Обозначения на схемах электроснабжения: Страница не найдена

Содержание

Условные обозначения в электрических схемах: графические, буквенные

Чтение схем невозможно без знания условных графических и буквенных обозначений элементов. Большая их часть стандартизована и описана в нормативных документах. Большая их часть была издана еще в прошлом веке а новый стандарт был принят только один, в 2011 году (ГОСТ 2-702-2011 ЕСКД. Правила выполнения электрических схем), так что иногда новая элементная база обозначается по принципу «как кто придумал». И в этом сложность чтения схем новых устройств. Но, в основном, условные обозначения в электрических схемах описаны и хорошо знакомы многим. 

Неправильно, но наглядно и условные обозначения в электрических схемах не нужны

На схемах используют часто два типа обозначений: графические и буквенные, также часто проставляют номиналы. По этим данным многие сразу могут сказать как работает схема. Этот навык развивается годами практики, а для начала надо уяснить и запомнить условные обозначения в электрических схемах. Потом, зная работу каждого элемента, можно представить себе конечный результат работы устройства.

Содержание статьи

Виды схем в электрике

Для составления и чтения различных схем обычно требуются разные элементы. Типов схем есть много, но в электрике обычно используются:

  • Функциональные, на которых отображаются основные узлы устройства, без детализации. Внешне выглядит как набор прямоугольников с проложенными между ними связями. Дает общее представление о функционировании объекта.

    На функциональной схеме указаны блоки и связи между ними

  • Принципиальные. Этот тип схем подробный, с указанием каждого элемента, его контактов и связей. Есть принципиальные схемы устройств, есть — электросетей. Принципиальные схемы могут быть однолинейными и полными. На однолинейных изображены только силовые цепи, а управление и контроль прорисованы на отдельном листе. Если электросеть или устройство несложное, все можно разместить на одном листе. Это и будет полная принципиальная схема.

    Принципиальная схема детализирует устройство

  • Монтажная. На монтажных схемах присутствуют не только элементы, но и указано их точное расположение. В случае с электросетями (проводкой в доме или квартире) указаны конкретные места расположения светильников, выключателей, розеток и других элементов. Часто тут же проставлены расстояния и номиналы. На монтажных схемах устройств указано расположение деталей на печатной плате, порядок и способ их соединения.

    На монтажной отображается местоположение и прохождение кабелей/линий связи

Есть еще много других видов электрических схем, но в домашней практике они не используются. Исключение — трасса прохождения кабелей по участку, подвод электричества к дому. Этот тип документа точно понадобится и будет полезным, но это больше план, чем схема.

Базовые изображения и функциональные признаки

Коммутационные устройства (выключатели, контакторы и т.д.) построены на контактах различной механики. Есть замыкающий, размыкающий, переключающий контакты. Замыкающий контакт в нормальном состоянии разомкнут, при переводе его в рабочее состояние цепь замыкается. Размыкающий контакт в нормальном состоянии замкнут, а при определенных условиях он срабатывает, размыкая цепь.

Виды контактов

Переключающий контакт бывает двух и трех позиционным. В первом случае работает то одна цепь, то другая. Во втором есть нейтральное положение.

Кроме того, контакты могут выполнять разные функции: контактора, разъединителя, выключателя и т.п. Все они также имеют условное обозначение и наносятся на соответствующие контакты. Есть функции, которые выполняют только подвижные контакты. Они приведены на фото ниже.

Функции подвижных контактов

Основные функции могут выполнять только неподвижные контакты.

Функции неподвижных контактов

 

 

Условные обозначения однолинейных схем

Как уже говорили, на однолинейных схемах указывается только силовая часть: УЗО, автоматы, дифавтоматы, розетки, рубильники, переключатели и т.д. и связи между ними. Обозначения этих условных элементов могут использоваться в схемах электрических щитов.

Основная особенность графических условных обозначений в электросхемах  в том, что сходные по принципу действия устройства отличаются какой-то мелочью. Например, автомат (автоматический выключатель) и рубильник отличаются лишь двумя мелкими деталями — наличием/отсутствием прямоугольника на контакте и формой значка на неподвижном контакте, которые отображают функции данных контактов. Контактор от обозначения рубильника отличает только форма значка на неподвижном контакте. Совсем небольшая разница, а устройство и его функции другие. Ко всем этим мелочам надо присматриваться и запоминать.

Обозначения элементов на однолинейной схеме

Также небольшая разница между условными обозначениями УЗО и дифференциального автомата. Она тоже только в функциях подвижных и неподвижных контактов.

Примерно так же обстоит дело и с катушками реле и контакторов. Выглядят они как прямоугольник с небольшими графическими дополнениями.

Условные обозначения катушек контакторов и реле разных типов (импульсная, фотореле, реле времени)

В данном случае запомнить проще, так как есть довольно серьезные отличия во внешнем виде дополнительных значков. С фотореле так совсем просто — лучи солнца ассоциируются со стрелками. Импульсное реле — тоже довольно легко отличить по характерной форме знака.

Условные обозначения разъемного (вилка-штепсель) и разборного (клеммная колодка) соединения), измерительных приборов

Немного проще с лампами и соединениями. Они имеют разные «картинки». Разъемное соединение (типа розетка/вилка или гнездо/штепсель) выглядит как две скобочки, а разборное (типа клеммной колодки) — кружочки. Причем количество пар галочек или кружочков обозначает количество проводов.

Изображение шин и проводов

В любой схеме приличествуют связи и в большинстве своем они выполнены проводами. Некоторые связи представляют собой шины — более мощные проводниковые элементы, от которых могут отходить отводы. Провода обозначаются тонкой линией, а места ответвлений/соединений — точками. Если точек нет — это не соединение, а пересечение (без электрического соединения).

Обозначение линий связи, шин и их соединений/ответвлений/пересечений

Есть отдельные изображения для шин, но они используются в том случае, если надо графически их отделить от линий связи, проводов и кабелей.

Как обозначаются провода, кабели, количество жил и способы их прокладки

На монтажных схемах часто необходимо обозначить не только как проходит кабель или провод, но и его характеристики или способ укладки. Все это также отображается графически. Для чтения чертежей это тоже необходимая информация.

Как изображают выключатели, переключатели, розетки

На некоторые виды этого оборудования утвержденных стандартами изображений нет. Так, без обозначения остались диммеры (светорегуляторы) и кнопочные выключатели.

Зато все другие типы выключателей имеют свои условные обозначения в электрических схемах. Они бывают открытой и скрытой установки, соответственно, групп значков тоже две. Различие — положение черты на изображении клавиши. Чтобы на схеме понимать о каком именно типе выключателя идет речь, это надо помнить.

Есть отдельные обозначения для двухклавишных и трехклавшных выключателей. В документации они называются «сдвоенные» и «строенные» соответственно. Есть отличия и для корпусов с разной степенью защиты. В помещения с нормальными условиями эксплуатации ставят выключатели с IP20, может до IP23. Во влажных комнатах (ванная комната, бассейн) или на улице степень защиты должна быть не ниже IP44. Их изображения отличаются тем, что кружки закрашены. Так что их отличить просто.

Условные обозначения выключателей на чертежах и схемах

Есть отдельные изображения для переключателей. Это выключатели, которые позволяют управлять включением/выключением света из двух точек (есть и из трех, но без стандартных изображений).

В обозначениях розеток и розеточных групп наблюдается та же тенденция: есть одинарные, сдвоенные розетки, есть группы из нескольких штук. Изделия для помещений с нормальными условиями эксплуатации (IP от 20 до 23) имеют неокрашенную середину, для влажных с корпусом повышенной защиты (IP44 и выше) середина тонируется темным цветом.

Условные обозначения в электрических схемах: розетки разного типа установки (открытого, скрытого)

Поняв логику обозначения и запомнив некоторые исходные данные (чем отличается условное изображение розетки открытой и скрытой установки, например), через некоторое время вы уверенно сможете ориентироваться в чертежах и схемах.

Светильники на схемах

В этом разделе описаны условные обозначения в электрических схемах различных ламп и светильников. Тут ситуация с обозначениями новой элементной базы лучше: есть даже знаки для светодиодных ламп и светильников, компактных люминесцентных ламп (экономок). Неплохо также что изображения ламп разного типа значительно отличаются — перепутать сложно. Например, светильники с лампами накаливания изображают в виде кружка, с длинными линейными люминесцентными — длинного узкого прямоугольника. Не очень велика разница в изображении линейной лампы люминесцентного типа и светодиодного — только черточки на концах — но и тут можно запомнить.

Изображение ламп (накаливания, светодиодных, галогенных) и светильников (потолочных, встроенных, навесных) на схемах

В стандарте есть даже условные обозначения в электрических схемах для потолочного и подвесного светильника (патрона). Они тоже имеют довольно необычную форму — круги малого диаметра с черточками. В общем, в этом разделе ориентироваться легче чем в других.

Элементы принципиальных электрических схем

Принципиальные схемы устройств содержат другую элементную базу. Линии связи, клеммы, разъемы, лампочки изображаются также, но, кроме того, присутствует большое количество радиоэлементов: резисторов, емкостей, предохранителей, диодов, тиристоров, светодиодов. Большая часть условных обозначений в электрических схемах этой элементной базы приведена на рисунках ниже.

Обозначение электрических элементов на схемах устройств

 

Изображение радиоэлементов на схемах

Более редкие придется искать отдельно. Но в большинство схем содержит эти элементы.

 

 

Буквенные условные обозначения в электрических схемах

Кроме графических изображений элементы на схемах подписываются. Это также помогает читать схемы. Рядом с буквенным обозначением элемента часто стоит его порядковый номер. Это сделано для того чтобы потом легко было найти в спецификации тип и параметры.

Буквенные обозначения элементов на схемах: основные и дополнительные

В таблице выше приведены международные обозначения. Есть и отечественный стандарт — ГОСТ 7624-55. Выдержки оттуда с таблице ниже.

Буквенно цифровые обозначения в схемах

Условные обозначения на схемах электроснабжения • Energy-Systems

 

Особенности условных обозначений на электрических схемах

Условные обозначения на схемах электроснабжения могут ввести в замешательство любого человека, далекого от данной сферы, в то же время, специалистам нужно уметь читать и составлять даже самые сложные чертежи, так как на их основе будет строиться вся электрическая система здания. Именно поэтому в работе с электропроектом не должно быть допущено никаких ошибок.

В России первые условные обозначения в сфере электрики появились еще в эпоху Советского Союза. Важно отметить, что в те времена сфера электроники и электротехники являлась одним из важных направлений работы военно-промышленного комплекса государства, а потому ей уделялось значительное внимание.

Пример проекта электроснабжения дома

Назад

1из20

Вперед

В какой-то момент специалисты поняли, что для графического изображения электрических сетей должны быть использованы универсальные знаки и было принято решение о необходимости создания общепринятых обозначений для всех элементов цепи. Именно этим и занялась Государственная комиссия стандартизации, подготовив первые нормы для электрической документации. В 1974 году появились нормы ГОСТа, регламентирующие основные обозначения на схемах электропроводки. Впоследствии эти нормы неоднократно подвергались переработке, в них вносились значительные изменения, но даже сегодня в основе действующих правил лежат именно те решения.

Следует отметить, что кратко описать основные принципы построения электрических схем и используемые для этого условные обозначения, попросту невозможно. Действующий документ ГОСТа, касающийся этого вопроса, содержит в себе громадное количество информации, изучаемой специалистами в процессе получения требуемой квалификации. Мы будем рассматривать только наиболее часто встречающиеся обозначения на схемах, для самого распространенного оборудования и элементов электрической сети. В таблице ниже представлены условные обозначения электрощитов, шкафов и других подобных элементов системы.

Обозначения электрической проводки на схемах

Основой любой электрической системы являются кабели и провода, через которые проходит электрический ток к потребителям энергии. Большинство кабелей на схемах электропроводки обозначаются линиями, соединяющими различные элементы цепи, к примеру, электрический щит, распределительную коробку и розетки в комнате.

Действующие нормы и правила составления электрических чертежей требуют делить всю электрическую проводку здания или сооружения на три основные группы – провода, электрические связи и кабели, причем, каждая из таких групп должна отображаться на схеме различными графическими обозначениями, расшифровка которых обязательно должна присутствовать в пояснительной документации, это важное требование для согласования электропроекта.

Обозначения на схемах выключателей и розеток

Каждому пользователю электрической сети прекрасно известно, что такое розетка и выключатель. Розетка предназначена для присоединения к электрической сети различных приборов, с возможностью ручного разрыва связи. Выключатели требуются для управления системой освещения любого строения.

Обозначения на схемах электроснабжения розеток и выключателей, также регламентируется нормами ГОСТа, вступившими в силу в 1974 году. Если говорить о розетках, то действующие правила выделяют в таком оборудовании 3 основные группы по методу установки: скрытые, открытые, а также блоки, содержащие розетку и выключатель.

Каждая группа включает в себя различные виды электрических устройств, выделяют розетки однополюсные, двухполюсные, трехполюсные, двух- и трех полюсные с защитой контакта.

Выключатели на схемах электрики также имеют различные обозначения, в зависимости от типа и характеристик устройства. По конструктивным особенностям, выключатели разделяют на одно-, двух-, трехполюсные, а также выделяют группы однополюсных сдвоенных и строенных выключателей.

На электрических схемах должны обозначаться все элементы электрической системы, в том числе и оборудование, предназначенное для освещения комнат. В таблице выше представлены общепринятые обозначения для используемых на схемах светильников и прожекторов при раздельном составлении проекта.

Несмотря на то, что электронные схемы для дома могут работать только за счет проводов, выключателей, розеток и светильников, такие сети невозможно назвать надежными и безопасными для человека. Современные правила организации электрических установок требуют использования дополнительного оборудования для защиты системы и обеспечения ее продолжительного, бесперебойного функционирования, а именно – устройства защиты, автоматические выключатели и т.д.

Ниже вы можете воспользоваться онлайн-калькулятором для расчёта стоимости проектирования сетей электроснабжения:

Онлайн расчет стоимости проектирования

Условные обозначения на электрических схемах (ГОСТ), как правтльно читать

Электрическая схема – это один из видов технических чертежей, на котором указываются различные электрические элементы в виде условных обозначений. Каждому элементу присвоено своё обозначение.

Все условные (условно-графические) обозначения на электрических схемах состоят из простых геометрических фигур и линий. Это окружности, квадраты, прямоугольники, треугольники, простые линии, пунктирные линии и т.д. Обозначение каждого электрического элемента состоит из графической части и буквенно-цифровой.

Благодаря огромному количеству разнообразных электрических элементов появляется возможность создавать очень подробные электрические схемы, понятные практически каждому специалисту в электрической области.

Каждый элемент на электрической схеме должен выполняться в соответствие с ГОСТ. Т.е. кроме правильного отображения графического изображения на электрической схеме должны быть выдержаны все стандартные размеры каждого элемента, толщина линий и т.д.

Существует несколько основных видов электрических схем. Это схема однолинейная, принципиальная, монтажная (схема подключений). Также схемы бывают общего вида – структурные, функциональные. У каждого вида своё назначение. Один и тот же элемент на разных схемах может обозначаться и одинаково, и по-разному.

Графические обозначения на однолинейной схеме

Основное назначение однолинейной схемы – графическое отображение системы электрического питания (электроснабжение объекта, разводка электричества в квартире и т.д.). Проще говоря, на однолинейной схеме изображается силовая часть электроустановки. По названию можно понять, что однолинейная схема выполняется в виде одной линии. Т.е. электрическое питание (и однофазное, и трёхфазное), подводимое к каждому потребителю, обозначается одинарной линией.

Чтобы указать количество фаз, на графической линии используются специальные засечки. Одна засечка обозначает, что электрическое питание однофазное, три засечки – что питание трёхфазное.

Кроме одинарной линии используются обозначения защитных и коммутационных аппаратов. К первым аппаратам относятся высоковольтные выключатели (масляные, воздушные, элегазовые, вакуумные), автоматические выключатели, устройства защитного отключения, дифференциальные автоматы, предохранители, выключатели нагрузки. Ко вторым относятся разъединители, контакторы, магнитные пускатели.

Высоковольтные выключатели на однолинейных схемах изображаются в виде небольших квадратов. Что касается автоматических выключателей, УЗО, дифференциальных автоматов, контакторов, пускателей и другой защитной и коммутационной аппаратуры, то они изображаются в виде контакта и некоторых поясняющих графических дополнений, в зависимости от аппарата.

Графические обозначения на монтажной схеме

Монтажная схема (схема соединения, подключения, расположения) используется для непосредственного производства электрических работ. Т.е. это рабочие чертежи, используя которые, выполняется монтаж и подключение электрооборудования. Также по монтажным схемам собирают отдельные электрические устройства (электрические шкафы, электрические щиты, пульты управления,  и т.д.).

На монтажных схемах изображают все проводные соединения как между отдельными аппаратами (автоматические выключатели, пускатели и др.), так и между разными видами электрооборудования (электрические шкафы, щитки и т.д.). Для правильного подключения проводных соединений на монтажной схеме изображаются электрические клеммники, выводы электрических аппаратов, марка и сечение электрических кабелей, нумерация и буквенное обозначение отдельных проводов.

Графические обозначения на принципиальной схеме

Схема электрическая принципиальная – наиболее полная схема со всеми электрическими элементами, связями, буквенными обозначениями, техническими характеристиками аппаратов и оборудования. По принципиальной схеме выполняют другие электрические схемы (монтажные, однолинейные, схемы расположения оборудования и др.). На принципиальной схеме отображаются как цепи управления, так и силовая часть.

Цепи управления (оперативные цепи) – это кнопки, предохранители, катушки пускателей или контакторов, контакты промежуточных и других реле, контакты пускателей и контакторов, реле контроля фаз (напряжения) а также связи между этими и другими элементами.

На силовой части изображаются автоматические выключатели, силовые контакты пускателей и контакторов, электродвигатели и т.д.  

Кроме самого графического изображения каждый элемент схемы снабжается буквенно-цифровым обозначением. Например, автоматический выключатель в силовой цепи обозначается QF. Если автоматов несколько, каждому присваивается свой номер: QF1, QF2, QF3 и т.д. Катушка (обмотка) пускателя и контактора обозначается KM. Если их несколько, нумерация аналогичная нумерации автоматов: KM1, KM2, KM3 и т.д.

В каждой принципиальной схеме, если есть какое-либо реле, то обязательно используется минимум один блокировочный контакт этого реле. Если в схеме присутствует промежуточное реле KL1, два контакта которого используются в оперативных цепях, то каждый контакт получает свой номер. Номер всегда начинается с номера самого реле, а далее идёт порядковый номер контакта. В данном случае получается KL1.1 и KL1.2. Точно также выполняются обозначения блок-контактов других реле, пускателей, контакторов, автоматов и т.д.

В схемах электрических принципиальных кроме электрических элементов очень часто используются и электронные обозначения. Это резисторы, конденсаторы, диоды, светодиоды, транзисторы, тиристоры и другие элементы. Каждый электронный элемент на схеме также имеет своё буквенное и цифровое обозначение. Например, резистор – это R (R1, R2, R3…). Конденсатор – C (C1, C2, C3…) и так по каждому элементу.

Кроме графического и буквенно-цифрового обозначения на некоторых электрических элементах указываются технические характеристики. Например, для автоматического выключателя это номинальный ток в амперах, ток срабатывания отсечки тоже в амперах. Для электродвигателя указывается мощность в киловаттах.

Для правильного и корректного составления электрических схем любого вида необходимо знать обозначения используемых элементов, государственные стандарты, правила оформления документации.

Условные обозначения в электрических схемах (УГО) графические и буквенные по ГОСТ

Условные графические обозначения (УГО) элементов электрических схем проектов электроснабжения необходимы для упрощения понимания содержания документации. Символы и УГО на однолинейных схемах электроснабжения помогают проектировщикам и монтажникам без применения дополнительных манипуляций правильно читать графические чертежи.

Умение понимать обозначения на электрических схемах – одна из ключевых составляющих, без которой невозможно стать грамотным специалистом. На начальном этапе все проектировщики, монтажники, а также инженеры сектора ПТО и сметчики должны изучить техническую документацию, ознакомиться с действующими ГОСТами для составления и понимания содержания проектов. Главный документ ГОСТ 2.702-2011 – правила составления электросхем в единой системе конструкторской документации (ЕСКД).

Однолинейная схема электроснабжения

Условно-графические обозначения в электросхемах ГОСТ незаменимы при проектировании вводно-распределительных устройств, распределительных подстанций, шкафов управления и учета, этажных щитов, блок-схем и схем замещения.

Полные данные по условно-графическим и буквенным обозначениям можно скачать в файле.

Обозначения розеток и выключателей на чертежах

Проект внутреннего электроснабжения – совокупность схем и чертежей силовых розеточных сетей и сети освещения. В электропроводках используют однополюсные, двухполюсные и трехполюсные выключатели. Бывают для открытой и скрытой проводки, с различными степенями защиты – для нормальных условий эксплуатации, влаго- пылезащищенные и т.д. Трех- и двухклавишные устройства также имеют визуальные различия на электросхемах. что важно при составлении ведомостей потребности материалов. В противном случае из-за невнимательности инженера повышается риск закупки неподходящего либо более дорогостоящего оборудования.

Также узел может быть совмещенным – одна розетка и несколько бытовых выключателей, сдвоенные включатели или розетки. УГО переключателя схоже на обычный выключатель, имеет два направления действия, что отображено на схемах.

Обозначение выключателей на схемах

 

Распределительные коробки на схеме обозначаются аналогично.

Обозначения выключателей на схемах

Выключатели – самое распространенное устройство в электротехнике, т.к. выполняет главные функции – включения и выключения цепей.

На электросхемах подстанций всегда указываются, какие цепи в нормальном режиме должны быть разомкнуты (резервные), а какие запитаны – основные линии.

Магнитные контакторы имеет схожее с автоматическим выключателем изображение.  Ввиду различий принципа действия  и более широко функционала имеет соответствующее УГО.

Предохранители конструктивно и технически отличаются от автоматических выключателей. Имеют более широкий спектр применения – чаще используются для электроснабжения промышленных объектов ввиду более высокой надежности и меньшей рыночной стоимости. На однолинейных схемах выполнены в виде прямоугольника с продольной чертой посреди – изображение плавкой вставки.

Обозначение трехполюсного рубильника на однолинейной схеме имеет кардинальные отличия от однополюсных моделей.

На принципиальных электросхемах содержится другая информация и содержат другую элементную базу. Для правильного чтения технической документации  необходимо помнит разницу между однолинейной и принципиальной электросхемами: последняя содержит информацию о наличии элементов, без указания их физического расположения.

Как обозначаются трансформаторы на схемах

Для каждого вида трансформатора есть отдельное УГО. Используются на первичных, однолинейных схемах, опросных листах, листах расчетов токов короткого замыкания и т.д.

Обозначение заземлений на схемах

Заземление на электросхемах выполняют в зависимости от типа. Заземляющие контуры используются абсолютно на всех электрических схемах, т.к. главным свойством нормальной работы электросети является ее безопасность.

Общее заземление
Чистое (бесшумное) заземление
Защитное заземление

Буквенные обозначения на электрических схемах

На электросхемах применяется буквенная аббревиатура на латинице, где виды элементов указывают одной буквой. Многобуквенная кодировка используется для уточнения кода конкретного  элемента. Первая буква в таких обозначениях всегда указывает на тип устройства.

Устройства общего назначения имеют код A. К ним относят мазеры усилители различного рода и т.д.

Буквой B на электросхемах выполняют преобразователи неэлектрической величины в электрическую (микрофоны, фотоэлементы, тепловые датчики, пьезоэлементы, датчики давления, датчики скорости, звукосниматели, детекторы).

С – конденсаторы.

Схемы интегральные, микросборки обозначают символом D. К ним относят логические элементы, интегральные схемы аналоговые и цифровые, устройства задержки и хранения информации.

Элементы различного назначения (электрические лампочки, пиропатроны, элементы нагрева) идентифицируют символом E.

Предохранители, разрядники, дискретные элементы защиты по току мгновенного и инерционного действия, по напряжению и др. кодируются буквой F.

G – батареи и другие источники питания.

H – индикаторы и сигнальные элементы (приборы световой, символьной  и звуковой сигнализации).

Буквой K обозначают реле на схеме (токовые, электротепловые, указательные) времени и напряжения, магнитные пускатели.

Дроссели и катушки индуктивности имеют обозначение L.

M – буквенное обозначение двигателей постоянного и переменного тока.

Измерительные приборы (измерители импульсов, амперметры, счетчики активной и реактивной электроэнергии, вольтметры, фиксаторы времени, омметры, ваттметры) идентифицируют буквой P, за исключением аббревиатуры PE.

Q – обозначения в электротехнике короткозамыкателей, разъединителей и автоматов в силовых цепях.

На однолинейных схемах резисторы обозначают символом R (шунты, варисторы, терморезисторы, потенциометры).

S – обозначение на схеме автоматических выключателей без контактов силовых цепей, коммутационных устройств (кнопочные выключатели, пакетные переключатели).

T – трансформаторы (тока, напряжения), автотрансформаторы, электромагнитные стабилизаторы.

U – преобразователи (модуляторы и демодуляторы), устройства связи, выпрямители, инверторы, генераторы частоты.

V – полупроводники (диоды, тиристоры, транзисторы), электровакуумные приборы.

Антенны, элементы сверх высоких частот (ответвители, короткозамыкатели, вентили, фазовращатели, трансформаторы) имеют условный символ W.

X – контактные соединения и соединители (гнезда, штыри, токосъемники).

Устройства механические с электромагнитным приводом (электромагниты, тормоза, муфты, электромагнитные плиты и патроны) идентифицируются символом Y.

Z – фильтры, ограничители.

Символьное обозначение применяется на равне с графическим, на узкопрофильных электросхемах используются оба типа одновременно. Буквенные обозначения элементов на зарубежных схемах аналогичны. Для лучшего запоминания каждому специалисту необходима своя таблица электрика, с описаниями именно тех элементов, которые используются в работе.

Условные обозначения однолинейных электрических схем

Графические

Что касается графического обозначения всех элементов, используемых на схеме, этот обзор мы предоставим в виде таблиц, в которых изделия будут сгруппированы по назначению.

В первой таблице Вы можете увидеть, как отмечены электрические коробки, щиты, шкафы и пульты на электросхемах:

Следующее, что Вы должны знать – условное обозначение питающих розеток и выключателей (в том числе проходных) на однолинейных схемах квартир и частных домов:

Что касается элементов освещения, светильники и лампы по ГОСТу указывают следующим образом:

В более сложных схемах, где применяются электродвигатели, могут указываться такие элементы, как:

Также полезно знать, как графически обозначаются трансформаторы и дроссели на принципиальных электросхемах:

Электроизмерительные приборы по ГОСТу имеют следующее графические обозначение на чертежах:

А вот, кстати, полезная для начинающих электриков таблица, в которой показано, как выглядит на плане электропроводки контур заземления, а также сама силовая линия:

Помимо этого на схемах Вы можете увидеть волнистую либо прямую линию, «+» и «-», которые указывают на род тока, напряжение и форму импульсов:

В более сложных схемах автоматизации Вы можете встретить непонятные графические обозначения, вроде контактных соединений. Запомните, как обозначаются этим устройства на электросхемах:

Помимо этого Вы должны быть в курсе, как выглядят радиоэлементы на проектах (диоды, резисторы, транзисторы и т.д.):

Вот и все условно графические обозначения в электрических схемах силовых цепей и освещения. Как уже сами убедились, составляющих довольно много и запомнить, как обозначается каждый можно только с опытом. Поэтому рекомендуем сохранить себе все эти таблицы, чтобы при чтении проекта планировки проводки дома либо квартиры Вы могли сразу же определить, что за элемент цепи находится в определенном месте.

Интересное видео по теме:

Буквенные

Мы уже рассказывали Вам, как расшифровать маркировку проводов и кабелей. В однолинейных электросхемах также присутствуют свои буквы, которые дают понять, что включено в сеть. Итак, согласно ГОСТ 7624-55, буквенное обозначение элементов на электрических схемах выглядит следующим образом:

  1. Реле тока, напряжения, мощности, сопротивления, времени, промежуточное, указательное, газовое и с выдержкой по времени, соответственно – РТ, РН, РМ, РС, РВ, РП, РУ, РГ, РТВ.
  2. КУ – кнопка управления.
  3. КВ – конечный выключатель.
  4. КК – командо-контроллер.
  5. ПВ – путевой выключатель.
  6. ДГ – главный двигатель.
  7. ДО – двигатель насоса охлаждения.
  8. ДБХ – двигатель быстрых ходов.
  9. ДП – двигатель подач.
  10. ДШ – двигатель шпинделя.

Помимо этого в отечественной маркировке элементов радиотехнических и электрических схем выделяют следующие буквенные обозначения:

На этом краткий обзор условных обозначений в электрических схемах закончен. Надеемся, теперь Вы знаете, как обозначаются розетки, выключатели, светильники и остальные элементы цепи на чертежах и планах жилых помещений.

Также читают:

Время чтения: 6 минут Нет времени?

Отправим материал вам на e-mail

В соответствии с «Правилами технической эксплуатации электроустановок потребителей», однолинейная схема электроснабжения − это один из видов исполнительной документации, которая должна быть в наличии у организации и частного лица, эксплуатирующих электросети и оборудование в обязательном порядке. В этой статье редакции HomeMyHome.ru подробно расскажем о том, что представляет собой такая схема, что она должна включать в себя, а также правила её оформления согласно всем нормативным документам.

Однолинейная схема электроснабжения загородного дома

Что такое однолинейная схема электроснабжения и зачем нужна

Однолинейная схема электроснабжения является техническим документом, на котором отображаются все элементы электрической сети объекта с указанием их характеристик и параметров, а также установленная и расчётная мощности объекта в целом. Термин «однолинейная» означает, что все электрические соединения, существующие на объекте, вне зависимости от их фазности, на схеме отображаются одной линией. Правила оформления однолинейных схем регламентированы ГОСТ 2.702-2011 «Единая система конструкторской документации (ЕСКД). Правила выполнения электрических схем». Основное предназначение подобной исполнительной документации – информативность и предоставление визуального восприятия о конфигурации электрической сети объекта, необходимого для принятия решений при эксплуатации энергетич

Обозначение розеток и выключателей на строительных чертежах и электрических схемах.

Любое строительный процесс или монтаж электрических цепей зданий и сооружений начинается с проекта. Для удобства ориентации в многочисленных типах монтируемого оборудования, а также для исключения монтажных ошибок, существуют условные обозначения. Не обязательно их все запоминать. Достаточно знать нормативные документы, в которые можно заглянуть при возникновении трудной ситуации. Рассмотрим, как выяснить, где на чертеже розетки и выключатели.

Регламентирующие документы

Главным строительным или монтажным документом является проект. СНиПы и ГОСТы — более глобальные документы, распространяющие свой регламент в масштабах государства или отрасли. Проект — это более узкий, в этом плане, документ. Он распространяет свой регламент на конкретный объект.

Проект должен быть универсальным в плане понимания условных обозначений всеми категориями специалистов, осуществляющих монтаж. Для этого и разработаны государственные и отраслевые нормативные документы, регламентирующие вид условных обозначений всех категорий монтируемого оборудования и его элементов (СНиПы и ГОСТы).

Электрооборудование также имеет условные обозначения.

Существует две основных разновидности обозначений электрооборудования:

  • Условное обозначение электрооборудования (в частности, розеток и выключателей) на строительных чертежах.
  • Условное обозначение электрооборудования на электрических схемах.

Такие обозначения имеют существенную разницу. Поэтому их следует рассмотреть по отдельности. Но прежде необходимо разобраться в нормативных документах, которые устанавливают правила в соответствии графических обозначений тому или иному электрическому оборудованию.

В настоящее время на территории России действует следующий стандарт:

ГОСТ 21.614–88 «Изображения условные графические электрооборудования и проводок на планах» из раздела «Система проектной документации для строительства».

Этот государственный стандарт введён в действие ещё в 1988 году.

Условные графические обозначения электрооборудования

Только этот документ регламентирует графические обозначения электрооборудования на планах, схемах и чертежах. В частности, изображения бытовых и промышленных выключателей, розеток.

Другое электротехническое оборудование (их условные графические обозначения) стандартизированы другим документом:

ГОСТ 2.721–74 «Обозначения условные графические в схемах».

Электрические схемы силовых и оперативных цепей электрооборудования составлены с использованием графических обозначений, указанных в этом ГОСТе.

Условные обозначения электрооборудования

Обозначение розеток

Существуют розетки различных типов и назначения. Их исполнение зависит от класса напряжения, степени защищённости, наличия заземляющих контактов, способа монтажа и прочее. Рассмотрим поэтапно графические условные обозначения для каждого типа розеток.

На строительных планах, схемах, чертежах условное графическое обозначение розеток для скрытой проводки выполняется следующим образом:

Общее условное графическое изображение розеток

Графическое условное обозначение для розеток открытой проводки выполнено следующим образом:

Общее условное графическое изображение розеток

Условные графические обозначения розеток влагозащищенного исполнения на схемах и строительных чертежах выполняются следующим образом:

Общее условное графическое изображение розеток

В кодировке IP, изображённой на электрооборудовании, зашифрован показатель степени защиты корпуса оборудования от механических повреждений токоведущих частей и попадания на них влаги. IP — заглавные буквы выражения Ingress Protection Rating (англ. — степень защиты от проникновения). Классификация электрооборудования, согласно этого показателя, соответствует международным стандартам IEC 60529, DIN 40050, а также ГОСТ-14254.

Кодировка степени защиты составляется таким образом:

IP X1X2 AM где:

Х1 — цифра, характерезующая степень защиты токоведущих частей оборудования от попадания твёрдых частиц;

X2 — цыфра, характерезующая степень защиты токоведущих частей оборудования от попадания влаги;

АМ — буквы, характеризующие степень защиты оборудования от проникновения людей к токоведущим частям. Первая буква может быть А, И, С, D. Каждая из них имеет свои характеристики. Вторая буква несёт дополнительную информацию, например, о классе рабочего напряжения, об испытаниях оборудования и другое. Эта буква может быть Н, М, S, W.

Для удобства ориентации в кодировке степени защиты приведена справочная таблица.

Характеристики электрооборудования, согласно кодировке IP.

Справочная таблица

Графические обозначения выключателей

Выключатели, как и розетки, классифицируются по своему исполнению. Которое, в свою очередь, зависит от класса рабочего напряжения выключателя, способа установки, степени защиты и другого.

Основные типы выключателей и их условные графические обозначения на строительных планах, чертежах и схемах приведены ниже.

Обозначение основных типов выключателей

Наглядный пример:

Условные обозначения выключателей

Международная классификация IP распространяется на выключатели аналогично розеткам.

Отдельного внимания заслуживает комбинированное электрооборудование. Для рассматриваемого оборудования — это совмещённый блок из розетки и выключателя. Он также имеет своё условное графическое обозначение.

Совмещенное электрооборудование

Условные символы на электрических схемах

С электрическими схемами проще. Классификация выключателей и розеток по их исполнению в этом случае не особо учитывается. Рассматриваемое электрооборудование имеет такие условные графические обозначения.

Обозначения электрооборудования

Для обозначения защитных автоматических выключателей на электрических схемах приняты такие условные обозначения.

Условное графическое обозначение

Трёхполюсные и четырёхполюсные автоматические выключатели имеют такое обозначение.

Условное обозначение

А также, в качестве примера, ниже приведена электрическая схема электроснабжения помещения или постройки. На схеме обозначен вводной трёхполюсный автоматический выключатель 380 В, от которого фазные провода отходят на группу из двенадцати однополюсных автоматических выключателей. Эти выключатели формируют разветвлённую и защищённую электрическую цепь 220 В.

Условные обозначения выключателей (автоматических) на электрической схеме

Современное электрооборудование обновляется новыми разработками с внушительной скоростью. Учитывая это, возникает ситуация, в которой разработка новых условных обозначений и утверждение современных государственных стандартов — отстающий процесс. Поэтому не страшно, если для специфического электрооборудования нет графического условного обозначения. Для его обозначения выбирается максимально приближенное по смыслу. А в разделе условных обозначений проекта вносится уточнение по этому поводу.

Дмитрий. 29 лет. Образование — инженер-механик. Работаю в горнодобывающей промышленности. Оцените статью: Поделитесь с друзьями!

Условные обозначения на схемах электроснабжения

В какой-то момент специалисты поняли, что для графического изображения электрических сетей должны быть использованы универсальные знаки и было принято решение о необходимости создания общепринятых обозначений для всех элементов цепи. Именно этим и занялась Государственная комиссия стандартизации, подготовив первые нормы для электрической документации. В 1974 году появились нормы ГОСТа, регламентирующие основные обозначения на схемах электропроводки. Впоследствии эти нормы неоднократно подвергались переработке, в них вносились значительные изменения, но даже сегодня в основе действующих правил лежат именно те решения.

Следует отметить, что кратко описать основные принципы построения электрических схем и используемые для этого условные обозначения, попросту невозможно. Действующий документ ГОСТа, касающийся этого вопроса, содержит в себе громадное количество информации, изучаемой специалистами в процессе получения требуемой квалификации. Мы будем рассматривать только наиболее часто встречающиеся обозначения на схемах, для самого распространенного оборудования и элементов электрической сети. В таблице ниже представлены условные обозначения электрощитов, шкафов и других подобных элементов системы.

Обозначения электрической проводки на схемах

Основой любой электрической системы являются кабели и провода, через которые проходит электрический ток к потребителям энергии. Большинство кабелей на схемах электропроводки обозначаются линиями, соединяющими различные элементы цепи, к примеру, электрический щит, распределительную коробку и розетки в комнате.

Действующие нормы и правила составления электрических чертежей требуют делить всю электрическую проводку здания или сооружения на три основные группы – провода, электрические связи и кабели, причем, каждая из таких групп должна отображаться на схеме различными графическими обозначениями, расшифровка которых обязательно должна присутствовать в пояснительной документации, это важное требование для согласования электропроекта.

Обозначения на схемах выключателей и розеток

Каждому пользователю электрической сети прекрасно известно, что такое розетка и выключатель. Розетка предназначена для присоединения к электрической сети различных приборов, с возможностью ручного разрыва связи. Выключатели требуются для управления системой освещения любого строения.

Обозначения на схемах электроснабжения розеток и выключателей, также регламентируется нормами ГОСТа, вступившими в силу в 1974 году. Если говорить о розетках, то действующие правила выделяют в таком оборудовании 3 основные группы по методу установки: скрытые, открытые, а также блоки, содержащие розетку и выключатель.

Каждая группа включает в себя различные виды электрических устройств, выделяют розетки однополюсные, двухполюсные, трехполюсные, двух- и трех полюсные с защитой контакта.

Выключатели на схемах электрики также имеют различные обозначения, в зависимости от типа и характеристик устройства. По конструктивным особенностям, выключатели разделяют на одно-, двух-, трехполюсные, а также выделяют группы однополюсных сдвоенных и строенных выключателей.

На электрических схемах должны обозначаться все элементы электрической системы, в том числе и оборудование, предназначенное для освещения комнат. В таблице выше представлены общепринятые обозначения для используемых на схемах светильников и прожекторов при раздельном составлении проекта.

В случаях отображения элементов освещения на совмещенных планах, для обозначения элементов системы освещения могут применяться обозначения, представленные в следующей таблице.

Несмотря на то, что электронные схемы для дома могут работать только за счет проводов, выключателей, розеток и светильников, такие сети невозможно назвать надежными и безопасными для человека. Современные правила организации электрических установок требуют использования дополнительного оборудования для защиты системы и обеспечения ее продолжительного, бесперебойного функционирования, а именно – устройства защиты, автоматические выключатели и т.д.

Ниже вы можете воспользоваться онлайн-калькулятором для рассчёта стоимости проектирования сетей электроснабжения:

Стандартные условные графические и буквенные обозначения элементов электрических схем.

С ДРУГОГО САЙТА:

Условные графические обозначения в электрических схемах


Рано или поздно, занимаясь проведением электромонтажных или электроремонтных работ приходиться иметь дело с электрическими схемами, которые содержат множество буквенно-цифровых и условно графических обозначений. О последних и пойдет разговор в этой статье. Существует большое количество видов элементов электрических схем, имеющих самые разные функции, поэтому, нет единого документа, определяющего правильность графического обозначения всех элементов, которые можно встретить на схемах. Ниже, в таблицах приведены некоторые примеры условных графических изображений электрооборудования и проводок, элементов электрических цепей на схемах, взятых из различных действующих в настоящее время документов. Скачать бесплатно нужный ГОСТ целиком можно, перейдя по ссылкам внизу страницы.

Скачать бесплатно ГОСТ

  • ГОСТ 21.614Изображения условные графические электрооборудования и проводок в оригинале

  • ГОСТ 2.722-68Обозначения условные графические в схемах. Машины электрические

  • ГОСТ 2.723-68 Обозначения условные графические в схемах. Катушки индуктивности, реакторы, дроссели, трансформаторы, автотрансформаторы и магнитные усилители

  • ГОСТ 2.729-68 Обозначения условные графические в схемах. Приборы электроизмерительные

  • ГОСТ 2.755-87 Обозначения условные графические в схемах. Устройства коммутационные и контактные соединения

Скачать книгу.

Обозначения буквенно-цифровые в электрических схемах (ГОСТ 2.710 – 81)

Буквенные коды элементов приведены в таблице. Позиционные обозначения элементам (устройствам) присваивают в пределах изделия. Порядковые номера элементам (устройствам) следует присваивать, начиная с единицы , в пределах группы элементов , имеющих одинаковый буквенный код в соответствии с последовательностью расположения элементов или устройств на схеме сверху вниз в направлении слева направо.

Позиционные обозначения проставляют на схеме рядом с условным графическим обозначением элементов или устройств с правой стороны или над ними. Цифры и буквы, входящие в позиционное обозначение выполняются одного размера.

Преобразователи неэлектрических величин в электрические
(кроме генераторов и источников питания) или наоборот

Схемы интегральные,
микросборки

Разрядники,предохранители,
устройства защитные

Элементы индикаторные и сигнальные

Реле, контакторы, пускатели

Приборы, измерительное оборудование

Выключатели и разъединители в силовых цепях

Устройства коммутационные в цепях управления, сигнализации и измерительных

Примечание. Обозначение применяют для аппаратов не имеющих контактов силовых цепей

Приборы электровакуумные и полупроводниковые

Устройства механические с электромагнитным приводом

Однобук- венный кодГруппы видов элементовПримеры видов элементовДвухбук- венный код
AУстройства (общее обозначение)
Сельсин – приемникBE
Сельсин – датчикBC
Тепловой датчикBK
ФотоэлементBL
Датчик давленияBP
ТахогенераторBR
Датчик скоростиBV
CКонденсаторы
Схема интегральная,аналоговаяDA
Схема интегральная,цифровая, логический элементDD
Устройство задержкиDT
Устройство хранения информацииDS
Нагревательный элементEK
Лампа осветительнаяEL
Дискретный элемент защиты по току мгновенного действияFA
Дискретный элемент защиты по току инерционного действияFP
Дискретный элемент защиты по напряжениюFV
ПредохранительFU
GГенераторы, источники питанияБатареяGB
Прибор звуковой сигнализацииHA
Индикатор символьныйHG
Прибор световой сигнализацииHL
Реле указательноеKH
Реле токовоеKA
Реле электротепловоеKK
Контактор, магнитный пускательKM
Реле поляризованноеKP
Реле времениKT
Реле напряженияKV
LКатушки индуктивности,дросселиДроссель люминисцентного освещенияLL
MДвигатели
АмперметрPA
Счётчик импульсовPC
ЧастотометрPF
Счётчик реактивной энергииPK
Счётчик активной энергииPI
ОмметрPR
Регистрирующий приборPS
Измеритель времени, часыPT
ВольтметрPV
ВаттметрPW
Выключатель автоматическийQF
РазъединительQS
ТермисторRK
ПотенциометрRP
Шунт измерительныйRS
ВаристорRU
Выключатель или переключательSA
Выключатель кнопочныйSB
Выключатель автоматическийSF
Выключатели, срабатывающие от различных воздействий: -от уровняSL
-от давленияSP
-от положенияSQ
-от частоты вращенияSR
-от температурыSK
Трансформатор токаTA
Трансформатор напряженияTV
СтабилизаторTS
UПреобразователи электрических величин в электрическиеПреобразователь частоты, инвертор, выпрямительUZ
Диод, стабилитронVD
Приборы электровакуумныеVL
ТранзисторVT
ТиристорVS
ТокосъёмникXA
ШтырьXP
ГнездоXS
Соединения разборныеXT
ЭлектромагнитYA
Тормоз с электромагнитным приводомYB
Электромагнитная плитаYH

Дата добавления: 2018-02-15 ; просмотров: 15001 ; ЗАКАЗАТЬ РАБОТУ

{SOURCE}

Computer Power Supply — Схема и работа

Все электронные системы и оборудование, независимо от их размера или функции, имеют одну общую черту: всем им нужен блок питания (PSU), который преобразует входное напряжение в напряжение или напряжения, подходящие для их схем. Наиболее распространенным типом современных блоков питания является импульсный блок питания ( SMPS ). Существует множество топологий SMPS и их практических реализаций, используемых производителями блоков питания. Однако все они используют одни и те же базовые концепции.На этой странице объясняются принципы работы импульсного источника питания и рассматриваются его основные части и функции. Это руководство может быть полезно системным интеграторам, любителям и тем, кто не обязательно является экспертом в области силовой электроники.

Это концептуальная принципиальная схема силовой передачи типичного компьютерного блока питания ATX. На этой схеме не показана схема управления, поэтому вы видите, что все затворы MOSFET и базы транзисторов открыты. Для ясности, части, отвечающие за различные вспомогательные функции, такие как ограничение тока, управление вентилятором и защиту от перенапряжения, которые не являются существенными для изучения основных концепций преобразования мощности, также не показаны.Для полной схемы см., Например, эту аннотированную схему блока питания ATX.

Обратите внимание, что в отличие от генераторов, которые преобразуют энергию, накопленную в различных видах топлива, в электричество, блоки питания преобразуют электрическую энергию из одной формы в другую. Входная розетка переменного тока на ПК относится к типу IEC 320 или аналогичному. За предохранителем «F» следует фильтр EMI . Фильтр обычно состоит из комбинации дросселей и конденсаторов дифференциального и синфазного режимов. Его основная цель — уменьшить кондуктивный радиочастотный шум, излучаемый источником питания, обратно во входную линию в соответствии с нормативными требованиями.Снижение кондуктивного шума также снижает излучаемые излучения от входных линий электропередачи, которые действуют как антенны. Входная секция обычно также включает в себя компоненты ограничения пускового тока и защиты от перенапряжения. За фильтром электромагнитных помех в большинстве автономных блоков питания SMPS следует выпрямительный мост (RB) и ступень коррекции коэффициента мощности ( PFC ). Этот каскад отсутствовал в старых ИИП, в которых за выпрямителем следовал большой накопительный конденсатор. Производители источников питания начали внедрять технику PFC в конце 80-х годов, когда европейцы ввели норму EN61000-3-2.В этом документе указывается максимальная амплитуда гармоник линейной частоты для различных категорий оборудования. На нашей схеме показан типичный каскад PFC, который состоит из двухполупериодного выпрямителя и повышающего преобразователя с накопительным конденсатором C1. Обратите внимание, что в этой схеме ток всегда протекает через два диода выпрямительного моста. Существуют также так называемые «безмостовые PFC», которые исключают один диод из прохождения тока. Накопительный конденсатор предназначен для подачи энергии на выход при кратковременных перебоях в подаче питания.На практике может быть несколько параллельных ограничений хранилища. Блоки питания компьютеров, а также коммерческие блоки обычно должны пройти по крайней мере один цикл входной синусоидальной волны, которая составляет 16 мс в США и 20 мс в Европе. Повышение PFC обеспечивает напряжение промежуточного контура (Vdc), которое выше пикового значения входного переменного тока. В современных компьютерных БП это напряжение обычно составляет 375-400 В постоянного тока. Если вы пытаетесь устранить неисправность устройства и измеряете около 160 В постоянного тока на C1 — это означает, что ступень повышения не работает.Выходной каскад DC-DC в любом SMPS всегда содержит одно или несколько коммутационных устройств, которые периодически коммутируют сети LC.

На приведенной выше диаграмме показан так называемый прямой преобразователь с активным сбросом. Полумост также часто используется в конструкциях ПК. См. Примеры схем на основе полумоста: 250Вт и 300Вт.

Главный выключатель Q2 периодически подает напряжение Vdc на первичную обмотку силового трансформатора T1. Когда Q2 находится во включенном состоянии, на верхних выводах вторичных обмоток T2 появляется положительное напряжение.В результате выпрямительные диоды D2, D4, D7 и D9 проводят ток, и энергия от входного источника подается на нагрузки. В то же время некоторая энергия также накапливается в сердечниках Т2 и катушках индуктивности L2, L4, L5 и L6. Когда Q2 находится в состоянии «выключено», напряжения на вторичных обмотках T2 меняют полярность, и выпрямительные диоды становятся смещенными в обратном направлении. Поскольку выходные катушки индуктивности все еще пытаются поддерживать ток, полярность напряжений на них меняется в соответствии с законом Фарадея. В результате катушки индуктивности продолжают проводить ток через диоды свободного хода D3, D5, D8 и D10, таким образом поддерживая замкнутые контуры тока через их соответствующие нагрузки.В течение этого временного интервала вспомогательный переключатель Q3 обеспечивает фиксацию и активный сброс сердечника трансформатора. Когда Q3 отключается, Q2 при правильной конструкции схемы включается при нулевом напряжении, что снижает его коммутационные потери. Такой прямой преобразователь с активным зажимом был первоначально запатентован Vicor Corp. Насколько мне известно, этот патент истек в мире в 2002 году. Конечно, вам следует консультироваться со своим патентным поверенным для принятия любых решений.

Схема управления регулирует выходное напряжение 5 В с помощью широтно-импульсной модуляции ( PWM ).Шина 3,3 В выводится из той же вторичной обмотки, что и 5 В. Вы можете видеть, что есть дополнительная катушка индуктивности L3, пропускающая ток 3,3 В. Это индуктор magamp . Он используется для блокировки части импульса, чтобы снизить регулируемое напряжение до 3,3 В. Вспомогательный транзистор Q4 устанавливает ток сброса катушки индуктивности L3. Этот ток определяет вольт-секунды, заблокированные L3. Усилитель ошибки +3,3 В постоянного тока (не показан на схеме) часто использует дистанционное зондирование для компенсации чрезмерного падения напряжения в кабеле.
Выходы № 3 и 4 (+/- 12 В) в описываемом источнике питания полурегулируемые . Они не регулируются отдельным замкнутым контуром управления, а частично стабилизируются ШИМ, воздействующим на основную шину 5 В.
Затем все выходы постоянного тока подключаются к стандартным разъемам жгута проводов. Распиновка основного разъема ATX. Также см. Наше полное руководство по всем разъемам для блоков питания. Обратите внимание, что современные системы ATX имеют как минимум две шины 12 В: + 12V1 и + 12V2. Однако в большинстве случаев оба выходят на один и тот же физический выход 12 В.

Отдельный обратноходовой преобразователь состоит из силового полевого МОП-транзистора Q5, трансформатора T2, выпрямителя D11 и фильтрующего конденсатора C7. Он служит двум целям — обеспечивать смещение для схемы управления и обеспечивать резервное напряжение 5 В (5 ВSB). Это напряжение должно присутствовать всякий раз, когда к источнику питания подается переменный ток. Он питает цепи, которые остаются в рабочем состоянии, когда основные выходные шины постоянного тока отключены. См. Пример конструкции простого обратного хода на 12 В.

Схема расположения выводов и разъемы блока питания ATX

Компьютерные блоки питания (БП) подают питание на оборудование ПК через ряд кабелей с разъемами.Их общие спецификации для различных настольных систем определены в руководствах Intel по проектированию, которые раньше периодически пересматривались. Их последний стандарт — PSU Design Guide rev.2.0, выпущенный в июне 2018 года. Этот документ объединяет требования для ATX12V v2.52 и его пяти вариантов. Обратите внимание, что некоторые производители торговых марок не следовали рекомендациям Intel и использовали нестандартные распиновки. Также смотрите информацию о новом стандарте ATX12VO. Стандартные блоки питания ATX
обычно имеют основной разъем питания P1, дополнительные разъемы 12 В, а также разъемы для периферийных устройств, дисковода гибких дисков, последовательного ATA и PCI Express®, которые мы опишем ниже.

Основы работы с блоком питания SMPS см. В нашем руководстве по источникам питания. Оригинальные системы ATX имели 20-контактный главный разъем P1. Когда была представлена ​​шина PCI Express®, картам PCIe требовалось до 75 Вт дополнительно. Чтобы обеспечить дополнительную мощность, старая часть была заменена новым 24-контактным P1. Соответственно, разные блоки питания в стиле ATX могут использовать разное количество проводов питания: см. Схему расположения выводов справа. Цвета в этой таблице представляют собой рекомендуемые цвета проводов в кабелях блока питания. Эти диаграммы отражают вид спереди .Цвета показаны здесь только для справки (вы не увидите их спереди). В P1 используется корпус Molex Mini-Fit Jr. P / N № 39-01-2240 (старый номер детали был 5557-24R), контакты: 44476-1112. Подключаемый разъем материнской платы — Molex 44206-0007. Старое гнездо было 39-01-2200, а ответный заголовок — 39-29-9202. Люди часто хотят знать, что делать, если есть несоответствие. Что ж, при определенных условиях новый блок питания все еще можно использовать со старым ПК, и наоборот, см. Наше руководство по подключению 20-контактного блока питания к 24-контактной материнской плате.

Если вы хотите провести какое-то тестирование автономного устройства, чтобы запустить его вне корпуса ПК, вам нужно замкнуть линию PS_ON # на общую. В противном случае будет присутствовать только резервное напряжение 5 В.

При нормальной работе PS_ON # активируется, когда вы нажимаете и отпускаете кнопку питания компьютера, когда он находится в режиме ожидания. В некоторых моделях Apple этот сигнал перевернут.

Также обратите внимание, что многие бренды, такие как Apple Power Mac, Dell (в определенные годы), Compaq и HP, использовали проприетарные платы с совершенно разными обозначениями контактов — см. Здесь информацию о некоторых фирменных источниках питания.

Все напряжения относятся к одному и тому же общему значению (если вам нужно измерить какое-либо напряжение, подключите обратный провод вольтметра к любому из контактов COM).

Номинальный ток основного разъема Molex составляет 6 А на контакт. Это означает, что со старым 20-контактным типом вы не можете получить больше 18 А от 3,3 В и 24 А от 5 В. Вот почему в начале 2000-х на некоторых материнских платах с 3,3 В> 18 А и 5 В> 24 А (в основном, двухпроцессорные системы AMD) использовался вспомогательный 6-контактный кабель питания. Он был удален из спецификации ATX12V v2.0 в 2003 году, потому что к P1 были добавлены дополнительные провода. Для получения дополнительной информации о форм-факторах см. Наше руководство по компьютерному блоку питания.

Когда промышленность начала использовать модули регулирования напряжения (VRM), работающие от 12 В2, для питания ЦП и других компонентов материнской платы, большая часть мощности перешла на шину 12 В. Большинство современных материнских плат снабжают свой ЦП отдельным кабелем на 12 В, который имеет 4 контакта для стиля ATX (иногда называемый P4) или 8 или более контактов для EPS и нестандартных систем высокой мощности.Некоторые блоки питания могут иметь три или четыре 12-вольтовых 4-контактных разъема. Номер детали для стандартного P4 — 39-01-2040 или аналогичный.

Разъем периферийного питания для подключения дисководов, охлаждающих вентиляторов и других устройств меньшего размера. Также может быть кабель дисковода гибких дисков.

Обратите внимание, что номера проводов в разъеме Serial Power ATA ( SATA ) не равны 1: 1. Для каждого напряжения есть три контакта. Один вывод от каждого напряжения используется для предварительной зарядки на объединительной плате. Ответный последовательный разъем устройств ATA содержит как сигнальный, так и силовой сегменты.

Некоторые блоки могут также иметь дополнительную розетку 2×3, которая может использоваться для дополнительных функций, таких как мониторинг и управление вентиляторами, источник питания IEEE-1394 и дистанционное считывание 3,3 В.

Блок питания мощностью более 450 Вт, предназначенный для высокопроизводительных дискретных видеокарт, обычно имеет дополнительные разъемы 2×3 или 2×4. Они обеспечивают дополнительный ток для графики, которая требует общей мощности более 75 Вт.
6-контактный разъем PCI Express® — Molex p / n 04555.

Design Источник питания 5 В постоянного тока (простое пошаговое руководство)

Ищете помощь в разработке источника питания 5 В самостоятельно? Что ж, добро пожаловать.В этом посте мы не только проектируем блок питания, но и узнаем о расчетных расчетах, которые вы можете сделать сами.

Схема источника питания — это очень простая схема в обучении электронике. Практически каждый в электронике пытается это сделать. И я не могу сказать вам, насколько это весело, когда вы завершаете свой первый дизайн блока питания, тестируете его, и он работает нормально.

Хорошо!

Блок питания, который мы здесь разработаем, очень простой. Это линейный дизайн, основанный на технологиях, он будет проходить вас на каждом этапе проектирования, попытается представить все простым языком, выполнит некоторые математические вычисления i.е. Если в схеме используется конденсатор, вы должны знать, зачем он нужен и как рассчитывается его значение.

Надеюсь, вам понравится этот пост и вы чему-нибудь научитесь. На всякий случай, если вам нравится заниматься электроникой своими руками, то этот набор для самостоятельного изготовления регулируемого блока питания (нажмите здесь) подойдет именно вам. Развлекайтесь 😀

Конструкция блока питания 5В постоянного тока

Проектирование любой схемы начинается с хорошо составленной общей блок-схемы. Это помогает нам спроектировать отдельные участки схемы, а затем, в конце концов, собрать их вместе, чтобы получить полную схему, готовую к использованию.

Общая блок-схема этого проекта представлена ​​ниже. Все очень просто. Он состоит из следующих четырех основных подблоков.

  • Трансформатор
  • Схема выпрямителя
  • Фильтр
  • Регулятор

Сначала я объясню каждый блок в целом, а затем мы перейдем к проектированию. Думаю, нужно понимать, какой блок что делает в первую очередь.

Итак, давайте попробуем разобраться в каждом разделе по отдельности.

Входной трансформатор

Трансформатор — это устройство, которое может повышать или понижать уровни напряжения в соответствии с законом передачи энергии.

Вопрос в том, зачем нам это нужно в нашей конструкции снабжения?

Что ж, в зависимости от вашей страны, переменный ток, поступающий в ваш дом, имеет уровень напряжения 220/120 В. Нам нужен входной трансформатор, чтобы понизить входящий переменный ток до требуемого нижнего уровня, то есть близкого к 5 В (переменный ток). Этот более низкий уровень в дальнейшем используется другими блоками для получения необходимых 5 В постоянного тока.

Трансформатор — это устройство, которое используется для повышения или понижения уровня переменного напряжения, сохраняя одинаковую входную и выходную мощность.

Будьте осторожны, играя с этим устройством.

Поскольку вы используете сетевое напряжение, которое может быть слишком опасным. Никогда не прикасайтесь к клеммам голыми руками или плохими инструментами. Имейте хороший и достойный бесконтактный тестер напряжения и используйте его, чтобы всегда быть уверенным в том, какая линия находится под напряжением, идущим к трансформатору.

Выпрямительная схема

Если вы думаете, что трансформатор просто снизил напряжение до 5 В постоянного тока. Извините, вы ошибаетесь, как когда-то был я. Пониженное напряжение по-прежнему остается переменным. Чтобы преобразовать его в постоянный ток, нужна хорошая выпрямительная схема.

Схема выпрямителя — это комбинация диодов, расположенных таким образом, чтобы преобразовывать переменное напряжение в постоянное напряжение.

Без выпрямительной схемы невозможно получить необходимое выходное напряжение 5 В постоянного тока.Эта схема поставляется в красивых интегрированных корпусах, или вы также можете сделать ее с использованием четырех диодов. Вы увидите, как мы его проектируем, в следующих разделах.

В основном, существует два типа выпрямительных схем; полуволновой и двухполупериодный. Однако нас интересует полноценный выпрямитель, так как он более энергоэффективен, чем первый.

Фильтр

В практической электронике нет ничего идеального. Схема выпрямителя преобразует входящий переменный ток в постоянный, но, к сожалению, не превращает его в чистый постоянный ток.Выход выпрямителя пульсирует и называется пульсирующим постоянным током. Этот пульсирующий постоянный ток не считается подходящим для питания чувствительных устройств.
Итак, выпрямленный постоянный ток не очень чистый и имеет рябь. Задача фильтра — отфильтровывать эти пульсации и обеспечивать совместимость напряжения для регулирования.

Конденсаторный фильтр используется, когда нам нужно преобразовать пульсирующий постоянный ток в чистый или удалить искажения из сигнала

Практическое правило: напряжение постоянного тока должно иметь пульсации менее 10 процентов, чтобы можно было точно регулировать.

Лучшим фильтром в нашем случае является конденсатор. Вы, наверное, слышали, конденсатор — это устройство, накапливающее заряд. Но на самом деле его лучше всего использовать как фильтр. Это самый недорогой фильтр для нашей базовой конструкции блока питания 5 В.

Регулятор

Регулятор представляет собой линейную интегральную схему, в которой используется стабилизированное постоянное выходное напряжение. Регулировка напряжения очень важна, потому что нам не нужно изменять выходное напряжение при изменении нагрузки.

Всегда требуется выходное напряжение, независимое от нагрузки.ИС регулятора не только делает выходное напряжение независимым от переменных нагрузок, но и от изменений напряжения в сети.

Регулятор — это интегральная схема, используемая для обеспечения постоянного выходного напряжения независимо от изменений входного напряжения.

Надеюсь, вы разработали некоторые базовые концепции проектирования источников питания. Давайте пойдем дальше с реальной принципиальной схемой для нашей конкретной конструкции блока питания 5 В постоянного тока.

Принципиальная схема блока питания 5В постоянного тока

Ниже представлена ​​принципиальная схема указанного проекта.Вы получаете основной запас; напряжение и частота могут зависеть от вашей страны, предохранителя; для защиты схемы, трансформатора, выпрямителя, конденсаторного фильтра, светодиодного индикатора и регулятора IC.

Блок-схема реализована в программном обеспечении NI Multisim, хорошем программном обеспечении для моделирования для студентов и начинающих электронщиков. Я рекомендую потратить немного времени на то, чтобы поиграть с ним.

Теперь перейдем к собственному дизайну.

Пошаговый метод проектирования источника питания постоянного тока 5 В

Вот в чем дело, мы сначала спроектируем каждую секцию, а затем соберем каждую из них, чтобы наш источник питания постоянного тока был готов для питания наших проектов.

Итак, приступим к делу.

Вы думаете, я бы начал объяснение конструкции с трансформатора, но это не так. Трансформатор выбирается не сразу.

Шаг 1: Выбор регулятора IC

Выбор микросхемы регулятора зависит от вашего выходного напряжения. В нашем случае мы проектируем для выходного напряжения 5В, мы выберем ИС линейного регулятора LM7805.

Следующим шагом в процессе проектирования является определение номинальных значений напряжения, тока и мощности выбранной ИС регулятора.Это делается с помощью таблицы данных регулятора IC.

Ниже приведены номинальные характеристики и схема контактов LM7805 из таблицы данных.

Техническое описание 7805 также предписывает использовать конденсатор 0,1 мкФ на выходной стороне, чтобы избежать переходных изменений напряжения из-за изменений нагрузки. И 0,1 мкФ на входе регулятора, чтобы избежать пульсации, если фильтрация находится далеко от регулятора.

Для дополнительной информации, для вывода положительного напряжения мы используем LM78XX.XX указывает значение выходного напряжения, а 78 указывает положительное выходное напряжение. Для выхода с отрицательным напряжением используйте LM79XX, 79 указывает отрицательное напряжение, а XX указывает значение выхода.

Шаг 2: Выбор трансформатора

Правильный выбор трансформатора означает экономию денег. Мы узнали, что минимальный вход для выбранной нами микросхемы регулятора составляет 7 В (см. Значения в таблице выше). Итак, нам нужен трансформатор для понижения основного переменного тока, по крайней мере, до этого значения.

Но между регулятором и вторичной обмоткой трансформатора тоже есть выпрямитель на диодном мосту.Выпрямитель имеет собственное падение напряжения, то есть 1,4 В. Нам также необходимо компенсировать это значение.

Итак, математически:

Это означает, что мы должны выбрать трансформатор со значением вторичного напряжения, равным 9 В или, по крайней мере, на 10% больше, чем 9 В.

Исходя из этого, для конструкции источника питания 5 В постоянного тока мы можем выбрать трансформатор с номинальным током 1 А и вторичным напряжением 9 В. Почему ток 1А? Поскольку IC регулятора имеет номинальный ток 1 А, это означает, что мы не можем пропускать ток, превышающий это значение.Выбор трансформатора с номинальным током выше этого потребует дополнительных денег. И нам это не нужно.

Шаг 3: Выбор диодов для моста

Как вы видите на принципиальной схеме, схема выпрямителя состоит из нескольких диодов, расположенных по схеме. Чтобы сделать выпрямитель, нам нужно подобрать для него подходящие диоды. При выборе диода для мостовой схемы. Имейте в виду выходной ток нагрузки и максимальное пиковое вторичное напряжение трансформатора i-e 9В в нашем случае.

Вместо отдельных диодов вы также можете использовать один отдельный мост, который поставляется в корпусе IC. Но я не хочу, чтобы вы использовали его здесь, просто для обучения и игры с отдельными диодами.

Выбранный диод должен иметь номинальный ток больше, чем ток нагрузки (т.е. в данном случае 500 мА). И пиковое обратное напряжение (PIV) больше пикового вторичного напряжения трансформатора

Мы выбрали диод IN4001, потому что он имеет номинальный ток на 1 А больше, чем мы желаем, и пиковое обратное напряжение 50 В.Пиковое обратное напряжение — это напряжение, которое диод может выдерживать при обратном смещении.

Шаг 4: Выбор сглаживающего конденсатора и расчеты

При выборе подходящего конденсаторного фильтра необходимо учитывать его напряжение, номинальную мощность и значение емкости. Номинальное напряжение рассчитывается на основе вторичного напряжения трансформатора.

Практическое правило: номинальное напряжение конденсатора должно быть как минимум на 20% больше, чем вторичное напряжение. Итак, если вторичное напряжение составляет 13 В (пиковое значение для 9 В), то номинальное напряжение конденсатора должно быть не менее 50 В.

Во-вторых, нам нужно рассчитать правильное значение емкости. Это зависит от выходного напряжения и выходного тока. Чтобы найти правильное значение емкости, используйте формулу ниже:

Где,

Io = ток нагрузки, т.е. 500 мА в нашей конструкции, Vo = выходное напряжение, т.е. в нашем случае 5 В, f = частота, например, 50 Гц

В нашем случае:

Частота 50 Гц, потому что в нашей стране переменный ток 220 @ 50 Гц.У вас может быть сеть переменного тока 120 В при 60 Гц. Если да, то укажите значения соответственно.

Используя формулу конденсатора, практическое стандартное значение, близкое к этому значению, i-e 3.1847E-4, составляет 470 мкФ.

Еще одна важная формула приведена ниже. Это также можно использовать для расчета емкости конденсатора.

В данном случае R — сопротивление нагрузки. Rf — коэффициент пульсации, который для хорошей конструкции должен быть менее 10%. И на этом мы почти закончили с дизайном блока питания на 5 В.

Шаг 5: Обеспечение безопасности источника питания

Каждая конструкция должна иметь защитные приспособления для защиты от возгорания. Точно так же наш простой источник питания должен иметь один, то есть входной предохранитель. Входной предохранитель защитит наш источник питания в случае перегрузки.

Например, наша желаемая нагрузка может выдерживать 500 мА. Если в случае, если наша нагрузка начнет плохо себя вести, есть вероятность заусенцев компонентов. Предохранитель защитит нашу поставку.

Практическое правило при выборе номинала предохранителя: он должен быть как минимум на 20% больше тока нагрузки.

Разработанный нами простой блок питания способен выдавать ток 1 А, что в некоторых случаях может быть использовано. Если вы решили использовать его для таких случаев, то не забудьте прикрепить радиатор к микросхеме регулятора.

Больше удовольствия с электроникой

Электроника — это очень весело. Как только вы окунетесь в мир электроники, у вас всегда есть чем заняться.

Если вам нравится делать электронику своими руками, вам понравился этот пост, вы изучили все концепции дизайна, а теперь хотите создать свой собственный проект источника питания DIY.Вы хотите спаять и поиграть со всеми вышеупомянутыми компонентами, затем проверьте это, комплект блока питания Elenco (Amazon Link), вам будет интересен.

Кроме того, есть забавная книга под названием Make Electronics: Learning through discovery (Amazon link), , которая научит вас многим классным электронным устройствам на практике. Если вы найдете эту книгу интересной, попробуйте, и вы многому научитесь.

Заключение

Для меня, если вы любитель электроники или новичок, изучаете основы электроники, я бы порекомендовал вам разработать собственный лабораторный источник питания.

Он поможет вам изучить электронику, а также даст вам лучший лабораторный источник питания.

Я называю его лучшим, потому что вы сделаете его сами. И я не могу выразить словами, насколько весело играть с электроникой в ​​безопасной среде. Это похоже на обучение на практике

Не указывайте только источник питания 500 мА. Это может быть ваш источник питания 5 В постоянного тока с допустимым током до 500 мА. И это было то, что я знаю, как разработать источник питания постоянного тока на 5 В.

Надеюсь, это была вам какая-то помощь.

Спасибо и удачной жизни.


Прочие полезные сообщения

БАЗОВЫЕ БЛОКИ ПИТАНИЯ — Электроника с длиной волны

Теория нерегулируемых источников питания

Поскольку нерегулируемые источники питания не имеют встроенных регуляторов напряжения, они обычно предназначены для выработки определенного напряжения при определенном максимальном выходном токе нагрузки. Обычно это блочные настенные зарядные устройства, которые превращают переменный ток в небольшую струйку постоянного тока и часто используются для питания таких устройств, как бытовая электроника.Они являются наиболее распространенными адаптерами питания и получили прозвище «настенная бородавка».

Выходное напряжение постоянного тока зависит от внутреннего понижающего трансформатора напряжения и должно быть максимально приближено к току, необходимому для нагрузки. Обычно выходное напряжение уменьшается по мере увеличения тока, подаваемого на нагрузку.

При нерегулируемом источнике питания постоянного тока выходное напряжение зависит от размера нагрузки. Обычно он состоит из выпрямителя и конденсатора сглаживания, но без регулятора для стабилизации напряжения.Он может иметь цепи безопасности и лучше всего подходит для приложений, не требующих точности.

Рисунок 4: Блок-схема — нерегулируемая линейная подача

Преимущества нерегулируемых источников питания в том, что они долговечны и могут стоить недорого. Однако их лучше всего использовать, когда точность не является требованием. Они имеют остаточную пульсацию, аналогичную показанной на рисунке 3.

ПРИМЕЧАНИЕ: Wavelength не рекомендует использовать нерегулируемые источники питания с какими-либо из наших продуктов.

Теория регулируемых источников питания

Стабилизированный источник питания постоянного тока — это, по сути, нерегулируемый источник питания с добавлением регулятора напряжения. Это позволяет напряжению оставаться стабильным независимо от величины тока, потребляемого нагрузкой, при условии, что предварительно определенные пределы не превышаются.

Рисунок 5: Блок-схема — Регулируемая поставка

В регулируемых источниках питания схема непрерывно производит выборку части выходного напряжения и регулирует систему, чтобы поддерживать выходное напряжение на требуемом уровне.Во многих случаях включается дополнительная схема для обеспечения ограничений по току или напряжению, фильтрации шума и регулировки выхода.

Линейный, переключаемый или аккумуляторный?

Существует три подгруппы регулируемых источников питания: линейные, переключаемые и аккумуляторные. Из трех основных конструкций регулируемых источников питания линейная является наименее сложной системой, но переключаемое и аккумуляторное питание имеет свои преимущества.

Линейный источник питания
Линейный источник питания используется, когда наиболее важным является точное регулирование и устранение шума.Хотя они не являются наиболее эффективными источниками питания, они обеспечивают лучшую производительность. Название происходит от того факта, что они не используют переключатель для регулирования выходного напряжения.

Линейные источники питания доступны в течение многих лет, и их использование широко распространено и надежно. Они также относительно бесшумны и коммерчески доступны. Недостатком линейных источников питания является то, что они требуют более крупных компонентов, следовательно, они больше и рассеивают больше тепла, чем импульсные источники питания.По сравнению с импульсными источниками питания и батареями они также менее эффективны, иногда демонстрируя лишь 50% эффективности.

Импульсный источник питания
Импульсный источник питания (SMPS) сложнее сконструировать, но он отличается большей универсальностью по полярности и при правильной конструкции может иметь КПД 80% и более. Хотя в них больше компонентов, они меньше и дешевле, чем линейные источники питания.

Рисунок 6: Блок-схема — Регулируемое импульсное питание

Одно из преимуществ коммутируемого режима — меньшие потери на коммутаторе.Поскольку SMPS работают на более высоких частотах, они могут излучать шум и создавать помехи для других цепей. Необходимо принять меры по подавлению помех, такие как экранирование и соблюдение протоколов компоновки.

Преимущества импульсных источников питания заключаются в том, что они, как правило, небольшие и легкие, имеют широкий диапазон входного напряжения и более высокий выходной диапазон, а также намного более эффективны, чем линейные источники питания. Однако SMPS имеет сложную схему, может загрязнять сеть переменного тока, является более шумным и работает на высоких частотах, требующих уменьшения помех.

Аккумуляторный
Аккумуляторный источник питания — это третий тип источника питания, по сути, мобильный накопитель энергии. Питание от батарей производит незначительный шум, мешающий работе электроники, но теряет емкость и не обеспечивает постоянного напряжения по мере разряда батарей. В большинстве случаев, когда используются лазерные диоды, батареи являются наименее эффективным методом питания оборудования. Для большинства аккумуляторов трудно подобрать правильное напряжение для нагрузки. Использование аккумулятора, мощность которого может превышать внутреннюю рассеиваемую мощность драйвера или контроллера, может повредить ваше устройство.

Выбор источника питания
  • При выборе блока питания необходимо учитывать несколько требований.
  • Требования к мощности нагрузки или цепи, включая
  • Функции безопасности, такие как ограничения по напряжению и току для защиты нагрузки.
  • Физический размер и эффективность.
  • Помехозащищенность системы.

Цепи 2 и 3 класса

Цепи

класса 2 и 3 определяются как часть системы электропроводки между источником питания и подключенным оборудованием.Из-за ограничений мощности цепей класса 2 многие считают их безопасными с точки зрения возгорания и обеспечивающими приемлемый уровень защиты от поражения электрическим током. Цепи класса 3 ограничивают выходную мощность до уровня, который обычно не вызывает возгорания. Но они могут работать и работают при более высоких уровнях напряжения и, следовательно, могут представлять опасность поражения электрическим током.

Цепи класса 2 и 3

Цепи класса 2 регулируют температуру питания, дверные звонки, открыватели дверей, средства управления освещением, средства управления поливом, аксессуары для связи и т. Д., во многих типах занятий. Цепи класса 3 не так распространены, но иногда используются для питания оборудования, которое требует больше энергии, чем обеспечивает источник питания класса 2. Например, схема класса 3 обычно используется в домашних кинотеатрах и звуковых системах. Такие схемы также используются в коммерческих звуковых системах и системах оповещения, а также в центральных системах пожарной безопасности и безопасности. Источники питания для цепей классов 2 и 3 должны быть перечислены и маркированы, чтобы указать их класс питания и электрические характеристики.

Национальный электрический кодекс (NEC) определяет эти схемы на основе их источников питания, которые ограничивают общую энергию до определенного максимального значения, которое не будет превышено даже в случае короткого замыкания на стороне нагрузки источника питания.В информационных целях, а не для критериев проектирования или для установленных на месте источников питания, фактические допустимые значения напряжения и тока, которые могут выдавать цепи классов 2 и 3, можно найти в Таблице 11 (A) для систем переменного тока и Таблице ( Б) для систем постоянного тока в главе 9 NEC.

Реклассификация

В некоторых установках может потребоваться реклассифицировать цепь класса 2 или класса 3 и установить ее как цепь класса 1. Разделы 725.8 и 725.52 (A), Пример 2, описывают условия и требования, разрешающие реклассификацию. Установщики должны использовать обычный метод электромонтажа, который обеспечивает защиту проводников цепи при реклассификации. Например, если отказ компонента схемы может создать значительную опасность, такую ​​как взрыв или пожар, должна использоваться цепь класса 1, а не цепь класса 2 или 3. В итоге, отказ компонента, который может создать прямую опасность, должен быть установлен в кабелепроводе или обеспечен физической защитой.Подумайте об этом: если цепь управления, используемая для контроля температуры в помещении, не работает ни в разомкнутом, ни в замкнутом состоянии, это может вызвать дискомфорт, но определенно не создаст опасной ситуации. Однако компетентный орган, безусловно, сочтет отказ цепи к системе вызова медсестры в больнице опасным состоянием.

Цепи 2 и 3 класса

Три варианта выбора способа подключения:

1.Схемы могут нуждаться в реклассификации, а могут и не нуждаться в реклассификации. Но когда они есть, они должны быть подключены с использованием методов подключения класса 1, как указано в 725.52 (A), Пример 2 и 725.42.

2. Специально указано для типа цепи

3. Заменить кабели для схемы типа

Минимальный размер цепи составляет 18 AWG, когда цепь класса 2 или 3 реклассифицируется и используется в качестве цепи класса 1. Но помните, что большинство цепей класса 2 или 3 обычно подключаются с использованием перечисленных типов кабелей, указанных NEC.UL 13, Стандарт безопасности для кабелей цепей с ограничением мощности, в котором указано 30 AWG как наименьшее для цепей класса 2 и 24 AWG для цепей класса 3, определяет размер кабеля.

Как правило, доступны кабели классов 2 и 3 с проводниками сечением от 24 до 12 AWG соответственно. Также доступны кабели класса 2 и 3 большего размера для питания специализированных приложений, таких как аудиооборудование. Часто производитель указывает провод определенного размера в зависимости от длины, необходимой для цепи.Другими словами, между источником и нагрузкой могут использоваться проводники меньшего размера для более коротких длин, а проводники большего размера — для более длинных.

Раздел 725.51 NEC, по-видимому, устанавливает необходимые требования к проводке на стороне питания источников питания класса 2 и 3. Устройство защиты от перегрузки по току должно быть не более 20 ампер и устанавливаться перед источником питания. При определенных условиях пример 725.51 позволяет входным проводам трансформатора быть 18 или 14 AWG.

В комментариях к коду в следующем месяце поищите дополнительную информацию о цепях классов 2 и 3. EC

STALLCUP является генеральным директором Grayboy Inc., которая разрабатывает и пишет публикации для электротехнической промышленности и специализируется на обучении в аудитории NEC и OSHA, а также другим стандартам. Свяжитесь с ним по телефону 817.581.2206.

Принципиальная схема силового модуля. (a) источник питания ± 125 В и (b) …

Контекст 1

… Метод электростатического зонда является диагностическим методом столь же древним, как и сама физика плазмы 1, 2, и, несмотря на теоретические сложности, которые могут участвовать в обработке данных 3–12, она стала очень популярной по двум основным причинам.Первый связан с возможностью проведения локальных измерений плазмы, а второй — с довольно простым принципом его применения. Действительно, фундаментальное применение метода требует чрезвычайно простого оборудования, такого как тонкий металлический провод, источник питания постоянного тока и амперметр или осциллограф. Однако для того, чтобы применить этот метод реалистичным и эффективным образом (например, измерения в реальном времени, высокая точность и высокое разрешение, расширенное усреднение выборки и т. Д.), Должны быть предусмотрены автоматизированные системы для смещения зонда и сбора соответствующих данных. развитый.Более ранние системы, разработанные в 60-х годах, были полностью аналоговыми. 13, 14 Позже, после появления цифровой электроники и персональных компьютеров (ПК), появились смешанные (аналого-цифровые) системы 15–22, которые были более универсальными. Внедрение этого метода в качестве необходимого инструмента как для академических исследований, так и для промышленного мониторинга плазмы стимулировало разработку стандартных коммерческих систем (см. Scientific Systems Ltd., Impedans Ltd., Plasmart Inc., Hiden Analytical Ltd.). Тем не менее, такие системы обладают высокой стоимостью и довольно фиксированными характеристиками.Таким образом, настоящая работа посвящена разработке малобюджетной и универсальной системы электростатических датчиков, выполняющей в то же время вышеупомянутые предпосылки для высокой точности и разрешающей способности. В основной части статьи представлена ​​конструкция и реализация устройства. Затем объясняется процесс калибровки и демонстрируется точность устройства. Затем эта система применяется в реальной плазменной среде, и параметры плазмы извлекаются. Наконец, одна из задач / пунктов настоящей статьи состоит в том, чтобы предоставить подробные инструкции по изготовлению продвинутой автономной системы зонда отдельными исследователями, и поэтому в дальнейшем она представлена ​​в очень наглядной форме.Концептуальная схема устройства представлена ​​на рисунке 1. Устройство состоит из четырех основных модулей: (a) силовой модуль, который смещает датчик, (b) модуль напряжения, который устанавливает напряжение на входе силового модуля и измеряет напряжение на его выходе, (c) модуль тока, который измеряет ток как падение напряжения на резисторе, подключенном последовательно с датчиком, и (d) главный модуль, который управляет работой устройства. Подробное изложение каждого модуля дано в разд.II B – II E. Кратко устройство работает следующим образом. Главный модуль отправляет сигнал, связанный с желаемым смещением датчика, на модуль напряжения, где он преобразуется в аналоговое напряжение. Это напряжение усиливается силовым модулем и подается на зонд через токовый модуль. После задержки установления, модули напряжения и тока «производят выборку» и «удерживают» соответствующие значения, а главный модуль переходит к следующему значению смещения датчика. Очистка зонда, процедуры калибровки и выбор шкалы измерения тока контролируются главным модулем, который имеет отдельный источник питания и магнитно развязан от остальной схемы для безопасности ПК и пользователя.Вместо использования ПК для планирования различных задач, в главный модуль встроен отдельный набор инструкций, чтобы гарантировать независимость платформы и быструю работу. Этот встроенный код поясняется позже (раздел II E). Модуль питания представлен на рисунке 2. Часть (a) схемы — это источник питания постоянного тока для части (b), которая является усилителем мощности. В источнике питания постоянного тока используются два линейных регулятора TL783, настроенных для создания двух стабилизированных напряжений 125 В. Эти плавающие напряжения затем связываются с землей для создания смещения постоянного тока ± 125 В усилителя мощности.Чтобы максимально избежать пульсаций, как до, так и после каждого TL783 используются высокоэффективные электролитические конденсаторы. Любое «высокое» напряжение, случайно появившееся на датчике, ограничивается внутри устройства двумя двухэлектродными газовыми разрядниками на 230 В (показаны в виде искровых разрядников на рис. 2 (а)). Выход усилителя представляет собой двухтактный каскад (Q3, Q6 и Q7) с токоограничивающими транзисторами (Q4 и Q5). Этот каскад может подавать на выход любой потенциал в диапазоне ± 110 В. Конкретные выходные транзисторы могут проводить большие токи (до 4 А), но в действительности выходной ток ограничен рассеиваемой на них мощностью.Номинальная рассеиваемая мощность на каждом из этих транзисторов (Q6 и Q7) составляет 50 Вт, соответственно ограничивая ток (как функцию от падения напряжения). Поскольку линейный усилитель является наиболее подходящим решением для работы со сверхмалым шумом и быстрым откликом, нельзя избежать вышеуказанного ограничения тока. Если приложение требует более высоких токов, это ограничение можно преодолеть, используя пары Дарлингтона или параллельные транзисторы на выходе. Здесь задано более низкое значение 0,5 А, что также позволяет использовать трансформатор меньшей мощности (100 ВА).Для стабильной работы все транзисторы установлены на радиаторах с возможностью дополнительного охлаждения воздушным потоком. Непрерывная работа усилителя была проверена в течение нескольких часов с омической нагрузкой. Оба выходных транзистора питаются одинаковым напряжением, поскольку кроссоверные искажения не являются проблемой для усилителя постоянного тока. Хотя пульсация практически равна нулю и устройство экранировано, выходное напряжение фильтруется (см. L-C на рисунке 2 (b)), чтобы отсечь любой остаточный высокочастотный шум.Входной каскад усилителя мощности представляет собой дифференциальный усилитель (Q1 и Q2), который сравнивает опорное напряжение на базе Q1 (напряжение, указывающее желаемое выходное напряжение) с напряжением обратной связи (выходное напряжение, деленное соответственно на Rf1 и Rf2). Резистор на коллекторе Q1, который определяет коэффициент предварительного усиления всего усилителя, разделен на две части (R1 и R2). Для анализа схемы на постоянном токе оба резистора вносят вклад в усиление предварительного усиления и, таким образом, уменьшают задержку между входом и выходом усилителя.С другой стороны, для анализа переменного тока R1 игнорируется C1, и коэффициент усиления переменного тока уменьшается. Это дополнительная мера по снижению шума на выходе усилителя. Поскольку фактическое напряжение точно измеряется на выходе мощности (см. Модуль напряжения на рисунке 1), на рисунке 2 (b) в качестве источника тока используется простая резистивная ветвь (см. Комбинацию 10K // 10K). Топология отрицательной обратной связи, как обсуждалось выше, обеспечивает стабильный выходной сигнал усилителя в течение продолжительных интервалов времени.Это важно, когда расширенное усреднение выборки в каждой точке кривой V-I датчика необходимо для увеличения отношения сигнал / шум (см. Раздел V). Модуль напряжения показан на рисунке 3 и состоит из двух частей. Первая (верхняя) часть устанавливает опорное напряжение на входе силового модуля, а вторая (нижняя) часть точно измеряет напряжение на выходе силового модуля. Блок питания для этого модуля здесь не представлен, так как состоит из простых линейных регуляторов, стабилизирующих (развязывающих) конденсаторов и двухэлектродных газотрубных разрядников (90 В).Так как напряжение на выходе силового модуля измеряется точно, то установочная (верхняя) часть не должна иметь строгих требований к точности. Однако разрешение по-прежнему является важным фактором, поскольку оно определяет минимальный шаг напряжения. По этой причине был выбран 16-битный цифро-аналоговый преобразователь (DAC8581). На выходе ЦАП усилители (TCA0372) с достаточным выходным током используются для управления входом силового модуля. Сигнал на выходе первого TCA0372 сглаживается настраиваемым фильтром R-C.Измерительная (нижняя) часть принимает в качестве входа разделенный выход силового модуля. Это обеспечивается делителем напряжения (Rm1 и Rm2) с низким допуском (0,1%) и буферизацией сверхточного операционного усилителя (OP177) с низким напряжением смещения (максимум 40 мкВ) и высокой температурной стабильностью (0,3 мкВ / ◦). C). Затем сигнал измеряется 16-битным аналого-цифровым преобразователем (ADS8509) с внутренней схемой опорного напряжения. Схема резисторов на входе ADS8509 рекомендована производителем для измерения биполярного напряжения в диапазоне ± 10 В и регулировки смещения и усиления.Все резисторы, участвующие в измерении, были выбраны с допуском 0,1% и высоким …

Общий источник питания — обзор

5.2.2 Отказ по общей причине (CCF)

В то время как простые модели резервирования предполагают что отказы являются как случайными, так и независимыми, при моделировании отказов по общей причине (CCF) учитываются отказы, которые связаны между собой из-за некоторой зависимости и, следовательно, происходят одновременно или, по крайней мере, в пределах достаточно короткого интервала, чтобы их можно было воспринимать как одновременные.

Два примера:

(a)

Наличие водяного пара в газе, вызывающее заклинивание двух клапанов из-за обледенения. В этом случае интервал между двумя отказами может составлять порядка дней. Однако, если интервал между контрольными испытаниями для этого неактивного отказа составляет два месяца, то два отказа будут, по сути, одновременными.

(b)

Выпрямительные диоды с недостаточным номиналом на идентичных сдвоенных печатных платах выходят из строя одновременно из-за переходного процесса напряжения.

Обычно причины возникают из:

(a)

Требования: неполные или противоречивые

(b)

Конструкция: общие источники питания, программное обеспечение, ЭМС, шум

(c)

Производство: недостатки компонентов, связанных с партиями

(d)

Техническое обслуживание / эксплуатация: проблемы, связанные с деятельностью человека или испытательного оборудования

(e)

Окружающая среда: температурные циклы, электрические помехи и т. Д.

Защита от CCF включает в себя конструктивные и эксплуатационные особенности, которые формируют критерии оценки, приведенные в Приложении 3.

CCF часто доминируют над ненадежностью резервированных систем в силу отказа от возможности случайного совпадения отказов резервной защиты. Рассмотрим дублированную систему на рисунке 5.2. Интенсивность отказов резервного элемента (другими словами, совпадающие отказы) можно рассчитать по формуле, приведенной в таблице 5.1, а именно 2λ 2 MDT.Типичные показатели частоты отказов 10 на миллион часов (10 −5 на час) и время простоя 24 часа приводят к частоте отказов 2 × 10 −10 × 24 = 0,0048 на миллион часов. Однако, если только один отказ из 20 имеет такую ​​природу, что влияет на оба канала и, таким образом, нарушает избыточность, необходимо добавить последовательный элемент, показанный как λ 2 на рисунке 5.3, частота отказов которого составляет 5% × 10 −5 = 0,5 на миллион часов, что на два порядка чаще. 5%, используемые в этом примере, известны как коэффициент БЕТА.Эффект состоит в том, чтобы заглушить избыточную часть прогноза, и поэтому важно включить CCF в модели надежности. Такая чувствительность сбоя системы к CCF делает акцент на достоверности оценки CCF и, таким образом, оправдывает усилия по улучшению моделей.

Рисунок 5.3. Блок-схема надежности, показывающая CCF.

На рисунке 5.3 (λ 1 ) — это частота отказов одного резервного блока, а (λ 2 ) — это скорость CCF, такая, что (λ 2 ) = β (λ 1 ) для Модель BETA, которая предполагает, что фиксированная доля отказов возникает по общей причине.Вклад в BETA разделен на группы по конструктивным и эксплуатационным характеристикам, которые, как считается, влияют на степень CCF. Таким образом, множитель БЕТА складывается путем сложения вкладов каждого из ряда факторов в каждой группе. Эта модель частичного бета-тестирования (как она поэтому известна) включает следующие группы факторов, которые представляют защиту от CCF:

Сходство (Разнесение между избыточными модулями снижает CCF)

Разделение (физическое расстояние и барьеры уменьшают CCF)

Сложность (более простое оборудование менее подвержено CCF)

Анализ (FMEA и анализ полевых данных помогут снизить CCF)

Процедуры (контроль модификаций и мероприятий по техническому обслуживанию может снизить CCF)

Обучение (разработчики и специалисты по обслуживанию могут помочь уменьшить CCF, понимая основные причины)

Контроль (контроль окружающей среды может снизить восприимчивость к CCF, e.g., защита дублированных инструментов от атмосферных воздействий)

Испытания (Экологические испытания могут удалить особенности конструкции, подверженные CCF, например, испытание на электромагнитное излучение)

Предполагается, что модель Partial BETA состоит из количество частичных βs, каждое из которых обусловлено различными группами причин CCF. Затем β оценивается путем анализа и оценки каждого из факторов (например, разнообразия, разделения).

Модель BETAPLUS была разработана на основе метода частичного бета-тестирования, потому что:

Она объективна и обеспечивает максимальную прослеживаемость при оценке BETA.Другими словами, выбор результатов контрольного списка при оценке дизайна может быть записан и пересмотрен.

Любой пользователь модели может разработать контрольные списки для дальнейшего учета любых значимых причинных факторов отказа, которые могут быть восприняты.

Можно откалибровать модель по фактической частоте отказов, хотя и с очень ограниченными данными.

Существует надежная взаимосвязь между контрольными списками и анализируемыми функциями системы.Таким образом, этот метод, вероятно, будет приемлемым для неспециалистов.

Метод аддитивной оценки позволяет отдельно взвешивать частичные составляющие β.

Метод β подтверждает прямую связь между (λ 2 ) и (λ 1 ), как показано на рисунке 5.3.

Он допускает предполагаемую «нелинейность» между значением β и оценкой в ​​диапазоне β.

Модель BETAPLUS включает следующие усовершенствования:

(a) Категории факторов

В то время как существующие методы основываются на единственной субъективной оценке в каждой категории, метод BETAPLUS дает ответы на конкретные вопросы, связанные с дизайном и эксплуатацией в каждой категории.

(b) Подсчет баллов

Максимальный балл по каждому вопросу был взвешен путем калибровки результатов оценок с известными полевыми оперативными данными.

(c) Учет охвата диагностикой

Поскольку CCF не является одновременным, увеличение частоты автотестов или контрольных проверок снизит β, поскольку отказы могут произойти не в один и тот же момент.

(d) Разделение контрольных списков в соответствии с эффектом диагностики

Два столбца используются для оценок контрольного списка. Столбец (A) содержит баллы для тех характеристик защиты от CCF, которые воспринимаются как улучшенные за счет увеличения частоты диагностики.Столбец (B), однако, содержит баллы для тех функций, которые, как считается, не улучшаются за счет повышения частоты диагностики. В некоторых случаях оценка была разделена между двумя столбцами, где считается, что затронуты некоторые, но не все аспекты функции (см. Приложение 3).

(e) Создание модели

Модель позволяет изменять оценку в зависимости от частоты и охвата диагностического теста. Баллы в столбце (A) изменяются путем умножения на коэффициент (C), полученный из соображений, связанных с диагностикой.Этот балл (C) основан на частоте диагностики и охвате. (C) находится в диапазоне 1–3. Коэффициент «S», используемый для получения BETA, затем оценивается из RAW SCORE:

S = RAWSCORE = (∑A × C) + ∑B

(f) Нелинейность

В настоящее время нет данных CCF для обоснования отступая от предположения, что по мере уменьшения (т. е. улучшения) БЕТА последовательных улучшений становится пропорционально труднее достичь. Таким образом, предполагается, что отношение коэффициента BETA к RAW SCORE [(ΣA × C) + ΣB] является экспоненциальным, и эта нелинейность отражается в уравнении, которое переводит исходную оценку в коэффициент BETA.

(g) Тип оборудования

Оценка была разработана отдельно для программируемого и непрограммируемого оборудования, чтобы отразить несколько разные критерии, применимые к каждому типу оборудования.

(h) Калибровка

Модель откалибрована по полевым данным.

Критерии оценки были разработаны для охвата каждой из категорий (т.е. разделение, разнообразие, сложность, оценка, процедуры, компетентность, экологический контроль и экологический тест).Вопросы были собраны так, чтобы отразить вероятные особенности, защищающие от CCF. Затем оценки были скорректированы с учетом относительного вклада в CCF в каждой области, как показано в данных автора. Значения оценок были взвешены для калибровки модели по данным.

При ответе на каждый вопрос (в Приложении 3) может быть выставлен балл меньше максимального 100%. Например, в первом вопросе, если суждение таково, что только 50% кабелей разделены, тогда 50% максимальных оценок (15 и 52) могут быть введены в каждый из столбцов (A) и (B) (7). .5 и 26).

Контрольные списки представлены в двух формах (перечислены в Приложении 3), поскольку вопросы, применимые к программируемому оборудованию, будут немного отличаться от вопросов, необходимых для непрограммируемых элементов (например, полевых устройств и контрольно-измерительных приборов).

Заголовки (расширенные баллами в Приложении 3):

(1)

Разделение / сегрегация

(2)

Разнообразие

000
(3)
Сложность / Дизайн / Применение / Зрелость / Опыт

(4)

Оценка / Анализ и обратная связь данных

(5)

Процедуры / Интерфейс человека

(6)

Компетентность / Обучение / Культура безопасности

(7)

Контроль окружающей среды

(8)

Экологические испытания

Оценка фактора интервала диагностики5 (C) 9000

Чтобы установить оценку (C), необходимо учитывать влияние частоты диагностики.Охват диагностикой, выраженный в процентах, представляет собой оценку доли отказов, которые будут обнаружены контрольным или автоматическим тестом. Это можно оценить путем суждения или, более формально, путем применения FMEA на уровне компонентов, чтобы решить, будет ли каждый отказ обнаружен диагностикой.

Экспоненциальная модель используется для отражения возрастающих трудностей в дальнейшем сокращении БЕТА по мере увеличения оценки. Это отражено в следующем уравнении, которое разработано в Smith D J, 2000, «Развитие использования данных о частоте отказов»:

ß = 0.3exp (−3,4S / 2624)

Однако базовая модель BETA применяется к простому резервированию «один из двух». Другими словами, с парой избыточных элементов «главным событием» является отказ обоих элементов. Однако по мере увеличения числа систем, за которые проголосовали (другими словами, N> 2), доля отказов по общей причине меняется, и значение β необходимо изменять. Причину этого можно понять, рассмотрев два крайних случая:

1 из 6

В этом случае для работы требуется только один из шести элементов, и можно допустить до пяти сбоев.Таким образом, в случае отказа по общей причине необходимо, чтобы еще пять отказов были спровоцированы общей причиной. Это менее вероятно, чем случай «один из двух», и β будет меньше (см. Таблицы ниже).

5 из 6.

В этом случае для работы требуются пять из шести элементов, и можно допустить только один отказ. Таким образом, в случае отказа по общей причине есть пять элементов, к которым могут относиться отказы по общей причине. Это более вероятно, чем случай «один из двух», и β будет больше (см. Таблицы ниже).

Эта область вызывает много споров. Эмпирических данных нет, и модели являются предметом предположений, основанных на мнениях различных авторов. Между различными предложениями нет большого соответствия. Таким образом, это очень противоречивая и неопределенная область. Первоначальные предложения были взяты из статьи SINTEF (в 2006 г.), которые были факторами MooN, которые изначально использовались в пакете Technis BETAPLUS версии 3.0. Документ SINTEF был пересмотрен (в 2010 г.) и снова в 2013 г. Рекомендации IEC 61508 (2010 г.) аналогичны, но не идентичны (Таблица 5.10). Значения SINTEF (2013) показаны в Таблице 5.11. Компромисс BETAPLUS (теперь версия 4.0) показан в Приложении 3.

Таблица 5.10. Коэффициент BETA (MooN) IEC 61508.

M = 1 M = 2 M = 3 M = 4
N = 2 1 N = 3 0,5 1,5
N = 4 0,3 0.6 1,75
N = 5 0,2 0,4 0,8 2

Таблица 5.11. Фактор BETA (MooN) SINTEF (2013).

1 N = 3 907
M = 1 M = 2 M = 3 M = 4
N = 2 1
2
N = 4 0.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *