Схема реверсивного пускателя с электрической блокировкой: Схема реверсивного магнитного пускателя с описанием подключения

Содержание

Схема реверсивного магнитного пускателя с описанием подключения

Реверсивный магнитный пускатель применяется для пуска асинхронного электродвигателя  в двух направлениях вращения- в прямом и обратном. О технических характеристиках и о том, как работает магнитный пускатель рекомендую прочитать в нашей предыдущей статье.

Принцип работы

Реверсивная схема состоит из двух одинаковых пускателей. Один из которых при включении запускает электромотор в одну сторону, а второй- в обратную. По сути подключается также как и два одиночных. С той лишь разницей, что будет одна общая кнопка «стоп» и две пусковые  кнопки «Назад» и «Вперед». А также применяются дополнительно блокировки: электрическая и механическая, для того что бы избежать возникновения короткого замыкания или аварийной ситуации при одновременном включении двух пускателей.

Почему  возникнет КЗ? Для того что бы изменить вращение асинхронного электрического двигателя на противоположное, необходимо две фазы поменять местами.

Например, на первом пускателе фазы подключены по очередности «А»- «В» -«С», то на втором что бы поменять направление вращения, нужно подключить по очередности «С»- «В» -«А», или «В»- «А»- «С», либо «А» -«С»- «В». Заменой двух фаз и занимается второй пускатель в схеме. А значит при одновременном выключении двух произойдет межфазное короткое замыкание. Что бы этого избежать, при помощи постоянно замкнутых контактов при включении магнитного пускателя делается разрыв цепи управления второго или электрическая блокировка. Но есть и механическая. Суть ее в том, что при включении одного пускателя- второй при помощи механического устройства блокируется.

Если Вы никогда не подключали пускатели, рекомендую сразу собрать схему состоящую из одного, что бы понять принципы работы, потом гораздо легче будет собрать реверс. Незабываем установить тепловое реле на  фазы, отходящие к электродвигателю для его защиты . Рекомендую прочитать нашу статью «Схема подключения пускателя и теплореле«.

Можно поступить проще, купив в сборе в одном металлическом или пластиковом корпусе собранный реверсивный пускатель с кнопками. Вам останется только подключить провода электропитания и к тепловому реле- кабель на электромотор.

Схема реверсивного магнитного пускателя

Собрать схему несложно будет самостоятельно большинству людей. Единственное Вы должны учитывать, что механическую блокировку своими руками не сделать- необходимо приспособление заводского изготовления. В принципе достаточно будет и правильно собранной электрической блокировки.

Начнем рассматривать описание схемы  с силовой части. На автомат приходит три разноименные фазы. Желтая «А», зеленная «В» и красная «С». Далее они идут на силовые контакты двух пускателей с обозначением КМ1 и КМ2. С другой стороны делаются 3 перемычки между центральными зелеными фазами, и между желтой на первом и красной на втором, а также между красным на первом и на втором желтым.

Далее фазы идут на электродвигатель через тепловое реле, которое контролирует ток только в 2 фазах. В контроле третей нет необходимости, потому что все три фазы тесно взаимосвязаны между собой. Проще говоря, рост тока в одной  вызывает тоже самое в другой. Если ток потребляемый двигателем вырастет за безопасные пределы происходит размыкание цепи питания обоих катушек сразу.

Схема управления выполняет функцию включения-отключения силовых контактов КМ1 и КМ2. Она состоит из кнопок, блок контактов и катушки, которая при подаче на нее напряжения втягивает якорь, замыкающий контакты. При ее отключении  размыкаются  КМ1 или КМ2 под действием возвратной пружины.

Описываемая схема с катушкой на 380 Вольт, которая запитывается от 2 разных фаз. Если на катушке указано рабочее напряжение 220 Вольт, тогда для подключения используйте любую одну фазу и ноль.

В нашем случае одна зеленая фаза через контакт теплового реле идет напрямую на первые контакты обоих катушек.

Другая фаза на вторые контакты идет через общую кнопку «Стоп». И далее делаются перемычки на постоянно разомкнутые контакты кнопок «Вперед» и  «Назад». От туда же на соответствующие пускатели подключаются провода на разомкнутые контакты в выключенном состоянии- КМ 1.3 и КМ 2.3. А со второй стороны этих блок контактов проводами соответственно подключаются ко вторым контактам пусковых кнопок.

Но для того что бы была электрическая блокировка, необходимо провод от пусковых кнопок к катушке не сразу подключать, а через постоянно замкнутые контакты другого пускателя.

При включении постоянно разомкнутые смыкаются, а постоянно сомкнутые наоборот размыкаются. Раньше все блок контакты делались на боковой стороне пускателя. Сегодня же для постоянно разомкнутого используется четвертый рядом с 3 силовыми контактами. А для постоянно замкнутого используется специальная приставка сверху над силовыми. Пример на картинке.

Как работает схема

При нажатии кнопки «Вперед» срабатывает катушка и включаются силовые контакты. Одновременно с этим происходит шунтирование пусковой кнопки постоянно разомкнутыми контактами пускателя КМ 1.3, благодаря чему при отпускании кнопки питание на катушку поступает по шунтированию.

После включения первого пускателя размыкаются контакты КМ 1.2, что обрубает катушку К2. В результате при нажатии на кнопку «Назад» ничего не происходит.

Для того что бы включить двигатель в обратную сторону

надо нажать «Стоп» и обесточить К1. Все блок контакты вернуться в обратное положение, после этого можно включить мотор в обратном направлении. Аналогично при этом включается К2 и отключается блок контактами возможность включения катушки другого пускателя К1.

К2 включает силовые контакты КМ2, а К1- КМ1.

К кнопкам для подключения от пускателя необходимо проложить пяти жильный кабель.

Схема реверсивного пускателя с блокировкой на кнопках

Для подачи питания на двигатели или любые другие устройства используют контакторы или магнитные пускатели.

Устройства, предназначенные для частого включения и выключения питания. Схема подключения магнитного пускателя для однофазной и трехфазной сети и будет рассмотрена дальше.

Контакторы и пускатели — в чем разница

И контакторы и пускатели предназначены для замыкания/размыкания контактов в электрических цепях, обычно — силовых. Оба устройства собраны на основе электромагнита, работать могут в цепях постоянного и переменного тока разной мощности — от 10 В до 440 В постоянного тока и до 600 В переменного. Имеют:

  • некоторое количество рабочих (силовых) контактов, через которые подается напряжение на подключаемую нагрузку;
  • некоторое количество вспомогательных контактов — для организации сигнальных цепей.

Так в чем разница? Чем отличаются контакторы и пускатели. В первую очередь они отличаются степенью защиты. Контакторы имеют мощные дугогасительные камеры. Отсюда следуют два других отличия: из-за наличия дугогасителей контакторы имеют большой размер и вес, а также используются в цепях с большими токами. На малые токи — до 10 А — выпускают исключительно пускатели. Они, кстати, на большие токи не выпускаются.

Есть еще одна конструктивная особенность: пускатели выпускаются в пластиковом корпусе, у них наружу выведены только контактные площадки. Контакторы, в большинстве случаев, корпуса не имеют, потому должны устанавливаться в защитных корпусах или боксах, которые защитят от случайного прикосновения к токоведущим частям, а также от дождя и пыли.

Кроме того, есть некоторое отличие в назначении. Пускатели предназначены для запуска асинхронных трехфазных двигателей. Потому они имеют три пары силовых контактов — для подключения трех фаз, и одну вспомогательную, через которую продолжает поступать питание для работы двигателя после того, как кнопка «пуск» отпущена. Но так как подобный алгоритм работы подходит для многих устройств, то подключают через них самые разнообразные устройства — цепи освещения, различные устройства и приборы.

Видимо потому что «начинка» и функции обоих устройств почти не отличаются, во многих прайсах пускатели называются «малогабаритными контакторами».

Устройство и принцип работы

Чтобы лучше понимать схемы подключения магнитного пускателя, необходимо разобраться в его устройстве и принципе работы.

Основа пускателя — магнитопровод и катушка индуктивности. Магнитопровод состоит из двух частей — подвижной и неподвижной. Выполнены они в виде букв «Ш» установленные «ногами» друг к другу.

Нижняя часть закреплена на корпусе и является неподвижной, верхняя подпружинена и может свободно двигаться. В прорези нижней части магнитопровода устанавливается катушка. В зависимости от того, как намотана катушка, меняется номинал контактора. Есть катушки на 12 В, 24 В, 110 В, 220 В и 380 В. На верхней части магнитопровода есть две группы контактов — подвижные и неподвижные.

При отсутствии питания пружины отжимают верхнюю часть магнитопровода, контакты находятся в исходном состоянии. При появлении напряжения (нажали кнопку пуск, например) катушка генерирует электромагнитное поле, которое притягивает верхнюю часть сердечника. При этом контакты меняют свое положение (на фото картинка справа).

При пропадании напряжения электромагнитное поле тоже исчезает, пружины отжимают подвижную часть магнитопровода вверх, контакты возвращаются в исходное состояние. В этом и состоит принцип работы эклектромагнитного пускателя: при подаче напряжения контакты замыкаются, при пропадании — размыкаются. Подавать на контакты и подключать к ним можно любое напряжение — хоть постоянное, хоть переменное. Важно чтобы его параметры не были больше заявленных производителем.

Есть еще один нюанс: контакты пускателя могут быть двух типов: нормально замкнутыми и нормально разомкнутыми. Из названий следует их принцип работы. Нормально замкнутые контакты при срабатывании отключаются, нормально разомкнутые — замыкаются. Для подачи питания используется второй тип, он и есть наиболее распространенным.

Схемы подключения магнитного пускателя с катушкой на 220 В

Перед тем, как перейдем к схемам, разберемся с чем и как можно подключать эти устройства. Чаще всего, требуются две кнопки — «пуск» и «стоп». Они могут быть выполнены в отдельных корпусах, а может быть единый корпус. Это так называемый кнопочный пост.

С отдельными кнопками все понятно — у них есть по два контакта. На один подается питание, со второго оно уходит. В посте есть две группы контактов — по два на каждую кнопку: два на пуск, два на стоп, каждая группа со своей стороны. Также обычно имеется клемма для подключения заземления. Тоже ничего сложного.

Подключение пускателя с катушкой 220 В к сети

Собственно, вариантов подключения контакторов много, опишем несколько. Схема подключения магнитного пускателя к однофазной сети более простая, потому начнем с нее — будет проще разобраться дальше.

Питание, в данном случае 220 В, полается на выводы катушки, которые обозначены А1 и А2. Оба эти контакта находятся в верхней части корпуса (смотрите фото).

Если к этим контактам подключить шнур с вилкой (как на фото), устройство будет находится в работе после того, как вилку вставите в розетку. К силовым контактам L1, L2, L3 можно при этом подавать любое напряжение, а снимать его можно будет при срабатывании пускателя с контактов T1, T2 и T3 соответственно. Например, на входы L1 и L2 можно подать постоянное напряжение от аккумулятора, которое будет питать какое-то устройство, которое подключить надо будет к выходам T1 и T2.

При подключении однофазного питания к катушке неважно на какой вывод подавать ноль, а на какой — фазу. Можно провода перекинуть. Даже чаще всего на А2 подают фазу, так как для удобства этот контакт выведен еще на нижней стороне корпуса. И в некоторых случаях удобнее задействовать его, а «ноль» подключить к А1.

Но, как вы понимаете, такая схема подключения магнитного пускателя не особо удобна — можно и напрямую проводники от источника питания подать, встроив обычный рубильник. Но есть гораздо более интересные варианты. Например, подавать питание на катушку можно через реле времени или датчик освещенности, а к контактам подключить линию питания . В этом случае фаза заводится на контакт L1, а ноль можно взять, подключившись к соответствующему разъему выхода катушки (на фото выше это A2).

Схема с кнопками «пуск» и «стоп»

Магнитные пускатели чаще всего ставят для включения электродвигателя. Работать в таком режиме удобнее при наличии кнопок «пуск» и «стоп». Их последовательно включают в цепь подачи фазы на выход магнитной катушки. В этом случае схема выглядит как на рисунке ниже. Обратите внимание, что

Но при таком способе включения пускатель будет в работе только то время, пока будет удерживаться кнопка «пуск», а это не то, что требуется для длительной работы двигателя. Потому в схему добавляют так называемую цепь самоподхвата. Ее реализуют при помощи вспомогательных контактов на пускателе NO 13 и NO 14, которые подключаются параллельно с пусковой кнопкой.

В этом случае после возвращения кнопки ПУСК в исходное состояние, питание продолжает поступать через эти замкнутые контакты, так как магнит уже притянут. И питание поступает до тех пор, пока цепь не будет разорвана нажатием клавиши «стоп» или срабатыванием теплового реле, если такое есть в схеме.

Питание для двигателя или любой другой нагрузки (фаза от 220 В) подается на любой из контактов, обозначенных буквой L, а снимается с расположенного под ним контакта с маркировкой T.

Подробно показано в какой последовательности лучше подключать провода в следующем видео. Вся разница в том, что использованы не две отдельные кнопки, а кнопочный пост или кнопочная станция. Вместо вольтметра можно будет подключить двигатель, насос, освещение, любой прибор, который работает от сети 220 В.

Подключение асинхронного двигателя на 380 В через пускатель с катушкой на 220 В

Эта схема отличается только тем, что в ней подключаются к контактам L1, L2, L3 три фазы и также три фазы идут на нагрузку. На катушку пускателя — контакты A1 или A2 — заводится одна из фаз (чаще всего фаза С как менее нагруженная), второй контакт подсоединяется к нулевому проводу. Также устанавливается перемычка для поддержания электропитания катушки после отпускания кнопки ПУСК.

Как видите, схема практически не изменилась. Только в ней добавилось тепловое реле, которое защитит двигатель от перегрева. Порядок сборки — в следующем видео. Отличается только сборка контактной группы — подключаются все тир фазы.

Реверсивная схема подключения электродвигателя через пускатели

В некоторых случаях необходимо обеспечить вращение двигателя в обе стороны. Например, для работы лебедки, в некоторых других случаях. Изменение направления вращения происходят за счет переброса фаз — при подключении одного из пускателей две фазы надо поменять местами (например, фазы B и C). Схема состоит из двух одинаковых пускателей и кнопочного блока, который включает общую кнопку «Стоп» и две кнопки «Назад» и «Вперед».

Для повышения безопасности добавлено тепловое реле, через которое проходят две фазы, третья подается напрямую, так как защиты по двум более чем достаточно.

Пускатели могут быть с катушкой на 380 В или на 220 В (указано в характеристиках на крышке). В случае если это 220 В, на контакты катушки подается одна из фаз (любая), а на второй подается «ноль» со щитка. Если катушка на 380 В, на нее подаются две любые фазы.

Также обратите внимание, что провод от кнопки включения (вправо или влево) подается не сразу на катушку, а через постоянно замкнутые контакты другого пускателя. Рядом с катушкой пускателей изображены контакты KM1 и KM2. Таким образом реализуется электрическая блокировка, которая не дает одновременно подать питание на два контактора.

Так как нормально замкнутые контакты есть не во всех пускателях, можно их взять, установив дополнительный блок с контактами, который называют еще контактной приставкой. Эта приставка защелкивается в специальные держатели, ее контактные группы работают вместе с группами основного корпуса.

На следующем видео реализована схема подключения магнитного пускателя с реверсом на старом стенде с использованием старого оборудования, но общий порядок действий понятен.

Пускатель, схема «звезда-треугольник»

Сразу отсылаю читателя к статьям, которые предшествуют этой — , и . Очень рекомендую ознакомиться, перед дальнейшим чтением.

Скажу также, что на языке электриков «контактор» и «пускатель» очень переплетены, и я в статье буду говорить и так, и эдак.

Повторюсь, чтобы освежить в памяти. Магнитный пускатель — устройство, которое обязательно содержит контактор (как главный коммутационный элемент), а также может содержать:

  • мотор-автомат либо (как устройство рабочего или аварийного отключения),
  • (как устройство аварийного отключения при перегрузке и обрыве фазы),
  • кнопки «Пуск», «Стоп», различные переключатели режимов схемы,
  • схема управления (может содержать те же кнопки, а может — контроллер),
  • индикация работы и аварии.

Различные схемы подключения магнитных пускателей и их отличия рассмотрим ниже.

Типовая схема подключения двигателя через магнитный пускатель

Этой схеме подключения трехфазного двигателя надо уделить самое пристальное внимание. Она наиболее распространена во всем промышленном оборудовании, выпускавшемся примерно до 2000-х годов. А в новых китайских станках и другом простом оборудовании на 2-3 двигателя используется и по сей день.

Электрик, который её не знает — как хирург, не умеющий отличить артерию от вены; как юрист, не знающий 1-ю статью Конституции РФ; так танцор, не отличающий вальс от тектоника.

Чтобы всем было понятно, о чем идет речь — вот ссылка , там можно посмотреть и заказать по почте контактор. Не забудьте сообщить продавцу напряжение катушки!

Три фазы на двигатель идут в этой схеме не через автомат, а через пускатель. А включение/выключение пускателя осуществляется кнопками «Пуск » и «Стоп » , которые могут быть вынесены на пульт управления через 3 провода любой длины.

Пример такой схемы — в статье про , см. последнюю в статье схему, пускатель КМ0.

5. Схема подключения двигателя через пускатель с кнопками пуск стоп

Здесь питание цепи управления поступает с фазы L1 (провод ) через нормально замкнутую (НЗ) кнопку «Стоп» (провод ).

Часто в таких схемах пускатель не включается из-за того, что у этой кнопки «подгорают» контакты.

На схеме не показан защитный автомат цепи управления, он ставится последовательно с кнопкой «Стоп», номинал — несколько ампер.

Если теперь нажать на кнопку «Пуск», то цепь питания катушки электромагнитного пускателя КМ замкнется (провод ), его контакты замкнутся, и три фазы поступят на двигатель. Но в таких схемах кроме трёх «силовых» контактов у пускателя есть ещё один дополнительный контакт. Его называют «блокировочным» или «контактом самоподхвата».

Не путать с блокировкой в реверсивных схемах, см. ниже.

Контакты «Самоподхвата» физически расположены на одном креплении с силовыми контактами контактора, и работают одновременно.

Когда электромагнитный пускатель включается нажатием кнопки SB1 «Пуск», замыкается и контакт самоподхвата. А если он замкнулся, то даже если кнопка «Пуск» будет отжата, цепь питания катушки пускателя всё равно останется замкнутой. И двигатель продолжит работать, пока не будет нажата кнопка «Стоп».

Часто в таких схемах бывает, что пускатель не становится на «самоподхват». Дело в том самом четвертом контакте.

Схема подключения пускателя с тепловым реле

В схеме выше я упустил из виду тепловую защиту ради простоты схемы. На практике обязательно применяют (по крайней мере, это было принято до 2000 г. у нас и до 1990 г. у «них»)

6. Схема подключения пускателя с кнопками и тепловым реле

Как только ток двигателя возрастает выше установленного (из-за перегрузки, пропадания фазы) — контакты теплового реле RT1 размыкаются, и цепь питания катушки электромагнитного пускателя рвётся.

Таким образом, тепловое реле выполняет роль кнопки «Стоп», и стоит в той же цепи, последовательно. Где его поставить — не особо важно, можно на участке схемы L1 — 1, если это удобно в монтаже.

Однако, тепловое реле не спасает от КЗ на корпус и между фазами. Поэтому в таких схемах обязательно ставят защитный автомат, как показано на схеме 7:

7. Схема подключения пускателя с кнопками автоматом и тепловым реле. ПРАКТИЧЕСКАЯ СХЕМА

Внимание! Цепь управления (цепь, через которую питается катушка пускателя КМ) должна обязательно быть защищена автоматом с током не более 10А. Данный защитный автомат на схеме не показан. Спасибо внимательным читателям!)

Ток защитного автомата двигателя QF не надо подбирать так тщательно, как в схеме 3, поскольку с тепловой перегрузкой справится РТЛ. Достаточно, чтобы он .

Пример. Двигатель 1,5кВт, ток по каждой фазе 3А, ток теплового реле — 3,5 А. Провода питания двигателя можно взять 1,5 мм2. Ток они держат до 16А. И автомат вроде можно поставить на 16А? Однако, не надо действовать топорно. Лучше поставить что-то среднее — 6 или 10А.

На схеме QF — это мотор-автомат, или автомат защиты двигателя, как в схеме 4. Только изобразил я его по современному. В данном схема подключения пускателя «спрятана» в пунктире. Там находится контроллер, который всем управляет, и включает двигатель согласно программе, заложенной в нём.

При перегрузке двигателя мотор-автомат его отключает, и размыкает свой дополнительный (четвертый, сигнальный) контакт. Это необходимо только для того, чтобы «проинформировать» контроллер о аварии. Часто этот контакт просто-напросто входит в , и останавливает весь станок.

Схема подключения реверсивного магнитного пускателя

Фактически это два магнитных пускателя, объединенные электрически и механически, дальше подробнее.

Реверсивное управление электродвигателем

9. Схема подключения реверсивного магнитного пускателя на 220В с управлением от кнопок. ПРАКТИЧЕСКАЯ СХЕМА

Когда включен пускатель КМ1, это будет «правое» вращение. Когда включается КМ2 — первая и третья фазы меняются местами, движок будет крутиться «влево». Включение пускателей КМ1 и КМ2 реализуется разными кнопками «Пуск вперед » и «Пуск назад «, выключение — одной, общей кнопкой «Стоп » , как и в схемах без реверса.

Обратите пристальное внимание на треугольник между силовыми контактами КМ1 и КМ2. Он означает «защиту от дурака». Может произойти так, что по какой-то причине включатся оба пускателя сразу. Произойдёт короткое замыкание между фазами L1 и L3. Можно сказать, «Ну и что, у нас ведь есть мотор-автомат QF, он нас спасёт!» А если не спасёт? А пока он будет спасать, выгорят контакты пускателей!

Поэтому реверсивный пускатель должен иметь механическую защиту от одновременного включения двух его половин. А если он состоит из двух отдельных пускателей, между ними ставится специальный механический блокиратор.

Теперь посмотрите на контакты КМ2.4 и КМ1.4, стоящие в цепях питания катушек пускателей. Это — электрическая защита от того же дурака . Например, если включен КМ1, его НЗ контакт КМ1.4 разомкнут, и если наш дурак будет со всей своей дури жать на обе кнопки «Пуск» сразу, ничего не получится — двигатель будет слушаться той кнопки, которая нажата раньше.

Механическая и электрическая защиты в схеме подключения реверсивного пускателя должны быть всегда, они дополняют друг друга. Не ставить одну либо другую — моветон среди электриков .

Для реализации электрической блокировки одновременного включения и самоподхвата на каждый пускатель надо, кроме силовых, ещё один НЗ (блокировка) и НО (самоподхват). Но поскольку пятого контакта, как правило, в пускателях нет, приходится ставить доп. контакт. Например, для пускателя типа ПМЛ используют приставку ПКИ. А если, как в схеме 8, используется контроллер, самоподхват не нужен, и достаточно одного НЗ контакта на каждое направление вращения.

здесь .

Различие пускателей на 220В и 380В

Катушки магнитных пускателей для работы в сетях 380В могут быть на 220 и 380 Вольт без особых переделок схемы. Во всех схемах, приведённых в этой статье, электромагнитные пускатели имеют катушку на напряжение 220 В. Что же делать, если в руки попал пускатель не на 220В, а на 380В?

Всё очень просто — надо нижний (по схеме) вывод катушки пускателя на 380В подключить не к нулю (N), а к L2 или L3. Эта схема даже более предпочтительна, так как вся схема с пускателем на 380В может быть собрана вообще без нуля. Три фазы приходят, и три фазы уходят на двигатель, не считая управления.

Варианты нагрузок

К выходу магнитного пускателя можно подключить что душе угодно, не только двигателя, как в статье. Привожу примеры статей, в которых через пускатели включаются ТЭНы:

На этом всё, жду комментариев и обмена опытом!

Магнитный пускатель представляет собой комбинированное низковольтное электромеханическое устройство, предназначенное для пуска трехфазных (как правило) электродвигателей, для обеспечения их непрерывной работы, для безопасного отключения питания, а иногда и для защиты цепей электродвигателя и других подключенных цепей. Некоторые пускатели обладают функцией реверсирования двигателя, однако обо всем по порядку.

По сути, — это усовершенствованный, модифицированный, контактор, он более компактен, чем контактор в обычном представлении, легче по весу, и предназначен именно для работы с двигателями, то есть у пускателя прямое назначение уже, чем у контактора. Некоторые модели магнитных пускателей опционально оснащены тепловым реле аварийного отключения и защитой от обрыва фазы.

Для управления же пуском двигателя, путем замыкания контактных групп пускателя, служит кнопка или слаботочная контактная группа с катушкой на определенное (12, 24, 36 или 380 вольт) напряжение, а иногда — и то и другое.

В магнитном пускателе за коммутацию силовых контактных групп отвечает именно катушка на стальном сердечнике, к которой притягивается якорь, надавливающий на контактную группу, и таким образом замыкающий силовую цепь. При отключении питания катушки, возвратная пружина перемещает якорь в обратное положение — силовая цепь размыкается. Каждый контакт расположен в дугогасительной камере.

Реверсивные и нереверсивные магнитные пускатели

Принципиально магнитные пускатели бывают двух видов: нереверсивные и реверсивные. В реверсивном пускателе в одном корпусе присутствует два отдельных магнитных пускателя, имеющие электрическое соединение между собой, и закрепленные на общем основании, однако работать может, по выбору оператора, только один из двух этих пускателей — либо только первый, либо только второй.

Реверсивный пускатель включается через нормально-замкнутые блокировочные контакты, функция которых — исключить одновременное включение двух групп контактов — реверсивной и нереверсивной, чтобы не произошло межфазного замыкания. Некоторые модели реверсивных пускателей для обеспечения этой же функции имеют механическую защиту. И поскольку контакторы запускаются лишь поочередно, то и фазы питания можно переключать поочередно, чтобы выполнялась главная функция реверсивного пускателя — изменение направления вращения электродвигателя. Сменился порядок чередования фаз — изменилось и направление вращения ротора.

Возможности магнитных пускателей

Вообще, магнитные пускатели способны на многое. Так, для ограничения пускового тока трехфазного электродвигателя, его обмотки сначала могут коммутироваться «звездой», затем, когда двигатель вышел на номинальные обороты — переключиться на «треугольник». При этом пускатели могут быть открытыми и в корпусе, нереверсивными и реверсирными, с защитой от перегрузки и без защиты от перегрузки.

Каждый магнитный пускатель имеет как силовые, так и блокировочные контакты. Силовые непосредственно коммутируют цепь мощной нагрузки, в то время как блокировочные необходимы для управления работой силовых контактов. Силовые и блокировочные контакты бывают нормально-разомкнутыми или норамально-замкнутыми. На принципиальных схемах контакты изображаются в их нормальном состоянии.

Удобство применения реверсивных магнитных пускателей невозможно переоценить. Это и оперативное управление трехфазными асинхронными двигателями различных станков и насосов, это и управление вентиляцией, и даже управление запорной арматурой, вплоть до замков и вентилей отопительных систем. Особенно примечательна возможность удаленного управления магнитными пускателями, когда электронный блок дистанционного управления коммутирует слаботочные катушки пускателей подобно реле, а они, в свою очередь, безопасно коммутируют силовые цепи.

Для осуществления дистанционного включения оборудования используется магнитный пускатель или магнитный контактор. Как подключить магнитный пускатель по простой схеме и как подключить реверсивный пускатель мы и рассмотрим в этой статье.

Отличие между магнитным пускателем и магнитным контактором в том, какую мощность нагрузки могут коммутировать эти устройства.

Магнитный пускатель может быть «1», «2», «3», «4» или «5» величины. Например пускатель второй величины ПМЕ-211 выглядит так:

Названия пускателей расшифровываются следующим образом:

  • Первый знак П — Пускатель;
  • Второй знак М — Магнитный;
  • Третий знак Е, Л, У, А… — это тип или серия пускателя;
  • Четвертый цифровой знак — величина пускателя;
  • Пятый и последующие цифровые знаки — характеристики и разновидности пускателя.

Некоторые характеристики магнитных пускателей можно посмотреть в таблице

Отличия магнитного контактора от пускателя весьма условны. Контактор выполняет ту же роль, что и пускатель. Контактор производит аналогичные подключения, как и пускатель, только электропотребители имеют большую мощность, соответственно и размеры у контактора значительно больше, и контакты у контактора значительно мощней. Магнитный контактор имеет немного другой внешний вид:

Габариты контакторов зависят от его мощности. Контакты коммутирующего прибора необходимо разделять на силовые и управляющие. Пускатели и контакторы необходимо применять когда простые устройства коммутации не могут управлять большими токами. За счёт этого магнитный пускатель может размещаться в силовых шкафах рядом с силовым устройством, которые он подключает, а все его управляющие элементы в виде кнопок и кнопочных постов на включение могут размещаться в рабочих зонах пользователя.
На схеме пускатель и контактор обозначаются таким схематичным знаком:

где A1-A2 катушка электромагнита пускателя;

L1-T1 L2-T2 L3-T3 силовые контакты, к которым подключается силовое трехфазное напряжение (L1-L2-L3) и нагрузка (T1-T2-T3), в нашем случае электродвигатель;

13-14 контакты, блокирующие пусковую кнопку управления двигателем.

Данные устройства могут иметь катушки электромагнитов на напряжения 12 В, 24 В, 36 В, 127 В, 220 В, 380 В. Когда требуется повышенный уровень безопасности, есть возможность использовать электромагнитный пускатель с катушкой на 12 или 24 В, а напряжение цепи нагрузки может иметь 220 или 380 В.
Важно знать, что подключенные пускатели для подключения трехфазного двигателя способны обеспечить дополнительную безопасность при случайной потере напряжения в сетях. Это связано с тем, что при исчезновении тока в сети, напряжение на катушке пускателя пропадает и силовые контакты размыкаются. А когда напряжение возобновится, то в электрооборудовании будет отсутствовать напряжения до тех пор, покуда кнопку «Пуск» не активируют. Для подключения магнитного пускателя имеется несколько схем.

Стандартная схема коммутации магнитных пускателей

Это схема подключения пускателя требуется для того, чтобы произвести запуск двигателя через пускатель с помощью кнопки «Пуск» и обесточивания этого двигателя кнопкой «Стоп». Это проще понимается, если разделить схему на две части: силовую и цепь управления.
Силовую часть схемы следует запитать трёхфазным напряжением 380 В, имеющим фазы «A», «B», «C». Силовая часть состоит из трёхполюсного автоматического выключателя, силовых контактов магнитного пускателя «1L1-2T1», «3L2-4T2», «5L3-6L3», а также асинхронного трехфазного электродвигателя «M».

К управляющей цепи подаётся питание 220 вольт от фазы «A» и к нейтрали. К схеме управляющей цепи относится кнопка «Стоп» «SB1», «Пуск» «SB2», катушка «KM1» и вспомогательный контакт «13HO-14HO», что подключён параллельно контактам кнопки «Пуску». Когда автомат фаз «A», «B», «C», включается, ток проходит к контактам пускателя и остаётся на них. Питающая цепь управления (фаза «А») проходит через кнопку «Стоп» к 3 контакту кнопки «Пуск», и параллельно на вспомогательный контакт пускателя 13HO и остаётся там на контактах.
Если активируется кнопка «Пуск», к катушке приходит напряжение — фаза «А» с пускателя «KM1». Электромагнит пускателя срабатывает, контакты «1L1-2T1», «3L2-4T2», «5L3-6L3» замыкаются, после чего напряжение 380 вольт подается на двигатель по данной схеме подключения и начинает свою работу электродвигатель. При отпускании кнопки «Пуск» ток питания катушки пускателя течет через контакты 13HO-14HO, электромагнит не отпускает силовые контакты пускателя, двигатель продолжает работать. При нажатии кнопки «Стоп» цепь питания катушки пускателя обесточивается, электромагнит отпускает силовые контакты, напряжение на двигатель не подается, двигатель останавливается.

Как подключить трехфазный двигатель можно дополнительно посмотреть на видео:

Схема коммутации магнитных пускателей через кнопочный пост

Схема для подключения магнитного пускателя к электродвигателю через кнопочный пост, включает в себя непосредственно сам пост с кнопками «Пуск» и «Стоп», а также две пары замкнутых и разомкнутых контактов. Также сюда относится пускатель с катушкой 220 В.

Питание для кнопок берётся с силовых контактовых клемм пускателя, а напряжение доходит к кнопке «Стоп». После этого по перемычке оно проходит сквозь нормально замкнутый контакт на кнопку «Пуск». Когда активирована кнопка «Пуск», нормально разомкнутый контакт будет замкнут. Отключение происходит путём нажатия на кнопку «Стоп», тем самым размыкая ток от катушки и после действия возвратной пружины, пускатель отключится и устройство обесточится. После выполнения вышеуказанных действий электродвигатель будет отключён и готов к последующего пуска с кнопочного поста. В принципе работа схемы аналогична предыдущей схемы. Только в данной схеме нагрузка однофазная.

Реверсивная схема коммутации магнитных пускателей

Схема подключения реверсивного магнитного пускателя применяется тогда, когда требуется обеспечение вращение электродвигателя в обоих направлениях. К примеру, реверсивный пускатель устанавливается на лифт, грузоподъемный кран, сверлильный станок и прочие приборы требующие прямой и обратный ход.

Реверсивный пускатель состоит из двух обыкновенных пускателей собранных по специальной схеме. Выглядит он так:

Схема подключения реверсивного магнитного пускателя отличается от других схем тем, что имеет два совершенно одинаковых пускателя, которые работают попеременно. При подключении первого пускателя двигатель вращается в одну сторону, при подключении второго пускателя, двигатель вращается в противоположную сторону. Если вы внимательно посмотрите на схему, то заметите, что при переменном подключении пускателей, две фазы меняются местами. Это и заставляет трехфазный двигатель вращаться в разные стороны.

К имеющемуся в предыдущих схемах пускателю добавлены второй пускатель «КМ2» и дополнительные цепи управления вторым пускателем. Цепи управления состоят из кнопки «SB3», магнитного пускателя «КМ2», а также изменённой силовой частью подачи питания к электродвигателю. Кнопки при подключении реверсивного магнитного пускателя имеют названия «Вправо» «Влево», но могут иметь и другие названия, такие, как «Вверх», «Вниз». Чтобы защитить силовые цепи от короткого замыкания, до катушек добавлены два нормально замкнутых контакта «КМ1.2» и «КМ2.2», что взяты от дополнительных контактов на магнитных пускателях КМ1 и КМ2. Они не дают возможности включиться обоим пускателям одновременно. На выше приведенной схеме цепи управления и силовые цепи одного пускателя имеют один цвет, а другого пускателя — другой цвет, что облегчает понимание, как работает схема. Когда включается автоматический выключатель «QF1», фазы «A», «B», «C» идут к верхним силовым контактам пускателей «КМ1» и «КМ2», после чего ожидают там включения. Фаза «А» питает управляющие цепи от защитного автомата, проходит через «SF1» — контакты тепловой защиты и кнопку «Стоп» «SB1», переходит на контакты кнопок «SB2» и «SB3» и остается в ожидании нажатия на одну из этих кнопок. После нажатия пусковой кнопки ток движется через вспомогательный пусковой контакт «КМ1.2» или «КМ2.2» на катушку пускателей «КМ1» или «КМ2». После этого один из реверсивных пускателей сработает. Двигатель начинает вращаться. Что бы запустить двигатель в обратную сторону, надо нажать кнопку стоп (пускатель разомкнет силовые контакты), двигатель обесточится, дождаться остановки двигателя и после этого нажать другую пусковую кнопку. На схеме показано, что подключен пускатель «КМ2». При этом его дополнительные контакты «КМ2.2» разомкнули цепь питания катушки «КМ1», что не даст случайного подключения пускателя «КМ1».

Представляет собой простейший комплект аппаратов для дистанционного управления электродвигателями и кроме самого контактора часто имеет кнопочную станцию и аппараты защиты.

Схема подключения нереверсивного магнитного пускателя

На рис. 1, а, б показаны соответственно монтажная и принципиальная схемы включения нереверсивного магнитного пускателя для управления асинхронным электродвигателем с короткозамкнутым ротором. На монтажной схеме границы одного аппарата обводят штриховой линией. Она удобна для монтажа аппаратуры и поиска неисправностей. Читать эти схемы трудно, так как они содержат много пересекающихся линий.

Рис. 1. Схема включения нереверсивного магнитного пускателя: а — монтажная схема включения пускателя, электрическая принципиальная схема включения пускателя

На принципиальной схеме все элементы одного магнитного пускателя имеют одинаковые буквенно-цифровые обозначения. Это позволяет не связывать вместе условные изображения катушки контактора и контактов, добиваясь наибольшей простоты и наглядности схемы.

Нереверсивный магнитный пускатель имеет контактор КМ с тремя главными замыкающими контактами (Л1 — С1, Л2 — С2, Л3 — С3) и одним вспомогательным замыкающим контактом (3-5).

Главные цепи, по которым протекает ток электродвигателя, принято изображать жирными линиями, а цепи питания катушки пускателя (или цепи управления) с наибольшим током — тонкими линиями.

Принцип действия схемы включения нереверсивного магнитного пускателя

Для включения электродвигателя М необходимо кратковременно нажать кнопку SB2 «Пуск». При этом по цепи катушки магнитного пускателя, потечет ток, якорь притянется к сердечнику. Это приведет к замыканию главных контактов в цепи питания электродвигателя. Одновременно замкнется вспомогательный контакт 3 — 5, что создаст параллельную цепь питания катушки магнитного пускателя.

Если теперь кнопку «Пуск» отпустить, то катушка магнитного пускателя будет включена через собственный вспомогательный контакт. Такую схему называют схемой самоблокировки. Она обеспечивает так называемую нулевую защиту электродвигателя. Если в процессе работы электродвигателя напряжение в сети исчезнет или значительно снизится (обычно более чем на 40% от номинального значения), то магнитный пускатель отключается и его вспомогательный контакт размыкается.

После восстановления напряжения для включения электродвигателя необходимо повторно нажать кнопку «Пуск». Нулевая защита предотвращает непредвиденный, самопроизвольный пуск электродвигателя, который может привести к аварии.

Аппараты ручного управления (рубильники, конечные выключатели) нулевой защитой не обладают, поэтому в системах управления станочным приводом обычно применяют управление с использованием магнитных пускателей.

Для отключения электродвигателя достаточно нажать кнопку SB1 «Стоп». Это приводит к размыканию цепи самопитания и отключению катушки магнитного пускателя.

Схема подключения реверсивного магнитного пускателя

В том случае, когда необходимо использовать два направления вращения электродвигателя, применяют реверсивный магнитный пускатель, принципиальная схема которого изображена на рис. 2, а.

Рис. 2. Схемы включения реверсивного магнитного пускателя

Принцип действия схем включения реверсивного магнитного пускателя

Для изменения направления вращения асинхронного электродвигателя необходимо изменить порядок чередования фаз статорной обмотки.

В реверсивном магнитном пускателе используют два контактора: КМ1 и КМ2. Из схемы видно, что при случайном одновременном включении обоих контакторов в цепи главного тока произойдет короткое замыкание. Для исключения этого схема снабжена блокировкой.

Если после нажатия кнопки SB3 «Вперед» к включения контактора КМ1 нажать кнопку SB2 «Назад», то размыкающий контакт этой кнопки отключит катушку контактора КМ1, а замыкающий контакт подаст питание в катушку контактора КМ2. Произойдет реверсирование электродвигателя.

Электрическая схема цепи управления реверсивного пускателя с блокировкой на вспомогательных размыкающих контактах изображена на рис. 2, б.

В этой схеме включение одного из контакторов, например КМ1, приводит к размыканию цепи питания катушки другого контактора КМ2. Для реверса необходимо предварительно нажать кнопку SB1 «Стоп» и отключить контактор КМ1. Для надежной работы схемы необходимо, чтобы главные контакты контактора КМ1 разомкнулись раньше, чем произойдет замыкание размыкающих вспомогательных контактов в цепи контактора КМ2. Это достигается соответствующей регулировкой положения вспомогательных контактов по ходу якоря.

В серийных магнитных пускателях часто применяют двойную блокировку по приведенным выше принципам. Кроме того, реверсивные магнитные пускатели могут иметь механическую блокировку с перекидным рычагом, препятствующим одновременному срабатыванию электромагнитов контакторов. В этом случае оба контактора должны быть установлены на общем основании.

Для того, чтобы запускать электродвигатель в прямом и обратном направлении применяется реверсивная схема управления на магнитном пускателе.

В этой статье подробно рассмотрена пошаговая работа схемы. Схему, в которой двигатель работает только в одном направлении, без реверса, смотрите в статье нереверсивная схема подключения магнитного пускателя.

В заключении этой статьи смотрите видео, демонстрирующее детальную работу схемы реверсного пуска двигателя.

Вначале рассмотрим реверсивную схему подключения с катушкой магнитного пускателя на 220В, а затем работу схемы.

Фазы А,В и С питающего напряжения подводятся к клеммам асинхронного двигателя через:

— 3-х полюсный автоматический выключатель, который защищает всю схему и позволяет отключать питающее напряжение;

— поочередно через три пары силовых контактов магнитных пускателей КМ1 и КМ2;

— тепловое реле Р, которое служит для защиты от перегрузок.

Для того, чтобы изменить направление вращения трехфазного электродвигателя, необходимо поменять местами подключение любых двух фаз!

Для этого в цепь обмотки двигателя включены силовые контакты от двух пускателей, которые подключаются поочередно, меняя чередование фаз. В нашей схеме при вращении вперед последовательность фаз такая — А, В, С. При вращении назад — С, В, А. Т.е. чередование фаз А и С меняется местами.

Катушки магнитных пускателей с одной стороны  подключены к нулевому рабочему проводнику N через нормально-замкнутый контакт теплового реле Р, с другой, через кнопочный пост к фазе С.

Кнопочный пост состоит из 3-х кнопок:

1) нормально-разомкнутой кнопки ВПЕРЕД;

2) нормально-разомкнутой кнопки НАЗАД;

3) нормально-замкнутой кнопки СТОП.

К кнопке ВПЕРЕД параллельно подключен нормально-разомкнутый вспомогательный контакт пускателя КМ1, и соответственно, к кнопке НАЗАД — нормально-разомкнутый вспомогательный контакт пускателя КМ2.

Также в цепь питания обмотки пускателя КМ1 включен нормально-замкнутый контакт пускателя КМ2, а в цепь обмотки пускателя КМ2, включен нормально-замкнутый контакт пускателя КМ1. Это сделано для блокировки, чтобы предотвратить запуск двигателя назад, когда он вращается вперед, и наоборот. Т.е. запустить двигатель в любую из сторон можно только из положения останова.

Работа схемы

Переводим рычаг трехполюсного автоматического выключателя во включенное положение, его контакты замыкаются, схема готова к работе.

Запуск вперед

Нажимаем кнопку ВПЕРЕД.  Цепь питания обмотки магнитного пускателя  КМ1 замыкается, якорь катушки втягивается, замыкает силовые контакты КМ1 и вспомогательный нормально-открытый контакт КМ1, который шунтирует кнопку ВПЕРЕД

Одновременно вспомогательный нормально-замкнутый контакт КМ1 размыкает цепь управления магнитным пускателем КМ2, блокируя тем самым возможность запуска реверса двигателя. 

Три питающих фазы в последовательности А,В,С подаются на обмотки двигателя и он начинает вращаться вперед.

Отпускаем кнопку ВПЕРЕД, она возвращается в исходное нормально-разомкнутое состояние. Теперь  питание на обмотку пускателя КМ1 подается через замкнутый вспомогательный контакт КМ1. Двигатель запущен и вращается вперед.

Останов двигателя из положения ВПЕРЕД

Для остановки двигателя или для запуска в другую сторону, необходимо сначала нажать кнопку СТОП. Питание цепи управления размыкается. Якорь магнитного пускателя КМ1 под действием пружины возвращается в исходное состояние. Силовые контакты размыкаются, отключая питающее напряжение от электродвигателя. Двигатель останавливается.

Одновременно с этим размыкается вспомогательный контакт КМ1 в цепи питания обмотки пускателя КМ1 и замыкается вспомогательный контакт КМ1 в цепи питания пускателя КМ2.

Отпускаем кнопку СТОП. Она возвращается в исходное, нормально-замкнутое положение. Но  поскольку вспомогательный контакт КМ1 разомкнут, питание на обмотку пускателя КМ1 не подается, двигатель остается выключенным и схема готова к следующему запуску.

Реверс двигателя

Чтобы запустить двигатель в обратном направлении, нажимаем кнопку НАЗАД.

Питание подается на обмотку пускателя КМ2. Он срабатывает, замыкая силовые контакты КМ2 в цепи питания двигателя, и вспомогательный контакт КМ2, который шунтирует кнопку НАЗАД. Одновременно с этим, другой вспомогательный контакт КМ2 разрывает цепь питания пускателя КМ1.

На обмотки двигателя подаются три фазы в порядке С,В,А, он начинает вращаться в другую сторону.

Отпускаем кнопку НАЗАД. Она возвращается в исходное положение, но питание на обмотку пускателя КМ2 продолжает поступать через замкнутый вспомогательный контакт КМ2. Двигатель продолжает вращаться в обратном направлении.

Останов двигателя из положения НАЗАД

Для останова повторно нажимаем кнопку СТОП. Цепь питания обмотки пускателя КМ2 размыкается. Якорь возвращается в исходное положение, размыкая силовые контакты КМ2. Двигатель останавливается. Одновременно с этим, вспомогательные контакты КМ2 возвращаются в исходное состояние.

Отпускаем кнопку СТОП, схема готова к следующему пуску.

Защита от перегрузок

Работу теплового реле Р и назначение предохранителя FU я подробно рассмотрел в статье Нереверсивная схема пускателя, поэтому в этой статье описание опускаю. Для пускателей с обмотками, рассчитанными на 380В,  схема подключения будет следующая.

Обмотки пускателей подключается к любым двум фазам, на схеме к фазам В и С.

Для большей наглядности я записал видео, в котором поэтапно показан весь процесс работы схемы.

Если видео понравилось, не забывайте нажать НРАВИТЬСЯ при просмотре на YouTube. Подписывайтесь на мой канал, узнайте первым о выходе новых интересных видео по электрике!

Не забудьте посмотреть новые статьи сайта.

Рекомендую также прочитать:

Нереверсивная схема подключения магнитного пускателя.

Как выбирать автоматические выключатели, УЗО, дифавтоматы?

Номиналы групповых автоматов превышают номинал вводного?

Менять ли автоматический выключатель, если его «выбивает»?

Почему в жару срабатывает автоматический выключатель?

Здравствуйте уважаемые читатели сайта sesaga.ru. Продолжаем разбираться с магнитным пускателем и сегодня мы рассмотрим еще одну классическую схему подключения магнитного пускателя, которая обеспечивает реверс вращения эл. двигателя.

Такая схема используется в основном, где нужно обеспечить вращение эл. двигателя в обе стороны, например, сверлильный станок, подъемный кран, лифт и т.д.

На первый взгляд может показаться, что эта схема намного сложнее, чем схема с одним пускателем, но это только на первый взгляд.

В схему добавилась еще одна цепь управления, состоящая из кнопки SB3, магнитного пускателя КМ2, и немного видоизменилась силовая часть подачи питания на эл. двигатель. Названия кнопок SB2 и SB3 даны условно.

Для защиты от короткого замыкания в силовой цепи, перед катушками пускателей добавились два нормально-замкнутых контакта КМ1.2 и КМ2.2, взятые от контактных приставок, установленных на магнитных пускателях КМ1 и КМ2.

Для удобства понимания схемы, цепи управления и силовые контакты пускателей раскрашены в разные цвета. А чтобы визуально не усложнять схему, цифробуквенные обозначения пар силовых контактов пускателей не указываются. Ну а если возникнут вопросы или сомнения, прочитайте еще раз предыдущую часть статьи о подключении магнитного пускателя.

1. Исходное состояние схемы.

При включении автоматического выключателя QF1 фазы «А», «В», «С» поступают на верхние силовые контакты магнитных пускателей КМ1 и КМ2 и там остаются дежурить.

Фаза «А», питающая цепи управления, через автомат защиты цепей управления SF1 и кнопку SB1 «Стоп» поступает на контакт №3 кнопок SB2 и SB3, вспомогательный контакт 13НО пускателей КМ1 и КМ2, и остается дежурить на этих контактах. Схема готова к работе.

На рисунке ниже показана часть реверсивной схемы, а именно, монтажная схема цепей управления с реальными элементами.

2. Работа цепей управления при вращении двигателя влево.

При нажатии на кнопку SB2 фаза «А» через нормально-замкнутый контакт КМ2.2 поступает на катушку магнитного пускателя КМ1, пускатель срабатывает и его нормально-разомкнутые контакты замыкаются, а нормально-замкнутые размыкаются.

При замыкании контакта КМ1.1 пускатель встает на самоподхват, а при замыкании силовых контактов КМ1 фазы «А», «В», «С» поступают на соответствующие контакты обмоток эл. двигателя и двигатель начинает вращение, например, в левую сторону.

Здесь же, нормально-замкнутый контакт КМ1.2, расположенный в цепи питания катушки пускателя КМ2, размыкается и не дает включиться магнитному пускателю КМ2 пока в работе пускатель КМ1. Это так называемая «защита от дурака», и о ней чуть ниже.

На следующем рисунке показана часть схемы управления, отвечающая за команду «Влево». Схема показана с использованием реальных элементов.

3. Работа цепей управления при вращении двигателя вправо.

Чтобы задать двигателю вращение в противоположную сторону достаточно поменять местами любые две питающие фазы, например, «В» и «С». Вот этим, как раз, и занимается пускатель КМ2.

Но прежде чем нажать кнопку «Вправо» и задать двигателю вращение в обратную сторону, нужно кнопкой «Стоп» остановить прежнее вращение.

При этом разорвется цепь и управляющая фаза «А» перестанет поступать на катушку пускателя КМ1, возвратная пружина вернет сердечник с контактами в исходное положение, силовые контакты разомкнутся и отключат двигатель М от трехфазного питающего напряжения. Схема вернется в начальное состояние или ждущий режим:

Нажимаем кнопку SB3 и фаза «А» через нормально-замкнутый контакт КМ1.2 поступает на катушку магнитного пускателя КМ2, пускатель срабатывает и через свой контакт КМ2.1 встает на самоподхват.

Своими силовыми контактами КМ2 пускатель перебросит фазы «В» и «С» местами и двигатель М станет вращаться в другую сторону. При этом контакт КМ2.2, расположенный в цепи питания пускателя КМ1, разомкнется и не даст пускателю КМ1 включиться пока в работе пускатель КМ2.

4. Силовые цепи.

А теперь посмотрим на работу силовой части схемы, которая и отвечает за переброс питающих фаз для осуществления реверса вращения эл. двигателя.

Обвязка силовых контактов пускателя КМ1 выполнена так, что при их срабатывании фаза «А» поступает на обмотку №1, фаза «В» на обмотку №2, и фаза «С» на обмотку №3. Двигатель, как мы определились, получает вращение влево. Здесь переброс фаз не осуществляется.

Обвязка силовых контактов пускателя КМ2 выполнена таким-образом, что при его срабатывании фазы «В» и «С» меняются местами: фаза «В» через средний контакт подается на обмотку №3, а фаза «С» через крайний левый подается на обмотку №2. Фаза «А» остается без изменений.

А теперь рассмотрим нижний рисунок, где показан монтаж всей силовой части на реальных элементах.

Фаза «А» белым проводом заходит на вход левого контакта пускателя КМ1 и перемычкой заводится на вход левого контакта пускателя КМ2. Выхода обоих контактов пускателей также соединены перемычкой, и уже от пускателя КМ1 фаза «А» поступает на обмотку №1 двигателя М — здесь переброса фазы нет.

Фаза «В» красным проводом заходит на вход среднего контакта пускателя КМ1 и перемычкой заводится на правый вход пускателя КМ2. С правого выхода КМ2 фаза перемычкой заводится на правый выход КМ1, и тем самым, встает на место фазы «С». И теперь на обмотку №3, при включении пускателя КМ2 будет подаваться фаза «В».

Фаза «С» синим проводом заходит на вход правого контакта пускателя КМ1 и перемычкой заводится на средний вход пускателя КМ2. С выхода среднего контакта КМ2 фаза перемычкой заводится на средний выход КМ1, и тем самым, встает на место фазы «В». Теперь на обмотку №2, при включении пускателя КМ2 будет подаваться фаза «С». Двигатель будет вращаться в правую сторону.

5. Защита силовых цепей от короткого замыкания или «защита от дурака».

Как мы уже знаем, что прежде чем изменить вращение двигателя, его нужно остановить. Но не всегда так получается, так как никто не застрахован от ошибок.
И вот представьте ситуацию, когда нет защиты.

Двигатель вращается в левую сторону, пускатель КМ1 в работе и с его выхода все три фазы поступают на обмотки, каждая на свою. Теперь не отключая пускатель КМ1 мы включаем пускатель КМ2. Фазы «В» и «С», которые мы поменяли местами для реверса, встретятся на выходе пускателя КМ1. Произойдет межфазное замыкание между фазами «В» и «С».

А чтобы этого не случилось, в схеме используют нормально-замкнутые контакты пускателей, которые устанавливают перед катушками этих же пускателей, и таким-образом исключается возможность включения одного магнитного пускателя пока не обесточится другой.

6. Заключение.

Конечно, все это с первого раза понять трудно, я и сам, когда начинал осваивать работу эл. приводов, не с первого раза понял принцип реверса. Одно дело прочитать и запомнить схему на бумаге, а другое дело, когда все это видишь в живую. Но если собрать макет и несколько дней посвятить изучению схемы, то успех будет гарантирован.

И уже по традиции посмотрите видеоролик о подключении реверсивного магнитного пускателя.

А у нас еще осталось разобраться с электротепловой защитой эл. двигателя и тема о магнитных пускателях может быть смело закрыта.
Продолжение следует.
Удачи!

Схемы управления электромагнитными пускателями (контакторами)

Электромагнитные пускатели и контакторы незаменимы в цепях управления силовой нагрузкой. А чтобы правильно применять эти устройства нужно хорошо знать, как они работают и уметь чертить нужные схемы управления под свой конкретный случай.


Электромагнитные контакторы находят даже применение в цепях управления освещением.  Сегодня рассмотрим схемы управления реверсивным и нереверсивным пускателем или контактором. Я даже не знаю, как их можно различать

Для начала хочу сказать несколько слов из чего состоит пускатель. У пускателя можно выделить 3 основных элемента:

  • силовые контакты (как правило их 3) – предназначены для коммутации силовой нагрузки, номинальный ток пускателя относится именно к контактам;
  • электромагнитная катушка – предназначена для управления пускателем, в основном рассчитана на 220 или 380В;
  • дополнительный контакт – предназначен для построения схемы управления или сигнализации о состоянии пускателя (контактора), в пускателях на большие номинальные токи их может быть несколько (замыкающие, размыкающие).

Все эти 3 элемента будут участвовать в схемах управления.

1 Схема управления нереверсивным пускателем (контактором).

Данная схема встречается очень часто. К примеру, в щите устанавливаем пускатель  с тепловым реле для управления электродвигателем, а кнопки управления выводим в нужное нам место. На рисунке ниже представлена схема управления нереверсивным пускателем с катушкой управления на 380В.

Схема управления нереверсивным пускателем (контактором)

При нажатии на кнопку «Пуск» через катушку проходит электрический ток и электромагнит притягивает контакты (силовые и дополнительные). В это время контакт 97-98 замыкается и через него постоянно проходит ток для удержания электромагнита катушки. При нажатии на кнопку «Стоп» цепь управления катушки разрывается и электромагнит отпускает контакты, которые под действие пружины возвращают их в исходное состояние. Кнопки «Пуск» и «Стоп» без фиксации. В случае перегрузки контакт КК также разрывает цепь катушки. До кнопочного поста достаточно проложить трехжильный кабель.

2 Схема блокировки двух устройств при помощи контакторов.

Следующая схема применима в том случае, если необходимо выполнить блокировку технологического оборудования №1 пока не включено оборудование №2. Например, зарядное устройство и приточная вентиляция. Включаем вентилятор и только после этого сможем включить зарядное устройство.

Схема блокировки двух устройств при помощи контакторов

Здесь использована предыдущая схема, к которой добавлен вспомогательный дополнительный контакт (приставка контактная, 1з). На линии питания нашего оборудования №1 (в нашем случае это зарядное устройство) устанавливаем контактор. При нажатии кнопки «Пуск» включается вентилятор, контакт 23-24 замыкается и включается контактор на линии №2.

3 Схема управления реверсивным пускателем (контактором). Механическая блокировка.

Реверсивные пускатели применяют для управления задвижками либо для выполнения реверса электродвигателя. Суть в том, что если фазу L1 и L3 (а и b) поменять местами, то двигатель начнет вращаться в противоположную сторону.

Реверсивный пускатель можно собрать из двух обычных пускателей. Главное чтобы была выполнена блокировка. Схема реализации реверсивной схемы на двух контакторах с использованием блокировочного устройства представлена ниже.

Схема управления нереверсивным пускателем (контактором). Механическая блокировка

Блокировочное устройство предназначено для исключения одновременного включения двух контакторов.

Блокировочное устройство двух контакторов

При нажатии на кнопку, к примеру у нас задвижка, «Открытие» — первый контактор включается (двигатель вращается в одну сторону). Чтобы задвижку перевести в закрытое состояние должны нажать «Стоп», первый контактор отключится, а затем нажать кнопку «Закрытие» — второй контактор включится. Блокировочное устройство не даст нам одновременно включить два контактора. В случае задвижки данная схема не очень верна, т.к. в схеме не показаны конечные выключатели (данную тему рассмотрю в другой раз).

4 Схема управления реверсивным пускателем (контактором). Электрическая блокировка.

Сейчас выполним те же функции только применим электрическую блокировку. Для этого к каждому контактору доставим дополнительно по приставке контактной с размыкающим контактом. Дополнительный размыкающий контакт первого контактора ставим последовательно с катушкой управления второго пускателя, аналогично и со вторым контактором.

Схема управления нереверсивным пускателем (контактором). Электрическая блокировка

При включения одного контактора, размыкающий контакт не дает включиться второму контактору.

При использовании пускателей и контакторов с катушками на 220В схемы практически не меняются. Вместо второй фазы используется N.

Итак, я рассмотрел основные схемы управления нереверсивными и реверсивными пускателями (контакторами), а теперь у вас есть уникальная возможность покритиковать мои схемы

Советую почитать:

Типовые схемы управления

 

Для управления силовым электрооборудованием в электрических цепях используют разнообразные устройства дистанционного управления, защиты, телемеханики и автоматики, воздействующие на коммутационные аппараты его включения и отключения или регулирования.

На рис.5.4 приведена принципиальная схема управления асинхронным электродвигателем с короткозамкнутым ротором. Данная схема широко используется на практике при управлении приводами насосов, вентиляторов и многих других.

Перед началом работы включают автоматический выключатель QF. При нажатии кнопки SВ2 включается пускатель КМ и запускается двигатель М. Для остановки двигателя необходимо нажать кнопку SВ1, при этом отключаются пускатель КМ и двигатель М.

 

 

Рис.5.4. Схема включения асинхронного электродвигателя с короткозамкнутым ротором

 

При перегрузке электродвигателя М срабатывает электротепловое реле КК, размыкающее контакты КК:1 в цепи катушки КМ. Пускатель КМ отключается, двигатель М останавливается.

В общем случае схемы управления могут осуществлять торможение электропривода, его реверсирование, изменять частоту вращения и т.д. В каждом конкретном случае используется своя схема управления.

В системах управления электроприводами широко используются блокировочные связи. Блокировкой обеспечивают фиксацию определенного состояния или положения рабочих органов устройства или элементов схемы. Блокировка обеспечивает надежность работы привода, безопасность обслуживания, необходимую последовательность включения или отключения отдельных механизмов, а также ограничение перемещения механизмов или исполнительных органов в пределах рабочей зоны.

Различают механическую и электрическую блокировки.

Примером простейшей электрической блокировки, применяемой практически во всех схемах управления, является блокировка кнопки «Пуск» SB2 (рис. 5.4.) контактом КМ2. Блокировка этим контактом позволяет после включения двигателя кнопку SB2 отпустить, не прерывая цепи питания катушки магнитного пускателя КМ, которое идет через блокировочный контакт КМ2.

В схемах реверсирования электродвигателей (при обеспечении движения механизмов вперед-назад, вверх-вниз и т.д.), а также при торможении применяются реверсивные магнитные пускатели. Реверсивный магнитный пускатель состоит из двух нереверсивных. При работе реверсивного пускателя необходимо исключить возможность их одновременно включения. Для этого в схемах предусматриваются и электрическая, и механическая блокировки (рис. 5.5). Если реверсирование двигателя выполняется двумя нереверсивными магнитными пускателями, то роль электрической блокировки играют контакты КМ1:3 и КМ2:3, а механическая блокировка обеспечивается кнопками SВ2 и SВ3, каждая из которых состоит из двух контактов, связанных между собой механически. При этом один из контактов-замыкающий, другой — размыкающий (механическая блокировка).

Схема работает следующим образом. Предположим что при включении пускателя КМ1 двигатель М вращается по часовой стрелке и против часовой — при включении КМ2. При нажатии кнопки SВ3 сначала размыкающий контакт кнопки разорвет цепь питания пускателя КМ2 и только потом замыкающий контакт SВ3 замкнет цепь катушки КМ1.

 

 

Рис.5.5. Механическая и электрическая блокировки при реверсировании привода

 

Пускатель КМ1 включается, запускается с вращением по часовой стрелке двигатель М. Контакт КМ1:3 размыкается, осуществляя электрическую блокировку, т.е. пока включен КМ1, цепь питания пускателя КМ2 разомкнута и его нельзя включить. Для осуществления реверса двигателя необходимо его остановить кнопкой SВ1, а затем, нажав кнопку SВ2, запустить в обратную сторону. При нажатии SВ2 сначала размыкающим контактом SВ2 разрывается цепь питания катушки КМ1 и далее замыкается цепь питания катушки КМ2 (механическая блокировка). Пускатель КМ2 включается и реверсирует двигатель М. Контакт КМ2:3, размыкаясь, осуществляет электрическую блокировку пускателя КМ1.

Чаще реверсирование двигателя выполняется одним реверсивным магнитным пускателем. Такой пускатель состоит из двух простых пускателей, подвижные части которых между собой связаны механически с помощью устройства в виде коромысла. Такое устройство называется механической блокировкой, не позволяющей силовым контактом одного пускателя КМ1 одновременно замыкаться силовым контактам другого пускателя КМ2 (рис. 5.6).

Рис. 5.6. Механическая блокировка «коромыслом» подвижных частей двух пускателей единого реверсивного магнитного пускателя

Электрическая схема управления реверсом двигателя при помощи двух простейших пускателей единого реверсивного магнитного пускателя такая же, как и электрическая схема управления реверсом двигателя с использованием двух нереверсивных магнитных пускателей (рис. 5.5), с применением в электрической схеме таких же электрических и механических блокировок.

При автоматизации электроприводов поточных линий, конвейеров и т.п. применяется электрическая блокировка, которая обеспечивает пуск электродвигателей линии в определенной последовательности (рис. 5.7). При такой схеме, например, включение второго двигателя М2 (рис. 5.7) возможно только после включения первого двигателя М1, включение двигателя М3 – после включения М2. Такая очередность пуска обеспечивается блокировочными контактами КМ1:3 и КМ2:3.

 

 

Рис.5.7. Схема последовательного включения двигателей

 

 

Пример 5.1. Используя электрическую схему (рис. 5.4) управления асинхронным электродвигателем с короткозамкнутым ротором, необходимо включить в эту схему дополнительные контакты, обеспечивающие автоматическую остановку электродвигателя рабочего механизма в одной и в двух заданных точках.

Решение. Требование задачи обеспечить остановку электродвигателя в одной заданной точке может быть выполнено путевым выключателем SQ1 с нормально закрытым контактом, установленным последовательно с блок-контактом KM2, шунтирующим кнопку SB2. Для остановки электродвигателя рабочего механизма в двух заданных точках последовательно с контактом путевого выключателя SQ1 размещают контакт второго путевого выключателя SQ2. На рис. 5.8 приведены электрические схемы остановки электродвигателя в одной и в двух заданных точках. После пуска двигателя механизм приходит в движение и при достижении места остановки нажимает на путевой выключатель, например SQ1, и электродвигатель останавливается. После выполнения необходимой технологической операции вновь нажимаем на кнопку SB2, и механизм продолжает движение до следующего путевого выключателя SQ2, где технологическая операция заканчивается.

 

Рис. 5.8 К примеру 5.1

Пример 5.2. В электрическую схему (рис. 5.5) управления реверсом короткозамкнутого асинхронного двигателя с помощью блокировочных связей следует ввести элементы световой сигнализации для контроля направления вращения двигателя.

Решение. Схема световой сигнализации контроля направления вращения двигателя при реверсе, совмещённая со схемой управления реверсом двигателя, приведена на рис. 5.9. При вращении двигателя, например вправо, горит лампа HL1, включаемая контактом KM1.4 магнитного пускателя KM1, при этом лампа HL2 погашена, т.к. магнитный пускатель KM2 не включён. При вращении двигателя влево горит лампа HL2, включённая контактом KM2.4 магнитного пускателя KM2. Таким образом, лампа HL1 сигнализирует о вращении двигателя вправо, а лампа HL2 — о вращении двигателя влево. В результате блокировочными связями световая сигнализация обеспечивает контроль над направлением вращения двигателя при реверсе.

 

 

Рис. 5.9 К примеру 5.2

 

Контрольные вопросы

 

1. Как подразделяются электрические схемы по видам и типам?

2. Каковы основные правила построения электрических схем?

3. Приведите примеры буквенного обозначения электрических элементов.

4. Приведите примеры графического обозначения электрических элементов.

5. Нарисуйте схемы включения двигателя, приведенные на рис. 5.1, 5.2 и 5.4.

6. Объясните работу схем на рис. 5.5 и 5.7.

 

 


Узнать еще:

Схема реверсивного пуска асинхронного двигателя

Реверс асинхронного двигателя

Так вышло, что трех фазные асинхронные электродвигатели, а так же их реверс стали самой распространенной электрической машиной.

В зависимости от механизма, который приводится во вращение этим электродвигателем, может возникнуть необходимость в изменении направления вращения механизмов, а, следовательно, и вала двигателя, в нашем случаи трех фазного асинхронного электродвигателя.

Все наверняка известна вот эта схема:

Теоретически, для изменения направления вращения вала ( реверса ) электродвигателя необходимо всего на всего поменять местами две фазы. Стоит отметить, что не имеет значения какие фазы мы будим менять, но на будущее принято менять две крайние фазы, то есть фазу « А » с фазой « В ».

Для выполнения таких манипуляций с электродвигателем, выше предоставленной схеме необходимо видоизменить – переделать, доработать. Для этого понадобится еще один магнитный пускатель, или же контактор (зависит от мощности), а также кнопочная станция, состоящая из трех кнопок, или же три кнопочных контакта два нормально разомкнутых (замыкающих), и один нормально разомкнутый.

Эта схема будит выглядеть следующим образом. Реверс.

Для наглядности каждая фаза выделена своим цветом: желтым фаза «А», зеленым фаза «В» и красным фаза «С», синим цветом выделена цепь управления. Так же линии, окрашенные в черный цвет, не находятся под напряжением.

Как вы уже заметили это схема реверса существенно не отличается от простой схемы пуска асинхронного двигателя. Все изменения сводятся к магнитному пускателю КМ2 , нормально разомкнутому контакту кнопки SB2 . Стоит отметить и наличие электрической блокировки, которая выражается блок контактами магнитных пускателей, включенных в цепь управления.

Как и элементарная схема пуска асинхронного двигателя, схема этого же двигателя состоит из следующих элементов (устройств):

  • Вводной автомат АВ1 – через него подается трехфазное напряжение силовой цепи и цепи управления;
  • Два магнитных пускателя КМ1 и КМ2 через силовые контакты которых, подается питание на статор. Их блок контакты включены в цепь управления для выполнения подхвата и электрической блокировки. Катушки этих пускателей также включены в цепь управления. Нужно сказать, что каждый из магнитных пускателей отвечает за определенное вращение ротора . Например, питание подаётся через магнитный пускатель КМ1 , то вал электродвигателя будит вращаться по часовой стрелке (вперед), если же питание подаётся через силовые контакты магнитного пускателя КМ2 , то вал асинхронного двигателя будит вращаться против часовой стрелки (назад).

В данной схеме используются катушки магнитных пускателей, рассчитанные на линейное напряжение 380В. Если же катушки магнитных пускателей были рассчитаны на фазное напряжение сети 220В, то схема выглядела следующим образом:

revers dvigatela katuschka 220 volt

  • Тепловое реле КК – биметаллические пластины, которого включены последовательно в цепь статора, а блок контакт вцепи управления. Служит для защиты от перегрузки.
  • Двухполюсный автомат АВ2 – подает питание в цепь управления. Также совместно с автоматом или без него может устанавливаться ключ бирка.
  • Нормально разомкнутые контакты SB1 и SB2 – это кнопки пуск, каждая из которых соответствует направлению вращения вала электродвигателя (вперед и назад).
  • Нормально замкнутый контакт SB3 – кнопка стоп.
  • Ну и сам трех фазный асинхронный двигатель Д ;

Работа схемы

Для того, чтобы привести схему в готовность к пуску, необходимо включить вводной автомат АВ1 и автомат в цепи управления АВ2.

В таком состоянии схема реверса асинхронного двигателя готова к пуску. При этом напряжение в силовой цепи подается через вводный автоматический выключатель АВ1 на верхние губки магнитных пускателей КМ1 и КМ2 , а в цепи управления, через автомат АВ2 , через нормально замкнутый контакт кнопки SB3 подаётся напряжение на нормально разомкнутые контакты кнопок SB1 и SB2 , а также на нормально разомкнутые блок контакты магнитных пускателей КМ1 и КМ2.

Для запуска необходимо нажать одну из кнопок пуск SB1 или SB2 (допустим была нажата кнопка SB1).

После замыкания контакта кнопки SB1 , напряжение через замкнутый блок контакт блокировки магнитного пускателя КМ2, через катушку магнитного пускателя КМ1 , через блок контакт КК , через автоматы АВ2 и АВ1 выйдет на фазу «С». Образуется замкнутая цепь, по которой начнет протекать переменный ток. Проходя через катушку магнитного пускателя КМ1, она образует магнитное поле, которое втянет якорь магнитного пускателя КМ1 , при этом его силовые контакты замкнутся, вследствие чего асинхронный электродвигатель получит питание, по его обмоткам начнет протекать ток, и он запустится, ротор будит вращаться. При срабатывании магнитного пускателя, его разомкнутый контакт в цепи управления замкнется, он шунтирует кнопку SB1 , то есть ток будит протекать параллельно пусковой кнопки, так что при отпускании пусковой кнопки машина не остановится не остановится. Так же в цепи пусковой кнопки SB2 разомкнется блок контакт магнитного пускателя КМ1 , этим исключит возможность срабатывания второго магнитного пускателя КМ2 , что вызовет межфазное короткое замыкание. Все перечисленное происходило при нажатии кнопки «Пуск», замыкания контакта SB1.

Чтобы остановить двигатель, необходимо нажать кнопку «Стоп», то есть разомкнуть контакт кнопки SB3 .

Вследствие чего цепь, в которую включены катушки будит разомкнута, электрический ток не будит по ним протекать. Магнитный пускатель разомкнет свои силовые контакты, из-за чего двигатель потеряет питание и остановится. При этом нормально разомкнутый блок контакт КМ1 (подхват) разомкнется, это приведет к тому, что при возврате кнопки SB3 двигатель не запуститься снова. Так же нормально замкнутый блок контакт электрической блокировки КМ1 в цепи катушки магнитного пускателя КМ2 замкнется, обеспечивая возможность включения обратного хода. Схема вернется в состояние готовности очередному пуску двигателя.

Если же мы замкнем контакт SB2 , произойдут те же действия что и при замыкании контакта SB1 , но с другим магнитным пускателем КМ2 , и направление вращения вала асинхронного двигателя будит обратным. Мы видим, что магнитный пускатель КМ2 включен в цепи так, что фазы «А» и «С» поменяны местами, это и гарантирует изменение направления вращения вала. Для остановки необходимо так же разомкнуть контакт кнопки SB3 .

Эта схема сложнее схемы обычного пуска асинхронного двигателя, я посоветую для начала разобраться в более легкой, а затем приступать к этой.

Главной особенностью данной схемы управления двигателем является — минимум сложных манипуляций.

Три наиболее популярные схемы управления асинхронным двигателем

Все электрические принципиальные схемы станков, установок и машин содержат определенный набор типовых блоков и узлов, которые комбинируются между собой определенным образом. В релейно-контакторных схемах главными элементами управления двигателями являются электромагнитные пускатели и реле.

Наиболее часто в качестве привода в станках и установках применяются трехфазные асинхронные двигатели с короткозамкнутым ротором. Эти двигатели просты в устройстве, обслуживании и ремонте. Они удовлетворяют большинству требований к электроприводу станков. Главными недостатками асинхронных двигателей с короткозамкнутым ротором являются большие пусковые токи (в 5-7 раз больше номинального) и невозможность простыми методами плавно изменять скорость вращения двигателей.

С появлением и активным внедрением в схемы электроустановок преобразователей частоты такие двигатели начали активно вытеснять другие типы двигателей (асинхронные с фазным ротором и двигатели постоянного тока) из электроприводов, где требовалось ограничивать пусковые токи и плавно регулировать скорость вращения в процессе работы.

Одной из преимуществ использования асинхронных двигателей с короткозамкнутым ротором является простота их включения в сеть. Достаточно подать на статор двигателя трехфазное напряжение и двигатель сразу запускается. В самом простом варианте для включения можно использовать трехфазный рубильник или пакетный выключатель. Но эти аппараты при своей простоте и надежности являются аппаратами ручного управления.

В схемах же станков и установок часто должна быть предусмотрена работа того или иного двигателя в автоматическом цикле, обеспечиваться очередность включения нескольких двигателей, автоматическое изменение направления вращения ротора двигателя (реверс) и т.д.

Обеспечить все эти функции с аппаратами ручного управления невозможно, хотя в ряде старых металлорежущих станков тот же реверс и переключение числа пар полюсов для изменения скорости вращения ротора двигателя очень часто выполняется с помощью пакетных переключателей. Рубильники и пакетные выключатели в схемах часто используются как вводные устройства, подающие напряжение на схему станка. Все же операции управления двигателями выполняются электромагнитными пускателями.

Включение двигателя через электромагнитный пускатель обеспечивает кроме всех удобств при управлении еще и нулевую защиту. Что это такое будет рассказано ниже.

Наиболее часто в станках, установках и машинах применяются три электрические схемы:

схема управления нереверсивным двигателем с использованием одного электромагнитного пускателя и двух кнопок “пуск” и “стоп”,

схема управления реверсивным двигателем с использованием двух пускателей (или одного реверсивного пускателя) и трех кнопок.

схема управления реверсивным двигателем с использованием двух пускателей (или одного реверсивного пускателя) и трех кнопок, в двух из которых используются спаренные контакты.

Разберем принцип работы всех этих схем.

1. Схема управления двигателем с помощью магнитного пускателя

Схема показана на рисунке.

При нажатии на кнопку SB2 “Пуск” на катушка пускателя попадает под напряжение 220 В, т.к. она оказывается включенной между фазой С и нулем ( N) . Подвижная часть пускателя притягивается к неподвижной, замыкая при этом свои контакты. Силовые контакты пускателя подают напряжение на двигатель, а блокировочный замыкается параллельно кнопке “Пуск”. Благодаря этому при отпускании кнопки катушка пускателя не теряет питание, т.к. ток в этом случае идет через блокировочный контакт.

Если бы блокировочный контакт не был бы подключен параллельно кнопки (по какой-либо причине отсутствовал), то при отпускании кнопки “Пуск” катушка теряет питание и силовые контакты пускателя размыкаются в цепи двигателя, после чего он отключается. Такой режим работы называют “толчковым”. Применяется он в некоторых установках, например в схемах кран-балок.

Остановка работающего двигателя после запуска в схеме с блокировочным контактом выполняется с помощью кнопки SB1 “Стоп”. При этом, кнопка создает разрыв в цепи, магнитный пускатель теряет питание и своими силовыми контактами отключает двигатель от питающей сети.

В случае исчезновения напряжения по какой-либо причине магнитный пускатель также отключается, т.к. это равносильно нажатию на кнопку “Стоп” и созданию разрыва цепи. Двигатель останавливается и повторный запуск его при наличии напряжения возможен только при нажатии на кнопку SB2 “Пуск”. Таким образом, магнитный пускатель обеспечивает т.н. “нулевую защиту”. Если бы он в цепи отсутствовал и двигатель управлялся рубильником или пакетным выключателем, то при возврате напряжения двигатель запускался бы автоматически, что несет серьезную опасность для обслуживающего персонала. Подробнее смотрите здесь – защита минимального напряжения.

Анимация процессов, протекающих в схеме показана ниже.

2. Схема управления реверсивным двигателем с помощью двух магнитных пускателей

Схема работает аналогично предыдущей. Изменение направления вращения (реверс) ротор двигателя меняет при изменении порядка чередования фаз на его статоре. При включении пускателя КМ1 на двигатель приходят фазы – A , B , С, а при включении пускателя KM2 – порядок фаз меняется на С, B , A.

Схема показана на рис. 2.

Включение двигателя на вращение в одну сторону осуществляется кнопкой SB2 и электромагнитным пускателем KM1 . При необходимости смены направления вращения необходимо нажать на кнопку SB1 “Стоп”, двигатель остановится и после этого при нажатии на кнопку SB 3 двигатель начинает вращаться в другую сторону. В этой схеме для смены направления вращения ротора необходимо промежуточное нажатие на кнопку “Стоп”.

Кроме этого, в схеме обязательно использование в цепях каждого из пускателей нормально-закрытых (размыкающих) контактов для обеспечения защиты от одновременного нажатия двух кнопок “Пуск” SB2 – SB 3, что приведет к короткому замыканию в цепях питания двигателя. Дополнительные контакты в цепях пускателей не дают пускателям включится одновременно, т.к. какой-либо из пускателей при нажатии на обе кнопки “Пуск” включиться на секунду раньше и разомкнет свой контакт в цепи другого пускателя.

Необходимость в создании такой блокировки требует использования пускателей с большим количеством контактов или пускателей с контактными приставками, что удорожает и усложняет электрическую схему.

Анимация процессов, протекающих в схеме с двумя пускателями показана ниже.

3. Схема управления реверсивным двигателем с помощью двух магнитных пускателей и трех кнопок (две из которых имеют контакты с механической связью)

Схема показана на рисунке.

Отличие этой схемы от предыдущей в том, что в цепи каждого пускателя кроме общей кнопки SB1 “Стоп”включены по 2 контакта кнопок SB2 и SB 3, причем в цепи КМ1 кнопка SB2 имеет нормально-открытый контакт (замыкающий), а SB 3 – нормально-закрытый (размыкающий) контакт, в цепи КМ3 – кнопка SB2 имеет нормально-закрытый контакт (размыкающий), а SB 3 – нормально-открытый. При нажатии каждой из кнопок цепь одного из пускателей замыкается, а цепь другого одновременно при этом размыкается.

Такое использование кнопок позволяет отказаться от использования дополнительных контактов для защиты от одновременного включения двух пускателей (такой режим при этой схеме невозможен) и дает возможность выполнять реверс без промежуточного нажатия на кнопку “Стоп”, что очень удобно. Кнопка “Стоп” нужна для окончательной остановки двигателя.

Приведенные в статье схемы являются упрощенными. В них отсутствуют аппараты защиты (автоматические выключатели, тепловые реле), элементы сигнализации. Такие схемы также часто дополняются различными контактами реле, выключателей, переключателей и датчиков. Также возможно питание катушки электромагнитного пускателя напряжение 380 В. В этом случае он подключается от двух любых фаз, например, от А и B . Возможно использование понижающего трансформатора для понижения напряжения в схеме управления. В этом случае используются электромагнитные пускатели с катушками на напряжение 110, 48, 36 или 24 В.

Принципиальная схема реверсивного пуска двигателя

Реверсивный пуск двигателя необходим для того, чтобы обусловить вращение в обе стороны. Принцип встречается во многих устройствах: сверлильные, токарные, фрезерные станки. А кран-балки? Там все приводы работают в реверсивном режиме для обеспечения возможности хода моста вперед-назад, тельфера влево-вправо, лебедки вверх–вниз. И это далеко не все, где применяется такой режим работы. Именно о схеме реверсивного пуска двигателя можно прочитать в статье ниже.

Чем обусловлено реверсивное включение трехфазного двигателя

Вам будет интересно: Симплификация – это что такое?

Для начала разберемся поверхностно, чем обусловлен реверс? Он обусловлен сменой 2-х проводов местами, как правило, в клейменной коробке двигателя.

На фото: образец клейменной коробки с подключением «звезда».

На рисунке выше мы видим, что начала обмоток (С1, С3, С5) свободны для включения в сеть. Концы обмоток (С2, С4, С6) соединены вместе.

На фото: подключение с прямым включением двигателя в сеть.

На рисунке цветными кругами обозначены контакты для подключения фаз. Желтым цветом обозначена фаза А, и подведена она к контакту С1, зеленым – фаза В (С3), желтым – фаза С (С5).

Соблюдая вышесказанные условия, мы сменим любые 2 фазы местами и подключим следующим образом. Фаза А остается на своем месте, контакте С1, фаза В ставится на контакт С5, а фаза С ставится на контакт С3.

На фото: подключение «звезда» с реверсивным включением.

Таким образом, выходит, что нам необходимо 2 пускателя. Один пускатель необходим для обеспечения прямого включения, а второй – для реверсивного включения.

Определение режима работы

Теперь определимся, как будет работать двигатель: постоянно включен и отключается при нажатии кнопки «стоп». Как, к примеру, в сверлильном, токарном, фрезерном станках. Или же нам нужно, чтобы он работал при удерживании кнопки «пуск-вправо» или «пуск-влево», как, к примеру, в лебедках, электротележках, кран-балках.

Для первого случая необходимо составить схему реверсивного пуска асинхронного двигателя таким образом, чтоб осуществлялось самошунтирование пускателя, а также защитить от случайного включения второго пускателя.

Схема реверсивного включения с блокировкой, и защитой

Описание работы вышеуказанной схемы

Вам будет интересно: Ликтор – это: суть профессии и исторические факты

Разберем работу принципиальной схемы реверсивного пуска двигателя. Ток поступает от фазы С на нормально замкнутую общую кнопку КнС, кнопка «стоп». После чего проходит через общее реле тока, которое защитит двигатель от перегрузок. Затем при нажатии КнП «право» ток проходит через нормально замкнутый контакт пускателя КМ2. Поступая на катушку пускателя КМ1, сердечник втягивается, замыкая силовые контакты, разрывая питание на пускатель КМ2.

Так необходимо делать для того, чтобы разорвать питание второго пускателя и защитить цепи от короткого замыкания. Ведь реверс обеспечен тем, что 2 любые фазы меняются местами. Таким образом, если при включенном КМ1 нажать кнопку КнП «лево», пуск не произойдет. Самошунтирование обеспечено вспомогательным контактом, изображенным под КнП «право». Когда пускатель включен, замкнут и этот контакт, обеспечивая питание на катушку пускателя.

Для того чтобы остановить двигатель, необходимо нажать КнС («стоп»), вследствие чего катушка пускателя потеряет питание и придет в нормальное состояние. Теперь, когда КМ1 пришел в нормальное состояние, он замкнул нормально замкнутую группу вспомогательных контактов, благодаря чему катушка пускателя КМ2 снова может получать питание, и стало возможно запустить вращение в противоположную сторону. Для этого нажмем КнП «лево», тем самым включая пускатель КМ2. Получая питание, катушка втягивает сердечник и замыкает силовые контакты, включая питание на двигатель, сменив 2 фазы местами.

Разбирая работу данной схемы реверсивного пуска двигателя, можно заметить что шунтирование обеспечено нормально разомкнутым вспомогательным контактом, изображенным под кнопкой КнП «лево», и оно разрывает питание на пускатель КМ1, делая невозможным его включение.

Выше была рассмотрена схема для трехфазного привода. В самом начале схемы сразу после КнС можно увидеть нормально замкнутый контакт от реле тока. В случае потребления двигателем чрезмерного тока, реле срабатывает, разрывая питание на всю цепь управления. Все, что работает в цепи управления, потеряет питание, это и спасет двигатель от выхода из строя.

Подробнее о взаимоблокировке

Электрическая схема реверсивного пуска асинхронного двигателя требует наличия взаимоблокировки. Стоит понимать, что для смены направления вращения асинхронного двигателя нужно сменить любые 2 фазы местами. Для этого входы пускателей соединяются прямо, а выход соединяется накрест любые 2 фазы. В случае включения обоих пускателей одновременно произойдет короткое замыкание, которое, скорее всего, спалит силовые контактные группы на пускателях.

Вам будет интересно: Закон Бойля-Мариотта: формула и пример задачи

Для того чтобы избежать короткого замыкания при монтаже реверсивного пуска двигателя, нужно исключить одновременную работу обоих пускателей. Именно поэтому необходимо применять схему взаимоблокировки. При включенном первом пускателе разрывается питание на второй пускатель, чем и исключается его случайное включение, к примеру, одновременно нажаты обе кнопки «пуск».

Если так вышло, что при нажатии кнопки, которая должна включить «вращение вправо», а двигатель вращается влево, и, наоборот, при нажатии «вращение влево» двигатель вращается вправо, не стоит собирать заново всю схему. Просто поменяйте местами на вводе 2 провода – вот и все, проблема решена.

Может случиться так, что на вводе это сделать невозможно по каким-либо обстоятельствам. В таком случае смените местами 2 провода в клейменной коробке на двигателе. И снова проблема решена. Кнопка, отвечающая за вращение вправо, запустит вращение вправо, а кнопка, отвечающая за вращение влево, запустит вращение влево.

Монтажная схема реверсивного пуска двигателя асинхронного (однофазного)

Выше показана схема реверсивного подключения однофазного двигателя. Данная схема реверсивного пуска двигателя намного проще предыдущей. Здесь используется 3-позиционный выключатель.

Описание схемы реверсивного подключения однофазного двигателя

В позиции 1 сетевое напряжение передается на левую ножку конденсатора, благодаря чему двигатель вращается, условно говоря, влево. В положении 2 питание поступает на правую ножку конденсатора, благодаря чему двигатель вращается, условно выражаясь, вправо. В среднем положении двигатель остановлен.

РТ здесь устроено намного проще. Как видим, и здесь исключено одновременное включение 3-позиционным выключателем. Для тех, кого интересует вопрос, а что же, все-таки, произойдет при одновременном включении, ответим просто: двигатель выйдет из строя.

Схема реверсивного включения без самошунтирования

Подробнее о схеме управления пуском реверсивного асинхронного двигателя мы расскажем вам так. При нажатии кнопки КнП «право» питание поступает через нормально замкнутый контакт КнП «лево», а благодаря механическому соединению разрывает питание пускателя КМ2, исключая возможность включения КМ2 при одновременном нажатии 2-х кнопок. Далее ток течет к нормально замкнутому контакту пускателя КМ2 на катушку пускателя КМ1, вследствие чего он срабатывает, включая питание на двигатель. Реверс включается КнП «лево», которая так же своими нормально замкнутыми контактами разрывает питание пускателя КМ1, а нормально разомкнутым включает питание пускателя КМ2. Тот, в свою очередь, включает питание на двигатель, но со сменой 2-х фаз местами.

Обратим внимание на схему управления. А точнее, на взаимоблокировку. Она здесь устроена немного по-другому. Питание одного пускателя, мало того что заблокировано нормально замкнутым контактом противоположного пускателя, так еще и блокируется нажатием кнопки. Это сделано для того, чтоб при одновременном нажатии 2-х кнопок за те доли секунды, пока пускатель не разорвет питание второго пускателя, они не включились одновременно.

Для однофазного двигателя схема

При нажатии и удержании одной кнопки происходит разрыв питания на вторую кнопку, питание подходит к 1-й ножке конденсатора. При нажатии второй кнопки питание разрывается после первой кнопки и поступает на 2-ю ножку конденсатора. РТ все так же защищает двигатель от перегрузок.

Заключение

В заключение можно отметить, что, где бы вы ни применяли подобные схемы, обращайте внимание на взаимоблокировку. Это та необходимая мера, которая защитит оборудование от поломки. Кроме того, нужно правильно подбирать пускатели для трехфазных вариантов, и кнопки для однофазных вариантов. Ведь неправильно подобранное оборудование по мощности, току и напряжению, быстро придет в негодность, еще и может вывести из строя двигатель.

{SOURCE}

Схемы подключения магнитного пускателя для управления асинхронным электродвигателем

 

Магнитный пускатель представляет собой простейший комплект аппаратов для дистанционного управления электродвигателями и кроме самого контактора часто имеет кнопочную станцию и аппараты защиты.

Схема подключения нереверсивного магнитного пускателя

На рис. 1, а, б показаны соответственно монтажная и принципиальная схемы включения нереверсивного магнитного пускателя для управления асинхронным электродвигателем с короткозамкнутым ротором. На монтажной схеме границы одного аппарата обводят штриховой линией. Она удобна для монтажа аппаратуры и поиска неисправностей. Читать эти схемы трудно, так как они содержат много пересекающихся линий.

Рис. 1. Схема включения нереверсивного магнитного пускателя: а — монтажная схема включения пускателя, электрическая принципиальная схема включения пускателя

На принципиальной схеме все элементы одного магнитного пускателя имеют одинаковые буквенно-цифровые обозначения. Это позволяет не связывать вместе условные изображения катушки контактора и контактов, добиваясь наибольшей простоты и наглядности схемы.

Нереверсивный магнитный пускатель имеет контактор КМ с тремя главными замыкающими контактами (Л1 — С1, Л2 — С2, Л3 — С3) и одним вспомогательным замыкающим контактом (3-5).

Главные цепи, по которым протекает ток электродвигателя, принято изображать жирными линиями, а цепи питания катушки пускателя (или цепи управления) с наибольшим током — тонкими линиями.

Принцип действия схемы включения нереверсивного магнитного пускателя

Для включения электродвигателя М необходимо кратковременно нажать кнопку SB2 «Пуск». При этом по цепи катушки магнитного пускателя, потечет ток, якорь притянется к сердечнику. Это приведет к замыканию главных контактов в цепи питания электродвигателя. Одновременно замкнется вспомогательный контакт 3 — 5, что создаст параллельную цепь питания катушки магнитного пускателя.

Если теперь кнопку «Пуск» отпустить, то катушка магнитного пускателя будет включена через собственный вспомогательный контакт. Такую схему называют схемой самоблокировки. Она обеспечивает так называемую нулевую защиту электродвигателя. Если в процессе работы электродвигателя напряжение в сети исчезнет или значительно снизится (обычно более чем на 40% от номинального значения), то магнитный пускатель отключается и его вспомогательный контакт размыкается.

После восстановления напряжения для включения электродвигателя необходимо повторно нажать кнопку «Пуск». Нулевая защита предотвращает непредвиденный, самопроизвольный пуск электродвигателя, который может привести к аварии.

Аппараты ручного управления (рубильники, конечные выключатели) нулевой защитой не обладают, поэтому в системах управления станочным приводом обычно применяют управление с использованием магнитных пускателей.

Для отключения электродвигателя достаточно нажать кнопку SB1 «Стоп». Это приводит к размыканию цепи самопитания и отключению катушки магнитного пускателя.

Схема подключения реверсивного магнитного пускателя

В том случае, когда необходимо использовать два направления вращения электродвигателя, применяют реверсивный магнитный пускатель, принципиальная схема которого изображена на рис. 2, а.

Рис. 2. Схемы включения реверсивного магнитного пускателя

Принцип действия схем включения реверсивного магнитного пускателя

Для изменения направления вращения асинхронного электродвигателя необходимо изменить порядок чередования фаз статорной обмотки.

В реверсивном магнитном пускателе используют два контактора: КМ1 и КМ2. Из схемы видно, что при случайном одновременном включении обоих контакторов в цепи главного тока произойдет короткое замыкание. Для исключения этого схема снабжена блокировкой.

Если после нажатия кнопки SB3 «Вперед» к включения контактора КМ1 нажать кнопку SB2 «Назад», то размыкающий контакт этой кнопки отключит катушку контактора КМ1, а замыкающий контакт подаст питание в катушку контактора КМ2. Произойдет реверсирование электродвигателя.

Электрическая схема цепи управления реверсивного пускателя с блокировкой на вспомогательных размыкающих контактах изображена на рис. 2, б.

В этой схеме включение одного из контакторов, например КМ1, приводит к размыканию цепи питания катушки другого контактора КМ2. Для реверса необходимо предварительно нажать кнопку SB1 «Стоп» и отключить контактор КМ1. Для надежной работы схемы необходимо, чтобы главные контакты контактора КМ1 разомкнулись раньше, чем произойдет замыкание размыкающих вспомогательных контактов в цепи контактора КМ2. Это достигается соответствующей регулировкой положения вспомогательных контактов по ходу якоря.

В серийных магнитных пускателях часто применяют двойную блокировку по приведенным выше принципам. Кроме того, реверсивные магнитные пускатели могут иметь механическую блокировку с перекидным рычагом, препятствующим одновременному срабатыванию электромагнитов контакторов. В этом случае оба контактора должны быть установлены на общем основании.

Реверсивный магнитный пускатель — особенности подключения и принцип работы

В современном мире всё более популярным становится использование разнообразного дополнительного оборудования обеспечивающего дистанционное управление самыми разными аппаратами. Среди них весьма востребован реверсивный магнитный пускатель, который осуществляет удаленное управление трехфазными асинхронными электродвигателями, при этом есть возможность произвести как их пуск, так и торможение. Кроме того при помощи реверсивного магнитного пускателя доступно управление любым потребителем питания (освещением, охлаждением, обогревом и т.д.).


Конструктивно реверсивный магнитный пускатель состоит из следующих элементов:


1. Контактор.
2. Тепловое реле.
3. Кожух.
4. Инструменты управления.

 

Принцип работы реверсивного магнитного пускателя

 

Подключение реверсивного магнитного пускателя и его работа происходит следующим образом. После осуществления команды «пуск» на панели управления устройства электрическая цепь замыкается, вследствие чего ток подаётся на катушку. В это время механическая блокирующая система срабатывает, подобным образом блокируются незадействованные контакты. Так как контакты кнопки тоже оказываются заблокированными, подобное действие позволяет не удерживать кнопку, а спокойно отпустить её. Вторая кнопка реверсивного магнитного пускателя, параллельно с запуском устройства, размыкает цепь, таким образом, её активация не даст никакого результата.

 

 

Для осуществления реверса необходимо активировать кнопку «стоп», нажатие которой обесточит обе катушки реверсивного магнитного пускателя, тем самым остановив функциональные операции оборудования. При таком действии все блокирующие устройства займут изначальное положение. Подобная последовательность позволяет активировать реверсивный магнитный пускатель вновь, без каких либо дополнительных действий. При выборе команды «пуск» произойдут вышеописанные действия, однако при этом будет использована вторая катушка, а первая окажется заблокированной.


Наиболее совершенный и безопасный реверсивный магнитный пускатель оснащен дополнительными блокировочными системными механизмами. Размещаются данные приспособления для блокирования рабочего момента, как правило, внутри кожуха (непосредственно под панелью управления) и предназначены для того чтобы не допустить срабатывания сразу обеих катушек. Согласно схеме реверсивного магнитного пускателя, если он снабжен электрической блокирующей системой, то использование механических блокировок вовсе необязательно.

 

 

Осуществление реверса происходит через полную остановку двигателя. Другими словами, при срабатывании реверсивного магнитного пускателя двигатель замедляется, после чего следует полная остановка, а затем осуществляется вращение в другую сторону. Однако при этом необходимо совпадение мощностей двигателя и реверсивного магнитного пускателя. Только при осуществлении данного процесса, реверс будет осуществлён правильно.

 

 

 

Если же остановка и реверс двигателя производится противовключением, то мощность оборудования должна быть значительно ниже максимально допустимой мощности реверсивного магнитного пускателя. Наиболее часто двигатель уступает по мощности пускателю в 1,5-2 раза. Во многом разница мощностей зависит от качества контактов магнитного пускателя, а точнее их износостойкости при работе в данных условиях.


Данный режим должен проходить без применения механических систем блокировки. Однако безопасность работы реверсивного магнитного пускателя в обязательном порядке должна обеспечиваться применением электрических систем блокировки. В целом же реверсивные магнитные пускатели являются технологичным и безопасным методом удалённого управления асинхронными электродвигателями.

Управление вперед-назад



ЦЕЛИ :

  • Обсудите меры предосторожности, которые необходимо соблюдать при реверсивных цепях.
  • Объясните, как реверсировать трехфазный двигатель.
  • Обсудите методы блокировки.
  • Подключить цепь управления двигателем вперед-назад.

Направление вращения любого трехфазного двигателя можно изменить на противоположное. замена любых двух выводов двигателя T (рис. 1). Поскольку двигатель подключен к линия электропередачи независимо от того, в каком направлении она работает, отдельный контактор необходимо для каждого направления.Если реверсивные стартеры соответствуют NEMA стандартов, Т-отведения 1 и 3 будут изменены (рис. 2). Поскольку только один мотор работает, однако для защиты требуется только одно реле перегрузки. мотор. Истинно реверсивные контроллеры содержат два отдельных контактора и одно реле перегрузки. Некоторые реверсивные пускатели будут использовать один отдельный контактор и пускатель со встроенным реле перегрузки.

В других используются два отдельных контактора и отдельное реле перегрузки. Вертикаль Реверсивный пускатель с перегрузкой показан на рис.3 и горизонтальный Реверсивный стартер без реле перегрузки показан на рис. 4.


Рис. 1 Направление вращения любого трехфазного двигателя можно изменить. путем обратного подключения к любым двум выводам двигателя T.

Блокировка

Блокировка предотвращает выполнение некоторых действий до тех пор, пока не будут выполнены другие. было выполнено. В случае реверсивного пускателя блокировка используется для предотвращения одновременного включения обоих контакторов.

Это приведет к замыканию двух из трех фазных линий вместе. В результате блокировки один контактор должен быть обесточен раньше другого. может быть под напряжением.

Есть три метода, которые можно использовать для обеспечения блокировки. Многие реверсивное управление использует все три.

Механическая блокировка

Большинство реверсивных контроллеров содержат как механические, так и электрические блокировки. блокировки.Механическая блокировка осуществляется с помощью контакторов. для управления механическим рычагом, который предотвращает замыкание другого контактора пока один находится под напряжением. Механические блокировки поставляются производителем и встроены в реверсивные пускатели. На принципиальной схеме механический блокировки показаны пунктирными линиями от каждой катушки, соединенной сплошной линия (илл. 5).

Электрическая блокировка

Доступны два метода электрической блокировки.Один метод выполнен с использованием кнопок двойного действия (рис. 6). Пунктирные линии нарисованы между кнопками означает, что они механически связаны. Обе кнопки будут нажаты одновременно. Нормально закрытая часть кнопки ВПЕРЕД подключен последовательно с катушкой R, а нормально замкнутая часть кнопки REVERSE подключена последовательно с F-катушкой. Если двигатель должен вращаться в прямом направлении и нажата кнопка REVERSE, нормально замкнутая часть нажатия кнопка откроет и отключит катушку F от линии до нормального открытая часть закрывается для подачи питания на катушку R.Нормально закрытая секция либо Нажатие кнопки действует на схему так же, как нажатие кнопки СТОП.

Второй способ электрической блокировки осуществляется путем подключения нормально замкнутые вспомогательные контакты на одном контакторе последовательно с катушку другого контактора (рис. 7). Предположим, что нажатие FORWARD кнопка нажата, и катушка F. Это приводит к изменению всех контактов F должность.

Три контакта нагрузки F замыкаются и подключают двигатель к сети.В нормально разомкнутый вспомогательный контакт F замыкается для поддержания цепи, когда Кнопка ВПЕРЕД отпущена, и нормально замкнутый вспомогательный контакт F. последовательно соединенные с катушкой R размыкаются (рис. 8).

Если требуется обратное направление вращения, кнопка СТОП должна быть нажата в первую очередь. Если сначала нажать кнопку REVERSE, теперь открытый вспомогательный контакт F, подключенный последовательно с катушкой R, предотвратить создание полной цепи.

Однако после нажатия кнопки СТОП катушка F обесточивается, и все контакты F возвращаются в свое нормальное положение. Кнопка REVERSE теперь можно нажать, чтобы активировать катушку R (рис. 9). Когда катушка R находится под напряжением, все контакты R меняют положение. Три контакта нагрузки R замыкаются и подключаются. мотор в линию. Обратите внимание, однако, что два Т-образных вывода двигателя подключен к разным линиям. Нормально замкнутый вспомогательный контакт R размыкается для предотвращения возможности подачи питания на катушку F до тех пор, пока катушка R не будет обесточена.


Рис. 2 Реверсивные магнитные пускатели обычно заменяют Т-выводы 1 и 3 на перевернуть мотор.

Разработка электрической схемы

Та же самая основная процедура используется для разработки электрической схемы из схематично, как и в предыдущих разделах. Необходимые компоненты для построения этой схемы показаны на рис. 10. В этом примере предположим, что что два контактора и отдельное трехфазное реле перегрузки должны быть использовал.

Первым шагом является нанесение номеров проводов на принципиальную схему. Предлагаемый последовательность нумерации показана на рис. 11. Следующим шагом является размещение провода номера рядом с соответствующими компонентами электрической схемы (илл. 12).

Реверсивные однофазные двухфазные двигатели

Для изменения направления вращения однофазного двигателя с расщепленной фазой, либо выводы пусковой обмотки, либо выводы ходовой обмотки, но не оба вместе, взаимозаменяемы.Принципиальная схема прямого-обратного управления для Однофазный двигатель с расщепленной фазой показан на рис. 13. Обратите внимание, что система управления сечение такое же, как и для реверсивных трехфазных двигателей. В этом Например, вывод обмотки T1 всегда будет подключен к L1, а T4 будет всегда быть подключенным к L2.

Однако провода пусковой обмотки будут заменены.

Когда на контактор прямого хода подается питание, вывод пусковой обмотки Т5 будет отключен. подключен к L1, а T8 будет подключен к L2.Когда реверсивный контактор находится под напряжением, вывод пусковой обмотки T5 будет подключен к L2, а T8 будет быть подключенным к L1.


Рис. 3 Пускатель реверсивный вертикальный с реле перегрузки.


Рис. 4 Горизонтальный реверсивный пускатель.


Рис. 5 Механические блокировки обозначены продолжающимися пунктирными линиями. с каждой катушки.


Рис. 6 Блокировка с помощью кнопок двойного действия.


Ил.7 Электрическая блокировка также выполняется при нормально замкнутом вспомогательные контакты.


Рис. 8 Двигатель работает в прямом направлении.


Рис. 9 Двигатель работает в обратном направлении.


Рис. 10 Компоненты, необходимые для создания реверсивного управления.


Рис. 11 Размещение чисел на схеме.


Рис. 12 Компоненты, необходимые для построения цепи управления реверсом.


ил.13 Реверс однофазного двигателя с расщепленной фазой.

ВИКТОРИНА :

1. Как можно изменить направление вращения трехфазного двигателя?

2. Что такое блокировка?

3. Ссылаясь на схему, показанную на рис. 7, как эта схема будет работать если нормально замкнутый R-контакт, подключенный последовательно с F-катушкой, были подключены нормально открытый?

4. Какая была бы опасность, если бы она была подключена, как указано? в вопросе 3?

5.Как бы схема работала, если бы нормально замкнутые вспомогательные контакты были подключены так, что контакт F был подключен последовательно с катушкой F, а контакт R был подключен последовательно с катушкой R, рис. 7?

6. Предположим, что схема, показанная на рис. 7, должна быть подключена, как показано в рис. 14. Каким образом работа схемы будет отличаться, если вообще?


Рис. 14 Положение удерживающих контактов изменено с этого в Ил.7.

Методы блокировки для реверсивного управления

Цели

После изучения данного раздела студент сможет:

• Объясните назначение различных методов блокировки

• Чтение и интерпретация электрических схем и схем реверсивного управления

• Прочтите и интерпретируйте электрические и линейные схемы блоков управления

• Проводка и устранение неисправностей реверсивного и блокировочного управления

Направление вращения трехфазных двигателей можно изменить, переставив любые два вывода двигателя на линию.Если должны использоваться устройства магнитного управления, то реверсивные пускатели выполняют реверсирование направления двигателя, рис. 39-IA. Реверсивные пускатели, подключенные в соответствии со стандартами NEMA на линиях обмена L1 и L3, рисунок 39-IB. Для этого требуются два контактора для узла стартера — один для прямого направления и один для обратного направления, рисунок 39-IC. Метод, называемый блокировкой , используется для предотвращения одновременного включения контакторов или их замыкания вместе, что вызывает короткое замыкание.Есть три основных метода блокировки.

МЕХАНИЧЕСКАЯ БЛОКИРОВКА

Механическое блокировочное устройство монтируется на заводе между прямым и обратным контакторами. Эта блокировка блокирует один контактор в начале хода любого контактора, чтобы предотвратить короткое замыкание и выгорание.

Механическая блокировка между контакторами представлена ​​на элементарной схеме рисунка 39-2 пунктирной линией между катушками. Пунктирная линия указывает на то, что катушки F и R не могут замкнуть контакты одновременно из-за механического блокирующего действия устройства.

Когда катушка прямого контактора (F) находится под напряжением и замыкается нажатием кнопки вперед, механическая блокировка предотвращает случайное замыкание катушки R. Стартер F блокируется катушкой R таким же образом. Первая закрываемая катушка перемещает рычаг в положение, которое не позволяет другой катушке замкнуть свои контакты, когда на нее подано напряжение. Если недосмотр позволяет второй катушке оставаться под напряжением, не замыкая ее контакты, избыточный ток в катушке из-за отсутствия надлежащего

Индуктивное сопротивление

приведет к повреждению катушки.

Обратите внимание на элементарную диаграмму рисунка 39-2, что кнопка останова должна быть нажата, прежде чем двигатель можно будет реверсировать.

Реверсивные пускатели доступны в горизонтальном и вертикальном исполнении. Вертикальный пускатель показан на рисунке 39-3A.

jority реверсивных пускателей в дополнение к использованию одного или обоих следующих электрических методов: блокировка кнопок и блокировка вспомогательных контактов.

БЛОКИРОВКА КНОПКИ Блокировка кнопок

— это электрический метод предотвращения одновременного включения обеих катушек стартера.

Когда нажата кнопка вперед на рисунке 39-3B, катушка F находится под напряжением, и нормально открытый (NO) контакт F замыкается, удерживая передний контактор. Поскольку в кнопочных блоках прямого и обратного хода используются нормально замкнутые (NC) контакты, нет необходимости нажимать кнопку останова перед изменением направления вращения. Если кнопка реверса нажимается, когда двигатель вращается в прямом направлении, цепь управления передним ходом обесточивается, а контактор заднего хода включается и удерживается замкнутым.

Повторное изменение направления вращения двигателя не рекомендуется. Такое реверсирование может привести к перегреву реле перегрузки и пусковых предохранителей; это отключает двигатель от цепи. Также может быть повреждена ведомая машина. Возможно, потребуется подождать, пока двигатель не остановится выбегом.

Спецификации

NEMA требуют снижения номинальных характеристик стартера. То есть, стартер на следующий размер больше должен быть выбран, когда он будет использоваться для «блокировки» до остановки или «реверсирования» со скоростью более пяти раз в минуту.

Реверсивные пускатели, состоящие из устройств с механической и электрической блокировкой, предпочтительны для максимальной безопасности.

БЛОКИРОВКА ДОПОЛНИТЕЛЬНОГО КОНТАКТА

Другой метод электрической блокировки состоит из нормально замкнутых вспомогательных контактов на контакторах прямого и обратного хода реверсивного стартера, рисунок 39-4.

Когда двигатель вращается вперед, замыкающий контакт (F) на контакторе прямого хода размыкается и предотвращает включение контактора обратного хода по ошибке или замыкание.То же самое происходит, если двигатель вращается в обратном направлении.

Термин блокировка, также обычно используется в отношении контроллеров двигателей и станций управления, которые связаны между собой для обеспечения управления производственными операциями.

Чтобы изменить направление вращения однофазных двигателей, либо , либо провода пускового или двигателя ходовой обмотки меняются местами, но не оба вместе. Рисунок 39-SA завершает электрическую схему однофазного четырехпроводного асинхронного двигателя с расщепленной фазой; рисунок 39-SB — схема подключения однофазного вертикального пускателя; и фиг. 39-SC представляет собой линейную схему соединений.

ПРОСМОТРЕТЬ ВОПРОСЫ

1. Как осуществляется изменение направления вращения трехфазного двигателя?

2. Какова цель блокировки?

3. Что произойдет, если обе кнопки запуска будут нажаты в элементе управления с блокировкой кнопок? Почему?

4. Как достигается блокировка вспомогательного контакта на реверсивном пускателе?

5. Когда передняя катушка находится под напряжением, в каком положении находится передняя блокировка (F)?

6.Если механическая блокировка является единственным используемым средством блокировки, опишите операцию, которая должна выполняться, чтобы изменить направление вращения двигателя во время работы.

7. Если контрольные лампы должны указывать направление вращения двигателя, где должны быть подключены устройства, чтобы не добавлять контакты?

8. Какова последовательность операций, если на рисунке 39-4 используются концевые выключатели?

9. Что произойдет на рисунке 39-4, если установлены концевые выключатели и не удалены перемычки с клемм 6 и 7 на катушки?

10.Вместо кнопок на рисунке 39-2 нарисуйте селекторный переключатель для управления остановкой вперед и назад. Покажите целевую таблицу для этого переключателя.

11. По элементарному чертежу на рис. 39-6 определите номер и идентификацию клемм проводки в каждом кабелепроводе в схеме кабелепровода. Укажите свои решения так же, как в примере, приведенном под выключателем-разъединителем.

12. Преобразуйте только схему управления, рисунок 39-7, из электрической схемы в простую.Включите концевые выключатели (RLS, FLS) как работающие в цепи управления.

Входящие поисковые запросы:
ПЛК

Реализация цепи двигателя прямого / обратного хода с блокировкой

Блокировка двигателя прямого / обратного хода

На рис. 1 показана проводная схема двигателя прямого / обратного хода с электрическими и кнопочными блокировками . Применение ПЛК

для цепи прямого / обратного двигателя (на фото: VARICON — трехфазный двигатель переменного тока со встроенным преобразователем частоты через usinenouvelle.com)

На рисунке 2 показана упрощенная схема подключения этого двигателя. Реализация этой схемы ПЛК должна включать использование контактов перегрузки для контроля возникновения состояния перегрузки.

Вспомогательные контакты стартера (M1 и M2) не требуются в программе ПЛК, поскольку контуры уплотнения могут быть запрограммированы с использованием внутренних контактов с выходов двигателя.

Рисунок 1 — Проводная прямая / обратная цепь двигателя

Защита от низкого напряжения может быть реализована с использованием входа контакта перегрузки, так что в случае перегрузки цепь двигателя отключится.Однако после прохождения условия перегрузки оператор должен снова нажать кнопку прямого или обратного хода, чтобы перезапустить двигатель.

Рисунок 2 — Схема подключения двигателя прямого / обратного хода

Для простоты реализация схемы на рисунке 1 с помощью ПЛК включает все элементы проводной схемы, даже несмотря на то, что дополнительные контакты стартера (нормально замкнутые R и F в проводной схеме) цепи) не требуются, поскольку блокировка кнопок выполняет ту же задачу.

В проводной схеме эта избыточная блокировка выполняется как процедура резервной блокировки .

Рисунок 3 — Реальные входы и выходы для ПЛК

На рисунке 3 показаны полевые устройства, которые будут подключены к ПЛК. Кнопка остановки имеет адрес 000, а нормально открытые стороны кнопок прямого и обратного хода имеют адреса 001 и 002 соответственно. Контакты перегрузки подключены к входному модулю по адресу 003.

Выходные устройства — пускатели прямого и обратного хода и их соответствующие блокирующие вспомогательные контакты — имеют адресов 030 и 032 .Световые индикаторы прямого и обратного хода имеют адрес 031 и 033 соответственно.

Кроме того, световые индикаторы перегрузки имеют адреса 034 и 035 , указывая на то, что состояние перегрузки возникло во время работы двигателя в прямом или обратном направлении. Адреса для блокировки вспомогательных контактов с использованием контактов R и F являются выходными адресами прямого и обратного пускателей (030 и 032) .Релейная схема, которая фиксирует состояние перегрузки (вперед или назад), должна быть запрограммирована перед цепями, которые управляют прямым и обратным пускателями, как мы вскоре объясним. В противном случае программа ПЛК никогда не распознает сигнал перегрузки, потому что стартер будет отключен в цепи во время того же сканирования, когда произойдет перегрузка.

Если цепь фиксации находится за цепью пускателя двигателя, фиксация никогда не произойдет , потому что контакты стартера будут разомкнуты и целостность цепи не будет .

Таблица 1 показывает реальное назначение адресов ввода / вывода для этой схемы. На рис. 4 показана реализация ПЛК, которая следует той же логике, что и проводная схема, и добавляет дополнительные блокировки контактов перегрузки.

Таблица 1 — Назначение адресов ввода / вывода

M2
Адрес ввода / вывода
Тип модуля Стойка Группа Клемма Описание
Вход 0 0 Останов PB (проводной NC)
0 0 1 Fowrward PB (проводной NO)
0 0 2 обратный
0 0 3 Контакты перегрузки
Вход 0 0 4 Подтверждение OL / Сброс PB
Выход 0 3 90 325 0 Пускатель двигателя M1 (FWD)
0 3 1 Вперед PL1
0 3 2
3 3 Обратный PL2
Выход 0 3 4 Состояние перегрузки FWD
0 3 0 3 3 6
0 3 7

Обратите внимание, что в цепи двигателя также используется вход перегрузки , который отключит двигатель .Нормально замкнутые контакты перегрузки запрограммированы как нормально разомкнутые в логике, управляющей выходами пускателя двигателя. Команды прямого и обратного вращения двигателя будут работать нормально, если нет условий перегрузки, потому что контакты перегрузки будут обеспечивать непрерывность.

Однако, если произойдет перегрузка, контакты в программе PLC разомкнутся, и цепь двигателя выключится. Контрольные лампочки индикатора перегрузки (OL Fault Fwd и OL Fault Rev) используют команды фиксации / разблокировки для фиксации, произошла ли перегрузка в прямом или обратном направлении.

Рисунок 4 — Реализация схемы на Рисунке 1 с помощью ПЛК

Опять же, фиксация происходит перед цепями прямого и обратного пускателя двигателя, которые отключатся из-за перегрузки. Дополнительная нормально разомкнутая кнопка сброса подтверждения перегрузки, которая подключена к модулю ввода, позволяет оператору сбрасывать индикаторы перегрузки. Таким образом, индикаторы перегрузки останутся зафиксированными, даже если физические перегрузки остынут и вернутся в свое нормально замкнутое состояние, , пока оператор не подтвердит состояние и не сбросит его .

На рисунке 5 показана электрическая схема двигателя прямой / обратной цепи двигателя и выходные соединения от ПЛК. Обратите внимание, что вспомогательные контакты M1 и M2 не подключены.

Рисунок 5 — Схема подключения двигателя прямого / обратного хода

На этой схеме подключения и прямая, и обратная катушки имеют свои обратные цепи, подключенные к L2 , а не к контактам перегрузки. Контакты перегрузки подключены к L1 с одной стороны и к входному модулю ПЛК с другой ( вход 003 ).В случае перегрузки обе выходные катушки пускателя двигателя будут отключены от цепи, поскольку выход ПЛК на оба пускателя будет ВЫКЛЮЧЕН.


Схема управления двигателем прямого и обратного хода (ВИДЕО)

Не можете посмотреть это видео? Щелкните здесь, чтобы посмотреть его на Youtube.

Ссылка: Ресурс: Введение в программирование ПЛК — www.globalautomation.info

Что такое электрическая блокировка — схемы питания и управления

Электрическая блокировка

Что такое электрическая блокировка?

Чтобы соединить цепь двигателя таким образом, чтобы второй двигатель не запустился, пока первый не запустится, аналогично третий двигатель не запустится, пока второй не запустится, и так далее.Такое соединение цепи двигателя называется блокировкой.

Ниже показана простая схема управления электрической блокировкой.

щелкните изображение, чтобы увеличить

Работа электрической блокировки

Когда мы нажимаем кнопку ON-1 для подачи питания на контактор M1 (или запускаем двигатель M1), затем цепь завершается через предохранитель, перемычка отключения реле перегрузки, ВЫКЛ. Нажмите -1 и ВКЛ. Нажмите 1. И двигатель M1 начнет работать.

При энергиях контактора M1 все нормально закрытые (NC) перемычки разомкнуты, а другие нормально разомкнутые (NO) перемычки, используемые в цепи, замыкаются.

При энергиях m1 нормально разомкнутое (NO) соединение будет немедленно замкнуто, что параллельно с ON-Push 1. Это называется удерживающим звеном, т.е. оно удерживает двигатель в состоянии пуска. Теперь двигатель будет работать, даже если мы оставим (отключим для остановки) кнопку ON-Push 1.

Нормально разомкнутое (NO) соединение также используется в строке 2. Когда M1 подает питание, это соединение (NO M1 в строке 2) будет также будет закрыт, следовательно, двигатель M1 начнет работать, таким образом, подача также достигнет значения ON Push 2. Теперь, если мы нажмем ON-Push 2, второй двигатель M2 также будет запущен в работу, кроме того, нормально разомкнутые (NO) перемычки подключенного контактора M2 в цепи также будут немедленно замкнуты.И удержание будет происходить через соединение M2, которое параллельно с ON-Push 2. Таким образом, двигатель 2 начнет работать.

Обратите внимание, что двигатель 2 не запустится до тех пор, пока не заработает двигатель 1, т.е. пока не замкнется перемычка M1 двигателя 1. Аналогично, двигатель 3 не запустится до тех пор, пока не заработает двигатель 2, т.е. двигатель 3 запустится (нажатием кнопки On-Push of Motor 3 = M3) для работы после запуска двигателя 2.

В каждой цепи управления, предохранителя управления и перегрузки. реле подключаются для защиты от короткого замыкания и перегрузки соответственно.

вы также можете прочитать:

Модификация в цепи управления электрической блокировкой

Это простая схема электрической блокировки. Многие схемы, подобные этой схеме блокировки, используются в промышленности. Блокировка цепи зависит от характера работы и задачи, которую должны выполнять двигатели. Таким образом, мы можем очень легко использовать и изготавливать любые схемы блокировки для любых целей.

Короче говоря, мы можем изменить работу и управление двигателями, внеся некоторые изменения в приведенную выше простую электрическую схему управления блокировкой.Например, если нам нужно, чтобы двигатель 1 останавливался, когда двигатель 3 начинает работать, мы можем использовать нормально замкнутую (NC) перемычку M3 в линии 1. Таким образом, когда контактор M3 срабатывает и двигатель 3 начинает работать, тогда нормально замкнутое (NC) соединение двигателя 1, подключенного к линии 1, немедленно откроется (после подачи питания на контактор M3), что приведет к обесточиванию контактора M1, следовательно, двигатель M1 остановится.

Мы также можем сконфигурировать вышеуказанную схему управления электрической блокировкой с небольшими изменениями для звезды и запустить каждый двигатель индивидуально.

Трехфазные асинхронные двигатели работают с двумя скоростями в одном направлении и двумя скоростями в двух направлениях. Управление двигателем и асинхронные двигатели в обратном направлении — это типы электрической блокировки.

Ниже представлена ​​еще одна электрическая схема управления блокировкой.

щелкните изображение, чтобы увеличить

Схема электрических соединений блокировки контактора

Защита и контроль двигателя, чтобы он работал, вам нужен контроль. Графическая диаграмма, также называемая этикеткой или линейной схемой, предназначена для демонстрации реальной внутренней проводки устройства.




Электрическая блокировка Square DR НЕТ Новый Ebay Send104b




Учебник по разрешающей и блокирующей схемам лестничной логики




Примеры схем безопасности компонентов безопасности Техническое руководство





0 Посмотреть и скачать trane tr руководство по эксплуатации онлайн.


Схема подключения блокировки контактора . 39 полная принципиальная схема небольшого агрегата Westinghouse Electric Corp 8 — графические схемы.Основное и резервное аварийные источники питания нейтрали двух систем должны быть разделены, чтобы обеспечить правильное определение тока замыкания на землю. 5 6 схем документов в целом. Указатель EATON Wiring Manual 0611 11 3 11 электрические схемы контакторных реле. Некоторые советы и подсказки по правильной установке самоклеящихся стяжек и нейлоновых стяжек см. В разделе, посвященном основам подключения, в инструкциях по панели управления, часть 2. Схема подключения клеммной колодки наземного блока управления ansi csa от серийных номеров z30n10 12119 z34n10 8857 и z3410 7774 до z30n13 14695 z34n13 10622 и z3413 9441 161.Люди, предоставляющие эту информацию, могут предоставлять или не предоставлять полностью точную информацию. Информация, представленная ниже, является результатом совместных усилий нескольких человек. Обычно в электрической системе с несколькими соединениями нейтрали с землей, например. Предложение компании Abbs по защите и управлению двигателями является одним из самых широких на рынке. Блокирующие контакты, установленные в предыдущих разделах схемы управления двигателем, работают нормально, но двигатель будет работать только до тех пор, пока каждый кнопочный переключатель удерживается нажатым. Приводы постоянного тока Tr200 скачать инструкцию в формате pdf.Промышленный контроль в самом широком смысле охватывает все методы, используемые для управления работой электрической системы.





Реверсивный контактор в сборе Катушка переменного тока Внешняя блокировка с питанием




Электропроводка реверсивного контактора Электросхема реверсивного стартера Квадрат




Электросхема для новой электрической схемы блокировки Цепь Mccb






00 Проектирование магнитных контакторов Переключатели Электротехника




Цепи управления двигателем Учебник по релейной логике




Примеры схем безопасности компонентов безопасности Техническое руководство






Использование управления двигателем звезда-треугольник с принципиальными схемами Turbofuture




Основы управления двигателем Wiki Odesie By Tech Transfer




Принципиальная схема трехфазного автоматического переключателя






Магнитный контактор стандартного типа Магнитный пуск Серия er Sc и Sw




220 Электрическая схема Схема электрических соединений от 220 В переменного тока до 12 В постоянного тока




Пускатель звезда-треугольник Примечания по электрическим компонентам






Smartstart




Управление двигателем Схемы Лестничная логика Учебник по электронике




Каталог Thiet Bi Dien Abb Contactor Abbdienhathevn 8 638 Jpg Cb



Volume 5 Tab 2

% PDF-1.6 % 462 0 объект > эндобдж 458 0 объект > поток 2019-02-15T16: 41: 24ZPreview2019-02-15T11: 00: 49-06: 002019-02-15T11: 00: 49-06: 00Mac OS X 10.13.6 Quartz PDFContextapplication / pdf

  • Volume 5 Tab 2
  • Контакторы и пускатели NEMA
  • Золтун Дизайн
  • uuid: 2cbd5ff0-44d8-1a4d-9f2f-63cdd6827440uuid: 28aff279-1d5d-e040-bbb7-8508b28ef47d конечный поток эндобдж 434 0 объект > эндобдж 435 0 объект > эндобдж 444 0 объект > эндобдж 453 0 объект > эндобдж 454 0 объект > эндобдж 455 0 объект > эндобдж 456 0 объект > эндобдж 457 0 объект > эндобдж 385 0 объект > / ExtGState> / Font> / ProcSet [/ PDF / Text] >> / Rotate 0 / Type / Page >> эндобдж 386 0 объект > поток HWYo + xNf’k’Er!) Z-Z.6 {«JҧB; | 3 + JGi ߗ?!: TR *» ? BfQh ~, $ v_Fcʼn7

    5 / Zrlê˿ = * ؃ h) | 4ĉ YlQ + ֜ v} h — (w _ # = Xt’J *% V «ÆCWNchzX% 0 aS2% uX} w1tIv / Ou! q F-PhE \ ### a = `Qhq’Ӕ8pJ $ & $ zu (l (Z80 # suloOpE0r M`L + bErK7 $ MĐ³`Oq񗆐H`0Orf bD FgX $ Z! P: 9) VjZ] hŚ:% 4 + / BgUf3> $ ujf + bPVB

    Как достигается блокировка вспомогательных контактов на реверсивном пускателе?

    Только те розетки на кухне, которые должны иметь защиту от GFCI, например, те, которые обслуживают счетчик …

    EBK ЭЛЕКТРОПРОВОДКА ЖИЛАЯ

    При обсуждении автомобильных выбросов: Техник A говорит, что выбросы кислорода контролируются, потому что они являются…

    Автомобильные технологии: системный подход (список курсов MindTap)

    Выходная мощность водяной турбины определяется как P = gQh, где P = мощность = плотность воды (кг / м3) g = ускорение …

    Основы инженерного дела: Введение в инженерное дело (список курсов MindTap)

    Краткие практические облигации, выпущенные с премией (эффективный процент) См. Информацию выше для Haley Industri …

    Краеугольные камни финансового учета

    Определите и кратко опишите три приложения мобильной коммерции, которые вы использовали.

    Основы информационных систем

    Было бы этично для Эми открыть такой файл?

    Принципы информационной безопасности (список курсов MindTap)

    Почему так важно предоставлять эффективные отчеты по проекту и коммуникации?

    Системный анализ и проектирование (серия Shelly Cashman) (Список курсов MindTap)

    Используйте данные в таблицах пара, чтобы ответить на следующие вопросы: A. Найдите изменение внутренней энергии при 100 кг …

    Основы химии Инженерная термодинамика (список курсов MindTap)

    Обсудите использование электронной коммерции для контроля расходов на производство, ремонт и эксплуатацию (ТОиР) товаров и товаров…

    Принципы информационных систем (Список курсов MindTap)

    Человек весит 30 фунтов на Луне, где g = 5,32 фута / с2. Определите (а) массу человека; и (b) вес …

    International Edition — Engineering Mechanics: Statics, 4th Edition

    Опишите, как работает система компостирования в резервуаре Kompogas.

    Разработка твердых отходов

    Повторить задачу 2.7 в соответствии с системой USDA (таблица 2.3). 2.7. Приведены характеристики частиц грунта…

    Основы геотехнической инженерии (Список курсов MindTap)

    Какой метод используется для упрочнения низкоуглеродистых сталей?

    Технология прецизионной обработки (список курсов MindTap)

    Что такое программы-вымогатели? Как организация защищает от этого?

    Управление информационной безопасностью

    Создайте реляционную диаграмму для проекта, который вы пересмотрели в задаче 27.

    Системы баз данных: проектирование, внедрение и управление

    Число работников умственного труда в мире намного превышает число тех, кто не владеет знаниями рабочие.Правда или ложь?

    Основы информационных систем

    Стальная балка двутаврового сечения со встроенной кромкой и швеллерами, прикрепленными к фланцам (см. Рисунок, часть а), просто поддерживается …

    Механика материалов (Список курсов MindTap)

    Перечислить последнее имя и имя каждого владельца, который не живет в Боутоне.

    Справочник по SQL

    Гранулометрические характеристики почвы приведены в следующей таблице. а. Изобразите гранулометрический состав …

    Принципы геотехнической инженерии (список курсов MindTap)

    Для каждой таблицы в базе данных укажите первичный ключ и внешний ключ (и).Если в таблице нет …

    Системы баз данных: проектирование, внедрение и управление

    Двухугловой натяжной элемент, 2L431 2 LLBB, соединен с косынкой толщиной 3 8 дюймов с помощью 7 8 -inch-diam …

    Steel Design (активируйте обучение с помощью этих НОВЫХ названий от Engineering!)

    Техник A говорит, что некоторые полуоси удерживаются в корпусе пластиной и болтами. Техник B говорит, что …

    Automotive Technology

    Определите реакции на опорах для показанных конструкций.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *