Попутная система отопления с нижней разводкой: Системы с попутным движением теплоносителя

Содержание

Системы с попутным движением теплоносителя

При монтаже систем отопления в частных домах наиболее широкое применение получила двухтрубная разводка. Для ее реализации чаще всего применяются две основные принципиально разные схемы — попутная и тупиковая. Рассмотрим, чем отличается попутная система отопления, какими достоинствами и недостатками она обладает.

Принцип действия попутной системы

Система отопления с попутным движением теплоносителя, которую также называют петля Тихельмана, получает сегодня все более широкое применение.

Особенно высокую эффективность данная схема демонстрирует при монтаже протяженных систем отопительных трубопроводов, например, если необходимо обеспечить эффективный обогрев большого двухэтажного дома.

Петля Тихельмана принципиально отличается от классической тупиковой (встречной) схемы. При встречной системе трубопровода подающая магистраль начинается от котла и заканчивается последним радиатором, а «обратка» начинается от последнего радиатора и заканчивается котлом. При этом теплоноситель в магистралях движется в противоположных направлениях. В системе с попутным движением теплоносителя подача проходит таким же образом, а вот обратная магистраль начинается с первого радиатора, после чего доходит до последнего радиатора и возвращается к котлу. Таким образом, по подающей и обратной магистралям теплоноситель движется в одном направлении.

Создание такой схемы объясняется необходимостью балансировки сети отопления. Если в одном из циркуляционных колец системы потери давления будут меньше, чем в остальных, то поток теплоносителя будет стремиться именно в эту ветку. Соответственно, напор на других радиаторах будет меньше, что приведет к снижению эффективности отопления в соответствующих помещениях. Балансировка предусматривает создание условий, при которых потери давления во всех ветках минимальны. В тупиковых системах для этого приходится устанавливать игольчатые вентили или специальные термостатические клапаны.

При использовании попутной системы задача балансировки решается намного проще.

Если система укомплектована радиаторами с одинаковым числом секций и одинакового типоразмера, то она является автоматически сбалансированной без необходимости применения дополнительной арматуры.

Если же используются разные радиаторы, то ставить арматуру придется. Однако и в этом случае сбалансировать попутную систему будет намного проще, чем тупиковую. Особенно это актуально при значительной протяженности трубопроводов.

Системы отопления с попутным движением теплоносителя, как правило, реализуются с нижней разводкой труб по горизонтальной схеме. При этом прокладывается три трубы:

  • подающая магистраль;
  • обратная магистраль;
  • труба для возврата «обратки» к котлу.

Преимущества и недостатки петли Тихельмана

Как уже было сказано, основным достоинством петли Тихельмана является сбалансированность системы отопления. Она не требует установки дополнительной арматуры для регулировки потока, которая стоит достаточно дорого и к тому же может требовать обслуживания и выходить из строя.

Благодаря сбалансированности системы отопления попутного типа и одинаковой длины циркуляционных колец во всех радиаторах поддерживается практически одинаковый поток теплоносителя, а значит и греют они одинаково. В результате котел и циркуляционный насос работают в оптимальном режиме, и в целом обеспечивается оптимальное значение КПД системы.  Соответственно вы получаете качественный обогрев помещений при снижении расхода энергоносителя и финансовых затрат на эксплуатацию системы.

Петля Тихельмана демонстрирует особую эффективность при создании достаточно крупных систем отопления со значительной протяженностью трубопроводов. В таких условиях спроектировать сбалансированную и хорошо работающую тупиковую систему бывает довольно проблематично. При использовании же попутной схемы особых сложностей с гидравлическим расчетом не возникает.

Схема с попутным движением теплоносителя, как правило, работает с принудительной циркуляцией. Однако может она применяться и в самотечных системах. Более того, в системе с естественной циркуляции теплоносителя петля Тихельмана представляет собой оптимальное решение именно за счет своей сбалансированности и отсутствия необходимости в регулирующей арматуре.

Преимущества системы с попутным движением теплоносителя оптимальным образом раскрываются при ее комплектации высококачественными отопительными приборами. Радиаторы Ogint сочетают в себе высокую тепловую эффективность и отличные гидравлические характеристики. Благодаря этому они позволяют добиться наилучшего режима работы отопления.

Помимо преимуществ петля Тихельмана имеет и ряд недостатков, которые ограничивают ее применение. К основным минусам относятся:

  • более сложный монтаж за счет применения труб разного диаметра;
  • увеличенная протяженность трубопровода, что приводит к удорожанию системы;
  • наличие трех магистральных труб, что может ухудшать эстетические характеристики при открытой прокладке.

В связи с перечисленными недостатками системы с попутным движением теплоносителя имеют меньшее распространение, по сравнению с более простыми тупиковыми системами. Однако в ряде случаев именно такая схема является практически единственным решением для реализации действительно эффективного и экономичного отопления.

Радиаторы для систем с попутным движением теплоносителя:

Тупиковая система отопления схема для частного дома однотрубная и двухтрубная

Двухтрубная схема остается наиболее популярной при монтаже систем отопления и применяется намного чаще, чем однотрубная. Она может быть реализована различными способами, а именно путем монтажа системы с попутным или тупиковым движением теплоносителя. Рассмотрим особенности тупиковой или встречной системы отопления.

Принцип работы

Тупиковая схема отопления является наиболее распространенной схемой. Ее принципиальным отличием от попутной системы является то, что движение теплоносителя по подающей и обратной магистрали осуществляется в разных направлениях.

Поток горячего теплоносителя движется по подающей магистрали от котла по направлению к радиаторной системе. Теплоноситель заходит в радиатор, отдает свое тепло и выводится в обратную магистраль, по которой движется сразу в обратном направлении — к котлу.

Чаще всего двухтрубная тупиковая система отопления работает при обогреве частного дома с использованием принудительной циркуляции теплоносителя с нижней разводкой. Такая схема дает возможность использовать трубы меньшего диаметра, значительно уменьшает инертность системы. Кроме того, она является применимой даже при значительной протяженности трубопроводов.

В то же время, тупиковая схема позволяет реализовать и самотечную систему с верхней разводкой. Такие системы выбирают, главным образом, за их энергонезависимость. В подключении к электросети нет необходимости, поскольку не используется циркуляционный насос.

Виды тупиковых систем отопления

В зависимости от организации разводки трубопровода различают два вида тупиковых систем отопления:

В первом случае трубопроводы подающей и обратной магистралей располагаются горизонтально. Для них применяются трубы одинаковых диаметров и монтажные компоненты общих типоразмеров. Это существенно упрощает ведение работ по монтажу системы отопления в частном доме.

Горизонтальная схема позволяет поддерживать почти одинаковую температуру во всех радиаторах. Однако ее недостатком является повышенная сложность балансировки отдельных радиаторов при значительной протяженности трубопроводов системы отопления.

Вертикальная система применяется в тех случаях, когда необходимо отапливать двухэтажный дом. В данном случае трубопроводная система разделяется на две ветви. Первая ветвь проводится по первому этажу здания. Вторая ветвь выводится на второй этаж через вертикальный стояк. Тупиковые системы отопления этого типа являются более сложными.

Для их стабильной и устойчивой работы требуется соблюдение ряда условий:

  • количество отопительных приборов на каждом из этажей не должно превышать 10 штук;
  • должен выполняться точный расчет диаметров трубопроводов;
  • на каждом из этажей должен предусматриваться монтаж балансировочных вентилей с автоматической регулировкой давления;
  • при монтаже вертикальной тупиковой системы исключается движение теплоносителя самотеком — обязательно должен использоваться циркуляционный насос.

При монтаже тупиковой системы любого типа ключевое значение имеет не только точный расчет и квалифицированное выполнение работ, но и правильный выбор радиаторов и комплектующих.

Радиаторы Ogint отличаются не только высокой тепловой эффективностью и надежностью, но и отличными гидравлическими характеристиками. Также наша компания предлагает и функциональные монтажные элементы. Это позволяет создавать эффективные и стабильно работающие тупиковые системы отопления горизонтального и вертикального типа.

Преимущества и недостатки по сравнению с системами попутного типа

Тупиковая система считается менее прогрессивной, по сравнению с системой с попутным движением теплоносителя. В то же время она пользуется большей популярностью благодаря своей простоте.

Система с попутным движением теплоносителя превосходит тупиковую в гидравлическом плане. В ней движение теплоносителя по подающей и обратной магистрали осуществляется в одном направлении. Поэтому в обеих магистралях вода преодолевает одинаковое расстояние. За счет этого обеспечивается оптимальная сбалансированность системы отопления. При условии использования в системе одинаковых по мощности и типоразмеру радиаторов расчет будет максимально простым, а сама система не требует для балансировки монтажа радиаторных клапанов, которые приходится использовать в тупиковой системе. Однако в попутных системах необходимо учитывать наличие так называемых «точек равного давления» в двух контурах. Если подключить радиатор к магистрали в такой точке, то вода в него не пойдет. В тупиковых системах такой проблемы не существует.

Еще один недостаток встречной схемы заключается в том, что последний радиатор в ней является тупиковым. В нем напор теплоносителя будет меньше, что сказывается на тепловой эффективности. Потери приходится компенсировать добавлением дополнительных секций либо же установкой на каждый радиатор регуляторов.

Главным плюсом системы отопления с тупиковым движением теплоносителя является ее простота. Параллельные участки трубопровода, а также фасонные части имеют один диаметр. Благодаря этому упрощается и удешевляется монтаж системы. Кроме того, для тупиковой системы характерна меньшая протяженность трубопроводов, что также дает ощутимую экономию при монтаже.

Учитывая существующие преимущества и недостатки, а также их соотношение, тупиковые системы заслужили широкую популярность. Особенно активно они применяются для отопления сравнительно небольших частных домов, где не требуется монтаж сложной разветвленной системы.

Радиаторы для тупиковой системы отопления:

Попутное и тупиковое движение теплоносителя. Петля Тихельмана

Для создания автономных систем отопления сегодня чаще всего выбирается двухтрубная разводка, которая позволяет поддерживать равномерную температуру каждого радиатора и эффективно регулировать ее. В зависимости от характера движения теплоносителя в подающей и обратной магистрали, для ее реализации может быть выбрана тупиковая (встречная) или попутная схема. Каждый из этих вариантов имеет свои достоинства и минусы и лучше подходит для определенных условий монтажа. Использование попутной схемы или петли Тихельмана в некоторых случаях представляет собой единственный способ создания эффективного и стабильно работающего отопления. Разберем характерные особенности, плюсы и минусы этой схемы двухтрубной разводки.

Как работает петля Тихельмана

Наиболее распространенной в бытовых сетях является тупиковая схема движения теплоносителя. Ее принцип действия заключается в том, что нагретая вода от котла по подающей магистрали поступает в каждый радиатор, а на выходе из контура отопительного прибора по обратной магистрали сразу направляется к отопительному котлу. Таким образом потоки воды в «подаче» и «обратке» движутся навстречу друг другу. В данном случае подающая магистраль проходит от котла до последнего прибора, а обратная магистраль — в обратном направлении, начиная от последней батареи до котла.

Принципиальной особенностью системы попутного типа является то, что и в подающей, и в обратной трубе теплоноситель движется в одном и том же направлении. Обычно такая схема используется в сетях с нижней разводкой. При этом предусматривается прокладка не двух, а трех труб:

  • подающий трубопровод;
  • обратный трубопровод;
  • трубопровод для возврата теплоносителя из обратной магистрали к котлу.

В данном случае «подача» также проходит от котла до последнего отопительного прибора. Обратная магистраль проходит от первого до последнего отопительного прибора. Таким образом теплоноситель движется по ней в том же направлении, что и по напорному трубопроводу. От последнего отопительного прибора он возвращается обратно к котлу по отдельной трубе.

Для чего используется попутная схема

Попутная система отопления применяется в тех случаях, когда необходимо решить проблему сложной балансировки трубопроводной сети. Такая балансировка требуется для того, чтобы обеспечить равномерное распределение тепла между подключенными радиаторами. Чем ближе батарея расположена к котлу, тем меньшими будут в ее контуре потери давления по сравнению с контурами других батарей. Соответственно основной поток теплоносителя будет стремиться именно в этот контур. В результате в сети отопления тупикового типа возникает ситуация, когда в первом от котла отопительном приборе поддерживается слишком высокая температура, а последний радиатор оказывается слишком холодным и не может эффективно обогревать помещение.

Для устранения этого дисбаланса на каждый радиатор приходится ставить игольчатый вентиль или термостатический клапан для регулировки объема теплоносителя, подаваемого на каждый прибор. Таким образом, давление на конкретной батарее будет тем ниже, чем ближе она расположена к котлу. Однако серьезные сложности с балансировкой возникают, когда необходимо создать отопительную сеть значительной протяженности, например, если нужно обогреть двухэтажный дом. В таких случаях на первом радиаторе давление может быть занижено настолько, что теплоноситель в него просто не потечет, либо может не хватить настройки клапана. В этом случае оптимальным будет использование варианта с попутным движением теплоносителя.

Вариант с попутным движением теплоносителя дает возможность намного легче решить вопрос балансировки. Собственно, такой вопрос возникает только в том случае, если используются батареи с разными характеристиками. Если все радиаторы в системе отопления имеют одно и то же число секций и одинаковые размеры, то попутная разводка является сбалансированной изначально и не требует применения специальной регулирующей арматуры. При разном количестве секций или при разных типоразмерах установленных в системе радиаторов ее придется балансировать. Однако сделать это будет намного легче по сравнению с тупиковой схемой.

Плюсы и минусы

Главным плюсом петли Тихельмана является именно ее сбалансированность. Выбор такой схемы позволит сократить количество установленной регулирующей арматуры. Соответственно, отпадает необходимость обслуживания дополнительных устройств и возможность их выхода из строя. В результате повышается общая надежность системы и упрощается ее эксплуатация.

Также за счет того, что система является сбалансированной, все батареи в ее составе греют практически одинаково без применения дополнительных решений. Это оптимизирует работу котла и насоса, снижает износ оборудования. Кроме того, в таком режиме повышается эффективность работы системы.

Петля Тихельмана подходит для создания и систем с принудительной циркуляцией, и для самотечных систем. Наиболее распространены, безусловно, принудительные системы. Однако если возникает потребность создания системы с естественной циркуляцией теплоносителя, то хорошим выбором будет именно попутная схема. Это также объясняется сбалансированностью трубопровода и отсутствием необходимости в установке дополнительной регулирующей арматуры.

Радиаторы Lammin обладают высокой тепловой эффективностью и отличными гидравлическими характеристиками. Благодаря этому их использование дает возможность в полной мере использовать все преимущества данного типа отопительной системы.

Помимо перечисленных достоинств, петля Тихельмана имеет и ряд недостатков:

  • существенное увеличение протяженности трубопроводов;
  • необходимость использования труб различного диаметра;
  • необходимость прокладки трех магистральных трубопроводов.

Главным минусом является увеличенная протяженность трубопроводов. Это приводит к значительному росту материальных затрат на комплектацию системы отопления. Кроме того, перечисленные недостатки усложняют работы по ее монтажу.

В связи с этими недостатками схемы с попутным движением применяются реже, чем тупиковые. Однако для создания крупных систем с протяженными трубопроводами такая схема зачастую является просто незаменимой и обеспечивает максимальную эффективность.

Схема двухтрубной системы отопления с нижней разводкой

Существует несколько способов водяного отопления помещения. Есть двухтрубная, однотрубная схема размещения и два типа подведения труб: нижнее и верхнее. Рассмотрим конструкцию с двумя трубами и разводкой внизу.

Характеристика

Наиболее распространенной является именно двухтрубная организация отопления, несмотря на некоторые достоинства однотрубных конструкций. Какой бы сложной ни была такая магистраль с двумя трубами (отдельно для подачи воды и ее возврата) большинство предпочитает именно ее.

Такие системы стоят в многоэтажных и многоквартирных домах.

Устройство

Элементы двухмагистрального отопления с нижней врезкой труб следующие:

  • котел и насос;
  • автовоздушник, термостатические и предохранительные клапаны, вентили;
  • батареи и расширительный бак;
  • фильтры, регулирующие устройства, датчики температуры и давления;
  • можно применять байпасы, но необязательно.

Преимущества и недостатки

Рассматриваемая двухтрубная схема соединения при использовании обнаруживает много плюсов. Во-первых, равномерность распространения тепла по всей магистрали и индивидуальная подача теплоносителя в радиаторы.

Поэтому есть возможность регулировать отопительные приборы по отдельности: включать/выключать (нужно только перекрыть стояк), изменять напор.

В разных комнатах можно устанавливать разную температуру.

Во-вторых, такие системы не требуют отключения или слива всего теплоносителя при поломке одного отопительного прибора. В-третьих, систему можно устанавливать после возведения нижнего этажа и не ждать, пока будет готов весь дом. Кроме того, трубопровод имеет меньший диаметр, чем в системе с одной трубой.

Есть и некоторые недостатки:

  • требуется больше материалов, чем для однотрубной магистрали;
  • небольшое давление в подающем стояке создает необходимость часто спускать воздух, подключив дополнительные клапаны.

Сравнение с другими типами

В нижней врезке подающая магистраль прокладывается снизу, рядом с обраткой, потому теплоноситель направляется снизу вверх по стоякам подачи. Оба вида разводок могут быть сконструированы с одним или несколькими контурами, тупиковым и попутным течением воды в подающей трубе и обратке.

Системы естественной циркуляции с подводкой внизу применяются очень редко, так как они требуют большое количество стояков, а смысл такой врезки труб – свести их количество к минимуму. С учетом этого такие конструкции чаще всего имеют принудительную циркуляцию.

Крыша и этажи — значение

В верхнем подведении подающая магистраль – выше уровня радиатора. Ее монтируют на чердаке, в потолочном перекрытии. Нагретая вода поступает наверх, затем – через стояки подачи равномерно растекается по батареям. Радиаторы должны находиться выше обратки. Чтобы исключить скопление воздуха, монтируют компенсирующий бак в самой топовой точке (на чердаке). Потому она не подходит для домов с плоской крышей без чердака.

Разводка снизу имеет две трубы – подающую и отводящую, – батареи отопления должны быть выше их. Она очень удобна для удаления воздушных пробок кранами Маевского. Подающая магистраль находится в подвале, в цоколе, под полом. Подающий трубопровод должен находиться выше, чем обратка. Дополнительный уклон магистрали в сторону котла сводит к минимуму воздушные пробки.

Обе разводки наиболее эффективны при вертикальной конфигурации, когда батареи смонтированы на различных этажах или уровнях.

Принцип работы

Главной характеристикой двухтрубной системы является наличие индивидуальной магистрали подачи воды в каждый радиатор. В этой схеме каждая из батарей снабжена двумя отдельными трубами: подводящей воду и отводящей. К батареям теплоноситель течет снизу вверх. Остывшая вода возвращается по обратным стоякам в обратную магистраль, а по ней в котел.

В многоэтажном помещении уместно ставить именно двухтрубную конструкцию с вертикальным расположением магистрали и нижней разводкой. В этом случае разница температур между теплоносителем в подающей трубе и обратке создает сильное давление, увеличивающееся по мере повышения этажа. Давление помогает воде продвигаться по трубопроводу.

В рассматриваемом нижнем соединении труб котел должен находиться в углублении, так как батареи и отопительные приборы должны быть выше для обеспечения равномерной доставки воды к ним.

Воздух, который накапливается, удаляется кранами Маевского или спускниками, они монтируются на всех отопительных приборах. Применяют также автоматические сбросники, которые фиксируются на стояках или специальных воздухоотводных линиях.

Виды

Двухтрубная система отопления может быть следующих типов:

  • горизонтальная и вертикальная;
  • прямоточная — теплоноситель течет в одном направлении по обеим трубам;
  • тупиковая — горячая и остывшая вода движется в разных направлениях;
  • с циркуляцией принудительной или естественной: для первой нужен насос, для второй – уклон труб в сторону котла.

Горизонтальная схема может быть с тупиками, с попутным движением воды, с коллектором. Она подходит для одноэтажных зданий со значительной протяженностью, когда батареи целесообразно подсоединять к горизонтально расположенной магистральной трубе. Удобна такая система также для зданий без простенков, в панельно-каркасных домах, где стояки удобно размещать на лестничной клетке или коридоре.

По мнению специалистов, самой эффективной стала вертикальная схема с принудительным током воды. Для нее нужен насос, который располагают на обратке перед котлом. На ней же монтируют и расширительный бак. За счет насоса трубы могут быть меньше, чем в конструкции с естественным движением: вода с его помощью гарантировано будет двигаться по всей линии.

Все отопительные приборы подсоединяются к вертикально расположенному стояку. Это оптимальный вариант для многоэтажек. Каждый этаж соединяется с трубой стояка отдельно. Преимуществом является отсутствие воздушных пробок.

Монтаж

Условно можно выделить несколько этапов работ. Сначала определяется тип отопления. Если к дому подведен газ, то самым идеальным вариантом будет установка двух котлов: один – газовый, второй – запасной, твердотопливный или на электричестве.

Далее следует согласовать установку системы отопления в проектной документации и приступить к покупке необходимых материалов, устройств, подготовке инструментов.

Этапы

Вкратце монтаж состоит из таких пунктов:

  • от котла выводится вверх труба подачи и соединяется с компенсаторным бачком;
  • из бачка выводят трубу верхней магистрали, которая идет ко всем радиаторам;
  • устанавливается байпас (если он предусмотрен) и насос;
  • проводится обратная линия параллельно подающей, ее же соединяют с радиаторами и врезают в котел.

Котел

Для двухтрубной системы первым устанавливается котел, для чего создается мини-котельная. В большинстве случаев это подвал (в идеале — отдельное помещение). Основное требование – хорошая вентиляция. Котел должен иметь свободный доступ и располагаться на некотором отдалении от стен.

Пол и стены вокруг него облицовываются огнеупорным материалом, а дымоход выводится на улицу. При необходимости устанавливается насос для циркуляции, коллектор для распределения, регулирующие, измерительные приборы около котла.

Радиаторы

Их монтируют в последнюю очередь. Они располагаются под окнами и фиксируются кронштейнами. Рекомендуемая высота от пола – 10–12 см, от стен – 2-5 см, от подоконников – 10 см. Впуск и выпуск батареи фиксируется запорными и регулирующими устройствами.

Желательно установить термодатчики — с их помощью можно отслеживать показатели температуры и регулировать их.

Если котел отопления газовый, то необходимо наличие соответствующей документации и присутствие представителя газового хозяйства при первом запуске.

Советы

Расширительный бак располагается на уровне или выше самой пиковой точки магистрали. Если есть автономная водоподача, то его можно интегрировать с расходным бачком. Уклон подающей и обратной труб должен быть не больше 10 см на 20 и более погонных метров.

Если трубопровод оказался у входной двери – уместно разделить его на два колена. Тогда разводка создается от места верхней точки системы. Нижняя магистраль двухтрубной конструкции должна находиться симметрично и параллельно верхней.

Все технологические узлы нужно оснастить кранами, а подающую трубу желательно утеплить. Распределительный бак также желательно разместить в утепленном помещении. При этом не должно быть прямых углов, резких переломов, которые создадут впоследствии сопротивление и воздушные пробки. Наконец, нельзя забывать про опоры для труб — они должны быть из стали и врезаться на каждые 1,2 метра.

Попутная схема отопления – устройство, применение, как делается

Попутная схема разводки отопительного трубопровода отличается тем, что является саморегулирующейся. Если она собрана правильно, то после монтажа ее настраивать не нужно. На каждом радиаторе в этой системе должна возникнуть одинаковая разница давлений между подачей и обраткой. Каждый отопительный прибор в попутной схеме работает в одинаковых гидравлических условиях.

Как устроена попутка

Одинаковая разница давлений на радиаторах возникает потому, что сумма длин подачи и обратки для каждого одинаковая. Это можно наглядно увидеть на схеме. Возьмите любую батарею из системы, и оцените суммарную длину подающего и отводящего трубопровода до котла.

Т.е. все отопительные приборы находятся в одинаковых условиях автоматически, а это именно то, что на других схемах добиваются тонкой настройкой и добиться иногда не могут. Например, сложная настройка у лучевой схемы, где каждая батарея подключена длинной парой трубопроводов к одному коллектору. Длины этих трубопроводов разные, радиаторы взаимно влияют друг на друга, поэтому систему приходится тщательно регулировать.

Диаметры трубопроводов

Желательно, чтобы диаметр магистрального трубопровода (и подачи и обратки) был бы одинаков на протяжении всего кольца, за исключением подключения последнего радиатора. Где с точки разветвления на предпоследний, можно использовать меньший диаметр, ведь это будет уже не магистраль, а отвод на последний в схеме отопительный прибор. Т.е. конечный отрезок и подачи и обратки может быть с меньшим диаметром.

Выдержка одного значительного диаметра магистралей необходима, чтобы обеспечить одинаковые условия для радиаторов. Т.е. чтобы эта «попутка» была бы сбалансированной системой, где все батареи работают стабильно в одних условиях.

Если же начать «играться» в экономию и уменьшать диаметр магистрали по ходу движения жидкости (ведь ее требуется меньше с каждым ответвлением), то очень просто сделать, так что группа последних радиаторов будет всегда холоднее, т.е. система получится сложнонастраиваемой.

Таким образом, для небольшого дома с 6 – 8 радиаторами от котла прокладывается трубопровод с диаметром 26 мм (наружный для металлопластика, для полипропилена и др. материалов — другие значения), затем до предпоследнего прибора, — 16 мм. Наоборот, для обратки, – от первой батареи 16 мм, затем от второго – 26 мм кольцо до котла.

Но это лишь пример для небольшой системы, а если дом большой, то и диаметр магистралей возможно нужен побольше, чтобы на конечных участках трубопровод не шумел, чтобы скорость в нем не превысила 0,7 м/с. Определить необходимый диаметр можно несложным подбором по подключенной мощности, пример расчета можно обнаружить и на данном ресурсе.

Всегда ли нужна попутка

Попутная система отопления подороже по сравнению с тупиковой, процентов на 20. Денежный перерасход связан с применением труб большого диаметра, и в особенности их фитингов – тройников на ответвлениях радиаторов и переходников на меньший диаметр, которым подключены радиаторы.

В тупиковой же схеме диаметры труб будут меньшими, так как вся мощность разделяется на 2 и более плечей, по выходу из котла.

Особенно громоздкой становится попутка, когда нет возможности провести трубы по кольцу по периметру дома – от выхода котла к его входу. Тогда обратку приходится возвращать тем же путем, где и уложена подача.

Получается сложная петля уже из трех магистральных трубопроводов большой толщины. Этого нужно избегать и преобразовать попутку в более простую тупиковую схему по конкретным обстоятельствам.

Обычный же переход на тупиковую систему происходит при снижении количества радиаторов до 10 и менее. Тогда появляется возможность сбалансировать радиаторы в тупиках и сами плечи без особого наращивания мощности насоса.

При наличии 3, 4 и даже 5 радиаторов в плече нет проблемы с балансировкой всех радиаторов и плечей в тупиковой схеме отопления.

А если те же десять радиаторов приходится делить по плечам как 6 и 4, — то лучше делать самонастраивающуюся попутку, так как при 6 отопительных приборах и неравнозначных тупиках придется излишне увеличивать мощность насоса и слишком «зажимать» ближе расположенные к нему батареи.

Осложнения при создании попутной системы отопления и ее настройка

Если, как рекомендовалось, диаметр магистрали трубопроводов будет одинаковым, а радиаторы будут расположены на одном высотном уровне, а также, если не будет слишком большой разницы в мощностях радиаторов, то и проблем с работой системы быть не может.

Точнее, любые проблемы типа «не греет 3-й радиатор» возникают только лишь из-за нарушений монтажа. Например, выполнена пайки полипропилена с наплывами и перекрытием внутреннего диаметра.

Но если, негативные для работы системы факторы, которые указаны выше, присутствуют, то и различия в работе радиаторов могут возникать.

  • Расположенный выше заберет больше теплоносителя.
  • Слишком мощный не сможет ее развить на максимум, а при увеличении расхода насосом, самые маленькие батареи начнут шуметь из-за большой скорости.
  • Подключенные уменьшенным диаметром трубопровода (последний не в счет), вероятней всего, не разовьют мощности, так как давление на них будет меньше.

В общем, попутка стабильная схема, но «нежная», — не стоит нарушать правил ее создания, и все будет работать как положено.

Остается лишь вопрос совмещения весьма мощных радиаторов с другими, ведь если его не решить, то система будет … не применимой вообще.

Возможно, что в оранжерее нам понадобится один отопительный прибор на 5 кВт, а в туалете – 0,5 кВт. Настраивая насос и трубопроводы под 5-киловатник, мы подадим на батарею в туалете повышенное для него давление и слишком увеличим через него скорость.

А решение конфликта мощностей все тоже, что и в плечевой схеме – балансировочные краны. Они должны стоять, по крайней мере, на самых маломощных радиаторах в попутке, защищая их от большого давления.

Но если радиаторы управляются местными термоголовками, то возможна ситуация, когда часть отключится, а какой-либо оставшийся в работе, начнет шуметь из-за увеличившегося потока. Поэтому балансировочные краны лучше ставить сразу на все приборы отопления при создании попутной схемы отопления для дома.

Остается один из главных вопросов, — а можно ли собрать попутную систему отопления дома своими руками? Конечно можно. Но нужно уделить внимание освоению также и следующих вопросов.

Выбор вида труб и их диаметра, подбор радиаторов по мощности, обвязка котла, обвязка радиатора, правильный подбор фитингов, способы монтажа, приемы и проблемы с выбранным трубопроводом, тренировка выполнения монтажа. В принципе, даже новички в слесарном деле, собирали отличные работоспособные системы отопления из современных материалов. Вероятно, что так будет и далее.

Схемы разводки систем отопления | Блог инженера теплоэнергетика

       Доброго времени суток, уважаемые читатели! Схемы разводки отопления бывают однотрубные и двухтрубные, с верхней и нижней разводкой, вертикальные и горизонтальные, тупиковые и со встречным движением воды. В основном в жилых домах и зданиях преобладает вертикальная однотрубная схема разводки. С семидесятых годов и до окончания советского времени отопление большей части зданий строили именно по однотрубной системе. Да и в новые времена отопление немалой части зданий смонтировано именно по этой схеме.

      Раньше объяснялось это тем, что однотрубная система требует меньшего расхода труб, проще в монтаже, более устойчива по гидравлике (если не применять регулирующую арматуру). Да и сейчас немало сторонников у данной схемы разводки отопления. Если зайти на тематические форумы, то там можно встретить темы, где идут жаркие споры между сторонниками и противниками однотрубной системы.

       Что из себя представляет однотрубная система, например с нижней разводкой? Это система, в которой вода уходит из подачи  снизу вверх в стояк, и пройдя вертикально все здание, возвращается через другой, параллельный стояк в обратку.Такая разводка называется вертикальная нижняя однотрубная.

По такой схеме подключено подавляющее число многоэтажек, построенных на закате советской эпохи. Отличия только в том, что где то разводка делалась с перемычками, или по другому замыкающими участками, где то без перемычек, где то с трехходовыми кранами на перемычке. На фото с перемычкой и трехходовым краном. Реже встречается верхняя однотрубная схема разводки отопления. Схема эта характерна тем, что из теплоузла выходит так называемый главный стояк большого диаметра, и затем уже с верхнего этажа разводка идет сверху вниз.

Кроме этого, схема разводки отопления может быть с тупиковым или попутным движением воды. Тупиковое движение воды, это когда вода затекает в радиатор в одном направлении, а выходя из него движется в противоположном направлении, как на фото ниже.

Схема с попутным движением воды, когда вода затекает в радиатор в одном направлении, и выходя из него, движется в том же направлении, как на фото ниже.

Принципиальное отличие между между этими двумя схемами в том, что разводку отопления с попутным движением воды легче сбалансировать по гидравлике. Разрегулировка в такой системе встречается гораздо реже, чем в схеме с тупиковым движением воды. Дело в том, что все циркуляционные кольца в системе с попутным движением примерно равны между собой по длине, сооответственно и потери давления примерно одинаковы. В системе же с тупиковым или встречным движением, чем дальше стояк от теплоузла, тем длинее циркуляционное кольцо, в которое он входит. Отрегулировать по гидравлике  такую систему гораздо труднее. Все так, но за хороший баланс по гидравлике в системе с попутным движением приходиться платить повышенным расходом трубопровода, то есть протяженность труб больше, чем в системе с тупиковым движением.

       Есть у однотрубной системы и недостатки, и самый главный, что на ней трудно приживается современная регулирующая арматура (балансировочные клапаны, радиаторные термостаты). Действительно, если поставить на радиатор в однотрубной системе регулятор с термоголовкой (термостат), то он будет только снижать или повышать температуру в комнате, то есть регулировать внутреннюю температуру, не более того.Экономии теплоэнергии у вас не будет, так как теплоноситель, миновав радиатор с термостатом, в том же количестве уйдет далее по стояку к другим радиаторам. С балансирочными клапанами вроде попроще, ставят их на однотрубную схему разводки отопления. На стояк, который идет с подачи ставят обычный запорный кран, на стояк, который уходит в обратку — балансировочный клапан. Есть схемы, где оба кран балансировочные. Вообщем, конечно, можно при желании отбалансировать однотрубную систему.

       Однако, все же более лучшей для регулировки является двухтрубная система отопления.

Гидравлическая регулировка здесь намного проще, зачастую балансировочные клапаны по стоякам и не требуется. Двухтрубную систему можно регулировать даже просто обычным запорным  краном советского образца.

Но обычно используют стандартную схему обвязки радиаторов с обычным запорным шаровым краном на одном поводящем трубопроводе к радиатору, и регулирующим краном на другом трубопроводе к радиатору. Можно очень даже неплохо отбалансировать систему. Двухтрубная система также бывает с верхней и нижней разводкой. с тупиковым и встречным движением воды, вертикальной и горизонтальной.

       Самой перспективной и современной представляется горизонтальная система разводки отопления. Ведь самый главный и неустранимый недостаток вертикальных систем отопления, что однотрубных, что двухтрубных — это невозможность поставить счетчик потребления теплоэнергии на отдельно взятую квартиру или даже этаж. Все это, кстати, очень тормозит реальное энергосбережение, так как стимула нет никакого, раз счет за тепло выставляют по каким то расчетным цифрам. Пусть даже в подвале, в теплоузле, и стоит общедомовой прибор учета тепла. Горизонтальная разводка отопления подразделяется на лучевую и периметральную. Периметральная — как становится понятно из названия, разводка по периметру помещения. Более удобной для регулировки и учета является лучевая разводка отопления.

Ввод, регулировка и учет такой такой системы отопления напоминает ввод электричества в квартиру. Также распределительные шкафы, только вместо автоматических выключателей, УЗО, электросчетчиков, и проводки — балансировочная арматура, приборы учета и контроля, распределительные коллекторы.

       Сам я придерживаюсь стороны приверженцев двухтрубной схемы разводки отопления. Хотя понятно, что в советское время широкое применение однотрубной системы было оправдано с точки зрения капитального строительства и темпов возведения жилья.

Буду рад комментариям к статье.


Двухтрубная система отопления частного дома: экономить материалы или топливо

В целом двухтрубная система отопления частного дома предпочтительнее, чем однотрубная. Однако на этом выбор вариантов разводки системы отопления не заканчивается: нужно ещё просчитывать материалоёмкость и энергоэффективность нижней, верхней и лучевой схемы. Каждая из них подходит для разных типов зданий и у всех есть свои преимущества и недостатки, которые нужно тщательно взвешивать.

На этапе проектирования дома и составления сметы на строительство объектов решается масса вопросов. Теплоизоляция, водоснабжение, отопление – всё это тщательно просчитывается каждым хозяином. Ошибка на стадии выбора материалов и схем обойдётся дорого при эксплуатации. Некачественная теплоизоляция помещений или ошибки при проектировании системы отопления приведут к теплопотерям, замерзанию водопроводных труб, выходу из строя котла.

Двухтрубная система отопления частного дома – универсальный вариант и для одноэтажного коттеджа, и городской девятиэтажки. Схема работает за счёт цикличного движения теплоносителя по контуру. Подающая и обратная магистрали параллельно идут к каждому радиатору.

От вида системы и схемы разводки отопления в частном доме зависят затраты на монтаж, количество топлива, которое будет расходоваться в отопительный период.

В частных домах можно использовать двухтрубную систему отопления с нижней, верхней или лучевой разводкой. Каждая из них используется как при естественной, так и принудительной циркуляции. В целом гравитационные двухтрубные системы отопления до сих пор применяется в небольших частных домах или на дачах, часто после отказа от печей. Они менее эффективны, но для многих приемлемы из-за своей низкой стоимости.

Тупиковая (А), попутная (Б) и коллекторная (В) разводка отопления с естественной циркуляцией теплоносителя.

Двухтрубная система отопления с верхней разводкой: готовьтесь прятать трубы

При проектировании небольших коттеджей в один этаж целесообразна схема, при которой теплоноситель подаётся сверху к радиаторам. От котла горячая жидкость поднимается вверх по подающему стояку и затем опускается по трубам к батареям. А «обратка» – проводится внизу через все радиаторы.

Верхняя разводка двухтрубной системы с принудительной (расширитель закрытого типа устанавливается в любой точке) или естественной (расширитель открытого типа устанавливается сверху) циркуляцией.

Самый большой недостаток верхней разводки – непрезентабельный вид подающей магистрали располагающейся под потолком и затраты на её «маскировку». Прячут трубу несколькими способами:

  • под навесными потолками или отделкой потолка;
  • в потолочных нишах, коробах из гипсокартона;
  • на чердаке. При этом варианте существенно возрастают затраты на утепление труб;
  • вертикальные участки обычно прячут в искусственных выступах, имитирующих колонны.

Если циркуляция жидкости происходит за счёт гравитации, утеплять трубы на чердаке придётся в любом случае: в самой высокой точке системы должен находиться расширительный бачок. Он нужен для компенсации увеличения объёма горячего теплоносителя.

С недостатками такой разводки придётся считаться и при выполнении расчётов и при монтаже:

  • ограничение минимального диаметра труб, связанное с высоким показателем сопротивления естественной циркуляции;
  • большинство современных радиаторов не подходят из-за маленького сечения;
  • уклоны труб должны строго выдерживаться, иначе отопление не будет правильно работать.

Двухтрубная система отопления с нижней разводкой: гибкость против нестабильного давления

Данный вариант монтажа двухтрубной системы отопления с принудительной циркуляцией отлично подходит для частных двухэтажных и более высоких домов. Каждая батарея сразу подключается к контурам «обратки» и подачи. Имеет много преимуществ:

  • снижение теплопотерь за счёт расположения труб в отапливаемых помещениях;
  • возможность запуска сразу после монтажа. Это позволяет проводить оставшиеся строительные и отделочные работы в отапливаемом помещении;
  • возможность поэтажного отключения. При необходимости можно отключить любой этаж и проводить там ремонт, сохраняя при этом комфортную температуру в помещениях. Это гарантирует устойчивую работу системы без рисков замерзания в холодное время;
  • индивидуальные температурные режимы во всех помещениях. Для каждой комнаты устанавливаются свои параметры, за счёт чего достигается высокая эффективность, при минимальном расходе топлива;
  • компактность. При нижней разводке двухтрубной системы отопления в частном доме все трубы подводятся с одной стороны, и их достаточно легко спрятать.

Двухтрубная система отопления частного дома при нижней разводке выглядит более эстетично, чем верхняя. Она даёт больше простора для регулировки температур, ремонт и техническое обслуживание можно проводить поэтажно, не оставляя весь дом без отопления.

Но такая система не лишена и недостатков:

  • большой расход труб, фитингов и других комплектующих, особенно по сравнению с однотрубной разводкой;
  • обязательное наличие воздухоотводчиков. Воздух в трубах и батареях может привести к полной блокировке движения теплоносителя – при любой температуре в котле трубы будут холодными;
  • снижение рабочего давления в подающей трубе.

1 – воздухоотводчик, препятствующий образованию воздушных пробок; 2 – термоголовка, предназначенная для механической регулировки температуры; 3 – запорная арматура; 4 – температурный датчик отопления.

Двухтрубная система отопления частного дома с нижней разводкой в комбинации с естественным движением теплоносителя практически не встречается.

Схема двухтрубной отопительной системы с нижней разводкой. Здесь изображены по два возможных варианта циркуляционных колец и подключения батарей.

Причина в том, что в этом случае практически теряется смысл её применения, трубы всё равно проходят от потолка до пола в каждом помещении. К недостаткам такой системы добавляется обязательное наличие расширительного бачка открытого типа, который придётся устанавливать на чердаке и, следовательно, утеплять это помещение.

Двухтрубная система отопления с лучевой разводкой: существенная экономия топлива в течение первых пяти лет

Старая схема лучевой разводки, которую в советское время повсеместно применяли при строительстве многоэтажных домов, предполагала отведение труб от общего стояка к каждому радиатору. Но, если кто-то из жильцов одного этажа решил изменить температуру в помещении, это хорошо чувствовалось практически во всём доме. Строго говоря, и её можно было бы отбалансировать, но сделать это крайне сложно. Сейчас схему пересмотрели, вместо общего стояка в ней появился коллектор (отсюда второе название разводки «коллекторная»), а вместе с ним и масса преимуществ.

Двухтрубная система отопления частного дома с современной лучевой разводкой, по мнению всех специалистов, является самой энергоэффективной. Каждая батарея получает питание непосредственно от котла, благодаря наличию распределительного коллектора. Он обычно находится в котельной, а при отсутствии последней – в специальном шкафу.

Обязательное наличие циркуляционного насоса позволяет уменьшить дельту температур жидкости на входе и выходе котла повысив эффективность нагрева.

Коллекторная или лучевая разводка – экономичный в эксплуатации вариант двухтрубной системы. Благодаря распределительному коллектору, можно отключать и настраивать каждый отдельно взятый радиатор.

Недостатки лучевой (коллекторной) разводки на слуху у каждого:

  • громоздкость коллектора. Его нужно размещать либо в отдельном помещении, либо придётся убирать в шкаф, который тоже не просто замаскировать в комнате;
  • практически обязательное наличие насоса в системе;
  • необходимо большее количество труб, чем при любой другой разводке.

А вот плюсы коллекторной двухтрубной разводки назвать могут немногие:

  • индивидуальный температурный режим для каждой комнаты в ручном или автоматическом режимах;
  • независимое питание и возможность отключения подачи и «обратки» отдельно для каждого радиатора. Ремонт или техническое обслуживание проходят без отключения отопления во всём доме;
  • при прокладке в полу используются только цельные отрезки труб безо всяких соединений. Вероятность разрыва или повреждения участка, проходящего под напольным покрытием, очень мала;
  • сравнительно небольшое количество фитингов и других соединительных элементов;
  • удобство и простота выполнения расчётов: трубы для подающих и обратных магистралей каждого радиатора имеют один диаметр.

Лучевая двухтрубная система отопления позволяет прокладывать трубы в полу. Это возможно за счёт того, что коллектор с радиатором соединяются одним целым отрезком трубопровода, а все фитинги крепятся уже после вывода его на поверхность.

На этапе проектирования смета двухтрубной лучевой системы отопления частного дома с принудительно циркуляцией выглядит пугающей в сравнении с любой другой. Но, если произвести расчёт расхода топлива с учётом индивидуальных настроек температуры в помещениях и времени суток (хотя бы на первые три-пять лет), то ситуация изменяется на прямо противоположную. При этом в период эксплуатации дополнительная экономия достигается за счёт подстройки под погодные условия.

Associated Heating & Air Conditioning, Inc.

Что такое система кондиционирования воздуха Mitsubishi Electric?

На протяжении десятилетий системы кондиционирования воздуха с разделением на зоны и тепловые насосы были тихим решением проблем охлаждения и обогрева во всем мире. Наши тихие и мощные системы состоят из трех основных компонентов: внутреннего блока, наружного блока и пульта дистанционного управления. Установка так же проста, как монтаж внутреннего и внешнего блоков, подключение линий хладагента и выполнение нескольких электрических подключений.

Почему Mitsubishi Electric Systems?

Mitsubishi Electric — лидер в области бесканальных систем кондиционирования воздуха — точка. Сравните, и вы увидите, что никто не превосходит бренд Mitsubishi Electric по характеристикам бесшумной, простой в использовании и энергоэффективной работы. А поскольку наша технология раздельных бесканальных воздуховодов носит название Mitsubishi Electric, вы знаете, что каждый продукт рассчитан на длительный срок службы. Суть в том, что системы Mitsubishi обеспечивают максимальный комфорт для вашего дома или офиса.Это верно сегодня и будет с комфортом очевидным на долгие годы.

Где можно использовать продукцию Mitsubishi Electric?

Если в помещении слишком жарко или слишком холодно, Mitsubishi Electric Cooling & Heating справится с этим!

Системы сплит-зонирования Mitsubishi специально разработаны для повышения уровня комфорта в неудобно жарких или холодных помещениях существующего здания. Поскольку для них не требуются воздуховоды, они являются идеальными системами отопления и охлаждения для ремонта старых зданий, построенных до того, как стали доступны системы кондиционирования воздуха, даже в тех, которые имеют гипсовые стены и кирпичные фасады.

Универсальность и разнообразие областей применения систем Mitsubishi Electric практически безграничны. Они являются отличным выбором практически для любой ситуации с точечным охлаждением или обогревом, включая закрытые солярии, спальни наверху, классы, больницы, дома престарелых, рестораны, гостиницы, тренажерные залы, компьютерные классы, офисы и церкви.

Они также оснащены антиаллергенным фильтром и предотвращают перекрестный поток воздуха с загрязнителями. А поскольку ими можно управлять по зонам, легко настроить элементы управления на точную комнатную температуру, которую вы хотите.

Как это работает?

Mitsubishi Electric Cooling & Heating может вписаться практически в любое пространство, потому что их инновационные разработки оптимизируют возможности технологии инвертора и хладагента R410A для более эффективных систем с небольшими внутренними и внешними блоками.

Хладагент

R410A является экологически чистым, с нулевым озоноразрушающим потенциалом (ODP). Сами агрегаты также изготовлены из перерабатываемых материалов.

Чтобы узнать больше о продукции Mitsubishi Electric для разделения зон, позвоните в Associated Heating & Air Conditioning, Inc.по телефону (541) 683-2590.


Поиск необходимого общего провода 24 В — Служба поддержки клиентов

Для термостата iDevices требуется общий провод 24 В или провод «C», который обеспечивает непрерывное питание для таких функций, как подключение к Wi-Fi и дисплей с подсветкой. Если у предыдущего термостата не было общего провода и использовались батареи для питания или у вас был ртутный термостат, есть несколько вариантов подключения общего провода. Для всех опций требуется общий терминал на вашей плате управления HVAC.

Найдите плату управления HVAC и определите общий терминал:

Плата управления HVAC — это место, где провода термостата подключаются к вашей системе отопления и охлаждения. В большинстве случаев плату управления можно найти на вашей печи или в воздухонагревателе. Если вам не удается найти плату управления HVAC или это неудобно, обратитесь к сертифицированному специалисту по HVAC в вашем районе за дополнительной помощью.

После того, как вы обнаружите плату управления HVAC, убедитесь, что есть общий вывод.Общая клемма может быть помечена C, 24VAC или COMM. Ниже приведена фотография типичной платы управления HVAC с общей клеммой, обведенной красным:

Вариант 1 — Подключите дополнительный провод к существующему термостату:

Проверьте текущую проводку на предмет дополнительных проводов, которые не использовались предыдущим термостатом. Если ваша система HVAC совместима, мы можем использовать дополнительный провод в качестве общего провода. Дополнительные провода также можно спрятать за термостатом или в стене, осторожно потяните за пучок проводов или посветите фонариком в стену, чтобы проверить наличие лишних проводов.

Если вы обнаружили дополнительный провод, мы должны убедиться, что провод подключен к общей клемме на плате управления HVAC. Выполните описанные выше действия, чтобы найти плату управления HVAC и определить общий вывод. Подключите тот же дополнительный провод, расположенный на термостате, к общей клемме на плате управления HVAC. Как только провод будет подключен к общей клемме, включите прерыватель и убедитесь, что ваш термостат включен.

Вариант 2 — Адаптер провода термостата iDevices:

Если текущий термостат имеет как минимум 3 провода, а ваша плата управления HVAC имеет общий вывод, мы можем использовать адаптер провода термостата (https: // store.idevicesinc.com/thermostat-wire-adapter/) для питания термостата iDevices. Адаптер провода термостата работает, проложив два сигнальных провода для вашей системы отопления, вентиляции и кондиционирования воздуха по одному проводу, освобождая другой для использования в качестве общего провода. Выполните описанные выше действия, чтобы найти плату управления HVAC и определить общий вывод.

Вариант 3 — проложить новый пучок проводов:

В зависимости от расположения термостата и системы HVAC в вашем доме, вы можете проложить новый пучок проводов с большим количеством доступных проводов.Перед этим выполните описанные выше действия, чтобы найти плату управления HVAC и убедиться, что имеется общий вывод. Если вы не уверены, что новый пучок проводов является лучшим вариантом для вашего дома, обратитесь к сертифицированному специалисту по HVAC в вашем районе за дополнительной помощью.

Описание проводки термостата: удобное руководство для домовладельцев

Когда центральный кондиционер впервые появился на рынке, термостат был очень простым. Все, что они делали, — это включали и выключали систему и отслеживали температуру в комнате.Им не нужен был отдельный блок питания.

Но в эту новую эпоху высоких технологий, умных домов и модных сенсорных дисплеев вашему термостату нужен постоянный источник энергии.

Как он получает эту мощность? Провод C термостата или общий провод позволяет непрерывно передавать энергию на термостат.

Как узнать, есть ли в вашей системе провод C? Если вы подумываете о модернизации термостата, можете ли вы сделать это самостоятельно? Здесь мы расскажем вам все, что вам нужно знать о проводе термостата C и основах подключения термостата, чтобы вы больше не были в темноте.

Что такое провод термостата C?

Провод C — это дополнительный провод, который используется для создания непрерывной цепи питания 24 В между вашим термостатом и остальной системой HVAC. Это позволяет использовать мощность для любого применения и позволяет более совершенным термостатам работать с максимальным потенциалом.

C означает обычный и обычно обозначается буквой C. Он может быть любого цвета. Это не всегда будет помечено. Хотя существуют стандартные методы, они не требуются и поэтому не применимы к каждой установке.

Хотя некоторые люди думают, что провод C — это то, что приводит в действие термостат, это не совсем так. Обычно «горячие» провода или провода, обеспечивающие питание устройства, представляют собой нагревательные и охлаждающие провода, обозначенные Rc и Rh соответственно.

Они обеспечивают источник питания 24 В, который поступает на саму главную плату управления HVAC. Другие провода на панели соединяют цепь, так что петля передает питание назад и вперед к плате.

Таким образом, провод C не питает термометр, а обеспечивает обратный путь, замыкающий контур и предотвращающий перебои в подаче электроэнергии.

Хорошо, но почему мне снова нужен провод C?

Вы можете подумать, что все это звучит действительно сложно и ненужно, но факт в том, что термостаты прошли долгий путь от ртутной капли, двигавшей иглу прошлого.

Сегодняшние системы включают собственные сигналы Wi-Fi, чтобы иметь возможность программировать устройство из любого места. Термостат становится главным центром конфигурации вашего умного дома и выполняет все операции. Это требует много энергии.

Если термостат зависел от батарей, вам нужно было бы заменять их через день, чтобы соответствовать потребляемой мощности.

Помимо сигнала Wi-Fi, большинство современных термостатов имеют красивый большой полноцветный сенсорный экран. Это дополнительная потребляемая мощность, которая требует постоянной мощности для поддержания эффективности и функциональности.

В конце концов, ваш термостат — это не то, что вы хотите подвергнуть риску неожиданного отключения, когда это жизненно важно для производительности всей вашей системы.

Отсутствие термостата означает отсутствие переменного тока или тепла. Вы хотите, чтобы это случилось, пока вы находитесь вдали от дома? Лучше всего установить правильное оборудование, даже если это стоит несколько дополнительных долларов.

Переключение термостата — это проще простого, если у вас уже есть провод C термостата для подключения к

Может быть, вы подумываете о замене вашего текущего термостата на интеллектуальное устройство. Достаточно просто переключить и установить. Вам просто нужно замкнуть цепь между проводом R (красный провод) и проводом C, чтобы запустить поток энергии 24/7.

Но, если в вашей системе уже не настроен кабель C, все может стать немного сложнее. Проверить, есть ли в вашем распоряжении С-образный провод, довольно просто. Имея несколько инструментов и немного смазки для локтей, вы будете точно знать, с чем имеете дело.

Давайте рассмотрим, как проверить провод C.

1. Изучите закулисье термостата

Снимите термостат со стены. Не беспокойтесь о его повреждении, иногда для того, чтобы снять лицевую панель, нужно потрудиться.

После отсоединения лицевой панели взгляните на конфигурацию проводов вашего устройства. Если к клемме, помеченной как «C», подключен провод, то это хорошее предположение, что все готово.

Если вы его не видите, еще не все потеряно. Его можно было просто воткнуть в стену для дальнейшего использования и не промаркировать. Возьмите фонарик и проверьте, нет ли там неиспользованных проводов. Если вы ничего не видите, посмотрите на свою печь.

Если в вашей печи есть провод C, то другой конец обязательно воткнут в стену за термостатом.Вот как проверить вашу печь на наличие проволоки C.

2. Проверьте электропроводку вашей печи

Прежде чем вы начнете возиться с чем-либо электрическим, рекомендуется отключить питание устройства перед тем, как вы начнете.

После отключения питания найдите крышку и снимите ее, чтобы обнажить проводку. Иногда это легко, а иногда сложнее, в зависимости от модели устройства.

Как только вы его откроете, ищите ряд винтов, из-под которых выходят провода.У них должны быть такие ярлыки, как R, C, W, W2, G и Y / Y2.

Если из винта «C» выходит провод, то все в порядке. Если провода C нет, вам необходимо установить новую проводку.

Помните, что если в какой-то момент это становится ошеломляющим или начинает беспокоить вас, рекомендуется обратиться к профессионалу, который сделает это за вас.

Можно ли иметь интеллектуальную систему без кабеля C? Действительно ли он мне нужен?

Если вы собираетесь модернизировать свой термостат, рекомендуется установить провод C.Новые дома автоматически включают их в сборку, чтобы соответствовать коду.

Хотя технически возможно запустить систему без нее, это крайне неэффективно. Вы потратите целое состояние на аккумуляторы или изнашиваете саму систему отопления, вентиляции и кондиционирования воздуха, одалживая электроэнергию.

Практически каждому современному термостату для правильной работы потребуется C-провод. Лучше установить его сейчас, потому что в ближайшем будущем технологии не сделают шаг назад.

Я слышал, что гнездо работает без провода C, могу я просто использовать его?

Термостаты Nest

стали популярными и заявляют, что могут работать без провода C.Однако сила все равно должна откуда-то исходить. Вместо того, чтобы тянуть от центрального источника питания провода C, Nest использует вашу систему для питания, пока она продолжает работать.

Если система не работает, Nest будет потреблять энергию от вашего нагревателя так называемыми импульсами. Эти импульсы потребляют немного энергии от нагревательного провода. Однако для некоторых обогревателей это серьезная проблема, потому что похоже, что они включаются, а затем выключаются несколько раз в день.

Ваш обогреватель изнашивается и не соответствует вашим счетам за электроэнергию.

Уловка с проводом вентилятора делает ваш дом более неудобным для вас и будущих жителей

Да. Вы можете использовать провод вентилятора как собственный провод C. Но это означает, что вы лишитесь возможности вручную включать и выключать вентилятор.

Не принимайте такие меры, чтобы снизить стоимость вашего дома. Если вы собираетесь купить новый модный термостат, включите установку провода C в бюджет для передачи.

Если вы инвестируете в систему «умный дом», инвестируйте и в установку C-образного провода

Мы надеемся, что эта статья объяснила, что такое провод C термостата, почему он важен и зачем он нужен для современных интеллектуальных термостатов.

Кабель

A C — лучший выбор для постоянного источника питания, который не потребляет энергию от остальной части вашей системы или требует постоянной замены батареи для поддержания работоспособности.

Наши профессиональные специалисты HVAC могут выполнить установку вашего провода C и полностью настроить ваш новый термостат. Всякий раз, когда вы имеете дело с чем-то электрическим и таким важным аспектом вашего дома, как система отопления, вентиляции и кондиционирования воздуха, лучше всего доверить эту работу профессионалам.

Свяжитесь с нами сегодня, чтобы запланировать осмотр и узнать, что мы можем для вас сделать.Здесь, в Mathison Air Conditioning, ваше удовлетворение является нашим главным приоритетом.

Два года подряд выигрывая лучшее в округе Балтроп, мы знаем, что делаем, и заботимся о нашем сообществе. Мы с нетерпением ждем встречи с вами в ближайшее время!

Как работают домашние термостаты | HowStuffWorks

Часто в вашем доме есть комнаты, которые всегда теплее или холоднее, чем другие. Этому может быть много объяснений. Во-первых, повышается температура, поэтому в комнатах на втором или третьем этажах часто бывает слишком тепло.В свою очередь, в подвальных помещениях обычно слишком холодно. Помещения со сводчатыми потолками с трудом удерживают тепло, в то время как помещения, получающие долгие часы солнечного света, часто трудно охладить. Это всего несколько причин, но независимо от того, почему температура в комнате неудобная, есть только один верный способ выровнять температуру в вашем доме: зонирование системы.

Системное зонирование довольно просто. Он включает в себя несколько термостатов, которые подключены к панели управления, которая управляет заслонками в воздуховоде вашей системы приточного воздуха.Термостаты постоянно считывают температуру в своей конкретной зоне, а затем открывают или закрывают заслонки в воздуховоде в соответствии с настройками термостата. Системное зонирование полезно не только для домов с непостоянной температурой в комнатах, но также отлично подходит для обогрева или охлаждения отдельных спален в зависимости от желаемой настройки температуры. Если у вас обычно пустая комната для гостей, просто закройте дверь и закройте заслонку.

При правильном использовании зонирование системы может помочь вам сэкономить деньги на счетах за электроэнергию.По данным Министерства энергетики США, зонирование системы может сэкономить домовладельцам до 30 процентов на типичных счетах за отопление и охлаждение. Эта экономия может составить приличную сумму — по оценкам Министерства энергетики, на отопление и охлаждение приходится 40 процентов расходов на коммунальные услуги в среднем домохозяйстве. Поскольку комнаты для гостей и другие редко используемые комнаты не требуют постоянного обогрева или охлаждения, зонирование системы позволяет вам сэкономить деньги, подавая в эти комнаты воздух с регулируемой температурой только тогда, когда это необходимо.

Многие домовладельцы не решаются или не хотят переходить на программируемые термостаты и зонирование системы из-за первоначальной стоимости установки. Это понятная проблема для всех, кто не строит новый дом или не заменяет старую систему отопления, вентиляции и кондиционирования воздуха, но есть и другие варианты. Несмотря на то, что установка типичной зонированной системы не является самостоятельным проектом, Программа изобретений и инноваций Министерства энергетики профинансировала разработку демпферной системы, которая может быть модернизирована для существующих воздуховодов.Система сочетает в себе вставки для контроля воздуха с гибкими заслонками RetroZone с электронным контроллером и системой откачки воздуха. Здесь нет тяжелых двигателей, поэтому существующие воздуховоды не нуждаются в изменении или поддержке.

Гибкие демпферы, которые выпускаются в моделях с круглыми и квадратными воздуховодами, наполняются воздухом, чтобы ограничить или заблокировать воздушный поток внутри воздуховода. Они устойчивы к нагреванию, старению, влаге, переносимым по воздуху химическим веществам и озону, и даже если они проткнуты, что маловероятно, большинство отверстий не повлияют на производительность.Демпферы Flex следует устанавливать в стальных или гибких воздуховодах. Заслонки можно легко обслужить, получив доступ через регистр. Демпферы Flex также работают с большинством марок зонных панелей управления.

Если вы планируете установить модернизированную систему управления зонами, вот что вам нужно включить в список покупок:

  • термостат для каждой зоны
  • соленоидный насос
  • соленоидная панель
  • панель управления зонами
  • нагнетательная трубка
  • трансформатор
  • огнестойкая лента
  • концевой выключатель управления
  • гибкие демпферы

Количество зон, необходимых в вашем доме, повлияет на способ настройки системы.В двухзонной системе, при которой зоны примерно равны по размеру, воздуховоды каждой зоны должны быть способны обрабатывать до 70 процентов общего CFM (кубических футов в минуту) воздуха, производимого вашей системой HVAC. В трехзонной системе зоны должны располагаться как можно ближе по общей площади. В этом случае воздуховоды каждой зоны должны выдерживать до 50 процентов общего объема CFM. Установка четырехзонной системы требует немного больше работы. Воздуховоды необходимо увеличить на один дюйм, и они требуют демпфера сброса статического давления и защиты по верхнему и нижнему пределу.Чтобы избежать серьезных повреждений, не перекрывайте полностью поток воздуха через теплообменник или змеевик вашей системы отопления, вентиляции и кондиционирования воздуха.

Теперь мы рассмотрим еще одну новинку в области домашнего термостата — говорящий термостат.

Электромонтаж кондиционеров и др.

КОДЫ ЦИТАТЫ

Артикул 210 Отводы

Артикул 250 Заземление

Артикул 300 Способы подключения

Артикул 310 Жилы для общей проводки

Артикул 334 Кабель в неметаллической оболочке: типы NM, NMC и NMS

Артикул 422 Приборы

Артикул 518 Места сборки

Артикул 700 Аварийные системы

Электромонтаж оборудования кондиционирования

Q: Допускает ли национальный электротехнический кодекс установку кабеля типа NM-B (кабель с неметаллической оболочкой) в гибком металлическом кабелепроводе для питания выносного конденсаторного агрегата вне помещения, подверженного воздействию погодных условий? Проводка простирается от выключателя с защитой от атмосферных воздействий до блока кондиционирования воздуха.Если гибкий металлический трубопровод неприемлем, как насчет непроницаемого для жидкости гибкого металлического канала или электрических металлических трубок?

A: Кабель с неметаллической оболочкой нельзя использовать ни в одном из этих способов подключения, так как это разрешено только в сухих местах. Использование, не разрешенное для прокладки кабеля типа NM-B, регулируется 334.12. Пункт (10) d запрещает использование этого кабеля следующими словами: «В местах, подверженных или подверженных чрезмерной влажности или сырости».

Хотя для защиты этих каналов от дождя, льда и снега можно установить непроницаемый для жидкости гибкий металлический трубопровод и электрические металлические трубы, определение «влажного места» в Статье 100 указывает на то, что незащищенные места, подверженные воздействию погодных условий, являются влажными.Вот определение: «Место, мокрый. Установки под землей, в бетонных плитах или кирпичной кладке в непосредственном контакте с землей; в местах, подверженных насыщению водой или другими жидкостями, например в зонах мойки автомобилей; и в незащищенных местах, подверженных воздействию погодных условий ».

Типы нагрузок, разрешенные в параллельной цепи для центрального отопления

Q: NEC требует отдельного ответвления для оборудования центрального отопления. Исключение составляет 422.12 позволяют ли к этой цепи подключить свет на чердаке и розетку, поскольку они предназначены для обслуживания печи?

A: Хотя розетка требуется в пределах 25 футов и на том же уровне, что и нагревательное оборудование, а также требуется осветительная розетка с переключателем рядом с печью по 210.63 и 210.70 (c), я не уверен, что эти предметы закрыты. за исключением 422.12. Исключение гласит: «Вспомогательное оборудование, такое как насос, клапан, увлажнитель или электростатический воздухоочиститель, непосредственно связанное с нагревательным оборудованием, должно быть разрешено подключать к одной и той же ответвленной цепи.«Поскольку в исключении приводятся примеры вспомогательного оборудования, которое разрешено подключать к одной и той же ответвленной цепи, я бы не позволил включить рабочий свет и розетку в цепь нагревателя; тем не менее, следует проконсультироваться с компетентным органом для его / ее интерпретации.

Если AHJ допускает подключение розетки и светильника (осветительной арматуры) к ответвленной цепи с нагревателем, цепь не может превышать 20 А, 125 В, а нагрузка нагревателя не может превышать 10 А в соответствии с 210.23 (A) (2).

Стационарная проводка в монтажных помещениях

Q: Могу ли я использовать жесткий неметаллический кабелепровод (Приложение 40) и электрические неметаллические трубки при сборке?

A: Не всегда, это зависит от размера сооружения или количества людей, которое может вместить сооружение, типа конструкции (огнестойкость или нет) и классификации людей.Если здание или сооружение не спроектировано или не предназначено для размещения 100 или более человек, упомянутые методы электропроводки могут быть установлены в соответствии с их соответствующими статьями, либо 352, либо 362. Если здание или сооружение может вместить 100 или более человек, и Строительный кодекс требует, чтобы конструкция была огнестойкой, применяется статья 518 — «Места сборки». Во всех местах сборки, подпадающих под действие статьи 518, неметаллические дорожки качения, заключенные в бетон толщиной не менее 2 дюймов, разрешены в соответствии со статьей 518.4 (А).

Кроме того, жесткий неметаллический кабелепровод и электрические неметаллические трубы могут быть скрыты в стенах, полах и потолках, которые создают тепловой барьер, рассчитанный не менее чем на 15 минут в следующих помещениях: клубные комнаты, классы колледжей и университетов, конференции и конференц-залы в отелях и мотелях, залы судебных заседаний, питейные заведения, столовые, рестораны, часовни морга, музеи, пассажирские станции и терминалы воздушного, наземного, подземного и морского общественного транспорта, библиотеки и места религиозного поклонения.Все эти классификации занятости и подробную информацию об установке жестких неметаллических трубопроводов и электрических неметаллических труб можно найти в 518.4 (C).

Наконец, если здание или сооружение могут вместить 100 или более человек и не должны быть огнестойкими, статья 518 не применяется, и может быть установлен любой соответствующий метод электропроводки, описанный в главе 3.

Электропроводка водонагревателя накопительного бака

Q: Мне нужно подключить водонагреватель накопительного бака емкостью 50 галлонов, который имеет соединенные друг с другом нагревательные элементы мощностью 4500 Вт и номинальное напряжение 240 однофазных.Могу ли я использовать медные проводники ответвления цепи 10 AWG или я могу использовать медные проводники 12 AWG с допустимой нагрузкой 25, как показано в Таблице 310.16? Подходит ли автоматический выключатель на 25 А для этой нагрузки?

А: Ток полной нагрузки для этого водонагревателя составляет 18,75 А (4500 делить на 240). Водонагреватель накопительного типа с резервуаром такого размера должен питаться от ответвленной цепи с номинальной мощностью не менее 125 процентов от тока полной нагрузки водонагревателя. Следовательно, минимальный номинал устройства максимального тока составляет 25 А.Если на паспортной табличке водонагревателя не указано устройство максимальной токовой защиты максимального размера, можно использовать 2-полюсный автоматический выключатель на 30 А. Этот автоматический выключатель большего размера допускается по 422.11 (E) (3).

Обратите внимание, что значения силы тока для медных проводников 14, 12 и 10 AWG, показанные в таблице 310.16, отмечены звездочкой со ссылкой на 240,4 (D) внизу таблицы, и эта часть (D) ограничивает защиту от перегрузки по току до 15 А для 14 AWG, 20 А для 12 AWG и 30 А для медных проводников 10 AWG. Проводники ответвленной цепи не могут быть меньше меди 10 AWG.

Нагрузки от аварийного генератора

Q: В новом продуктовом магазине или супермаркете локальный генератор и автоматический переключатель резерва используются для подачи требуемых выходных знаков и аварийного освещения. Менеджер магазина хочет добавить кассовые розетки и ответвления для кассовых стоек. Разрешено ли это Национальным электротехническим кодексом ? Если нет, как это можно сделать без покупки другого генератора?

A: Неаварийные нагрузки не могут быть подключены к аварийному щиту.Примечания мелким шрифтом 3 в 700.1 дает несколько примеров типов электрических нагрузок, которые могут быть подключены к аварийной системе, и кассовые кассы в супермаркетах не упоминаются. На этот тип нагрузки распространяется статья 702 — Дополнительные резервные системы.

Автоматические переключатели резерва включены в 700.6 для аварийных систем. Они должны иметь электрическое управление и механическую фиксацию, а безобрывный переключатель должен обеспечивать только аварийные нагрузки.

Предполагая, что локальный генератор имеет достаточную мощность для питания аварийной системы и некоторых или всех кассовых аппаратов одновременно, автоматический или ручной переключатель может быть установлен для неаварийной нагрузки.Вся проводка для аварийных нагрузок должна быть независимой и отдельной от всей другой проводки в здании. Электропроводку кассового аппарата нельзя смешивать с аварийной проводкой, но она может занимать те же кабельные каналы, что и проводка для любого другого электрического оборудования.

Кабель в неметаллической оболочке в металлических шпильках

Q: Если отверстия в металлических шпильках находятся на расстоянии менее 1 1/4 дюйма от края шпилек, требуются ли стальные пластины для защиты кабеля с неметаллической оболочкой от физического повреждения?

A: Фланец на металлических шпильках должен обеспечивать защиту кабеля с неметаллической оболочкой.

Требования 334.17 гласят, что защита кабеля должна соответствовать 300.4, а в отверстия должны быть установлены втулки. Они должны оставаться на месте во время протягивания кабеля и должны быть указаны в целях защиты кабеля.

Стальная пластина толщиной не менее 1/16 дюйма должна быть предусмотрена там, где кабель с неметаллической оболочкой устанавливается в просверленные отверстия в деревянных элементах каркаса, где ближайший край отверстия находится на расстоянии менее 1 1/4 дюйма от края кабеля. деревянный каркасный элемент.Это требование также применяется, когда кабель NM устанавливается в выемки в деревянных элементах каркаса, но эти требования не применяются к кабелю с неметаллической оболочкой, установленному в металлических элементах каркаса.

Часть (B) 300.4 содержит требования к защите кабеля NM, если кабель проходит через отверстия в металлических шпильках. Подчасть (1) требует прокладок во всех отверстиях, через которые проходит кабель с неметаллической оболочкой. Для части (2) требуется стальная пластина толщиной не менее 1/16 дюйма во всех точках, где гвозди или винты могут проникнуть в кабель.Следует отметить, что не указаны размеры для требований к стальному листу, в котором задействованы элементы металлического каркаса.

Заземление нескольких служб

Q: В небольшом коммерческом здании четыре человека. Каждому арендатору предоставляется отдельная служба, подключенная к единственной точке обслуживания. Одна услуга — 300А, 120 / 240В. Входные токопроводящие жилы — медные провода типа THWN 300 тыс. Куб. М в жестком металлическом кабелепроводе диаметром 2 дюйма. Остальные 3 линии — 200 А, 120/240 В с тремя медными проводниками типа 3/0 THWN в трех кабелепроводах диаметром 1 1/2 дюйма.Эти четыре разъединителя (одно 400 и три 200) сгруппированы в соответствии с 230.71 и 230.72.

Я проложил медный провод заземляющего электрода 2/0 AWG от переключателя на 400 А к металлической водопроводной трубе, затем сделал отводы к этому проводнику с помощью медных проводов заземляющего электрода 4 AWG от каждой из линий 200 А. Для этих кранов использовались соединители подходящего размера с разъемными болтами. Инспектор сказал, что мне следовало использовать необратимые соединители компрессионного типа или экзотермические сварные швы. Я не смог найти требования к необратимым соединителям компрессионного типа или экзотермической сварке в 250.64. Я что-то упускаю?

A: Основной провод заземляющего электрода (в данном случае провод 2/0 AWG) должен быть сплошным, без стыков или стыков. Если этот проводник сращивается, необходимо использовать необратимые соединители компрессионного типа или экзотермическую сварку. В 250.64 нет требования, определяющего метод соединения проводников ответвлений с проводом заземляющего электрода. Соединители с разъемным болтом, соответствующие размеру и применению, удовлетворяют правилам заземления отводов проводов электродов в 250.64 (D).

Другой метод заземления этой сети — это проложить отдельные провода заземляющего электрода от каждой сети к водопроводу. Для этого потребуется медный провод 2 AWG от переключателя на 400 А и три проводника заземляющего электрода 4 AWG, по одному от каждого переключателя на 200 А. EC

FLACH , постоянный редактор Code , бывший главный электротехнический инспектор Нового Орлеана. С ним можно связаться по номеру 504.734.1720.

% PDF-1.6 % 490 0 объект > эндобдж xref 490 78 0000000016 00000 н. 0000003271 00000 н. 0000003447 00000 н. 0000003505 00000 н. 0000003701 00000 п. 0000003928 00000 н. 0000003978 00000 н. 0000004081 00000 п. 0000004691 00000 н. 0000005273 00000 н. 0000005887 00000 н. 0000006080 00000 н. 0000006348 00000 п. 0000006596 00000 н. 0000006772 00000 н. 0000007915 00000 н. 0000009010 00000 н. 0000010138 00000 п. 0000011244 00000 п. 0000012160 00000 п. 0000013103 00000 п. 0000223481 00000 н. 0000224323 00000 н. 0000225176 00000 н. 0000242871 00000 н. 0000272445 00000 н. 0000276305 00000 н. 0000276839 00000 н. 0000276958 00000 н. 0000293323 00000 н. 0000293362 00000 н. 0000293897 00000 н. 0000294014 00000 н. 0000294072 00000 н. 0000294162 00000 н. 0000294254 00000 н. 0000294405 00000 н. 0000294529 00000 н. 0000294667 00000 н. 0000294813 00000 н. 0000294897 00000 н. 0000295000 00000 н. 0000295132 00000 н. 0000295266 00000 н. 0000295386 00000 п. 0000295540 00000 н. 0000295624 00000 н. 0000295746 00000 н. 0000295898 00000 н. 0000295998 00000 н. 0000296100 00000 н. 0000296198 00000 п. 0000296311 00000 н. 0000296413 00000 н. 0000296544 00000 н. 0000296641 00000 п. 0000296738 00000 н. 0000296832 00000 н. 0000296974 00000 н. 0000297119 00000 н. 0000297261 00000 н. 0000297392 00000 н. 0000297558 00000 н. 0000297706 00000 н. 0000297845 00000 н. 0000297990 00000 н. 0000298135 00000 н. 0000298285 00000 н. 0000298436 00000 н. 0000298581 00000 н. 0000298736 00000 н. 0000298874 00000 н. 0000299014 00000 н. 0000299160 00000 н. 0000299294 00000 н. 0000299433 00000 н. 0000299573 00000 н. 0000001856 00000 н. трейлер ] >> startxref 0 %% EOF 567 0 объект > поток xUmL [е> -zR п «_ݠ h م ֱ n i̘10KL «Ѹ ,, a.Ę, 1y {o! M9s

HVAC Акронимы и сокращения | Grove Heating & Cooling

A — Воздух, сжатый воздух, линия сжатого воздуха, зона
A / C — Кондиционер
ABC — Над потолком
AC — Камера кондиционирования воздуха, переменный ток
ACD — Заслонка с автоматическим управлением
AD — Дверь доступа
AF — Воздух Фольга
AFF — Над чистым полом
AFG — Над готовым полом
AFUE — Годовая эффективность использования топлива
AHU — Блок обработки воздуха
AL — Алюминий
AMB — Окружающий
AMP — Ампер
AP — Панель доступа
APD — Падение давления воздуха
ARR — Расположение
AS — Воздушный поток
ATC — Автоматический контроль температуры
ATM — Атмосфера
AUTO — Автоматический
AUX — Вспомогательный
AVG — Среднее значение
B & S — Колокол и патрубок
BBD — Продувка котла
BDD — Обратный клапан
BF — Подача котла
BHP — Мощность котла, тормозная мощность
BI — Наклон назад
BOD — Нижняя часть воздуховода
BOP — Нижняя часть трубы
BOT — Нижняя часть
BP — Противодавление
BSMT — Подвал
BTU — британская тепловая единица
BTUH — британская тепловая единица в час
BV — Дисковый клапан
C — Конденсатопровод
C — C — Центр к центру
CA — Сжатый воздух
CAL — Калорийность
CAP — Производительность
CD — Слив конденсата
CENT — центральный, центробежный
CF — кубический фут химического сырья, кубический фут
CFH — кубический фут в час
CFM — кубический фут в минуту
CH — охлажденный, чиллер
CHW — охлажденная вода
CHWR — возврат охлажденной воды
CHWS — охлажденный Водоснабжение
CI — Чугун
CIRC — Круглый
CL — Центральная линия
CM — Сантиметр
CM2 — Квадратный сантиметр
CO — Очистка, угарный газ
COL — Колонна
CONC — Бетон, концентрический
CONN — Подключение, подключение
ПРОДОЛЖЕНИЕ — Продолжение
CPVC — Хлорированный поливинилхлорид
CR — Возврат конденсатора
CRW — Химически стойкие отходы
CS — Подача конденсатора
CT — Градирня
CTBD — Продувка градирни
CTR — C введите
CU — Cubic
CU FT.- Кубические футы
CU IN. — Кубические дюймы
CUH — Нагреватель шкафного устройства
CV — Обратный клапан
CW — Холодная вода
CWR — Возврат воды в конденсатор, стояк холодной воды
CWS — Подача воды в конденсатор
D — Слив, глубокий
DB — Сухой термометр {Относительно температуры }
DDC — Прямое цифровое управление
DEG — Градус
DELTAT — Разница температур, дельта-температура
DET — Деталь
DIA — Диаметр
DIM — Размер
DISC — Отсоединение
DN — Вниз
DP — Дифференциальное давление, температура точки росы
DR — Дренаж
DWG — Чертеж
E до C — От конца к центру
EA — Каждый, отработанный воздух
EAHU — Блок обработки отработанного воздуха
EAT — Температура воздуха на входе
EATR — Коэффициент передачи отработанного воздуха
EER — Коэффициент энергоэффективности
EF — Вытяжной вентилятор
EFF — КПД
EJ — Компенсатор
EL — Высота
ELB — Колено
ELEC — Электрический
EMER — Аварийный
EMS — Система управления энергопотреблением
ENT — Вход
ERV — Энергия Вентилятор-утилизатор
ESP — Внешнее статическое давление
ET — Расширительный бак
EUH — Нагреватель электрического блока
EVAP — Испаритель
EWT — Температура воды на входе
EXH / EX — Выхлоп
EXP — Расширение
EXST — существующий
EXT — Внешний
F — Fahrenheit
FA — Свободная зона, пожарная сигнализация
FC — Гибкое соединение, гибкое соединение
FCO — Чистка пола
FCU — Блок фанкойла
FD — Дренаж пола, противопожарный клапан, пожарная часть
FDW — Питающая вода
FEC — Огнетушитель шкаф
FF — Финишный пол

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *