Расчет мощности котла отопления: Расчет мощности котла отопления. Подбор мощности. Калькулятор

Содержание

Расчет мощности котла отопления: по площади и объему

Чтобы обеспечить комфортную температуру на протяжении всей зимы котел отопления должен выдавать такое количество тепловой энергии, которое необходимо для восполнения всех  потерь тепла здания/помещения. Плюс к этому необходимо иметь еще и небольшой запас мощности на случай аномальных холодов или расширения площадей. О том, как рассчитать требуемую мощность и поговорим в этой статье. 

Для определения производительности отопительного оборудования нужно в первую очередь определить потери тепла здания/помещения. Такой расчет называется теплотехническим. Это один из самых сложных расчетов в отрасли, так как требуется учесть много составляющих.

Для определения мощности котла необходимо учесть все потери тепла

Безусловно, на величину теплопотерь, влияют материалы, которые использовались при возведении дома. Потому учитываются стройматериалы, из которых изготовлен фундамент, стены, пол, потолок, перекрытия, чердак, кровля, оконные и дверные проемы. Принимается во внимание тип разводки системы и наличие теплых полов. В некоторых случаях считают даже наличие бытовой техники, которая во время работы выделяет тепло. Но совсем не всегда требуется такая точность. Есть методики, которые позволяют быстро прикинуть требуемую производительность отопительного котла, не погружаясь в дебри теплотехники.

Расчет мощности котла отопления по площади

Для приблизительной оценки требуемой производительности теплового агрегата достаточно площади помещений. В самом простом варианте для средней полосы России считают, что 1кВт мощности может обогреть 10м2 площади. Если у вас дом площадью 160м2, мощность котла для его обогрева — 16кВт.

Эти расчеты приблизительны, ведь не учитывается ни высота потолков, ни климат. Для этого существуют выведенные опытным путем коэффициенты, при помощи которых вносятся соответствующие корректировки.

Указанная норма — 1кВт на 10м2 подходит для потолков 2,5-2,7м. Если у вас потолки в помещении выше, нужно вычислять коэффициенты и пересчитывать. Для этого высоту ваших помещений делим на стандартную 2,7м и получаем поправочный коэффициент.

Расчет мощности котла отопления по площади — самый простой способ

Например, высота потолков 3,2м. Считаем коэффициент: 3,2м/2,7м=1,18 округляем, получаем 1,2. Выходит, что для обогрева помещения 160м2 с высотой потолков 3,2м требуется отопительный котел мощностью 16кВт*1,2=19,2кВт. Округляют обычно в большую сторону, так что 20кВт.

Чтобы учесть климатические особенности есть уже готовые коэффициенты. Для России они такие:

  • 1,5-2,0 для северных регионов;
  • 1,2-1,5 для подмосковных регионов;
  • 1,0-1,2 для средней полосы;
  • 0,7-0,9 для южных регионов.

Если дом находится в средней полосе, чуть южнее Москвы, применяют коэффициент 1,2 (20кВт*1,2=24кВт), если на юге России в Краснодарском крае, например, коэффициент 0,8, то есть мощность требуется меньше (20кВт*0,8=16кВт).

Расчет отопления и подбор котла — важный этап. Неправильно найдете мощность и можете получить такой результат…

Это основные факторы, которые учитывать необходимо. Но найденные значения справедливы, если котел будет работать только на отопление. Если требуется еще и греть воду, нужно добавить 20-25% от рассчитанной цифры. Потом требуется добавить «запас» на пиковые зимние температуры. Это еще 10%. Итого получаем:

  • Для отопления дома и ГВС в средней полосе 24кВт+20%=28,8кВт. Потом запас на холода — 28,8кВт+10%=31,68кВт. Округляем и получаем 32кВт. Если сравнивать с первоначальной цифрой в 16кВт, разница получается в два раза.
  • Дом в Краснодарском крае. Добавляем мощность для нагрева горячей воды: 16кВт+20%=19,2кВт. Теперь «запас» на холода 19,2+10%=21,12кВт. Округляем: 22кВт. Разница не столь разительная, но тоже достаточно приличная.

Из примеров видно, что учитывать хотя-бы эти значения нужно обязательно. Но очевидно, что в расчете мощности котла для дома и квартиры, разница быть должна. Можно пойти тем же путем и использовать коэффициенты для каждого фактора. Но есть более простой способ, который позволяет внести коррекции за один раз.

При расчете котла отопления для дома применяется коэффициент 1,5. Он учитывает наличие теплопотерь через кровлю, пол, фундамент. Справедлив при средней (нормальной) степени утепления стен — кладка в два кирпича или аналогичные по характеристикам стройматериалы.

Для квартир применяются другие коэффициенты. Если сверху находится отапливаемое помещение (другая квартира) коэффициент 0,7, если отапливаемый чердак — 0,9, если неотапливаемый чердак — 1,0. Нужно найденную по описанной выше методике мощность котла умножить на один из этих коэффициентов и получите достаточно достоверное значение.

Чтобы продемонстрировать ход вычислений, произведем расчет мощности газового котла отопления для квартиры 65м2 с потолками 3м, которая расположена в средней полосе России.

  1. Определяем требуемую мощность по площади: 65м2/10м2=6,5кВт.
  2. Вносим поправку на регион: 6,5кВт*1,2=7,8кВт.
  3. Котел будет греть воду, потому добавляем 25% (любим погорячее) 7,8кВт*1,25=9,75кВт.
  4. Добавляем 10% на холода: 7,95кВт*1,1=10,725кВт.

Теперь результат округляем и получаем: 11Квт.

Указанный алгоритм справедлив для подбора отопительных котлов на любом виде топлива. Расчет мощности электрического котла отопления  ничем не будет отличаться от расчета котла твердотопливного, газового или на жидком топливе.  Основное — производительность и эффективность котла, а теплопотери от типа котла не изменяются. Весь вопрос в том, как потратить меньше энергоносителей. А это уже область утепления.

Мощность котла для квартир

При расчете отопительного оборудования для квартир можно пользоваться нормами СНиПа. Использование этих норм еще называют расчетом мощности котла по объему. СНиП задает требуемое количество тепла на обогрев одного кубического метра воздуха в типовых постройках:

  • на обогрев 1м3 в панельном доме требуется 41Вт;
  • в кирпичном доме на м3 идет 34Вт.

Зная площадь квартиры и высоту потолков, найдете объем,  затем, умножив на норму в узнаете мощность котла.

Расчет мощности котла не зависит от типа используемого топлива

Для примера посчитаем требуемую мощность котла для помещений в кирпичном доме площадью 74м2  с потолками 2,7м.

  1. Вычисляем объем: 74м2*2,7м=199,8м3
  2. Считаем по норме сколько нужно будет тепла: 199,8*34Вт=6793Вт. Округляем и переводим в киловатты, получаем 7кВт. Это и будет необходимая мощность, которую должен выдавать тепловой агрегат.

Несложно посчитать мощность для такого же помещения, но уже в панельном доме: 199,8*41Вт=8191Вт. В принципе, в теплотехнике округляют всегда в большую сторону, но можно принять во внимание остекление ваших окон.  Если на окнах энергосберегающие стеклопакеты, можно округлять в меньшую сторону. Считаем, что стеклопакеты хорошие и получаем 8кВт.

Выбор мощности котла зависит от типа здания — для обогрева кирпичных требуется меньше тепла, чем панельных

Далее нужно, так же как и в расчете для дома, учесть регион и необходимость подготовки горячей воды. Актуальна и поправка на аномальные холода. Но в квартирах большую роль играет расположение комнат и этажность.  Принимать во внимание нужно стены, выходящие на улицу:

  • Одна наружная стена — 1,1
  • Две — 1,2
  • Три — 1,3

После того, как учтете все коэффициенты, получите достаточно точное значение, на которое можно опираться при выборе техники для отопления. Если хотите получить точный теплотехнический расчет, его нужно заказывать в профильной организации.

Есть еще один метод: определить реальные потери при помощи тепловизора — современного прибора, который покажет к тому же места, через которые утечки тепла идут более интенсивно. Заодно сможете устранить и эти проблемы и улучшить теплоизоляцию. И третий вариант — воспользоваться программой-калькулятором, который посчитает все вместо вас. Нужно только выбрать и/или проставить требуемые данные. На выходе получите расчетную мощность котла. Правда, тут есть определенная доля риска: непонятно насколько верные алгоритмы заложены в основу такой программы. Так что все-таки придется еще хотя-бы приблизительно просчитать для сравнения результатов.

Так выглядит снимок тепловизора

Надеемся, у вас теперь есть представление о том, как рассчитать мощность котла. И вас не путает, что это газовый котел, а не твердотопливный,  или наоборот.

По результатам обследования можно устранить утечки тепла

Возможно, вас заинтересуют статьи  о том, как рассчитать мощность радиаторов и выбор диаметров труб для системы отопления.   Для того чтобы иметь общее представление об ошибках, которые часто встречаются при планировании системы отопления смотрите видео.

Расчет мощности котла отопления.

Правильное определение мощности газовых или электрических водогрейных котлов – важная часть проектирования независимой системы отопления частного дома или квартиры. Существует несколько методик определения производительности нагревательных приборов, но все они должны учитывать поправки на теплопотери, состояние жилья, регион проживания, архитектурные особенности зданий.


Способы определения тепловых потерь.


Чтобы в помещении было тепло, нужно, чтобы обогревательные приборы в полной мере восполняли утечку тепла. Важным элементом расчета мощности котла для целей обогрева поэтому является определение теплопотерь.


Факт, что обогреваемое жилое помещение постоянно теряет тепло, известен всем. Нагретый воздух поднимается наверх, выходит через изъяны в изоляции крыши, стен. В меньшей степени теплопотери происходят через окна, двери, пол.


Существует известная формула, в соответствии с которой:

• до 25-30% тепла уходит через крышу;

• порядка 25% – через вентиляцию, дымоход;

• около 10% – через окна;

• до 35% – через стены;

• 15% – через пол.


Однако такая общая информация не позволят проанализировать теплопотери в конкретном доме и правильно рассчитать необходимую мощность котла отопления.



Эксперты советуют использовать 2 способа расчета тепловых потерь:


• проведение точного расчета оттока тепла через окна, крышу, двери, стены, пол с учетом данных об используемых строительных материалах, утеплителях, толщине поверхностей. Самостоятельно справиться со всеми этими расчетами, учитывая плотность, коэффициент теплопроводности, термическое сопротивление, довольно сложно. Поэтому обычно для этой работы привлекают специалистов;


• использование тепловизора. Это более простой способ. Небольшой по размеру прибор, напоминающий по форме фотоаппарат, покажет основные точки, в которых происходит потеря тепла. Точность измерения температуры составляет 0,1°С.

 

 


Каждый из этих способов требует затрат, которых рачительный хозяин стремится избежать. Многие считают, что оптимальным решением будет приобретение для дома максимально мощного котла. Однако такая логика ведет к негативным последствиям. Среди них:

• высокие эксплуатационные расходы, связанные с потреблением энергоресурсов, будь то электричество, газ или дрова;

• быстрый износ нагревательного устройства и автоматики из-за работы оборудования не в полную силу.


Следует помнить, что запас мощности котла должен быть не более 15%.


Сэкономить деньги и приобрести изделие с меньшими ресурсами также будет не очень хорошей идей. Котел отопления будет испытывать постоянную перегрузку, что приведет к его быстрому износу. При этом топливо будет тратиться с бешеной скоростью, а дома все равно будет холодно.


Для выбора оптимального для заданного помещения отопительного котла требуется точно рассчитать его мощность. Для этого разработано несколько подходов.



Эффективность работы автономной отопительной системы в первую очередь зависит от мощности выбранного котла. Недостаточная мощность не позволит достичь комфортной температуры в холодное время года, избыточная приведет к неэкономному расходу топлива. Определяющими параметрами, на которые следует опираться при расчете системы отопления, являются:


1. Площадь отапливаемого помещения (S).
2. Удельная мощность котла на 10 м2 помещения, которая устанавливается с учетом поправок на климатические условия региона (Wуд).


Существуют общепринятые значения удельной мощности по климатическим зонам:

1. Для Подмосковья — Wуд = 1,2 -1,5 кВт;
2. Для северных районов — Wуд = 1,5 — 2,0 кВт;
3. Для южных районов — Wуд = 0,7 — 0,9 кВт.

 

Расчет мощности котла отопления (WKOТ) осуществляется по формуле:

WKOТ = (S  • Wуд) : 10


Часто для удобства расчетов применяют усредненное значение Wуд, равное единице. Исходя из этого, принято выбирать мощность котла из расчета 10 кВт на 100 м2 отапливаемого помещения. При расчете параметров системы отопления важно также определить количество жидкости, которой заполняется система, или так называемый объем (Vсист), который рассчитывается исходя из соотношения: 15 л жидкости на 1 кВт мощности котла.


Таким образом, объем жидкости в системе определяется по формуле:

Vсист = WKOT • 15

 

Пример:

Площадь отапливаемого помещения S = 100 м2;
Удельная мощность для Подмосковья Wуд = 1,2 кВт;
WKOТ = 100  • 1,2  : 10 = 12 кВт;
VeHeT = 12  • 15 = 180 л.

 

Объем помещения, обогреваемый 1 кВт мощности оборудования в зависимости от теплоизоляции дома:

— Толщина стен 1,5-2 кирпича с теплоизоляцией или то же из бруса или сруб, площадь окон и двери не более 15% (хорошо утепленный дом для зимнего проживания) — 20-25 м3.

— С улицей граничат две или три стены толщиной не менее, чем в один кирпич с теплоизоляцией или из бруса, общая площадь окон и дверей до 25% (среднеутепленный дом) — 15-20 м3.

— Панельные стены с внутренней облицовкой, изолированная крыша, без сквозняков (утепленный летний домик) — 10-15 м3.

— Тонкие стены из лесоматериалов, панелей из гофрированного металла и т. п. (вагончик, кабина, караулка) — 5-7 м3.

 

Покупая котел, внимательно ознакомьтесь с паспортом и техническими характеристиками котла, т. к. иногда вместо тепловой мощности котла, т. е. той мощности, которую он отдает в систему отопления, указывается мощность горелки, до которой потребителю в общем-то нет никакого дела.

Расчет котла на основании нормативов СниП.

Один из простых способов определения технических показателей расчета производительности котла – по существующим строительным нормам. В соответствии с этими данными, известно, что на один кубический метр типового панельного дома нужно 41 Вт тепловой энергии. На такой же объем в обычном кирпичном строении нужно 34 Вт энергии.


Метод актуален для типовых построек. При попытке узнать требуемую мощность водогрейного котла для нестандартных архитектурных построек, использование усредненных норм ведет к неверным показателям.

Расчет мощности котла по квадратуре.

Определить характеристики котла можно, зная квадратуру дома. В основе расчета мощности лежит усредненный показатель – на 10 кв м помещения нужно 1 кВт тепловой энергии. Значение это является верным дома со средней термоизоляцией, а также потолками, высота которых варьируется от 2,5 до 2,7 м.



Этот способ не подходит для нестандартных сооружений. Если потолки по высоте не превышают 2,8 м, поправки к вычислениям не вносятся. Однако если это значение равняется 2,9 м или даже больше, расчет мощности отопительного котла нужно менять.


Введение поправочных коэффициентов.


Для получения точных расчетов рекомендуется ввести в них несколько поправочных коэффициентов:

• высота от пола до потолка;

• степень утепления;

• региональный фактор.


Чтобы определить, какую поправку нужно включить в процесс вычисления мощности котла отопления, достаточно реальную высоту комнат разделить на 2,6.


Например, высота потолков в коттедже составляет 3 м, тогда предварительный результат нужно умножить на 1,15. Учитывать коэффициент необходимо, т.к. в противном случае можно стать владельцем котел мощностью, существенно ниже нужной.


Следующий поправочный коэффициент связан с тем, хорошо ли утеплен дом, и какие материалы использовались при его строительстве:

• для новой постройки, сооруженной из современных материалов, расчетный показатель умножают на 0,6;

• если строительство жилого дома было завершено более 15 лет назад, для него использовались пеноблоки, кирпич или дерево, качественные утеплители, в формулу не вносятся никакие корректировки;

• поправка на старые деревянные окна – 1,2;

• при неутепленных стенах применяется 1,5;

• если не утеплены стены, крыши, вводится корректировка 1,8.



Более точные данные расчета мощности отопительных котлов с учетом характеристик теплоизоляции можно получить с учетом следующих сведений:

• для сооружений, в строительстве которых применялось дерево или гофрированное железо без теплоизоляции применяется коэффициент от 3 до 4. Обычно это временные сооружения;

• при низком уровне теплоизоляции предварительный результат умножают на 2-2,9. Используют такой подход для домов с тонкими стенами, деревянными оконными рамами, неутепленной крышей;

• при средней теплоизоляции используется коэффициент от 1 до 1,9. Применяют эти корректировки для расчета мощности котла для отопления дома, сделанного из кирпича, крыша которого хорошо утеплена, в оконные проемы установлены стеклопакеты;

• для хорошо утепленных помещений результат умножают на 0,6-0,9. Такая корректировка применяется для новых зданий, построенных с использованием современных технологий, нашедших применение в обустройстве дверей, окон, системы вентиляции, стен, крыши и пола.


Еще один поправочный коэффициент, который необходимо внести в калькуляцию, – регион, где будут использоваться нагреватели. Известно, что расчет мощности котла для частного дома в Сибири будет отличаться от потребностей жителей Краснодарского края. Поэтому были определены региональные коэффициенты.


В расчет вносятся следующие изменения:

• для определения мощности котла в северных районах (Якутия, Магадан, Красноярский край и т.д.) берут коэффициент от 1,5 до 2;

• в Московской области и близлежащих регионах – от 1,2 до 1,5;

• в районах средней полосы страны, Поволжье – от 1 до 1,1;

• Краснодарский край, Белгородская, Ростовская области и другие южные районы – от 0,7 до 0,9.

Как рассчитать мощность котла для квартиры?

Аналогичный подход для расчета мощности котельного оборудования по площади и объему жилого помещения используется для квартир в многоэтажных зданиях. Допустимо использование аналогичных коэффициентов. Но специфика конструкции определяет необходимость еще одной поправки, связанной с особенностями внутренних, наружных стен, отапливаемых квартир, хозяйственных помещений на верхних и нижних этажах.



Для этого в формулы вычисления расчетной мощности котла вводится следующая информация:

• если в здании есть неотапливаемые квартиры снизу и сверху, применяют коэффициент 1;

• если эти квартиры отапливаются, корректировка производится на 0,7;

• для помещений на нижнем и верхнем этаже берут 0,9;

• при наличии одной наружной стены, применяется коэффициент 1,1, двух внешних вертикальных поверхностях – 1,2, трех – 1,3.


Вычисления для двухконтурного котла.


Все указанные корректировки и формулы мощности действительны для вычислений производительности нагревателя, используемого только для обогрева. Если котел служит для также горячего водоснабжения, в расчет закладывается до 25% тепловой мощности.


Алгоритм выбора котла.


Для определения того, нагреватель какой мощности нужно выбрать для независимой системы отопления зданий и получения горячей воды, необходимо следовать такой схеме:

 

определить площадь или объем помещения;

 

применить региональные поправочные коэффициенты;

 

скорректировать уровень теплоизоляции;

 

использовать поправку на срок эксплуатации здания, наличие старых окон, отапливаемых верхних и нижних этажей, наружных стен;

 

учесть высоту потолков;

 

оценить необходимость подключения горячего водоснабжения.


Приведенные способы определения мощности котла верны для настенных, напольных моделей. Подходят они для изделий, работающих на твердом топливе, электричестве, газе. Если на основе проведенных вычислений, требования к мощности отопительного оборудования получаются слишком высокими, рекомендуется задуматься о принятии дополнительных мер по утеплению дома.

Расчет мощности котла для дома и квартиры: два метода

Основа любого отопления — котел. От того, насколько верно подобраны его параметры зависит будет ли тепло в доме. А чтобы параметры были верными необходимо расчет мощности котла. Это не самые сложные вычисления — на уровне третьего класса, нужен будет только калькулятор и некоторые данные по вашем владениям. Со всем справитесь сами, своими руками.

Рассчитать мощность котла отопления можно несколькими способами

Содержание статьи

Общие моменты

Чтобы в доме было тепло, система отопления должна восполнять все имеющиеся потери тепла в полном объеме. Тепло уходит через стены, окна, пол, крышу. То есть, при расчете мощности котла, необходимо учитывать степень утепления всех этих частей квартиры или дома. При серьезном подходе у специалистов заказывают расчет теплопотерь здания, а по результатам уже подбирают котел и все остальные параметры системы отопления. Задача эта не сказать что очень сложная, но требуется учесть из чего сделаны стены, пол, потолок, их толщину и степень утепления. Также учитывают какие стоят окна и двери,  есть ли система приточной вентиляции и какова ее производительность. В общем, длительный процесс.

Есть второй способ определить теплопотери. Можно по факту определить количество тепла, которое теряет дом/помещение при помощи тепловизора. Это небольшой прибор, который на экране отображает фактическую картину теплопотерь. Заодно можно увидеть где отток тепла больше и принять меры по устранению утечек.

Определение фактических теплопотерь — более легкий способ

Теперь о том, стоит ли брать котел с запасом по мощности. Вообще, постоянная работа оборудования на грани возможностей негативно сказывается на сроке его службы. Потому желательно иметь запас по производительности. Небольшой, порядка 15-20% от расчетной величины. Его вполне достаточно для того, чтобы оборудование работало не на пределе своих возможностей.

Слишком большой запас невыгоден экономически: чем мощнее оборудование, тем дороже оно стоит. Причем разница в цене солидная. Так что, если вы не рассматриваете возможность увеличения отапливаемой площади, котел с большим запасом мощности брать не стоит.

Расчет мощности котла по площади

Это самый простой способ подобрать котел отопления по мощности. При анализе многих готовых расчетов была выведена средняя цифра: на отопление 10 квадратных метров площади требуется 1 кВт тепла. Эта закономерность справедлива для помещений с высотой потолка в 2,5-2,7 м и средним утеплением. Если ваш дом или квартира подходят под эти параметры, зная площадь вашего дома, вы легко определяете приблизительную производительность котла.

Тепло из дома утекает в разных направлениях

Чтобы было понятнее, приведем пример расчета мощности котла отопления по площади. Имеется одноэтажный дом 12*14 м. Находим его площадь. Для этого умножаем его длину и ширину: 12 м * 14 м = 168 кв.м. По методике, делим площадь на 10 и получаем требуемое количество киловатт: 168 / 10 = 16,8 кВт. Для удобства использования цифру можно округлить: требуемая мощность котла отопления 17 кВт.

Учет высоты потолков

Но в частных домах потолки могут быть выше. Если разница составляет всего 10-15 см, ее можно не учитывать, но если высота потолков более чем 2,9 м, придется делать перерасчет. Для этого находит поправочный коэффициент (поделив фактическую высоту на стандартную 2,6 м) и на него умножают найденную цифру.

Пример поправки на высоту потолков. В здании высота потолков — 3,2 метра. Требуется пересчитать мощность котла отопления для данных условий (параметры дома те же, что в первом примере):

Как видите, разница вполне приличная. Если ее не учесть, нет гарантии, что в доме будет тепло даже при средних зимних температурах, а уж о сильных морозах и говорить не приходится.

Учет региона проживания

Что еще стоит учесть, так это местоположение. Ведь понятно, что на юге требуется намного меньше тепла, чем в Средней Полосе, а для тех, кто живет на севере «подмосковной» мощности явно будет недостаточною. Для учета региона проживания тоже есть коэффициенты. Даны они с некоторым диапазоном, так как в рамках одной зоны климат все-таки сильно меняется. Если дом находится ближе к южной границе, применяют меньший коэффициент, ближе к северной — больший. Стоит учитывать также и наличие/отсутствие сильных ветров и выбирать коэффициент с их учетом.

Пример корректировки по зонам. Пусть дом, для которого делаем расчет мощности котла, находится на севере Подмосковья. Тогда найденная цифра 21 кВт умножается на 1,5. Итого получаем: 21 кВт * 1,5 = 31,5 кВт.

Как видите, если сравнивать с первоначальной цифрой, полученной при расчете по площади (17 кВт), полученная в результате использования всего двух коэффициентов, значительно отличается. Почти в два раза. Так что эти параметры необходимо учитывать.

Мощность двухконтурного котла

Выше шла речь о расчете мощности котла, который работает только на отопление. Если вы планируете еще и воду греть, необходимо производительность еще увеличить. В расчет мощности котла с возможностью подогрева воды для бытовых нужд закладывают 20-25% запаса (умножить надо на 1,2-1,25).

Чтобы не пришлось покупать очень мощный котел, надо дом максимально утеплить

Пример: корректируем под возможность ГВС. Найденную цифру 31,5 кВт умножаем на 1,2 и получаем 37,8 кВт. Разница солидная. Обратите внимание, что запас на подогрев воды берется уже после учета в расчетах местоположения — температура воды от местоположения тоже зависит.

Особенности расчета производительности котла для квартир

Расчет мощности котла для отопления квартир высчитывается по той же норме: на 10 квадратных метров 1 кВт тепла. Но коррекция идет по другим параметрам. Первое, что требует учета — наличие или отсутствие неотапливаемого помещения сверху и снизу.

  • если внизу/вверху находится другая отапливаемая квартира, применяется коэффициент 0,7;
  • если внизу/верху неотапливаемое помещение, никаких изменений не вносим;
  • отапливаемый подвал/чердак — коэффициент 0,9.

Стоит также при расчетах учесть количество стен, выходящих на улицу. В угловых квартирах требуется большее количество тепла:

  • при наличии одной внешней стены — 1,1;
  • две стены выходят на улицу — 1,2;
  • три наружные — 1,3.
Учитывать надо количество наружных стен

Это основные зоны, через которые уходит тепло. Их учитывать обязательно. Можно еще принять во вминание качество окон. Если это стеклопакеты, корректировки можно не вносить. Если стоят старые деревянные окна, найденную цифру надо умножить на 1,2.

Также можно учесть такой фактор, как месторасположение квартиры. Точно также требуется увеличивать мощность, если хотите покупать двухконтурный котел (для подогрева горячей воды).

Расчет по объему

В случае с определением мощности котла отопления для квартиры можно использовать другую методику, которая основывается на нормах СНиПа. В них прописаны  нормы на отопление зданий:

  • на обогрев одного кубометра в панельном доме требуется 41 Вт тепла;
  • на возмещение теплопотерь в кирпичном — 34 Вт.

Чтобы использовать этот способ, надо знать общий объем помещений. В принципе, этот подход более правильный, так как он сразу учитывает высоту потолков. Тут может возникнуть небольшая сложность: обычно мы знаем площадь свой квартиры. Объем придется высчитывать. Для этого общую отапливаемую площадь умножаем на высоту потолков. Получаем искомый объем.

Расчет котла отопления для квартир можно сделать по нормативам

Пример расчета мощности котла для отопления квартиры. Пусть квартира находится на третьем этаже пятиэтажного кирпичного дома. Ее общая площадь 87 кв. м, высота потолков 2,8 м.

  1. Находим объем. 87 * 2,7 = 234,9 куб. м.
  2. Округляем — 235 куб. м.
  3. Считаем требуемую мощность: 235 куб. м * 34 Вт = 7990 Вт или 7,99 кВт.
  4. Округляем, получаем 8 кВт.
  5. Так как вверху и внизу находятся отапливаемые квартиры, применяем коэффициент 0,7. 8 кВт * 0,7 = 5,6 кВт.
  6. Округляем: 6 кВт.
  7. Котел будет греть и воду для бытовых нужд. На это дадим запас в 25%. 6 кВт * 1,25  = 7,5 кВт.
  8. Окна в квартире не меняли, стоят старые, деревянные. Потому применяем повышающий коэффициент 1,2: 7,5 кВт * 1,2 = 9 кВт.
  9. Две стены в квартире наружные, потому еще раз умножаем найденную цифру на 1,2: 9 кВт * 1,2 = 10,8 кВт.
  10. Округляем: 11 кВт.

В общем, вот вам эта методика. В принципе, ее можно использовать и для расчета мощности котла для кирпичного дома. Для других типов стройматериалов нормы не прописаны, а панельный частный дом — большая редкость.

Расчет мощности котла отопления — основные формулы с примерами

Одним из основных условий комфорта в квартире является отопительная система. А вид этого отопления, наряду с оборудованием для него, должны быть учтены еще на начальных этапах строительства дома. Дабы отопление в доме было максимально эффективным, необходимо правильно рассчитать требуемую мощность котла в зависимости от обогреваемой площади.

Именно о том, как правильно сделать расчет мощности котла отопления, и пойдет речь в сегодняшней статье. Отопительные системы бывают разные, все они имеют свои особенности, которые следует учесть во время вычислений.

Содержание статьи:

Формулы и коэфиценты расчета

До того как приступить непосредственно к расчетам мощности, давайте для начала рассмотрим, какие показатели будут использоваться.

  1. Мощность отопителя на 10 метров квадратных, которая определяется с учетом климатических особенностей конкретного региона (Wуд):
    для городов, расположенных на севере, она составляет примерно 1.5-2 киловатта;
    — для тех, кто расположен на юге – 0.7-0.9 киловатта;
    — и для городов Московской области – 1.2-1.5 киловатта.
  2. Площадь отапливаемого помещения – обозначается буквой S.

Ниже приведена формула расчета:

Важно! Существует и более простой способ подобных вычислений, в котором Wуд будет равняться единице. Следовательно, мощность котла будет становить 10 киловатт на 100 метров квадратных. Но если делать все таким образом, то к итоговому результату необходимо добавить еще порядка 15%, дабы значение было более объективным.

Таблица мощности и затрат на отопления

Образец расчета

Как мы выяснили, формула для того, чтобы сделать расчет мощности котла отопления, очень простая. Но мы все равно приведем один пример ее практичного использования.

Мы имеем следующие условия. Площадь помещения, которое необходимо будет отопить, составить 100 метров квадратных. Наш регион – Москва, следовательно, удельная мощность составить 1.2 киловатта. Если мы поставим все это в нашу формулу, то получатся следующие данные.

Как производить расчет мощности различных типов котлов

То, насколько эффективная отопительная система, будет в первую очередь зависеть от того, какого она типа. И, конечно же, на нее будет влиять правильность произведенных расчетов касаемо необходимой мощности отопительного котла. Если же такие расчеты покажут необъективные данные, то в скором будущем вас будут ждать неизбежные проблемы.

Если теплоотдача прибора будет меньше необходимого минимума, то в зимнее время в доме будет холодно. Если же его производительность будет излишней, то это не приведет ни к чему, кроме как к излишним затратам энергии, а следовательно, и ваших денег.

Дабы избежать подобных неприятностей, вам потребуются только знания касаемо того, как рассчитывается мощность котла. Также учтите тот факт, что существуют различные типы отопления, в зависимости от используемого топлива. Вот они:

  1. На твердом топливе.
  2. Электрические.
  3. На жидком топливе.
  4. Газовые.

При выборе той или иной системы люди зачастую основываются на особенностях конкретного региона, а также на стоимости оборудования.

Котлы на твердом топливе

Дабы рассчитать мощность котла на твердом топливе, вы должны учесть особенности, которые характерны для данного типа оборудования.

  1. Относительно низкая популярность.
  2. Потребность в дополнительном пространстве для того, чтобы хранить топливо.
  3. Доступность.
  4. Процедура эксплуатации проходит весьма экономично.
  5. Такие котлы могут функционировать автономно, по крайней мере, большая часть современных приборов предусматривает это.

Помимо этого, еще одним фактором, который нужно учесть, делая расчет мощности котла отопления, является то, что температура получается циклично. Иными словами, в помещении, отапливаемом такой системой, температура в течение дня может колебаться с зазором в 5 градусов.

Важно! Именно по этой причине твердотопливные котлы едва ли можно назвать наилучшими, а если есть возможность, то от их покупки лучше вообще отказаться. Но если такой возможности нет, у вас есть два способа того, как частично оградить себя от таких проблем.

  1. Использовать теплоаккумуляторы, объем которых может достигать 10 метров кубических. Они подсоединяются к системе отопления и существенно сокращают теплопотери, что позитивно сказывается на затратах на отопление.
  2. Соорудить термобаллон, необходимый для контроля подачи воздуха. Благодаря ему время горения увеличивается, а количество топок, следовательно, снижается.

Благодаря всему этому необходимая вам производительность котла снижается. Также все это следует учесть при расчетах.

Электрические котлы

Все котлы, работающие на электрической энергии, отличаются следующими особенностями.

  1. Они компактны.
  2. Топливо для них – электричество – стоит дорого.
  3. Управлять ими крайне просто.
  4. При перебоях в сети возможны проблемы с их функционированием.
  5. Они экологически безопасны.

Собственно, это все, что вам нужно помнить при вычислении необходимой мощности для котла, работающего на электроэнергии.

Котлы на жидком топливе

А теперь поговорим о жидкотопливных котлах. В целом, они характеризуются следующими особенностями.

  1. Такие котлы не являются экологически безопасными.
  2. Для них используется весьма дорогостоящий тип топлива.
  3. Эксплуатация таких котлов отличается простотой и удобством.
  4. Еще одна особенность – повышенная пожаробезопасность.
  5. При их установке вы должны позаботиться о еще одном помещении, в котором в будущем будет храниться топливо.

На этом особенности жидкотопливных котлов закончились.

Газовые котлы

Последний тип котлов, о которых мы поговорим сегодня – это газовые приборы. Они в большинстве своем – наиболее оптимальный вариант при установке системы обогрева. Расчет мощности котлов отопления данного типа невозможно сделать, не учтя следующие его особенности.

  1. Эксплуатация таких котлов отличается простотой и удобством.
  2. Они экономичны.
  3. Они не требуют дополнительного места для того, чтобы хранить топливо.
  4. Стоимость самого топлива для них (газа) относительно невысокая.
  5. Наконец, их эксплуатация отличается повышенной безопасностью.

Все, с котлами мы более-менее разобрались, теперь порассуждаем о том, как вычислить мощность для радиаторов в отопительной системе.

Как рассчитывается мощность радиаторов

Давайте припустим, что вы, к примеру, намерились установить отопительные радиаторы своими руками. Разумеется, их предварительно следует приобрести. Более того, при покупке вы должны выбрать именно ту модель, которая вам больше всего подойдет.

Все вычисления касаемо радиаторов также довольно просты. В качестве примера мы будем рассматривать комнату, площадь которой будет составлять 14 метров квадратных, а высота – 3 метра.

Читайте так же, о том как рассчитать количество секций радиатора

  1. Прежде всего, нам необходимо определить объем данной комнаты. Для этого нужно умножить высоту комнаты на ее площадь, в итоге мы получаем 42 метра кубических.
  2. Важно! Вам следует учесть тот факт, что для отопления одного кубометра в средней полосе нашей страны требуется примерно 41 ватт.

  3. Получается, что для того чтобы определить производительность радиаторов, мы должны умножить эту мощность (это 41 ватт) на общий объем помещения. Что у нас получается? Все правильно – 1 722 ватта.
  4. Идем дальше. Теперь нам нужно определить, какое количество секций должно быть у радиатора. Это очень легко сделать, и все потому, что теплоотдача у любого радиатора, будь он изготовлен из алюминия или биметаллических сплавов, равняется 150 ваттам.
  5. Именно по этой причине полученную ранее производительность требуется поделить на 150. Округляем полученную цифру до 11 – получаем нужную нам производительность.
  6. Не забываем прибавить еще 15% к полученной нами цифре. Эта нехитрая манипуляция позволит вас сгладить рост требуемой производительности в периоды, когда морозы особенно суровы. После этого у нас получается 1.68, но мы, опять же, округляем этот показатель до 2.
  7. Наконец, добавляем 2 до 11 – и у нас получается 13, следовательно, для нашей комнаты на 14 метров квадратных необходимы радиаторы по 13 секций каждый.

В качестве заключения

Вот мы с вами и выяснили, как правильно производится расчет мощности котла отопления, захватив сюда и радиаторы. Если вы будете четко следовать этим советам, то в итоге у вас будет весьма эффективная отопительная система, которая в то же время не будет отличаться «расточительностью». На этом все, удачи вам и теплых зим!

как рассчитать мощность котла для дома, как подобрать котел отопления, как выбрать мощность

Содержание:

Комфорт дома во многом зависит от правильности подбора параметров котла отопления. Процедура, как подобрать котел по площади с помощью калькулятора, не требует особых знаний.

Общие положения

Для установления внутри жилища приемлемого микроклимата необходимо добиться полного восполнения всех потерь тепла. Местом его утечек выступают стены, окна, пол, крыша. Перед тем, как рассчитать, какой котел нужен для дома, нужно определить уровень утепления всех названых участков.


Обычно применяется два способа определения уровня теплопотерь:

  1. Приглашение специалистов. Полученный результат выступает ориентиром для подбора котла и прочих узлов отопительной системы. Эта процедура довольно громоздкая. Во время ее реализации в учет берут материал изготовления стен, пола, перекрытий. Значение имеет также их толщина и уровень теплоизоляции. Также во внимание берут тип используемых окон и дверей, мощность приточной вентиляции (если она есть).
  2. Использование тепловизора. В этом случае по факту вычисляют общий объем тепла, который утекает из дома или помещения. Речь идет о портативном приспособлении, на мониторе которого можно увидеть фактическое положение вещей. В этом случае есть возможность точно понять, где тепловая энергия теряется в большей степени, приняв соответствующие меры для ликвидации пробоин в защите дома.

Расчет по площади отапливаемого помещения

Такой подход является наиболее простым в подборе котла отопления. Проанализировав множество проведенных расчетов, вывели средний показатель. Так, чтобы эффективно обогреть 10 м2 жилища, необходим 1 кВт тепла. Рассчитывать мощность котла по площади можно в помещениях с высотой стен в пределах 2,5-2,7 м и средней теплоизоляцией. Если жилище соответствует этим параметрам, то для приблизительного определения мощности котельного оборудования нужно знать общую площадь всех помещений.


Для простоты понимания лучше рассмотреть пример расчета котла по площади. Речь пойдет об одноэтажном доме 12х14 м. Чтобы найти его площадь, необходимо длину умножить на ширину:12 х 14 м = 168 м2. Для получения параметра необходимого для обогрева тепла, общую площадь делят на 10: 168/10 = 16,8 кВт. Обычно конечный результат расчета мощности газового котла отопления от площади для удобства округляют в большую сторону – 17 кВт.

Поправка на высоту потолка

Частные домовладения отличаются более высокими потолками. Если речь идет о 10-15 см, то особой роли это не играет. Однако если высота комнаты приближается к 2,9 м, это приходится учитывать при проведении расчетов мощности котла по площади. Для этого пользуются т.н. «поправочным коэффициентом» — фактическая высота делиться на стандартный параметр 2,6 м. На полученное число и умножается результат общих вычислений. В качестве примера можно вычислить поправку на высоту потолка для здания с высотой стен 3,2 м. Другие параметры соответствуют первому примеру.


Алгоритм перерасчета, как выбрать мощность газового котла для дома:

  1. Определение коэффициента: 3,2 м / 2,6 м = 1,23.
  2. Коррекция первоначального результата: 17 кВт х 1,23 = 20,91 кВт.
  3. Округления в сторону возрастания. В результате получается 21 кВт, требуемый для обогрева.

Как видно из примера, речь идет о вполне ощутимой разнице. Если перед тем, как выбрать мощность газового котла, ею пренебречь, даже при средних зимних холодах атмосфера в доме будет очень некомфортной. При наступлении сильных морозов придется принимать кардинальные меры.

Фактор региона проживания

Большое значение имеет также то, в каком районе находится жилище. Ни для кого не секрет, что южный регион на порядок теплее Средней Полосы, ну а жителям Крайнего Севера «подмосковной» мощности газового котла, подобранной для дома, как правило, не хватает для полноценного обогрева. Фактор региона проживания также регулируется специальными коэффициентами. При этом некоторый диапазон, ведь даже в пределах одной местности климатические особенности могут кардинально отличаться. Для жилищ, расположенных ближе к южной границе, актуальным будет меньший коэффициент, и наоборот. Необходимо также учитывать, наблюдаются ли в данной местности сильные ветры (для этого также имеется свой коэффициент).


Примеры коэффициентов:

  • За ориентир берут средние российские регионы. Здесь коэффициент 1-1,1 (по мере приближения к северной границе рекомендуется увеличивать мощность котла).
  • В Москве и Подмосковье итоговое число умножают на 1,2 — 1,5.
  • Северные районы при расчете мощности предполагают использование коэффициента 1,5-2,0.
  • В южных районах используются уменьшающие коэффициенты 0,7-0,9.

Для наглядности можно привести пример, как рассчитать газовый котел для частного дома, расположенного на севере Подмосковья. Итоговый результат 21 кВт необходимо умножить на 1,5: 21 кВт х 1,5 = 31,5 кВт. Если сравнивать конечный показатель с полученным при расчете по площади (17 кВт), то корректировка с помощью пары коэффициентов привнесла заметные изменения (результаты отличаются почти в два раза). Это лишний раз подтверждает важность учета этих параметров.

Как подобрать двухконтурный котел для дома

В первых примерах рассматривался расчет газового котла для отопления частного дома. В тех случаях, когда есть необходимость в нагреве воды для бытовых нужд, производительность оборудования нуждается в еще большем увеличении. Процедура определения мощности котла, обеспечивающего также подогрев воды, предусматривает закладку определенного запаса. Речь идет о 20-25%, которые получаются через умножение на 1,2-1,25.


Для наглядности можно откорректировать мощность котла под возможность ГВС. Для этого итоговое число 31,5 кВт умножают на 1,2: получается 37,8 кВт. Разница вырисовывается достаточно приличной. Важно помнить, что учет запаса на подогрев воды проводят после поправок на местоположение, т.к. это также влияет на температуру воды.

Нюансы в определении мощности котла для квартир

Для расчета мощности котла отопления в квартирах также используется норма 10 м2/ 1 кВт тепла. Для корректировки здесь нужны другие параметры. Первое, что обязательно нужно учесть – есть ли сверху или снизу неотапливаемые помещения.

Алгоритм дальнейших действий, как рассчитать котел для дома:

  • При наличии внизу или вверху холодного помещения нужно применить коэффициент 0,7.
  • Если другая необогреваемая квартира отсутствует, результат оставляют без коррекции.
  • Наличие отапливаемого подвала или чердака предусматривает применение коэффициента 0,9.

Во время вычислений в учет берут также выходящие на улицу стены.

 Угловые помещения нуждаются в большем количестве тепла:

  • Одна наружная стена предполагает использование коэффициента 1,1.
  • Две стены — 1,2.
  • Три стены – 1,3.

Эти обязательные к учету участки являются теми зонами, посредством которых теряется наибольшее количество тепла. Иногда во внимание берется количество окон. Если речь идет о современных стеклопакетах, коррекцию не проводят. Наличие старых деревянных изделий требует применение коэффициента 1,2. Определенное значение имеет также то, каким образом расположена квартира. Точно такого же увеличения мощности требует использование двухконтурного котла для ГВС.

Как рассчитать мощность по объему помещения

Определить мощность котла отопления для квартиры можно другим способом, основанным на нормах СНиПа.

Речь идет о следующих параметрах:

  • Чтобы обогреть 1 м3 панельного дома, необходимо 41 Вт тепла.
  • Подобный показатель в кирпичных зданиях соответствует 34 Вт.

Применение данной методики требует предварительного расчета общего объема комнат. Следует сказать, что такой подход дает более адекватный результат, ведь при этом учитывается также высота стен. Сложностей обычно не возникает: для вычисления объема квартиры ее площадь нужно умножить на высоту. В качестве примера можно рассчитать мощность котла для отопления квартиры площадью 87 м2, расположенной на третьем этаже в кирпичной пятиэтажке. Высота стен в этом случае — 2,8 м.


Последовательность, как рассчитать мощность котла для дома:

  1. Определяют объем квартиры: 87 х 2,7 = 234,9 м3.
  2. Полученное число округляют до 235 м3.
  3. Вычисляют нужную мощность: 235 х 34 = 7990 (7,99 кВт). В результате округления получается 8 кВт.
  4. Вверху и внизу расположены отапливаемые квартиры, поэтому используется коэффициент 0,7: 8 кВт х 0,7 = 5,6 кВт. Округляется до 6 кВт.
  5. Т.к. применяют двухконтурный котел, на это дают запас в 25%. 6 кВт х 1,25 = 7,5 кВт.
  6. Окна в квартире стоят старые деревянные. Из-за этого необходимо использовать повышающий коэффициент 7,5 кВт х 1,2 = 9 кВт.
  7. Пара квартирных стен выходит на улицу, что предполагает дополнительное умножение на 1,2: 9 кВт х 1,2 = 10,8 кВт. (Округляется до 11 кВт).

С помощью приведенной методики можно рассчитать необходимую мощность котла, как в многоквартирном, так и частном кирпичном доме. Другие стройматериалы не имеют подобных норм. К тому же, из панелей частные жилища сооружаются крайне редко.


Делаем правильный расчет мощности газового котла отопления


Один из первых параметров, на который обращают внимание, при подборе отопительного оборудования, это производительность. Расчет мощности газового котла отопления, выполняют несколькими способами. От точных подсчетов, зависит комфорт во время эксплуатации.

Как подобрать мощность котла на газе

Расчет мощности газового котла отопления от площади, осуществляется тремя разными способами:

  • Точные теплотехнические расчеты выполняются только после аудита здания на предмет возможных теплопотерь. Для исследования, используют тепловизор. Учитывается месторасположение отапливаемого здания. Вычисления выполняют по сложным теплотехническим формулам.
    1. Минус решения – затраты на оплату услуг специалиста.
    2. Преимущество – максимально точные результаты вычислений.
  • Онлайн – калькулятор – подсчеты выполняются посредством специальной программы. Для получения результатов потребуется ввести данные о теплоизоляции, общем количестве оконных и дверных проемов, толщине стен и т.п.
    Использование онлайн калькулятора, оптимальное решение при расчетах котельного оборудования для бытовых нужд. С его помощью, подбирают теплогенератор с наименьшей погрешностью по производительности, без материальных затрат.
  • Самостоятельные подсчеты на квадратные метры отапливаемого помещения. Чтобы высчитать рабочие параметры, не обязательно пользоваться сложными вычислениями и онлайн калькуляторами.
    Произвести расчет соотношения необходимой мощности газового котла, относительно площади помещения, можно самому, не прибегая к услугам специалистов, без программного обеспечения. Вычисления выполняют по формуле 1 кВт = 10 м². Выбор газового котла с помощью данных расчетов, подходит для помещений со средней степенью теплоизоляции, высотой потолков 2,7 м.


Европейские производители, нередко рассчитывают производительность котельного оборудования от объема помещения. Поэтому, в технической документации, указывается возможность обогрева в м³. Этот фактор учитывают при выборе агрегата, изготовленного в странах ЕС.

Большинство консультантов, продающих отопительное оборудование, самостоятельно подсчитывают необходимую производительность при помощи формулы 1 кВт=10 м². Дополнительные подсчеты, осуществляют по количеству теплоносителя в отопительной системе.

Расчет одноконтурного котла отопления

Как уже замечалось выше, самостоятельные подсчеты рабочих параметров отопительного оборудования, выполняют по формуле 1 кВт =10 м². К полученному результату, добавляют 15-20% запаса, благодаря чему, теплогенератор, даже в сильные морозы, не работает на полную нагрузку, что продлевает срок его эксплуатации.

Для примера, можно подсчитать, какая производительность необходима для газовой котельной в частном доме:

  • Для 60 м² – удовлетворить потребность в тепле сможет агрегат на 6 кВт + 20% = 7,5 киловатт. Если нет модели с подходящим типоразмером производительности, предпочтение отдают отопительному оборудованию с большим значением мощности.
  • Подобным образом выполняют подсчеты для 100 м² – необходимая мощность котельного оборудования, 12 кВт.
  • Для отопления 150 м² нужен газовый котел, мощностью 15 кВт + 20% (3 киловатта) = 18 кВт. Соответственно, для 200 м², требуется котел на 22 кВт.


Данные вычисления подходят исключительно для одноконтурных моделей, не подключенных к бойлеру косвенного нагрева.

Как рассчитать мощность двухконтурного котла

Формула расчета требуемой мощности двухконтурного газового котла по площади отопления и точек водоразбора ГВС, следующая, 10 м² = 1 кВт +20% (запаса мощности) + 20% (на нагрев воды). Получается, что к высчитанной производительности, добавляют сразу 40%.

Мощность двухконтурного газового котла для отопления и нагрева горячей воды для 250 м², составит 25 кВт + 40% (10 киловатт) = 35 кВт. Вычисления подходят для двухконтурного оборудования. Для подсчета производительности одноконтурного агрегата, подключенного к бойлеру косвенного нагрева, используют другую формулу.

Расчет мощности бойлера косвенного нагрева и одноконтурного котла

Чтобы рассчитать необходимую мощность одноконтурного газового котла с бойлером косвенного нагрева, необходимо выполнить следующие действия:

  • Определить какой объем бойлера будет достаточным, чтобы обеспечить потребности жильцов дома.
  • В технической документации к накопительной емкости, указана необходимая производительность котельного оборудования, чтобы поддерживать нагрев горячей воды, без учета необходимого тепла на отопление. Бойлер на 200 литров, в среднем потребует около 30 кВт.
  • Высчитывается производительность котельного оборудования, требуемая для отопления дома.

Полученные цифры складываются. От результата отнимается сумма, равная 20%. Это необходимо сделать по той причине, что, нагрев не будет одновременно работать на отопление и ГВС. Расчет тепловой мощности одноконтурного отопительного котла, с учетом внешнего нагревателя воды для горячего водоснабжения, делается с учетом этой особенности.

Какой запас мощности должен быть у газового котла

Запас производительности рассчитывается в зависимости от конфигурации отопительного оборудования:

  • Для одноконтурных моделей, запас составляет около 20%.
  • Для двухконтурных агрегатов, 20%+20%.
  • Котлы с подключением к бойлеру косвенного нагрева – в конфигурации накопительной емкости, указан необходимый дополнительный запас производительности.


Указанный запас мощности, действителен для помещений до 300 м². Дома с большей площадью требуют проведения грамотных теплотехнических расчетов.

Расчет потребности газа, исходя из мощности котла

Формула расчёта расхода газа, в зависимости от мощности используемого котла, принимает во внимание КПД отопительного оборудования. У стандартных моделей классического отопительных теплогенераторов, коэффициент полезного действия составит 92%, у конденсационных до 108%.

На практике, это означает, что 1 м³ газа, равен 10 кВт тепловой энергии, при условии 100% теплоотдачи. Соответственно, при КПД 92%, затраты топлива составят 1,12 м³, а при 108% не более 0,92 м³.

Методика расчета объема потребленного газа учитывает производительность агрегата. Так, 10 кВт прибор отопления, в течение часа, спалит 1,12 м³ топлива, 40 кВт агрегат, 4,48 м³. Данную зависимость потребления газа от мощности котельного оборудования, учитывают при сложных теплотехнических расчетах.

Соотношение также заложено в онлайн калькуляторы рассчитывающие затраты на отопление. Производители нередко указывают средний расход газа для каждой выпускаемой модели.

Чтобы полностью подсчитать приблизительные материальные затраты на отопление, потребуется рассчитать потребление электроэнергии в энергозависимых котлах отопления. На данный момент, котельное оборудование, работающее на магистральном газе, являются наиболее экономичным способом обогрева.

Для отапливаемых зданий большой площади, вычисления осуществляют исключительно после проведения аудита на предмет теплопотерь здания. В остальных случаях, при вычислениях пользуются специальными формулами или онлайн сервисами.

самая подробная инструкция, подбор производительности по площади дома, по объему отапливаемых помещений частного дома, простая формула и калькулятор для точных расчетов

От тепловой мощности котла зависит эффективность работы системы отопления. При недостаточной теплопроизводительности система отопления не сможет удерживать комфортную температуру. Если речь идет о газовом или жидкотопливном котле, важно не переусердствовать и с запасом мощности, из-за чего нарушится нормальная работа котла, увеличится расход топлива.

Читайте в статье

Что такое мощность котла и как ее узнать

Тепловая мощность котла – это максимальное количество тепловой энергии, передаваемой теплоносителю в процессе сгорания топлива (измеряется в киловаттах/час или просто кВт). Это означает, что котел мощностью 20 кВт при непрерывной работе на максимальной мощности за час выработает и передаст теплоносителю 20 кВт тепловой энергии.

Определить мощность котла можно несколькими способами:

  • поискать список технических характеристик на корпусе котлоагрегата;
  • найти значение в паспорте модели. Если документация не сохранилась, можно поискать электронную версию или изучить предложения интернет-магазинов, которые обязательно указывают в описании модели ее номинальную мощность; Место расположения технических характеристик на корпусе котла
  • если речь идет о газовом котле, можно узнать примерную теплопроизводительность по расходу газа, для чего необходимо проверить и зафиксировать сколько кубометров котел потребляет при беспрерывной работе на максимальной мощности. Удельная теплота сгорания газа – величина постоянная и равна 9,3 кВт. Также важно учитывать КПД котла (его также можно найти в списке технических характеристик), для старых советских моделей это значения в районе 70-85%, у новых моделей КПД в пределах 86-94%. Итого, максимальная мощность = 9,3 кВт (удельная теплота сгорания природного газа)*0,8 (если КПД 80%)*2,5 куб. м/час (полученный расход газа в час) = 18,6 кВт. Аналогичным способом можно посчитать примерные значения для твердотопливного, жидкотопливного или электрического котла.

Увеличить теплопроизводительность бытового котла без серьезных небезопасных изменений его конструкции невозможно, поэтому к выбору минимально необходимой мощности необходимо подходить ответственно. Если ее будет недостаточно, придется устанавливать дополнительный котлоагрегат или производить утепление стен, пола и потолка, замену окон и дверей в целях снижения теплопотерь.

Способы подбора минимально необходимой мощности котла

Чтобы поддерживать в каждом помещении комфортную температуру, теплопроизводительность системы отопления (соответственно и котла) должна обеспечивать теплопотери дома, которые также измеряются в кВт. То есть теплопроизводительнось котлоагрегата = суммарные тепловые потери дома через стены, пол, потолок, фундамент окна и двери + запас на случай более сильных морозов.

Наглядное изображение теплопотерь частоного дома.

Расчет мощности котла отопления по площади дома

Наиболее простой и распространенный способ. Исходя из практики, для среднестатистического частного дома в климатической зоне Подмосковья, с кладкой в 2 кирпича и высотой потолков 2,7 м на каждые 10 м2 необходим 1 кВт тепловой мощности (именно такое соотношение соответствует среднестатистическим теплопотерям). Также мы рекомендуем закладывать запас мощности в 15-25%.

Например, для вышеописанного дома площадью 100 кв. м. минимальная мощность котла = 100 м2 : 10 * 1,2 (20% запаса) = 12 кВт.

Также при расчете мощности котла отопления по площади дома можно делать поправки с учетом утепленности дома. Так, для среднеутепленного дома (наличие 100-150 мм слоя теплоизоляции или стены из бруса) на каждые 10 м2 может приходиться 0,5-0,7 кВт теплопотерь. Для хорошо утепленного дома с небольшой площадью остекления норма составляет 0,4-0,5 кВт на каждые 10 м2.

Поэтому, если ваш случай кардинально отличается от среднестатистичекого вышеописанного дома, стоит рассчитать мощность котла более точным методом с учетом всех особенностей, он описан одним пунктом ниже.

Расчет по объему помещения

Еще один довольно простой способ, основанный на СНиП и обычно применяемый для квартир. За исходную величину берется не площадь, а кубатура отапливаемых помещений. Согласно методике, указанной в СНиП 23-02-2003 «Тепловая защита зданий», норма удельного расхода тепловой энергии:

  • для кирпичного многоквартирного дома – 0,034 кВт/м3;
  • для панельного многоквартирного дома – 0,041 кВт/м3.

Зная эти нормы, площадь квартиры и высоту потолков, можно использовать способ расчета мощности котла отопления по объему помещений.

Например, для квартиры панельного многоквартирного дома площадью 150 кв. м. и высотой потолков 2,7 м (без внешнего и внутреннего утепления стен), минимальная теплопроизводительность = 2,7*150*0,041 = 16,6 кВт.

Из принципа расчета, опять таки, ясно, что весь учет теплопотерь сводится к усредненным значениям и теплопроводности стен из различных материалов. Это значит, что использовать его рационально если внешние стены не утеплены, в квартире имеются не более 4 стандартных окна, радиаторы подключены наиболее эффективным способом, а соседние квартиры отапливаются.

Рассчитываем с учетом всех основных особенностей дома

Подробная формула основывается на площади помещений, однако учитывает все возможные тепловые потери, способ подключения радиаторов, который влияет на КПД системы отопления, а также климатические условия, в которых находится частный дом.

Расчет производится для каждого помещения отдельно, что более правильно. Полученные для каждого помещения значения в дальнейшем можно использовать для подбора мощности радиаторов отопления. Просуммировав необходимую для каждого помещения теплопроизводительность, вы получите значение для всей системы отопления дома, значит – и для котла, который должен обеспечивать ее мощность.

Точная формула для расчета:

Q = 1000 Вт/м2*S*k1*k2*k3…*k10,

  • где Q – показатель теплопроизводительности;
  • S – общая площадь помещения;
  • k1-k10 – коэффициенты, учитывающие теплопотери, климат и особенности установки радиаторов.

Показать значения коэффициентов k1-k10

k1 – к-во внешних стен в помещения (стен, граничащих с улицей):

  • одна – k1=1,0;
  • две – k1=1,2;
  • три – k1-1,3.

k2 – ориентация помещения (солнечная или теневая сторона):

  • север, северо-восток или восток – k2=1,1;
  • юг, юго-запад или запад – k2=1,0.

k3 – коэффициент теплоизоляции стен помещения:

  • простые, не утепленные стены – 1,17;
  • кладка в 2 кирпича или легкое утепление – 1,0;
  • высококачественная расчетная теплоизоляция – 0,85.

k4 – подробный учет климатических условий локации (уличная температура воздуха в самую холодную неделю зимы):

  • -35°С и менее – 1,4;
  • от -25°С до -34°С – 1,25;
  • от -20°С до -24°С – 1,2;
  • от -15°С до -19°С – 1,1;
  • от -10°С до -14°С – 0,9;
  • не холоднее, чем -10°С – 0,7.

k5 – коэффициент, учитывающий высоту потолка:

  • до 2,7 м – 1,0;
  • 2,8 — 3,0 м – 1,02;
  • 3,1 — 3,9 м – 1,08;
  • 4 м и более – 1,15.

k6 – коэффициент, учитывающий теплопотери потолка (что находится над потолком):

  • холодное, неотапливаемое помещение/чердак – 1,0;
  • утепленный чердак/мансарда – 0,9;
  • отапливаемое жилое помещение – 0,8.

k7 – учет теплопотерь окон (тип и к-во стеклопакетов):

  • обычные (в том числе и деревянные) двойные окна – 1,17;
  • окна с двойным стеклопакетом (2 воздушные камеры) – 1,0;
  • двойной стеклопакет с аргоновым заполнением или тройной стеклопакет (3 воздушные камеры) – 0,85.

k8 – учет суммарной площади остекления (суммарная площадь окон : площадь помещения):

  • менее 0,1 – k8 = 0,8;
  • 0,11-0,2 – k8 = 0,9;
  • 0,21-0,3 – k8 = 1,0;
  • 0,31-0,4 – k8 = 1,05;
  • 0,41-0,5 – k8 = 1,15.

k9 – учет способа подключения радиаторов:

  • диагональный, где подача сверху, обратка снизу – 1,0;
  • односторонний, где подача сверху, обратка снизу – 1,03;
  • двухсторонний нижний, где и подача, и обратка снизу – 1,1;
  • диагональный, где подача снизу, обратка сверху – 1,2;
  • односторонний, где подача снизу, обратка сверху – 1,28;
  • односторонний нижний, где и подача, и обратка снизу – 1,28.

k10 – учет расположения батареи и наличия экрана:

  • практически не прикрыт подоконником, не прикрыт экраном – 0,9;
  • прикрыт подоконником или выступом стены – 1,0;
  • прикрыт декоративным кожухом только снаружи – 1,05;
  • полностью закрыт экраном – 1,15.

Для большего удобства ниже находится калькулятор, где можно рассчитать те же самые значения быстро выбрав соответствующие исходные данные.

Калькулятор для точного определения тепловой мощности

Расчет необходимой мощности отопительного оборудования производится отдельно для каждого помещения дома. Введите исходные данные или выберите предложенные варианты и нажмите «Рассчитать».

1. Установите значение площади помещения, м²

2. К-во внешних стен помещения

однадветри

3. Внешние стены направлены на:

север, северо-восток или востокюг, юго-запад или запад

4. Степень теплоизоляции внешних стен

простые, не утепленные стеныкладка в 2 кирпича или легкое утеплениевысококачественная расчетная теплоизоляция

5. Уровень температуры в регионе в самую холодную неделю отопительного сезона

-35°С и менееот -25°С до -34°Сот -20°С до -24°Сот -15°С до -19°Сот -10°С до -14°Сне холоднее, чем -10°С

6. Высота потолка в расчетном помещении

до 2,7 м2,8 — 3,0 м3,1 — 3,9 м4 м и более

7. Что находится над потолком?

холодное, неотапливаемое помещение/чердакутепленный чердак/мансардаотапливаемое жилое помещение

8. Тип и к-во стеклопакетов

обычные (в том числе и деревянные) двойные окнаокна с двойным стеклопакетом (2 воздушные камеры)двойной стеклопакет с аргоновым заполнением или тройной стеклопакет (3 воздушные камеры)

9. Отношение площади остекления к площади пола (К-во окон * высоту окна * ширину окна / площадь пола):

менее 0,10,11-0,20,21-0,30,31-0,40,41-0,5

10. Выберите планируемый способ подключения радиаторов отопления

11. Планируемое расположение радиатора и наличие экрана

практически не прикрыт подоконником, не прикрыт экраномприкрыт подоконником или выступом стеныприкрыт декоративным кожухом только снаружиполностью закрыт экраном

Служебн. (не учитывается)

ТемпК

Запас производительности в зависимости от типа котла

Для стандартного одноконтурного котла, вне зависимости от вида используемого топлива, мы всегда рекомендуем закладывать запас мощности 15-25%, в зависимости от температуры в самую холодную декаду и утепленности дома. Однако в некоторых случаях требуется несколько больший запас:

  • 20-30% запаса, если котел двухконтурный. Большинство моделей работает по принципу приоритета ГВС, это значит, что в момент активации точки потребления горячей воды котел не греет отопительный контур, для работы на два контура требуется более высокая производительность;
  • 20-25% запаса, если в доме организована или планируется приточно-вытяжная вентиляция без рекуперации тепла.

Также часто используется схема с подключением бойлера косвенного нагрева (особенно в связке с твердотопливными котлами). В таком случае излишек мощности может превышать 40-50% (показатель рассчитывается по ситуации). Стоит понимать, что любом из случаев предусмотренный запас не «простаивает», а используется будь то в целях нагрева горячей воды, восполнения более высоких теплопотерь или нагрева буферной емкости.

Высокий белый бак справа от котла – накопительный бойлер косвенного нагрева, постоянно поддерживающий большой объем горячей воды.

Почему не стоит подбирать котел со слишком большим запасом мощности

С недостатком теплопроизводительности все предельно понятно: система отопления попросту не обеспечит желаемый уровень температуры даже при беспрерывной работе. Однако, как мы уже упоминали, серьезной проблемой может стать и переизбыток мощности, последствиями которого являются:

  • более низкий КПД и повышенный расход топлива, особенно на одно- и двухступенчатых горелках, не способных плавно модулировать производительность;
  • частое тактование (вкл/выкл) котла, что нарушает нормальную работу и снижает ресурс горелки;
  • попросту более высокая стоимость котлоагрегата, учитывая, что производительность, за которую была произведена повышенная плата, использоваться не будет;
  • часто больший вес и большие габариты.

Когда чрезмерная теплопроизвоительность все же уместна

Единственной причиной выбрать версию котла гораздо большей мощности, чем нужно, как мы уже упоминали, является использование его в связке с буферной емкостью. Буферная емкость (также теплоаккумулятор) – это накопительный бак определенного объема наполненный теплоносителем, назначение которого – накапливать излишки тепловой мощности и в дальнейшем более рационально распределять их в целях отопления дома или обеспечения горячего водоснабжения (ГВС).

Например, теплоаккумулятор – отличное решение, если недостаточно производительности контура ГВС или при цикличности твердотопливного котла, когда топливо сгорая отдает максимум тепла, а после прогорания система быстро остывает. Также теплоаккумулятор часто используется в связке с электрокотлом, который нагревает емкость в период действия сниженного ночного тарифа на электроэнергию, а днем накопленное тепло распределяется по системе, еще долго поддерживая желаемую температуру без участия котла.

Онлайн калькулятор отопления дома, расчет мощности газового котла

Статья подготовлена ​​при информационной поддержке компании Теплодар.

Автономное отопление для частных домов доступно, комфортно и разнообразно. Возможна установка газового котла и вне зависимости от капризов природы или сбоев в системе централизованного теплоснабжения. Главное, правильно выбрать оборудование и рассчитать тепловую мощность котла. Если мощность превысит потребность помещения в тепле, деньги на установку блока будут выброшены на ветер.Чтобы система теплоснабжения была комфортной и экономически выгодной, на этапе проектирования нужно сделать расчет мощности газового отопительного котла.

Расчет базовой суммы тепловой мощности

Самый простой способ получить данные о тепловой мощности участка котельной: берется 1 кВт мощности на 10 кв. м . Однако в этой формуле есть серьезная ошибка, она не учитывает современные технологии строительства, вид на сельскую местность, перепады климатических температур, уровень изоляции, использование окон со стеклопакетами и т. Д.

Боле Для проведения точного расчета теплопроизводительности котла необходимо учитывать ряд важных факторов, влияющих на конечный результат:

  • размер помещения;
  • степень утепления дома;
  • наличие стеклопакетов;
  • утеплитель стен;
  • строительный тип;
  • Температура на улице в самое холодное время года;
  • вид на разводку контура отопления;
  • соотношение площади конструкции и проема;
  • Теплопотери здания.

В домах с принудительным воздушным отоплением мощность котла при расчете котла следует учитывать количество энергии, необходимое для воздушного отопления. Специалисты советуют делать зазор в 20%, используя полученную тепловую мощность котла на случай непредвиденных обстоятельств, сильного охлаждения или понижения давления газа в системе.

При необоснованном увеличении теплоемкости может снизиться КПД нагревателя, увеличить затраты на приобретение элементов системы, привести к быстрому износу компонентов. Вот почему так важно произвести расчет теплопроизводительности котла и применить его к указанному жилью.Получить данные можно по простой формуле W = S * W ударов , где S — площадь дома, W- заводская мощность котла, W ударов — удельная мощность для расчетов в конкретной климатической зоне, может быть настраивается под особенности региона пользователя. Результат следует округлить до большого значения с точки зрения утечки тепла в здании.

Для тех, кто не хочет тратить время на математику, можно воспользоваться калькулятором мощности газового котла онлайн. Просто сохраните индивидуальные данные по характеристикам комнаты и будьте готовы ответить.

Формула получения мощности системы отопления

Онлайн-калькулятор мощности отопительного котла позволяет в считанные секунды получить желаемый результат со всеми вышеперечисленными характеристиками, которые влияют на конечный результат полученных данных. Чтобы правильно воспользоваться данной программой, необходимо ввести данные в подготовленную таблицу: тип оконного остекления, уровень теплоизоляции стен, соотношение площади пола и оконного проема, температура снаружи дома выше средней, количество боковых стен, тип и площадь помещения.А затем нажмите кнопку «Рассчитать» и получите результат теплопотерь и теплопроизводительности котла.

Благодаря этой формуле каждый потребитель сможет в короткие сроки получить желаемые параметры и применить их при проектировании системы отопления.

Выбрать котел необходимой мощности можно на сайте Теплодара https://www.teplodar.ru/catalog/kotli/ отопительные котлы от производителя.

формула КПД котла

Видео по теме энергетический котел

Видео:

Видео:

Видео:

Введение и методы расчета

Хорошо известно, что первоначальная стоимость котла составляет небольшую часть общих затрат, связанных с котлом в течение его срока службы.В течение срока службы котла основные затраты связаны с расходами на топливо. Обеспечение эффективной работы котла имеет решающее значение для оптимизации затрат на топливо.

Не всегда верно, что котел будет работать с номинальной эффективностью. Почти всегда было обнаружено, что котлы работают с КПД намного ниже номинального, если не проводить надлежащий мониторинг эффективности.

КПД котла

КПД котла — это совокупный результат эффективности различных компонентов котла.У котла есть много подсистем, эффективность которых влияет на общую эффективность котла. Пара коэффициентов полезного действия, которые окончательно определяют коэффициент полезного действия котла, составляют —

.
  1. Эффективность сгорания
  2. Тепловой КПД

Помимо этих значений КПД, существуют и другие потери, которые также играют роль при определении КПД котла и, следовательно, должны учитываться при расчете КПД котла.

Эффективность сгорания

Эффективность сгорания котла является показателем способности горелки сжигать топливо.Два параметра, которые определяют эффективность горелки, — это количество несгоревшего топлива в выхлопных газах и избыток кислорода в выхлопных газах. По мере увеличения количества избыточного воздуха количество несгоревшего топлива в выхлопе уменьшается. Это приводит к снижению потерь несгоревшего топлива, но увеличению потерь энтальпии. Следовательно, очень важно поддерживать баланс между потерями энтальпии и несгоревшими потерями. Эффективность сгорания также зависит от сжигаемого топлива. Эффективность сгорания жидкого и газообразного топлива выше, чем твердого топлива.

Тепловой КПД

Термический КПД котла определяет эффективность теплообменника котла, который фактически передает тепловую энергию от камина к стороне воды. На тепловую эффективность сильно влияет образование накипи / сажи на трубах котла.

Прямой и косвенный КПД котла

Общий КПД котла зависит от многих других параметров, помимо КПД сгорания и теплового КПД. Эти другие параметры включают потери при включении-выключении, потери на излучение, потери на конвекцию, потери на продувку и т. Д.На практике для определения КПД котла обычно используются два метода, а именно прямой метод и косвенный метод расчета КПД.

Прямой КПД

Этот метод рассчитывает КПД котла по основной формуле КПД —

.

η = (выход энергии) / (вход энергии) X 100

Для того, чтобы рассчитать КПД котла этим методом, мы делим общую мощность котла на общую потребляемую мощность котла, умноженную на сто.

Расчет прямого КПД —

E = [Q (H-h) / q * GCV] * 100

Где,

Q = Количество произведенного пара (кг / час)

H = Энтальпия пара (Ккал / кг)

ч = Энтальпия воды (ккал / кг)

GCV = Высшая теплотворная способность топлива.

Косвенный КПД

Косвенный КПД котла рассчитывается путем определения индивидуальных потерь, происходящих в котле, и последующего вычитания суммы из 100%.Этот метод предполагает определение величин всех измеряемых потерь, происходящих в котле, путем отдельных измерений. Все эти потери складываются и вычитаются из 100%, чтобы определить конечный КПД. Продувочный клапан во время процедуры остается закрытым. Этот метод должен быть реализован в соответствии с нормами, предусмотренными в стандартах BS845. Расчетные потери включают потери в дымовой трубе, радиационные потери, потери от продувки и т. Д.

Сравнение прямого и косвенного КПД-

Оба упомянутых выше метода определения КПД котла имеют как преимущества, так и недостатки.Самым большим преимуществом косвенного метода является то, что он также говорит об источниках потерь. Выявив косвенный КПД, можно узнать, где потери увеличиваются и могут быть уменьшены. С другой стороны, значения прямого КПД ближе к реальности по сравнению с косвенным КПД из-за непокрытых потерь, таких как радиационные потери, потери ВКЛ-ВЫКЛ и т. Д. Но прямой КПД может сказать нам только о величине общих потерь. Информация об индивидуальных потерях и их величинах не передается из прямого расчета эффективности.Всегда существует некоторая разница в значениях прямой и косвенной эффективности. Косвенный КПД измеряется в конкретное время, тогда как прямой КПД измеряется в течение определенного периода времени, и, следовательно, потери из-за колеблющихся нагрузок, включения-выключения котла и т. Д. Также принимаются во внимание.

Мониторинг эффективности в реальном времени

КПД котла не остается фиксированным, и в процессе эксплуатации происходят большие отклонения от идеальных значений. Переход к мониторингу эффективности в реальном времени может значительно повысить эффективность котла в зависимости от типа котла и реальных условий на объекте.В двух словах, мониторинг и поддержание эффективности котла в течение всего срока службы котла является обязательным условием для сокращения счетов за топливо и уменьшения выбросов углекислого газа.

Понимание теплоемкости и эффективности угольной электростанции

Предлагаемые стандарты США по сокращению выбросов углерода от существующих угольных электростанций в значительной степени зависят от повышения эффективности на стороне генерации. Топливо, операции и конструкция завода — все это влияет на общую эффективность завода, а также на выбросы углерода.Этот обзор основ эффективности угольных электростанций, частых проблем, снижающих эффективность, и некоторых решений для улучшения работы и снижения затрат на генерацию должен быть ценным для электростанций, где бы они ни находились.

Место действия: Двадцать лет назад молодой инженер стоит перед группой мемориальных досок и наград в вестибюле большой угольной электростанции. Она с интересом отмечает, что некоторые из них относятся к наградам «за лучшую тепловую нагрузку», а также отмечает, что последней награде более трех лет.Поседевший инженер станции, похожий на запыленного углем Сэма Эллиота, присоединяется к ней перед дисплеем.

«Почему эта установка перестала получать награду за теплоотдачу?» она спрашивает.

«Ну, мэм, раз уж мы добавили скрубберы, особого смысла нет. А другие станции перешли на уголь бассейна Паудер-Ривер (PRB), поэтому они тоже пострадали от теплового удара. Итак, кто-то просто посчитал, поскольку нам пришлось отказаться от тепловыделения, чтобы соответствовать ограничениям на выбросы, больше не было смысла получать награду.”

Перенесемся в 2014 год, и ситуация радикально изменилась. Усовершенствованный контроль выбросов угольных электростанций является нормой, и уголь PRB в некоторой степени используется на большинстве электростанций в США, а Агентство по охране окружающей среды (EPA) предложило стандарты для сокращения выбросов углерода от существующих электростанций в соответствии с разделом 111 (d ) Закона о чистом воздухе. Включая множество возможных методов сокращения выбросов углерода, одним из строительных блоков плана EPA является повышение чистой тепловой мощности завода (NPHR) на 6% или больше.Хотя для непрофессионала это может показаться небольшим числом, инженеры электростанций знают, что повышение теплового коэффициента на 6% потребует серьезных обязательств на многих различных уровнях в рамках их энергокомпании.

В этой статье излагаются основы эффективности установки и тепловой мощности, чтобы можно было быстро понять, где наилучшие возможности для улучшения конкретного генерирующего актива. Затем он исследует способы, которыми может быть достигнута цель 6% NPHR.

Основные принципы тепловыделения

Термин «тепловая мощность» просто относится к эффективности преобразования энергии в терминах «сколько энергии необходимо израсходовать, чтобы получить единицу полезной работы.В электростанции внутреннего сгорания топливо является источником энергии, а полезная работа — это электроэнергия, подаваемая в сеть, тепло пара, поставляемое промышленному потребителю или используемое для отопления, или и то, и другое. Поскольку «полезная работа» обычно определяется как электричество и пар, которые поставляются конечным потребителям, инженеры, как правило, работают с чистой тепловой мощностью установки (NPHR).

В США тепловая мощность обычно выражается в смешанных английских единицах и единицах СИ — британских тепловых единицах на киловатт-час. Хотя сначала это сбивает с толку, это просто показывает, сколько британских тепловых единиц в час энергии требуется для производства 1 кВт полезной работы.В других странах обычно используются кДж / кВтч, кКал / кВтч или другие меры. В этой статье используется формат США.

Поскольку приблизительно 3 412 БТЕ / час равняется 1 кВт, мы можем легко определить термодинамический КПД электростанции, разделив 3 412 БТЕ на тепловую мощность. Например, угольная электростанция с тепловой мощностью 10 000 БТЕ / кВтч имеет тепловой КПД 3 412/10 000, или 0,3412 (34,12%).

Метод ввода / вывода

Один из простейших способов рассчитать NPHR — разделить потребляемую тепловую энергию в британских тепловых единицах / час на вашу чистую выработку (электричество и пар для потребителей) в киловаттах.Однако определение подводимого тепла может быть довольно трудным.

По моему опыту, меньшинство электростанций внутреннего сгорания хорошо измеряют фактическую скорость сжигания топлива на каждом блоке. Эмпирическое правило отрасли состоит в том, что объемные питатели имеют точность в лучшем случае +/– 5%, а гравиметрические питатели — в лучшем случае +/– 2%. На практике я считаю, что фактическая погрешность измерения скорости сжигания топлива может составлять от 5% до 10%.

На одной электростанции, на которой я работал, единственной возможностью для оценки скорости сжигания угля было опираться на фотографии угольного склада, сделанные энергичной дамой с ее самолета Cessna, и сравнивая предполагаемый размер запасов с железнодорожными квитанциями за месяц. чтобы определить, сколько угля было сожжено в целом.Потенциальная ошибка для этого метода может легко превышать 25%.

Еще одним важным фактором при измерении погонной энергии является анализ качества топлива, особенно его теплотворной способности. (Для получения более подробной информации см. «Введение в анализ качества топлива» в выпуске за январь 2015 г.) Вообще говоря, ошибка в расчете скорости сжигания топлива не может быть меньше, чем ошибка в анализе топлива, поэтому тщательный выбор методов и частоты отбора проб будет обеспечивают большую уверенность при расчете скорости сжигания топлива.

Короче говоря, метод ввода / вывода не является идеальным методом для отслеживания разницы в эффективности на вашей угольной электростанции, если у вас нет точных угольных питателей (рис. 1) плюс точное и регулярное определение теплотворной способности вашего топлива.

1. Угольные питатели важны. Часто игнорируемые, пока что-то не сломается, неточные устройства подачи угля могут затруднить определение тепловой мощности вашей установки. Предоставлено: Una Nowling

Метод потери тепла и три блока эффективности

Существенная проблема с использованием метода ввода / вывода для определения вашего теплового расхода заключается в том, что если ваша тепловая мощность меняется от одной ситуации к другой, вы не имеете ни малейшего представления о том, что привело к изменению.Был ли котел менее эффективен при сжигании топлива? Снижается ли КПД турбины из-за высокого противодавления конденсатора? Увеличилась ли служебная мощность станции? Поскольку метод ввода / вывода рассматривает электростанцию ​​как черный ящик, инженер должен полагаться на более точный метод определения тепловой мощности.

Метод потери тепла для определения вашего теплового расхода по существу разбивает электростанцию ​​на три подсистемы, в которых происходит процесс преобразования энергии:

■ Котел, в котором тепло топлива преобразуется в энергию пара.

■ Турбина, в которой тепло пара преобразуется в механическую энергию вращения.

■ Генератор, в котором энергия вращения преобразуется в общую и полезную электрическую энергию.

Метод тепловых потерь для расчета тепловыделения по существу рисует рамку вокруг каждой из этих подсистем и определяет эффективность каждого процесса преобразования энергии. Произведение всех этих значений эффективности преобразования приводит к общему нетто-коэффициенту тепловой энергии электростанции:

NPHR, BTU / кВт x ч = NTHR, BTU / кВт x ч / ((КПД котла,% / 100) x (Полезная мощность, кВт / Полная мощность, кВт))

[Ред.: Уравнение исправлено 21.12.15.]

Как видно из этого уравнения, чтобы уменьшить NPHR, нам необходимо увеличить КПД котла, снизить полезную тепловую мощность турбины или увеличить чистую выработку по сравнению с валовой выработкой.

КПД котла

Определение эффективности вашего котла — это эффективное определение всех видов неэффективности, возникающих в результате процесса сжигания топлива для создания энергии пара. Стандарты и испытательные организации, такие как Американское общество инженеров-механиков (ASME) и Deutsches Institut für Normung (DIN), имеют похожие, но разные показатели для расчета потерь эффективности, но с общей точки зрения их можно сгруппировать в следующие категории.

Явная потеря тепла. Явные потери тепла можно рассматривать как тепло, которое можно определить непосредственно с помощью термометра. Например, воздух для горения поступает в вашу электростанцию ​​в условиях окружающей среды, а дымовой газ выходит из холодного конца воздухонагревателя котла при некоторой повышенной температуре. Чем ближе выхлопной газ к температуре окружающей среды, тем меньше ощутимого тепла теряется в окружающую среду.

Другие ощутимые тепловые потери включают тепло, содержащееся в дне, летучую золу, удаляемую из котла, а также колчедан и горную породу, которые выбрасываются из угольных мельниц.Количество избыточного воздуха, используемого для сжигания, оказывает значительное влияние на эти потери, поскольку каждый фунт избыточного воздуха, проходящего через котел, несет с собой потенциально полезную энергию.

Скрытая потеря тепла. Скрытые тепловые потери нелегко обнаружить термометром и представляют собой потери энергии, связанные с фазовым переходом воды. Когда топливо сжигается в котле, не только вся влага, содержащаяся в топливе, испаряется в пар, но и весь водород, содержащийся в топливе, сгорает с образованием воды, которая также испаряется в пар.Если температура выхлопных газов, выходящих из воздухонагревателя котла, ниже точки кипения воды, содержащейся в газе, вся скрытая теплота парообразования будет выходить из котла и теряться в окружающей среде.

Поскольку скрытые тепловые потери в основном связаны с топливом, их нельзя легко изменить без переключения или сушки топлива. (См. «Повышение эффективности установки и сокращение выбросов CO 2 при сжигании углей с высокой влажностью» в выпуске за ноябрь 2014 г.)

Несгоревшие горючие потери. Несгоревшие горючие потери — это потери эффективности из-за неполного сгорания топлива в котле. Это в первую очередь измеряется в форме углеродного остатка в золе, но также включает образование монооксида углерода (CO). На эти потери обычно влияют как свойства топлива (летучесть топлива), так и методы эксплуатации (избыточный уровень воздуха, тонкость топлива и т. Д.). Важно отметить, что несгоревшие горючие потери — это не то же самое, что и потери при возгорании (LOI), поскольку несгоревшие горючие потери представляют собой потери энергии, тогда как LOI рассчитывается на основе массы золы.

Радиационные и конвекционные потери. Коммунальные котлы — это огромные системы оборудования с многочисленными отверстиями для труб и инструментов и очень большой площадью поверхности, подверженной воздействию окружающей среды. В результате, независимо от того, насколько хорошо спроектирована изоляция и насколько старательный персонал предприятия устраняет утечки воздуха, энергия все равно будет теряться из-за излучения и конвекции.

Маржа и неизвестные убытки. Из-за большого размера и сложности котла часто нецелесообразно измерять все возможные источники потерь энергии от электростанции.В результате для оценки этих убытков обычно используется значение «маржи» или «неизвестного убытка». Типичные значения варьируются от 0,5% до 2,0%.

Если принять во внимание все эти потери КПД, типичный котел для коммунальных служб может использовать топливную энергию с КПД от 83% до 91%.

Повышение КПД котла. Явные тепловые потери могут быть уменьшены путем установки улучшенных средств управления горением, позволяющих точно регулировать уровень избыточного воздуха в операторах печи, чтобы снизить уровень избыточного кислорода в печи.Предварительный нагрев воздуха для горения отходящим теплом завода также повысит эффективность, и некоторые предприятия рассматривают схемы использования солнечных тепловых коллекторов в качестве подогревателей воздуха в светлое время суток.

Поскольку скрытые тепловые потери сильно зависят от качества топлива, а текущие конструкции котлов не позволяют использовать конденсационные воздухонагреватели, за исключением перехода на сушильное топливо, мало что можно сделать для снижения скрытых тепловых потерь.

Несгоревшие горючие потери могут быть уменьшены за счет улучшенной настройки котла и горелки, при этом некоторые установки могут повысить чистую эффективность более чем на 1% в результате незначительной настройки или капитальных вложений.

КПД турбины

Эффективность вашей турбины — это, по сути, эффективность турбины по преобразованию пара из котла в полезную энергию вращения. Упрощенный способ просмотра чистой тепловой мощности турбины (NTHR) состоит в том, чтобы суммировать увеличение энтальпии питательной воды и холодного вторичного пара через границу котла и разделить это на общую выработку электроэнергии.

Определение КПД турбины. Как и в случае с установкой в ​​целом, тепловая мощность турбинного цикла может быть выражена «брутто» или «нетто».Здесь терминология становится немного сложной, поскольку при расчетах валовой и чистой эффективности используется валовая мощность генератора. Однако, если на электростанции есть питающий насос электрического котла, тогда из чистого расхода тепла турбины также должна вычитаться мощность, потребляемая питательным насосом; в противном случае такое энергопотребление может исказить значение NTHR и оказаться чрезмерно эффективным. В результате наше упрощенное уравнение NTHR для одного цикла повторного нагрева выглядит следующим образом:

Где:

NTHR = полезный тепловой поток турбины, БТЕ / кВт · ч

H MSOUT = энтальпия основного пара, выходящего из оболочки котла, БТЕ / час

H FWIN = энтальпия питательной воды, поступающей в кожух котла, БТЕ / час

H HRH = энтальпия горячего пара повторного нагрева, выходящего из оболочки котла, БТЕ / час

H CRH = энтальпия холодного вторичного пара, поступающего в кожух котла, БТЕ / час

Мощность BFP = потребляемая мощность питательного насоса котла, кВт

Повышение эффективности цикла турбины. В идеальных условиях система сверхсверхкритического турбинного цикла может преобразовывать пар в энергию вращения с КПД 54% или выше, сверхкритические турбинные циклы могут достигать КПД 50%, а подкритические циклы турбины могут достигать КПД 46%. Однако система турбинного цикла вашей электростанции по крайней мере такая же сложная, как и ваша система котла, и есть множество мест, где можно потерять эффективность.

Утечка из наконечника ковша и набивки может составлять 40% от общей потери КПД турбины.Шероховатость сопла, эрозия и ремонт могут составлять 35% потери эффективности, отложения на турбине — 15%, а эрозия и шероховатость ковша — 10%. Проблемы в этих областях могут привести к значительным потерям эффективности: известно, что отложения в турбине вызывают почти 5% -ную потерю эффективности, а утечки из корпуса турбины — вплоть до 3% -ной потери эффективности.

Очень важно знать, что турбина является частью гораздо более крупной пароводяной системы, которая включает в себя конденсаторы, градирни, нагреватели питательной воды, деаэраторы, насосы и трубопроводы, каждая из которых имеет свои собственные потери эффективности.Например, увеличение противодавления в конденсаторе из-за грязных труб на 0,4 дюйма ртутного столба может снизить КПД цикла турбины на 0,5%. Единая разделительная перегородка в нагревателе питательной воды может снизить КПД турбинного цикла на 0,4%. Утечки в линиях отбора и заедание сливных клапанов могут снизить эффективность нагревателя питательной воды, что приведет к чистым потерям цикла более чем на 0,5%.

Усовершенствования лопаток турбины доступны для большинства паровых турбин, с возможностью улучшения до 2% при полной замене турбины низкого давления.Даже возобновляемые источники энергии могут помочь в улучшении тепловыделения, поскольку некоторые производители исследовали перспективу нагрева питательной воды солнечными батареями для повышения эффективности цикла своей турбины, а в некоторых конструкциях удалось достичь повышения пикового КПД более чем на 5%. Конечно, со всеми обновлениями вы должны изучить экономику (см. Врезку).

Имеет ли это экономический смысл?

Очень хорошо предлагать многочисленные капитальные и производственные модернизации на вашей электростанции.Но какие улучшения имеют наибольший экономический смысл для владельца электростанции? Некоторые улучшения завода могут быть метафорическими простыми задачами, в то время как другие улучшения могут потребовать фактора внешнего рынка, такого как налог на выбросы углерода, чтобы стать рентабельными. В таблице 1 представлен очень общий рейтинг улучшений, которые могут быть внесены в электростанции, работающие на пылеугольном топливе, диапазон потенциальных улучшений теплового режима и их относительные периоды экономической окупаемости. Обратите внимание, что этот список не включает многие конкретные элементы обслуживания, которые могут быть найдены на некоторых электростанциях и которые могут обеспечить значительное повышение эффективности при ремонте или модернизации.

Таблица 1. Множество вариантов на выбор. У каждой электростанции есть уникальные возможности и задачи для повышения тепловой мощности. Значения, показанные в этой таблице, являются лишь общими, основанными на исследованиях по энергоэффективности. Источник: Уна Ноулинг

Электрический КПД

Что касается системы генераторов, нас не так беспокоит эффективность преобразования энергии вращения в электрическую, поскольку современные генераторы имеют тенденцию преобразовывать два типа энергии с эффективностью 98% или выше.Однако значительная часть неэффективности, наблюдаемой в этом блоке, связана с обслуживанием станции или потреблением вспомогательной энергии самой электростанции.

Поскольку на электростанции требуются самые большие энергопотребляющие системы, мало что можно получить за счет устранения или отключения основных систем оборудования. Даже отказ от дополнительного потребления электроэнергии может иметь непредвиденные последствия. В один очень жаркий июнь я работал на электростанции в ее инженерном офисе, когда одному молодому человеку из корпоративного офиса пришла в голову умная идея выключить свет в офисе, включить кондиционер до 85F и отключить кофеварки, воду. фонтаны и автоматы с газировкой.Причина заключалась в том, что цены на электроэнергию превышали 1000 долларов за МВтч, поэтому он хотел иметь возможность продавать все возможные ватты. Чего джентльмен не учел, так это возможных последствий помещения группы заводских инженеров в темный, жаркий офис без холодных напитков или кофе. Зрелище было не из приятных.

Поскольку более 80% электроэнергии на электростанции используется посредством электродвигателей, они должны быть в центре внимания при повышении вашего электрического КПД. Только главные вентиляторы электростанции (первичный воздух, наддув и надувная тяга) могут потреблять от 2% до 3% валовой выработки электростанции.Одним из вариантов снижения энергопотребления вентилятора является использование частотно-регулируемых приводов переменного тока, особенно если установка имеет тенденцию работать при более низких нагрузках в течение продолжительных периодов времени. Переключение всех основных вентиляторов предприятия с обычных на частотно-регулируемые приводы может улучшить NPHR более чем на 0,5%.

На утечку воздуха и газа может приходиться до 25% потребляемой мощности вентиляторами, поэтому уменьшение утечки в воздухонагревателях и воздуховодах может привести к значительной экономии энергии вентиляторами. Уменьшение избытка воздуха в котле также снизит нагрузку на вентилятор.Программы оптимизации электрофильтров могут как повысить электрическую эффективность, так и улучшить улавливание твердых частиц.

Улучшение творческого тепловыделения

Другие возможности, которые могут не повлиять на тепловую мощность, на самом деле могут привести к значительному повышению эффективности.

Например, на одной электростанции мне рассказали об улучшенной конструкции бункера-регенератора на угольном складе, которая сократила время заполнения угольных бункеров на 2 часа в день. Приблизительный анализ затрат и выгод показал, что новая конструкция бункера для предотвращения налипания влажного угля позволяет сэкономить 1700 долларов США в год в течение пятилетнего периода за счет сокращения времени работы системы транспортировки угля.Хотя это звучит как маленькая картошка, образно говоря, это также значительно снизило усилия оператора угольной свалки во время процесса утилизации, что привело к улучшению человеческого фактора.

Персонал другой электростанции с помощью анализа воздействия на качество топлива определил, что единственное препятствие, мешающее им перейти на уголь с более высоким содержанием тепла и более низким содержанием влаги, — это модернизация установки для обдувки сажи. Чистая модернизация стоимостью 1,3 миллиона долларов привела к чистому увеличению тепловыделения более чем на 2% за счет использования более эффективных, но более шлакованных углей, а также одновременного преимущества предотвращения катастрофического выпадения шлака из-за недостаточного количества шлаков. покрытие сажей.Срок окупаемости данной инвестиции был определен от 18 до 24 месяцев (Рисунок 2).

2. Мы делали это раньше — мы можем сделать это снова. Генераторы, которым необходимо соответствовать стандартам выбросов углерода, должны подходить к проблеме со всех сторон уравнения теплового потока и работать со своим опытным персоналом, чтобы найти новые и инновационные способы максимально эффективно использовать сжигаемый уголь. Источник: Библиотека Конгресса США (1919 г.)

Последние мысли

Я никогда не был на электростанции, на которой нельзя было бы добиться значительного повышения энергоэффективности.Судя по моему многолетнему опыту, инженеры и операторы электростанций — это умные, целеустремленные люди, которые гордятся своей работой и своим предприятием и понимают, что необходимо сделать для повышения эффективности электростанции. К сожалению, столетие относительно дешевого угля и сосредоточение внимания на контроле за выбросами на заводах отвлекло внимание от поддержания и повышения теплоотдачи электростанций.

Хотя некоторые представители отрасли рассматривают предлагаемые стандарты EPA по выбросам углерода как невыполнимую задачу, многие инженеры и операторы предприятий, с которыми я разговаривал, были оптимистичны в отношении того, что им могут быть предоставлены средства и инструменты, чтобы снова начать выигрывать эти награды за теплоотдачу. .■

Уна Ноулинг, PE ([email protected]) — адъюнкт-профессор машиностроения в Университете Миссури в Канзас-Сити, ведущий специалист по технологиям топлива в Black & Veatch и редактор POWER.

Расчет тепловой мощности и КПД электростанции

Тепловая мощность (HR) = Тепловая нагрузка / Выработка электроэнергии =

ккал / кВт · ч.

Общая тепловая нагрузка:

В химическая энергия, доступная в топливе (уголь, биомасса, нефть, газ и т. д.) превращается в тепловую энергию в котлах, этот процесс называется окислением.В тепло, имеющееся в топливе, измеряется в единицах Ккал / кг, КДж / кг или БТЕ. Часть этого топлива используется в качестве полезного тепла, а остальная часть теряется в виде сухих дымовых газов. потери, потери влаги, несгоревшие потери, радиационные / конвекционные потери и т. д., исходя из КПД котла, эта тепловая энергия из топлива утилизируется, обычно использование тепла топлива составляет от 60 до 90%.

Этот тепло, выделяемое в котлах из-за окисления топлива, используется для выработки высоких давление и температура пара. Образовавшийся таким образом пар подается в пар. Турбина, где эта тепловая энергия, также называемая тепловой энергией, преобразуется в Затем кинетическая энергия превращается в механическую энергию в паровой турбине и, наконец, в механическую энергию. энергия в электрическую энергию в генераторе.

Так общая тепловая энергия электростанции = химическая энергия + тепловая энергия + кинетическая энергия энергия + механическая энергия

Выход = Электрическая мощность

кВтч

Тепло коэффициент = Поглощение / выработка электроэнергии

КПД:

Эффективность это не что иное, как отношение проделанной полезной работы к выделенному теплу. Этот означает, что трение и другие потери вычитаются из работы, выполняемой термодинамические циклы.

В КПД котла = тепло от котла / подвод тепла к котлу

Нагревать мощность — Тепловая энергия в паре, а потребляемое тепло — теплотворная способность, присутствующая в топливо

В случае турбины, КПД = 860 X 100 / Тепловая мощность турбины

Кейс-1: Тепловая мощность Брутто ТЭЦ

В тепловые электростанции вся тепловая энергия вырабатывается из пара генераторы / котлы используются только для выработки электроэнергии.

Пример: A ТЭЦ мощностью 100 МВт работает на 100% ПНФ, который потребляет около 55 млн тонн. угля, имеющего ГТС 4500 ккал / кг в час, затем рассчитайте валовое тепловое скорость завода

Мы иметь,

Валовой тепловая мощность станции = Подвод тепла к установке / Выработка электроэнергии = Израсходованное топливо (MT) X GCV (ккал / кг) топлива / Выработка электроэнергии / МВтч = (55 Х 4500) / 100

= 2475 ккал /

кВт · ч Выше проблему можно решить, переведя расход топлива в кг / час и мощность поколение в

КВтч, тогда тепловая мощность может быть рассчитана как,

= 55 X 1000 X 4500 / (100 X 1000) = 2475 ккал / кВт · ч

Станция тепловая мощность ТЭЦ

В тепловая энергия когенерационной установки используется для технологических нужд и электроэнергии поколение.В когенерационной установке есть различные источники ввода тепла и выход на станцию ​​и со станции, где как на ТЭЦ Источники ввода и вывода тепла всего один.

Нагревать ввод в станцию ​​в виде тепловой энергии, присутствующей в топливе, сделать воды и возвратного конденсата из технологического процесса.

Нагревать выход со станции в виде тепловой энергии в технологическом паре и производство электроэнергии

Когенерация тепловая мощность = (Израсходованное топливо (т) X ВТС топлива (ккал / кг + количество возвратный конденсат из процесса (MT) X его энтальпия (ккал / кг) + количество подпиточная вода (MT) x ее энтальпия ккал / кг) — (Количество технологического пара (MT) X ее энтальпия в ккал / кг) / Выработка электроэнергии в МВт

Пример: Когенерационная установка, основанная на процессах, имеет следующие данные по тематическому исследованию на целый день.Рассчитать тепловую мощность станции

Общий потребление угля Q1
Валовой теплотворная способность угля G
Стим подается на завод-технологический процесс-1 при 2 кг / см2г и 135 0C Q2
Стим отдано цеху-2 при 7 кг / см2г и 175 0C Q3
Возвращение конденсат технологической установки-1 при температуре 120 0С Q4
Возвращение конденсат технологической установки-2 при температуре 85 0С Q5
DM подпитка котла при температуре 25 0С Q6

Из вышеперечисленные данные имеем,

Энтальпия пара, отданного в технологическую установку-1 h3 = 666.71 ккал / кг …… .. См. Паровую таблицу

Энтальпия пара, подаваемого в технологическую установку-2 h4 = 651,68 ккал / кг

Энтальпия обратного конденсата технологического 1 h5 = 120,3 ккал / кг

Энтальпия обратного конденсата технологического-2 h5 = 85 ккал / кг

Энтальпия подпиточной воды h6 = 25 ккал / кг

У нас есть тепловая мощность станции = ((Расход топлива X GCV + Теплосодержание в обратном конденсате + Теплосодержание подпиточной воды-Сумма теплосодержания технологического пара)) / Энергетика.

знак равно Q1X G + Q4 X h5 + Q5X h5 + Q6X h6) — (Q2 X h3 + Q3 X h4)) / Выработка электроэнергии

= ((875 5100 х + 3350 х 120.3 + 135 x 85 +490 x 25) — (3720 x 666,71 + 192 x 651,68)) / 977


Тепловая мощность и КПД турбины:

Корпус-I: Тепловая мощность турбины ТЭЦ при гарантии работоспособности (PG) тест

Турбина Тепловая скорость (THR) = Расход пара X (Энтальпия пара-Энтальпия питательной воды) / Мощность поколение

Кейс-II: Тепловая мощность турбины ТЭЦ при нормальных условиях эксплуатации и техобслуживания

Турбина Тепловой расход (THR) = (Расход пара X Энтальпия расхода пара-питательной воды X Энтальпия питательная вода) / Производство электроэнергии

Турбина эффективность дается

Турбина КПД = 860 X 100 / Тепловая мощность турбины

Пример: Турбина мощностью 22 МВт имеет поток пара на входе 100 т / ч при давлении и температуре 110 кг / см2 и 535 ° C соответственно, затем рассчитайте тепловую мощность турбины в как тестовый пример PG, так и состояние O&M, а также рассчитать КПД турбины в в обоих случаях.Учтите, что температура питательной воды на входе в экономайзер составляет 195 град. c & расход 102 т / ч.

Решение:

Турбина Энтальпия пара на входе при рабочем давлении и температуре h2 = 824 ккал / кг

Кормить энтальпия воды = h3 = 198,15 ккал / кг

Стим расход = 100 т / ч

Власть генерация = 22 МВт

Турбина тепловая мощность тепловой электростанции при проведении гарантийных испытаний (PG)

Турбина Тепловая нагрузка (THR) = (100 X (824-198.15) / 22) = 2844,77 ккал /

кВт · ч

Турбина КПД = (860 X 100) / 2844,77 = 30,23%

Турбина тепловая мощность тепловой электростанции при нормальных условиях эксплуатации и техобслуживания

Турбина Тепловая нагрузка (THR) = (100 X 824-102 X 198,15) / 22 = 2826,25 ккал / кг

Турбина КПД = (860 X 100) / 2826,25 = 30,42%

Кейс-III: Когенерация Тепловая мощность турбины

В случае Когенератора, Тепловая мощность турбины рассчитывается с учетом вытяжек и получен возвратный конденсат.

Формула-1

Co-gen-THR = ((Расход пара на входе в турбину X его энтальпия) — (Расход технологического пара X энтальпия Расход отработанного пара X Энтальпия)) Выработка электроэнергии

Формула-2

Co-gen-THR = ((Расход пара на входе в турбину X его энтальпия + Расход возвратного технологического конденсата X его энтальпия + поток подпиточной воды X его энтальпия) — (поток технологического пара X Энтальпия + Расход питательной воды X Энтальпия)) Выработка электроэнергии

Пример: 21 Конденсаторно-отборная турбина МВт имеет расход пара на входе 120 т / ч при 88 кг / см2г. давление и температура 520 ° C, он имеет два отжима, сначала при 16 кг / см2г. давление и температура 280 ° C при расходе 25 т / ч и второй при 2.5 кг / см2г давление и температура 150 0C при расходе 75 т / ч. Остающийся пар идет в конденсатора при давлении выхлопа 0,09 кг / см2а. Рассчитайте тепловую мощность турбины и тепловой КПД с использованием обеих формул. Считайте, что пар, подаваемый на процесс, равен На 10 т / час меньше, чем каждый отбор, возвратный конденсат из процесса составляет 70 Т / ч при температуре 90 ° C, расход питательной воды 122 т / ч при температуре 195 ° C и поток подпиточной воды 13 т / ч при температуре 28 град.

Данный что,

Власть генерирующая мощность турбины = 21 МВтч

Q1 = 120 т / ч

Энтальпия h2 при 88 кг / см2g и 5200C = 820.66 ккал / кг

Q2 = 25 TPH

h3 в 16 кг / см2г и 2800C = 715,88 ккал / кг

Q3 = 75 TPH

h4 на 2,5 кг / см2г и 1500C = 658,40 ккал / кг

Конденсатор расход пара Q4 = Q1-Q2-Q3 = 120-25-75 = 20 т / ч

h5 на давление выхлопа = 44,06 ккал / кг

Формула-1

Коген-Турбина тепловой поток (THR) = (Тепло, подаваемое в турбину — Сумма отвода и отвода тепло) / Производство электроэнергии = ((Q1 X h2) — (Q2 X h3 + Q3 X h4). + Q4 X h5)) / Производство электроэнергии = ((120 Х 820.66) — (25 Х 715,88 +75 Х 658,40 + 20 Х 44,06)) / 21 = 1443,85 ккал / кВт · ч Турбина тепловой КПД = (860 X 100) / Тепловая мощность турбины = (860 х100) / 1443,85 = 59,56%

Co-gen-THR = ((Расход пара на входе в турбину X его энтальпия + Расход возвратного технологического конденсата X его энтальпия + поток подпиточной воды X его энтальпия) — (поток технологического пара X Энтальпия + Расход питательной воды X Энтальпия)) Выработка электроэнергии

THR = ((120 Х 820.66 +90 X 90 +13 x 28) — (15 X 715,88 + 65 X 658,40 + 120 X 198,15)) / 21

THR = 1495,73 ккал /

кВт · ч Турбина тепловой КПД = (860 X 100) / Тепловая мощность турбины = (860 x100) / 1495,73 = 57,49%

Методы расчета показателей работы парового котла в различных условиях эксплуатации с использованием вычислительного термодинамического моделирования

https: // doi.org / 10.1016 / j.energy.2020.117221Получить права и контент

Основные моменты

Приведена методика расчета производительности пылеугольного котла.

Выполнено моделирование работы котла с использованием разработанной термодинамической модели.

Проанализирована работа парового котла в различных условиях эксплуатации.

Был рассчитан энергетический и эксергетический КПД котла.

Расчет КПД котла проводился при разной нагрузке котла и для разных видов угля.

Реферат

В статье представлены результаты анализа пылевидных угольных паровых котлов при различных условиях эксплуатации. Для исследования эффективности анализируемого парового котла был проведен энергетический и эксергетический анализ, а также определены основные режимы работы дымовых газов — воздуха и водяного пара.Для расчета энергоэффективности котла применялся косвенный метод и расчет индивидуальных потерь котла. Термодинамическая модель была разработана для моделирования работы котла при частичной загрузке котла. Точность результатов модели была проверена при трех различных частичных нагрузках. Термодинамическая модель была создана с использованием программного обеспечения Ebsilon Professional и 0-мерного термодинамического моделирования. Результаты по форме и распределению температуры пара на выходе всех поверхностей нагрева подтверждены имеющимися данными измерений котла.Относительная погрешность расчета температуры пара не превышает 4,5%. Разработанная модель позволяет проводить расчеты для переменных входных условий с целью определения основных параметров работы котла и общего КПД котла. Представленные методы расчета были применены для выявления изменения КПД котла и основных параметров котла при работе с различными частичными нагрузками и при сжигании различных видов угля. Различные условия эксплуатации оказывают большое влияние на производительность котла.Энергетический и эксергетический анализ рабочих параметров котла был использован для оценки общего КПД котла. Результаты были представлены в виде общего КПД котла и потерь котла в зависимости от нагрузки котла и теплотворной способности топлива.

Ключевые слова

Термодинамический анализ

Паровой котел

Гибкость

Численное моделирование

Энергоэффективность котла

Энергетический анализ

Эксергетический анализ

Рекомендуемые статьиЦитирующие статьи (0)

© 2020 Авторы.Опубликовано Elsevier Ltd.

Рекомендуемые статьи

Цитирующие статьи

Как рассчитать утилизацию отходящего тепла

🔊 Слушайте пост

Промышленность теперь живет мантрой поиска эффективного использования энергии. Компании с процессами, требующими высокого потребления энергии, должны стремиться к повышению энергоэффективности и минимизации отходов. Промышленные предприятия все чаще рассматривают методы рекуперации тепла как средство повышения энергоэффективности и устойчивости своего бизнеса.

Лайонел Мейси, основатель и технический директор компании ThermTech Ltd, британского специалиста по системам рекуперации отработанного тепла, охлаждения и очистки газа, дает представление о расчетах и ​​понимании отработанного тепла и подчеркивает преимущества, на которые компании могут рассчитывать при реализации отвода отработанного тепла. система.

____________________________________________________

Подпишитесь на журнал, информационный бюллетень и подкаст PII — бесплатно!

Присоединяйтесь к 25 000 читателей со всего мира!

Подписаться

____________________________________________________

Существенное снижение затрат на энергию, используемую для нагрева воды в паровом котле, может быть достигнуто за счет применения специально разработанной системы теплообмена газ-вода.Предназначен и установлен вокруг выхода дымохода существующего парового котла, отработанный газ заменяется и используется для нагрева воды.

Нагретая вода добавляется к входящей водопроводной воде, питающей котел. В результате повышение температуры воды на входе снижает энергию котла, необходимую для производства пара.

Почему важна рекуперация тепла

Энергоэффективность — постоянная проблема для промышленности. Принятая во всем мире и признанная многими как требование, передовая деловая практика диктует необходимость поиска способов повышения операционной эффективности.

В краткосрочной перспективе выгода от этого снижает счета за топливо и, следовательно, эксплуатационные расходы; в долгосрочной перспективе сокращаются глобальные выбросы углекислого газа.

Большинство промышленных процессов требуют энергии для работы, однако только часть потребляемой энергии используется для каждого процесса. Остальная часть неиспользованной энергии выбрасывается в окружающую среду, обычно в виде тепла, либо в газовой, либо в жидкой форме.

Большую часть этой энергии можно улавливать за счет рекуперации отработанного тепла.Эта энергия может стать источником энергии для трех основных приложений; тепловое отопление, производство электроэнергии и охлаждение.

Тепло либо повторно применяется к тому же процессу, для которого оно было первоначально произведено, либо используется для другого процесса на предприятии.

Расчет потока отходящего тепла

Зная общий расход тепла от потока отходов, можно определить потенциальное значение этого тепла. Следовательно, можно рассчитать стоимость капитального проекта и принять решение, имеет ли проект экономический смысл.Следующая формула определяет, доступен ли достаточный объем для рекуперации отработанного тепла.

Q = S V ρ Cp ΔT

S = Площадь поперечного сечения (м2) сливной трубы / воздуховода
V = Скорость потока (м / сек)
ρ = Плотность среды (кг / м3)
Cp = удельная теплоемкость среды (кДж / кг. ° C)
ΔT = разница температур (° C)

‘Q’ из приведенного выше расчета — это теоретический максимальный расход отходящего тепла, которое в идеальной системе доступно для рекуперации, однако не все это отработанное тепло будет рекуперироваться.

Для расчета оптимального значения «Q» требуются дополнительные сведения о текущей установке, например: точные температуры воды или газа на входе и выходе и расположение технологических трубопроводов источника отходящего тепла по отношению к возможному месту установки оборудования для утилизации отходящего тепла.

Преобразование отработанного тепла в эффективный тип носителя для хранения энергии, такой как вода или теплоноситель, при первой же возможности снизит тепловые потери и позволит эффективно перемещать отработанную энергию от ее источника туда, где она будет использоваться.

В большинстве случаев отходящее тепло будет в виде газа, который является неэффективным накопителем энергии из-за быстрых потерь энергии. Энергия в газовой форме имеет тепловую постоянную примерно в десять раз меньше, чем у жидкости, в результате чего энергия, поглощенная воздухом, рассеивается в десять раз быстрее. Следовательно, преобразовывая тепло газа в тепло жидкости, жидкость будет сохранять тепло в десять раз дольше.

Расчет стоимости проекта по потоку отходящего тепла

Деловая практика определяет, что рентабельность инвестиций является ключевым критерием принятия решения о том, будет ли проект реализован.Рекуперация тепла не является исключением, и хотя на первый взгляд вы можете рассматривать любое повторное использование потраченной энергии как бонус к «экологическим достижениям» компании и ее влиянию на окружающую среду, бизнес-правила действительно применяются.

Проект рекуперации тепла должен либо снизить затраты на электроэнергию при текущей производительности, либо стремиться к увеличению производительности при текущих уровнях затрат энергии.

Для определения рентабельности, которую получит компания, следует искать обоснование с точки зрения сравнения затрат на энергию существующего процесса до рекуперации тепла и расчетных затрат после установки системы рекуперации тепла.

Во всех проектах по утилизации отработанного тепла рекуперированное тепло будет вытеснять среду, такую ​​как пар, которая должна быть произведена с использованием другого оборудования, такого как бойлер.

Это оборудование также имеет соответствующий КПД, и тепловая мощность всегда меньше подводимой теплоты. Чтобы определить денежную стоимость потока отходящего тепла, используйте приведенные ниже уравнения.

Q = Расход отработанной энергии (кВт / час)
Значение = денежное выражение в час отработанного тепла
Q = максимальный расход отработанного тепла в кВт / час (рассчитано ранее)
Стоимость единицы = удельная стоимость потока отходов в «Валюте» за кВт

Стоимость единицы = Стоимость топлива / КПД

Удельная стоимость = m ‘Валюта’ за кВт
Стоимость топлива = стоимость топлива в валюте за кВт
КПД = КПД неиспользуемого оборудования
(Например, паровой котел @ 75% = КПД 0.75)

Достижение лучших результатов

Инжиниринг систем рекуперации тепла довольно сложен, и для разработки проекта компаниям следует обращаться к опытным и надежным партнерам. Прежде чем приступить к работе, важно определить рентабельность инвестиций и определить осуществимость проекта.

При правильном проектировании и применении звуковой инженерии можно реализовать систему рекуперации отходящего тепла, которая будет приносить пользу бизнесу в течение многих лет.

Как рассчитать потребляемую мощность электрокотла?

Как рассчитать потребляемую мощность электрокотла?
Электрокотел использует электрическую энергию в качестве источника энергии, использует электрическое сопротивление или электромагнитную индукцию для передачи тепла, и когда теплоноситель котла нагревает воду теплоносителя до определенного параметра (температуры, давления), внешний выход имеет номинальную рабочую среду (пар или горячая вода).Термомеханическое устройство, отвечающее потребностям промышленного производства, производства и жизни.


Потребляемая мощность — важный показатель для оценки общего качества газовых котлов. Это также один из стандартов, которые измеряют пользователи при покупке котлов. Эти данные повлияют на вводимые затраты на эксплуатацию котла; только стоимость контролируется ниже определенного лимита. Чтобы получить больше преимуществ.

Как рассчитать потребляемую мощность электрокотлов?
Мы можем вспомнить следующее предложение: Потребляемая мощность электрокотла мощностью 1 кВт, работающего при полной нагрузке в течение 1 часа, составляет 1 градус.Электрокотел на 1 тонну составляет около 0,7 МВт, что составляет 700 кВт. Энергопотребление электрокотла на 1 тонну, работающего на полной нагрузке в течение 1 часа, составляет 700 градусов.
Однако следует также отметить, что это ситуация с потребляемой мощностью электрического котла при полной нагрузке; По сравнению с другими типами котлов, электрический бойлер более интеллектуален и может регулировать пар или горячую воду в соответствии с различными потребностями пользователей. Температура бойлера изменится. В целом, средняя потребляемая мощность электрокотла составляет примерно 1 / 3-1 / 2 от полной нагрузки.

Как снизить энергопотребление электрокотлов?
Метод снижения энергопотребления электрических котлов в основном исходит из перечисленных выше четырех факторов, которые влияют на потребляемую мощность котла.
1. Обеспечение хорошего теплоизоляционного эффекта в котельной.
Теплоизоляционные работы в котельной выполняются надлежащим образом. Потери тепла во время работы электрокотла уменьшатся, а коэффициент использования тепловой энергии увеличится, так что больше мощности не потребуется для удовлетворения потребностей пользователей.
2. Изменения в отопительной среде
Для домов, требующих отопления, необходимо правильно обрабатывать высоту дома и конфигурацию обогревающих устройств, чтобы обеспечить оптимальную отопительную среду. Тепло, вырабатываемое при работе котла, напрямую доставляется в дом, что снижает потери тепла и снижает энергопотребление котла.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *