нормально разомкнутым контактом.

    Двухполюсный однопозиционный переключатель (DPST)

    • Этот переключатель состоит из четырех клемм: двух входных контактов и двух выходных контактов.
    • Он ведет себя как две отдельные конфигурации SPST, работающие одновременно.
    • Он имеет только одно положение ВКЛ, но он может активировать два контакта одновременно, так что каждый входной контакт будет подключен к своему соответствующему выходному контакту.
    • В положении «ВЫКЛ.» Оба переключателя находятся в разомкнутом состоянии.
    • Этот тип переключателей используется для одновременного управления двумя разными цепями.
    • Кроме того, контакты этого переключателя могут быть нормально разомкнутыми или нормально замкнутыми.

    Двухполюсный двухпозиционный переключатель (DPDT)

    • Это двойной переключатель ВКЛ / ВЫКЛ, состоящий из двух положений ВКЛ.
    • Он имеет шесть выводов, два из которых являются входными контактами, а остальные четыре являются выходными контактами.
    • Он ведет себя как две отдельные конфигурации SPDT, работающие одновременно.
    • Два входных контакта подключены к одному набору выходных контактов в одном положении и в другом положении, входные контакты подключены к другому набору выходных контактов.

    Кнопочный переключатель

    • Это переключатель с мгновенным контактом, который замыкает или разрывает соединение, пока прилагается давление (или когда кнопка нажата).
    • Обычно это давление обеспечивается кнопкой, нажатой чьим-то пальцем.
    • Эта кнопка возвращается в нормальное положение после снятия давления.
    • Внутренний пружинный механизм управляет этими двумя состояниями (нажатым и отпущенным) кнопки.
    • Он состоит из неподвижных и подвижных контактов, из которых неподвижные контакты соединены последовательно со схемой, подлежащей переключению, а подвижные контакты прикрепляются с помощью кнопки.
    • Нажимные кнопки в основном подразделяются на нормально открытые, нормально закрытые и кнопки двойного действия, как показано на рисунке выше.
    • Кнопки двойного действия обычно используются для управления двумя электрическими цепями.

    Тумблер

    • Тумблер приводится в действие вручную (или толкается вверх или вниз) механической ручкой, рычагом или качающимся механизмом. Они обычно используются в качестве переключателей управления освещением.
    • Большинство этих переключателей имеют два или более положения рычага, которые находятся в версиях переключателя SPDT, SPST, DPST и DPDT. Они используются для коммутации больших токов (до 10 А), а также могут использоваться для коммутации малых токов.
    • Они доступны в различных номиналах, размерах и стилях и используются для различных типов приложений.Состояние ON может быть любым из их горизонтальных положений, однако, по соглашению, нижнее положение является закрытым или включенным положением.

    Концевой выключатель

    • Схемы управления концевым выключателем показаны на рисунке выше, на котором представлены четыре разновидности концевых выключателей.
    • Некоторые переключатели приводятся в действие присутствием объекта или отсутствием объектов, или движением машины, а не действиями руки человека. Эти выключатели называются концевыми выключателями.
    • Эти переключатели состоят из бампера с рычагом, приводимым в действие каким-либо предметом. Когда этот рычаг бампера приводится в действие, это приводит к изменению положения контактов переключателя.

    Поплавковые выключатели

    • Поплавковые выключатели в основном используются для управления насосами двигателей постоянного и переменного тока в зависимости от жидкости или воды в резервуаре или отстойнике.
    • Этот переключатель срабатывает, когда поплавок (или плавающий объект) движется вниз или вверх в зависимости от уровня воды в резервуаре.
    • Это плавающее движение узла тяги или цепи и противовеса приводит к размыканию или замыканию электрических контактов.Другой вид поплавкового выключателя — это выключатель с ртутной лампой, который не состоит из поплавкового стержня или цепной конструкции.
    • Эта колба состоит из ртутных контактов, поэтому при повышении или понижении уровня жидкости состояние контактов также изменяется.
    • Обозначение шарового поплавкового выключателя показано на рисунке выше. Эти поплавковые выключатели могут быть нормально открытого или нормально закрытого типа.

    Реле потока

    • Они в основном используются для обнаружения движения потока жидкости или воздуха по трубе или воздуховоду.Переключатель воздушного потока (или микровыключатель) сконструирован с защелкиванием.
    • Этот микровыключатель крепится к металлическому рычагу. К этому металлическому рычагу подсоединяется тонкий пластиковый или металлический элемент.
    • Когда большое количество воздуха проходит через металлическую или пластиковую деталь, это вызывает движение металлического рычага и, таким образом, приводит в действие контакты переключателя.
    • Реле потока жидкости сконструированы с лопастью, которая вставляется поперек потока жидкости в трубе. Когда жидкость течет по трубе, сила, приложенная к лопасти, изменяет положение контактов.
    • На приведенном выше рисунке показан символ переключателя, используемый как для потока воздуха, так и для потока жидкости. Символ флажка на переключателе указывает на лопасть, которая определяет поток или движение жидкости.
    • Эти переключатели снова нормально разомкнутые или нормально замкнутые конфигурации.

    Реле давления

    • Эти переключатели обычно используются в промышленных приложениях для измерения давления в гидравлических системах и пневматических устройствах.
    • В зависимости от диапазона измеряемого давления эти реле давления подразделяются на реле давления с мембранным управлением, реле давления с металлическим сильфоном и реле давления поршневого типа.
    • Во всех этих типах элемент определения давления управляет набором контактов (которые могут быть как двухполюсными, так и однополюсными).
    • Этот символ переключателя состоит из полукруга, соединенного с линией, плоская часть которой указывает на диафрагму. Эти переключатели могут быть нормально разомкнутыми или нормально замкнутыми.

    Температурные переключатели

    • Самым распространенным термочувствительным элементом является биметаллическая полоса, работающая по принципу теплового расширения.
    • Биметаллические ленты изготовлены из двух разнородных металлов (которые имеют разную степень теплового расширения) и соединены друг с другом.
    • Контакты переключателя срабатывают, когда из-за температуры полоса изгибается или наматывается. Другой способ работы с термореле — использование стеклянной ртутной трубки.
    • Когда колба нагревается, ртуть в трубке расширяется, а затем создает давление для срабатывания контактов.

    Джойстик-переключатель

    • Джойстик-переключатель — это управляющие устройства с ручным управлением, используемые в основном в переносном контрольном оборудовании.
    • Он состоит из рычага, который свободно перемещается по более чем одной оси движения.
    • В зависимости от движения нажатого рычага срабатывают один или несколько переключающих контактов.
    • Они идеально подходят для опускания, подъема и срабатывания спускового механизма влево и вправо.
    • Используются для строительной техники, тросиков и кранов. Символ джойстика показан ниже.

    Поворотные переключатели

    • Они используются для подключения одной линии к одной из многих линий.
    • Примерами этих переключателей являются переключатели диапазонов в измерительном оборудовании для электрических измерений, переключатели каналов в устройствах связи и переключатели диапазонов в многодиапазонных радиостанциях.
    • Состоит из одного или нескольких подвижных контактов (ручки) и более одного неподвижного контакта.
    • Эти переключатели бывают с различным расположением контактов, например, однополюсный 12-контактный, 3-полюсный 4-контактный, 2-полюсный 6-контактный и 4-контактный 3-контактный.

    Электронные переключатели

    Электронные переключатели обычно называют твердотельными переключателями, потому что в них нет физических движущихся частей и, следовательно, физических контактов.Большинство устройств управляется полупроводниковыми переключателями, такими как моторные приводы и оборудование HVAC.

    На сегодняшний день на потребительском, промышленном и автомобильном рынке доступны различные типы твердотельных переключателей различных размеров и номиналов. Некоторые из этих твердотельных переключателей включают в себя транзисторы, тиристоры, полевые МОП-транзисторы, триак и IGBT.

    Биполярные транзисторы

    Транзистор либо пропускает ток, либо блокирует его, как при работе обычного переключателя.

    В коммутационных схемах транзистор работает в режиме отсечки для состояния выключения или блокировки по току и в режиме насыщения для состояния включения. Активная область транзистора не используется для коммутации.

    Транзисторы NPN и PNP работают или включаются, когда на них подается достаточный базовый ток. Когда небольшой ток протекает через клемму базы, питаемую цепью управления (подключенной между базой и эмиттером), это заставляет транзистор включать путь коллектор-эмиттер.

    И он выключается, когда базовый ток снимается, а базовое напряжение снижается до небольшого отрицательного значения. Несмотря на то, что он использует небольшой базовый ток, он способен пропускать гораздо более высокие токи по пути коллектор-эмиттер.

    Силовой диод

    Диод может выполнять операции переключения между своим высоким и низким состояниями импеданса. Полупроводниковые материалы, такие как кремний и германий, используются для изготовления диодов.

    Обычно силовые диоды конструируются из кремния для работы устройства при более высоких токах и более высоких температурах перехода.Они созданы путем соединения полупроводниковых материалов p- и n-типа вместе с образованием PN-перехода. Он имеет два вывода: анод и катод.

    Когда анод становится положительным по отношению к катоду и приложением напряжения, превышающего пороговый уровень, PN-переход смещается в прямом направлении и начинает проводить (как переключатель ON). Когда катодный вывод становится положительным по отношению к аноду, PN-переход смещается в обратном направлении и блокирует прохождение тока (как выключатель).

    МОП-транзистор

    Пожалуй, наиболее популярным и наиболее часто используемым полупроводниковым коммутационным устройством является МОП-транзистор. Полевой транзистор на основе оксида металла и полупроводника (MOSFET) — это униполярное высокочастотное переключающее устройство. Наиболее часто используемым коммутационным устройством является силовая электроника. Он имеет три клеммы, а именно сток (выход), исток (общий) и затвор (вход).

    Это устройство, управляемое напряжением, то есть путем управления входным напряжением (от затвора до истока) регулируется сопротивление между стоком и истоком, которое дополнительно определяет состояние ВКЛ и ВЫКЛ устройства.

    МОП-транзисторы могут быть P-канальными или N-канальными устройствами. N-канальный полевой МОП-транзистор включается путем подачи положительного напряжения V GS относительно источника (при условии, что напряжение V GS должно быть больше порогового напряжения).

    P-канальный MOSFET работает аналогично N-канальному MOSFET, но использует обратную полярность напряжений. Оба V GS и V DD отрицательны по отношению к источнику включения P-канального MOSFET.

    IGBT

    IGBT (биполярный транзистор с изолированным затвором) сочетает в себе несколько преимуществ силового транзистора с биполярным переходом и силового полевого МОП-транзистора.Как и полевой МОП-транзистор, это устройство, управляемое напряжением, и имеет меньшее падение напряжения во включенном состоянии (меньше, чем у полевого МОП-транзистора и ближе к силовому транзистору).

    Это трехконтактное полупроводниковое высокоскоростное коммутационное устройство. Эти терминалы являются эмиттером, коллектором и затвором.

    Подобно MOSFET, IGBT можно включить, подав положительное напряжение (превышающее пороговое напряжение) между затвором и эмиттером. IGBT можно выключить, снизив напряжение на затвор-эмиттер до нуля.В большинстве случаев для снижения потерь при выключении и безопасного выключения IGBT требуется отрицательное напряжение.

    SCR

    Кремниевый управляемый выпрямитель (SCR) — одно из наиболее широко используемых высокоскоростных переключающих устройств для приложений управления мощностью. Это однонаправленное устройство в виде диода, состоящее из трех выводов, а именно анода, катода и затвора.

    SCR включается и выключается путем управления входом затвора и условиями смещения анодных и катодных выводов.SCR состоит из четырех слоев чередующихся слоев P и N, так что границы каждого слоя образуют переходы J1, J2 и J3.

    TRIAC

    Triac (или TRI ode AC ) переключатель представляет собой двунаправленное переключающее устройство, которое представляет собой эквивалентную схему соединения двух спина к спине тиристоров с одной клеммой затвора.

    Его способность управлять мощностью переменного тока как с положительными, так и с отрицательными пиками формы волны напряжения часто позволяет использовать эти устройства в контроллерах скорости электродвигателей, светорегуляторах, системах контроля давления, приводах электродвигателей и другом оборудовании управления переменного тока.

    DIAC

    A DIAC (или DI ode AC Switch) является устройством двунаправленной коммутации и состоит из двух выводов, которые не называются анодом и катодом, поскольку это двунаправленное устройство, т. Е. DIAC может работать в любом направлении независимо от идентификации терминала. Это указывает на то, что DIAC можно использовать в любом направлении.

    Когда напряжение подается на DIAC, он работает либо в режиме прямой блокировки, либо в режиме обратной блокировки, если приложенное напряжение не меньше напряжения отключения.Как только напряжение увеличивается больше, чем напряжение отключения, происходит лавинное отключение, и устройство начинает проводить ток.

    Тиристор отключения затвора

    GTO (Тиристор отключения затвора) представляет собой биполярное полупроводниковое переключающее устройство. Он имеет три вывода: анод, катод и затвор. Как следует из названия, это коммутационное устройство может отключаться через терминал ворот.

    GTO включается подачей небольшого положительного тока затвора, который запускает режим проводимости. Его можно выключить отрицательным импульсом на затвор.Символ GTO состоит из двойных стрелок на выводе затвора, который представляет двунаправленный поток тока через вывод затвора.

    Заключение

    Простое руководство по переключателям, различным типам переключателей, характеристикам переключателя, механическим переключателям, электронным переключателям, обозначениям схем всех переключателей, а также примерам цепей (или соединений) для важных переключателей.

    Введение и объяснение типов переключателей

    Переключатель — это электрический компонент, который может включать или отключать электрическую цепь автоматически или вручную.Переключатель в основном работает с механизмом включения (разомкнут) и выключен (замкнут). Многочисленные схемы содержат переключатели, которые управляют работой схемы или активируют различные характеристики схемы. Классификация переключателей зависит от выполняемого ими подключения. Два важных компонента, которые подтверждают, какие типы соединений выполняет переключатель, — это полюс и бросок.

    Они классифицируются на основе выполняемых ими соединений. Если у вас создалось впечатление, что переключатели просто включают и выключают цепи, угадайте еще раз.

    Термины полюс и ход также используются для описания вариаций контактов переключателя. Количество «полюсов» — это количество отдельных цепей, которые управляются переключателем. Количество «бросков» — это количество отдельных положений, которые может принимать переключатель. Однопозиционный переключатель имеет одну пару контактов, которые могут быть замкнутыми или разомкнутыми. Двухпозиционный переключатель имеет контакт, который может быть подключен к любому из двух других контактов; тройной бросок имеет контакт, который можно подключить к одному из трех других контактов и т. д.

    Полюс: Количество цепей, управляемых переключателем, указано полюсами. Однополюсный переключатель (SP) управляет только одной электрической цепью. Двухполюсный переключатель (DP) управляет двумя независимыми цепями.

    Бросок: Количество бросков указывает, сколько различных выходных соединений каждый полюс переключателя может подключить к своему входу. Однопозиционный переключатель (ST) — это простой переключатель включения / выключения. Когда переключатель находится в положении ON, два контакта переключателя соединены, и между ними течет ток.Когда переключатель находится в положении ВЫКЛ, клеммы не подключены, поэтому ток не течет.

    4 типа переключателей

    Основными типами переключателей являются SPST, SPDT, DPST и DPDT. Они кратко обсуждаются ниже.


    Работа переключателя SPST

    Однополюсный однопроходный переключатель (SPST) — это базовый переключатель включения / выключения, который просто соединяет или разрывает соединение между двумя клеммами. Электропитание цепи переключается переключателем SPST. На рисунке ниже показан простой переключатель SPST.

    Переключатели этого типа также называются тумблерами. Этот переключатель имеет два контакта: входной и выходной. Согласно типовой схеме выключателя света, он управляет одним проводом (полюсом) и выполняет одно соединение (бросок). Это переключатель включения / выключения, когда переключатель замкнут или включен, ток течет через клеммы, и лампочка в цепи будет гореть. Когда переключатель разомкнут или выключен, в цепи отсутствует ток. Цепь PST

    Работа переключателя SPDT

    Однополюсный переключатель двойного направления (SPDT) представляет собой трехконтактный переключатель, один для входа и два других для выходов .Он соединяет общий вывод с одним или другим из двух выводов.

    Для использования SPDT в качестве переключателя SPST просто используйте терминал COM вместо других терминалов. Например, мы можем использовать COM и A или COM и B.

    SPDT

    Схема четко демонстрирует, что происходит, когда переключатель SPDT перемещается вперед и назад. Эти переключатели используются в трехсторонней схеме для включения / выключения света из двух мест, например, сверху и снизу лестницы. Когда переключатель A замкнут, ток течет через клемму, и загорается только свет A, а свет B гаснет.Когда переключатель B замкнут, ток течет через клемму, и только индикатор B горит, а индикатор A гаснет. Здесь мы управляем двумя цепями или путями через один путь или источник. Цепь

    SPDT

    Работа переключателя DPST

    DPST — это сокращение от двухполюсного, одноходового. Двойной полюс означает, что устройство содержит два идентичных переключателя, расположенных рядом и управляемых одним переключателем или рычагом. Это означает, что две отдельные цепи одновременно управляются одним нажатием.

    DPST

    Переключатель DPST включает или выключает две цепи. Переключатель DPST имеет четыре контакта: два входа и два выхода. Чаще всего переключатель DPST используется для управления устройством на 240 вольт, где обе линии питания должны быть переключены, а нейтральный провод может быть подключен постоянно. Здесь, когда этот переключатель включен, ток начинает течь по двум цепям и прерывается, когда он выключается.

    Работа переключателя DPDT

    DPDT — двухполюсный переключатель двойного направления; это эквивалентно двум переключателям SPDT.Он направляет две отдельные цепи, соединяя каждый из двух входов с одним из двух выходов. Положение переключателя определяет количество способов прокладки каждого из двух контактов.

    DPDT

    Независимо от того, находится ли он в режиме ВКЛ-ВКЛ или ВКЛ-ВЫКЛ-ВКЛ, они работают как два отдельных переключателя SPDT, управляемых одним и тем же приводом. Одновременно могут быть включены только две нагрузки. DPDT можно использовать в любом приложении, которое требует открытой и закрытой системы проводки, примером которой является моделирование железных дорог, в котором используются небольшие поезда и железные дороги, мосты и автомобили.Закрытый позволяет системе быть включенным все время, в то время как открытый позволяет включить или активировать другой элемент через реле.

    На схеме ниже соединения A, B и C образуют один полюс переключателя, а соединения D, E и F — другой. Подключения B и E общие на каждом из полюсов.

    Если положительный источник питания (Vs) поступает на соединение B, а переключатель установлен в крайнее верхнее положение, соединение A становится положительным, и двигатель вращается в одном направлении.Если переключатель установлен в крайнее нижнее положение, питание меняется на противоположное и соединение D становится положительным, тогда двигатель будет вращаться в противоположном направлении. В центральном положении источник питания не подключен к двигателю, и он не вращается. Этот тип переключателей в основном используется в различных контроллерах двигателей, где скорость этого двигателя должна быть изменена.

    DPDT-Circuit

    Наряду с этими переключателями в этой статье также обсуждается геркон

    Геркон

    Геркон получил свое название от использования двух или трех небольших металлических частей, называемых язычками, с гальваническими контактами на их концах. и разошлись немного врозь.Геркон обычно представляет собой неподвижную стеклянную трубку, заполненную инертным газом. Поле от магнита или электромагнита избегает язычков, замыкая или размыкая контакт переключателя.

    Геркон

    Контакты геркона замыкаются переносом небольшого магнита рядом с переключателем. Два язычковых устройства имеют нормально разомкнутые контакты, которые замыкаются при активации. Три версии язычка имеют пару открытых и закрытых контактов. При срабатывании переключателя эти части переходят в противоположное состояние.Типичные герконовые переключатели коммерческого класса работают с токами в миллиамперном диапазоне до примерно 1 ампера постоянного или переменного тока. Однако специальные конструкции могут достигать 10 ампер и более. Герконовые переключатели часто встраиваются в датчики и реле. Одним из важных качеств переключателя является его чувствительность, количество магнитной энергии, необходимое для его приведения в действие.

    Герконы используются в системах безопасности, например, для проверки того, закрыты ли двери или нет. А также у него много приложений; это бытовая электроника, автоматические измерительные приборы, клавишный выключатель и герконовые реле.Стандартные герконы — это SPST (простое включение-выключение), однако также доступны версии SPDT (переключаемые).

    Характеристики герконового переключателя:

    • Герконские контакты герметично закреплены в стеклянной трубке с инертным газом, не подвержены влиянию внешней среды
    • Состоит из рабочих и электрических частей, расположенных коаксиально, герконовые переключатели подходят для высокочастотных приложений
    • Компактный и легкий
    • Низкое и стабильное контактное сопротивление
    • Герконовые переключатели экономично и легко превращаются в бесконтактные переключатели.

    Применение герконового переключателя:

    Точка, когда герконовый переключатель должен быть подключен к индуктивной нагрузке или нагрузке, в которой протекает прямой ток или большой ток (например, емкостная нагрузка, лампа, длинный кабель и т. Д.).

    Цепь герконового переключателя

    В случае, если в качестве нагрузки в цепи используется электромагнитное реле, имеющее индуктивность, энергия, накопленная в индуктивности, вызовет обратное напряжение при размыкании герконовых контактов. Напряжение, хотя и зависит от значения индуктивности, иногда достигает нескольких сотен вольт и становится основным фактором ухудшения состояния контактов.

    Фото:

    Подводные электрические системы — Глава 6

    6
    РАЗНОЕ ДОПОЛНИТЕЛЬНОЕ ОБОРУДОВАНИЕ
    A. ВЫКЛЮЧАТЕЛИ ЦЕПИ
    6A1. Общий. Автоматический выключатель — это устройство для размыкания электрической цепи под нагрузкой и его также можно использовать в качестве переключателя для включения схема.Автоматические выключатели могут быть как автоматическими. или неавтоматический в работе. Они есть двух основных типов для приложений постоянного тока: с угольными наконечниками и с закаленной дугой типа . Обозначения ВМФ для этих типов — ACB. (автоматический отрыв углерода) и AQB (автоматический закаленный разрыв) или NQB (неавтоматический закаленный перерыв).

    Тип АКБ представлен на подводных лодках. от I.T.E. тип KN, используемый на электрической лодке Суда компании и тип General Electric АЛ-2Н использовался на судах Портсмута.AQB типы представлены выключателями Westinghouse и используются только на судах портсмутской конструкции. до SS 381. Позже Портсмут судов и на всех судах компании Electric Boat Company они заменены выключателями с предохранителями.

    6A2. Автоматические выключатели типа ACB. Автоматические выключатели ACB (Рисунок 6-1) используются на подводных лодках живы передний, двухполюсный, с ручным управлением и с отключением бесплатно. Они вложены для защиты персонала. и оснащены перегрузкой и короткими защита цепи и, в случае вспомогательного генераторный выключатель с защитой от обратного тока.Они оснащены ручкой ручного отключения, которая может использоваться в качестве удержания устройство и, на более старых менее ударопрочных моделях, можно повернуть, чтобы заблокировать выключатель. делает выключатель неспособным отключиться при перегрузке, его никогда не следует оставлять в заблокированном положении после непосредственная опасность открытия из-за до шока прошло. Защита от перегрузки устройство срабатывает для отключения выключателя по истечении времени задержки когда ток превышает определенное значение, обычно 125 процентов полной нагрузки. Время задержки получается маслосборником, состоящим из двух точно шлифовать диски в масляной ванне.Когда диски расположены близко друг к другу, масляная пленка между им сопротивляется усилиям отключающего соленоида чтобы разлучить их. Время задержки обратно пропорционально

    пропорционально току и, следовательно, на большом тока, устройство срабатывает быстрее. Токами более 800 процентов номинального тока соленоид тянет так сильно, что вся приборная панель поднимается против сильной пружины. Это поездки выключатель за короткое время и известен как мгновенная защита от короткого замыкания.

    Предусмотрена защита от обратного тока. выключатель вспомогательного генератора для предотвращения повреждение двигателя при попытке генератора действовать как двигатель при подключении через аккумулятор. Это устройство состоит из небольшого крутящего момента мотор, то есть мотор, который пытается вращаться но не может повернуть целую революцию. Поле полюса двигателя находятся под напряжением от линии ток в одном полюсе выключателя и якоря возбуждается катушкой, подключенной поперек два полюса.

    Когда ток течет в нормальном направление, в котором двигатель стремится вращаться в одном направление, но не позволяет сделать это из-за остановки.Если ток в выключателе меняется на противоположный, двигатель имеет тенденцию вращаться в другом направлении. Когда ток достигает определенного значения, крутящий момент превышает усилие калибровочной пружины и вращается до тех пор, пока не ударится о поршень, который срабатывает выключатель. Диапазон калибровки реверса текущая поездка обычно составляет от 10 процентов до 25 процентов номинального тока. Действие выключатель ACB при разрыве дуги просто вытяжка дуги между углем чаевые по мере их разделения. Связь разработана так что последние точки для разделения находятся на угольные наконечники, предотвращающие сгорание токоведущие контакты, покрытые серебром для низкого контактного сопротивления.

    6A3. Выключатели типа AQB и NQB. Тип Автоматические выключатели AQB и NQB, используемые на подводных лодках, находятся в мертвой зоне, двухполюсные, с ручным управлением, а на автоматических выключателях AQB срабатывают бесплатно и оснащен защитой от короткого замыкания. Дуга в этот выключатель отключается следующим образом: Когда контакты разъединяются, дуга рисуется в стальную коробку, изолированную от остальной части

    89


    Рисунок 6-1.Автоматический выключатель типа ACB.
    выключатель и прорезь так, чтобы они были разделены на несколько частей, что значительно удлиняет его и охлаждая его. Магнитные силы, возникающие между дуга и стальной короб заставляют дугу двигаться в коробку.

    Функция короткого замыкания, предусмотренная на AQB выключатели состоят из элемента отключения короткого замыкания который обычно калибруется на заводе и не легко настроить. Лучше всего заменить элемент с новым, имеющим желаемые характеристики отключения.Когда споткнулся, ручка выключателя AQB возвращается в положение между ВЫКЛ и ВКЛ. Чтобы его сбросить, ручка должна быть сначала переведена в положение ВЫКЛ. а затем в положение ВКЛ. Автоматические выключатели NQB полностью ручной в эксплуатации и открывать только тогда, когда ручка повернута в положение ВЫКЛ. У них есть те же функции прерывания дуги, что и AQB выключатели.

    Все выключатели AQB снабжены ручным управлением. удерживать их от перегрузки, и они могут быть запертым закрытым от перегрузка или шок. Запорные устройства должны никогда не занимайтесь, кроме случаев крайней необходимости чтобы предотвратить открытие из-за удара.


    Рисунок 6-2. Автоматический выключатель типа AQB, крышка снята.
    90

    Рисунок 6-3. КОНСТРУКЦИЯ ОСВЕЩЕНИЯ УПРАВЛЕНИЕ ДИММЕРОМ НА ПОДВОДЕ КЛАССА 313.

    Рисунок 6-4. ПЛАНИРОВКА ЦЕПИ АВАРИЙНОГО ОСВЕЩЕНИЯ НА ПОДВОДЕ КЛАССА 313.

    Б.ПРЕДОХРАНИТЕЛИ И ПРЕДОХРАНИТЕЛИ
    6Б1. Предохранители. Предохранители, как и автоматические выключатели, используется для защиты от коротких замыканий. Однако после размыкания предохранителей цепь из-за короткого замыкания их нельзя замкнуть и подлежит замене. Предохранители зависят от их действие на плавление токоведущей полосы металла за счет тепла, выделяемого током в самой полосе. Предохранители обычно выбираются так что они прервут цепь, когда 200 процентов номинального тока проходит через их.Все предохранители имеют срабатывание с выдержкой времени, которое обратно пропорционально току. Это вызвано теплоемкостью предохранителя и окружающие части. Следует соблюдать осторожность, когда установка предохранителей, чтобы убедиться в хорошем контакте в зажимах, так как соединение с высоким сопротивлением, выделяют тепло и вызывают перегорание предохранителя слабый ток.

    6Б2. Переключатели с предохранителями. Выключатели с предохранителями используется для отключения и подключения различных нагрузки на вспомогательную энергосистему и для обеспечения защита от короткого замыкания на кабели и

    распределительные щиты.Тип, используемый на подводных лодках состоит из металлических ящиков с предохранителями с соединителями лезвий ножа, прикрепленными к выдвижной кусок внутри крышки. Когда крышка нормально закрыт, предохранитель и прикрепленные ножи может устанавливать соединение через сплит-тип сообщения в ящике; но нажимая в сторону, прежде чем закрытие крышки приводит к тому, что лезвия не работают контакта, и они, таким образом, заблокированы в электрически открытая позиция. Запрещается заменять предохранители на предохранители. большей емкости, чем показано на принципиальная схема или обозначена на шильдике на на держателе предохранителя или на распределительной коробке.

    Фиксаторы предохранителей установлены на всех предохранителях, которые могут быть выброшены из держателей током. Это могут быть изолирующие блоки, удерживаемые над линией. предохранителей винтами с накатанной головкой или прикрепленных внутрь крышки коробки; или они могут быть небольшие зажимы из пружинной стали, которые увеличивают натяжение штырей держателя предохранителя. Держатели предохранителей всегда следует заменять, если они снимаются для любая цель.

    C. СИСТЕМА ОСВЕЩЕНИЯ
    6C1.Описание. В систему освещения входят: система служебного освещения судна и системы аварийного освещения левого и правого борта. Каждая из систем представляет собой отдельный дистрибутив система.

    Электропитание системы служебного освещения корабля на подводных лодках позднего типа получается из аккумуляторы через 2 регулятора напряжения фидера освещения (см. Раздел 6D1) и распределение освещения коммутатор. На более ранних кораблях мощность для эта система была снабжена двигателем освещения генераторные установки (см. раздел 4C1).

    На судах, которые получают мощность освещения напрямую от батареек селектор батарейки выключатель был включен в освещение распределительный щит. Этот переключатель позволяет выбор батареи или берега подключение как источник питания.

    Кормушки из светораспределения распределительный щит по длине корабля на обоих стороны и обслуживают все штатные цепи освещения через распределительные коробки с предохранителями. Финал

    разводка на осветительные приборы и слаботочные розетки через стандартное распределение освещения ящики с выключателями и предохранителями для каждой исходящей схема.

    Система аварийного освещения правого борта питание напрямую через 2 выключателя подключен к положительной и отрицательной конечной ячейке клеммные разъемы передней аккумуляторной батареи. Эти переключатели подключены к 13 осветительным приборам. единиц, цепь к вспомогательному гироскопу, и к передний и задний контуры маркерных буев. А Ответвительная распределительная коробка обеспечивает подключение к панель управления гирокомпасом для сигнализации система.

    Система аварийного освещения порта имеет прямое питание. через выключатели, подключенные к плюсу и отрицательная конечная ячейка клеммные разъемы АКБ.В устройство этой системы аналогично устройству аварийная система правого борта, кроме расположение цепей и то, что там нет подключения сигнализации гирокомпаса.

    91

    Каждый осветительный блок состоит из двух 115-вольтных огни, защитный резистор и мгновенный выключатель, все соединены последовательно, так как они всегда работают непосредственно на полном напряжении АКБ .

    6C2.Прожектор. 12-дюймовая лампа накаливания Для прожектора сигнала требуется 120-вольтный постоянный ток. поставлять. Не считается частью освещения система, потому что питание берется из с предохранителем, двухполюсный, однонаправленный переключатель на IC. распределительный щит и привел к герметичному розетка и защелкивающийся переключатель на мосту.

    6C3. Обслуживание. Герметичный тип прожекторы, которые остаются на постоянном месте

    должны содержаться в чистоте и смазке.Функция защиты от давления состоит из бесплатного структура затопления, которая быстро осушается после подводные поверхности. Питание не должно подаваться на лампу, пока она не выйдет из воды примерно 2 минуты. Особая забота необходимо принять меры, чтобы сохранить все электрические соединения чистые, движущиеся части смазаны, а алюминиевые поверхности окрашены для предотвращения коррозии.

    ВНИМАНИЕ. Погружение при включенном свете или вскоре после использования сломает лампочка прожектора из-за теплового удара.Подводное плавание с включенным светом или при его включении в погружении перегорят предохранители.

    D. РЕГУЛЯТОРЫ НАПРЯЖЕНИЯ ПИТАНИЯ ОСВЕЩЕНИЯ
    6Д1. Описание. Напряжение фидера освещения регуляторы используются на некоторых судах вместо мотор-генераторные установки, для поддержание напряжения системы освещения на уровне 120 вольт или ниже. Используются два агрегата, один по правому борту. и один для цепей освещения портов.

    Эти регуляторы в основном реостаты в который перемещается контактным рычагом, либо вручную или двигателем через круговой контакт реостата лицевая панель. Резисторные трубки рассеивают излишки напряжение в виде тепла. Когда аккумулятор напряжение высокое как, например, во время зарядка, подача на каждую из осветительных стабилизаторы напряжения, получаемые от одного половина батарей может достигать 175 вольт. Затем реостат настраивают на поглощение разница между этим напряжением питания и желаемое напряжение нагрузки 120 В.Реостат сопротивление снимается так, что оно производит напряжение падение не более 2 1/2 вольт на шаг при любой ток от 100 до 12,5 ампер. Реостат рассчитан на рассеивание 5500 ватт при максимальном состоянии 55 вольт падение на 100 ампер. Этот реостат будет нести от 12,5 до 100 ампер через падение от 0 до 55 вольт.

    Сборка приводится в действие через регулятор напряжения. элемент, известный как регулирующий элемент HIR, и реле ПОДНЯТИЯ и НИЖНЕЕ.Элемент представляет собой прибор для измерения напряжения, который уравновешивает натяжение катушек с натяжением винтовая пружина. Реле RAISE и LOWER служат для подключения мотора реостата так, чтобы он

    вращается в одну или другую сторону в ответ к чувствительному к напряжению элементу.

    По сути, регулирующий элемент имеет 2 части, одна движущаяся, а другая неподвижная. В подвижная арматура несет подвижный рычаг и поддерживается двумя пружинами плоских петель. Стационарный часть состоит из 2-х стационарных контактов с опорой элементы и части магнитной цепи.Один катушка установлена ​​на каждом сердечнике. Каждый из них катушки рассчитаны на 27,5 миллиампер и имеют сопротивление 1950 Ом.

    Винтовая пружина закреплена между подвижный рычаг и неподвижный элемент рычаг, который можно отрегулировать для получения надлежащего натяжение пружины. Нижний конец подвижного рука несет 2 противовеса, которые статически балансируйте движущуюся руку в вертикальном положении. Верхний конец подвижного рычага несет двойное лицо, подвижный контакт между парой стационарных контактов реле.Эти неподвижными контактами являются R (поднять) и L (опускать) контактов и может регулироваться для фиксации рабочего положение и ход подвижного якоря по отношению к полюсным наконечникам.

    Реле RAISE и LOWER состоят из две части, одна неподвижная, другая движущаяся. В Стационарная часть состоит из основания, сердечника, катушки, стационарный главный контакт, предохранительная катушка и дугогасительная камера. Подвижная часть несет основную подвижный контакт на его верхнем конце и противовес на нижнем конце для статического баланса.

    92

    Вся сборка защищена от капель в конструкция и жалюзи предусмотрены для утечка горячего воздуха. Максимально допустимый повышение температуры на трубках резистора реостата составляет 375 градусов по Цельсию.

    ВНИМАНИЕ. Хотя температура может не достигать максимальной температуры 375 ° C, необходимо соблюдать осторожность взятые при обращении с оборудованием или при работе с ним.

    6Д2.Ручная операция. Правильная процедура для ручное управление регуляторами следующим образом: поверните переключатель управления в Положение РУЧНОЕ. Вытяните маховик реостата отключить реостат от скорости двигателя редукторы. Напряжение нагрузки равно в зависимости от положения рычага реостата. Поворачивая маховик реостата по часовой стрелке направление отключает или уменьшает реостат сопротивление и повышает напряжение нагрузки. Превращая маховик реостата против часовой стрелки

    направление сокращает или увеличивает сопротивление реостата и снижает напряжение нагрузки.

    6D3. Автоматическая работа. Следующие необходимо соблюдать меры предосторожности перед тем, как поворачивать переключатель управления в положение автоматического (АВТО). Всегда настраивайте положение реостата вручную на подайте на ламповую нагрузку 120 вольт. Это — значение напряжения, которое регулирующий элемент был скорректирован для поддержания.

    После ручной настройки на 120 В поверните переключатель управления в положение АВТО. В подвижный контакт регулирующего элемента будет центрированный или плавающий между передней и задней частью стационарные контакты.И RAISE, и НИЖНИЕ контакты будут разомкнуты.

    Когда напряжение на нагрузке возрастает, либо от нагрузки заменой или увеличением зарядного генератора напряжение, элемент замыкает свой нижний контакт. Это активирует реле УМЕНЬШЕНИЯ, которое


    Рисунок 6.5. Принципиальная схема регулятора напряжения фидера освещения.
    93


    Рисунок 6-6.Регуляторы напряжения фидеров освещения и распределительные щиты освещения.

    замыкает свой контакт в цепи возбуждения двигателя. В двигатель вращает рычаг реостата против часовой стрелки. направление, чтобы сократить сопротивление и опустить напряжение нагрузки. Действие продолжается до тех пор, пока напряжение восстанавливается до 120 вольт.

    При понижении напряжения нагрузки элемент замыкается. его контакт. При условии, что напряжение нагрузки не было снижено до значения меньше, чем 50 вольт, реле увеличения замыкает свой контакт в цепь возбуждения двигателя.Двигатель приводит в движение рычаг реостата по часовой стрелке, чтобы вырезать сопротивление и поднять напряжение нагрузки. Действие непрерывно, пока напряжение не восстановится до 120 вольт.

    ПРИМЕЧАНИЕ. Значительное увеличение нагрузки (более 50 ампер) не следует бросать, когда переключатель управления установлен в положение АВТО, так как это может вызвать нагрузка и управляющее напряжение упадут ниже 50 вольт, в этом случае УВЕЛИЧЕНИЕ и УМЕНЬШЕНИЕ реле и реостат приводного двигателя будут


    Рисунок 6-7.Регулятор напряжения фидера освещения, верх снят.


    Рисунок 6-8. Вид сверху регулятора напряжения фидера освещения.

    94

    не работают. Как правило, если установлен автоматический контроль, шаги нагрузки не должны превышать 50 амперы. При ручном управлении меры предосторожности, такие как увеличивать количество нагрузки не нужно, потому что оператор может позаботиться о любой нагрузке изменение рейтинга реостата.С учетом того факта, что перенапряжение значительно снижает срок службы лампы накаливания при ручном управлении, должен быть установлен порядок работы, который предотвратит большие перенапряжения.

    6D4. Общее техническое обслуживание. Оборудование требует только разумной осторожности, чтобы сохранить контакты и элемент управления очищены от пыли или грязь. Контакты элемента можно чистить и полировать без снятия контактов. Чистый

    следует использовать сухую ткань; наждачная бумага или другое ни в коем случае нельзя использовать абразивные материалы.

    Движущиеся части следует периодически проверять. для бесплатного использования и видеть, что все движется контакты правильно выровнены с их стационарные контакты. Главный и вспомогательный контакты должен закрываться примерно в одно и то же время. Воздушный зазор между подвижным и неподвижным основной контакт должен быть примерно 1/8 дюйма. Винт в нижней части подвижного Предусмотрен рычаг для регулировки воздушного зазора.

    Смазка мотора реостата должна периодически проверять. Мотор оборудован с 2 маслозаливными трубками, каждая из которых имеет винт заглушка для возможности доливки.

    E. ОТОПЛЕНИЕ
    6E1. Нагреватели смазочного масла. Четыре нагревателя погружные блоки, рассчитанные на 220 вольт и 500 Вт, установлены в каждом из 2 смазочных масел агрегаты подогревателя. Каждый погружной блок нагревателя состоит из 3-х лопастей, отдельно заключенных в стальная оболочка. Концы оболочек припаяны. к клеммной коробке погружного блока который имеет резьбу для вставки в нагреватель корпус трубы в сборе.

    В процессе работы масло циркулирует через трубы корпуса отопителя и, по ходу, проходит над каждым из погружных блоков нагревателя. В температура, необходимая для доведения масла до надлежащая вязкость контролируется путем врезания или вырезать необходимое количество нагревателей, каждый из которых снабжен переключателем ВКЛ-ВЫКЛ.

    ВНИМАНИЕ. Погружные блоки не должны быть включенным, если масло не течет. Единицы будут быстро выгорают, если ток подается во время они не погружены в масло.

    6E2. Воздухонагреватели. Переносные 2 кВт и 4 кВт Нагреватели нагнетательного типа установлены на каждом судне. Обогреватели оснащены переключателем, обеспечивающим 2 тепловых пункта. Положения переключателя: отмечены OFF, LOW и HIGH. Автономный вентилятор прилагается и подключается, когда переключатель переведен в одно из положений нагрева. Нагреватель мощностью 4 кВт рассчитан на 250 вольт, на 16 ампер, и имеет 4 литые изолированные секции нагревателя в сетке с круглым оребрением. Каждая пара секций защищен термовыключателем, срабатывает

    чрезмерно поддерживаемая температура и при условии с индикатором, показывающим, что вырез имеет споткнулся.Сброс может быть выполнен только после машина остыла до безопасной рабочей температуры.

    Нагреватель мощностью 2 кВт рассчитан на 250 вольт при 8 ампер и аналогичен по конструкции Нагреватель мощностью 4 кВт, за исключением того, что каждая секция обогревателя номинальная мощность 500 Вт вместо 1000 Вт.

    Воздухонагреватели оснащены защитными устройствами. чтобы обеспечить работу при 345 вольт. Тем не мение, при длительной смене аккумулятора при высоком напряжении они могут быть выключены или НИЗКИЕ в качестве дальнейшего техника безопасности.

    6E3.Водонагреватели. Горячая вода резервуары емкостью 20 галлонов и 25 галлонов, обогревается нагревательными элементами стержневого типа, которые термостатически управляемый магнитными контакторами. Бак на 20 галлонов оборудован 2 обогревателями. ед., и резервуар емкостью 25 галлонов, с 3-мя нагревательными единицы измерения. Каждый нагревательный элемент рассчитан на 4 кВт при 275 вольт и будет удовлетворительно работать в диапазоне от 200 до 345 вольт. Два водонепроницаемых терминала коробки предоставляются. Нижняя коробка обеспечивает доступ к и содержит соединения отопления единицы измерения.Верхнее поле обеспечивает доступ и содержит термостат. Термостат настраивается на любой диапазон температур от 120 градусов по Фаренгейту до 180 градусов по Фаренгейту и работает при изменении + — 5 степени F.

    При правильной вентиляции бак

    95

    всегда полностью заполнен водой. Вода температура поддерживается в соответствии с настройка термостата, который контролирует катушечные цепи контакторов магнитопровода в контроллер.Когда температура воды падает ниже уставки термостата, термостат замыкает цепь катушки, в результате чего контакторы срабатывают. закрыть и подключить нагревательные элементы к линии. Когда вода в баке достигнет желаемого температуры, термостат открывается, открывая контакторы и отключение отопления единиц от линии. Эксплуатация каждого танка управляется тумблерным переключателем ВКЛ. и ВЫКЛ. расположен на панели контактора магнитной линии.

    6E4. Урны для кофе. Урна состоит из 2 контейнеры цилиндрического типа, один установленный внутри Другие.Воздушная камера между контейнерами предотвращает охлаждение кофе внутри емкость, когда в воду наливается пресная вода бак.

    Бак для воды нагревается 2 погружениями. единицы, оба управляемые одним 3-х индикаторы нагрева, реверсивное управление переключатель установлен в распределительная коробка, расположенная перед агрегатом. Погружные нагревательные элементы устанавливаются через задняя часть корпуса урны в нижней части водный отсек. Головки блока, клеммы, и провода находятся под съемной крышкой пластина.

    Каждый из нагревательных агрегатов имеет рейтинг 1000 Вт при 250 вольт. Вход урны, при номинальном напряжении 2000 Вт на ВЫСОКОМ, 1000 Вт на СРЕДНЕМ и 500 Вт на НИЗКОМ. Вместимость урны — 2 галлона кофе и 4 галлона воды.

    ВНИМАНИЕ. Нагревательные элементы нельзя включен, если урна не наполнена водой и всегда должен быть выключен или переведен на НИЗКИЙ во время длительная зарядка аккумулятора при высоком напряжении, в для защиты агрегатов от повреждений высокое напряжение.

    6E5. Камбузный хребет. Камбузный ассортимент состоит из в основном из варочной поверхности и печь. Эти агрегаты и их нагревательные элементы поддерживается в усиленном корпусе диапазона. В варочная поверхность и духовой шкаф работают независимо друг от друга. контролируется двумя трехконтурными реверсивными индикаторные переключатели, и каждый переключатель защищен двойным вырезом полюса.

    Нагревательные элементы варочной поверхности состоят из никель-хромовый резистор, встроенный в изоляционный материал в бесшовной стали оболочка, отливаемая как единое целое в варочную поверхностное литье.Варочная поверхность имеет площадь 19 дюймов на 18 дюймов и рассчитан примерно на 4000 Вт на ВЫСОКОМ, 2000 Вт на СРЕДНЕМ и 1000 Вт на НИЗКОМ. В клеммы герметичны для предотвращения попадания воздуха, влаги, или смазка от попадания в нагревательные змеевики.

    Изолированная духовка составляет примерно 17 дюймов в ширину, 18 дюймов в глубину, и 14 дюймов в высоту. Духовка снабжена регулируемый автоматический контроль температуры и индикатор с диапазоном от 200 градусов до 550 градусов F. Используются два нагревательных элемента; один расположен внизу, другой — вверху печь.

    Нагревательные элементы духовки такие же конструкция как элементы варочной поверхности за исключением того, что они заключены в никель-хром трубы и поддерживаются в стальной раме. Каждый Нагревательный блок рассчитан примерно на 1500 Вт на ВЫСОКОМ, 750 Вт на СРЕДНЕМ и 375 Вт на НИЗКОМ при 250 вольт.

    Все нагревательные элементы могут работать непрерывно при любом напряжении до 345 вольт без вредного окисления.

    Диапазон рассчитан на тяжелые условия эксплуатации. обслуживание и требует небольшого количества электроэнергии Обслуживание.Запасные нагревательные элементы, переключатели и на борту имеются блоки контроля температуры для замены

    96


    Авторские права © 2013-2016, Ассоциация морских парков
    Все права защищены.
    Юридические уведомления и Политика конфиденциальности
    Версия 1.11, 20 мая 2016 г.

    Проектирование водных систем — Журнал по водяной скважине

    Часть 15 (а) — Знакомство с приводами насосов, Часть 1

    Эд Баттс, ЧП

    Мы завершили обсуждение различных типов насосного оборудования, используемого для глубоких и неглубоких скважин, а также для повышения давления в последнем выпуске The Water Works (октябрь 2018 г.).В следующих двух столбцах будут описаны различные типы приводов, используемых для приведения в действие этих насосов, включая электродвигатели, двигатели, генераторы и зубчатые передачи.

    Рисунок 1. Вращающееся поле электродвигателя на трехфазном питании.

    Поскольку две колонки предназначены для рассмотрения различных типов драйверов, используемых для насосных приложений, методы проектирования сечения кабелей, падения напряжения и защиты от короткого замыкания / перегрузки не будут включены, но будут подробно описаны в будущих изданиях The Water Work s. .

    Для работы скважинный насос в сборе с электроприводом или приводом от двигателя, как правило, должен включать в себя три компонента:

    1. Привод: Он может состоять из электродвигателя или двигателя внутреннего сгорания для непосредственного привода насоса или генераторной установки, которые могут использоваться для выработки электроэнергии для привода электродвигателя.
    2. Средство передачи мощности: Используется для передачи мощности от драйвера к ведомому оборудованию. Для вертикального турбинного насоса используется трансмиссионный вал для привода насоса от вертикального электродвигателя или угловой зубчатой ​​передачи.Трансмиссия часто используется для передачи мощности от горизонтальной оси двигателя к вертикальной оси скважинного насоса, как правило, через ременную или зубчатую передачу. В двигателе погружного насоса используется изолированный медный или алюминиевый кабель для передачи электрического тока от устья скважины к двигателю.
    3. Скважинный насос: Обычно состоит из вертикальной турбины или погружного насоса.

    Электродвигатели Рисунок 2. Погружной электродвигатель со скоростью вращения 3600 об / мин (двухполюсный).

    Безусловно, электродвигатели составляют большинство приводов насосов. Для сравнения, второй наиболее распространенный метод привода насоса, двигатель внутреннего сгорания, занимает меньший процент от общего числа. Электродвигатели для большинства гидротехнических сооружений и водозаборных скважин доступны как с обычным переменным, так и с постоянным напряжением в диапазоне от 115 до 4160 вольт в одно- и трехфазных источниках питания и мощностью от ½ л.с. до более 2000 л.с.

    В отличие от обычных двигателей внутреннего сгорания, электродвигатели также универсальны в рабочей ориентации с возможностью работы как в горизонтальной, так и в вертикальной конфигурациях и в рабочих средах с возможностью работы в открытых, грязных, взрывоопасных или влажных условиях или даже при погружении на сотни футов. воды.Таким образом, электродвигатели являются основным типом привода насоса, описанным в этой колонке.

    Теория обычных электродвигателей

    Двигатель переменного тока с короткозамкнутым ротором состоит из двух основных электрических компонентов: статора и ротора. Термин «беличья клетка» используется потому, что вращающийся двигатель часто имеет такой же внешний вид, как и у беличьей клетки, бегающей по замкнутой клетке.

    Статор — это неподвижный электрический элемент; он состоит из группы отдельных электромагнитов, выровненных таким образом, что они образуют полый цилиндр, с одним полюсом каждого магнита, обращенным к центру группы.Термин «статор» происходит от слова стационарный ; таким образом, статор — это неподвижная или неподвижная часть двигателя.

    Ротор — это вращающийся электрический компонент; он также состоит из группы электромагнитов, расположенных вокруг цилиндра с полюсами, обращенными к полюсам статора. Ротор расположен внутри статора и установлен на валу двигателя, который соединен с валом насоса. Термин «ротор» происходит от слова , вращающийся на ; Таким образом, ротор — это вращающаяся часть двигателя.

    Задача этих компонентов двигателя совместно — вызвать вращение ротора, который, в свою очередь, вращает вал двигателя и насоса. Это вращение будет происходить из-за магнитного явления: в отличие от (+/–) магнитных полюсов притягиваются; как магнитные полюса (+ / + или — / -) отталкиваются.

    Если мы постепенно изменим полярность полюсов статора таким образом, чтобы их объединенное магнитное поле вращалось по окружности цилиндра, ротор будет следовать и вращаться вместе с магнитным полем статора.

    Хотя сегодня используются различные типы электродвигателей — с расщепленной фазой, экранированные полюса и синхронные электродвигатели — наиболее распространенным типом электродвигателей, используемых в водяных скважинах и гидротехнических сооружениях, является асинхронный электродвигатель . Существует два основных типа асинхронных двигателей: однофазный асинхронный двигатель и трехфазный асинхронный двигатель. Однофазный асинхронный двигатель не является самозапускающимся двигателем, поскольку для него требуются внешние или отдельные средства запуска и ускорения. Однако трехфазный асинхронный двигатель по своей природе самозапускающийся.

    В трехфазной системе есть три однофазные линии, каждая с разностью фаз 120 °. Следовательно, вращающееся магнитное поле имеет одинаковую степень разности фаз, которая заставляет ротор вращаться.

    Рисунок 3. Двигатель с вертикальным полым валом (VHS).

    Если мы рассмотрим три фазы переменного тока (AC) (A, B, C, как показано на рисунке 1) в момент времени 1, ток (сила тока) в полюсах фазы A будет положительным, а полюс A-1 — N (север) . Ток в полюсах фазы C отрицательный, что делает C-2 N-полюсом, а C-1 — S (юг).В фазе B нет тока, поэтому эти полюса не намагничены.

    Во время 2 фазы теперь сдвинуты на 60 °, в результате чего полюса C-2 и B-1 как N, так и C-1 и B-2 оба S. полюса вращаются вокруг статора по часовой стрелке, создавая вращающееся магнитное поле. Ротор действует как стержневой магнит, притягиваемый вращающимся магнитным полем.

    Даже если трехфазный двигатель будет медленно вращаться только с двумя из трех фаз, он не разгонится до полной скорости.Это происходит из-за потери третьей фазы, что требует от двигателя пропустить эту потерянную фазу при запуске. Это состояние, известное как однофазное , от которого необходимо защитить, чтобы избежать возможного повреждения двигателя и электрической системы .

    Что касается однофазности, мы знаем, что однофазный источник питания переменного тока состоит из синусоидальной волны, которая создает пульсирующее магнитное поле в равномерно распределенной обмотке статора. Поскольку мы можем предположить, что пульсирующее магнитное поле представляет собой два противоположных вращающихся магнитных поля, двигатель останавливается, и не будет результирующего крутящего момента во время запуска двигателя.Следовательно, двигатель не запускается и не запускается. После подачи питания на двигатель, если ротор будет вращаться в любом направлении с помощью соответствующей внешней силы, двигатель начнет работать.

    Эту проблему можно решить, преобразовав обмотку статора в две отдельные обмотки; одна является основной или рабочей обмоткой, а другая — вспомогательной или пусковой обмоткой путем подключения конденсатора последовательно с рабочей обмоткой.

    Конденсатор создает разность фаз, когда ток течет через обе катушки.Когда есть разность фаз, ротор будет генерировать необходимый пусковой крутящий момент, и двигатель начнет вращаться. Мы практически можем видеть, что двигатель не вращается, когда конденсатор отключается от двигателя. Однако, если ротор повернуть вручную, он начнет вращаться. Вот почему мы используем конденсатор с однофазным асинхронным двигателем.

    Для обычного трехфазного асинхронного двигателя, когда на обмотку статора подается напряжение, в статоре создается магнитный поток из-за протекания пускового тока в обмотке.Обмотки ротора расположены так, что каждая обмотка закорачивается. Поток от статора пересекает силовую линию (индукцию) через короткозамкнутую катушку в роторе.

    Поскольку катушки ротора закорочены, в соответствии с законом электромагнитной индукции Фарадея через обмотку ротора начинает течь ток. Когда ток через обмотку ротора течет, в роторе генерируется другой магнитный поток. Теперь в двигателе генерируются два потока; один — поток статора, а другой — поток ротора.Поток ротора будет немного отставать по отношению к потоку статора, как будто пытается его догнать.

    Из-за этого на ротор будет действовать крутящий момент или вращающее усилие. Это заставит ротор вращаться в направлении вращающегося магнитного поля.

    Скорость вращения ротора в оборотах в минуту (об / мин) изменяется в зависимости от частоты сети и количества полюсов в двигателе. При источнике питания 60 Гц двухполюсный двигатель имеет синхронную скорость 3600 об / мин, но из-за внутренних потерь фактическая скорость будет примерно на 4% меньше или 3450 об / мин.Четырехполюсный двигатель имеет синхронную скорость 1800 об / мин (фактическая 1725 об / мин), а 6-полюсный двигатель имеет синхронную скорость 1200 об / мин (фактическая 1150 об / мин).

    Разница в этих двух скоростях называется скольжением двигателя . Пространство между магнитами ротора (стержнями) и магнитами статора (стержнями) называется воздушным зазором . Воздушный зазор представляет собой универсальное, хотя и небольшое, кольцевое пространство, позволяющее магнитным силовым линиям перемещаться вперед и назад между ротором и статором. Воздушный зазор поддерживается на обоих концах ротора внутренним подшипником и внешним подшипником.Это принцип работы асинхронного двигателя любого типа, однофазного и трехфазного двигателя.

    Погружные электродвигатели Погружные двигатели

    (Рис. 2), используемые для привода глубинных насосов, имеют цилиндрическую форму и конструкцию, сконструированы так, чтобы соответствовать обычным диаметрам обсадных труб скважин и крепятся болтами к стандартным скважинным насосам (класс NEMA), которые также имеют цилиндрическую форму и в основном используют компоненты из нержавеющей стали для внешней оболочки и вала.

    Как и обычные электродвигатели, они доступны от ½ л.с. до более 1000 л.с. Диаметр двигателя составляет от 4 до 16 дюймов, а напряжение — от 115 вольт однофазного до 4160 вольт трехфазного или более при 50 или 60 герц.

    Поскольку их диаметр ограничен в зависимости от области применения, а также из-за необходимости встраиваться внутрь скважин диаметром 6 дюймов и меньше для многоступенчатого насоса сопоставимого размера для обеспечения высокого напора, большинство двигателей для погружных насосов имеют большую длину, чем сопоставимые стандартные двигатели HP. двигателей и для двухполюсного (3600 об / мин) режима.Однако многие двигатели большего диаметра (более 8 дюймов) могут работать на четырехполюсных (1800 об / мин) или шестиполюсных (1200 об / мин) скоростях, что позволяет напрямую сравнивать выбор и производительность большинства вертикальных стаканов турбинных насосов. Двигатели погружных насосов обычно изготавливаются в соответствии с классом изоляции UL по классу F (155 ° C, 311 ° F).

    Из-за того, что во многих случаях они работают на глубине сотен футов воды, погружные двигатели должны быть сконструированы так, чтобы выдерживать и предотвращать возможное частичное или полное (мертвое) замыкание обмоток двигателя на землю.

    Обычно это достигается за счет заделки обмоток двигателя внутри залитого эпоксидной смолой или герметичного кожуха. Эпоксидная смола эффективно изолирует обмотки и электрические компоненты от ударов окружающей воды электричеством, позволяя воде проходить через двигатель для охлаждения и смазки и через воздушный зазор, который существует между статором и ротором, в котором необходимо магнитные силы передаются для приведения в движение двигателя.

    В этом типе конструкции вода может поступать в двигатель через обратный клапан с фильтром, расположенный на внешней оболочке двигателя.Внешний напор, создаваемый в скважине, уравновешивается внутри двигателя с помощью компенсирующей давление пружины и диафрагмы.

    Усилие, развиваемое насосом, но в большинстве случаев передаваемое на двигатель, сопротивляется за счет использования упорного подшипника типа Кингсбери, обычно расположенного в нижней части раструба двигателя. Усилие, развиваемое насосом во время работы, передается на этот пленочный подшипник, который перемещается на различное количество подушек для поглощения нагрузки.

    В зависимости от диаметра двигателя и номинальной тяги упорные подшипники с жидкостной пленкой содержат несколько секторных подушек, расположенных по кругу вокруг вала двигателя, которые могут свободно поворачиваться и выравниваться.Они создают клиновидные области тонкой смазочной пленки внутри подшипника между колодками и вращающимся диском, которые поддерживают приложенное усилие и исключают контакт металла с металлом.

    Информация, представленная в Таблице 1, отражает типичные характеристики двигателей погружных насосов для большинства перечисленных производителей. Минимальные скорости, показанные как рекомендуемые скорости в футах в секунду (FPS), предназначены для обеспечения адекватного потока на каждом диаметре двигателя, чтобы поддерживать температуру корпуса двигателя в допустимом диапазоне.

    Рекомендуемая скорость потока для группы двигателей с погружными насосами номинальным диаметром от 10 до 16 дюймов 0,80 FPS выше минимального значения 0,50 FPS, указанного некоторыми производителями двигателей. Однако, исходя из моего опыта, более высокое значение необходимо для обеспечения необходимого коэффициента безопасности для адекватного отвода тепла, выделяемого двигателями более высокой мощности, и для обеспечения разумного значения диапазона для среднего расхода в установках с регулируемым расходом, использующих частотно-регулируемые приводы или системы управления. клапаны, общие для многих крупных насосных установок.

    Помимо погружных двигателей с водяной смазкой, некоторые производители используют маслонаполненную конструкцию с внутренней автономной системой циркуляции масла с принудительной подачей масла, которая поддерживает непрерывную смазку и обеспечивает отличную изоляцию и коррозионную стойкость. Этот тип конструкции двигателя часто используется для более крупных двигателей в глубоководных или нефтяных скважинах.

    Погружные двигатели с масляной смазкой и охлаждением следует использовать с осторожностью при работе с питьевой водой, при этом проектировщик должен убедиться, что двигатель и масло одобрены NSF для использования с питьевой водой.

    Хотя погружные двигатели с масляным охлаждением и смазкой более устойчивы к перегреву, обычно масла, используемые в этих двигателях, могут надежно работать только при температуре до 90 ° C, прежде чем масло начнет карбонизироваться и деградировать (масло становится черным и приобретает резкий запах гари когда мотор открыт).

    Из-за большого объема нефтепродуктов двигатели с масляным охлаждением должны быть спроектированы таким образом, чтобы масло могло расширяться при нагревании от рабочей температуры. Обычно внутреннее масло двигателя расширяется не менее чем на 10%, и сильфон для компенсации давления должен расширяться, чтобы приспособиться к этому, когда двигатель нагревается, и сжимается, когда двигатель остывает.

    Вода не расширяется в такой степени, когда нагревается, поэтому легче сконструировать средства компенсации давления, чтобы учесть эту неизбежную цикличность расширения и сжатия.

    Внутренняя вода выходит из двигателя, а внешняя вода, в конечном итоге, взаимообменяется и попадает в двигатель. Однако это не должно быть проблемой для двигателя с водяным охлаждением, если только песок или посторонние предметы не попадут в двигатель или не заблокируют фильтр / обратный клапан, поскольку такой сценарий, вероятно, приведет к повышенному износу подшипников и возможному выходу из строя.

    Герметичные и другие водоналивные двигатели, как правило, более надежны, чем маслонаполненные, из-за сложности и оборудования, необходимого для безопасного расширения и сжатия масла без выхода из двигателя. Как правило, большинство стандартных погружных электродвигателей, за исключением конкретных высокотемпературных моделей, рассчитаны на работу в лошадиных силах с максимальным коэффициентом полезного действия в воде при температуре до 86 ° F (30 ° C), а также при соответствующем охлаждающем потоке и скорости после мотор.

    Данные для выбора двигателя

    Таблицы 1 и 2 предназначены для помощи разработчику системы с доступными типами, размерами и номенклатурой различных электродвигателей, используемых для привода погружных и вертикальных турбинных насосов, соответственно.

    Типовые значения тяги приведены для оценки мощности двигателя по отношению к выбранному насосу, а рамы и размеры двигателя предоставлены для проверки посадки двигателя на нагнетательной головке вертикального турбинного насоса или на конце погружного насоса.

    Конкретные технические данные, связанные с вышеуказанными общими данными, обычно могут быть предоставлены поставщиком или производителем насоса и двигателя в процессе оценки и выбора.

    На рис. 3 показаны общие характеристики электродвигателя насоса с вертикальным полым валом (VHS) для U.Стандартное напряжение, переменный ток (AC), источники электропитания 60 герц.

    Обратите внимание, что поправки на скорость, напряжение и мощность (киловатты) требуются для 50-герцовых или международных источников питания или приложений.

    Данные паспортной таблички

    Данные паспортной таблички для конкретного типа двигателя различаются в зависимости от области применения двигателя, типа, конструктивных особенностей, рекомендаций производителя и стандарта NEMA MG 1-10.40 (Национальная ассоциация производителей электрооборудования для U.S. motors) или IEC-IP (Международная электротехническая комиссия для международных двигателей) руководств и стандартов. Как правило, данные на паспортной табличке включают всю или часть следующей информации.

    1. Напряжение: напряжение, на которое рассчитан двигатель; в США это обычно 115 В, 208/230 В, 460 В или 575 В.
    1. Частота: частота в циклах в секунду или герцах напряжения питания; обычно 50 герц для международных источников питания или 60 герц в Соединенных Штатах.
    1. Фаза: количество линий питания переменного тока или фаз источника питания; указывается в однофазном (1ϕ) или трехфазном (3ϕ) режиме.
    1. Ток: ток, потребляемый двигателем, обычно отображается как ток полной нагрузки (FLC) или сила тока (FLA) в амперах. Перечисленный FLC используется для выбора типоразмера пускателя двигателя, проводов двигателя и защиты от перегрузки.
    1. Данные производителя : название производителя, тип двигателя, модель и серийный номер.
    1. Коэффициент мощности: коэффициент мощности двигателя, обычно отображается как десятичное значение при полной нагрузке (0,80 = 80%). Иногда он обозначается или изображается на паспортной табличке как P.F. или угол Cos ȹ (косинус).
    1. кВт или лошадиных сил: номинальная выходная мощность двигателя в кВт или л.с. (1 л.с. = 0,746 кВт, 1 кВт = 1,34 л.с.).
    1. Скорость при полной нагрузке: номинальная или синхронная скорость: 3600/1800 об / мин номинальная = 3450/1760 об / мин при полной нагрузке.
    1. КПД: КПД двигателя при полной нагрузке (FL). Эффективность обычно указывается в десятичной форме: 0,90 = 90%.
    1. Duty : этот параметр определяет продолжительность времени, в течение которого двигатель может безопасно обеспечивать свои характеристики, указанные на паспортной табличке. Во многих случаях двигатель может обеспечивать его непрерывно, что обозначается надписью «непрерывный режим» на паспортной табличке.
    1. Класс изоляции: выражение стандартной классификации (A, B, F, H) теплового допуска обмотки двигателя и представляет собой однобуквенное обозначение, такое как «B» или «F».Это зависит от способности обмотки выдерживать и выдерживать заданную рабочую температуру в течение прогнозируемого срока службы. Чем дальше находится алфавит, тем лучше характеристики изоляции. Например, изоляция класса F имеет более длительный номинальный срок службы при данной рабочей температуре, чем изоляция класса B. См. Таблицу 3 для определения классов изоляции, относящихся к номинальной температуре изоляции ниже.
    1. Повышение температуры: максимальное повышение температуры — это допустимое повышение (в градусах), при котором двигатель может подниматься или подниматься выше температуры окружающей среды во время работы.Например, номинальное превышение температуры двигателя на 60 ° C (140 ° F) по сравнению с номинальной температурой окружающей среды 40 ° C (104 ° F) означает, что двигатель может безопасно работать при температуре поверхности 40 ° C + 60 ° C = 100 ° C или 104 ° F + 140 ° F = 244 ° F, что выше температуры кипения воды. Вот почему так много двигателей с номиналом 60 ° C работают так сильно.
    1. Максимальная температура окружающей среды: максимальная температура окружающей среды (окружающей среды), при которой двигатель предназначен для безопасной работы.Максимальный рейтинг обычно составляет 40 ° C (104 ° F) или 60 ° C (140 ° F) для двигателей. Двигатель может работать и оставаться в пределах допустимого класса изоляции при максимальной номинальной температуре окружающей среды плюс повышенная температура.
    1. Высота: обозначает максимальную высоту над уровнем моря, на которой двигатель будет оставаться в пределах своего расчетного повышения температуры при соблюдении всех других данных паспортной таблички. Если высота не указана на паспортной табличке, максимальная высота над уровнем моря составляет 1000 метров (3300 футов).
    1. Корпус: классифицирует двигатель по степени защиты от окружающей среды и способу охлаждения. Как правило, большинство двигателей переменного тока имеют рейтинг ODP (открытая защита от капель), WP-1 (защита от атмосферных воздействий), TEFC (полностью закрытый, с вентиляторным охлаждением) или EXP (взрывозащищенность). Классы защиты корпуса NEMA аналогичны рейтингам IEC, но начинаются с обозначения IP, поскольку двигатель с защитой от капель по NEMA (ODP) соответствует IP22, двигатель с полностью закрытым корпусом NEMA соответствует IP54, а двигатель с защитой от атмосферных воздействий NEMA (WP- 1) двигатель до IP45.
    1. Рама: определяет установочные размеры, такие как монтажная схема отверстия для ног и высота вала. Большинство электродвигателей в США соответствуют стандартам NEMA для погружных электродвигателей и рам 200–300–400–500–6000 для вертикальных двигателей.
    1. Подшипники: эта информация позволяет заранее заказывать и / или хранить запасные подшипники. Информация обычно дается как для подшипника ведомого (внутреннего) конца, так и для подшипника, противоположного ведомому (внешнему).
    1. NEMA, кодовая буква: кодовая буква определяет ток заблокированного ротора в кВА на одну лошадиную силу (кВА / л.с.). Буквенный код состоит из букв от A до V. Чем дальше от буквенного кода A, тем выше будет пусковой ток на каждую лошадиную силу. См. Таблицу 4 для значений кодовых букв.
    1. разных категорий. Большинство двигателей представляют собой двигатели конструкции A или B. Двигатели конструкции A обладают нормальным пусковым моментом с высоким пусковым током (наиболее эффективные двигатели имеют конструкцию A).Двигатели конструкции B (наиболее распространенные) обладают нормальным пусковым моментом с низким пусковым током. Двигатели конструкции C обладают высоким пусковым моментом и низким пусковым током. Двигатели конструкции D обладают высоким пусковым моментом при низком пусковом пусковом токе, но в результате увеличивается скольжение (потеря скорости от номинальной). При замене двигателя для конкретного применения важно проверить конструкцию, поскольку некоторые производители обозначают свои продукты буквами, которые не считаются отраслевым стандартом.Неправильная конструкция может привести к проблемам с запуском.
    1. Коэффициент обслуживания NEMA: двигатель, предназначенный для работы при токе, не превышающем номинальную мощность, указанную на паспортной табличке, имеет коэффициент обслуживания или перегрузочную способность, равный 1. Это означает, что двигатель может работать на 100% от его номинальной мощности. мощность. Большинство трехфазных двигателей имеют рабочий коэффициент 1,15 (115%) (S.F. или SFA).

    Протокол балансировки напряжения и снижения характеристик двигателя

    Если линейные напряжения, подаваемые на трехфазный асинхронный двигатель, не равны, в обмотках статора возникают несбалансированные токи.Этот небольшой процент несимметрии напряжения приведет к гораздо большему проценту несимметрии тока.

    Следовательно, повышение температуры двигателя, работающего при определенной нагрузке, и соответствующий процент небаланса напряжений будут больше, чем для того же двигателя, работающего в идентичных условиях со сбалансированными напряжениями.

    Поддержание надлежащего баланса напряжения между фазами в трехфазной системе имеет решающее значение для обеспечения надлежащей производительности и оптимального срока службы двигателя.Большинство производителей и разработчиков двигателей осознают возможное влияние несимметричных токов на характеристики и срок службы двигателя, но многие не сразу понимают, что несимметрия напряжения играет основную роль в несимметричном токе.

    Помимо двигателя, трехфазные распределительные сети часто обслуживают другие однофазные нагрузки. Дисбаланс, вызванный системным импедансом, гармониками или распределением нагрузки по трем фазам, может способствовать дисбалансу по всем трем фазам.

    Возможные неисправности могут возникать в кабеле ответвленной цепи, ведущем к двигателю, на клеммах стартера или двигателя и, возможно, в самих обмотках. Этот дисбаланс может привести к возникновению напряжений в каждой из фазных цепей в трехфазной энергосистеме.

    В других ситуациях использование системы с открытым треугольником или двумя трансформаторами для трехфазного источника питания также может вызвать серьезный дисбаланс напряжения между фазами, что приведет к несимметрии тока. Это может стать проблемой для любого трехфазного двигателя, особенно для погружного типа.

    В системе с несимметричным питанием несимметрия тока между фазами приводит к возникновению напряжения обратной последовательности в обмотках двигателя. Это отрицательное напряжение вызывает противодействие в двигателе, которое сопротивляется нормальному току и может привести к дисбалансу тока более чем на 10%.

    На самом простом уровне все три фазы напряжения всегда должны иметь одинаковую величину. Однако есть случаи, когда это просто невозможно, особенно когда истинное или полное трехфазное питание (три основных обвода) недоступно, поэтому источник питания с разомкнутым треугольником является единственным жизнеспособным вариантом.В этих обстоятельствах снижение номинальных характеристик нагрузки для противодействия напряжению обратной последовательности часто приводит к снижению дисбаланса напряжений до приемлемого уровня.

    Значения в Таблице 5 могут использоваться в качестве ориентира для снижения нагрузки двигателя:

    В качестве примера примените погружной двигатель к нагрузке 29,5 л.с., 460 В переменного тока, 3ϕ, с наилучшим сочетанием напряжений:

    Фаза 1 — Фаза 2: 457 В

    Фаза 1 — Фаза 3: 461 В

    Фаза 2 — Фаза 3: 483 В

    Несимметрия напряжения (%): 1.

    Найдите среднее напряжение = 457 В (1-2) + 461 В (1-3) + 483 В (2-3) = 1402/3 = 467,3 В

    Несимметрия напряжения (%): 2.

    Вычтите наибольшее отклонение показаний от среднего: 483 В — 467,3 В = 15,7 В

    Несимметрия напряжения (%): 3.

    Разделите разницу на среднее напряжение: 15,7 В / 467,3 В = 0,0336 × 100 = 3,36%

    Так как это превышает 2% дисбаланса напряжения, см. Таблицу 5. При использовании интерполяции несимметрия напряжения 3,36% потребует снижения мощности двигателя до ~ 0.86 (86%) полной нагрузки.

    Требуемая мощность двигателя: 29,5 л.с. (насос л.с.) / 0,86 = 34,30 л.с. — Используйте двигатель мощностью 40 л.с.

    Эту же процедуру можно использовать для определения текущего дисбаланса. Используя другой пример:

    После трехкратной прокатки электродвигателя:

    1) Ф.1: 65 А, Ф.2: 73 А, Ф.3: 66 А-Сред. = 68 ампер

    2) Ф.1: 64 А, Ф.2: 75 А, Ф.3: 65 А-Сред. = 68 ампер

    3) Ф.1: 62 А, Ф.2: 76 А, Ф.3: 59 А-Сред.= 65,6 ампер

    Несимметрия тока для комбинации 1): 73A — 68A = 5A / 68A = 0,0735 × 100 = 7,35%

    Несимметрия тока для комбинации 2): 75A — 68A = 7A / 68A = 0,1029 × 100 = 10,29%

    Несимметрия тока для комбинации 3): 76A — 65,6A = 10,4A / 65,6A = 0,1585 × 100 = 15,85%

    Используйте комбинацию 1, поскольку 7,35% — это наименьшее значение несимметрии тока и меньше максимального значения 10%, хотя оно все же значительно превышает рекомендуемый предел в 5%.

    В этом случае обратите внимание на то, что максимальное значение тока остается на одной и той же ноге (фаза 2) каждый раз, когда ноги двигателя вращаются.Это, как правило, указывает на то, что источник питания может быть виновником, требующим снижения мощности двигателя (как показано выше) или работы с энергосистемой для улучшения качества электроэнергии и подачи на объект.

    Если сильный ток следует за опорой или перемещается той же опорой, что и они вращались, это может указывать на проблему внутри двигателя или кабеля ответвления (возможная утечка). Обычно для большинства двигателей рекомендуется дисбаланс напряжения не более 2% или дисбаланс тока не более 5%.

    _____________________

    На этом завершается первая часть данной серии из двух частей, посвященной базовому пониманию и применению многих типов драйверов, используемых для насосных станций, с упором на электродвигатели.В следующем выпуске The Water Works мы продолжим это обсуждение с расширенным обзором различных двигателей, зубчатых передач и генераторов, используемых для этой цели.

    А пока продолжайте качать!


    Эд Баттс, PE , является главным инженером в 4B Engineering & Consulting, Салем, Орегон. Он имеет более чем 40-летний опыт работы в сфере производства водозаборных скважин, специализируется на инжиниринге и управлении бизнесом. С ним можно связаться по адресу [email protected].

    INDUSTRIAL CONTROLS — прикладное промышленное электричество

    Хотя может показаться странным охватить элементарную тему электрических переключателей на столь позднем этапе этой серии книг, я делаю это потому, что в следующих главах исследуется более старая область цифровых технологий, основанная на контактах механического переключателя, а не на твердотельных затворах. схем, и полное понимание типов переключателей необходимо для предприятия.Изучение функции схем на основе переключателей одновременно с изучением полупроводниковых логических вентилей упрощает понимание обеих тем и создает основу для расширенного опыта обучения булевой алгебре, математике, лежащей в основе цифровых логических схем.

    Что такое электрический выключатель?

    Электрический выключатель — это любое устройство, используемое для прерывания потока электронов в цепи. Переключатели по сути являются бинарными устройствами: они либо полностью включены («замкнуты»), либо полностью выключены («разомкнуты»).Существует много различных типов переключателей, и в этой главе мы рассмотрим некоторые из них.

    Изучите различные типы переключателей

    Самый простой тип переключателя — это переключатель, в котором два электрических проводника приводят в контакт друг с другом за счет движения исполнительного механизма. Другие переключатели более сложные, они содержат электронные схемы, которые могут включаться или выключаться в зависимости от какого-либо физического стимула (например, света или магнитного поля). В любом случае конечным выходом любого переключателя будет (как минимум) пара клемм для подключения проводов, которые будут либо соединены вместе внутренним контактным механизмом переключателя («замкнут»), либо не соединены вместе («разомкнуты»). .Любой переключатель, предназначенный для управления человеком, обычно называется ручным переключателем , и они производятся в нескольких вариантах:

    Тумблеры

    Рисунок 9.1 Тумблер

    Тумблеры приводятся в действие рычагом, находящимся под углом в одном из двух или более положений. Обычный выключатель света, используемый в бытовой электропроводке, является примером тумблера. Большинство тумблеров остановятся в любом из своих положений рычага, в то время как другие имеют внутренний пружинный механизм, возвращающий рычаг в определенное нормальное положение , что позволяет выполнять так называемое «мгновенное» действие.

    Кнопочные переключатели

    Рисунок 9.2 Кнопочный переключатель

    Кнопочные переключатели — это двухпозиционные устройства, приводимые в действие нажатием и отпусканием кнопки. Большинство кнопочных переключателей имеют внутренний пружинный механизм, возвращающий кнопку в ее «отжатое» или «отжатое» положение для кратковременного срабатывания. Некоторые кнопочные переключатели поочередно включаются или выключаются при каждом нажатии кнопки. Другие кнопочные переключатели будут оставаться в своем «нажатом» или «нажатом» положении до тех пор, пока кнопка не будет вытянута обратно.Этот последний тип кнопочных переключателей обычно имеет грибовидную кнопку для легкого нажатия и вытягивания.

    Селекторные переключатели

    Рисунок 9.3 Селекторный переключатель

    Селекторные переключатели приводятся в действие поворотной ручкой или каким-либо рычагом для выбора одного из двух или более положений. Как и тумблер, селекторные переключатели могут либо находиться в любом из своих положений, либо содержать механизмы пружинного возврата для мгновенного срабатывания.

    Джойстик-переключатели

    Рисунок 9.4 Джойстик-переключатель

    Переключатель-джойстик приводится в действие рычагом, который может свободно перемещаться по более чем одной оси движения.Один или несколько из нескольких переключающих контактных механизмов приводятся в действие в зависимости от того, в каком направлении нажимается рычаг, а иногда и от того, насколько на дальше он нажат. Обозначение из круга и точки на символе переключателя представляет направление движения рычага джойстика, необходимое для приведения в действие контакта. Ручные переключатели-джойстики обычно используются для управления краном и роботом.

    Некоторые переключатели специально разработаны для управления движением машины, а не рукой человека-оператора.Эти управляемые движением переключатели обычно называются концевыми выключателями , потому что они часто используются для ограничения движения машины путем отключения питания компонента, если он перемещается слишком далеко.

    Как и ручные выключатели, концевые выключатели бывают нескольких разновидностей:

    Концевые выключатели

    Рисунок 9.5 Концевой выключатель рычажного привода

    Эти концевые выключатели очень похожи на прочные тумблеры или ручные переключатели, оснащенные рычагом, нажимаемым частью машины.Часто рычаги имеют небольшой роликовый подшипник, предотвращающий износ рычага при многократном контакте с деталью машины.

    Бесконтактные переключатели

    Рисунок 9.6 Бесконтактный переключатель

    Бесконтактные переключатели распознают приближение металлической части машины либо с помощью магнитного, либо высокочастотного электромагнитного поля. Простые бесконтактные переключатели используют постоянный магнит для приведения в действие герметичного механизма переключения всякий раз, когда часть машины приближается (обычно на 1 дюйм или меньше).Более сложные бесконтактные переключатели работают как металлодетектор, запитывая катушку с проволокой высокочастотным током и электронным образом отслеживая величину этого тока. Если металлическая часть (не обязательно магнитная) подойдет достаточно близко к катушке, ток увеличится и отключит цепь контроля. Символ, показанный здесь для бесконтактного переключателя, относится к электронной разновидности, на что указывает ромбовидная рамка, окружающая переключатель. Для неэлектронного бесконтактного переключателя будет использоваться тот же символ, что и для концевого переключателя, приводимого в действие рычагом.Другой формой бесконтактного переключателя является оптический переключатель, состоящий из источника света и фотоэлемента. Положение машины определяется по прерыванию или отражению светового луча. Оптические переключатели также полезны в приложениях безопасности, где лучи света могут использоваться для обнаружения входа персонала в опасную зону.

    Различные типы переключателей процесса

    Во многих промышленных процессах необходимо контролировать различные физические величины с помощью переключателей. Такие переключатели могут использоваться для подачи сигналов тревоги, указывающих, что параметр процесса превысил нормальные параметры, или они могут использоваться для остановки процессов или оборудования, если эти переменные достигли опасного или разрушительного уровня.Существует много различных типов переключателей процесса.

    Переключатели скорости

    Рисунок 9.7 Переключатель скорости.

    Эти переключатели определяют скорость вращения вала либо с помощью механизма центробежного груза, установленного на валу, либо с помощью какого-либо вида бесконтактного обнаружения движения вала, такого как оптическое или магнитное.

    Реле давления

    Рисунок 9.8 Реле давления

    Давление газа или жидкости можно использовать для приведения в действие механизма переключения, если это давление приложено к поршню, диафрагме или сильфону, который преобразует давление в механическую силу.

    Реле температуры

    Рисунок 9.9 Температурный выключатель

    Недорогим механизмом измерения температуры является «биметаллическая полоса»: тонкая полоска из двух металлов, соединенных спиной к спине, причем каждый металл имеет разную скорость теплового расширения. Когда полоса нагревается или охлаждается, разная скорость теплового расширения двух металлов вызывает ее изгиб. Затем изгиб полосы можно использовать для приведения в действие механизма переключающего контакта. В других реле температуры используется латунный баллон, наполненный жидкостью или газом, с крошечной трубкой, соединяющей баллон с датчиком давления.Когда баллон нагревается, газ или жидкость расширяются, вызывая повышение давления, которое приводит в действие механизм переключения.

    Реле уровня жидкости

    Рисунок 9.10 Реле уровня жидкости.

    Плавающий объект может использоваться для приведения в действие механизма переключения, когда уровень жидкости в резервуаре поднимается выше определенной точки. Если жидкость электропроводна, сама жидкость может использоваться в качестве проводника между двумя металлическими зондами, вставленными в резервуар на требуемой глубине.Метод проводимости обычно реализуется с помощью специальной конструкции реле, срабатывающего при небольшом токе, протекающем через проводящую жидкость. В большинстве случаев переключать полный ток нагрузки цепи через жидкость нецелесообразно и опасно. Реле уровня также могут быть разработаны для определения уровня твердых материалов, таких как древесная щепа, зерно, уголь или корм для животных, в силосе для хранения, бункере или бункере. Обычной конструкцией для этого применения является небольшое лопастное колесо, вставленное в бункер на желаемой высоте, которое медленно вращается небольшим электродвигателем.Когда твердый материал заполняет бункер на эту высоту, материал предотвращает вращение лопаточного колеса. Отклик крутящего момента маленького двигателя приводит к срабатыванию механизма переключения. В другой конструкции используется металлический зубец в форме «камертона», вставляемый в бункер снаружи на желаемой высоте. Вилка вибрирует на своей резонансной частоте с помощью электронной схемы и узла катушки магнита / электромагнита. Когда бункер заполняется на эту высоту, твердый материал гасит вибрацию вилки, изменение амплитуды и / или частоты вибрации, обнаруживаемое электронной схемой.

    Реле расхода жидкости

    Рисунок 9.11 Реле расхода жидкости.

    Вставленное в трубу реле потока обнаруживает любой расход газа или жидкости, превышающий определенный порог, обычно с помощью небольшой лопасти или лопасти, которую толкает поток. Другие реле потока сконструированы как реле перепада давления, измеряющие перепад давления на дросселе, встроенном в трубу.

    Ядерный датчик уровня

    Рисунок 9.12 Ядерный переключатель уровня.

    Другим типом реле уровня, подходящим для обнаружения жидких или твердых материалов, является ядерный переключатель.Состоящие из радиоактивного исходного материала и детектора излучения, они установлены поперек диаметра емкости для хранения твердого или жидкого материала. Любая высота материала, превышающая уровень расположения источника / детектора, будет ослаблять силу излучения, достигающего детектора. Это уменьшение излучения на детекторе может быть использовано для запуска релейного механизма для обеспечения переключающего контакта для измерения, точки срабатывания сигнализации или даже контроля уровня в сосуде.

    Источник и детектор находятся вне судна, никакого проникновения, кроме самого радиационного потока.Используемые радиоактивные источники довольно слабые и не представляют непосредственной угрозы здоровью эксплуатационного или обслуживающего персонала.

    Все коммутаторы имеют несколько приложений

    Как обычно, существует несколько способов реализовать коммутатор для мониторинга физического процесса или для управления оператором. Обычно не существует единого «идеального» переключателя для любого приложения, хотя некоторые из них, очевидно, обладают определенными преимуществами перед другими. Для обеспечения эффективной и надежной работы переключатели должны быть разумно адаптированы к задаче.

    • Переключатель — электрическое устройство, обычно электромеханическое, используемое для контроля непрерывности между двумя точками.
    • Ручные переключатели приводятся в действие от прикосновения человека.
    • Концевые выключатели срабатывают при движении машины.
    • Переключатели процесса срабатывают при изменении какого-либо физического процесса (температуры, уровня, расхода и т. Д.).

    Переключатель может быть сконструирован с любым механизмом, приводящим два проводника в управляемый контакт друг с другом.Это может быть так просто, как позволить двум медным проводам соприкасаться друг с другом движением рычага или путем непосредственного соприкосновения двух металлических полос. Однако хорошая конструкция переключателя должна быть прочной и надежной и не подвергать оператора опасности поражения электрическим током. Поэтому конструкции промышленных переключателей редко бывают такими примитивными. Проводящие части в переключателе, используемом для включения и отключения электрического соединения, называются контактами и . Контакты обычно изготавливаются из серебра или сплава серебро-кадмий, проводящие свойства которого существенно не ухудшаются из-за поверхностной коррозии или окисления.Золотые контакты демонстрируют лучшую коррозионную стойкость, но имеют ограниченную пропускную способность по току и могут «свариваться в холодном состоянии», если соединены вместе с большим механическим усилием. Независимо от выбора металла, контакты переключателя управляются механизмом, обеспечивающим квадратный и равномерный контакт, что обеспечивает максимальную надежность и минимальное сопротивление. Такие контакты могут быть сконструированы так, чтобы выдерживать очень большие количества электрического тока, в некоторых случаях до тысяч ампер. Факторы, ограничивающие допустимую нагрузку на контакт переключателя, следующие:

    • Тепло, выделяемое током через металлические контакты (в замкнутом состоянии).
    • Искрение, возникающее при размыкании или замыкании контактов.
    • Напряжение на разомкнутых контактах переключателя (потенциал скачка тока через зазор).

    Одним из основных недостатков стандартных переключающих контактов является воздействие на них окружающей атмосферы. В красивой, чистой среде диспетчерской это обычно не проблема. Однако большинство промышленных сред не столь благоприятны. Присутствие в воздухе агрессивных химикатов может привести к разрушению контактов и преждевременному выходу из строя.Еще более неприятной является возможность регулярного контактного искрения, вызывающего возгорание легковоспламеняющихся или взрывоопасных химикатов. Когда существуют такие проблемы с окружающей средой, для небольших переключателей можно рассмотреть другие типы контактов. Эти другие типы контактов изолированы от контакта с наружным воздухом и поэтому не имеют тех же проблем воздействия, что и стандартные контакты. Распространенным типом выключателя с герметичным контактом является ртутный выключатель. Ртуть — металлический элемент, жидкий при комнатной температуре.Будучи металлом, он обладает прекрасными проводящими свойствами. Будучи жидкостью, его можно привести в контакт с металлическими зондами (чтобы замкнуть цепь) внутри герметичной камеры, просто наклонив камеру так, чтобы зонды находились на дне. Во многих промышленных переключателях используются небольшие стеклянные трубки, содержащие ртуть, которые наклоняются в одну сторону, чтобы замкнуть контакт, и в другую сторону, чтобы размыкаться. Помимо проблем, связанных с поломкой трубки и просыпанием ртути (которая является токсичным материалом), а также восприимчивостью к вибрации, эти устройства являются отличной альтернативой открытым контактам переключателя там, где есть проблемы с воздействием окружающей среды.Здесь ртутный переключатель (часто называемый переключателем наклона ) показан в открытом положении, где ртуть не контактирует с двумя металлическими контактами на другом конце стеклянной колбы:

    Рисунок 9.13

    Рисунок 9.14

    Здесь тот же переключатель показан в закрытом положении. Теперь гравитация удерживает жидкую ртуть в контакте с двумя металлическими контактами, обеспечивая электрическую непрерывность от одного к другому: контакты ртутного переключателя нецелесообразно создавать в больших размерах, поэтому вы обычно найдете такие контакты, рассчитанные не более чем на несколько ампер. , и не более 120 вольт.Конечно, есть исключения, но это общие ограничения. Другой тип переключателя с герметичными контактами — это герконовый переключатель. Как и в ртутном переключателе, контакты геркона расположены внутри герметичной трубки. В отличие от ртутного переключателя, в котором в качестве контактной среды используется жидкий металл, геркон — это просто пара очень тонких магнитных металлических полос (отсюда и название «язычок»), которые контактируют друг с другом путем приложения сильного магнитного поля. вне герметичной трубки. Источником магнитного поля в переключателях этого типа обычно является постоянный магнит, перемещаемый ближе или дальше от трубки с помощью исполнительного механизма.Из-за небольшого размера язычков этот тип контакта обычно рассчитан на более низкие токи и напряжения, чем средний ртутный переключатель. Однако герконовые переключатели обычно лучше справляются с вибрацией, чем ртутные контакты, потому что внутри трубки нет жидкости, которая могла бы разбрызгиваться. Обычно номинальное напряжение и ток контактов переключателя общего назначения выше для любого данного переключателя или реле, если переключаемая электрическая мощность является переменным током, а не постоянным. Причина этого — тенденция самозатухания дуги переменного тока через воздушный зазор.Поскольку ток в линии электропередачи 60 Гц фактически останавливается и меняет направление 120 раз в секунду, у ионизированного воздуха дуги есть много возможностей потерять температуру, достаточную для прекращения проведения тока, до такой степени, что дуга не возобновится в следующий раз. пиковое напряжение. Постоянный ток, с другой стороны, представляет собой непрерывный, непрерывный поток электронов, который имеет тенденцию гораздо лучше поддерживать дугу в воздушном зазоре.

    Следовательно, переключающие контакты любого типа подвержены большему износу при переключении заданного значения постоянного тока, чем при таком же значении переменного тока.Проблема переключения постоянного тока усугубляется, когда нагрузка имеет значительную индуктивность, поскольку при размыкании цепи на контактах переключателя будут возникать очень высокие напряжения (индуктор делает все возможное, чтобы поддерживать ток в цепи на том же уровне, что и при размыкании цепи). выключатель был замкнут). Как при переменном, так и при постоянном токе искрение контактов можно свести к минимуму, добавив «демпферную» цепь (конденсатор и резистор, соединенные последовательно) параллельно контакту, например:

    Рисунок 9.15

    Внезапное повышение напряжения на переключающем контакте, вызванное размыканием контактов, будет сдерживаться зарядным действием конденсатора (конденсатор противодействует увеличению напряжения за счет потребления тока). Резистор ограничивает количество тока, который конденсатор разряжает через контакт, когда он снова замыкается. Если бы резистора не было, конденсатор мог бы фактически сделать искрение во время замыкания контактов хуже, чем искрение во время размыкания контактов без конденсатора! Хотя это добавление к схеме помогает уменьшить возникновение контактной дуги, оно не лишено недостатков: основным соображением является возможность неисправной (закороченной) комбинации конденсатор / резистор, обеспечивающей постоянный путь для электронов, проходящих через цепь, даже если контакт разомкнут и ток не желателен.Риск этого отказа и серьезность возникающих в результате последствий должны быть рассмотрены с учетом повышенного износа контактов (и неизбежного выхода из строя контактов) без демпферной цепи. Использование демпферов в цепях переключателя постоянного тока не является чем-то новым: производители автомобилей годами применяли это в системах зажигания двигателей, сводя к минимуму искрение на «точках» контактов переключателя в распределителе с помощью небольшого конденсатора, называемого конденсатором . Как вам скажет любой механик, срок службы «точек» дистрибьютора напрямую зависит от того, насколько хорошо работает конденсатор.При всей этой дискуссии, касающейся уменьшения дугового разряда контактов переключателя, можно было бы подумать, что меньший ток всегда лучше для механического переключателя. Однако это не обязательно так. Было обнаружено, что небольшое периодическое искрение может быть полезно для контактов переключателя, поскольку оно защищает контактные поверхности от небольшого количества грязи и коррозии. Если механический переключающий контакт работает со слишком малым током, контакты будут иметь тенденцию к накоплению чрезмерного сопротивления и могут преждевременно выйти из строя! Это минимальное количество электрического тока, необходимого для поддержания контакта механического переключателя в хорошем состоянии, называется током смачивания .Обычно номинальный ток смачивания переключателя намного ниже его максимального номинального тока и намного ниже его нормальной рабочей токовой нагрузки в правильно спроектированной системе. Однако есть приложения, в которых может потребоваться механический переключающий контакт для регулярной обработки токов ниже нормальных пределов тока смачивания (например, если механический селекторный переключатель должен размыкать или замыкать цифровую логическую или аналоговую электронную схему, где значение тока чрезвычайно мало. ). В таких случаях настоятельно рекомендуется использовать позолоченные переключающие контакты.Золото — «благородный» металл и не подвержен коррозии, как другие металлы. В результате такие контакты имеют чрезвычайно низкие требования к току смачивания. Обычные контакты из серебра или медного сплава не будут обеспечивать надежную работу при использовании в такой слаботочной среде!

    • Части переключателя, отвечающие за включение и отключение электрической цепи, называются «контактами». Обычно они изготавливаются из коррозионно-стойкого металлического сплава, контакты соприкасаются друг с другом с помощью механизма, который помогает поддерживать правильное выравнивание и расстояние.
    • Ртутные выключатели используют в качестве подвижного контакта кусок жидкой металлической ртути. Ртутный контакт запечатан в стеклянной трубке и изолирован от внешней среды, что делает этот тип переключателя идеально подходящим для атмосфер, потенциально содержащих взрывоопасные пары.
    • Герконы — это еще один тип устройств с герметичным контактом, контакт осуществляется двумя тонкими металлическими «язычками» внутри стеклянной трубки, соединенными друг с другом под действием внешнего магнитного поля.
    • Переключающие контакты подвергаются большему воздействию постоянного тока, чем переменного тока.Это в первую очередь связано с самозатуханием дуги переменного тока.
    • Сеть резистор-конденсатор, называемая «демпфер», может быть подключена параллельно переключающему контакту для уменьшения дугового разряда.
    • Смачивающий ток — это минимальная величина электрического тока, необходимая для контакта переключающего контакта, чтобы он мог самоочищаться. Обычно это значение намного ниже максимального номинального тока переключателя.

    Любой вид переключающего контакта может быть спроектирован так, что контакты «замыкаются» (обеспечивают непрерывность) при срабатывании или «размыкаются» (прерывают непрерывность) при срабатывании.Для переключателей, в которых есть механизм с пружинным возвратом, направление, в которое пружина возвращает его без приложения силы, называется нормальным положением . Поэтому контакты, которые разомкнуты в этом положении, называются нормально разомкнутыми , а контакты, которые замкнуты в этом положении, называются нормально замкнутыми . Для переключателей процесса нормальное положение или состояние — это то, в котором переключатель находится, когда на него не влияет процесс. Простой способ определить нормальное состояние технологического коммутатора — это рассмотреть состояние коммутатора, когда он находится на полке хранения без установки.Вот несколько примеров «нормальных» условий переключения процесса:

    • Переключатель скорости : Вал не вращается
    • Реле давления : нулевое приложенное давление
    • Реле температуры : Температура окружающей (комнатной) температуры
    • Реле уровня : пустой бак или бункер
    • Реле расхода : нулевой расход жидкости

    Важно различать «нормальное» состояние коммутатора и его «нормальное» использование в рабочем процессе.Рассмотрим пример реле расхода жидкости, которое служит сигналом низкого расхода в системе охлаждающей воды. Нормальное или исправное состояние системы охлаждающей воды должно иметь довольно постоянный поток охлаждающей жидкости, проходящий через эту трубу. Если мы хотим, чтобы контакт реле потока замыкал в случае потери потока охлаждающей жидкости (например, для замыкания электрической цепи, которая активирует сирену аварийной сигнализации), мы хотели бы использовать реле потока с нормально закрытым а не нормально разомкнутые контакты.При достаточном потоке через трубу контакты переключателя размыкаются принудительно; когда расход падает до аномально низкого уровня, контакты возвращаются в нормальное (закрытое) состояние. Это сбивает с толку, если вы думаете о «нормальном» как о регулярном состоянии процесса, поэтому всегда думайте о «нормальном» состоянии переключателя как о том, что он находится на полке. Схематические символы переключателей различаются в зависимости от назначения и срабатывания переключателя. Нормально открытый контакт переключателя нарисован таким образом, чтобы обозначать открытое соединение, готовое к закрытию при срабатывании.И наоборот, нормально замкнутый переключатель изображен как замкнутое соединение, которое будет разомкнуто при нажатии. Обратите внимание на следующие символы:

    Рисунок 9.16 Кнопочный переключатель

    Существует также общая символика для любого контакта переключателя, использующая пару вертикальных линий для обозначения точек контакта в переключателе. Нормально разомкнутые контакты обозначаются линиями, не соприкасающимися с ними, а нормально замкнутые контакты обозначаются диагональной линией, соединяющей две линии. Сравните два:

    Рисунок 9.17 Общее обозначение переключающего контакта

    Переключатель слева замыкается при нажатии и размыкается в «нормальном» (не сработавшем) положении. Переключатель справа размыкается при нажатии и замыкается в «нормальном» (не сработавшем) положении. Если переключатели обозначены этими общими символами, тип переключателя обычно указывается в тексте непосредственно рядом с символом. Обратите внимание, что символ слева — , а не , чтобы его можно было спутать с символом конденсатора.Если конденсатор необходимо представить в схеме логики управления, он будет показан следующим образом:

    Рисунок 9.18 Конденсатор

    В стандартной электронной символике приведенный выше рисунок зарезервирован для конденсаторов, чувствительных к полярности. В символике управляющей логики этот символ конденсатора используется для любого типа конденсатора , даже если конденсатор не чувствителен к полярности, чтобы четко отличить его от нормально разомкнутого контакта переключателя. При использовании многопозиционных селекторных переключателей необходимо учитывать еще один фактор конструкции: то есть последовательность разрыва старых соединений и создания новых соединений при перемещении переключателя из положения в положение, при этом подвижный контакт последовательно касается нескольких неподвижных контактов.

    Рисунок 9.19

    Селекторный переключатель, показанный выше, переключает общий контактный рычаг в одно из пяти различных положений на контактные провода с номерами от 1 до 5. Наиболее распространенная конфигурация многопозиционного переключателя, подобного этому, — это когда контакт с одним положением разрывается с до происходит контакт со следующей позицией. Эта конфигурация называется перед сборкой . В качестве примера, если бы переключатель был установлен в положение номер 3 и медленно поворачивался по часовой стрелке, контактный рычаг переместился бы из положения номер 3, размыкая эту цепь, переместился бы в положение между номером 3 и номером 4 (оба пути цепи разомкнуты. ), а затем коснитесь позиции 4, замыкая эту цепь.Есть приложения, в которых недопустимо полностью размыкать цепь, подключенную к «общему» проводу, в любой момент времени. Для такого применения может быть сконструирована конструкция переключателя с выключателем , в которой подвижный контактный рычаг фактически замыкает два положения контакта (между номером 3 и номером 4 в приведенном выше сценарии), когда он перемещается между положениями. . Компромисс здесь заключается в том, что схема должна допускать замыкание переключателя между соседними позиционными контактами (1 и 2, 2 и 3, 3 и 4, 4 и 5), когда ручка переключателя поворачивается из положения в положение.Такой переключатель показан здесь: Рисунок 9.20.

    Когда подвижный (е) контакт (ы) может быть приведен в одно из нескольких положений со стационарными контактами, эти положения иногда называют ходами . Количество подвижных контактов иногда называют полюсов . Оба переключателя, показанные выше, с одним подвижным контактом и пятью неподвижными контактами, будут обозначены как «однополюсные пятипозиционные» переключатели. Если два идентичных однополюсных пятипозиционных переключателя механически соединить вместе так, чтобы они приводились в действие одним и тем же механизмом, весь узел будет называться «двухполюсным пятипозиционным переключателем»:

    Рисунок 9.21 год

    Вот несколько распространенных конфигураций переключателей и их сокращенные обозначения:

    Рисунок 9.22 Двухполюсный, одноходовой

    Рисунок 9.23 Двухполюсный, двунаправленный

    Рисунок 9.24 Четырехполюсный, одноходовой

    • Нормальное состояние переключателя — это то, когда он не сработал. Для технологических коммутаторов это состояние, в котором они находятся на полке без установки.
    • Переключатель, который разомкнут в неактивном состоянии, называется нормально разомкнутым .Переключатель, который замкнут, когда не сработал, называется нормально замкнутым . Иногда термины «нормально открытый» и «нормально закрытый» обозначаются аббревиатурой N.O. и N.C. соответственно.
    • Многопозиционные переключатели могут быть как размыкающими перед размыканием (наиболее распространенные), так и переключающими перед размыканием.
    • «Полюса» переключателя относятся к количеству подвижных контактов, в то время как «ходы» переключателя относятся к количеству неподвижных контактов на один подвижный контакт.

    Электрический ток через проводник создает магнитное поле, перпендикулярное направлению потока электронов.Если этот проводник свернуть в форму катушки, создаваемое магнитное поле будет ориентировано по длине катушки. Чем больше ток, тем больше напряженность магнитного поля при прочих равных условиях:

    Рисунок 9.25

    Рисунок 9.26

    Рисунок 9.27

    Катушки индуктивности реагируют на изменения тока из-за энергии, хранящейся в этом магнитном поле. Когда мы строим трансформатор из двух катушек индуктивности вокруг общего железного сердечника, мы используем это поле для передачи энергии от одной катушки к другой.Однако есть более простые и прямые способы использования электромагнитных полей, чем те, которые мы видели с индукторами и трансформаторами. Магнитное поле, создаваемое катушкой с токоведущим проводом, можно использовать для приложения механической силы к любому магнитному объекту, точно так же, как мы можем использовать постоянный магнит для притяжения магнитных объектов, за исключением того, что этот магнит (образованный катушкой) может быть включается или выключается путем включения или выключения тока через катушку. Если мы поместим магнитный объект рядом с такой катушкой с целью заставить этот объект двигаться, когда мы запитываем катушку электрическим током, мы получим так называемый соленоид .Подвижный магнитный объект называется якорем , и большинство якорей можно перемещать с помощью постоянного (DC) или переменного тока (AC), питающего катушку. Полярность магнитного поля не имеет значения для притяжения железного якоря. Соленоиды могут использоваться для электрического открытия дверных защелок, открытия или закрытия клапанов, перемещения роботизированных конечностей и даже приведения в действие механизмов электрических переключателей. Однако, если для приведения в действие набора переключающих контактов используется соленоид, у нас есть такое полезное устройство, которое заслуживает собственного названия: реле .Реле чрезвычайно полезны, когда нам необходимо контролировать большой ток и / или напряжение с помощью слабого электрического сигнала. Катушка реле, которая создает магнитное поле, может потреблять только доли ватта мощности, в то время как контакты, замыкаемые или размыкаемые этим магнитным полем, могут передавать нагрузке в сотни раз больше мощности.

    Фактически, реле действует как двоичный (включенный или выключенный) усилитель. Как и в случае с транзисторами, способность реле управлять одним электрическим сигналом с помощью другого находит применение при построении логических функций.Более подробно эта тема будет рассмотрена в другом уроке. На данный момент будет исследована «усилительная» способность реле. На приведенной выше схеме катушка реле питается от источника низкого напряжения (12 В постоянного тока), а однополюсный однопозиционный (SPST) контакт прерывает высокий -цепь напряжения (480 В переменного тока). Вполне вероятно, что ток, необходимый для включения катушки реле, будет в сотни раз меньше номинального тока контакта. Типичные токи обмотки реле значительно ниже 1 А, в то время как номинальные характеристики контактов промышленных реле составляют не менее 10 А.Один узел обмотка реле / ​​якорь может использоваться для приведения в действие более чем одного набора контактов. Эти контакты могут быть нормально разомкнутыми, нормально замкнутыми или любой их комбинацией. Как и в случае с переключателями, «нормальным» состоянием контактов реле является то состояние, когда катушка обесточена, точно так же, как вы бы обнаружили реле на полке, не подключенным к какой-либо цепи. Контакты реле могут быть открытыми площадками из металлического сплава, ртутными трубками или даже магнитными язычками, как и в других типах переключателей. Выбор контактов в реле зависит от тех же факторов, которые диктуют выбор контактов в других типах переключателей.Контакты на открытом воздухе лучше всего подходят для сильноточных приложений, но их склонность к коррозии и искрению может вызвать проблемы в некоторых промышленных средах. Ртутные и герконовые контакты не имеют искр и не подвержены коррозии, но их токопроводящая способность ограничена. Здесь показаны три небольших реле (примерно два дюйма в высоту, каждое), установленных на панели как часть системы электрического управления на муниципальной водоочистной станции: показанные здесь блоки реле называются «восьмеричным», потому что они подключаются в соответствующие розетки, электрические соединения закрепляются с помощью восьми металлических штифтов на дне реле.Винтовые клеммы, которые вы видите на фотографии, где провода подключаются к реле, на самом деле являются частью узла розетки, в который вставляется каждое реле. Такая конструкция облегчает снятие и замену реле в случае выхода из строя. Помимо способности позволить относительно небольшому электрическому сигналу переключать относительно большой электрический сигнал, реле также обеспечивают электрическую изоляцию между катушкой и контактными цепями. Это означает, что цепь катушки и цепь контактов электрически изолированы друг от друга.Одна цепь может быть постоянным током, а другая — переменным током (например, в примере схемы, показанной ранее), и / или они могут иметь совершенно разные уровни напряжения между соединениями или между соединениями и землей. Хотя реле по сути являются бинарными устройствами, полностью или полностью выключенными, существуют рабочие условия, при которых их состояние может быть неопределенным, как и в случае с полупроводниковыми логическими вентилями. Для того, чтобы реле положительно «втягивало» якорь и приводило в действие контакт (ы), через катушку должен проходить определенный минимальный ток.Эта минимальная величина называется втягивающим током и аналогична минимальному входному напряжению, которое требуется логическому вентилю для обеспечения «высокого» состояния (обычно 2 В для TTL, 3,5 В для CMOS). Однако, когда якорь подтягивается ближе к центру катушки, требуется меньший поток магнитного поля (меньший ток катушки), чтобы удерживать его там. Следовательно, ток катушки должен упасть ниже значения, значительно меньшего, чем ток втягивания, прежде чем якорь «выпадет» в подпружиненное положение и контакты вернутся в нормальное состояние.Этот уровень тока называется падающим током , и он аналогичен максимальному входному напряжению, которое вход логического элемента позволяет гарантировать «низкое» состояние (обычно 0,8 В для TTL, 1,5 В для CMOS). Гистерезис или разница между токами включения и отключения приводит к работе, аналогичной работе логического элемента триггера Шмитта. Токи включения и отключения (и напряжения) сильно различаются от реле к реле и указываются производителем.

    • Соленоид — это устройство, которое вызывает механическое движение за счет подачи питания на катушку электромагнита.Подвижная часть соленоида называется якорем .
    • Реле — это соленоид, настроенный для приведения в действие контактов переключателя, когда его катушка находится под напряжением.
    • Втягивающий ток — это минимальная величина тока катушки, необходимая для приведения в действие соленоида или реле из его «нормального» (обесточенного) положения.
    • Падение тока — это максимальный ток катушки, ниже которого включенное реле вернется в свое «нормальное» состояние.

    Что такое реле с задержкой времени?

    Некоторые реле сконструированы с своеобразным механизмом «амортизатора», прикрепленным к якорю, который предотвращает немедленное полное движение, когда катушка находится под напряжением или обесточена.Это дополнение дает реле свойство срабатывания с задержкой по времени . Реле с выдержкой времени могут быть сконструированы так, чтобы задерживать движение якоря при подаче напряжения на катушку, обесточивании или и том и другом. Контакты реле с выдержкой времени должны быть указаны не только как нормально разомкнутые или нормально замкнутые, но и в зависимости от того, действует ли задержка в направлении закрытия или в направлении открытия. Ниже приводится описание четырех основных типов контактов реле с выдержкой времени.

    Нормально открытый, закрытый по времени контакт

    Во-первых, у нас есть нормально открытый, закрытый по времени (NOTC) контакт.Этот тип контакта обычно разомкнут, когда катушка обесточена (обесточена). Контакт замыкается подачей питания на катушку реле, но только после того, как катушка непрерывно запитана в течение заданного времени. Другими словами, направление движения контакта (закрытие или размыкание) идентично обычному замыкающему контакту, но есть задержка в направлении замыкания направления. Поскольку задержка происходит в направлении подачи питания на катушку, этот тип контакта также известен как нормально разомкнутый, на — задержка:

    Рисунок 9.28

    Ниже приведена временная диаграмма работы этого контакта реле:

    Рисунок 9.29

    Нормально открытый контакт

    с синхронизацией по времени

    Далее у нас есть нормально разомкнутый контакт с таймером открытия (NOTO). Как и контакт NOTC, этот тип контакта обычно разомкнут, когда катушка обесточена (обесточена), и замкнут при подаче питания на катушку реле. Однако, в отличие от контакта NOTC, синхронизация происходит при обесточивании катушки, а не при подаче напряжения.Поскольку задержка происходит в направлении обесточивания катушки, этот тип контакта также известен как нормально разомкнутый, выкл. -задержка:

    Рисунок 9.30

    Ниже приведена временная диаграмма работы этого контакта реле:

    Рисунок 9.31

    Нормально замкнутый, открытый по времени контакт

    Далее у нас есть нормально-замкнутый, открывающийся по времени (NCTO) контакт. Этот тип контакта нормально замкнут, когда катушка обесточена (обесточена).Контакт размыкается при подаче питания на катушку реле, но только после того, как на катушку непрерывно подается питание в течение заданного времени. Другими словами, направление движения контакта (закрытие или размыкание) идентично обычному размыкающему контакту, но есть задержка в направлении размыкания и направления. Поскольку задержка происходит в направлении подачи питания на катушку, этот тип контакта также известен как нормально замкнутый, на — задержка:

    Рисунок 9.32

    Ниже приведена временная диаграмма работы этого контакта реле:

    Рисунок 9.33

    Нормально закрытый, закрытый по времени контакт

    Наконец, у нас есть нормально закрытый, закрытый по времени (NCTC) контакт. Как и контакт NCTO, этот тип контакта обычно замыкается, когда катушка обесточена (обесточена), и размыкается при подаче питания на катушку реле. Однако, в отличие от контакта NCTO, синхронизирующее действие происходит при обесточивании катушки, а не при подаче напряжения.Поскольку задержка происходит в направлении обесточивания катушки, этот тип контакта также известен как нормально замкнутый, выкл. -задержка:

    Рисунок 9.34

    Ниже приведена временная диаграмма работы этого контакта реле:

    Рисунок 9.35 Использование реле с выдержкой времени

    в промышленных логических схемах управления

    Реле с выдержкой времени

    очень важны для использования в промышленных логических схемах управления. Вот некоторые примеры их использования:

    • Управление мигающим светом (время включения, время выключения): два реле задержки времени используются вместе друг с другом для обеспечения включения / выключения с постоянной частотой импульсов контактов для подачи прерывистой энергии на лампу.
    • Управление автоматическим запуском двигателя: Двигатели, которые используются для питания аварийных генераторов, часто оснащены элементами управления «автозапуском», которые позволяют автоматически запускать двигатель в случае отказа основного источника электроэнергии. Чтобы правильно запустить большой двигатель, сначала необходимо запустить некоторые вспомогательные устройства и дать им некоторое время для стабилизации (топливные насосы, масляные насосы предварительной смазки) перед подачей питания на стартер двигателя. Реле с выдержкой времени помогают упорядочить эти события для правильного запуска двигателя.
    • Управление безопасной продувкой печи: Прежде чем можно будет безопасно зажечь печь внутреннего сгорания, необходимо запустить воздушный вентилятор на определенное время для «продувки» топочной камеры от любых потенциально воспламеняющихся или взрывоопасных паров.Реле с выдержкой времени обеспечивает логику управления печью этим необходимым элементом времени.
    • Управление задержкой плавного пуска двигателя: вместо запуска больших электродвигателей путем переключения полной мощности из состояния полной остановки можно переключить пониженное напряжение для более «мягкого» пуска и уменьшения пускового тока. После заданной задержки времени (обеспечиваемой реле задержки времени) подается полная мощность.
    • Задержка последовательности конвейерной ленты: когда несколько конвейерных лент расположены для транспортировки материала, конвейерные ленты должны запускаться в обратной последовательности (последняя первая и первая последняя), чтобы материал не складывался в стопу или медленно -подвижной конвейер.Чтобы разогнать большие ремни до полной скорости, может потребоваться некоторое время (особенно, если используются средства управления двигателем с плавным пуском). По этой причине на каждом конвейере обычно имеется схема задержки по времени, чтобы дать ему достаточно времени для достижения полной скорости ленты перед тем, как следующая конвейерная лента будет подавать его.

    Расширенные функции таймера

    В более старых механических реле с выдержкой времени использовались пневматические датчики или заполненные жидкостью поршневые / цилиндровые устройства для обеспечения «амортизации», необходимой для задержки движения якоря.В более новых конструкциях реле с выдержкой времени используются электронные схемы с цепями резистор-конденсатор (RC) для создания временной задержки, а затем для подачи питания на нормальную (мгновенную) катушку электромеханического реле с выходом электронной схемы. Реле электронного таймера более универсальны, чем более старые механические модели, и менее склонны к выходу из строя. Многие модели предоставляют расширенные функции таймера, такие как «однократный» (один измеренный выходной импульс для каждого перехода входа из обесточенного в под напряженный), «рециркуляционный» (повторяющиеся циклы включения / выключения выходного сигнала до тех пор, пока входное соединение находится в запитан) и «сторожевой таймер» (меняет состояние, если входной сигнал не циклически включается и выключается повторно).

    Рисунок 9.36

    Рисунок 9.37

    Рисунок 9.38 Реле «сторожевого таймера»

    «Сторожевой» таймер особенно полезен для мониторинга компьютерных систем. Если компьютер используется для управления критическим процессом, обычно рекомендуется иметь автоматический сигнал тревоги для обнаружения «зависания» компьютера (ненормальное прекращение выполнения программы из-за любого количества причин). Простой способ настроить такую ​​систему мониторинга — это заставить компьютер регулярно включать и выключать катушку реле сторожевого таймера (аналогично выходу таймера «рециркуляции»).Если выполнение компьютера останавливается по какой-либо причине, сигнал, который он выдает на катушку реле сторожевого таймера, перестанет циклически повторяться и зависнет в одном или другом состоянии. Через некоторое время реле сторожевого таймера «отключится» и сигнализирует о проблеме.

    • Реле с выдержкой времени построены в следующих четырех основных режимах работы контактов:
    • 1: нормально открытый, закрытый по времени. Сокращенно «NOTC», эти реле открываются сразу после обесточивания катушки и замыкаются, только если катушка постоянно находится под напряжением в течение определенного периода времени.Также называется реле с нормально разомкнутыми контактами и задержкой включения .
    • 2: нормально открытый, открытый по времени. Сокращенно «NOTO», эти реле замыкаются сразу после подачи питания на катушку и размыкаются после того, как катушка была обесточена на определенный период времени. Также называется реле с нормально разомкнутыми контактами и задержкой выключения .
    • 3: нормально закрытый, открытый по времени. Сокращенно «NCTO», эти реле замыкаются сразу после обесточивания катушки и размыкаются только в том случае, если катушка постоянно находится под напряжением в течение определенного периода времени.Также называется реле с нормально замкнутыми контактами и задержкой включения .
    • 4: нормально закрытый, закрытый по времени. Сокращенно «NCTC», эти реле открываются сразу после подачи питания на катушку и закрываются после того, как катушка была обесточена на определенный период времени. Также называется реле нормально замкнутые, реле задержки выключения .
    • Одноразовые таймеры обеспечивают однократный контактный импульс заданной длительности для каждого включения катушки (переход от катушки от к катушке на ).
    • Таймеры Recycle обеспечивают повторяющуюся последовательность импульсов включения-выключения до тех пор, пока катушка находится под напряжением.
    • Сторожевой таймер срабатывает своими контактами только в том случае, если катушка не может непрерывно включаться и выключаться (включаться и выключаться) с минимальной частотой.

    Рисунок 9.39

    Рисунок 9.40

    Рисунок 9.41

    Лестничные диаграммы — это специализированные схемы, обычно используемые для документирования промышленных логических систем управления.Их называют «лестничными» диаграммами, потому что они напоминают лестницу с двумя вертикальными направляющими (питание) и таким количеством «ступенек» (горизонтальных линий), сколько нужно представить схем управления. Если бы мы хотели нарисовать простую лестничную диаграмму, показывающую лампу, управляемую ручным переключателем, она выглядела бы так: Обозначения «L 1 » и «L 2 » относятся к двум полюсам 120 В переменного тока. поставка, если не указано иное. L 1 — это «горячий» провод, а L 2 — заземленный («нейтральный») провод.Эти обозначения не имеют ничего общего с индукторами, просто чтобы запутать. Фактический трансформатор или генератор, питающий эту схему, для простоты опущен. В действительности схема выглядит примерно так: Обычно в схемах промышленной релейной логики, но не всегда, рабочее напряжение для контактов переключателя и катушек реле будет составлять 120 вольт переменного тока. Системы с более низким напряжением переменного и даже постоянного тока иногда строятся и документируются в соответствии с «лестничными» диаграммами: до тех пор, пока все контакты переключателя и катушки реле имеют соответствующие номиналы, действительно не имеет значения, какой уровень напряжения выбран для работы системы. с участием.Обратите внимание на цифру «1» на проводе между переключателем и лампой. В реальном мире этот провод должен быть помечен этим номером с помощью термоусадочных или самоклеящихся этикеток, где бы это было удобно для идентификации. Провода, ведущие к коммутатору, будут обозначены «L 1 » и «1» соответственно. Провода, ведущие к лампе, будут иметь маркировку «1» и «L 2 » соответственно. Эти номера проводов упрощают сборку и обслуживание. Каждый проводник имеет свой уникальный номер провода для системы управления, в которой он используется.Номера проводов не меняются ни на каком соединении или узле, даже если размер, цвет или длина провода меняются при входе в точку соединения или выходе из нее. Конечно, желательно поддерживать одинаковые цвета проводов, но это не всегда практично. Важно то, что любая электрически непрерывная точка в цепи управления имеет один и тот же номер провода. Возьмем, к примеру, этот участок схемы с проводом № 25 в качестве единой, электрически непрерывной точечной резьбы для многих различных устройств: на диаграммах — нагрузочное устройство (лампа, катушка реле, катушка соленоида и т. Д.).) почти всегда рисуется с правой стороны ступени. Хотя электрически не имеет значения, где расположена катушка реле внутри ступеньки, имеет значение, какой конец источника питания лестницы заземлен, для надежной работы. Возьмем, к примеру, эту схему: здесь лампа (нагрузка) расположена с правой стороны перекладины, как и заземление источника питания. Это не случайность или совпадение; скорее, это целенаправленный элемент хорошей практики проектирования.Предположим, что провод №1 случайно соприкоснулся с землей, причем изоляция этого провода была стерта, так что оголенный провод вступил в контакт с заземленным металлическим кабелепроводом. Наша схема теперь будет работать следующим образом: если обе стороны лампы соединены с землей, лампа будет «закорочена» и не сможет получать питание для зажигания. Если бы выключатель замкнулся, произошло бы короткое замыкание, немедленно взорвавшее предохранитель. Однако подумайте, что произойдет с цепью с такой же неисправностью (провод №1 соприкасается с землей), за исключением того, что на этот раз мы поменяем местами переключатель и предохранитель (L 2 все еще заземлен): на этот раз случайное заземление провода №1 приведет к подаче питания на лампу, в то время как выключатель не подействует.Намного безопаснее иметь систему, которая перегорает предохранитель в случае замыкания на землю, чем иметь систему, которая неконтролируемо включает лампы, реле или соленоиды в случае той же самой неисправности. По этой причине нагрузка (и) всегда должна быть расположена ближе всего к заземленному проводу питания на лестничной диаграмме.

    Рисунок 9.42

    Рисунок 9.43

    Рисунок 9.44
    • Релейные диаграммы (иногда называемые «лестничной логикой») — это тип электрических обозначений и символов, часто используемых для иллюстрации того, как электромеханические переключатели и реле связаны между собой.
    • Две вертикальные линии называются «рельсами» и прикрепляются к противоположным полюсам источника питания, обычно 120 вольт переменного тока. L 1 обозначает «горячий» провод переменного тока, а L 2 — «нейтральный» (заземленный) провод.
    • Горизонтальные линии на лестничной диаграмме называются «ступенями», каждая из которых представляет уникальную параллельную ветвь цепи между полюсами источника питания.
    • Обычно провода в системах управления маркируются цифрами и / или буквами для идентификации.Правило состоит в том, что все постоянно подключенные (электрически общие) точки должны иметь одну и ту же этикетку.

    Рисунок 9.45

    Рисунок 9.46

    Рисунок 9.47

    Рисунок 9.48

    Рисунок 9.49

    Мы можем построить простые логические функции для нашей гипотетической схемы лампы, используя несколько контактов, и довольно легко и понятно задокументировать эти схемы с дополнительными ступенями к нашей исходной «лестнице».Если мы будем использовать стандартную двоичную запись для состояния переключателей и лампы (0 для не сработавшего или обесточенного; 1 для сработавшего или запитанного), можно составить таблицу истинности, чтобы показать, как работает логика: Теперь лампа загорится горит, если срабатывает контакт A или контакт B, потому что все, что требуется для включения лампы, — это иметь хотя бы один путь для прохождения тока от провода L 1 к проводу 1. У нас есть простая логическая функция ИЛИ, реализовано только с контактами и лампой. Мы можем имитировать логическую функцию И, подключив два контакта последовательно, а не параллельно: теперь лампа включается, только если одновременно срабатывают контакт A и контакт B.Путь существует для тока от провода L 1 к лампе (провод 2) тогда и только тогда, когда оба переключающих контакта замкнуты. Функция логической инверсии, или НЕ, может быть выполнена на контактном входе, просто используя нормально замкнутый контакт вместо нормально разомкнутого: теперь лампа включается, если контакт не активирован, и отключается, когда контакт активирован . Если мы возьмем нашу функцию ИЛИ и инвертируем каждый «вход» с помощью нормально замкнутых контактов, мы получим функцию И-НЕ.В специальном разделе математики, известном как логическая алгебра , этот эффект изменения идентичности вентильной функции при инверсии входных сигналов описывается теоремой ДеМоргана , которая будет исследована более подробно в следующей главе. быть под напряжением, если любой из контактов не сработал. Он погаснет, только если оба контакта сработают одновременно. Точно так же, если мы возьмем нашу функцию И и инвертируем каждый «вход» с помощью нормально замкнутых контактов, мы получим функцию ИЛИ-ИЛИ: шаблон быстро обнаруживается, когда лестничные схемы сравниваются с их аналогами логических вентилей:

    • Параллельные контакты эквивалентны логическому элементу ИЛИ.
    • Контакты серии
    • эквивалентны логическому элементу AND.
    • Нормально замкнутые контакты эквивалентны вентилю НЕ (инвертору).
    Рисунок 9.50 Рисунок 9.51

    Рисунок 9.52

    Мы можем создавать функции комбинационной логики, также группируя контакты в последовательно-параллельную схему. В следующем примере у нас есть функция исключающего ИЛИ, построенная из комбинации логических элементов И, ИЛИ и инвертора (НЕ): Верхняя ступень (замыкающий контакт A последовательно с замыкающим контактом B) является эквивалентом верхнего НЕ / И комбинация ворот.Нижняя ступенька (замыкающий контакт A последовательно с замыкающим контактом B) эквивалентен комбинации нижнего элемента НЕ / И. Параллельное соединение между двумя звеньями в проводе номер 2 образует эквивалент логического элемента ИЛИ, позволяя запитать лампу либо звеном 1 , либо звеном 2 . Чтобы реализовать функцию исключающего ИЛИ, нам пришлось использовать два контакта на каждый вход: один для прямого входа, а другой для «инвертированного» входа. Два контакта «А» физически приводятся в действие одним и тем же механизмом, как и два контакта «В».Общая связь между контактами обозначается меткой контакта. Нет ограничений на количество контактов на переключатель, которое может быть представлено на релейной диаграмме, поскольку каждый новый контакт на любом переключателе или реле (нормально разомкнутом или нормально замкнутом), используемых на диаграмме, просто помечен одной и той же меткой. Иногда несколько контактов на одном переключателе (или реле) обозначаются составными метками, такими как «A-1» и «A-2» вместо двух меток «A». Это может быть особенно полезно, если вы хотите конкретно указать, какой набор контактов на каждом переключателе или реле используется для какой части цепи.Для простоты я воздержусь от таких сложных обозначений в этом уроке. Если вы видите общую метку для нескольких контактов, вы знаете, что все эти контакты приводятся в действие одним и тем же механизмом. Если мы хотим инвертировать выход любой логической функции, генерируемой переключателем, мы должны использовать реле с нормально замкнутым контактом. Например, если мы хотим подать питание на нагрузку на основе инверсии, или НЕ, нормально разомкнутого контакта, мы могли бы сделать это: мы назовем реле «реле управления 1» или CR 1 .Когда катушка CR 1 (обозначенная парой скобок на первой ступени) находится под напряжением, контакт на второй ступеньке размыкается на , таким образом обесточивая лампу. От переключателя A до катушки CR 1 логическая функция не инвертируется. Нормально замкнутый контакт, приводимый в действие катушкой реле CR 1 , обеспечивает функцию логического инвертора для включения лампы, противоположной состоянию срабатывания переключателя. Применяя эту стратегию инверсии к одной из наших функций инвертированного входа, созданной ранее, такой как OR-to-NAND, мы можем инвертировать выход с помощью реле, чтобы создать неинвертированную функцию: от переключателей до катушки CR 1 , логическая функция — это функция логического элемента И-НЕ.Нормально замкнутый контакт CR 1 обеспечивает одну последнюю инверсию, чтобы превратить функцию И-НЕ в функцию И.

    • Параллельные контакты логически эквивалентны логическому элементу ИЛИ.
    • Контакты серии
    • логически эквивалентны логическому элементу И.
    • Нормально замкнутые (Н.З.) контакты логически эквивалентны вентилю НЕ.
    • Реле должно использоваться для инвертирования выхода функции логического элемента, в то время как простых нормально замкнутых переключающих контактов достаточно для представления инвертированных входов затвора .
    Рисунок 9.53 Рисунок 9.54

    Рисунок 9.55

    Рис. 9.56.

    Практическое применение логики переключателя и реле находится в системах управления, где необходимо выполнить несколько условий процесса, прежде чем оборудование будет запущено. Хорошим примером этого является автомат горения для больших топочных печей. Чтобы горелки в большой печи могли запускаться безопасно, система управления запрашивает «разрешение» у нескольких переключателей процесса, включая высокое и низкое давление топлива, проверку потока воздушного вентилятора, положение заслонки выхлопной трубы, положение дверцы доступа и т. Д.Каждое условие процесса называется разрешающим условием , и каждый разрешающий контакт переключателя подключается последовательно, так что, если какой-либо из них обнаруживает небезопасное состояние, цепь будет разомкнута: если все допустимые условия соблюдены, CR 1 будет включится, и загорится зеленая лампа. В реальной жизни было бы включено больше, чем просто зеленая лампа: обычно управляющее реле или соленоид топливного клапана помещались бы в эту ступень цепи, чтобы запитать, когда все разрешающие контакты были «в порядке», то есть все замкнуты. .Если какое-либо из разрешающих условий не выполнено, последовательная цепочка контактов переключателя будет разорвана, CR 2 обесточится, и загорится красная лампа. Обратите внимание, что контакт высокого давления топлива нормально замкнут. Это потому, что мы хотим, чтобы контакт переключателя размыкался, если давление топлива становится слишком высоким. Поскольку «нормальное» состояние любого реле давления — это когда к нему прикладывается нулевое (низкое) давление, и мы хотим, чтобы этот переключатель открывался при чрезмерном (высоком) давлении, мы должны выбрать переключатель, который замкнут в своем нормальном состоянии.Другое практическое применение релейной логики — в системах управления, где мы хотим гарантировать, что два несовместимых события не могут произойти одновременно. Примером этого является управление реверсивным двигателем, где два контактора двигателя подключены для переключения полярности (или чередования фаз) на электродвигатель, и мы не хотим, чтобы контакторы прямого и обратного хода включались одновременно: когда контактор M 1 включен под напряжением 3 фазы (A, B и C) подключены непосредственно к клеммам 1, 2 и 3 двигателя соответственно.Однако, когда контактор M 2 находится под напряжением, фазы A и B меняются местами, A идет к клемме 2 двигателя, а B идет к клемме 1 двигателя. Это реверсирование фазных проводов приводит к вращению двигателя в противоположном направлении. Давайте рассмотрим схему управления этими двумя контакторами: обратите внимание на нормально замкнутый контакт «OL», который представляет собой контакт тепловой перегрузки, активируемый элементами «нагревателя», включенными последовательно с каждой фазой двигателя переменного тока. Если нагреватели станут слишком горячими, контакт изменится из нормального (замкнутого) состояния на разомкнутый, что предотвратит включение любого контактора.Эта система управления будет работать нормально, пока никто не нажимает обе кнопки одновременно. Если бы кто-то сделал это, фазы A и B были бы замкнуты накоротко вместе в силу того факта, что контактор M 1 посылает фазы A и B прямо на двигатель, а контактор M 2 меняет их местами; фаза A будет замкнута на фазу B и наоборот. Очевидно, это плохая конструкция системы управления! Чтобы этого не произошло, мы можем спроектировать схему так, чтобы включение одного контактора предотвращало включение другого.Это называется блокировкой , и это достигается за счет использования вспомогательных контактов на каждом контакторе, как таковых: Теперь, когда M 1 запитан, нормально замкнутый вспомогательный контакт на второй ступени будет разомкнут, что предотвращает M 2 от подачи питания, даже если нажата кнопка «Реверс». Аналогичным образом, подача напряжения M 1 предотвращается, когда M 2 находится под напряжением. Также обратите внимание на то, как были добавлены дополнительные номера проводов (4 и 5), чтобы отразить изменения проводки.Следует отметить, что это не единственный способ блокировки контакторов для предотвращения короткого замыкания. Некоторые контакторы оснащены опцией механической блокировки : рычаг, соединяющий якоря двух контакторов вместе, так что они физически не могут замыкаться одновременно. Для дополнительной безопасности все же можно использовать электрические блокировки, и из-за простоты схемы нет веских причин не использовать их в дополнение к механическим блокировкам.

    • Переключающие контакты, установленные в ступени релейной логики, предназначенные для прерывания цепи, если определенные физические условия не выполняются, называются разрешающими контактами , потому что для активации системе требуется разрешение от этих входов.
    • Переключающие контакты, предназначенные для предотвращения одновременного выполнения системой управления двух несовместимых действий (например, одновременное включение электродвигателя вперед и назад), называются блокировками .

    Обозначения переключателей

    Позиционный переключатель

    Обозначения переключателей и переключателей цепей

    Символ Описание Символ Описание
    Выключатель разомкнутого типа SPST
    Однополюсный, одноходовой
    НР — нормально разомкнутый
    Общий символ
    + информация
    Замкнутый выключатель SPST
    Однополюсный, однопозиционный
    NC — нормально замкнутый
    Выключатель с задержкой открытия Выключатель с задержкой открытия и закрытия
    Выключатель с задержкой открытия Задержка переключения при открытии и закрытии
    Концевой выключатель
    + информация
    Двойной концевой выключатель
    Когда один замыкается, другой открывается
    Таймер / Таймер
    + информация
    Электронный переключатель часов
    Моментный выключатель, размыкание при высоком крутящем моменте Термовыключатель
    + Информация
    Обрыв термовыключателя — НЕТ Замкнутый термический выключатель — NC
    Поплавковый выключатель
    Датчик уровня жидкости
    + информация
    Дифференциальный переключатель
    Реле давления, закрывается при повышении давления Реле потока, включается при увеличении потока
    вода, воздух и т. Д.
    Реле давления или вакуума Реле перепада давления
    Концевой выключатель
    NO — нормально открытый
    Концевой выключатель
    NC — нормально замкнутый
    Выключатель обесточенный Переключатель под напряжением
    Переключатель вибрации, замыкается при повышении вибрации Педальный переключатель
    Термомагнитный выключатель
    Магнитотермический выключатель
    + Информация
    Ключ-селекторный переключатель
    Роликовый переключатель Ручной дублер
    Выключатель электродвигателя Переключатель электромагнитный
    Кулачковый переключатель Рычажный переключатель
    DIP (двухрядный корпус)
    Инкапсулированные переключатели
    + информация
    Электронный ограничитель
    DIP (двухрядный корпус)
    залитые переключатели
    e.грамм. 4 переключателя
    Выключатель со встроенной неоновой лампой
    Ртутный переключатель
    Датчик наклона или движения
    + информация
    NC, ртутный выключатель
    НЕТ, ртутный выключатель Стартер
    + информация
    Селектор Контакт, управляемый счетчиком импульсов
    + символы
    Педальный переключатель Таймер

    Обозначения переключателя цепи (SPDT / DPST / DPDT и Multi-Switch)

    Переключатель SPDT
    Однополюсный, двойной ход
    Общий символ
    Переключатель SPDT
    Однополюсный, двусторонний
    Двойной переключатель DPST — двухполюсный
    Двухполюсный, одинарный
    Двойной переключатель DPST — биполярный
    Двухполюсный, односторонний
    Один замыкается раньше другого
    Ползунковый переключатель, SPDT
    Однополюсный, двойной ход
    Двойной переключатель DPDT
    Двухполюсный, двойной ход
    Двойной переключатель, DPDT
    Двухполюсный, двойной ход
    Многопозиционный переключатель
    Многопозиционный переключатель Многопозиционный переключатель
    Поворотный переключатель
    Поворотный мульти-переключатель
    + информация
    Многопозиционный переключатель
    Поворотный мульти-переключатель Многопозиционный переключатель

    Условные обозначения переключателей двух и трех положений

    переключатель
    замыкающий или рабочий контакт
    общий символ
    Переключатель
    Замыкающий или рабочий контакт
    Выключатель размыкается или находится в состоянии покоя Переключатель инвертора перед включением
    Инверторный переключатель с промежуточным положением резки Инверторный переключатель перед открытием
    Двойной замыкающий контакт Переключатель инвертора перед открытием
    Контакт двойного открывания Переключатель цепи
    Размыкание контакта перед включением контакта

    Символы разъединителей / униполярных переключателей

    Разъединители, ручной контакт
    Общее обозначение
    Разъединители / кнопка размыкания
    С автоматическим возвратом после замыкания
    Открытый вращающийся контакт
    Без автоматического возврата после замыкания
    Кнопка контакта / замыкания
    С автоматическим возвратом после размыкания
    Замкнуть вращающийся контакт
    Без автоматического возврата после размыкания
    Контактный / резиновый выключатель
    С автоматической блокировкой и возвратом
    Кнопка с грибовидной головкой
    С принудительным размыканием контакта и фиксированным положением
    Контакт / кнопка открытия
    Положительный контакт

    Обозначения позиционных переключателей

    Позиционный контакт
    Замыкающий контакт
    Позиционный контакт
    Размыкающий контакт
    Двухпозиционный переключатель с механическим переключением в обоих направлениях с принудительным размыканием нормально замкнутого контакта

    Обозначения контактов с автоматическим возвратом и сохранением положения

    Мгновенный контакт Поддерживаемый контакт
    Выключатель с автоматическим возвратом Выключатель открывания с автоматическим возвратом
    Замыкающие выключатели с удерживаемым положением Инверторный переключатель с промежуточным положением, с автоматическим возвратом в положение и без автоматического возврата в противоположное

    Обозначения рабочих переключателей с расширенным или отложенным режимом

    Выключатель с задержкой включения Выключатель раннего открытия
    Выключатель раннего отключения Переключатель задержки открытия

    Обозначения переключателей ступенчатых двухпозиционных

    Переключатель ступеней с мгновенным включением при срабатывании его управляющего устройства Ступенчатый переключатель с мгновенным включением при отключенном устройстве управления
    Переключатель ступеней с мгновенным включением при включении или выключении его управляющего устройства
    Галерея изображений электрических и относящихся к ним выключателей
    Переключатели кнопочные
    Символы однолинейных переключателей
    Обозначения силовых коммутационных аппаратов
    Обозначения переключателей по эффектам и зависимостям
    Загрузить символы

    Как работает автоматический выключатель

    Взбивание с напряжением см и напоминающее взрыв на заводе по производству проводов, панель выключателя источает загадочность.Но это просто большой переключатель, заполненный другими меньшими переключателями, которые ведут к переключателям, которые любой домовладелец может безбоязненно щелкнуть. Это вызывает поток электронов, который проходит по медным проводам, заряжая наши приборы, свет и современную жизнь. Грамотность в области выключателей не только для ветеранов напряжения, которые декламируют Национальный электротехнический кодекс. Даже если все, что вам интересно, это то, достижимы ли ваши скромные мечты о джакузи с помощью электричества или почему тостер гасит свет на кухне — панели есть что вам сказать.

    Дж. Макл

    НЕЙТРАЛЬНЫЙ И ГОРЯЧИЙ ПРОВОД

    Ток течет от панели к нагрузке по горячим проводам и возвращается по нейтрали. Медный наконечник каждого горячего провода в конечном итоге подключается к его контрольному переключателю на автоматическом выключателе, а каждая нейтраль подключается к общей клемме, называемой шиной.

    РАЗМЕРЫ ВЫКЛЮЧАТЕЛЯ

    Главный выключатель

    Это выключатель для всей панели выключателя.Выключатель на 200 ампер подходит для дома площадью более 2000 квадратных футов. Меньшие здания могут использовать 150 или 100 ампер; небольшие дома и субпанели могут потреблять всего 50 ампер.

    Двухполюсный выключатель

    Использует все 240 вольт, доступные панели. Выключатели на 15 и 20 ампер часто используются для обогревателей плинтуса, 30-амперные водонагреватели и электрические сушилки, 40-амперные и 50-амперные выключатели для электрических плит, а 70-амперные могут использоваться для большого кондиционера или дополнительной панели.

    Выключатель однополюсный

    15-амперные и 20-амперные выключатели — универсальные, управляющие всем, от ламп и розеток до открывателей гаражных ворот.

    15-амперный выключатель AFI

    Прерыватели цепи при замыкании дуги могут предотвратить возгорание, вызванное случайным электрическим разрядом.

    ИЗМЕРИТЕЛЬ ПРОВОДА

    Проволока 12 калибра

    Общий для низковольтных подключений к выключателям и розеткам света, подключенным к автоматическим выключателям на 15 или 20 ампер.

    Проволока 14 калибра

    Слишком тонкий для любых выключателей, кроме 15-амперных выключателей при малых нагрузках.

    Проволока 10 калибра

    Подходит для двухполюсного выключателя на 20 А или однополюсного выключателя на 30 А.

    Проволока 8 или 6 калибра

    Используется для двухполюсных выключателей на 40, 50 и 60 ампер; крупная бытовая техника. Также используется для обслуживания субпанелей.

    ЗАЗЕМЛЕНИЕ

    Заземление предотвращает повреждение проводника, не предназначенного для протекания тока (например, металлическая сторона сушилки для одежды), если он находится под напряжением из-за изношенного горячего провода. В правильно заземленной системе приборы и металлические коробки подключаются обратно к шине заземления панели выключателя. Оттуда система заземляется на землю через подземные заземляющие стержни.

    КАК ПРОИСХОДИТ ПОРАЖЕНИЕ ЭЛЕКТРИЧЕСКИМ ТОКОМ

    Фибрилляция желудочков, беспорядочный, смертельный спазм, который возникает при прохождении электрического тока через сердце, происходит, когда обе руки человека касаются горячего и нейтрального проводников, в результате чего ток замыкается через грудную клетку. При замыкании на землю ток может течь в одну руку, поражая сердце, когда он проходит через тело на пути к земле. Раньше при замене предохранителей под напряжением электрики работали одной рукой, а другую держали в заднем кармане — это щадило сердце, изолировав ток от нервов одной руки в блоке предохранителей.

    Что такое ватт?

    Повсюду в справочниках по электричеству встречается колесо закона Ома, которое упрощает преобразование между ваттами, вольтами, омами и амперами. Самый важный расчет для потребителя — это напряжение, умноженное на силу тока, что равняется мощности в ваттах — потребляемой мощности устройства — и основе единицы, в которой продается электроэнергия.

    Juice Routes
    По мере того, как домашнее электричество становится все более сложным, можно ожидать, что предметы, которые теперь продаются как отдельные аппаратные средства, такие как инверторы солнечных панелей и разъединители переменного / постоянного тока, или субпанели генераторов и переключатели передачи, объединяются в единые стандартные части, которые являются проще установить и понять.

    Установка резервного генератора: При отключении электроэнергии резервный генератор обеспечивает электроэнергией назначенные автоматические выключатели. Природный газ или пропан питает двигатель генератора, который вращает генератор переменного тока, чтобы создать магнитное поле, которое посылает ток в дом. Очень важно, чтобы электричество от генератора не подавалось обратно в сеть — линейные работники, работающие над восстановлением электроэнергии, могли получить удар током. Автоматический переключатель резерва изолирует электричество генератора, чтобы отключить его от сети, пока подача электроэнергии не будет восстановлена.Затем генератор отключается, и передаточный переключатель меняет направление.

    Электромонтаж ветровых турбин или солнечных фотоэлектрических установок: Солнечные панели и ветряные турбины подают энергию постоянного тока в инвертор, который преобразует ее в переменный ток для домашнего использования. Выключатели постоянного и переменного тока позволяют изолировать детали для обслуживания. Эти системы постоянно подключаются к сети, но во время отключения электроэнергии — к удивлению некоторых потребителей, привязанных к сети, — их мощность не может быть использована. Одно из решений: хранить энергию в системе резервного питания от батареи. Инверторы, такие как Flexpower One от Outback Power, сокращают расходы на оборудование за счет предварительно смонтированных аккумуляторных соединений и автоматических выключателей.Новые микро-инверторы преобразуют постоянный ток в переменный на панели, устраняя прокладку проводов постоянного тока.

    Интеллектуальная сеть в вашем подвале

    Некоторые преимущества, которые потребители могут увидеть после завершения национальной интеллектуальной сети, уже доступны в таких продуктах, как Smart Panel от Computerized Electric Systems. Компьютерное оборудование, встроенное в стандартную панель выключателя, позволяет этому инструменту контролировать отдельные цепи, передавать и балансировать нагрузки между источниками питания или управлять мощностью удаленно. Простое получение дополнительной информации о потребляемой мощности каждым выключателем может стать началом более эффективного с точки зрения электричества образа жизни — оставьте дверцу холодильника открытой, станьте свидетелем всплеска потребления в реальном времени и получите мотивацию.

    Этот контент создается и поддерживается третьей стороной и импортируется на эту страницу, чтобы помочь пользователям указать свои адреса электронной почты. Вы можете найти больше информации об этом и подобном контенте на сайте piano.io.

    .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *