Электрические реле времени, классификация и условные графические обозначения
Оглавление
Введение
Раздел 1. Классификация реле времени
Раздел 2. Условно-графическое обозначение реле времени и их контактов на схемах
Список используемой литературы
Раздел 2. Условно-графическое обозначение реле времени и их контактов на схемах
Контакты реле времени
На сегодняшний день в России действует ГОСТ 2.755-87 «Обозначения условные графические в электрических схемах. Устройства коммутационные и контактные соединения». И ГОСТ 2.756-76 «Обозначения условные графические в схемах. Воспринимающая часть электромеханических устройств». При проектировании или написании научной статьи принято руководствоваться этими ГОСТами.
Но в практике иногда встречаются электрические схемы или книга старого издания, в которых условно графические обозначения отличаются от ныне принятых. Они соответствуют таким документам, как ГОСТ 7624-62 «Обозначения условные графические для электрических схем» с изменением №1 от 1965 г. и еще более старый ГОСТ 7621 -55 «Обозначения условные графические электрооборудования и проводок на планах». Поэтому ниже привожу таблицы с некоторыми условно графических обозначениями контактов реле времени и их катушек по старым и новым ГОСТам.
Таблица 1. УГО контактов реле времени.
Конечно, это далеко не все условно графические обозначения функций и типов контактов реле, так например, иногда еще встречаются схемы, где нормально разомкнутый контакт реле обозначается как
— да, именно, также как обозначается и конденсатор постоянной емкости, а нормально замкнутый контакт обозначается как
— да, почти как конденсатор переменной емкости. Эта неразбериха существовала до 1955 года, когда впервые появился ГОСТ на обозначения условные графические в схемах. В ГОСТ 7621 -55 просто разрезали конденсатор пополам, что получилось, смотрите в таблице 1.
Также существует множество других обозначений функций контактов, я постарался описать лишь те, которые наиболее применимы к реле времени.
В этом разделе
Войти со своими данными
Реклама
Реле времени обозначение на схеме гост
Любые электрические цепи могут быть представлены в виде чертежей (принципиальных и монтажных схем), оформление которых должно соответствовать стандартам ЕСКД. Эти нормы распространяются как на схемы электропроводки или силовых цепей, так и электронные приборы. Соответственно, чтобы «читать» такие документы, необходимо понимать условные обозначения в электрических схемах.
Нормативные документы
Учитывая большое количество электроэлементов, для их буквенно-цифровых (далее БО) и условно графических обозначений (УГО) был разработан ряд нормативных документов исключающих разночтение. Ниже представлена таблица, в которой представлены основные стандарты.
Таблица 1. Нормативы графического обозначения отдельных элементов в монтажных и принципиальных электрических схемах.
Номер ГОСТа | Краткое описание |
2.710 81 | В данном документе собраны требования ГОСТа к БО различных типов электроэлементов, включая электроприборы. |
2.747 68 | Требования к размерам отображения элементов в графическом виде. |
21.614 88 | Принятые нормы для планов электрооборудования и проводки. |
2.755 87 | Отображение на схемах коммутационных устройств и контактных соединений |
2.756 76 | Нормы для воспринимающих частей электромеханического оборудования. |
2.709 89 | Настоящий стандарт регулирует нормы, в соответствии с которыми на схемах обозначаются контактные соединения и провода. |
21.404 85 |
Следует учитывать, что элементная база со временем меняется, соответственно вносятся изменения и в нормативные документы, правда это процесс более инертен. Приведем простой пример, УЗО и дифавтоматы широко эксплуатируются в России уже более десятка лет, но единого стандарта по нормам ГОСТ 2.755-87 для этих устройств до сих пор нет, в отличие от автоматических выключателей. Вполне возможно, в ближайшее время это вопрос будет урегулирован. Чтобы быть в курсе подобных нововведений, профессионалы отслеживают изменения в нормативных документах, любителям это делать не обязательно, достаточно знать расшифровку основных обозначений.
Виды электрических схем
В соответствии с нормами ЕСКД под схемами подразумеваются графические документы, на которых при помощи принятых обозначений отображаются основные элементы или узлы конструкции, а также объединяющие их связи. Согласно принятой классификации различают десять видов схем, из которых в электротехнике, чаще всего, используется три:
- Функциональная, на ней представлены узловые элементы (изображаются как прямоугольники), а также соединяющие их линии связи. Характерная особенность такой схемы – минимальная детализация. Для описания основных функций узлов, отображающие их прямоугольники, подписываются стандартными буквенными обозначениями. Это могут быть различные части изделия, отличающиеся функциональным назначением, например, автоматический диммер с фотореле в качестве датчика или обычный телевизор. Пример такой схемы представлен ниже. Пример функциональной схемы телевизионного приемника
- Принципиальная. Данный вид графического документа подробно отображает как используемые в конструкции элементы, так и их связи и контакты. Электрические параметры некоторых элементов могут быть отображены, непосредственно в документе, или представлены отдельно в виде таблицы. Пример принципиальной схемы фрезерного станка
Если на схеме отображается только силовая часть установки, то она называется однолинейной, если приведены все элементы, то – полной.
Пример однолинейной схемы
- Монтажные электрические схемы. В данных документах применяются позиционные обозначения элементов, то есть указывается их место расположения на плате, способ и очередность монтажа. Монтажная схема стационарного сигнализатора горючих газов
Если на чертеже отображается проводка квартиры, то места расположения осветительных приборов, розеток и другого оборудования указываются на плане. Иногда можно услышать, как такой документ называют схемой электроснабжения, это неверно, поскольку последняя отображает способ подключения потребителей к подстанции или другому источнику питания.
Разобравшись с электрическими схемами, можем переходить к обозначениям указанных на них элементов.
Графические обозначения
Для каждого типа графического документа предусмотрены свои обозначения, регулируемые соответствующими нормативными документами. Приведем в качестве примера основные графические обозначения для разных видов электрических схем.
Примеры УГО в функциональных схемах
Ниже представлен рисунок с изображением основных узлов систем автоматизации.
Примеры условных обозначений электроприборов и средств автоматизации в соответствии с ГОСТом 21.404-85
Описание обозначений:
- А – Основные (1) и допускаемые (2) изображения приборов, которые устанавливаются за пределами электрощита или распределительной коробки.
- В – Тоже самое, что и пункт А, за исключением того, что элементы располагаются на пульте или электрощите.
- С – Отображение исполнительных механизмов (ИМ).
- D – Влияние ИМ на регулирующий орган (далее РО) при отключении питания:
- Происходит открытие РО
- Закрытие РО
- Положение РО остается неизменным.
- Е – ИМ, на который дополнительно установлен ручной привод. Данный символ может использоваться для любых положений РО, указанных в пункте D.
- F- Принятые отображения линий связи:
- Общее.
- Отсутствует соединение при пересечении.
- Наличие соединения при пересечении.
УГО в однолинейных и полных электросхемах
Для данных схем существует несколько групп условных обозначений, приведем наиболее распространенные из них. Для получения полной информации необходимо обратиться к нормативным документам, номера государственных стандартов будут приведены для каждой группы.
Источники питания.
Для их обозначения приняты символы, приведенные на рисунке ниже.
УГО источников питания на принципиальных схемах (ГОСТ 2.742-68 и ГОСТ 2.750.68)
Описание обозначений:
- A – источник с постоянным напряжением, его полярность обозначается символами «+» и «-».
- В – значок электричества, отображающий переменное напряжение.
- С – символ переменного и постоянного напряжения, используется в тех случаях, когда устройство может быть запитано от любого из этих источников.
- D – Отображение аккумуляторного или гальванического источника питания.
- E- Символ батареи, состоящей из нескольких элементов питания.
Линии связи
Базовые элементы электрических соединителей представлены ниже.
Обозначение линий связи на принципиальных схемах (ГОСТ 2.721-74 и ГОСТ 2.751.73)
Описание обозначений:
- А – Общее отображение, принятое для различных видов электрических связей.
- В – Токоведущая или заземляющая шина.
- С – Обозначение экранирования, может быть электростатическим (помечается символом «Е») или электромагнитным («М»).
- D – Символ заземления.
- E – Электрическая связь с корпусом прибора.
- F – На сложных схемах, из нескольких составных частей, таким образом обозначается обрыв связи, в таких случаях «Х» это информация о том, где будет продолжена линия (как правило, указывается номер элемента).
- G – Пересечение с отсутствием соединения.
- H – Соединение в месте пересечения.
- I – Ответвления.
Обозначения электромеханических приборов и контактных соединений
Примеры обозначения магнитных пускателей, реле, а также контактов коммуникационных устройств, можно посмотреть ниже.
УГО, принятые для электромеханических устройств и контакторов (ГОСТы 2.756-76, 2.755-74, 2.755-87)
Описание обозначений:
- А – символ катушки электромеханического прибора (реле, магнитный пускатель и т.д.).
- В – УГО воспринимающей части электротепловой защиты.
- С – отображение катушки устройства с механической блокировкой.
- D – контакты коммутационных приборов:
- Замыкающие.
- Размыкающие.
- Переключающие.
- Е – Символ для обозначения ручных выключателей (кнопок).
- F – Групповой выключатель (рубильник).
УГО электромашин
Приведем несколько примеров, отображения электрических машин (далее ЭМ) в соответствии с действующим стандартом.
Обозначение электродвигателей и генераторов на принципиальных схемах (ГОСТ 2.722-68)
Описание обозначений:
- A – трехфазные ЭМ:
- Асинхронные (ротор короткозамкнутый).
- Тоже, что и пункт 1, только в двухскоростном исполнении.
- Асинхронные ЭМ с фазным исполнением ротора.
- Синхронные двигатели и генераторы.
- B – Коллекторные, с питанием от постоянного тока:
- ЭМ с возбуждением на постоянном магните.
- ЭМ с катушкой возбуждения.
Обозначение электродвигателей на схемах
УГО трансформаторов и дросселей
С примерами графических обозначений данных устройств можно ознакомиться на представленном ниже рисунке.
Правильные обозначения трансформаторов, катушек индуктивности и дросселей (ГОСТ 2.723-78)
Описание обозначений:
- А – Данным графическим символом могут быть обозначены катушки индуктивности или обмотки трансформаторов.
- В – Дроссель, у которого имеется ферримагнитный сердечник (магнитопровод).
- С – Отображение двухкатушечного трансформатора.
- D – Устройство с тремя катушками.
- Е – Символ автотрансформатора.
- F – Графическое отображение ТТ (трансформатора тока).
Обозначение измерительных приборов и радиодеталей
Краткий обзор УГО данных электронных компонентов показан ниже. Тем, кто хочет более широко ознакомиться с этой информацией рекомендуем просмотреть ГОСТы 2.729 68 и 2.730 73.
Примеры условных графических обозначений электронных компонентов и измерительных приборов
Описание обозначений:
- Счетчик электроэнергии.
- Изображение амперметра.
- Прибор для измерения напряжения сети.
- Термодатчик.
- Резистор с постоянным номиналом.
- Переменный резистор.
- Конденсатор (общее обозначение).
- Электролитическая емкость.
- Обозначение диода.
- Светодиод.
- Изображение диодной оптопары.
- УГО транзистора (в данном случае npn).
- Обозначение предохранителя.
УГО осветительных приборов
Рассмотрим, как на принципиальной схеме отображаются электрические лампы.
Пример того, как указываются лампочки на схемах (ГОСТ 2.732-68)
Описание обозначений:
- А – Общее изображение ламп накаливания (ЛН).
- В – ЛН в качестве сигнализатора.
- С – Типовое обозначение газоразрядных ламп.
- D – Газоразрядный источник света повышенного давления (на рисунке приведен пример исполнения с двумя электродами)
Обозначение элементов в монтажной схеме электропроводки
Завершая тему графических обозначений, приведем примеры отображения розеток и выключателей.
Пример изображения на монтажных схемах розеток скрытой установки
Как изображаются розетки других типов, несложной найти в нормативных документах, которые доступны в сети.
Обозначение выключатели скрытой установки Обозначение розеток и выключателей
Буквенные обозначения
В электрических схемах помимо графических обозначений также используются буквенные, поскольку без последних чтение чертежей будет довольно проблематичным. Буквенно-цифровая маркировка так же, как и УГО регулируется нормативными документами, для электро это ГОСТ 7624 55. Ниже представлена таблица с БО для основных компонентов электросхем.
Буквенные обозначения основных элементов
К сожалению, размеры данной статьи не позволяют привести все правильные графические и буквенные обозначения, но мы указали нормативные документы, из которых можно получить всю недостающую информацию. Следует учитывать, что действующие стандарты могут меняться в зависимости от модернизации технической базы, поэтому, рекомендуем отслеживать выход новых дополнений к нормативным актам.
Скачать документ
МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ
ЕДИНАЯ СИСТЕМА КОНСТРУКТОРСКОЙ ДОКУМЕНТАЦИИ
ОБОЗНАЧЕНИЯ УСЛОВНЫЕ
ГРАФИЧЕСКИЕ В ЭЛЕКТРИЧЕСКИХ
СХЕМАХ
РЕЛЕ ЗАЩИТЫ
ИПК ИЗДАТЕЛЬСТВО СТАНДАРТОВ
Москва
МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ
Единая система конструкторской документации
ОБОЗНАЧЕНИЯ УСЛОВНЫЕ ГРАФИЧЕСКИЕ
В ЭЛЕКТРИЧЕСКИХ СХЕМАХ
РЕЛЕ ЗАЩИТЫ
Unified system for design documentation. Graphic identifications in electrical
schemes. Protective relays
ГОСТ
2.767-89
(МЭК 617-7-83)
Дата введения 01.01.90
Настоящий стандарт распространяется на схемы, выполняемые вручную или автоматизированным способом, изделий всех отраслей промышленности и строительства.
1. Общие обозначения измерительного реле защиты или комплекта реле приведены в табл. 1.
Размеры (в модульной сетке) основных условных графических обозначений приведены в приложении.
Реле защиты, комплект реле.
1. Звездочку заменяют одним или более квалифицирующим символом, характеризующим вид реле (комплекта реле), помещенным в следующей последовательности: техническая характеристика измерительного реле и вид ее изменения, направление энергии, диапазон уставок, срабатывание с выдержкой времени, значение выдержки времени. Допускается помещать диапазоны уставок и (или) другие данные вне прямоугольника.
2. Общее обозначение можно дополнить цифрой, определяющей число измерительных элементов.
3. Высота обозначения зависит от объема информации (квалифицирующий символ), определяющей вид реле или комплекта реле.
4. Поле прямоугольника допускается разделять горизонтальными линиями на поля, содержащие информацию, касающуюся отдельных реле (элементов) комплекта реле
2. Квалифицирующие символы приведены в табл. 2.
1. Дифференциальный ток
2. Процентный дифференциальный ток
3. Ток замыкания на землю
4. Ток в нейтральном проводе
5. Ток между нейтральными точками многофазных систем
5а. Ток обратный
6. Напряжение относительно конструкции (корпуса)
7. Остаточное напряжение
8. Мощность при фазовом угле
9. Выдержка времени, зависящая от характерной величины измерительного реле
10. Выдержка времени со ступенчатой характеристикой
11. Большая кратность установки
12. Контроль синхронизма
(Измененная редакция, Изм. № 1; Поправка).
2.1. Обозначения характерных величин измерительного реле и расцепителей – по ГОСТ 1494 .
2.2. Обозначения функциональных зависимостей от характерной величины измерительного реле – по ГОСТ 2.721 .
3. Примеры условных графических обозначений измерительных реле защиты и комплектов реле приведены в табл. 3.
1. Реле максимального тока
2. Реле максимального тока с выдержкой времени
3. Реле максимального тока с зависимой от тока выдержкой времени
4. Реле максимального тока с указанием срабатывания с ручным возвратом
5. Реле токовой отсечки
6. Реле обратного тока
7. Дифференциальное реле тока
8. Дифференциальное реле тока с торможением
9. Реле, срабатывающее в определенном диапазоне тока
10. Реле производной тока
11. Реле максимального напряжения
12. Реле минимального напряжения
13. Реле нулевое (срабатывающее при потере напряжения)
14. Дифференциальное реле напряжения
15. Реле напряжения, срабатывающее в определенном диапазоне напряжения
16. Реле напряжения, срабатывающее выше 100 В или ниже 50 В
17. Реле симметричных составляющих тока: прямой, обратной и нулевой последовательности
18. Реле тока, срабатывающее при замыкании на землю
19. Реле напряжения, срабатывающее при замыкании на корпус
20. Реле активной мощности (? = 0)
21. Реле мощности с внутренним фазовым углом ?
22. Реле реактивной мощности (? = 90°)
23. Реле мощности, срабатывающее при замыкании на землю
23а. Реле минимальной мощности
24. Реле направления:
1) общее обозначение
2) срабатывающее при протекании энергии от токоведущей шины
3) срабатывающее при протекании энергии к токоведущей шине
25. Реле частоты:
1) общее обозначение
2) срабатывающее при повышении частоты
3) срабатывающее при понижении частоты
4) срабатывающее при разности частот
25а. Реле, срабатывающее при коротком замыкании между витками обмотки
25б. Реле, срабатывающее при фазовом замыкании в трехфазной системе
25в. Реле, срабатывающее при разрыве цепи в обмотке
25г. Реле, срабатывающее при замыкании ротора, приводимое в действие током
26. Реле сопротивления
26а. Реле минимального полного сопротивления
27. Реле реактивного сопротивления
28. Реле активного сопротивления
29. Реле сдвига фаз
30. Реле максимального тока с двумя измерительными элементами (двухфазное) в диапазоне уставок от 5 до 10 А
30а. Реле тока, срабатывающее при токе выше 5 А и ниже 3 А
31. Комплект реле:
1) реле максимального тока с зависимой от тока выдержкой времени
2) реле токовой отсечки
32. Комплект реле:
1) реле максимального тока
2) реле минимального напряжения
3) реле времени с независимой выдержкой времени
33. Комплект реле:
1) реле минимального напряжения с указанием срабатывания
2) реле времени с зависимой от напряжения выдержкой времени
34. Реле минимального напряжения с диапазоном уставок от 50 до 80 В и коэффициентом возврата 130 %.
Примечание. Допускается коэффициент возврата указывать в относительных единицах, например 1, 3.
35. Комплект реле:
1) реле реактивной мощности
2) реле напряжения, срабатывающее при протекании энергии к токоведущей шине, уставка 1 Мвар
3) реле времени с диапазоном уставок от 5 до 10 с
36. Устройство дистанционной защиты (комплект реле):
1) максимального тока
2) срабатывающее при протекании энергии от токоведущей шины
3) с выдержкой времени, зависимой от импеданса, со ступенчатой характеристикой
37. Реле Бухгольца (газовое реле)
38. устройство автоматического повторного включения (АПВ)
(Измененная редакция, Изм. № 1).
Размеры (в модульной сетке) основных условных графических обозначений
ИНФОРМАЦИОННЫЕ ДАННЫЕ
1. ВНЕСЕН Государственным комитетом СССР по стандартам
2. Постановлением Государственного комитета СССР по стандартам от 19.10.89 № 3111 стандарт Совета Экономической взаимопомощи СТ СЭВ 6553-88 «Единая система конструкторской документации СЭВ. Обозначения условные графические в электрических схемах. Реле защиты» введен в действие непосредственно в качестве государственного стандарта СССР с 01.01.90
3. ВВЕДЕН ВПЕРВЫЕ
4. СТАНДАРТ СООТВЕТСТВУЕТ стандарту МЭК 617-7-83, за исключением п. 6 табл. 2 и п. 2 табл. 3.
5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ
Обозначение НТД, на который дана ссылка
6. ИЗДАНИЕ (январь 2004 г.) с Изменением № 1, утвержденным в марте 1994 г. (ИУС 5-94), Поправкой (ИУС 3-91)
1 . ВНЕСЕН Государственным комитетом СССР по стандартам
2 . Постановлением Государственного комитета СССР по стандартам от 19.10.89 № 3111 стандарт Совета Экономической взаимопомощи СТ СЭВ 6553-88 «Единая система конструкторской документации СЭВ. Обозначения условные графические в электрических схемах. Реле защиты» введен в действие непосредственно в качестве государственного стандарта СССР с 01.01.90
4 . СТАНДАРТ СООТВЕТСТВУЕТ стандарту МЭК 617-7-83, за исключением п. 6 табл. 2 и п. 2 табл. 3 .
5 . ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ
Как обозначается реле времени на схеме
ГОСТ 2.767-89
(МЭК 617-7-83)
Единая система конструкторской документации
ОБОЗНАЧЕНИЯ УСЛОВНЫЕ ГРАФИЧЕСКИЕ В ЭЛЕКТРИЧЕСКИХ СХЕМАХ
Unified system for design documentation. Graphic identifications in
electrical schemes. Protective relays
Дата введения 1990-01-01
1. ВНЕСЕН Государственным комитетом СССР по стандартам
2. Постановлением Государственного комитета СССР по стандартам от 19.10.89 N 3111 стандарт Совета Экономической Взаимопомощи СТ СЭВ 6553-88 «Единая система конструкторской документации СЭВ. Обозначения условные графические в электрических схемах. Реле защиты» введен в действие непосредственно в качестве государственного стандарта СССР с 01.01.90
3. ВВЕДЕН ВПЕРВЫЕ
4. СТАНДАРТ СООТВЕТСТВУЕТ стандарту МЭК 617-7-83, за исключением п.6 табл.2 и п.2 табл.3.
5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ
Обозначение НТД, на который дана ссылка
6. ИЗДАНИЕ (январь 2001 г.) с Изменением N 1, утвержденным в марте 1994 г. (ИУС 5-94)
Настоящий стандарт распространяется на схемы, выполняемые вручную или автоматизированным способом, изделий всех отраслей промышленности и строительства.
Общие обозначения измерительного реле защиты или комплекта реле
1. Общие обозначения измерительного реле защиты или комплекта реле приведены в табл.1.
Реле защиты, комплект реле.
Примечания:
1. Звездочку заменяют одним или более квалифицирующим символом, характеризующим вид реле (комплекта реле), помещенным в следующей последовательности: техническая характеристика измерительного реле и вид ее изменения, направление энергии, диапазон уставок, срабатывание с выдержкой времени, значение выдержки времени. Допускается помещать диапазоны уставок и (или) другие данные вне прямоугольника.
2. Общее обозначение можно дополнить цифрой, определяющей число измерительных элементов.
3. Высота обозначения зависит от объема информации (квалифицирующий символ), определяющей вид реле или комплекта реле.
4. Поле прямоугольника допускается разделять горизонтальными линиями на поля, содержащие информацию, касающуюся отдельных реле (элементов) комплекта реле.
Размеры (в модульной сетке) основных условных графических обозначений приведены в приложении.
Квалифицирующие символы
2. Квалифицирующие символы приведены в табл.2.
Единая система конструкторской документации
ОБОЗНАЧЕНИЯ УСЛОВНЫЕ ГРАФИЧЕСКИЕ В СХЕМАХ
ВОСПРИНИМАЮЩАЯ ЧАСТЬ ЭЛЕКТРОМЕХАНИЧЕСКИХ УСТРОЙСТВ
ГОСТ 2.756-76
(CT СЭВ 712-77)
ИПК ИЗДАТЕЛЬСТВО СТАНДАРТОВ
ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР
Единая система конструкторской документации
ОБОЗНАЧЕНИЯ УСЛОВНЫЕ ГРАФИЧЕСКИЕ В СХЕМАХ.
ВОСПРИНИМАЮЩАЯ ЧАСТЬ ЭЛЕКТРОМЕХАНИЧЕСКИХ УСТРОЙСТВ
Unified system for design documentation.
Graphic designations in diagrams.
The receiving part of electromechanical devices
Взамен
ГОСТ 2.724-68,
ГОСТ 2.725-68**,
ГОСТ 2.738-68***,
ГОСТ 2.747-68* 4
Постановлением Государственного комитета стандартов Совета Министров СССР от 28 июля 1976 г. № 1824 срок введения установлен
* Переиздание (октябрь 1997 г.) с Изменением №1, утвержденным в июле 1980 г. (ИУС 11-80)
** В части п. 9 (обозначения обмоток реле, контакторов и магнитных пускателей).
*** В части подпункта 7 табл. 1 (обозначения обмотки электромагнита искателя).
* 4 В части подпунктов 22, 23 таблицы (обозначения обмотки реле, контактора, магнитного пускателя, электромагнита, обмотки электромагнита искателя).
* 5 Обозначения исполнительных частей (контактов) электромеханических устройств установлены в ГОСТ 2.755-87.
1. Настоящий стандарт устанавливает условные графические обозначения воспринимающих частей электромеханических устройств (электрических реле, у которых связь воспринимающей части с исполнительной осуществляется механически, а также магнитных пускателей, контакторов и электромагнитов) в схемах* 5 , выполняемых вручную или автоматизированным способом, изделий всех отраслей промышленности.
Стандарт соответствует CT СЭВ 712-77.
(Измененная редакция, Изм. № 1).
2. Обозначения воспринимающих частей электромеханических устройств должны соответствовать приведенным в табл. 1.
3. Размеры условных графических обозначений должны соответствовать приведенным в табл. 2.
1. Катушка электромеханического устройства. Общее обозначение
Примечание. Выводы катушки допускается изображать с одной стороны прямоугольника
2. Катушка электромеханического устройства с одной обмоткой.
Примечание. Наклонную линию допускается не изображать, если нет необходимости подчеркнуть, что катушка с одной обмоткой
3. Катушка электромеханического устройства с двумя обмотками
Примечание. Допускается применять следующее обозначение
4. Катушка электромеханического устройства с п обмотками
Примечания к подпунктам 2-4:
1. Около прямоугольника или в прямоугольнике допускается указывать величины, характеризующие обмотку, например, катушка с двумя обмотками, сопротивление каждой 200 Ом
2. Если катушку электромеханического устройства с несколькими обмотками разносят на схеме, то каждую обмотку изображают следующим образом:
катушка с двумя обмотками
катушка с n обмотками
5. Катушка электромеханического устройства с двумя встречными обмотками
6. Катушка электромеханического устройства с двумя встречными одинаковыми обмотками (бифилярная обмотка)
7. Катушка электромеханического устройства с одним отводом
Примечание. Допускается применять следующее обозначение
8. Катушка электромеханического устройства трехфазного тока
9. Катушка электромеханического устройства с дополнительным графическим полем:
с одним дополнительным графическим полем
с двумя дополнительными графическими полями
1. Линию между двумя дополнительными графическими полями допускается опускать
2. В дополнительном графическом поле указывают уточняющие данные электромеханического устройства, например, электромагнит переменного тока
10. Катушка электромеханического устройства с указанием вида обмотки: обмотка тока
обмотка максимального тока
обмотка минимального напряжения
Примечание к подпунктам 9, 10. При отсутствии дополнительной информации в основном поле допускается в этом поле указывать уточняющие данные, например, катушка электромеханического устройства с обмоткой минимального тока
11. Катушка поляризованного электромеханического устройства
Примечание. Допускается применять следующее обозначение
12. Катушка электромеханического устройства, обладающая остаточным намагничиванием
13. Катушка электромеханического устройства, имеющего механическую блокировку
14. Катушка электромеханического устройства, работающего с ускорением при срабатывании
15. Катушка электромеханического устройства, работающего с ускорением при срабатывании и отпускании
16. Катушка электромеханического устройства, работающего с замедлением при срабатывании
17. Катушка электромеханического устройства, работающего с замедлением при отпускании
18. Катушка электромеханического устройства, работающего с замедлением при срабатывании и отпускании
Примечание к подпунктам 14-18. Около условного графического обозначения допускается указывать временные характеристики электромеханического устройства 17, 18. (Измененная редакция, Изм. № 1).
19. Катушка электромеханического устройства, нечувствительного к переменному току
20. Катушка электромеханического устройства, работающего с механическим резонансом
Примечание. Допускается около обозначения указывать резонансную частоту
21. Воспринимающая часть электротеплового реле
1. Катушка электромеханического устройства
2. Катушка электромеханического устройства с одной обмоткой
3. Катушка электромеханического устройства с двумя встречными обмотками
4. Катушка электромеханического устройства с одним отводом
5. Катушка электромеханического устройства:
с одним дополнительным графическим полем
с двумя дополнительными графическими полями
6. Воспринимающая часть электротеплового реле
ОглавлениеВведение
Раздел 1. Классификация реле времени
Раздел 2. Условно-графическое обозначение реле времени и их контактов на схемах Список используемой литературы
Раздел 2. Условно-графическое обозначение реле времени и их контактов на схемах
Контакты реле времени
На сегодняшний день в России действует ГОСТ 2.755-87 «Обозначения условные графические в электрических схемах. Устройства коммутационные и контактные соединения». И ГОСТ 2.756-76 «Обозначения условные графические в схемах. Воспринимающая часть электромеханических устройств». При проектировании или написании научной статьи принято руководствоваться этими ГОСТами.
Но в практике иногда встречаются электрические схемы или книга старого издания, в которых условно графические обозначения отличаются от ныне принятых. Они соответствуют таким документам, как ГОСТ 7624-62 «Обозначения условные графические для электрических схем» с изменением №1 от 1965 г. и еще более старый ГОСТ 7621 -55 «Обозначения условные графические электрооборудования и проводок на планах». Поэтому ниже привожу таблицы с некоторыми условно графических обозначениями контактов реле времени и их катушек по старым и новым ГОСТам.
В соответствии с ГOCTами изображение контактов, как правило, должно соответствовать обесточенному состоянию воспринимающей системы реле или автомата, т.е. положению, когда реле не включено в схему (даже если на чертеже воспринимающий орган показан включенным под напряжение). По УГО замедление происходит при движении в направлении от дуги к ее центру.
Таблица 1. УГО контактов реле времени.
Каждое реле времени характеризуется своими параметрами. Самым важным параметром является алгоритм работы реле, т.е. логика последовательности его работы. Графически алгоритм функционирования реле времени отображается на функциональной диаграмме. Рассмотрим наиболее распространенные алгоритмы:
а — задержка включения — после подачи питания на реле выходной сигнал появляется по истечении установленного времени,
б — формирование импульса при включении, т.е. выходной сигнал появляется в момент подачи питания на реле и исчезает через установленное время,
в — формирование импульса после снятия управляющего сигнала, т.е. после подачи питания на реле выходной сигнал появляется в момент снятия управляющего сигнала и исчезает через установленное время,
г — задержка выключения после снятия питающего напряжения, т.е. выходной сигнал появляется в момент подачи питания на реле времени и исчезает через установленное время после снятия напряжения питания,
д — циклический режим работы (с паузы) — после подачи питания на реле выходной сигнал появляется по истечении установленного времени паузы (Т1). происходит выдержка времени импульса (Т2) и выходной сигнал исчезает, повторно выдержка времени паузы (Т1), появляется выходной сигнал и происходит выдержка времени импульса (Т2) и т.д. до снятия питания.
Рис. 1. Самые распространенные алгоритмы работы реле времени
Описанные алгоритмы являются наиболее простыми, базовыми, на их основе строятся более сложные алгоритмы. Современные электронные реле могут могут обеспечивать большое количество сложных алгоритмов работы.
Примеры функциональных диаграмм наиболее распространенных реле времени:
1) Реле времени с управлением по питанию:
2) Реле времени с внешним управляющим сигналом:
Обозначение замыкающих контактов реле времени:
Условные графические обозначения замыкающих контактов реле времени: а — с задержкой при срабатывании, б — с задержкой при отпускании, в — с задержкой при срабатывании и отпускании
Условные обозначения размыкающих контактов реле времени:
Условные графические обозначения размыкающих контактов реле времени: а — с задержкой при срабатывании, б — с задержкой при отпускании, в — с задержкой при срабатывании и отпускании
Как невозможно читать книгу без знания букв, так невозможно понять ни один электрический чертеж без знания условных обозначений.
В этой статье рассмотрим условные обозначения в электрических схемах: какие бываю, где найти расшифровку, если в проекте она не указана, как правильно должен быть обозначен и подписан тот или иной элемент на схеме.
Но начнем немного издалека…
Каждый молодой специалист, который приходит в проектирование, начинает либо со складывания чертежей, либо с чтения нормативной документации, либо нарисуй «вот это» по такому примеру. Вообще, нормативная литература изучается по ходу работы, проектирования.
Невозможно прочитать всю нормативную литературу, относящуюся к твоей специальности или, даже, более узкой специализации. Тем более, что ГОСТ, СНиП и другие нормативы периодически обновляются. И каждому проектировщику приходится отслеживать изменения и новые требования нормативных документов, изменения в линейках производителей электрооборудования, постоянно поддерживать свою квалификацию на должном уровне.
Помните, как Льюиса Кэролла в «Алисе в Стране Чудес»?
«Нужно бежать со всех ног, чтобы только оставаться на месте, а чтобы куда-то попасть, надо бежать как минимум вдвое быстрее!»
Это я не к тому, чтобы поплакаться «как тяжела жизнь проектировщика» или похвастаться «смотрите, какая у нас интересная работа». Речь сейчас не об этом. Учитывая такие обстоятельства, проектировщики перенимают практический опыт от более опытных коллег, многие вещи просто знают как делать правильно, но не знают почему. Работают по принципу «Здесь так заведено».
Порой, это достаточно элементарные вещи. Знаешь, как сделать правильно, но, если спросят «Почему так?», ответить сразу не сможешь, сославшись хотя бы на название нормативного документа.
В этой статье я решил структурировать информацию, касающуюся условных обозначений, разложить всё по полочкам, собрать всё в одном месте.
Виды и типы электрических схем
Прежде, чем говорить об условных обозначения на схемах, нужно разобраться, какие виды и типы схем бывают. С 01.07.2009 на территории РФ введен в действие ГОСТ 2.701-2008 «ЕСКД. Схемы. Виды и типы. Общие требования к выполнению».
В соответствии с этим ГОСТ, схемы разделяются на 10 видов:
- Схема электрическая
- Схема гидравлическая
- Схема пневматическая
- Схема газовая
- Схема кинематическая
- Схема вакуумная
- Схема оптическая
- Схема энергетическая
- Схема деления
- Схема комбинированная
Виды схем подразделяются на восемь типов:
- Схема структурная
- Схема функциональная
- Схема принципиальная (полная)
- Схема соединений (монтажная)
- Схема подключения
- Схема общая
- Схема расположения
- Схема объединенная
Меня, как электрика, интересуют схемы вида «Схема электрическая». Вообще, описание и требования к схемам приведены в ГОСТ 2.701-2008 на примере электрических схем, но с 01 января 2012 действует ГОСТ 2.702-2011 «ЕСКД. Правила выполнения электрических схем». Большей частью текст этого ГОСТ дублирует текст ГОСТ 2.701-2008, ссылается на него и другие ГОСТ.
ГОСТ 2.702-2011 подробно описывает требования к каждому виду электрической схемы. При выполнении электрических схем следует руководствоваться именно этим ГОСТ.
ГОСТ 2.702-2011 дает следующее определение понятия электрической схемы: «Схема электрическая — документ, содержащий в виде условных изображений или обозначений составные части изделия, действующие при помощи электрической энергии, и их взаимосвязи». Далее ГОСТ ссылается на документы, регламентирующие правила выполнения условных графических изображения, буквенных обозначений и обозначений проводов и контактных соединений электрических элементов. Рассмотрим каждый отдельно.
Графические обозначения в электрических схемах
В части графических обозначений в электрических схемах ГОСТ 2.702-2011 ссылается на три других ГОСТ:
- ГОСТ 2.709-89 «ЕСКД. Обозначения условные проводов и контактных соединений электрических элементов, оборудования и участков цепей в электрических схемах».
- ГОСТ 2.721-74 «ЕСКД. Обозначения условные графические в схемах. Обозначения общего применения»
- ГОСТ 2.755-87 «ЕСКД. Обозначения условные графические в электрических схемах. Устройства коммутационные и контактные соединения».
Условные графические обозначения (УГО) автоматов, рубильников, контакторов, тепловых реле и прочего коммутационного оборудования, которое используется в однолинейных схемах электрических щитов, определены в ГОСТ 2.755-87.
Однако, обозначение УЗО и дифавтоматов в ГОСТ отсутствует. Думаю, в скором времени он будет перевыпущен и обозначение УЗО будет добавлено. А пока, каждый проектировщик изображает УЗО по собственному вкусу, тем более, что ГОСТ 2.702-2011 это предусматривает. Достаточно привести обозначение УГО и его расшифровку в пояснениях к схеме.
Дополнительно к ГОСТ 2.755-87 для полноты схемы понадобится использование изображений из ГОСТ 2.721-74 (в основном для вторичных цепей).
Все обозначения коммутационных аппаратов построены на четырех базовых изображениях:
с использованием девяти функциональных признаков:
Основные условные графические обозначения, используемые в однолинейных схемах электрических щитов:
Наименование | Изображение |
Автоматический выключатель (автомат) | |
Выключатель нагрузки (рубильник) | |
Контакт контактора | |
Тепловое реле | |
УЗО | |
Дифференциальный автомат | |
Предохранитель | |
Автоматический выключатель для защиты двигателя (автомат со встроенным тепловым реле) | |
Выключатель нагрузки с предохранителем (рубильник с предохранителем) | |
Трансформатор тока | |
Трансформатор напряжения | |
Счетчик электрической энергии | |
Частотный преобразователь | |
Замыкающий контакт нажимного кнопочного выключателя с размыканием и возвратом элемента управления автоматически | |
Замыкающий контакт нажимного кнопочного выключателя с размыканием и возвратом элемента управления посредством вторичного нажатия кнопки | |
Замыкающий контакт нажимного кнопочного выключателя с размыканием и возвратом элемента управления посредством вытягивания кнопки | |
Замыкающий контакт нажимного кнопочного выключателя с размыканием и возвратом элемента управления посредством отдельного привода (например, нажатия кнопки-сброс) | |
Контакт замыкающий с замедлением, действующим при срабатывании | |
Контакт замыкающий с замедлением, действующим при возврате | |
Контакт замыкающий с замедлением, действующим при срабатывании и возврате | |
Контакт размыкающий с замедлением, действующим при срабатывании | |
Контакт размыкающий с замедлением, действующим при возврате | |
Контакт замыкающий с замедлением, действующим при срабатывании и возврате | |
Катушка контактора, общее обозначение катушки реле | |
Катушка импульсного реле | |
Катушка фотореле | |
Катушка реле времени | |
Мотор-привод | |
Лампа осветительная, световая индикация (лампочка) | |
Нагревательный элемент | |
Разъемное соединение (розетка): |
Обозначения проводов, шин в электрических щитах определяется ГОСТ 2.721-74.
Буквенные обозначения в электрических схемах
Буквенные обозначения определены ГОСТ 2.710-81 «ЕСКД. Обозначения буквенно-цифровые в электрических схемах».
Обозначения дифавтоматов и УЗО в этом ГОСТ отсутствует. На различных сайтах и форумах в интернете долго обсуждали как же правильно обозначать УЗО и дифавтомат. ГОСТ 2.710-81 в п.2.2.12. допускает использование многобуквенных кодов (а не только одно- и двухбуквенных), поэтому до введения нормативного обозначения я для себя принял трехбуквенное обозначение УЗО и дифавтомата. К двухбуквенному обозначению рубильника я добавил букву D и получил обозначение УЗО. Аналогично поступил с дифавтоматом.
Думаю, в скором времени он будет перевыпущен и обозначение УЗО будет добавлено.
Обозначения основных элементов, используемых в однолинейных схемах электрических щитов:
Наименование | Обозначение |
Автоматический выключатель в силовых цепях | QF |
Автоматический выключатель в цепях управления | SF |
Автоматический выключатель с дифференциальной защитой (дифавтомат) | QFD |
Выключатель нагрузки (рубильник) | QS |
Устройство защитного отключения (УЗО) | QSD |
Контактор | KM |
Тепловое реле | F, KK |
Реле времени | KT |
Реле напряжения | KV |
Фотореле | KL |
Импульсное реле | KI |
Разрядник, ОПН | FV |
Плавкий предохранитель | FU |
Трансформатор тока | TA |
Трансформатор напряжения | TV |
Частотный преобразователь | UZ |
Амперметр | PA |
Вольтметр | PV |
Ваттметр | PW |
Частотометр | PF |
Счетчик активной энергии | PI |
Счетчик реактивной энергии | PK |
Фотоэлемент | BL |
Нагревательный элемент | EK |
Лампа осветительная | EL |
Прибор световой индикации (лампочка) | HL |
Штепсельный разъем (розетка) | XS |
Выключатель или переключатель в цепях управления | SA |
Выключатель кнопочный в цепях управления | SB |
Клеммы | XT |
Изображение электрооборудования на планах
Хотя ГОСТ 2.701-2008 и ГОСТ 2.702-2011 предусматривают вид электрической схемы «схема расположения», при проектировании зданий и сооружений следует руководствоваться ГОСТ 21.210-2014 «СПДС. Изображения условные графические электрооборудования и проводок на планах». Данный ГОСТ устанавливает условные обозначения электропроводок, прокладок шин, шинопроводов, кабельных линий, электрического оборудования (трансформаторов, электрических щитов, розеток, выключателей, светильников) на планах прокладки электрических сетей.
Эти условные обозначения применяются при выполнении чертежей электроснабжения, силового электрооборудования, электрического освещения и других чертежей. Также данные обозначения используются для изображении потребителей в однолинейных принципиальных схемах электрических щитов.
Условные графические изображения электрооборудования, электротехнических устройств и электроприемников
Условные графические обозначения линий проводок и токопроводов
К сожалению, AutoCAD в базовой поставке не содержит все необходимые типы линий.
Проектировщики решают эту проблему по-разному:
- большинство выполняет отрисовку проводки обычной линией, а потом дополняет обозначениями кружков, квадратиков и пр.;
- продвинутые пользователи AutoCAD создают собственные типы линий.
Я — сторонник второго способа, т.к. он гораздо удобнее. Если вы используете специальный тип линии, то при её перемещении все «дополнительные» обозначения также перемещаются, ведь они часть линии.
Создать собственный тип линии в AutoCAD достаточно просто. Вы потратите некоторое время на освоение этого навыка, зато сэкономите потом массу времени при проектировании.
Изображение вертикальной прокладки удобнее всего сделать при помощи блоков AutoCAD, а лучше при помощи динамических блоков.
Условные графические изображения шин и шинопроводов
Отрисовку шин и шинопроводов в AutoCAD удобно выполнять при помощи полилинии и/или динамических блоков.
Условные графические изображения коробок, шкафов, щитов и пультов
Наименование | Изображение |
Коробка ответвительная | |
Коробка вводная | |
Коробка протяжная, ящик протяжной | |
Коробка, ящик с зажимами | |
Шкаф распределительный | |
Щиток групповой рабочего освещения | |
Щиток групповой аварийного освещения | |
Щиток лабораторный | |
Ящик с аппаратурой | |
Ящик управления | |
Шкаф, панель, пульт, щиток одностороннего обслуживания, пост местного управления | |
Шкаф, панель двухстороннего обслуживания | |
Шкаф, щит, пульт из нескольких панелей одностороннего обслуживания | |
Шкаф, щит, пульт из нескольких панелей двухстороннего обслуживания | |
Щит открытый | |
Ящик трансформаторный понижающий (ЯТП) |
Отрисовку в AutoCAD удобно выполнять при помощи блоков и динамических блоков.
Условные графические обозначения выключателей, переключателей
ГОСТ 21.210-2014 не предусматривает условных изображения для светорегуляторов (диммеров) и отдельного изображения для кнопочных выключателей, поэтому я ввёл для них собственные обозначения в соответствии с п.4.7.
Отрисовку в AutoCAD удобно выполнять при помощи динамических блоков. Я себе сделал один динамический блок для всех типов выключателей.
Условные графические обозначения штепсельных розеток
Отрисовку в AutoCAD удобно выполнять при помощи динамических блоков. Я себе сделал один динамический блок для всех типов розеток.
Условные графические обозначения светильников и прожекторов
Радует, что в обновленной версии ГОСТ добавлены изображения светодиодных светильников и светильников с компактными люминесцентными лампами.
Отрисовку светильников в AutoCAD удобно выполнять при помощи динамических блоков.
Условные графические обозначения аппаратов контроля и управления
Отрисовку в AutoCAD удобно выполнять при помощи динамических блоков.
Подпишитесь и получайте уведомления о новых статьях на e-mail
Обзор контактов реле времени — Help for engineer
Обзор контактов реле времени
Реле времени – это электрический аппарат, который предназначен для обеспечения выдержки времени, а также для срабатывания элементов схемы в определенном порядке. Применяются, если необходимо автоматическое управление контактами с определенной задержкой времени на включение/выключение после появления или исчезновения управляющего сигнала.
В зависимости от применения, реле времени исполняются двух типов:
— реле задержки на включение; | ||
— реле задержки на выключение. |
Как легко запомнить обозначения их контактов? Для этого предлагаем один способ, назовем его метод «давления пальца». Рассмотрим на примере:
На рисунке 1 изображен нормально разомкнутый контакт с задержкой включения.
Дужку сверху контакта можно представить как выемку для пальца: таким образом давление пальца будет производится в направлении стрелки, то есть данный контакт мгновенно замкнется (усилие пальца будет этому способствовать), а вот разомкнется с определенной выдержкой времени.
Рисунок 1 – Использование метода «давления пальца» на контакте с задержкой выключения
На рисунке 2 изображен нормально разомкнутый контакт, все по аналогии можно применить и к этому случаю. Здесь усилие пальца противостоит замыканию контакта. Соответственно обеспечивается задержка времени на включение, а вот размыкание происходит мгновенно.
Рисунок 2 – Использование метода «давления пальца» на контакте с задержкой включения
Именно эти два типа контактов используются во временных реле. Для представления полной картины о разновидностях контактов обратите внимание на рисунки 3,4.
Действие задержки времени НР (нормально разомкнутого) контакта:
1) срабатывание; | ||
2) возвращение в исходное положение; | ||
3) при возвращении и срабатывании. |
Рисунок 3
Действие задержки времени НЗ (нормально замкнутого) контакта:
1) срабатывание; | ||
2) возвращение в исходное положение; | ||
3) при возвращении и срабатывании. |
Рисунок 4
Недостаточно прав для комментирования
Реле времени — назначение, схема и принцип работы, классификация
Жизнь современного человека насыщена электрическими приборами. Они дают нам необходимые свет и тепло, доносят информацию, существенно облегают выполнение множества повседневных бытовых задач, помогают в строительстве, ремонте, при работе на садовом участке. Без них не обходится ни выполнение домашних лечебно-оздоровительных процедур, ни организация семейного досуга. Естественно, вся эта техника требует соответствующего бережного отношения и умения обращаться с ней. Но и в этом вопросе научно-технический прогресс приходит на помощь человеку.
Для рациональной, экономичной эксплуатации электрических приборов широко используются автоматизированные системы управления. Они способны выполнять массу полезных функций, и в том числе — позволяют включать или выключать устройства именно тогда, когда это требуется, по заданным хозяевами алгоритмам.
Реле времениСовременные системы управления порой поражают широтой своей функциональности. Но иногда бывает достаточно и более простых в устройстве и эксплуатации приборов автоматизации. Так, одним из примеров несложных устройств автоматического управления, кстати, внедренных в быт человека уже довольно давно, является реле времени. Что это такое, для чего оно может использоваться, какие существуют разновидности и по какому принципу они работают – обо всем этом в настоящей публикации.
Что такое реле времени?Надо полагать, что читатель этой статьи — не специалист в вопросах электротехники, а лишь пытливый пользователь, старающийся расширить свой кругозор и применить полученную информацию в повседневной жизни. Поэтому для начала будет полезно вспомнить, что же скрывается под общим термином «реле»?
Не будем приводить длинную «научную» формулировку этого понятия – она может быть не вполне понятна начинающему. А если говорить простыми словами, то реле – это электромеханическое или электронное устройство, которое производит коммутацию (соединение или разрыв) электрической цепи при получении внешнего управляющего сигнала. Если точнее, то срабатывание происходит, когда внешнее воздействие достигает какой-то заданной величины.
Первые реле были изобретены, изготовлены и применены еще в середине XIX века – они стали незаменимым компонентом аппаратов бурно развивающейся в те времена телеграфной связи. С тех пор, безусловно, эти устройства прошли длинный путь доработок и усовершенствований, повысилась их надежность, появились новые типы, способные работать в самых разных условиях эксплуатации. Но принцип остался неизменным – внешнее управляющее воздействие руководит замыканием, размыканием или переключением электрических цепей.
На схеме очень наглядно показан основной принцип работы электромеханического реле. Ну а количество контактов и схема их переключения при срабатывании устройства далеко не ограничивается этими двумя примерами.По большей части реле управляются электрическими сигналами – когда показатели силы тока или напряжения достигают определенной величины. Но, кстати, управляющее воздействие вовсе не обязательно является электрическим. Существуют реле, срабатывание которых вызывается изменением давления в трубопроводе, температуры окружающей среды, освещенности объекта и другие. Все это открывает очень широкие возможности автоматизации и обеспечения безопасности эксплуатации разнообразной электрической техники.
Реле давления – в бытовых условиях обычно ставится в цепи питания насосного оборудования, что позволяет автоматизировать работу систем автономного водоснабжения или отопления.Можно добавить, что в наше время наряду с электромеханическими реле все шире используются «твердотельные» — электронные ключи, в которых переключение контактов происходит за свет использования каскадов полупроводниковых элементов или интегральных микросхем.
Теперь – к вопросу о том, что же такое реле времени.
А подсказка кроется в самом названии. Это в принципе такое же реле, но срабатывание которого происходит с определенной задержкой после подачи (или снятия) управляющего сигнала. Или же коммутация цепей производится с определенным алгоритмом по времени.
Такие устройства нашли очень широкое применение в автоматизации промышленного оборудования. Но их широко используют и в бытовых условиях. Например, на них можно переложить часть забот по управлению осветительными приборами, климатическим оборудованием или системами вентиляции, с получением весьма впечатляющего эффекта экономии электроэнергии. Появляется возможность производить в заданное время необходимые действия с бытовыми электрическими приборами даже в отсутствие хозяев или без их вмешательства. Одним словом, реле времени способны значительно упростить жизнь владельцам дома.
Электромеханическое аналоговое реле времени в корпусе под установку на стандартную DIN-рейку. Даже внешне некоторые приборы такого предназначения напоминают обычные часы.Это была, так сказать, общая информация. А теперь перейдем к более пристальному рассмотрению разнообразия этих устройств и алгоритмов их работы.
Алгоритмы работы реле времени, функциональные диаграммы, условные обозначенияПо каким алгоритмам могут работать реле времениВыше уже упоминалось, что любые реле могут работать на замыкание, размыкание и переключение контактов при необходимом управляющем воздействии. А в реле времени предусматривается или пауза после такого воздействия, или даже соблюдение определенной цикличности срабатывания.
Различают немало алгоритмов работы реле времени. Ниже на схемах будут рассмотрены наиболее часто применяемые.
На схемах верхним графиком (голубого цвета) показывается напряжение питания, подаваемое на реле. Нижний график – выходное напряжение, идущее от реле на исполнительное устройство (на нагрузку). Красными стрелками показываются диапазоны установленной задержки срабатывания.
Еще одно замечание. Управляющие сигналы для реле могут подаваться по разному.
— Это может быть общее напряжение питание, подаваемое на прибор. Такие реле так и называется – с управлением по питанию.
— Для управления используется отдельная цепь подачи внешнего сигнала.
На приведенных ниже схемах, просто для более понятного восприятия, будут в основном показаны (за одним исключением) алгоритмы для реле с управлением по питанию. Но и для второго варианта они, в принципе, такие же.
Алгоритм 1
Схема алгоритма №1Реле времени с задержкой включения. После включения питания выходной сигнал будет передан на нагрузку по истечении установленной паузы Т.
Алгоритм 2
Схема алгоритма №2Выходной сигнал в данном варианте передается на нагрузку сразу после включения питания. Но через установленный интервал Т – прерывается.
Алгоритм 3
Схема алгоритма №3Включение нагрузки происходит одновременно с подачей общего питания. Но выключение производится после выдержки паузы Т с момента снятия напряжения питания реле.
Алгоритм 4
Схема алгоритма №4Цикличная работа реле времени, с паузой на старте. После подачи напряжения питания выходной сигнал на нагрузку появляется через интервал Т1. Этот сигнал выдерживается в течение определенного установленного интервала Т2. Затем происходит размыкание, с повторной паузой Т1, после чего вновь включение нагрузки на время Т2 — и так далее до полного снятия напряжения питания.
Алгоритм 5
Схема алгоритма №5Один из вариантов с постоянно подключенным питанием и управлением с помощью внешнего сигнала. При подаче управляющего импульса (или, наоборот, при его снятии – показано высветленным цветом и пунктиром) срабатывает реле и коммутирует питание на нагрузку. Питание подается в течение установленного периода Т1, после чего автоматически отключается, до поступления очередного управляющего импульса.
Эти алгоритмы можно назвать базовыми. А уже из них, как из «кирпичиков», могут выстраиваться куда более сложные схемы, реализованные в реле различных конструкций и моделей.
Одна из самых важных характеристик реле времени – функциональная диаграммаКстати, показанные выше графические схемы имеют название функциональных диаграмм реле, и обычно указываются на корпусе прибора или в его технической документации. То есть при выборе требуемого изделия для определенных нужд, умея читать такие диаграммы, можно отыскать подходящую модель.
Ниже на двух иллюстрациях будет продемонстрировано многообразие функциональных диаграмм реле времени, предлагаемых в продаже. Это показывается лишь в качестве примера, так как на самом деле выбор может быть намного шире. Обратите внимание и на то, что некоторые реле могут иметь несколько выходов на нагрузку, а также несколько каналов получения внешнего управляющего сигнала.
Примеры функциональных диаграмм реле времени с управлением по питанию.
Функциональные диаграммы реле времени – таблица АПримеры функциональных диаграмм реле времени с управлением внешним сигналом.
Функциональные диаграммы реле времени – таблица БЗначения временных интервалов Т, Т1, Т2 и т.д. чаще всего имеет возможность устанавливать пользователь. Правда, существуют модели реле времени, в которых время срабатывания уже предустановлено и изменению не подлежит. Но это приборы специального предназначения, обычно устанавливаемые в схемах защит электрических приборов и установок. Естественно, величина задержки в таком случае указывается в техническом описании изделия.
В одном реле времени может быть реализовано несколько алгоритмов его работы, с возможностью выбора. А функциональные диаграммы и схемы контактов обычно изображены на корпусе изделия.Обозначения контактов реле времени на схемахПри выборе реле времени необходимо уметь разбираться не только в функциональной диаграмме, но и в схеме расположения контактов. Обычно встречаются вот такие принятые обозначения:
А. Контакты, работающие на размыкание цепи.
Условные обозначения контактор реле времени, работающих на размыкание1 — дуга обращена вниз: задержка срабатывания после подачи управляющего напряжения;
2 — дуга обращена вниз: задержка срабатывания после снятия управляющего напряжения;
3 — две противоположно направленные дуги: задержки и при подаче управляющего напряжения, и при его снятии.
Б. Контакты, работающие на замыкание цепи.
Условные обозначения контактор реле времени, работающих на замыканиеУсловия срабатывания, понятно, можно не расписывать – они такие же, как в предыдущем примере.
Разновидности реле времени Типы реле времени по общему конструктивному исполнениюИтак, выяснили, что переключение контактов в реле времени производится с определенной задержкой после подачи или снятия питающего или управляющего напряжения. Но прежде чем перейти к рассмотрению самих устройств, обеспечивающих работу по заданному алгоритму, заметим, что реле времени по своей компоновке или общему исполнению можно разделить на несколько типов.
- Моноблочные реле времени. Это – совершенно независимые приборы с собственным корпусом, встроенным питанием или устройством для подключения питания, с выходом, к которому можно подключать стороннюю бытовую или иную технику. Такое реле можно устанавливать в практически в любом месте по необходимости, и подключать к нему тот прибор (систему) который требует подобного управления по времени. Классическим примером может служить реле времени, с которым хорошо знакомы те, кто занимался печатью фотографий.
К приборам более широкого использования можно отнести современные реле времени (таймеры) которые останавливаются в розетку и имеют гнездо для подключения сетевой вилки нагрузки. Самый простейший пример использования – можно с вечера запрограммировать, чтобы к утреннему подъему хозяев в электрическом чайнике была вскипячена вода.
Реле времени (или таймеры), подключаемые в розетку и сами становящиеся «управляемой розеткой» для подключенного к ним электрического прибора. Как видно, могут быть электромеханическими и электронными.- Встраиваемые реле времени. Они не имеют собственного корпуса, являются одним из узлов электрического прибора (или предназначены для такой установки), и автономно, как правило, не применяются. Классический пример такого реле времени – это механический или электронный таймер, руководящий режимами работы стиральной машины, микроволновки, электрической духовки и т.п.
Такие реле могут быть электромеханическими, имеющими блочное исполнение. Другой вариант – это реле электронного типа, собранное на печатной плате, которая коммутируется с общей схемой того или иного электрического прибора.
Электронное реле времени, выполненное в виде монтажной сборки на печатной плате- Модульные реле времени. Как понятно уже из названия, такие приборы имеют стандартизированные размеры и предназначаются для установки на DIN-рейку распределительного щита. Там же, в щите, производится и из стационарное подключение к источнику питания и нагрузке, работой которой они будут управлять. Например, таким образом можно подключить системы освещения, которые будут работать по определенному алгоритму времени, мощные приборы отопления, скажем, с тем расчетом, чтобы их основное функционирование приходилось на часы действия льготного тарифа, вентиляционные установки для обеспечения заданной периодичности проветривания и т.п. Возможно их использование и с другими крупными бытовыми приборами, если те в своей конструкции не имеют собственного встроенного таймера.
Несмотря на единообразие размеров, модульные реле времени могут значительно различаться набором возможностей, количеством каналов и программируемых интервалов. В зависимости от степени сложности и, отчасти, от допустимой мощности подключаемого к ним оборудования, такие реле могут занимать одно, два, три и даже больше модуль-мест на DIN-рейке распределительного щита.
Такое электронное реле времени с возможностью настройки суточного цикла работы займет на DIN-рейке три модуль-местаУдобно – места такие приборы занимают совсем немного, находятся не на виду, детям недоступны. Многие позволяют задавать суточный, недельный месячный или даже годовой алгоритм работы, то есть не требуют частого вмешательства в управление. Но если и возникнет нужда внести корректировки, то удобное расположение реле времени на рейке, с расположением всех органов управления на фасадной панели, позволит это сделать безо всякого труда.
Типы реле времени по принципу работыТеперь стоит разобраться, что за механизмы обеспечивают задание необходимого временного интервала. По этому критерию реле времени можно подразделить на несколько типов – это электромагнитные приборы, устройства с пневматическим или гидравлическим замедлителем, моторные, реле с механическим часовым механизмом и электронные.
Цены на реле времени CRM
реле времени CRM
Рассмотрим их вкратце в перечисленном порядке
Электромагнитные реле времениОни обычно применяются в каскадах пуска и остановки мощного оборудования – позволяют несколько разнести по времени запуск отдельных узлов (механизмов) во избежание резких скачков нагрузки на линию питания.
Принцип работы узла замедления срабатывания заключается в следующем. Конструктивно реле представляет собой электромагнитную катушку. Перемещение притягиваемого к сердечнику катушки якоря передается на механизм замыкания-размыкания контактов. Но на общий сердечник с катушкой надета гильза (чаще всего – медная), которая становится дополнительным короткозамкнутым контуром.
Принцип устройства электромагнитного реле времениПри подаче напряжения питания на катушку в этой дополнительной «обмотке» наводится ЭДС, создающая ток с таким направлением, что он получается в «противоходе» току в основной катушке. То есть своеобразно «гасит» скорость нарастания напряженности электромагнитного поля, необходимого для притягивания якоря реле. И в итоге срабатывание контактной группы происходит не мгновенно при включении питания, а с задержкой, длительность которой можно регулировать уровнем пожатия пружины якоря. Диапазон задержки обычно лежит в пределах о 0,07 до 0,15 секунд.
«Классический» пример электромагнитного реле времени – используемая в цепях питания мощного оборудования модель РЭВ 812При выключении питания происходит обратная картина – за свет наличия дополнительной обмотки-гильзы наблюдается своеобразный эффект «инерции», и размыкание контактов тоже происходит с задержкой. Она может составлять от 0,5 до 1,5÷2 секунд.
Пневматические или гидравлические реле времени.Вряд ли с ними придется иметь дело в бытовых условиях – они тоже ставились только на мощное обрабатывающее оборудование. Но с механизмом замедления познакомиться все же будет интересно, потому как он имеет довольно оригинальную конструкцию.
Реле времени РВП 72-3221 с пневматическим замедлителем срабатыванияКонструктивно такие реле обязательно включают камеру с диафрагмой, в которую упирается подвижный узел (колодка), вызывающая переключение контактов. При снятии напряжения с обмотки катушки колодка освобождается и под действием пружины начинает перемещаться. Но движение колодки тормозится диафрагмой — до выхода воздуха из пневмокамеры. А скорость выпуска воздуха зависит от сечения отверстия, которое, в свою очередь, регулируется специальной иглой.
Регулировки интервала замедления срабатывания могут проводиться в достаточно широком диапазоне и с высокой степенью точности.
Помимо пневматических, существуют и гидравлические замедлители, в которых через регулируемое отверстие между камерами перепускается жидкость (например, трансформаторное масло). Но принцип срабатывания при этом не меняется.
Моторные реле времениТакие устройства тоже, похоже, уже становятся пережитками прошлого, хотя могут еще встречаться на старых образцах примышленного оборудования.
Принцип работы моторного реле времениХарактерная особенность таких приборов – это наличие, кроме присущей большинству реле катушки, еще и собственного электропривода. При включении питания оно подается и на катушку, и на электродвигатель, с которого вращение передаётся по системе зубчатых передач рабочим колесам. На этих колесах (имеющих градуировку по времени) есть специальные выступы, которые в определённый момент вызовут замыкание или размыкание контактов цепи питания катушки. Ну а включение или выключение питания на обмотке катушки, в свою очередь, обеспечивает необходимую коммутацию подключенных к реле времени силовых линий.
Цены на реле времени Feron
реле времени Feron
Время срабатывания устанавливается начальным положением рабочего колеса. Кстати, в одном реле таких колес может быть и несколько, что позволяет организовывать довольно сложные алгоритмы управления подключенной нагрузкой.
Моторное реле времени ВС-33Реле времени с анкерным (часовым) механизмомСамый простой и очень наглядный пример аналога подобных реле времени – это обычные настольные часы с будильником, работающие от батарейки. Время срабатывания устанавливается отдельной специальной стрелкой. И когда часовая стрелка сравняется с ней – произойдет замыкание контакта, и питание будет подано на генератор звукового сигнала.
Безусловно, сами реле времени устроены несколько сложнее, да и нагрузка к ним подключается куда более мощная, чем миниатюрный биппер. Но принцип действия – очень схожий. Механизм отсчета времени – практически полная аналогия с обычными часами. В некоторых реле старых образцов – даже пружина заводится вручную, по мере необходимости. В других – завод осуществляется автоматически при включении питания за сет перемещения электромагнитного якоря.
Реле времени с часовым механизмом РВ 235 УХЛ4. С производства давно сняты, но у некоторых хозяев продолжают верно служитьРеле с часовым механизмом в продаже представлены в широком разнообразии. Большой популярностью у пользователей пользуются модели с циферблатом, разделенным на 24 часа, а каждый час делится еще обычно на четыре отрезка по 15 минут. Каждому такому минимальному интервалу соответствует подвижный сектор (штырек, рычажок, в зависимости от модели).
При подключении реле к сети циферблат начинает вращаться с угловой скоростью один оборот в сутки. На циферблате выставляется текущее астрономическое время. Ну а затем несложно запрограммировать алгоритм срабатывания реле – нажатием (откидыванием или иным перемещением) подвижных секторов, соответствующих тем периодам времени, когда питание на нагрузку должно быть включено.
Программирование алгоритма срабатывания такого реле времени – несложное и интуитивно понятноеПодобные реле времени выпускаются в модульном или моноблочном исполнении, то есть или устанавливаются в распределительном шкафу, или напрямую подключатся в розетку. Невысокая стоимость и простота в эксплуатации снискали им широкую популярность. Точность выставления диапазона и срабатывания реле, безусловно, нельзя назвать высокой (минимальная градация в 15 минут), но для большинства бытовых приборов этого бывает вполне достаточно.
Ну а если требуются более точные настройки, вплоть до секундной градации, то лучше всего сразу приобрести электронное реле времени.
Электронные реле времениУзнайте, как подключить розетку, а также ознакомьтесь с пошаговыми примерами правильного подключения провода к розетке.
Электронные реле времени в настоящее время все активнее вытесняют своих электромеханических «собратьев». Это понятно – привлекает высокая точность срабатывания, возможности программирования на длительный период: на неделю месяц и даже более, с учетом чередования выходных и праздничных дней, смены сезона, других факторов, влияющих на предполагаемый режим работы подключенных к реле электроприборов.
Электронное реле времени с богатым набором возможностей программирования алгоритма управления подключенными электрическими приборами или системамиВ этой категории тоже есть свое подразделение по технологии отсчета времени срабатывания. Углубляться в тему не будем – этот вопрос, скорее, интересен специалистам-электронщикам.
Можно лишь вкратце пояснить, что самые простые электронные реле отсчитывают время с помощью RC-цепочек (резистор + конденсатор). Время зарядки конденсатора зависит от номинала самого конденсатора и включенного с ним в цепь резистора. То есть это легко просчитывается, и плавным изменением номиналов элементов схемы или сменой цепочек (в некоторых реле их несколько) можно установить нужный интервал задержки срабатывания.
Более сложные реле времени оснащены специальными микросхемами или каскадом полупроводниковых приборов, обеспечивающих необходимую задержку по времени. Ну а самые современные на сегодняшний день имеют микропроцессорные блоки и кварцевые генераторы опорной частоты. Так что отсчёт времени в них происходит с максимальной точностью, а энергонезависимая память позволяет проводить программирование алгоритма работы.
Электронное реле времени модульного исполнения с аналоговой настройкой параметров работы. Сравнительно недорого и очень часто – вполне достаточно.Ассортимент электронных реле времени – очень широк. Вполне можно приобрести относительно недорогую модель с аналоговой настройкой параметров и обеспечивающее простейшие операции включения-выключения силовой линии с требуемой задержкой или по определённому алгоритму. Часто для реализации задуманной автоматизации того или иного процесса и такого прибора бывает вполне достаточно. Более совершенные реле времени оснащаются цифровыми жидкокристаллическими дисплеями и кнопочной (сенсорной) системой управления с точностью выставления параметров буквально до долей секунды. Удобно, но и стоимость, безусловно, растет пропорционально.
Можно еще добавить, что электронные реле времени могут выпускаться в любом из исполнений – как отдельные приборы-моноблоки (например – опять же, вариант «розетка с таймером»), в виде плат или блоков для установки в оборудование, или в модульной компоновке для размещения на DIN-рейке.
Видео: Пример использования электронного реле времени KEMOT URZ2001-1* * * * * * *
К слову, немало «ломается копий» по поводу, как же правильнее называть подобные устройства – реле времени или таймерами. Приводятся доводы, что работа реле увязывается с астрономическим временем, а таймер лишь производит обратный отсчет заданного интервала. Или наоборот, что реле должно лишь обеспечивать задержку включения и выключения, а все что касается возможностей программирования (задания алгоритма работы) – это таймеры. Таким образом, утверждения прямо противоречат друг другу.
По мнению автора этой статьи, «граница» между этими типами приборов, если она и есть – весьма условная. И морочить себе голову тонкостями терминологии – вряд ли в данном случае имеет смысл. Главное – разобраться и суметь сформулировать: для чего вам требуется устройство управления и какими функциями оно должно обладать. И можете не сомневаться, что грамотный продавец-консультант прекрасно вас поймет и предложит оптимальную модель. А в паспорте у нее, кстати может быть указано и таймер, и реле времени. А нередко – и оба термина сразу, через тире или в скобках.
ГОСТ 2.756-76 ЕСКД. Обозначения условные графические в схемах. Воспринимающая часть электромеханических устройств
ГОСУДАРСТВЕННЫЕ СТАНДАРТЫ
Единая система конструкторской документации
ОБОЗНАЧЕНИЯ УСЛОВНЫЕ ГРАФИЧЕСКИЕ В СХЕМАХ
ВОСПРИНИМАЮЩАЯ ЧАСТЬ ЭЛЕКТРОМЕХАНИЧЕСКИХ УСТРОЙСТВ
ГОСТ 2.756-76
(CT СЭВ 712-77)
ИПК ИЗДАТЕЛЬСТВО СТАНДАРТОВ
Москва 1998
ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР
Единая система конструкторской документации ОБОЗНАЧЕНИЯ УСЛОВНЫЕ ГРАФИЧЕСКИЕ В СХЕМАХ. Unified system for design documentation. |
ГОСТ (CT СЭВ 712-77) Взамен |
Постановлением Государственного комитета стандартов Совета Министров СССР от 28 июля 1976 г. № 1824 срок введения установлен
с 01.01.78
* Переиздание (октябрь 1997 г.) с Изменением №1, утвержденным в июле 1980 г. (ИУС 11-80)
** В части п. 9 (обозначения обмоток реле, контакторов и магнитных пускателей).
*** В части подпункта 7 табл. 1 (обозначения обмотки электромагнита искателя).
*4 В части подпунктов 22, 23 таблицы (обозначения обмотки реле, контактора, магнитного пускателя, электромагнита, обмотки электромагнита искателя).
*5 Обозначения исполнительных частей (контактов) электромеханических устройств установлены в ГОСТ 2.755-87.
1. Настоящий стандарт устанавливает условные графические обозначения воспринимающих частей электромеханических устройств (электрических реле, у которых связь воспринимающей части с исполнительной осуществляется механически, а также магнитных пускателей, контакторов и электромагнитов) в схемах*5, выполняемых вручную или автоматизированным способом, изделий всех отраслей промышленности.
Стандарт соответствует CT СЭВ 712-77.
(Измененная редакция, Изм. № 1).
2. Обозначения воспринимающих частей электромеханических устройств должны соответствовать приведенным в табл. 1.
3. Размеры условных графических обозначений должны соответствовать приведенным в табл. 2.
Таблица 1
Наименование |
Обозначение |
1. Катушка электромеханического устройства. Общее обозначение Примечание. Выводы катушки допускается изображать с одной стороны прямоугольника |
|
2. Катушка электромеханического устройства с одной обмоткой. Примечание. Наклонную линию допускается не изображать, если нет необходимости подчеркнуть, что катушка с одной обмоткой |
|
3. Катушка электромеханического устройства с двумя обмотками Примечание. Допускается применять следующее обозначение |
|
4. Катушка электромеханического устройства с п обмотками |
|
Примечания к подпунктам 2-4: |
|
1. Около прямоугольника или в прямоугольнике допускается указывать величины, характеризующие обмотку, например, катушка с двумя обмотками, сопротивление каждой 200 Ом |
|
2. Если катушку электромеханического устройства с несколькими обмотками разносят на схеме, то каждую обмотку изображают следующим образом: |
|
катушка с двумя обмотками |
|
катушка с n обмотками |
|
5. Катушка электромеханического устройства с двумя встречными обмотками |
|
6. Катушка электромеханического устройства с двумя встречными одинаковыми обмотками (бифилярная обмотка) |
|
7. Катушка электромеханического устройства с одним отводом |
|
Примечание. Допускается применять следующее обозначение |
|
8. Катушка электромеханического устройства трехфазного тока |
|
9. Катушка электромеханического устройства с дополнительным графическим полем: |
|
с одним дополнительным графическим полем |
|
с двумя дополнительными графическими полями |
|
Примечания: |
|
1. Линию между двумя дополнительными графическими полями допускается опускать |
|
2. В дополнительном графическом поле указывают уточняющие данные электромеханического устройства, например, электромагнит переменного тока |
|
10. Катушка электромеханического устройства с указанием вида обмотки: обмотка тока |
|
обмотка напряжения |
|
обмотка максимального тока |
|
обмотка минимального напряжения |
|
Примечание к подпунктам 9, 10. При отсутствии дополнительной информации в основном поле допускается в этом поле указывать уточняющие данные, например, катушка электромеханического устройства с обмоткой минимального тока |
|
11. Катушка поляризованного электромеханического устройства |
|
Примечание. Допускается применять следующее обозначение |
|
12. Катушка электромеханического устройства, обладающая остаточным намагничиванием |
|
13. Катушка электромеханического устройства, имеющего механическую блокировку |
|
14. Катушка электромеханического устройства, работающего с ускорением при срабатывании |
|
15. Катушка электромеханического устройства, работающего с ускорением при срабатывании и отпускании |
|
16. Катушка электромеханического устройства, работающего с замедлением при срабатывании |
|
17. Катушка электромеханического устройства, работающего с замедлением при отпускании |
|
18. Катушка электромеханического устройства, работающего с замедлением при срабатывании и отпускании |
|
Примечание к подпунктам 14-18. Около условного графического обозначения допускается указывать временные характеристики электромеханического устройства 17, 18. (Измененная редакция, Изм. № 1). |
|
19. Катушка электромеханического устройства, нечувствительного к переменному току |
|
20. Катушка электромеханического устройства, работающего с механическим резонансом |
|
Примечание. Допускается около обозначения указывать резонансную частоту |
|
21. Воспринимающая часть электротеплового реле |
Таблица 2
Наименование |
Обозначение |
1. Катушка электромеханического устройства |
|
2. Катушка электромеханического устройства с одной обмоткой |
|
3. Катушка электромеханического устройства с двумя встречными обмотками |
|
4. Катушка электромеханического устройства с одним отводом |
|
5. Катушка электромеханического устройства: |
|
с одним дополнительным графическим полем |
|
с двумя дополнительными графическими полями |
|
6. Воспринимающая часть электротеплового реле |
Реле напряжения на однолинейной схеме
Это специализированный государственный стандарт по модульным аппаратам защиты, работа которых основана на действии реле, в котором для реле напряжения принято следующее схематическое обозначение:
Оно складывается из нескольких символов:
— Общий графический знак всех реле — прямоугольник
— Измеряемой величины – «U» Напряжения
— Знаков больше «>» и меньше «<», которые показывают диапазон работы
Для более полных, детальных электрических схем, стандартом допускается добавлять численные единицы диапазона регулировки при превышении/понижении которого устройство сработает.
В качестве примера, на изображении ниже, показан модульный аппарат, который срабатывает при превышении напряжения в сети выше 250 Вольт или понижении уровня меньше 180 Вольт.
Обозначение трехфазной модификации устройства , внешне немногим отличается от однофазного, а вот в принципе работы и подключения у них есть существенные различия.
В однофазной сети
Реле напряжения для однофазной сети само коммутирует фазный проводник. Пока параметры напряжения в сети находятся в допустимом диапазоне, контакты замкнуты и ток поступает к потребителям — электрическим розеткам, освещению и т.д. В случае, когда оно становится выше или ниже установленных величин, внутренним механизмом автоматически разрывается фазный проводник и потребители обесточиваются.
Однолинейная схема электрического щита с однофазным реле напряжения выглядит следующим образом:
В трехфазной сети
Трехфазное реле напряжения, чаще не разрывает фазы, которые контролирует, а лишь даёт сухой контакт – нормально замкнутый или разомкнутый и изменяет его состояние.
К этому сухому контакту подключаются управляющие проводники контактора (или пускателя), функция которого коммутировать или разъединять фазные провода, защищая систему от опасных перепадов напряжения.
Однолинейная схема электрощита с трехфазным реле контроля напряжения и управляемым ей контактором показана ниже:
Буквенное обозначение реле напряжения
Правильное буквенное обозначение, которыми маркируются реле напряжения – KV.
Об этом сказано в действующем ГОСТ 2.710-81 «Единая система конструкторской документации (ЕСКД). Обозначения буквенно-цифровые в электрических схемах» (ЧИТАТЬ В PDF) , где выделен персональный двухзначный код для них.
Мы не можем найти эту страницу
(* {{l10n_strings.REQUIRED_FIELD}})
{{l10n_strings.CREATE_NEW_COLLECTION}} *
{{l10n_strings.ADD_COLLECTION_DESCRIPTION}}
{{l10n_strings.COLLECTION_DESCRIPTION}} {{addToCollection.description.length}} / 500 {{l10n_strings.TAGS}} {{$ item}} {{l10n_strings.PRODUCTS}} {{l10n_strings.DRAG_TEXT}}{{l10n_strings.DRAG_TEXT_HELP}}
{{l10n_strings.ЯЗЫК}} {{$ select.selected.display}}{{article.content_lang.display}}
{{l10n_strings.AUTHOR}}{{l10n_strings.AUTHOR_TOOLTIP_TEXT}}
{{$ select.selected.display}} {{l10n_strings.CREATE_AND_ADD_TO_COLLECTION_MODAL_BUTTON}} {{l10n_strings.CREATE_A_COLLECTION_ERROR}}ANSI (IEEE) Защитное устройство, нумерация
Широко используемый стандарт США ANSI / IEEE C37.2 «Функциональные номера, сокращения и обозначения контактов устройств системы электроснабжения» посвящены нумерации и сокращению функций защитных устройств. Даже в тех частях мира, где преобладают стандарты IEC, использование нумерации ANSI для функций защитных устройств по-прежнему является обычным явлением.
Номера защитных устройств
Защитные реле обычно называют стандартными номерами устройств. Например, реле максимального тока с выдержкой времени обозначается устройством 51, а реле максимальной токовой защиты мгновенного действия — устройством 50.Многофункциональные реле имеют комбинации номеров устройств. Например, устройство 27/59 представляет собой комбинацию реле пониженного / повышенного напряжения. Для пояснения применения можно добавить буквы (87T для дифференциала трансформатора, 59G для перенапряжения на землю).
- 1 — Главный элемент
- 2 — Пусковое или замыкающее реле с выдержкой времени
- 3 — Проверяющее или блокировочное реле
- 4 — Главный контактор
- 5 — Устройство остановки
- 6 — Пусковой выключатель
- 7 — Скорость Реле изменения
- 8 — Устройство отключения управляющей мощности
- 9 — Устройство реверсирования
- 10 — Переключатель последовательности агрегатов
- 11 — Многофункциональное устройство
- 12 — Устройство превышения скорости
- 13 — Устройство синхронной скорости
- 14 — Пониженная скорость Устройство
- 15 — Устройство согласования скорости или частоты
- 16 — Устройство передачи данных
- 17 — Шунтирующий или разрядный переключатель
- 18 — Устройство ускорения или замедления
- 19 — Контактор перехода в рабочий режим
- 20 — С электрическим приводом Клапан
- 21 — Дистан ce Реле
- 22 — Автоматический выключатель выравнивателя
- 23 — Устройство контроля температуры
- 24 — Реле вольт на герц
- 25 — Устройство синхронизации или проверки синхронизма
- 26 — Тепловое устройство аппарата
- 27 — Реле минимального напряжения
- 28 — Датчик пламени
- 29 — Разделительный контактор или выключатель
- 30 — Реле сигнализатора
- 31 — Отдельное устройство возбуждения
- 32 — Реле направления мощности
- 33 — Позиционный переключатель
- 34 — Устройство главной последовательности
- 35 — Щетка- Рабочее устройство или устройство замыкания скользящего кольца
- 36 — Устройства полярности или поляризации напряжения
- 37 — Реле минимального тока или минимальной мощности
- 38 — Устройство защиты подшипника
- 39 — Монитор механического состояния
- 40 — Поле (избыточное / недостаточное возбуждение ) Реле
- 41 — F Автоматический выключатель ield
- 42 — Рабочий автоматический выключатель
- 43 — Устройство ручного переключения или переключения
- 44 — Пусковое реле последовательности агрегатов
- 45 — Монитор аномальных атмосферных условий
- 46 — Реле тока обратной фазы или фазового баланса
- 47 — Реле чередования фаз или фазового баланса
- 48 — Реле неполной последовательности
- 49 — Тепловое реле машины или трансформатора
- 50 — Реле мгновенной максимальной токовой защиты
- 51 — Реле максимальной токовой защиты с инверсной выдержкой времени переменного тока
- 52 — Цепь переменного тока Выключатель
- 53 — Реле возбудителя или генератора постоянного тока
- 54 — Устройство включения поворотного механизма
- 55 — Реле коэффициента мощности
- 56 — Реле полевого применения
- 57 — Устройство короткого замыкания или заземления
- 58 — Реле неисправности устранения неисправности
- 59 — Реле максимального напряжения 9 0024 60 — Реле баланса напряжения или тока
- 61 — Реле или датчик плотности
- 62 — Реле остановки или размыкания с выдержкой времени
- 63 — Реле давления
- 64 — Реле датчика заземления
- 65 — Регулятор
- 66 — Вырезание или пусковое устройство
- 67 — Направленное реле максимального тока по переменному току
- 68 — Блокирующее реле или реле «вне ступени»
- 69 — Разрешающее устройство контроля
- 70 — Реостат
- 71 — Реле уровня жидкости
- 72 — Цепь постоянного тока Выключатель
- 73 — Нагрузочный контактор
- 74 — Реле сигнализации
- 75 — Механизм изменения положения
- 76 — Реле максимального тока постоянного тока
- 77 — Устройство телеметрии
- 78 — Реле измерения угла поворота
- 79 — Повторное включение переменного тока Реле
- 80 — Реле протока
- 81 — Реле частоты
- 8 2 — Реле повторного включения постоянного тока
- 83 — Реле автоматического селективного управления или переключения
- 84 — Рабочий механизм
- 85 — Реле связи, несущей или контрольной проводки
- 86 — Реле блокировки
- 87 — Реле дифференциальной защиты
- 88 — Вспомогательный двигатель или мотор-генератор
- 89 — Сетевой выключатель
- 90 — Регулирующее устройство
- 91 — Реле направления напряжения
- 92 — Реле направления напряжения и мощности
- 93 — Контактор переключения поля
- 94 — Реле отключения или отключения
- 95–99 — Для конкретных приложений, где другие номера не подходят
* полное определение каждой функции см. В ANSI / IEEE C37.2 стандарт
Префиксы и суффиксы
Буквы и цифры могут использоваться в качестве префиксов или суффиксов к номерам функций устройства, чтобы обеспечить более конкретное определение функции. Однако префиксы и суффиксы следует использовать только тогда, когда они служат полезной цели.
Вспомогательные устройства
Действующие величины
Другие буквы суффикса
| Основное устройство
Основные части устройства
Контрольные положения устройств
|
Сравнение ANSI IEC
ANSI | IEC 60617 | Описание | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
21FL | FLOC | Устройство обнаружения неисправностей | ||||||||||||||
21G | Z < | Z < | Перевозбуждение | |||||||||||||
25 | SYNC | Проверка синхронизации | ||||||||||||||
27 | U < | Un dervoltage | ||||||||||||||
32 | P → | Реле направленной мощности 32P, P →, — активная мощность 32Q, Q → — реактивная мощность | ||||||||||||||
37 | I < | Ненаправленный | ||||||||||||||
40 | X < | Недовозбуждение | ||||||||||||||
46 | I 2 > | Отрицательная последовательность фаз | ||||||||||||||
47 | Защита последовательности напряжения U 2 30 9037-905 9037 | 48, 14, 66 | Is²t, n < | Контроль запуска двигателей | ||||||||||||
49F | I th > | Тепловая защита кабелей | ||||||||||||||
49M / 49G / 49T | 0 Трехфазная тепловая защита для машин M — двигатель, G — генераторы, T — трансформатор | |||||||||||||||
50N / 51N | I 0 > | Ненаправленное замыкание на землю | ||||||||||||||
51 | I > | Ненаправленная максимальная токовая нагрузка 51C, I> — шунтирующие конденсаторы 51V, I (U)> — в зависимости от напряжения | ||||||||||||||
59 | U> | Перенапряжение 59N, U0> — остаточное перенапряжение
Примечания: INDUSTRIAL CONTROLS — прикладное промышленное электричествоХотя может показаться странным раскрывать элементарную тему электрических переключателей на столь позднем этапе этой серии книг, я делаю это потому, что в следующих главах исследуется старая область цифровых технологий, основанная на контактах механического переключателя, а не на твердотельных затворах. схем, и тщательное понимание типов переключателей необходимо для предприятия.Изучение функций схем на основе переключателей одновременно с изучением полупроводниковых логических вентилей упрощает понимание обеих тем и создает основу для расширенного опыта обучения булевой алгебре, математике, лежащей в основе цифровых логических схем. Что такое электрический выключатель?Электрический выключатель — это любое устройство, используемое для прерывания потока электронов в цепи. Переключатели по сути являются бинарными устройствами: они либо полностью включены («замкнуты»), либо полностью выключены («разомкнуты»).Существует много разных типов переключателей, и в этой главе мы рассмотрим некоторые из них. Изучите различные типы переключателейСамый простой тип переключателя — это переключатель, в котором два электрических проводника приводят в контакт друг с другом за счет движения исполнительного механизма. Другие переключатели более сложны и содержат электронные схемы, которые могут включаться или выключаться в зависимости от какого-либо физического стимула (например, света или магнитного поля). В любом случае конечным выходом любого переключателя будет (как минимум) пара клемм для подключения проводов, которые будут либо соединены вместе внутренним контактным механизмом переключателя («замкнут»), либо не соединены вместе («разомкнуты»). .Любой переключатель, предназначенный для управления человеком, обычно называется ручным переключателем , и они производятся в нескольких вариантах: ТумблерыРисунок 9.1 ТумблерТумблеры приводятся в действие рычагом, находящимся под углом в одном из двух или более положений. Обычный выключатель света, используемый в бытовой электропроводке, является примером тумблера. Большинство тумблеров остановятся в любом из своих положений рычага, в то время как другие имеют внутренний пружинный механизм, возвращающий рычаг в определенное нормальное положение , что позволяет выполнять так называемое «мгновенное» действие. Кнопочные переключателиРисунок 9.2 Кнопочный переключательКнопочные переключатели — это двухпозиционные устройства, приводимые в действие нажатием и отпусканием кнопки. Большинство кнопочных переключателей имеют внутренний пружинный механизм, возвращающий кнопку в ее «отжатое» или «не нажатое» положение для кратковременного срабатывания. Некоторые кнопочные переключатели поочередно включаются или выключаются при каждом нажатии кнопки. Другие кнопочные переключатели будут оставаться в своем «нажатом» или «нажатом» положении до тех пор, пока кнопка не будет вытянута обратно.Этот последний тип кнопочных переключателей обычно имеет грибовидную кнопку для легкого нажатия и вытягивания. Селекторные переключателиРисунок 9.3 Селекторный переключательСелекторные переключатели приводятся в действие поворотной ручкой или каким-либо рычагом для выбора одного из двух или более положений. Как и тумблер, селекторные переключатели могут либо находиться в любом из своих положений, либо содержать механизмы с пружинным возвратом для мгновенного срабатывания. Джойстик-переключателиРисунок 9.4 Джойстик-переключательПереключатель-джойстик приводится в действие рычагом, который может свободно перемещаться по более чем одной оси движения.Один или несколько из нескольких переключающих контактных механизмов приводятся в действие в зависимости от того, в каком направлении нажимается рычаг, а иногда и от того, насколько на дальше он нажат. Обозначение из круга и точки на символе переключателя представляет направление движения рычага джойстика, необходимое для приведения в действие контакта. Ручные переключатели-джойстики обычно используются для управления краном и роботом. Некоторые переключатели специально разработаны для управления движением машины, а не рукой человека-оператора.Эти управляемые движением переключатели обычно называются концевыми выключателями , потому что они часто используются для ограничения движения машины путем отключения исполнительной мощности компонента, если он перемещается слишком далеко. Как и ручные выключатели, концевые выключатели бывают нескольких разновидностей: Концевые выключателиРисунок 9.5 Концевой выключатель рычажного приводаЭти концевые выключатели очень похожи на прочные тумблеры или ручные переключатели, оснащенные рычагом, нажимаемым деталью машины.Часто рычаги имеют небольшой роликовый подшипник, предотвращающий износ рычага при многократном контакте с деталью машины. Бесконтактные переключателиРисунок 9.6 Бесконтактный переключательБесконтактные переключатели распознают приближение металлической части машины с помощью магнитного или высокочастотного электромагнитного поля. Простые бесконтактные переключатели используют постоянный магнит для приведения в действие герметичного механизма переключения всякий раз, когда часть машины приближается (обычно на 1 дюйм или меньше).Более сложные бесконтактные переключатели работают как металлоискатель, запитывая катушку с проволокой высокочастотным током и электронным образом отслеживая величину этого тока. Если металлическая часть (не обязательно магнитная) подойдет достаточно близко к катушке, ток увеличится и отключит цепь контроля. Показанный здесь символ для бесконтактного переключателя относится к электронной разновидности, на что указывает ромбовидная рамка, окружающая переключатель. Для неэлектронного бесконтактного переключателя будет использоваться тот же символ, что и для концевого переключателя, приводимого в действие рычагом.Другой вид бесконтактного переключателя — это оптический переключатель, состоящий из источника света и фотоэлемента. Положение машины определяется либо по прерыванию, либо по отражению светового луча. Оптические переключатели также полезны в приложениях безопасности, где лучи света могут использоваться для обнаружения входа персонала в опасную зону. Различные типы переключателей процессаВо многих промышленных процессах необходимо контролировать различные физические величины с помощью переключателей. Такие переключатели могут использоваться для подачи сигналов тревоги, указывающих, что параметр процесса превысил нормальные параметры, или они могут использоваться для остановки процессов или оборудования, если эти переменные достигли опасного или разрушительного уровня.Существует много различных типов переключателей процесса. Переключатели скоростейРисунок 9.7 Переключатель скорости.Эти переключатели определяют скорость вращения вала либо с помощью механизма центробежного груза, установленного на валу, либо с помощью какого-либо вида бесконтактного обнаружения движения вала, такого как оптическое или магнитное. Реле давленияРисунок 9.8 Реле давления Давление газа или жидкости может быть использовано для приведения в действие механизма переключения, если это давление приложено к поршню, диафрагме или сильфону, который преобразует давление в механическую силу. Реле температурыРисунок 9.9 Температурный выключательНедорогим механизмом измерения температуры является «биметаллическая полоса»: тонкая полоска из двух металлов, соединенных спиной к спине, причем каждый металл имеет разную скорость теплового расширения. Когда полоса нагревается или охлаждается, разная скорость теплового расширения двух металлов вызывает ее изгиб. Затем изгиб полосы можно использовать для приведения в действие механизма переключающего контакта. В других реле температуры используется латунная колба, заполненная жидкостью или газом, с крошечной трубкой, соединяющей колбу с датчиком давления.Когда баллон нагревается, газ или жидкость расширяются, вызывая повышение давления, которое затем приводит в действие механизм переключения. Датчик уровня жидкостиРисунок 9.10 Реле уровня жидкости.Плавающий объект может использоваться для приведения в действие механизма переключения, когда уровень жидкости в резервуаре поднимается выше определенной точки. Если жидкость электропроводна, сама жидкость может использоваться в качестве проводника между двумя металлическими зондами, вставленными в резервуар на требуемой глубине.Метод проводимости обычно реализуется с помощью специальной конструкции реле, срабатывающего при небольшом токе, протекающем через проводящую жидкость. В большинстве случаев переключать полный ток нагрузки цепи через жидкость нецелесообразно и опасно. Реле уровня также могут быть разработаны для определения уровня твердых материалов, таких как древесная щепа, зерно, уголь или корм для животных, в силосе для хранения, бункере или бункере. Обычной конструкцией для этого применения является небольшое лопастное колесо, вставленное в бункер на желаемой высоте, которое медленно вращается небольшим электродвигателем.Когда твердый материал заполняет бункер на эту высоту, материал предотвращает вращение лопаточного колеса. Отклик крутящего момента маленького двигателя приводит к срабатыванию механизма переключения. В другой конструкции используется металлический стержень в форме «камертона», который вставляется в бункер снаружи на желаемой высоте. Вилка вибрирует на своей резонансной частоте с помощью электронной схемы и узла катушки магнита / электромагнита. Когда бункер заполняется на эту высоту, твердый материал гасит вибрацию вилки, изменение амплитуды и / или частоты вибрации, обнаруживаемое электронной схемой. Реле расхода жидкостиРисунок 9.11 Реле расхода жидкости.Установленное в трубу реле потока обнаруживает любой расход газа или жидкости, превышающий определенный порог, обычно с помощью небольшой лопасти или лопасти, которую толкает поток. Другие реле потока сконструированы как реле перепада давления, измеряющие падение давления на дросселе, встроенном в трубу. Ядерный датчик уровняРисунок 9.12 Ядерный переключатель уровня.Другим типом реле уровня, подходящим для обнаружения жидких или твердых материалов, является ядерный переключатель.Состоящие из радиоактивного исходного материала и детектора излучения, они установлены поперек диаметра емкости для хранения твердого или жидкого материала. Любая высота материала, превышающая уровень расположения источника / детектора, будет ослаблять силу излучения, достигающего детектора. Это уменьшение излучения на детекторе может быть использовано для запуска релейного механизма для обеспечения переключающего контакта для измерения, точки срабатывания сигнализации или даже контроля уровня в сосуде. Источник и детектор находятся вне судна, никакого проникновения, кроме самого радиационного потока.Используемые радиоактивные источники довольно слабые и не представляют непосредственной угрозы здоровью эксплуатационного или обслуживающего персонала. Все коммутаторы имеют несколько примененийКак обычно, существует несколько способов реализовать коммутатор для мониторинга физического процесса или для управления оператором. Обычно не существует единого «идеального» переключателя для любого приложения, хотя некоторые из них, очевидно, обладают определенными преимуществами перед другими. Для обеспечения эффективной и надежной работы переключатели должны быть разумно адаптированы к задаче.
Переключатель может быть сконструирован с любым механизмом, приводящим два проводника в управляемый контакт друг с другом.Это может быть так же просто, как позволить двум медным проводам соприкасаться друг с другом движением рычага или путем непосредственного соприкосновения двух металлических полос. Однако хорошая конструкция переключателя должна быть прочной и надежной и не подвергать оператора опасности поражения электрическим током. Поэтому конструкции промышленных переключателей редко бывают такими примитивными. Проводящие части переключателя, используемые для включения и отключения электрического соединения, называются контактами , контактами . Контакты обычно изготавливаются из серебра или сплава серебро-кадмий, проводящие свойства которого существенно не ухудшаются из-за поверхностной коррозии или окисления.Золотые контакты демонстрируют лучшую коррозионную стойкость, но имеют ограниченную пропускную способность по току и могут «свариваться в холодном состоянии», если соединены вместе с большим механическим усилием. Независимо от выбора металла, контакты переключателя управляются механизмом, обеспечивающим квадратный и равномерный контакт, что обеспечивает максимальную надежность и минимальное сопротивление. Такие контакты могут быть сконструированы так, чтобы выдерживать очень большие количества электрического тока, в некоторых случаях до тысяч ампер. Факторы, ограничивающие допустимую нагрузку на контакт переключателя, следующие:
Одним из основных недостатков стандартных переключающих контактов является воздействие на контакты окружающей атмосферы. В красивой, чистой среде диспетчерской это обычно не проблема. Однако большинство промышленных сред не столь благоприятны. Присутствие в воздухе агрессивных химикатов может привести к разрушению контактов и преждевременному выходу из строя.Еще более неприятной является возможность регулярного контактного искрения, вызывающего возгорание легковоспламеняющихся или взрывоопасных химикатов. Когда существуют такие экологические проблемы, для небольших переключателей можно рассмотреть другие типы контактов. Эти другие типы контактов изолированы от контакта с наружным воздухом и поэтому не подвержены тем же проблемам воздействия, что и стандартные контакты. Распространенным типом выключателя с герметичным контактом является ртутный выключатель. Ртуть — металлический элемент, жидкий при комнатной температуре.Будучи металлом, он обладает прекрасными проводящими свойствами. Будучи жидкостью, его можно привести в контакт с металлическими зондами (чтобы замкнуть цепь) внутри герметичной камеры, просто наклонив камеру так, чтобы зонды находились на дне. Во многих промышленных переключателях используются небольшие стеклянные трубки, содержащие ртуть, которые наклоняются в одну сторону, чтобы замкнуть контакт, и в другую сторону, чтобы размыкаться. Помимо проблем, связанных с поломкой трубки и просыпанием ртути (которая является токсичным материалом), а также восприимчивостью к вибрации, эти устройства являются отличной альтернативой открытым контактам переключателя там, где есть проблемы с воздействием окружающей среды.Здесь ртутный переключатель (часто называемый переключателем наклона ) показан в открытом положении, где ртуть не контактирует с двумя металлическими контактами на другом конце стеклянной колбы: Рисунок 9.13 Рисунок 9.14Здесь тот же переключатель показан в закрытом положении. Теперь гравитация удерживает жидкую ртуть в контакте с двумя металлическими контактами, обеспечивая электрическую непрерывность от одного к другому: контакты ртутного переключателя непрактично строить в больших размерах, поэтому вы обычно найдете такие контакты, рассчитанные не более чем на несколько ампер. , и не более 120 вольт.Конечно, есть исключения, но это общие ограничения. Другой тип переключателя с герметичным контактом — это герконовый переключатель. Как и у ртутного переключателя, контакты геркона расположены внутри герметичной трубки. В отличие от ртутного переключателя, в котором в качестве контактной среды используется жидкий металл, герконовый переключатель представляет собой просто пару очень тонких магнитных металлических полос (отсюда и название «язычок»), которые контактируют друг с другом путем приложения сильного магнитного поля. вне герметичной трубки. Источником магнитного поля в переключателях этого типа обычно является постоянный магнит, перемещаемый ближе или дальше от трубки с помощью исполнительного механизма.Из-за небольшого размера язычков этот тип контакта обычно рассчитан на более низкие токи и напряжения, чем средний ртутный переключатель. Однако герконы обычно лучше справляются с вибрацией, чем ртутные контакты, потому что внутри трубки нет жидкости, вокруг которой можно было бы разбрызгиваться. Обычно номинальное напряжение и ток контактов переключателя общего назначения выше для любого данного переключателя или реле, если переключаемая электрическая мощность является переменным током, а не постоянным током. Причина этого — тенденция самозатухания дуги переменного тока через воздушный зазор.Поскольку ток в линии электропередачи 60 Гц фактически останавливается и меняет направление 120 раз в секунду, у ионизированного воздуха дуги есть много возможностей потерять температуру, достаточную для прекращения проведения тока, до такой степени, что дуга не возобновится в следующий раз. пиковое напряжение. Постоянный ток, с другой стороны, представляет собой непрерывный, непрерывный поток электронов, который имеет тенденцию лучше поддерживать дугу в воздушном зазоре. Следовательно, переключающие контакты любого типа подвержены большему износу при переключении заданного значения постоянного тока, чем при таком же значении переменного тока.Проблема переключения постоянного тока усугубляется, когда нагрузка имеет значительную индуктивность, поскольку при размыкании цепи на контактах переключателя возникают очень высокие напряжения (индуктор делает все возможное, чтобы поддерживать ток в цепи на том же уровне, что и при размыкании цепи). выключатель был замкнут). Как при переменном, так и при постоянном токе искрение контактов можно свести к минимуму, добавив «демпферную» цепь (конденсатор и резистор, соединенные последовательно) параллельно контакту, например: Рисунок 9.15Внезапное повышение напряжения на переключающем контакте, вызванное размыканием контактов, будет сдерживаться зарядным действием конденсатора (конденсатор противодействует увеличению напряжения за счет потребления тока). Резистор ограничивает количество тока, который конденсатор разряжает через контакт, когда он снова замыкается. Если бы резистора не было, конденсатор мог бы фактически сделать искрение во время замыкания контактов хуже, чем искрение во время размыкания контактов без конденсатора! Хотя это добавление к схеме помогает уменьшить контактную дугу, оно не лишено недостатков: основным соображением является возможность неисправной (закороченной) комбинации конденсатор / резистор, обеспечивающей постоянный путь для электронов, проходящих через цепь, даже когда контакт разомкнут и ток не желателен.Риск этого отказа и серьезность возникающих последствий необходимо учитывать в отношении повышенного износа контактов (и неизбежного выхода из строя контактов) без демпфирующей цепи. Использование демпферов в цепях переключателя постоянного тока не является чем-то новым: производители автомобилей годами делали это в системах зажигания двигателей, сводя к минимуму искрение через «точки» контакта переключателя в распределителе с помощью небольшого конденсатора, называемого конденсатором . Как вам скажет любой механик, срок службы «точек» дистрибьютора напрямую зависит от того, насколько хорошо работает конденсатор.При всем этом обсуждении уменьшения дугового разряда контактов переключателя можно было бы подумать, что меньший ток всегда лучше для механического переключателя. Однако это не обязательно так. Было обнаружено, что небольшое периодическое искрение может быть полезно для контактов переключателя, поскольку оно защищает контактные поверхности от небольшого количества грязи и коррозии. Если механический переключающий контакт работает со слишком малым током, контакты будут иметь тенденцию к накоплению чрезмерного сопротивления и могут преждевременно выйти из строя! Это минимальное количество электрического тока, необходимого для поддержания контакта механического переключателя в хорошем состоянии, называется током смачивания .Обычно номинальный ток смачивания переключателя намного ниже его максимального номинального тока и намного ниже его нормальной рабочей токовой нагрузки в правильно спроектированной системе. Однако есть приложения, в которых может потребоваться механический переключающий контакт для регулярной обработки токов ниже нормальных пределов тока смачивания (например, если механический селекторный переключатель должен размыкать или замыкать цифровую логическую или аналоговую электронную схему, где значение тока чрезвычайно мало. ). В таких случаях настоятельно рекомендуется использовать позолоченные переключающие контакты.Золото — «благородный» металл и не подвержен коррозии, как другие металлы. В результате такие контакты имеют чрезвычайно низкие требования к току смачивания. Обычные контакты из серебра или медного сплава не будут обеспечивать надежную работу при использовании в такой слаботочной среде!
Любой вид переключающего контакта может быть спроектирован так, что контакты «замыкаются» (обеспечивают непрерывность) при срабатывании или «размыкаются» (прерывают непрерывность) при срабатывании.Для переключателей, в которых есть механизм с пружинным возвратом, направление, в которое пружина возвращает его без приложения силы, называется нормальным положением . Следовательно, контакты, которые разомкнуты в этом положении, называются нормально разомкнутыми , а контакты, которые замкнуты в этом положении, называются нормально замкнутыми . Для переключателей процесса нормальное положение или состояние — это то, в котором переключатель находится, когда на него не влияет процесс. Простой способ выяснить нормальное состояние технологического коммутатора — это рассмотреть состояние коммутатора, когда он находится на полке хранения без установки.Вот несколько примеров «нормальных» условий переключения процесса:
Важно различать «нормальное» состояние коммутатора и его «нормальное» использование в рабочем процессе.Рассмотрим пример реле расхода жидкости, которое служит сигналом низкого расхода в системе охлаждающей воды. Нормальное или исправное состояние системы охлаждающей воды должно иметь довольно постоянный поток охлаждающей жидкости, проходящий через эту трубу. Если мы хотим, чтобы контакт реле потока замыкал в случае потери потока охлаждающей жидкости (например, для замыкания электрической цепи, которая активирует сирену аварийной сигнализации), мы хотели бы использовать реле потока с нормально закрытым а не нормально разомкнутые контакты.При достаточном потоке через трубу контакты переключателя размыкаются принудительно; когда расход падает до аномально низкого уровня, контакты возвращаются в нормальное (закрытое) состояние. Это сбивает с толку, если вы думаете о «нормальном» как о регулярном состоянии процесса, поэтому всегда думайте о «нормальном» состоянии переключателя как о том, что он находится на полке. Схема условных обозначений переключателей зависит от назначения и срабатывания переключателя. Нормально разомкнутый контакт переключателя нарисован таким образом, чтобы обозначать открытое соединение, готовое замкнуться при срабатывании.И наоборот, нормально замкнутый переключатель изображен как замкнутое соединение, которое будет разомкнуто при срабатывании. Обратите внимание на следующие символы: Рисунок 9.16 Кнопочный переключательСуществует также общая символика для любого контакта переключателя, использующая пару вертикальных линий для обозначения точек контакта в переключателе. Нормально разомкнутые контакты обозначаются линиями, не соприкасающимися с ними, а нормально замкнутые контакты обозначаются диагональной линией, соединяющей эти две линии. Сравните два: Рисунок 9.17 Общее обозначение переключающего контактаПереключатель слева замыкается при нажатии и размыкается в «нормальном» (не сработавшем) положении. Переключатель справа размыкается при нажатии и замыкается в «нормальном» (не сработавшем) положении. Если переключатели обозначены этими общими символами, тип переключателя обычно указывается в тексте непосредственно рядом с символом. Обратите внимание, что символ слева — , а не , чтобы его можно было спутать с символом конденсатора.Если конденсатор необходимо представить в схеме логики управления, он будет показан следующим образом: Рисунок 9.18 КонденсаторВ стандартной электронной символике приведенный выше рисунок зарезервирован для конденсаторов, чувствительных к полярности. В символах управляющей логики этот символ конденсатора используется для любого типа конденсатора , даже если конденсатор не чувствителен к полярности, чтобы четко отличить его от нормально разомкнутого контакта переключателя. При использовании многопозиционных селекторных переключателей необходимо учитывать еще один фактор конструкции: то есть последовательность разрыва старых соединений и создания новых соединений при перемещении переключателя из положения в положение, при этом подвижный контакт последовательно касается нескольких неподвижных контактов. Рисунок 9.19 Селекторный переключатель, показанный выше, переключает общий контактный рычаг в одно из пяти различных положений на контактные провода с номерами от 1 до 5. Наиболее распространенная конфигурация многопозиционного переключателя, подобного этому, — это когда контакт с одним положением разрывается с до происходит контакт со следующей позицией. Эта конфигурация называется перед включением . В качестве примера, если бы переключатель был установлен в положение номер 3 и медленно вращался по часовой стрелке, контактный рычаг переместился бы из положения номер 3, размыкая эту цепь, переместился бы в положение между номером 3 и номером 4 (оба контура цепи разомкнуты. ), а затем коснитесь позиции 4, замыкая эту цепь.Есть приложения, в которых недопустимо полностью разомкнуть цепь, подключенную к «общему» проводу, в любой момент времени. Для такого применения может быть сконструирована конструкция переключателя с переключением перед разрывом , в которой подвижный контактный рычаг фактически замыкает два положения контакта (между номером 3 и номером 4, в приведенном выше сценарии), когда он перемещается между положениями. . Компромисс здесь заключается в том, что схема должна допускать замыкания переключателя между соседними позиционными контактами (1 и 2, 2 и 3, 3 и 4, 4 и 5), когда ручка переключателя поворачивается из положения в положение.Такой переключатель показан здесь: Рисунок 9.20.Когда подвижный (е) контакт (ы) может быть приведен в одно из нескольких положений с неподвижными контактами, эти положения иногда называют бросками . Количество подвижных контактов иногда называют полюсов, . Оба переключателя, показанные выше, с одним подвижным контактом и пятью неподвижными контактами, будут обозначены как «однополюсные пятипозиционные» переключатели. Если два идентичных однополюсных пятипозиционных переключателя были механически соединены вместе так, чтобы они приводились в действие одним и тем же механизмом, вся сборка была бы названа «двухполюсным пятипозиционным переключателем»: Рисунок 9.21 годВот несколько распространенных конфигураций переключателей и их сокращенные обозначения: Рисунок 9.22 Двухполюсный, одноходовой Рисунок 9.23 Двухполюсный, двунаправленный Рисунок 9.24 Четырехполюсный, одноходовой
Электрический ток через проводник создает магнитное поле, перпендикулярное направлению потока электронов.Если этот проводник свернуть в форму катушки, создаваемое магнитное поле будет ориентировано по длине катушки. Чем больше ток, тем больше напряженность магнитного поля при прочих равных условиях: Рисунок 9.25 Рисунок 9.26 Рисунок 9.27Катушки индуктивности реагируют на изменения тока из-за энергии, хранящейся в этом магнитном поле. Когда мы строим трансформатор из двух катушек индуктивности вокруг общего железного сердечника, мы используем это поле для передачи энергии от одной катушки к другой.Однако есть более простые и прямые способы использования электромагнитных полей, чем те, которые мы видели с катушками индуктивности и трансформаторами. Магнитное поле, создаваемое катушкой с токоведущим проводом, можно использовать для приложения механической силы к любому магнитному объекту, точно так же, как мы можем использовать постоянный магнит для притяжения магнитных объектов, за исключением того, что этот магнит (образованный катушкой) может быть включается или выключается путем включения или выключения тока через катушку. Если мы поместим магнитный объект рядом с такой катушкой с целью заставить этот объект двигаться, когда мы запитываем катушку электрическим током, мы получим так называемый соленоид .Подвижный магнитный объект называется якорем , и большинство якорей можно перемещать с помощью постоянного (DC) или переменного тока (AC), питающего катушку. Полярность магнитного поля не имеет значения для притяжения железного якоря. Соленоиды могут использоваться для электрического открытия дверных защелок, открытия или закрытия клапанов, перемещения роботизированных конечностей и даже приведения в действие механизмов электрических переключателей. Однако, если для приведения в действие набора переключающих контактов используется соленоид, у нас есть настолько полезное устройство, что оно заслуживает собственного названия: реле .Реле чрезвычайно полезны, когда нам необходимо управлять большим током и / или напряжением с помощью слабого электрического сигнала. Катушка реле, которая создает магнитное поле, может потреблять лишь доли ватта мощности, в то время как контакты, замыкаемые или размыкаемые этим магнитным полем, могут передавать нагрузке в сотни раз больше энергии. Фактически, реле действует как двоичный (включенный или выключенный) усилитель. Как и в случае с транзисторами, способность реле управлять одним электрическим сигналом с помощью другого находит применение при построении логических функций.Более подробно эта тема будет рассмотрена в другом уроке. На данный момент будет исследована «усилительная» способность реле. На приведенной выше схеме катушка реле питается от источника низкого напряжения (12 В постоянного тока), а однополюсный однопозиционный (SPST) контакт прерывает высокий -цепь напряжения (480 В переменного тока). Вполне вероятно, что ток, необходимый для включения катушки реле, будет в сотни раз меньше номинального тока контакта. Типичные токи обмотки реле значительно ниже 1 А, в то время как номинальные характеристики контактов промышленных реле составляют не менее 10 А.Один узел катушка реле / якорь может использоваться для приведения в действие более чем одного набора контактов. Эти контакты могут быть нормально разомкнутыми, нормально замкнутыми или любой их комбинацией. Как и в случае с переключателями, «нормальным» состоянием контактов реле является то состояние, когда катушка обесточена, точно так же, как вы обнаружите реле, стоящее на полке, не подключенное к какой-либо цепи. Контакты реле могут быть открытыми площадками из металлического сплава, ртутными трубками или даже магнитными язычками, как и в других типах переключателей. Выбор контактов в реле зависит от тех же факторов, которые диктуют выбор контактов в других типах переключателей.Контакты на открытом воздухе лучше всего подходят для сильноточных приложений, но их склонность к коррозии и искрению может вызвать проблемы в некоторых промышленных средах. Ртутные и герконовые контакты не имеют искр и не подвержены коррозии, но их токопроводящая способность ограничена. Здесь показаны три небольших реле (около двух дюймов в высоту, каждое), установленных на панели как часть системы электрического управления на муниципальной водоочистной станции: показанные здесь блоки реле называются «восьмеричным», потому что они подключаются в соответствующие гнезда, электрические соединения закрепляются с помощью восьми металлических штифтов на дне реле.Винтовые клеммы, которые вы видите на фотографии, где провода подключаются к реле, на самом деле являются частью узла розетки, в который вставляется каждое реле. Такая конструкция облегчает снятие и замену реле в случае выхода из строя. Помимо способности позволить относительно небольшому электрическому сигналу переключать относительно большой электрический сигнал, реле также обеспечивают электрическую изоляцию между катушкой и контактными цепями. Это означает, что цепь катушки и цепь контактов электрически изолированы друг от друга.Одна цепь может быть постоянным током, а другая — переменным током (например, в примере схемы, показанной ранее), и / или они могут иметь совершенно разные уровни напряжения между соединениями или между соединениями и землей. Хотя реле по сути являются двоичными устройствами, полностью или полностью выключенными, существуют рабочие условия, при которых их состояние может быть неопределенным, как и в случае с полупроводниковыми логическими вентилями. Для того чтобы реле положительно «втягивало» якорь и приводило в действие контакт (ы), через катушку должен проходить определенный минимальный ток.Эта минимальная величина называется втягивающим током и аналогична минимальному входному напряжению, которое требуется логическому вентилю для обеспечения «высокого» состояния (обычно 2 В для TTL, 3,5 В для CMOS). Однако когда якорь подтягивается ближе к центру катушки, требуется меньший поток магнитного поля (меньший ток катушки), чтобы удерживать его там. Следовательно, ток катушки должен упасть ниже значения, значительно меньшего, чем ток втягивания, прежде чем якорь «выпадет» в подпружиненное положение и контакты вернутся в нормальное состояние.Этот уровень тока называется падающим током , и он аналогичен максимальному входному напряжению, которое вход логического элемента позволяет гарантировать «низкое» состояние (обычно 0,8 В для TTL, 1,5 В для CMOS). Гистерезис, или разница между токами включения и отключения, приводит к работе, аналогичной работе логического элемента триггера Шмитта. Токи включения и отключения (и напряжения) сильно различаются от реле к реле и указываются производителем.
Что такое реле с задержкой времени? Некоторые реле сконструированы с своеобразным механизмом «амортизатора», прикрепленным к якорю, который предотвращает немедленное полное движение, когда катушка находится под напряжением или обесточена.Это дополнение дает реле свойство срабатывания с задержкой по времени . Реле с выдержкой времени могут быть сконструированы так, чтобы задерживать движение якоря при включении катушки, отключении питания или и том и другом. Контакты реле с выдержкой времени должны быть указаны не только как нормально разомкнутые или нормально замкнутые, но и в зависимости от того, действует ли задержка в направлении закрытия или в направлении открытия. Ниже приводится описание четырех основных типов контактов реле с выдержкой времени. Нормально открытый, закрытый по времени контактВо-первых, у нас есть нормально открытый, закрытый по времени (NOTC) контакт.Этот тип контакта обычно разомкнут, когда катушка обесточена (обесточена). Контакт замыкается подачей питания на катушку реле, но только после того, как катушка непрерывно запитана в течение заданного времени. Другими словами, направление , направление движения контакта (закрытие или размыкание) идентично обычному замыкающему контакту, но есть задержка в направлении замыкания . Поскольку задержка происходит в направлении подачи питания на катушку, этот тип контакта также известен как нормально разомкнутый, на -задержка: Рисунок 9.28Ниже приведена временная диаграмма работы этого контакта реле: Рисунок 9.29Нормально открытый контакт с синхронизацией по времениДалее у нас есть нормально разомкнутый контакт с таймером открытия (NOTO). Как и контакт NOTC, этот тип контакта обычно разомкнут, когда катушка обесточена (обесточена), и замкнут при подаче питания на катушку реле. Однако, в отличие от контакта NOTC, синхронизирующее действие происходит при обесточивании катушки, а не при подаче напряжения.Поскольку задержка происходит в направлении обесточивания катушки, этот тип контакта также известен как нормально разомкнутый, выкл. -задержка: Рисунок 9.30Ниже приведена временная диаграмма работы этого контакта реле: Рисунок 9.31Нормально замкнутый контакт с синхронизацией открытияДалее у нас есть нормально-замкнутый, открывающийся по времени (NCTO) контакт. Этот тип контакта обычно замкнут, когда катушка обесточена (обесточена).Контакт размыкается при подаче питания на катушку реле, но только после того, как на катушку непрерывно подается питание в течение заданного времени. Другими словами, направление , направление движения контакта (закрытие или размыкание) идентично обычному размыкающему контакту, но есть задержка в направлении размыкания и направления. Поскольку задержка происходит в направлении подачи питания на катушку, этот тип контакта также известен как нормально замкнутый, на -задержка: Рисунок 9.32Ниже приведена временная диаграмма работы этого контакта реле: Рисунок 9.33Нормально закрытый, закрытый по времени контактНаконец, у нас есть нормально закрытый, закрытый по времени (NCTC) контакт. Как и контакт NCTO, этот тип контакта обычно замыкается, когда катушка обесточена (обесточена), и размыкается подачей питания на катушку реле. Однако, в отличие от контакта NCTO, синхронизирующее действие происходит при обесточивании катушки, а не при подаче напряжения.Поскольку задержка происходит в направлении обесточивания катушки, этот тип контакта также известен как нормально замкнутый, выкл. -задержка: Рисунок 9.34Ниже приведена временная диаграмма работы этого контакта реле: Рисунок 9.35 Использование реле с выдержкой временив промышленных логических схемах управленияРеле с выдержкой времениочень важны для использования в промышленных логических схемах управления. Вот некоторые примеры их использования:
Расширенные функции таймераВ более старых механических реле с выдержкой времени использовались пневматические датчики или заполненные жидкостью поршневые / цилиндровые устройства для обеспечения «амортизации», необходимой для задержки движения якоря.В более новых конструкциях реле с выдержкой времени используются электронные схемы с цепями резистор-конденсатор (RC) для создания временной задержки, а затем для подачи питания на нормальную (мгновенную) катушку электромеханического реле с выходом электронной схемы. Реле электронного таймера более универсальны, чем более старые механические модели, и менее склонны к выходу из строя. Многие модели предоставляют расширенные функции таймера, такие как «однократный» (один измеренный выходной импульс для каждого перехода входа из обесточенного в запитанный), «рециркуляционный» (повторяющиеся циклы включения / выключения выходного сигнала до тех пор, пока входное соединение находится в рабочем состоянии. активирован) и «сторожевой таймер» (меняет состояние, если входной сигнал не циклически включается и выключается повторно). Рисунок 9.36 Рисунок 9.37 Рисунок 9.38. Реле «сторожевого таймера»«Сторожевой» таймер особенно полезен для мониторинга компьютерных систем. Если компьютер используется для управления критическим процессом, обычно рекомендуется иметь автоматический сигнал тревоги для обнаружения «зависания» компьютера (ненормальная остановка выполнения программы из-за любого количества причин). Простой способ настроить такую систему мониторинга — это заставить компьютер регулярно включать и выключать катушку реле сторожевого таймера (аналогично выходу таймера «рециркуляции»).Если выполнение компьютера останавливается по какой-либо причине, сигнал, который он выдает на катушку реле сторожевого таймера, перестанет циклически повторяться и зависнет в том или ином состоянии. Через некоторое время реле сторожевого таймера «отключится» и сигнализирует о проблеме.
Лестничные диаграммы — это специализированные схемы, обычно используемые для документирования промышленных логических систем управления.Их называют «лестничными» диаграммами, потому что они напоминают лестницу с двумя вертикальными направляющими (питание) и таким количеством «ступенек» (горизонтальных линий), сколько нужно представить схем управления. Если бы мы хотели нарисовать простую лестничную диаграмму, показывающую лампу, управляемую ручным переключателем, она выглядела бы так: Обозначения «L 1 » и «L 2 » относятся к двум полюсам 120 В переменного тока. поставка, если не указано иное. L 1 — это «горячий» провод, а L 2 — заземленный («нейтральный») провод.Эти обозначения не имеют ничего общего с индукторами, просто чтобы запутать. Фактический трансформатор или генератор, питающий эту схему, для простоты опущен. На самом деле схема выглядит примерно так: Обычно в схемах промышленной релейной логики, но не всегда, рабочее напряжение для контактов переключателя и катушек реле будет составлять 120 вольт переменного тока. Системы с более низким напряжением переменного и даже постоянного тока иногда строятся и документируются в соответствии с «лестничными» диаграммами: до тех пор, пока все контакты переключателя и катушки реле имеют соответствующие номиналы, действительно не имеет значения, какой уровень напряжения выбран для работы системы. с участием.Обратите внимание на цифру «1» на проводе между переключателем и лампой. В реальном мире этот провод должен быть помечен этим номером с помощью термоусадочных или самоклеящихся этикеток, где бы это было удобно для идентификации. Провода, ведущие к коммутатору, будут обозначены «L 1 » и «1» соответственно. Провода, ведущие к лампе, будут иметь маркировку «1» и «L 2 » соответственно. Эти номера проводов упрощают сборку и обслуживание. Каждый проводник имеет свой уникальный номер провода для системы управления, в которой он используется.Номера проводов не меняются ни на каком соединении или узле, даже если размер, цвет или длина провода меняются при входе в точку соединения или выходе из нее. Конечно, желательно поддерживать одинаковые цвета проводов, но это не всегда практично. Важно то, что любая электрически непрерывная точка в цепи управления имеет один и тот же номер провода. Возьмем, к примеру, этот участок схемы с проводом № 25 в качестве единой, электрически непрерывной точечной резьбы для многих различных устройств: на диаграммах — нагрузочное устройство (лампа, катушка реле, катушка соленоида и т. Д.).) почти всегда рисуется с правой стороны ступени. Хотя электрически не имеет значения, где расположена катушка реле внутри ступени, имеет значение , какой конец источника питания лестницы заземлен, для надежной работы. Возьмем, к примеру, эту схему: здесь лампа (нагрузка) расположена с правой стороны перекладины, как и заземление источника питания. Это не случайность или совпадение; скорее, это целенаправленный элемент хорошей практики проектирования.Предположим, что провод №1 случайно соприкоснулся с землей, причем изоляция этого провода была стерта, так что оголенный провод вступил в контакт с заземленным металлическим кабелепроводом. Наша схема теперь будет работать следующим образом: если обе стороны лампы соединены с землей, лампа будет «закорочена» и не сможет получить питание для зажигания. Если бы выключатель замкнулся, произошло бы короткое замыкание, немедленно взорвавшее предохранитель. Однако подумайте, что случится с цепью с такой же неисправностью (провод №1 соприкасается с землей), за исключением того, что на этот раз мы поменяем местами переключатель и предохранитель (L 2 все еще заземлен): на этот раз случайное заземление провода №1 приведет к подаче питания на лампу, а выключатель не подействует.Намного безопаснее иметь систему, которая перегорает предохранитель в случае замыкания на землю, чем иметь систему, которая неконтролируемо включает лампы, реле или соленоиды в случае той же самой неисправности. По этой причине нагрузка (и) всегда должна быть расположена ближе всего к заземленному силовому проводу на лестничной диаграмме. Рисунок 9.42 Рисунок 9.43 Рисунок 9.44
Мы можем построить простые логические функции для нашей гипотетической схемы лампы, используя несколько контактов, и довольно легко и понятно задокументировать эти схемы с дополнительными ступенями к нашей исходной «лестнице».«Если мы используем стандартную двоичную запись для состояния переключателей и лампы (0 для не сработавшего или обесточенного; 1 для сработавшего или включенного), можно составить таблицу истинности, чтобы показать, как работает логика: Теперь лампа загорится горит, если срабатывает контакт A или контакт B, потому что все, что требуется для включения лампы, — это иметь хотя бы один путь для прохождения тока от провода L 1 к проводу 1. У нас есть простая логическая функция ИЛИ, реализовано только с контактами и лампой. Мы можем имитировать логическую функцию И, подключив два контакта последовательно, а не параллельно: теперь лампа активируется, только если одновременно срабатывают контакт A и контакт B.Путь существует для тока от провода L 1 к лампе (провод 2) тогда и только тогда, когда оба переключающих контакта замкнуты. Функция логической инверсии, или НЕ, может быть выполнена на контактном входе, просто используя нормально замкнутый контакт вместо нормально разомкнутого: теперь лампа включается, если контакт не срабатывает, а срабатывает, и отключается, когда контакт активирован . Если мы возьмем нашу функцию ИЛИ и инвертируем каждый «вход» с помощью нормально замкнутых контактов, мы получим функцию И-НЕ.В специальном разделе математики, известном как логическая алгебра , этот эффект изменения идентичности вентильной функции при инверсии входных сигналов описывается теоремой ДеМоргана , которая будет исследована более подробно в следующей главе. быть под напряжением, если любой из контактов не сработал. Он погаснет, только если оба контакта сработают одновременно. Аналогичным образом, если мы возьмем нашу функцию И и инвертируем каждый «вход» с помощью нормально замкнутых контактов, мы получим функцию ИЛИ-ИЛИ: шаблон быстро обнаруживается, когда лестничные схемы сравниваются с их аналогами логического элемента:
Мы можем создавать функции комбинационной логики, также группируя контакты в последовательно-параллельную схему. В следующем примере у нас есть функция исключающего ИЛИ, построенная из комбинации логических элементов И, ИЛИ и инвертора (НЕ): Верхняя ступень (замыкающий контакт A последовательно с замыкающим контактом B) является эквивалентом верхнего НЕ / И комбинация ворот.Нижняя ступенька (замыкающий контакт A последовательно с замыкающим контактом B) является эквивалентом нижней комбинации ворот НЕ / И. Параллельное соединение между двумя звеньями в проводе номер 2 образует эквивалент логического элемента ИЛИ, позволяя либо звену 1 , либо звену 2 запитать лампу. Чтобы реализовать функцию исключающего ИЛИ, нам пришлось использовать два контакта на каждый вход: один для прямого входа, а другой для «инвертированного» входа. Два контакта «А» физически приводятся в действие одним и тем же механизмом, как и два контакта «В».Общая связь между контактами обозначается меткой контакта. Нет ограничений на количество контактов на переключатель, которое может быть представлено на лестничной диаграмме, поскольку каждый новый контакт на любом переключателе или реле (нормально разомкнутом или нормально замкнутом), используемом на диаграмме, просто помечен одной и той же меткой. Иногда несколько контактов на одном переключателе (или реле) обозначаются составными метками, такими как «A-1» и «A-2», вместо двух меток «A». Это может быть особенно полезно, если вы хотите конкретно указать, какой набор контактов на каждом переключателе или реле используется для какой части цепи.Для простоты я воздержусь от таких сложных обозначений в этом уроке. Если вы видите общую метку для нескольких контактов, вы знаете, что все эти контакты приводятся в действие одним и тем же механизмом. Если мы хотим инвертировать выход любой логической функции, генерируемой переключателем, мы должны использовать реле с нормально замкнутым контактом. Например, если мы хотим активировать нагрузку на основе инверсии или НЕ нормально разомкнутого контакта, мы могли бы сделать это: мы назовем реле «реле управления 1» или CR 1 .Когда катушка CR 1 (обозначенная парой скобок на первой ступени) находится под напряжением, контакт на второй ступеньке размыкается на , таким образом обесточивая лампу. От переключателя A к катушке CR 1 логическая функция не инвертируется. Нормально замкнутый контакт, приводимый в действие катушкой реле CR 1 , обеспечивает функцию логического инвертора для включения лампы, противоположной состоянию срабатывания переключателя. Применяя эту стратегию инверсии к одной из наших функций инвертированного входа, созданной ранее, такой как OR-to-NAND, мы можем инвертировать выход с помощью реле, чтобы создать неинвертированную функцию: от переключателей к катушке CR 1 , логическая функция — это функция логического элемента И-НЕ.Нормально замкнутый контакт CR 1 обеспечивает одну последнюю инверсию, чтобы превратить функцию И-НЕ в функцию И.
Практическое применение логики переключателя и реле находится в системах управления, где необходимо выполнить несколько условий процесса, прежде чем оборудование будет запущено. Хорошим примером этого является автомат горения для больших топок. Для безопасного запуска горелок в большой печи система управления запрашивает «разрешение» от нескольких переключателей процесса, включая высокое и низкое давление топлива, проверку потока воздуха от вентилятора, положение заслонки выхлопной трубы, положение дверцы доступа и т. Д.Каждое условие процесса называется разрешающим , и каждый разрешающий контакт переключателя подключается последовательно, так что, если какой-либо из них обнаруживает небезопасное состояние, цепь будет разомкнута: если все разрешительные условия соблюдены, CR 1 будет включится, и загорится зеленая лампа. В реальной жизни было бы запитано больше, чем просто зеленая лампа: обычно управляющее реле или соленоид топливного клапана помещали бы в эту ступень цепи, чтобы запитать, когда все разрешающие контакты были «хороши», то есть все замкнуты. .Если какое-либо из разрешающих условий не выполнено, последовательная цепочка контактов переключателя будет разорвана, CR 2 обесточится, и загорится красная лампа. Обратите внимание, что контакт высокого давления топлива нормально замкнут. Это потому, что мы хотим, чтобы контакт переключателя размыкался, если давление топлива становится слишком высоким. Поскольку «нормальное» состояние любого реле давления — это когда к нему прикладывается нулевое (низкое) давление, и мы хотим, чтобы этот переключатель открывался при чрезмерном (высоком) давлении, мы должны выбрать переключатель, который замкнут в своем нормальном состоянии.Другое практическое применение релейной логики — в системах управления, где мы хотим гарантировать, что два несовместимых события не могут произойти одновременно. Примером этого является управление реверсивным двигателем, где два контактора двигателя подключены для переключения полярности (или чередования фаз) на электродвигатель, и мы не хотим, чтобы контакторы прямого и обратного хода включались одновременно: когда контактор M 1 включен под напряжением 3 фазы (A, B и C) подключены непосредственно к клеммам 1, 2 и 3 двигателя соответственно.Однако, когда контактор M 2 находится под напряжением, фазы A и B меняются местами, A идет к клемме 2 двигателя, а B идет к клемме 1 двигателя. Это реверсирование фазных проводов приводит к тому, что двигатель вращается в противоположном направлении. Давайте рассмотрим схему управления этими двумя контакторами: обратите внимание на нормально замкнутый контакт «OL», который представляет собой контакт тепловой перегрузки, активируемый элементами «нагревателя», включенными последовательно с каждой фазой двигателя переменного тока. Если нагреватели станут слишком горячими, контакт изменится из нормального (замкнутого) состояния на разомкнутый, что предотвратит включение любого контактора.Эта система управления будет работать нормально, пока никто не нажимает обе кнопки одновременно. Если бы кто-то сделал это, фазы A и B были бы замкнуты накоротко вместе в силу того факта, что контактор M 1 посылает фазы A и B прямо на двигатель, а контактор M 2 меняет их местами; фаза A будет замкнута на фазу B и наоборот. Очевидно, это плохая конструкция системы управления! Чтобы этого не произошло, мы можем спроектировать схему так, чтобы включение одного контактора предотвращало включение другого.Это называется блокировкой , и это достигается за счет использования вспомогательных контактов на каждом контакторе, как таковых: Теперь, когда M 1 находится под напряжением, нормально замкнутый вспомогательный контакт на второй ступени будет разомкнут, что предотвращает M 2 от подачи питания, даже если нажата кнопка «Реверс». Аналогичным образом, включение M 1 предотвращается, когда M 2 находится под напряжением. Также обратите внимание на то, как были добавлены дополнительные номера проводов (4 и 5), чтобы отразить изменения проводки.Следует отметить, что это не единственный способ блокировки контакторов для предотвращения короткого замыкания. Некоторые контакторы снабжены опцией механической блокировки : рычаг, соединяющий якоря двух контакторов вместе, так что они физически не могут замыкаться одновременно. Для дополнительной безопасности все же можно использовать электрические блокировки, и из-за простоты схемы нет веских причин не использовать их в дополнение к механическим блокировкам.
Применение и характеристики реле максимального тока (ANSI 50, 51)Реле 50/51 и 50 / 51NРеле максимального тока являются наиболее часто используемыми типами защитных реле. Реле максимального тока с выдержкой времени доступны с различными временными характеристиками для координации с другими защитными устройствами и для защиты конкретного оборудования. Реле максимального тока мгновенного действия не имеют собственной выдержки времени и используются для быстрой защиты от короткого замыкания. Применение и характеристики реле максимальной токовой защиты (ANSI 50, 51) — на фото: Защита шин с помощью реле REF615На рисунке 1 ниже показаны временные характеристики нескольких типовых реле максимальной токовой защиты 51 типа , а также 50 реле мгновенного действия. характеристика. Рисунок 1 — Характеристики реле максимального тока ANSI 50 и 51Уровень срабатывания задается настройкой отвода, которая обычно устанавливается в ТТ вторичных ампер , но может быть установлена в первичных амперах на некоторых микропроцессорных реле. Каждая характеристика реле имеет настройку шкалы времени, которая позволяет сдвигать кривую вверх или вниз на кривой время-токовой характеристики. На рис. 1 настройки шкалы времени отличаются, чтобы между кривыми оставалось достаточно места, чтобы показать их различия. Выше приведены кривые, соответствующие стандарту IEEE; доступны другие, в зависимости от марки и модели реле. В твердотельном электронном или микропроцессорном реле все эти кривые будут доступны на одном устройстве; электромеханические реле необходимо заказывать с заданной характеристикой, которую нельзя изменить. Мгновенная функция 50 предоставляется только с настройкой срабатывания. Задержка 30 мс, показанная на рисунке 1 для функции 50, является типичной и учитывает как работу логики реле, так и время замыкания выходных контактов.
Обычно реле максимального тока используются по одному на фазу. В глухозаземленных системах среднего напряжения наиболее распространенным выбором для защиты от замыкания на землю является добавление четвертого реле в остаточное соединение трансформаторов тока для контроля суммы всех трех фазных токов. Это реле называется реле максимального тока нулевой последовательности или 51N (или 50 / 51N) реле . Схема трансформатора тока для реле 50/51 и 50 / 51N для глухозаземленной системы показана на Рис. 2 ниже. Рисунок 2 — Устройство реле максимального тока с трансформаторами тока, включая 50 / 51NДля системы с заземлением с низким сопротивлением использование реле максимального тока, подключенного к трансформатору тока в рабочем трансформаторе или нейтрали генератора, обычно является лучшим вариантом. Этот трансформатор тока должен иметь коэффициент ниже, чем фазные трансформаторы тока, а диапазон срабатывания реле в сочетании с трансформатором тока нейтрали должен обеспечивать срабатывание всего 10% номинального сопротивления резистора нейтрали. Для фидерной цепи после рабочего трансформатора рекомендуется использовать ТТ нулевой последовательности , опять же с достаточно малым коэффициентом срабатывания, позволяющим срабатывание всего 10% номинального значения резистора нейтрали. Когда реле максимального тока используется с ТТ нулевой последовательности, оно упоминается как реле 50G, 51G или 50 / 51G в зависимости от типа используемого реле. На рис. 3 показаны типичные устройства для обоих этих приложений. Рисунок 3 — Применение реле нейтрали трансформатора и реле заземления нулевой последовательности для систем с заземлением через сопротивлениеДля незаземленных систем рекомендуются методы обнаружения заземления, поскольку во время однофазного замыкания на землю будет протекать небольшой ток заземления.Ниже рассматриваются низковольтные системы с глухозаземленной нейтралью. Типичное применение реле максимального тока фазы и нейтрали нулевой последовательности в виде однолинейной схемы показано на рисунке 4. Рисунок 4 — Типичное применение реле максимального токаНа рисунке 4 обозначение 52 обозначает IEEE Std. C37.2-1996 обозначение для выключателя. Фазовые реле обозначены 51, а реле максимального тока нулевой последовательности обозначено 51N (оба без мгновенной функции).В скобках указано, что имеется три реле максимального тока фазы и три трансформатора тока. Пунктирная линия от реле к автоматическому выключателю означает, что реле подключены для отключения автоматического выключателя при перегрузке по току. Другим типом реле максимального тока является реле максимального тока с ограничением напряжения 51 В и реле максимального тока 51C . Оба используются в приложениях генератора , чтобы позволить реле быть настроенным ниже тока полной нагрузки генератора из-за того, что вклад неисправности от генератора будет уменьшаться до значения, меньшего, чем ток полной нагрузки генератора. Реле 51C не срабатывает при перегрузке по току, если напряжение не ниже заданного значения. Ток срабатывания реле 51 В смещается при изменении напряжения, позволяя ему реагировать только на токи перегрузки при пониженном напряжении. Оба требуют ввода напряжения и, следовательно, для работы требуются трансформаторы напряжения. Защита от сверхтока и координация (ВИДЕО)Ссылка: Защита системы — Билл Браун, П.E., Square D Engineering Services Номера электрических устройствНомера устройств указаны в стандарте ANSI / IEEE C37.2 и используются для обозначения функций устройства, показанного на схематической диаграмме.1. Мастер-элементИнициирующее устройство, такое как управляющий переключатель, которое работает либо напрямую, либо через другие разрешающие устройства для включения или отключения оборудования. 2. Пусковое или замыкающее реле с задержкой времениФункции, обеспечивающие желаемое время задержки до или после любой точки срабатывания в последовательности переключения или системе защитных реле. 3. Реле проверки или блокировкиРаботает в соответствии с положением других устройств в оборудовании, чтобы разрешить выполнение или остановку последовательности операций. 4. Главный контакторСлужит для замыкания и размыкания необходимых цепей управления для ввода оборудования в работу в требуемых условиях и вывода его из эксплуатации при других или ненормальных условиях. 5. Устройство остановкиИспользуется для отключения оборудования и вывода его из строя, за исключением функции электрической блокировки (устройство 86) в ненормальных условиях. 6. Пусковой выключательПодключает машину к источнику пускового напряжения. 7. Анодный автоматический выключательУстройство, используемое в анодных цепях силового выпрямителя с основной целью прерывания цепи выпрямителя в случае возникновения дуговой дуги. 8. Устройство отключения управляющего питанияРубильник, автоматический выключатель или выдвижной блок предохранителей, используемый для подключения и отключения источника управляющего напряжения к шине управления или части оборудования и от них, включая вспомогательный источник питания для небольших двигателей и нагревателей. 9. Реверсивное устройствоИспользуется для реверсирования поля машины или для выполнения любых других функций реверсирования. 10.Переключатель последовательности агрегатовУстройство, используемое для изменения последовательности, в которой блоки могут быть включены и выключены в конфигурациях с несколькими блоками. 11. Многофункциональное устройствоВыполняет три или более сравнительно важных функции, которые могут быть назначены только путем объединения нескольких из этих номеров функций устройства. Все функции, выполняемые устройством 11, должны быть определены в легенде чертежа или в списке определений функций устройства. 12.Устройство превышения скоростиОбычно переключатель скорости с прямым подключением, который работает при превышении скорости машины. 13. Устройство синхронной скоростиУстройство любого типа, которое работает примерно с синхронной скоростью машины, например центробежный переключатель, реле частоты скольжения, реле напряжения и реле минимального тока. 14. Устройство пониженной скоростиРаботает, когда скорость машины падает ниже заданного значения. 15. Устройство согласования скорости или частотыФункции для согласования и удержания скорости или частоты машины или системы, равной или приблизительно равной скорости или частоте другой машины, источника или системы. 16. Устройство передачи данныхДля устройства 16 буквы суффикса дополнительно определяют устройство: первая буква суффикса — «S» для последовательного порта или «E» для Ethernet. Последующие буквы: Функция обработки безопасности ‘C’ (например,г. VPN, шифрование), межсетевой экран «F» или фильтр сообщений, функция управления сетью «M», маршрутизатор «R», коммутатор «S» и телефонный компонент «T». Таким образом, управляемый коммутатор Ethernet будет 16ESM. 17. Маневровый или выпускной выключательСлужит для размыкания или замыкания шунтирующей цепи вокруг любого устройства, за исключением устройств, которые выполняют маневровые операции, которые могут потребоваться в процессе запуска машины. 18. Устройство ускорения или замедленияЗамыкает или вызывает замыкание цепей, которые используются для увеличения или уменьшения скорости машины. 19. Пусковой контакторУстройство, которое запускает или вызывает автоматический перевод машины из состояния запуска в рабочее состояние. 20. КлапанКлапан с электрическим приводом, используемый в вакуумной, воздушной, газовой, масляной или аналогичной линии. 21. Дистанционное релеРаботает, когда полная проводимость, импеданс или реактивное сопротивление цепи увеличивается или уменьшается сверх заданных пределов. 22. Автоматический выключатель эквалайзераСлужит для управления или включения и отключения выравнивателя или соединений для балансировки тока для машинного поля или для регулирования оборудования в многоблочной установке. 23. Устройство контроля температурыФункции повышения или понижения температуры машины или другого оборудования или любой среды, когда ее температура падает ниже или повышается выше заданного значения. Представьте термостат, который включает обогреватель в распределительном устройстве. 24. Реле вольт на герцРеле с мгновенной или временной характеристикой, которое работает, когда отношение напряжения к частоте превышает заданное значение. 25. Синхронизация или устройство проверки синхронизмаРаботает, когда две цепи переменного тока находятся в требуемых пределах частоты, фазового угла или напряжения, чтобы разрешить или вызвать параллельное включение этих двух цепей. 26. Аппарат Тепловой приборРаботает, когда температура оборудования, жидкости или другой среды превышает заданное значение: или если температура защищаемого устройства, такого как силовой выпрямитель, или любой среды снижается ниже заданного значения. 27. Реле минимального напряженияРаботает, когда заданное значение напряжения падает ниже заданного значения. 28. Датчик пламениУстройство, контролирующее наличие пилотного или основного пламени такого оборудования, как газовая турбина или паровой котел. 29. Разделительный контакторИспользуется специально для отключения одной цепи от другой в целях аварийной работы, технического обслуживания или тестирования. 30. Реле сигнализатораУстройство без автоматического сброса, которое дает ряд отдельных визуальных указаний на функции защитных устройств и которое также может быть выполнено с возможностью выполнения функции блокировки. 31. Устройство автономного возбужденияПодключает цепь, такую как шунтирующее поле синхронного преобразователя, к источнику отдельного возбуждения во время последовательности запуска; или тот, который питает цепи возбуждения и зажигания силового выпрямителя. 32. Реле мощностиУстройство, которое работает на заданном значении потока мощности в заданном направлении или на обратной мощности, возникающей в результате дуговой дуги в анодной или катодной цепях выпрямителя мощности. 33. Позиционный переключательВключает или прерывает контакт, когда основное устройство или часть устройства, не имеющая номера функции устройства, достигает заданного положения. 34. Главное устройство последовательностиУстанавливает или определяет последовательность работы основных устройств в оборудовании во время запуска и остановки или во время других последовательных операций переключения, таких как многоконтактный переключатель с приводом от двигателя или устройство программирования, такое как компьютер. 35. Устройство для срабатывания щеток или короткого замыкания при скольженииИспользуется для подъема, опускания или перемещения щеток машины, или для короткого замыкания контактных колец, или для включения или отключения контактов механического выпрямителя. 36. Полярность или поляризационное напряжениеРазрешает работу другого устройства только с заранее определенной полярностью или проверяет наличие поляризующего напряжения в оборудовании. 37. Реле минимального тока или минимальной мощностиРаботает, когда поток тока или мощности уменьшается ниже заданного значения. 38. Защитное устройство подшипникаРаботает при чрезмерной температуре подшипника или других ненормальных механических условиях, связанных с подшипником, которые в конечном итоге могут привести к чрезмерной температуре подшипника. 39. Монитор механического состоянияРаботает при возникновении ненормального механического состояния, не охватываемого функцией 38 устройства, такого как чрезмерная вибрация, эксцентриситет, ударное расширение, наклон или отказ уплотнения. 40. Полевое релеФункционирует при заданном или аномально низком значении или отказе тока возбуждения машины, или при чрезмерном значении реактивной составляющей тока якоря в машине переменного тока, указывающей на ненормально низкое возбуждение поля. 41. Полевой автоматический выключательИспользуется для применения или снятия возбуждения поля машины. 42. Рабочий выключательФункции для подключения машины к источнику рабочего или рабочего напряжения.Эта функция также может использоваться для устройства, такого как контактор, который используется последовательно с автоматическим выключателем или другими средствами защиты поля, в первую очередь для частого размыкания и замыкания выключателя. 43. Устройство ручного переключения или переключенияУстройство с ручным управлением, которое переключает цепи управления для изменения плана работы коммутационного оборудования или некоторых устройств. 44. Пусковое реле последовательности установкиФункционирует для запуска следующего доступного блока в многоблочном оборудовании при отказе или недоступности обычно предшествующего блока. 45. Монитор атмосферных условийРаботает при возникновении ненормальных атмосферных условий, например, вредных паров, взрывоопасных смесей, дыма или огня. 46. Реле тока обратной фазы или баланса фазРаботает, когда многофазные токи имеют обратную последовательность фаз, или когда многофазные токи несбалансированы или содержат компоненты обратной последовательности фаз, превышающие заданное значение. 47.Реле чередования фаз или фазового балансаРаботает на заданном значении многофазного напряжения в желаемой последовательности фаз. 48. Реле неполной последовательностиВозвращает оборудование в нормальное или выключенное положение и блокирует его, если нормальная последовательность запуска, работы или остановки не завершена должным образом в течение заданного времени. Если устройство используется только для сигнализации, желательно обозначить ее как 48A (сигнализация). 49. Термореле машины или трансформатораРаботает, когда температура якоря машины или другой несущей обмотки или элемента машины или температура силового выпрямителя или силового трансформатора (включая трансформатор силового выпрямителя) превышает заданное значение. 50. Реле мгновенного максимального тока или скорости нарастанияРаботает мгновенно при чрезмерном значении тока или при чрезмерной скорости нарастания тока, что указывает на неисправность в защищаемом устройстве или цепи. 51. Реле максимального тока переменного токаРеле с независимой или обратнозависимой временной характеристикой, которое срабатывает, когда ток в цепи переменного тока превышает заданное значение. 52. Автоматический выключатель переменного токаУстройство, которое используется для замыкания и прерывания цепи питания переменного тока при нормальных условиях или для прерывания этой цепи при возникновении неисправности в аварийных условиях. 53. Реле возбудителя или генератора постоянного токаРеле, которое заставляет возбуждение поля машины постоянного тока нарастать во время запуска или которое срабатывает, когда напряжение машины повышается до заданного значения. 54. Высокоскоростной автоматический выключатель D-CАвтоматический выключатель, который начинает уменьшать ток в главной цепи через 0,01 секунды или меньше, после возникновения перегрузки по току постоянного тока или чрезмерной скорости нарастания тока. 55. Реле коэффициента мощностиРаботает, когда коэффициент мощности в цепи переменного тока поднимается выше или опускается ниже заданного значения. 56. Реле полевого примененияАвтоматически управляет приложением возбуждения поля к двигателю переменного тока в некоторой заранее определенной точке в цикле скольжения. 57. Устройство короткого замыкания или заземленияУстройство переключения первичной цепи, которое функционирует для короткого замыкания или заземления цепи в ответ на автоматические или ручные действия. 58. Реле неисправности устранения неисправностиФункционирует, если один или несколько анодов силового выпрямителя не срабатывают, или для обнаружения и обратного дугового разряда, или при отказе диода, чтобы провести или заблокировать должным образом. 59. Реле максимального напряженияРаботает с заданным значением перенапряжения. 60. Реле баланса напряжения или токаРаботает с заданной разницей напряжения, входным или выходным током или двумя цепями. 61. Реле или датчик плотностиРаботает при заданном значении или заданной скорости изменения плотности газа. 62. Реле остановки или размыкания с задержкой времениРеле с выдержкой времени, которое служит вместе с устройством, которое инициирует отключение, останов или размыкание в автоматической последовательности или в системе защитных реле. 63. Реле давленияРаботает при заданных значениях давления жидкости или газа или при заданных скоростях изменения этих значений. 64. Реле датчика заземленияРаботает при отсутствии заземления изоляции машины или другого оборудования. Эта функция назначается только реле, которое обнаруживает прохождение тока от корпуса машины или закрывающего корпуса или конструкции части устройства к земле или обнаруживает заземление на нормально незаземленной обмотке или цепи.Он не применяется к устройствам, подключенным во вторичной цепи трансформатора тока, во вторичной нейтрали трансформаторов тока, включенных в силовую цепь нормально заземленной системы. 65. ГубернаторУзел гидравлического, электрического или механического регулирующего оборудования, используемого для регулирования потока воды, пара или другой среды к первичному двигателю для таких целей, как запуск, скорость удержания или нагрузка, или остановка. 66.Устройство для надрезания или толканияФункции, позволяющие выполнять только определенное количество операций данного устройства или оборудования или определенное количество последовательных операций в течение заданного времени друг за другом. Это также устройство, которое функционирует для включения питания цепи периодически или на доли определенных временных интервалов, или которое используется для обеспечения прерывистого ускорения или толчкового режима машины на низких скоростях для механического позиционирования. 67. Направленное реле максимального тока переменного токаРаботает на желаемом значении перегрузки по току переменного тока, протекающего в заданном направлении. 68. Реле блокировкиИнициирует пилот-сигнал для блокировки отключения при внешних повреждениях в линии передачи или в другом устройстве в заранее определенных условиях или взаимодействует с другими устройствами, чтобы заблокировать отключение или заблокировать повторное включение при сбое в работе или при экономии энергии . 69. Устройство разрешающего контроляДвухпозиционный переключатель с ручным управлением, который в одном положении позволяет включить автоматический выключатель или ввести оборудование в работу, а в другом положении предотвращает включение автоматического выключателя или оборудования. 70. РеостатУстройство с переменным сопротивлением, используемое в электрической цепи с электрическим приводом или с другими электрическими принадлежностями, такими как вспомогательные, позиционные или концевые выключатели. 71. Реле уровня жидкости или газаДействует при заданных значениях уровня жидкости или газа или при заданных скоростях изменения этих значений. 72. Автоматический выключатель D-CИспользуется для замыкания и прерывания цепи питания постоянного тока при нормальных условиях или для прерывания этой цепи при неисправности или аварийных условиях. 73. Нагрузочно-резистивный контакторИспользуется для шунтирования или вставки ступени ограничения нагрузки, сдвига или индикации сопротивления в силовой цепи, или для включения обогревателя в цепи, или для включения светового или рекуперативного нагрузочного резистора, силового выпрямителя или другой машины и вне цепи. 74. Реле аварийной сигнализацииРеле, кроме сигнализатора, как описано в функции устройства 30, которое используется для срабатывания или работы в связи с визуальной или звуковой сигнализацией. 75. Механизм изменения положенияМеханизм, который используется для перемещения основного устройства из одного положения в другое в оборудовании: например, для перемещения съемного блока выключателя в и из подключенных, отключенных и испытательных положений. 76. Реле максимального тока D-CРаботает, когда ток в цепи постоянного тока превышает заданное значение. 77. Телеметрический приборПередатчик, используемый для генерации и передачи в удаленное место электрического сигнала, представляющего измеряемую величину, или приемник, используемый для приема электрического сигнала от удаленного передатчика и преобразования сигнала для представления исходной измеренной величины. 78. Реле для измерения фазового угла или защиты от асинхронного ходаРаботает с заданным фазовым углом между двумя напряжениями, между двумя токами или между напряжением и током. 79. Реле повторного включения переменного токаУправляет автоматическим повторным включением и блокировкой прерывателя цепи переменного тока. 80. Реле потока жидкости или газаРаботает при заданных значениях расхода жидкости или газа или при заданных скоростях изменения этих значений. 81. Реле частотыРаботает с заданным значением частоты (ниже, выше или выше нормальной системной частоты) или скоростью изменения частоты. 82. Реле повторного включения D-CУправляет автоматическим включением и повторным включением прерывателя цепи постоянного тока, как правило, в ответ на условия цепи нагрузки. 83. Реле автоматического селективного управления или переключенияИспользуется для автоматического выбора между определенными источниками или условиями в оборудовании или автоматически выполняет операцию передачи. 84. Рабочий механизмПолный электрический механизм или сервомеханизм, включая рабочий двигатель, соленоиды, позиционные переключатели и т. Д., Для переключателя ответвлений, индукционного регулятора или любого подобного устройства, которое иначе не имеет номера функции устройства. 85. Реле приемника несущей или контрольной проводкиРеле, которое приводится в действие или ограничивается сигналом, используемым в связи с направленной ретрансляцией неисправности контрольного провода постоянного тока или несущего тока. 86. Реле блокировкиРучное или электрически сбрасываемое реле или устройство, которое отключает или удерживает оборудование в нерабочем состоянии, или и то, и другое при возникновении ненормальных условий. 87. Реле дифференциальной защитыФункционирует от процента, фазового угла или другой количественной разности двух токов или некоторых других электрических величин. 88. Вспомогательный двигатель или двигатель-генераторИспользуется для управления вспомогательным оборудованием, таким как насосы, нагнетатели, возбудители, вращающиеся магнитные усилители и т. Д. 89. Линейный переключательПереключатель, используемый в качестве разъединителя, выключателя нагрузки или разъединителя в цепи питания переменного или постоянного тока, когда это устройство работает от электричества или имеет электрические аксессуары, такие как вспомогательный переключатель, магнитный замок и т. Д. 90. Регулирующее устройствоФункции для регулирования количества или величин, таких как напряжение, текущая мощность, скорость, частота, температура и нагрузка при определенном значении или между определенными (обычно близкими) пределами для машин, соединительных линий или другого оборудования. 91. Реле направления напряженияСрабатывает, когда напряжение на размыкателе цепи или контакторе превышает заданное значение в заданном направлении. 92. Реле направления напряжения и мощностиРазрешает или вызывает соединение двух цепей, когда разница напряжений между ними превышает заданное значение в заданном направлении, и вызывает отключение этих двух цепей друг от друга, когда мощность, протекающая между ними, превышает заданное значение в противоположном направлении. 93. Переключающий контакторФункции для увеличения или уменьшения за один шаг значения возбуждения поля в машине. 94. Реле отключения или отключенияФункции для отключения автоматического выключателя, контактора или оборудования или для разрешения немедленного отключения других устройств; или для предотвращения немедленного повторного замыкания прерывателя цепи, если он должен размыкаться автоматически, даже если его замыкающая цепь остается замкнутой. 95. Для особых случаев, когда другие номера не подходят 96. Реле блокировки отключения шинопровода 97-99. Для особых случаев, когда другие номера не подходятВспомогательные устройства Эти буквы обозначают отдельные вспомогательные устройства, например:
Банкноты
404 ОшибкаAutomationDirect — страница не найдена Вы можете уведомить веб-мастера сайта, с которого вы только что пришли. (Если вы перешли по ссылке откуда-то еще на Automationdirect.com, эта ошибка была записана, и мы исправим ее как можно скорее.) Если вы ввели адрес, по которому вы попали на эту страницу, убедитесь, что вы ввели его.
с правильным использованием заглавных букв. Наша страница поиска
— отличный способ найти нужную информацию в нашем магазине Можем ли мы помочь вам найти то, что вы искали? Ниже приводится краткое руководство по нашему сайту: Наша первая страница — это также вход в наш интернет-магазин. Ресурсы поддержки для наших продуктов.Загрузки, Часто задаваемые вопросы, Примеры программ, технические примечания и многое другое. Технические характеристики, цены, сравнение с конкурентами и другая информация обо всех наших продуктах. Получите бесплатную копию нашего Настольного справочника на 800+ страниц. Все наши руководства по аппаратному обеспечению находятся в Интернете в формате PDF. Информация о компании, вакансии, автоспорт и пресс-релизы. Наши международные клиенты могут получить информацию о продажах и поддержке от этих международных партнеров. Lovato Electric | Энергетика и автоматизацияВыберите свою страну Выберите свою страну … Глобальный сайт —————- КанадаКитайХорватияЧешская РеспубликаГерманияФранцияИталияПольшаРумынияРоссийская ФедерацияИспанияШвейцарияТурцияОбъединенные Арабские ЭмиратыВеликобританияСоединенные Штаты ————— -AfghanistanAlbaniaAlgeriaAmerican SamoaAndorraAngolaAnguillaAntarcticaAntigua И BarbudaArgentinaArmeniaArubaAustraliaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelarusBelgiumBelizeBeninBermudaBhutanBoliviaBosnia И HerzegovinaBotswanaBouvet IslandBrazilBritish Индийский океан TerritoryBrunei DarussalamBulgariaBurkina FasoBurundiCambodiaCameroonCanadaCape VerdeCayman IslandsCentral африканских RepublicChadChileChinaChristmas IslandCocos (Килинг) IslandsColombiaComorosCongoCongo, Демократическая Республика TheCook IslandsCosta RicaCote D’ivoireCroatiaCubaCyprusCzech RepublicDenmarkDjiboutiDominicaDominican RepublicEast TimorEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEthiopiaFalkland острова (Мальвинские) Фарерских IslandsFijiFinlandFranceFrench GuianaFrench PolynesiaFrench Южный TerritoriesGabonGambiaGeorgiaGermanyGhanaGibraltarGreeceGreenlandGrenadaGuadeloupeGuamGuatemalaGuineaGuinea-bissauGuyanaHaitiHeard остров и МакДональда IslandsHoly See (Vatican City State) HondurasHong KongHungaryIcelandIndiaIndonesiaIran, Исламская Республика OfIraqIrelandIsraelItalyJamaicaJapanJordanKazakstanKenyaKiribatiKorea, Корейская Народно-Демократическая Республика OfKorea, Республика OfKosovoKuwaitKyrgyzstanLao Народная Демократическая RepublicLatviaLebanonLesothoLiberiaLibyan Арабская JamahiriyaLiechtensteinLithuaniaLuxembourgMacauMacedonia, бывшая югославская Республика OfMadagascarMalawiMalaysiaMaldivesMaliMaltaMarshall IslandsMartiniqueMauritaniaMauritiusMayotteMexicoMicronesia, Федеративные Штаты OfMoldova, Республика OfMonacoMongoliaMontenegroMontserratMoroccoMozambiqueMyanmarNamibiaNauruNepalNetherlandsNetherlands AntillesNew КаледонияНовая ЗеландияНикарагуаНигерНигерияНиуэОстров НорфолкСеверные Марианские островаНорвегияОманПакистанПалауПалестинская территория, оккупированнаяПанамаP APUA Новый GuineaParaguayPeruPhilippinesPitcairnPolandPortugalPuerto RicoQatarReunionRomaniaRussian FederationRwandaSaint HelenaSaint Киттс И NevisSaint LuciaSaint Пьер и MiquelonSaint Винсент и GrenadinesSamoaSan MarinoSao Фолиант И PrincipeSaudi ArabiaSenegalSerbiaSeychellesSierra LeoneSingaporeSlovakiaSloveniaSolomon IslandsSomaliaSouth AfricaSouth Джорджия и Южные Сандвичевы IslandsSouth SudanSpainSri LankaSudanSurinameSvalbard и Ян MayenSwazilandSwedenSwitzerlandSyrian Arab RepublicTaiwan, провинция ChinaTajikistanTanzania, Объединенная Республика OfThailandTogoTokelauTongaTrinidad И TobagoTunisiaTurkeyTurkmenistanTurks И Кайкос ОстроваТувалуУгандаУкраинаОбъединенные Арабские ЭмиратыВеликобританияСоединенные ШтатыМалые Внешние острова СШАУругвайУзбекистан ВануатуВенесуэлаВьетнамВиргинские острова, Британские Виргинские острова, СШАs. |