Схемы и конструкции фонариков и модернизация китайских излучателей
В жизни каждого человека бывают моменты, когда необходимо наличие освещения, а электричества нет. Это может быть и банальное отключение электроэнергии, и необходимость ремонта проводки в доме, а возможно, и лесной поход или что-либо подобное.
И, конечно же, все знают, что в таком случае выручит только электрический фонарик – компактное и в то же время функциональное устройство. Сейчас на рынке электротехники множество различных видов данного товара. Это и обычные фонари с лампами накаливания, и светодиодные, с аккумуляторами и батарейками. Да и фирм, производящих эти приборы, великое множество – «Дик», «Люкс», «Космос» и т. п.
А вот каков принцип его работы, задумываются не многие. А между тем, зная устройство и схему электрического фонарика, можно при необходимости его починить или вообще собрать собственными руками. Вот в этом вопросе и попробуем разобраться.
Простейшие фонари
Так как фонарики бывают разные, то имеет смысл начать с самого простого – с батарейкой и лампой накаливания, а также рассмотреть его возможные неисправности.
По сути, в нем нет ничего, кроме батарейки, кнопки включения и лампочки. А потому и проблем с ним особых не бывает. Вот несколько возможных мелких неприятностей, которые могут повлечь за собой отказ такого фонаря:
- Окисление любого из контактов. Это могут быть контакты выключателя, лампочки или батареи. Нужно просто почистить эти элементы схемы, и приборчик снова заработает.
- Сгорание лампы накаливания – тут все просто, замена светового элемента решит эту проблему.
- Полный разряд батареек – замена элементов питания на новые (либо зарядка, если они аккумуляторные).
- Отсутствие контакта или перелом провода. Если фонарик уже не новый, в таком случае есть смысл поменять все провода. Сделать это совершенно не сложно.
Фонарик на светодиодах
Этот вид фонарей отличается более мощным световым потоком и при этом потребляет очень мало энергии, а значит, и элементы питания в нем прослужат дольше. Все дело в конструкции световых элементов – в светодиодах отсутствует нить накаливания, они не расходуют энергию на нагрев, ввиду этого коэффициент полезного действия таких приборов выше на 80–85%. Также велика роль дополнительного оборудования в виде преобразователя с участием транзистора, резистора и высокочастотного трансформатора.
Если аккумулятор фонарика встроенный, то с ним в комплекте обязательно идет и зарядное устройство.
Схема подобного фонаря состоит из одного или нескольких светодиодов, преобразователя напряжения, выключателя и элемента питания. В более ранних моделях фонариков количество потребления энергии светодиодами должно было соответствовать вырабатываемому источником.
Сейчас эта проблема решена при помощи преобразователя напряжения (его также называют умножителем). Собственно, он-то и является главной деталью, которую содержит электрическая схема фонарика.
При желании сделать такой прибор своими руками особых сложностей не возникнет. Транзистор, резистор и диоды – не проблема. Самым непростым моментом будет намотка высокочастотного трансформатора на ферритовом кольце, который называется блокинг-генератор.
Но и с этим можно справиться, взяв подобное колечко из неисправного электронного пускорегулирующего аппарата энергосберегающей лампы. Хотя, конечно, если не хочется возиться или нет времени, то в продаже можно найти высокоэффективные преобразователи, такие как 8115. С их помощью, при применении транзистора и резистора, и стало возможным изготовление светодиодного фонарика на одной батарейке.
Сама же схема светодиодного фонаря подобна простейшему прибору, и на ней останавливаться не стоит, т. к. собрать ее способен даже ребенок.
Кстати, при применении в схеме преобразователя напряжения на старом, простейшем фонаре, работающем от квадратной батареи в 4.5 вольт, которую сейчас уже не купить, можно будет спокойно ставить элемент питания в 1.5 вольт, т. е. обычную «пальчиковую» или «мизинчиковую» батарею. Никакой потери в световом потоке наблюдаться не будет. Основная задача при этом – иметь хотя бы малейшее представление о радиотехнике, буквально на уровне знания, что такое транзистор, а также уметь держать в руках паяльник.
Доработка китайских фонариков
Иногда бывает так, что купленный (с виду вполне качественный) фонарик с аккумулятором полностью отказывает. И вовсе не обязательно покупатель виноват в неправильной эксплуатации, хотя и это тоже встречается. Чаще – это ошибка при сборке китайского фонарика в погоне за количеством в ущерб качеству.
Конечно, в таком случае придется его переделать, как-то модернизировать, ведь потрачены деньги. Сейчас необходимо понять, как это сделать и возможно ли побороться с китайским производителем и выполнить ремонт такого прибора самостоятельно.
Рассматривая наиболее часто встречающийся вариант, при котором при включении прибора в сеть индикатор зарядки светится, но фонарь не заряжается и не работает, можно заметить вот что.
Обычная ошибка производителя – индикатор заряда (светодиод) включается в цепь параллельно с аккумулятором, чего допускать никак нельзя. При этом покупатель включает фонарь, и видя, что тот не горит, снова подает питание на заряд. В результате – перегорание всех светодиодов разом.
Дело в том, что не все производители указывают, что заряжать подобные устройства с включенными светодиодами нельзя, т. к. отремонтировать их будет невозможно, останется только заменить.
Итак, задача по модернизации – подключить индикатор заряда последовательно с аккумулятором.
Модернизация китайского бракаКак видно из схемы, эта проблема вполне решаема.
А вот если китайцы в свое изделие поставили резистор 0118, то светодиоды придется менять постоянно, т. к. ток, поступающий на них, будет очень высоким, и какие бы световые элементы ни были установлены – они не выдерживают нагрузки.
Налобный светодиодный фонарь
В последние годы подобный световой прибор получил достаточно широкое распространение. Действительно, ведь очень удобно, когда руки свободны, а луч света бьет туда, куда смотрит человек, в этом как раз главное преимущество налобного фонарика. Раньше таким могли похвастаться только шахтеры, да и то для его ношения нужна была каска, на которую фонарь, собственно, и крепился.
Сейчас же крепление подобного прибора удобно, носить его можно при любых обстоятельствах, да и на поясе не висит довольно объемный и тяжелый аккумулятор, который, к тому же, еще и обязательно нужно раз в сутки заряжать. Современный намного меньше и легче, притом имеет очень маленькое энергопотребление.
Так что же представляет собой подобный фонарь? А принцип его работы нисколько не отличается от светодиодного. Варианты исполнения такие же – аккумуляторный или со съемными элементами питания. Количество светодиодов варьируется от 3 до 24 в зависимости от характеристик батареи и преобразователя.
К тому же обычно такие фонари имеют 4 режима свечения, а не один. Это слабый, средний, сильный и сигнальный – когда светодиоды моргают через короткие промежутки времени.
Схема налобного светодиодного фонаряРежимами налобного светодиодного фонарика управляет микроконтроллер. Причем при его наличии возможен даже режим стробоскопа. К тому же светодиодам это совсем не вредит, в отличие от ламп накаливания, т. к. их срок службы не зависит от количества циклов включения-выключения по причине отсутствия нити накаливания.
Так какой же фонарь выбрать?
Конечно, фонарики могут быть различными и по потребляемому напряжению (от 1.5 до 12 В), и с различными выключателями (сенсорный или механический), с наличием звукового оповещения о разряде батареи. Это может быть оригинал или его аналоги. Да и не всегда можно определить, что же за прибор перед глазами. Ведь пока он не выйдет из строя и не начнется его ремонт, нельзя увидеть, какая в нем стоит микросхема или транзистор. Наверное, лучше выбирать тот, который нравится, а возможные проблемы решать уже по мере поступления.
Страница не найдена — ЛампаГид
Светодиоды
Светодиодная лампочка – это чудо-изобретение. Ведь до ее появления при превращении электричества в свет
Светодиоды
Любая техника имеет свой срок службы. ЖК-мониторы тоже не являются исключением. Очень частой поломкой
Люминесцентные лампы
Для освещения больших по площади территорий часто используется несколько устаревшая, но довольно эффективная лампа ДРЛ.
Монтаж
Для освещения зала или гостиной комнаты часто устанавливается такой осветительный прибор, как люстра. Она
Компоненты
Любая электронная схема вне зависимости от назначения имеет в своем составе большое количество элементов,
Светодиоды
Галогенные светильники уже очень давно и прочно осели на рынке электротехники. И даже сейчас,
Страница не найдена — ЛампаГид
Квартира и офис
Электричество, в частности электрическое освещение, является обязательным атрибутом в нашей повседневной жизни. Трудно встретить
Светодиоды
С тех пор как появились более экономичные, чем лампы накаливания, светильники, у многих есть
Прочее
Датчики движения в повседневной жизни активно применяются в системах охраны и сигнализации, для экономного
Люминесцентные лампы
Ни для кого не секрет, что люминесцентные лампы давно и прочно вошли в нашу
Лампы накаливания
Сила света в помещении не только связана с каким-то занятием или работой, которая выполняется,
Компоненты
Прошли времена вводных радиодеталей, при помощи которых радиолюбитель ремонтировал ламповые телевизоры и старые радиоприемники.
Страница не найдена — ЛампаГид
Светодиоды
Какими бы современными и качественными ни были используемые в помещении лампочки и иные осветительные приборы,
Монтаж
Фонарик – это необходимая вещь при поездках на природу или за город на дачу.
Квартира и офис
Как работает выключатель с подсветкой? Разобраться несложно, так как схема подключения его довольно проста.
Светодиоды
Технический прогресс шагает семимильными шагами. Всё новые и новые технологии прочно входят в жизнедеятельность
Квартира и офис
Если человек способен самостоятельно в домашних условиях создавать неплохие вещи, скорее всего, он попробует
Светодиоды
Все прочнее укрепляются позиции диодного освещения на рынке электротехники. И это не случайно, ведь
Фонарь светодиодный – ремонт, схема, замена аккумулятора
Для безопасности и возможности продолжать активную деятельность в темное время суток человек нуждается в искусственном освещении. Первобытные люди раздвигали темень, поджигая ветки деревьев, далее придумали факел и керосинку. И только после изобретения французским изобретателем Джорджем Лекланше в 1866 году прототипа современной батарейки, а в 1879 году Томсоном Эдисоном лампы накаливания, у Дэвида Майзела появилась возможность запатентовать 1896 году первый электрический фонарь.
С тех пор в электрической схеме новых образцов фонарей ничего не изменялось, пока в 1923 году российский ученый Олег Владимирович Лосев не нашёл связь люминесценции в карбиде кремния и p-n-переходе, а в 1990 году ученым не удалось создать светодиод с большей светоотдачей, позволяющий заменить лампочку накаливания. Применение светодиодов вместо ламп накаливания, благодаря низкому энергопотреблению светодиодов, позволило многократно увеличить время работы фонарей при той же емкости батареек и аккумуляторов, повысить надежность фонариков и практически снять все ограничения на область их использования.
Светодиодный аккумуляторный фонарь, который Вы видите на фотоснимке попал мне в ремонт с жалобой, что купленный на днях китайский фонарик Lentel GL01 за $3, не светит, хотя индикатор заряда аккумулятора светится.
Внешний осмотр фонаря произвел положительное впечатление. Качественное литье корпуса, удобная ручка и выключатель. Стержни вилки для подключения к бытовой сети для зарядки аккумулятора сделаны выдвижными, что исключает необходимость хранения сетевого шнура.
Внимание! При разборке и ремонте фонаря, если он подключен к сети следует соблюдать осторожность. Прикосновение к оголенным участкам схемы подключенной к электрической сети может привести к поражению электрическим током.
Как разобрать светодиодный аккумуляторный фонарь Lentel GL01
Хотя фонарик подлежал гарантийному ремонту, но вспоминая свои хождения при при гарантийном ремонте отказавшего электрочайника (чайник был дорогим и в нем перегорел ТЭН, поэтому своими руками его отремонтировать не представлялось возможным), решил заняться ремонтом самостоятельно.
Разобрать фонарь оказалось легко. Достаточно повернуть на небольшой угол против часовой стрелки кольцо, фиксирующее защитное стекло и оттянуть его, затем отвинтить несколько саморезов. Оказалось кольцо фиксируется на корпусе с помощью байонетного соединения.
После снятия одной из половинок корпуса фонарика появился доступ ко всем его узлам. Слева на фотоснимке видна печатная плата со светодиодами, к которой прикреплен с помощью трех саморезов рефлектор (отражатель света). В центре расположен аккумулятор черного цвета с неизвестными параметрами, имеется только маркировка полярности выводов. Правее аккумулятора находится печатная плата зарядного устройства и индикации. Справа установлена сетевая вилка с выдвижными стержнями.
При внимательном рассмотрении светодиодов оказалось, что на излучающих поверхностях кристаллов всех светодиодов имелись черные пятна или точки. Стало ясно даже без проверки светодиодов мультиметром, что фонарик не светит по причине их перегорания.
Почерневшие области имелись также на кристаллах двух светодиодов, установленных в качестве подсветки на плате индикации зарядки аккумулятора. В светодиодных лампах и лентах обычно выходит из строя один светодиод, и работая как предохранитель, защищает остальные от перегорания. А в фонаре вышли из строя все девять светодиодов одновременно. Напряжение на аккумуляторе не могло увеличиться до величины, способной вывести светодиоды из строя. Для выяснения причины пришлось начертить электрическую принципиальную схему.
Поиск причины отказа фонаря
Электрическая схема фонаря состоит из двух функционально законченных частей. Часть схемы, расположенная левее переключателя SA1, выполняет функцию зарядного устройства. А часть схемы, изображенная справа от переключателя, обеспечивает свечение.
Работает зарядное устройство следующим образом. Напряжение от бытовой сети 220 В поступает на токоограничивающий конденсатор С1, далее на мостовой выпрямитель, собранный на диодах VD1-VD4. С выпрямителя напряжение подается на клеммы аккумулятора. Резистор R1 служит для разряда конденсатора после изъятия вилки фонарика из сети. Таким образом, исключается удар током от разряда конденсатора в случае случайного прикосновения рукой одновременно двух штырей вилки.
Светодиод HL1, включенный последовательно с токоограничивающим резистором R2 в противоположном направлении с правым верхним диодом моста, как, оказалось, светится всегда при вставленной вилке в сеть, даже если аккумулятор неисправен или отсоединен от схемы.
Переключатель режимов работы SA1 служит для подключения к аккумулятору отдельных групп светодиодов. Как видно из схемы получается, что если фонарь подключен к сети для зарядки и движок переключателя находится в положении 3 или 4, то напряжение с зарядного устройства аккумулятора попадает и на светодиоды.
Если человек включил фонарик и обнаружил, что он не работает, и, не зная, что движок выключателя обязательно необходимо установить в положение «выключено», о чем в инструкции по эксплуатации фонаря ничего не сказано, подключит фонарь к сети на зарядку, то за счет броска напряжения на выходе зарядного устройства на светодиоды попадет напряжение, значительно превышающее расчетное. Через светодиоды потечет ток, превышающий допустимый и они перегорят. При старении кислотного аккумулятора за счет сульфатации свинцовых пластин напряжение заряда аккумулятора возрастает, что тоже приводит к перегоранию светодиодов.
Еще одно схемное решение, которое удивило, это параллельное включение семи светодиодов, что недопустимо, так как вольтамперные характеристики даже светодиодов одного типа отличаются и поэтому проходящий ток через светодиоды тоже будет не одинаковым. По этой причине при выборе номинала резистора R4 из расчета протекания через светодиоды максимально допустимого тока, один из них может перегружаться и выйти из строя, а это приведет к перегрузке по току параллельно включенных светодиодов, и они тоже перегорят.
Переделка (модернизация) электрической схемы фонаря
Стало очевидным, что поломка фонаря связана с ошибками, допущенными разработчиками его электрической принципиальной схемы. Чтобы отремонтировать фонарь и исключить его повторную поломку необходимо его переделать, заменив светодиоды и внести незначительные изменения в электрическую схему.
Для того чтобы индикатор заряда аккумулятора действительно сигнализировал о его зарядке, необходимо светодиод HL1 включить последовательно с аккумулятором. Для свечения светодиода необходим ток несколько миллиампер, а выдаваемый ток зарядным устройством должен составлять около 100 мА.
Для обеспечения этих условий достаточно отсоединить HL1-R2 цепочку от схемы в местах, указанных красными крестиками и параллельно с ней установить дополнительный резистор Rd номиналом 47 Ом мощностью не менее 0,5 Вт. Ток заряда, протекая через Rd будет создавать на нем падение напряжения около 3 В, которое обеспечить необходимый ток для свечения индикатора HL1. Заодно точку соединения HL1 и Rd необходимо подключить к выводу 1 переключателя SA1. Таким простым способом будет исключена возможность подачи напряжения с зарядного устройства на светодиоды EL1-EL10 во время заряда аккумулятора.
Для выравнивания величины токов, протекающих через светодиоды EL3-EL10, необходимо исключить из схемы резистор R4 и последовательно с каждым светодиодом включить отдельный резистор номиналом 47-56 Ом.
Электрической схема после доработки
Внесенные в схему незначительные изменения повысили информативность индикатора заряда недорогого китайского светодиодного фонаря и многократно повысили его надежность. Надеюсь, что производители светодиодных фонарей после прочтения этой статьи внесут изменения в электрические схемы своих изделий.
После модернизации электрическая принципиальная схема приняла вид, как на чертеже выше. Если необходимо освещать фонариком продолжительное время и не требуется большой яркости его свечения, то можно дополнительно установить токоограничивающий резистор R5, благодаря которому время работы фонарика без подзарядки увеличится в два раза.
Ремонт светодиодного аккумуляторного фонаря
После разборки в первую очередь нужно восстановить работоспособность фонаря, а потом уже заниматься модернизацией.
Проверка светодиодов мультиметром подтвердила их неисправность. Поэтому все светодиоды пришлось выпаять и освободить от припоя отверстия для установки новых диодов.
Судя по внешнему виду, на плате были установлены ламповые светодиоды из серии HL-508H диаметром 5 мм. В наличии имелись светодиоды типа HK5h5U от линейной светодиодной лампы с близкими техническими характеристиками. Они и пригодились для ремонта фонаря. При запайке светодиодов на плату нужно не забывать соблюдать полярность, анод должен быть соединен с плюсовым выводом аккумулятора или батарейки.
После замены светодиодов печатная плата была подключена к схеме. Яркость свечения некоторых светодиодов из-за общего токоограничивающего резистора несколько отличалась от других. Для устранения этого недостатка необходимо удалить резистор R4 и заменить его семью резисторами, включив последовательно с каждым светодиодом.
Для выбора резистора, обеспечивающего оптимальный режим работы светодиода, была измерена зависимость величины тока, протекающего через светодиод, от величины последовательно включенного сопротивления при напряжении 3,6 В, равному напряжению аккумуляторной батареи фонаря.
Исходя из условий применения фонаря (в случае перебоев подачи в квартиру электроэнергии) большой яркости и дальности освещения не требовалось, поэтому резистор был выбран номиналом 56 Ом. С таким токоограничивающим резистором светодиод будет работать в легком режиме, и потребление электроэнергии будет экономным. Если от фонаря требуется выжать максимальную яркость, то следует применить резистор, как видно из таблицы, номиналом 33 Ом и сделать два режима работы фонарика, включив еще один общий токоограничивающий резистор (на схеме R5) номиналом 5,6 Ом.
Чтобы включить последовательно с каждым светодиодом резистор, необходимо предварительно подготовить печатную плату. Для этого на ней нужно перерезать по одной любой токоведущей дорожке, подходящей к каждому светодиоду и сделать дополнительные контактные площадки. Токоведущие дорожки на плате защищены слоем лака, который необходимо соскоблить лезвием ножа до меди, как на фотоснимке. Затем оголенные контактные площадки залудить припоем.
Подготавливать печатную плату для монтажа резисторов и припаивать их лучше и удобнее, если плату закрепить на штатном рефлекторе. В этом случае поверхность линз светодиодов не будет царапаться, и удобнее будет работать.
Подключение диодной платы после ремонта и модернизации к аккумулятору фонаря показало достаточную для освещения и одинаковую яркость свечения всех светодиодов.
Не успел отремонтировать предыдущий фонарь, как в ремонт попал второй, с такой же неисправностью. На корпусе фонарика информации о производителе и технических характеристиках не нашел, но судя по почерку изготовления и причине поломки, производитель тот же, китайский Lentel.
По дате на корпусе фонарика и на аккумуляторе удалось установить, что фонарю уже четыре года и со слов его хозяина фонарь работал безотказно. Очевидно, что прослужил фонарик долго благодаря предупреждающей надписи «Не включать во время зарядки!» на откидной крышке, закрывающей отсек, в котором спрятана вилка для подключения фонаря к электросети для зарядки аккумулятора.
В этой модели фонаря светодиоды включены в схему по правилам, последовательно с каждым установлен резистор номиналом 33 Ом. Величину резистора легко узнать по цветовой маркировке с помощью онлайн калькулятора. Проверка мультиметром показала, что все светодиоды неисправны, резисторы тоже оказались в обрыве.
Анализ причины отказа светодиодов показал, что за счет сульфатации пластин кислотного аккумулятора его внутреннее сопротивление увеличилось и как следствие, напряжение его зарядки возросло в несколько раз. Во время зарядки фонарик был включен, ток через светодиоды и резисторы превысил предельный, что и привело к выходу их из строя. Пришлось заменить не только светодиоды, но и все резисторы. Исходя из выше оговоренных условиях эксплуатации фонаря были для замены выбраны резисторы номиналом 47 Ом. Величину резистора для любого типа светодиода можно рассчитать с помощью онлайн калькулятора.
Переделка схемы индикации режима зарядки аккумулятора
Фонарь отремонтирован, и можно приступать к внесению изменений в схему индикации зарядки аккумулятора. Для этого необходимо перерезать дорожку на печатной плате зарядного устройства и индикации таким образом, чтобы цепочку HL1-R2 со стороны светодиода отсоединить от схемы.
Далее нужно параллельно цепочке HL1-R2 подключить резистор Rd, проходя через который ток зарядки аккумулятора будет создавать необходимое падение напряжения для обеспечения свечения светодиода HL1.
Свинцово-кислотный AGM аккумулятор был доведен до глубокого разряда, и попытка зарядить его штатным зарядным устройством не привела к успеху. Пришлось аккумулятор заряжать с помощью стационарного блока питания с функцией ограничения тока нагрузки. На аккумулятор было подано напряжение 30 В, при этом он в первый момент времени потреблял ток всего несколько мА. Со временем ток начал возрастать и через несколько часов увеличился до 100 мА. После полной зарядки аккумулятор был установлен в фонарь.
Зарядка глубоко разряженных свинцово-кислотный AGM аккумуляторов в результате долгого хранения повышенным напряжением позволяет восстановить их работоспособность. Способ проверен мною на AGM аккумуляторах не один десяток раз. Новые аккумуляторы, не желающие заряжаться от стандартных зарядных устройств, при зарядке от постоянного источника при напряжении 30 В восстанавливаются практически до первоначальной емкости.
Аккумулятор был несколько раз разряжен включением фонарика в рабочий режим и заряжен с помощью штатного зарядного устройства. Измеренный ток заряда составил 123 мА, при напряжении на выводах аккумулятора 6,9 В. К сожалению аккумулятор был изношен и его хватало для работы фонаря в течение 2 часов. То есть емкость аккумулятора составляла около 0,2 А×часа и для продолжительной работы фонаря необходима его замена.
HL1-R2 цепочка на печатной плате была удачно размещена, и понадобилось под углом перерезать всего одну токоведущую дорожку, как на фотоснимке. Ширина реза должна быть не менее 1 мм. Расчет номинала резистора и проверка на практике показала, что для стабильной работы индикатора зарядки аккумулятора необходим резистор номиналом 47 Ом мощностью не менее 0,5 Вт.
На фотоснимке представлена печатная плата с запаянным токоограничивающим резистором. После такой доработки индикатор заряда аккумулятора светится только в случае, если действительно происходит заряд аккумулятора.
Модернизация переключателя режимов работы
Для завершения работы по ремонту и модернизации фонарей необходимо выполнить перепайку проводов на выводах переключателя.
В моделях ремонтируемых фонарей для включения применен четырех позиционный переключатель движкового типа. Средний вывод на приведенной фотографии является общим. При положении движка переключателя в крайнем левом положении общий вывод подключается к левому выводу переключателя. При перемещении движка переключателя из крайнего левого положения на одну позицию вправо, общий его вывод подключается ко второму выводу и при дальнейшем перемещении движка последовательно к 4 и 5 выводам.
К среднему общему выводу (смотри фотографию выше) нужно припаять провод, идущий от положительного вывода аккумулятора. Таким образом, появится возможность подключать аккумулятор к зарядному устройству или светодиодам. К первому выводу можно припаять провод, идущий от основной платы со светодиодами, ко второму можно припаять токоограничивающий резистор R5 величиной 5,6 Ом для возможности переключения фонарика в энергосберегающий режим работы. К крайнему правому выводу припаять проводник, идущий от зарядного устройства. Таким образом будет исключена возможность включить фонарь во время зарядки аккумулятора.
Ремонт и модернизация
светодиодного аккумуляторного фонаря-прожектора «Фотон PB-0303»
Попал мне в ремонт еще один экземпляр из ряда светодиодных фонарей китайского производства под названием Светодиодный фонарь-прожектор «Фотон PB-0303». Фонарь при нажатии на кнопку включения не реагировал, попытка зарядить аккумулятор фонаря с помощью зарядного устройства к успеху не привела.
Фонарь мощный, дорогой, стоит около $20. По заявлению производителя световой поток фонаря достигает 200 метров, корпус выполнен из ударопрочного ABS-пластика, в комплекте имеется отдельное зарядное устройство и ремень для переноса на плече.
Светодиодный фонарь Фотон обладает хорошей ремонтопригодностью. Для получения доступа к электрической схеме достаточно открутить пластмассовое кольцо, удерживающее защитное стекло, вращая кольцо против часовой стрелки, если смотреть на светодиоды.
При ремонте любых электроприборов поиск неисправности всегда начинается с источника питания. Поэтому первым делом было измерено с помощью мультиметра, включенного в режим измерения постоянного напряжения, напряжение на выводах кислотного аккумулятора. Оно составил 2,3 В, вместо 4,4 В положенных. Аккумулятор был полностью разряжен.
При подключении зарядного устройства напряжение на клеммах аккумулятора не изменялось, стало очевидным, что зарядное устройство не работает. Фонариком пользовались, пока аккумулятор полностью не разрядился, а затем он продолжительное время не эксплуатировался, что и привело к глубокой разрядке аккумулятора.
Осталось проверить исправность светодиодов и остальных элементов. Для этого был снять отражатель, для чего были откручены шесть саморезов. На печатной плате находилось всего три светодиода, ЧИП (микросхема) в виде капельки, транзистор и диод.
От платы и аккумулятора пять проводов уходило в ручку. Для того, чтобы разобраться в их подключении понадобилось ее разобрать. Для этого нужно крестовой отверткой открутить внутри фонаря два винта, которые были расположены рядом с отверстием, в которые уходили провода.
Для отсоединения ручки фонаря от его корпуса ее необходимо сдвинуть в сторону от винтов крепления. Делать это нужно аккуратно, чтобы не оторвать от платы провода.
Как оказалось в ручке не было радиоэлектронных элементов. Два белых провода были припаяны к выводам кнопки включения/выключения фонаря, а остальные к разъему для подключения зарядного устройства. К 1 выводу разъема (нумерация условная) был припаян провод красного цвета, который вторым концом был припаян к плюсовому входу печатной платы. Ко второму контакту был припаян сине-белый проводник, который вторым концом был припаян к минусовой площадке печатной платы. К 3 выводу был припаян зеленый провод, второй конец которого был припаян к минусовому выводу аккумулятора.
Электрическая принципиальная схема
Разобравшись с проводами, спрятанными в ручке можно начертить электрическую принципиальную схему фонаря Фотон.
С отрицательного вывода аккумулятора GB1 напряжение подается на вывод 3 разъема Х1 и далее с его вывода 2 через сине-белый проводник поступает на печатную плату.
Разъем Х1 устроен таким образом, что когда штекер зарядного устройства в него не вставлен, то выводы 2 и 3 соединяются между собой. Когда штекер вставляется, то выводы 2 и 3 разъединяются. Таким образом, обеспечивается автоматическое отключение электронной части схемы от зарядного устройства, исключающей возможность случайного включения фонаря во время зарядки аккумулятора.
С положительного вывода аккумулятора GB1 напряжение подается на D1 (микросхема-чип) и эмиттер биполярного транзистора типа S8550. ЧИП выполняет только функцию триггера, позволяющего кнопкой без фиксации включать или выключать свечение светодиодов EL (⌀8 мм, цвет свечения – белый, мощность 0,5 Вт, ток потребления 100 мА, падение напряжения 3 В.). При первом нажатии на кнопку S1 с микросхемы D1 на базу транзистора Q1 подается положительное напряжение, он открывается и на светодиоды EL1-EL3 поступает питающее напряжение, фонарь включается. При повторном нажатии на кнопку S1, транзистор закрывается и фонарь выключается.
С технической точки зрения такое схемное решение безграмотно, так как повышает стоимость фонаря, снижает его надежность, и в дополнение за счет падения напряжения на переходе транзистора Q1 теряется до 20% емкости аккумулятора. Такое схемное решение оправдано при наличии возможности регулировки яркости светового луча. В данной модели вместо кнопки достаточно было поставить механический выключатель.
Вызвало удивление, что в схеме светодиоды EL1-EL3 подключены параллельно к аккумулятору как лампочки накаливания, без токоограничивающих элементов. В результате при включении через светодиоды проходит ток, величина которого ограничена только внутренним сопротивлением аккумулятора и при его полном заряде ток может превысить допустимый для светодиодов, что приведет выходу их из строя.
Проверка работоспособности электрической схемы
Для проверки исправности микросхемы, транзистора и светодиодов от внешнего источника питания с функцией ограничения тока было подано с соблюдением полярности напряжение постоянного тока 4,4 В непосредственно на выводы питания печатной платы. Величина ограничения тока была выставлена 0,5 А.
После нажатия кнопки включения светодиоды засветили. После повторного нажатия – погасли. Светодиоды и микросхема с транзистором оказались исправными. Осталось разобраться с аккумулятором и зарядным устройством.
Восстановление кислотного аккумулятора
Так как кислотный аккумулятор емкостью 1,7 А был полностью разряжен, а штатное зарядное устройство было неисправно то решил его зарядить от стационарного блока питания. При подключении аккумулятора для зарядки к блоку питания с установленным напряжением 9 В, ток заряда составил менее 1 мА. Напряжение было увеличено, до 30 В — ток возрос до 5 мА, и через час под таким напряжением составил уже 44 мА. Далее напряжение было снижено до 12 В, ток упал до 7 мА. После 12 часов заряда аккумулятора при напряжении 12 В ток поднялся до 100 мА, таким током и заряжался аккумулятор в течении 15 часов.
Температура корпуса аккумулятора была в пределах нормы, что свидетельствовало о том, что ток зарядки идет не на выделение тепла, а на накопление энергии. После заряда аккумулятора и доработки схемы, о которой речь пойдет ниже, были проведены испытания. Фонарь с восстановленным аккумулятором просветил беспрерывно 16 часов, после чего начала падать яркость луча и поэтому он был выключен.
Описанным выше способом мне приходилось неоднократно восстанавливать работоспособность глубоко разряженных малогабаритных кислотных аккумуляторов. Как показала практика, восстановлению подлежат только исправные аккумуляторы, о которых на некоторое время забыли. Кислотные аккумуляторы, которые выработали свой ресурс, восстановлению не подлежат.
Ремонт зарядного устройства
Измерение величины напряжения мультиметром на контактах выходного разъема зарядного устройства показало его отсутствие.
Судя по стикеру, наклеенному на корпус адаптера, он представлял собой блок питания, выдающий нестабилизированное постоянное напряжение величиной 12 В с максимальным током нагрузки 0,5 А. В электрической схеме не было элементов, ограничивающих величину тока зарядки, поэтому возник вопрос, а почему в качестве зарядного устройства использовался обыкновенный блок питания?
Когда адаптер был вскрыт, то появился характерный запах горелой электропроводки, что свидетельствовало о том, что обмотка трансформатора сгорела.
Прозвонка первичной обмотки трансформатора показала, что она в обрыве. После разрезания первого слоя ленты, изолирующего первичную обмотку трансформатора, был обнаружен термопредохранитель, рассчитанный на температуру срабатывания 130°С. Проверка показала, что как первичная обмотка, так и термопредохранитель неисправны.
Ремонт адаптера был экономически нецелесообразен, так как необходимо перемотать первичную обмотку трансформатора и установить новый термопредохранитель. Заменил его аналогичным, который был под рукой, на напряжение постоянного тока 9 В. Гибкий шнур с разъемом пришлось перепаять от сгоревшего адаптера.
На фотографии представлен чертеж электрической схемы сгоревшего блока питания (адаптера) светодиодного фонаря «Фотон». Адаптер для замены был собран по такой же схеме, только с выходным напряжением 9 В. Такого напряжения вполне достаточно для обеспечения требуемого тока заряда аккумулятора с напряжением 4,4 В.
Для интереса подключил фонарь к новому блоку питания и измерял ток зарядки. Величина его составила 620 мА, и это при напряжении 9 В. При напряжении 12 В ток был порядка 900 мА, значительно превышающий нагрузочную способность адаптера и рекомендуемый ток заряда аккумулятор. По этой причине от перегрева и сгорела первичная обмотка трансформатора.
Доработка электрической принципиальной схемы
светодиодного аккумуляторного фонаря «Фотон»
Для устранения схемотехнических нарушений с целью обеспечения надежной и долговременной работы в схему фонаря были внесены изменения и выполнена доработка печатной платы.
На фотографии представлена электрическая принципиальная схема переделанного светодиодного фонаря «Фотон». Синим цветом, показаны дополнительно установленные радиоэлементы. Резистор R2 ограничивает ток заряда аккумулятора до 120 мА. Для увеличения тока зарядки нужно уменьшить номинал резистора. Резисторы R3-R5 ограничивают и выравнивают ток, протекающий через светодиоды EL1-EL3 при свечении фонаря. Светодиод EL4 с последовательно включенным токоограничивающим резистором R1 установлен для индикации процесса зарядки аккумулятора, так как разработчиками конструкции фонаря об этом не позаботились.
Для установки на плате токоограничивающих резисторов печатные дорожки были перерезаны, как показано на фотографии. Ограничивающий ток заряда резистор R2 был припаян одним концом к контактной площадке, к которой до этого был припаян положительный провод, идущий от зарядного устройства, а отпаянный провод припаян ко второму выводу резистора. К этой же контактной площадке был припаян дополнительный провод (на снимке желтого цвета), предназначенный для подключения индикатора зарядки аккумулятора.
Резистор R1 и светодиод индикаторный EL4 были размещены в ручке фонаря, рядом с разъемом для подключения зарядного устройства X1. Вывод анода светодиода был припаян к выводу 1 разъема X1, а ко второму выводу, катоду светодиода токоограничивающий резистор R1. Ко второму выводу резистора был припаян провод (на фото желтого цвета), соединяющий его с выводом резистора R2, припаянного к печатной плате. Резистор R2, для простоты монтажа, можно было разместить и в ручке фонарика, но так как он при зарядке нагревается, то решил его разместить в более свободном пространстве.
При доработке схемы применены резисторы типа МЛТ мощностью 0,25 Вт, кроме R2, который рассчитан на 0,5 Вт. Светодиод EL4 подойдет любого типа и цвета свечения.
На этой фотографии показана работа индикатора зарядки во время зарядки аккумулятора. Установка индикатора позволила не только следить за процессом зарядки аккумулятора, но и контролировать наличие напряжения в сети, исправность блока питания и надежность его подключения.
Чем заменить сгоревший ЧИП
Если вдруг ЧИП – специализированная микросхема без маркировки в светодиодном фонаре «Фотон», или аналогичном, собранном по подобной схеме, выйдет из строя, то для восстановления работоспособности фонаря ее можно успешно заменить механическим выключателем.
Для этого нужно удалить из платы микросхему D1, а вместо транзисторного ключа Q1 подключить обыкновенный механический выключатель, как показано на выше приведенной электрической схеме. Выключатель на корпусе фонаря можно установить вместо кнопки S1 или в любом другом подходящем месте.
Ремонт с модернизацией
светодиодного фонаря Keyang KY-9914
Посетитель сайта Марат Пурлиев из Ашхабада поделился в письме результатами ремонта светодиодного фонаря Keyang KY-9914. В дополнение представил фотографию, схемы, подробное описание и дал согласие на публикацию информации, за что я выражаю ему свою признательность.
Спасибо Вам за статью «Ремонт и модернизация светодиодных фонарей Lentel, Фотон, Smartbuy Colorado и RED своими руками».
Воспользовавшись примерами ремонта, я отремонтировал и модернизировал фонарь Keyang KY-9914, в котором сгорели четыре светодиода из семи, и выработал ресурс аккумулятор. Светодиоды сгорели из-за переключения переключателя во время зарядки аккумулятора.
В доработанной электрической схеме изменения выделены красным цветом. Неисправный кислотный аккумулятор я заменил на три последовательно включенных бывших в употреблении пальчиковых АА аккумуляторов Sanyo Ni-NH 2700, которые оказались под рукой.
После переделки фонаря ток потребления светодиодов в двух положениях переключателя составил 14 и 28 мА, а ток заряда аккумуляторов 50 мА.
Ремонт и переделка светодиодного фонаря
14Led Smartbuy Colorado
Перестал включаться светодиодный фонарь Smartbuy Colorado, хотя три батарейки типоразмера ААА были установлены новые.
Влагонепроницаемый корпус был выполнен из анодированного алюминиевого сплава, имел длину 12 см. Фонарик выглядел стильно и был удобен в эксплуатации.
Как проверить в светодиодном фонаре батарейки на пригодность
Ремонт любого электроприбора начинается с проверки источника питания, поэтому, несмотря на то, что в фонарь были установлены новые батарейки, ремонт следует начинать с их проверки. В фонаре Smartbuy батарейки устанавливаются в специальный контейнер, в котором с помощью перемычек соединены последовательно. Для того чтобы получить доступ к батарейкам фонарика нужно разобрать, вращая против часовой стрелки заднюю крышку.
Батарейки в контейнер необходимо устанавливать, соблюдая обозначенную на нем полярность. На контейнере тоже обозначена полярность, поэтому его нужно заводить в корпус фонаря стороной, на которой нанесен знак «+».
В первую очередь необходимо визуально проверить все контакты контейнера. Если на них имеются следы окислов, то контакты необходимо зачистить до блеска с помощью наждачной бумаги или соскоблить окисел лезвием ножа. Для исключения повторного окисления контактов их можно смазать тонким слоем любого машинного масла.
Далее нужно проверить пригодность батареек. Для этого, прикоснувшись щупами мультиметра, включенного в режим измерения постоянного напряжения, необходимо измерять напряжение на контактах контейнера. Три батарейки включены последовательно и каждая из них должна выдавать напряжение 1,5 В, следовательно напряжение на выводах контейнера должно составлять 4,5 В.
Если напряжение меньше указанного, то необходимо проверить правильность полярности батареек в контейнере и измерять напряжение каждой из них индивидуально. Возможно, села только одна из них.
Если с батарейками все в порядке, то нужно вставить, соблюдая полярность контейнер в корпус фонаря, закрутить крышку и проверить его на работоспособность. При этом надо обратить внимание на пружину в крышке, через которую передается питающее напряжение на корпус фонаря и с него прямо на светодиоды. На ее торце не должно быть следов коррозии.
Как проверить исправность выключателя
Если батарейки хорошие и контакты чистые, но светодиоды не светят, то нужно проверить выключатель.
В фонаре Smartbuy Colorado установлен кнопочный герметичный выключатель с двумя фиксированными положениями, замыкающий провод, идущий от положительного вывода контейнера батареек. При первом нажатии на кнопку выключателя его контакты замыкаются, а при повторном – размыкаются.
Так как в фонаре установлены батарейки, то проверить выключатель можно тоже с помощью мультиметра, включенного в режим вольтметра. Для этого нужно вращением против часовой стрелки, если смотреть на светодиоды, открутить его переднюю часть и отложить в сторону. Далее одним щупом мультиметра прикоснуться к корпусу фонарика, а вторым к контакту, который находится в глубине по центру пластиковой детали, показанной на фотографии.
Вольтметр должен показать напряжение 4,5 В. Если напряжение отсутствует нужно нажать кнопку выключателя. Если он исправен, то напряжение появится. В противном случае нужно ремонтировать выключатель.
Проверка исправности светодиодов
Если на предыдущих шагах поиска неисправность обнаружить не удалось, то на следующем этапе нужно проверить надежность контактов, подающих питающее напряжение на плату со светодиодами, надежность их пайки и исправность.
Печатная плата с запаянными в нее светодиодами фиксируется в головной части фонаря с помощью стального подпружиненного кольца, через которое по корпусу фонаря одновременно подается на светодиоды питающее напряжение от минусового вывода контейнера батареек. На фотографии кольцо показано со стороны, которой оно прижимает печатную плату.
Стопорное кольцо зафиксировано довольно крепко, и извлечь его удалось только с помощью приспособления, показанного на фотографии. Такой крючок можно выгнуть из стальной полоски своими руками.
После извлечения стопорного кольца печатная плата со светодиодами, которая изображена на фото, легко извлеклась из головной части фонаря. Сразу бросилось в глаза отсутствие токоограничивающих резисторов, все 14 светодиодов были включены параллельно и через выключатель непосредственно к батарейкам. Подключение светодиодов непосредственно к батарейке недопустима, так как величина протекающего через светодиоды тока ограничивается только внутренним сопротивлением батареек и может вывести светодиоды из строя. В лучшем случае сильно сократит срок их службы.
Так как в фонаре все светодиоды были включены параллельно, то проверить их с помощью мультиметра, включенного в режим измерения сопротивления не представлялось возможным. Поэтому на печатную плату было подано питающее постоянное напряжение от внешнего источника величиной 4,5 В с ограничением тока до 200 мА. Все светодиоды засветились. Стало очевидным, что неисправность фонаря заключалась в плохом контакте печатной платы с фиксирующим кольцом.
Ток потребления светодиодного фонаря
Для интереса измерял ток потребления светодиодами от батареек при включении их без токоограничительного резистора.
Ток составил более 627 мА. В фонарике установлены светодиоды типа HL-508H, рабочий ток которых не должен превышать 20 мА. 14 светодиодов включены параллельно, следовательно, суммарный ток потребления не должен превышать 280 мА. Таким образом, ток, протекающий через светодиоды, превысил номинальный более чем в два раза.
Такой форсированный режим работы светодиодов недопустим, так как ведет к перегреву кристалла, и как следствие, преждевременный выход светодиодов из строя. Дополнительным недостатком является быстрый разряд батареек. Их хватит, если раньше не перегорят светодиоды, не более чем на час работы.
Конструкция фонарика не позволяла впаять токоограничительные резисторы последовательно с каждым светодиодом, поэтому пришлось установить один общий на все светодиоды. Номинал резистора пришлось определять экспериментально. Для этого фонарик был запитан от штатных батареек и в разрыв положительного провода был включен амперметр последовательно с резистором номиналом 5,1 Ом. Ток составил около 200 мА. При установке резистора 8,2 Ом ток потребления составил 160 мА, что, как показала проверка, вполне достаточно для хорошего освещения на расстоянии не менее 5 метров. На ощупь резистор не нагревался, поэтому подойдет любой мощности.
Переделка конструкции
После проведенного исследования стало очевидным, что для надежной и долговечной работы фонаря необходимо дополнительно установить ограничивающий ток резистор и продублировать дополнительным проводником соединение печатной платы с светодиодами и фиксирующим кольцом.
Если раньше надо было, чтобы отрицательная шина печатной платы касалась корпуса фонаря, то в связи с установкой резистора, понадобилось исключить касание. Для этого с печатной платы по всей ее окружности, со стороны токоведущих дорожек с помощью надфиля был сточен угол.
Для исключения касания прижимного кольца к токоведущим дорожкам при фиксации печатной платы на нее были приклеены клеем «Момент» четыре резиновых изолятора толщиной около двух миллиметров, как показано на фотографии. Изоляторы можно изготовить из любого диэлектрического материала, например пластмассы или плотного картона.
Резистор был заранее припаян к прижимному кольцу, а к крайней дорожке печатной платы припаян отрезок провода. На проводник была надета изолирующая трубка, и затем провод припаян ко второму выводу резистора.
Далее печатная плата была зафиксирована прижимным кольцом, после чего головная часть фонаря была прикручена к его корпусу.
После простой модернизации фонаря своими руками он стал стабильно включаться и световой луч хорошо освещать предметы на расстоянии более восьми метров. Дополнительно срок службы батареек увеличился более чем в три раза, и многократно повысилась надежность работы светодиодов.
Анализ причин отказов отремонтированных китайских светодиодных фонарей показал, что все они вышли из строя из-за безграмотно разработанных электрических схем. Осталось только выяснить, сделано это намеренно, чтобы сэкономить на комплектующих и сократить срок эксплуатации фонарей (чтобы больше покупали новые), или в результате безграмотности разработчиков. Я склоняюсь к первому предположению.
Ремонт светодиодного фонаря RED 110
Попал в ремонт фонарик со встроенным кислотным аккумулятором китайского производителя торговой марки RED. В фонаре имелось два излучателя: – с лучом в виде узкого пучка и излучающий рассеянный свет.
На фотографии представлен внешний вид фонаря RED 110. Фонарь мне сразу понравился. Удобная форма корпуса, два режима работы, петля для подвески на шею, выдвигающаяся вилка подключения к сети для зарядки. В фонаре секция светодиодов рассеянного света светила, а узкого пучка – нет.
Для ремонта сначала было откручено кольцо черного цвета, фиксирующее рефлектор, а затем выкручен один саморез в зоне петли. Корпус легко разделился на две половинки. Все детали были закреплены на саморезах и легко снимались.
Схема зарядного устройства была выполнена по классической схеме. Из сети через токоограничивающий конденсатор емкостью 1 мкф напряжение подавалось на выпрямительный мост из четырех диодов и далее на выводы аккумулятора. Напряжение с аккумулятора на светодиод узкого луча подавалось через токоограничивающий резистор 460 Ом.
Все детали были смонтированы на односторонней печатной плате. Провода были припаяны непосредственно к контактным площадкам. Внешний вид печатной платы представлен на фотографии.
10 светодиодов бокового света были соединены параллельно. Напряжение питания на них подавалось через общий токоограничивающий резистор 3R3 (3,3 Ом), хотя по правилам для каждого светодиода нужно устанавливать отдельный резистор.
При внешнем осмотре светодиода узкого пучка дефектов обнаружено не было. При подаче питания через включатель фонарика с аккумулятора напряжение на выводах светодиода присутствовало, и он нагревался. Стало очевидным, что кристалл пробит, и это подтвердила прозвонка мультиметром. Сопротивление составило при любом подключении щупов к выводам светодиода 46 Ом. Светодиод был неисправен и требовалась его замена.
Для удобства работы от платы светодиода был отпаяны провода. После освобождения выводов светодиода от припоя оказалось, что светодиод намертво держится всей плоскостью обратной стороны на печатной плате. Для его отделения пришлось закрепить плату в настольных висках. Далее острый конец ножа установить в место соединения светодиода с платой и легонько ударить по ручке ножа молотком. Светодиод отскочил.
Маркировка на корпусе светодиода, как обычно, отсутствовала. Поэтому необходимо было определить его параметры и подобрать подходящий для замены. По габаритным размерам светодиода, напряжению аккумулятора и величине токоограничивающего резистора было определено, что для замены подойдет светодиод мощностью 1 Вт (ток 350 мА, падение напряжения 3 В). Из Справочной таблицы параметров популярных SMD светодиодов для ремонта был выбран светодиод LED6000Am1W-A120 белого свечения.
Печатная плата, на которой установлен светодиод выполнена из алюминия и одновременно служит для отвода тепла от светодиода. Поэтому при установке его необходимо обеспечить хороший тепловой контакт за счет плотного прилегания задней плоскости светодиода к печатной плате. Для этого перед запайкой на места контакта поверхностей была нанесена термопаста, которая применяется при установке радиатора на процессор компьютера.
Для того, чтобы обеспечить плотное прилегание плоскости светодиода к плате необходимо сначала положить его на плоскость и немного отогнуть вверх выводы, чтобы они отступали от плоскости на 0,5 мм. Далее выводы залудить припоем, нанести термопасту и установить светодиод на плату. Далее прижать его к плате (удобно это сделать отверткой с вынутой битой) и прогреть выводы паяльником. Далее убрать отвертку, ножом прижать в месте изгиба вывода его к плате и прогреть паяльником. После затвердевания припоя нож убрать. За счет пружинных свойств выводов светодиод будет плотно прижат к плате.
При установке светодиода необходимо соблюдать полярность. Правда в этом случае, если будет допущена ошибка, то можно будет поменять местами подающие напряжение провода. Светодиод припаян и можно проверить его работу и измерять потребляемый ток и падение напряжения.
Ток протекающий через светодиод составил 250 мА, падение напряжения 3,2 В. Отсюда потребляемая мощность (нужно умножить ток на напряжение) составила 0,8 Вт. Можно было увеличить рабочий ток светодиода уменьшив сопротивление 460 Ом, но я этого делать не стал, так как яркость свечения была достаточной. Зато светодиод будет работать в более легком режиме, меньше нагреваться и увеличится время работы фонарика от одной зарядки.
Проверка нагрева светодиода проработавшего в течении часа показала эффективный отвод тепла. Он нагрелся до температуры не более 45°С. Ходовые испытания показали достаточную дальность освещения в темноте, более 30 метров.
Замена кислотного аккумулятора в светодиодном фонаре
Вышедший из строя в светодиодном фонаре кислотный аккумулятор можно заменить как аналогичным кислотным, так и литий-ионным (Li-ion) или никель-металгидридными (Ni-MH) аккумуляторами типоразмера АА или ААА.
В ремонтируемых китайских фонарях были установлены свинцово-кислотные AGM аккумуляторы разных габаритных размеров без маркировки напряжением 3,6 В. По расчету емкость этих аккумуляторов составляет от 1,2 до 2 А×часов.
В продаже можно найти аналогичный кислотный аккумулятор российского производителя для ИБП 4V 1Ah Delta DT 401, который имеет напряжение на выходе 4 В при емкости 1 А×часа, стоимостью пару долларов. Для замены достаточно просто, соблюдая полярность, перепаять два провода.
Через несколько лет эксплуатации светодиодный фонарь Lentel GL01, ремонт которого описан в начале статьи, опять принесли мне в ремонт. Диагностика показала, что выработал свой ресурс кислотный аккумулятор.
Был куплен для замены аккумулятор Delta DT 401, но оказалось, что его геометрические размеры были больше, чем неисправного. Штатный аккумулятор фонарика имел размеры 21×30×54 мм и был выше на 10 мм. Пришлось дорабатывать корпус фонарика. Поэтому прежде, чем покупать новый аккумулятор убедитесь, что он вместится в корпус фонаря.
Был удален упор в корпусе и ножовкой по металлу отпилена часть печатной платы, с которой предварительно был выпаян резистор и один светодиод.
После доработки новый аккумулятор хорошо установился в корпус фонаря и теперь, надеюсь, прослужит не один год.
Замена кислотного аккумулятора
аккумуляторами типоразмера АА или ААА
Если нет возможности приобрести аккумулятор 4V 1Ah Delta DT 401, то его можно успешно заменить тремя любыми пальчиковыми никель-металгидридными (Ni-MH) аккумуляторами типоразмера АА или ААА емкостью от 1 А×часа, которые имеют напряжение 1,2 В. Для этого достаточно соединить последовательно, соблюдая полярность, три аккумулятора проводами методом пайки. Однако экономически такая замена нецелесообразна, так как стоимость трех качественных пальчиковых аккумуляторов типоразмера АА может превышать стоимость покупки нового светодиодного фонаря.
Но где гарантия, что в электрической схеме нового светодиодного фонаря не имеются ошибки, и не придется его тоже дорабатывать. Поэтому считаю, что замена свинцового аккумулятора в доработанном фонаре целесообразна, так как обеспечит надежную работу фонаря еще несколько лет. Да и всегда будет приятно пользоваться фонариком, отремонтированным и модернизированным своими руками.
Замена кислотного аккумулятора Li-ion
Замене батареек или аккумуляторов в светодиодном фонаре посвящена отдельная статья «Как заменить свинцовый аккумулятор литий-ионным».
Евгений 25.05.2016
Здравствуйте.
Занимаюсь подводной охотой, сейчас вышли новые светодиоды XHP70, у меня есть два фонаря, в которых установлено по одному светодиоду Т6. Возможна ли замена их в моих фонарях на новые XHP70 и какая стоимость работы и запчастей, заранее благодарен.
Здравствуйте, Евгений.
Оптимальный ток потребления светодиода Т6 составляет 0,7 А, а светодиодной сборки XHP70 – 4,0 А. Следовательно, потребуется замена не только светодиода, но и драйвера, то есть практически замена всей электроники фонаря.
Возможность отвести тепло от светодиода ХНР70 штатным радиатором, установленным в фонаре тоже под вопросом. В дополнение время работы фонаря со штатным аккумулятором уменьшится в 6 раз, то есть вместо 2 часов фонарь будет работать 20 минут.
Таким образом, после модернизации нет гарантий надежной работы фонаря в связи с возможным перегревом светодиода. В дополнение стоимость такой переделки может превысить стоимость нового фонаря с светодиодом XHP70.
Здравствуйте, Александр Николаевич.
Есть в собственности фонарь «Облик 6002». Использовал редко. Более 2-х лет не включал. Сейчас не светит. Включил зарядку, но пока реакции нет. Как быть?
Прочел вашу статью, но там много «мудрёного», а я не специалист по электротехнике, а врач. Жду ваш совет. Спасибо!
Здравствуйте, Степан Тимофеевич.
Аккумуляторы имеют свойство со временем терять емкость, особенно если находятся в разряженном состоянии. Это как раз Ваш случай. Нужно заменить аккумулятор, а если нет такой возможности, то купить новый фонарь.
Попал на вашу страничку в поисках Схемы на фонарик YJ-2828 … Схемы не оказалось. Пришлось самому рисовать.
Если хотите — можете выставить на вашей страничке.
Схема вычерчена с фонаря мной лично (гарантирую) проблем с авторством не будет.
Может кому-то пригодится. Да вы много и добротно потрудились …
Удачи !!!
Александр
Здравствуйте, Владимир!
Спасибо за высокую оценку сайта и представленную сему фонаря YJ-2828.
фонарик на светодиодах
Делаем фонарик на светодиодах своими руками
Светодиодный фонарик с 3-х вольтовым конвертором для светодиода 0.3-1.5V 0.3-1.5V LED FlashLight
Обычно, для работы синего или белого светодиода требуется 3 — 3,5v, данная схема позволяет запитать синий или белый светодиод низким напряжением от одной пальчиковой батарейки. Normally, if you want to light up a blue or white LED you need to provide it with 3 — 3.5 V, like from a 3 V lithium coin cell.
Детали:
Светодиод
Ферритовое кольцо (диаметром ~10 мм)
Провод для намотки (20 см)
Резистор на 1кОм
N-P-N транзистор
Батарейка
Параметры используемого
трансформатора:
Обмотка, идущая на светодиод, имеет
~45 витков, намотанных проводом 0.25мм.
Обмотка, идущая на базу транзистора, имеет
~30 витков провода 0.1мм.
Базовый резистор в этом случае имеет
сопротивление около 2К.
Вместо R1 желательно поставить подстроечный
резистор, и добиться тока через диод ~22мА, при свежей батарейке измерить его
сопротивление, заменив потом его постоянным резистором полученного номинала.
Собранная схема обязана работать сразу.
Возможны только 2 причины, по которым
схема работать не будет.
1. перепутаны концы обмотки.
2. слишком мало витков базовой обмотки.
Генерация исчезает, при количестве витков <15.
Куски
проводов сложить вместе и намотать на кольцо.
Соединить между собой два конца
разных проводов.
Схему можно расположить внутри
подходящего корпуса.
Внедрение такой схемы в фонарь,
работающий от 3V
существенно продлевает, продолжительность его работы от одного комплекта
батареек.
Вариант исполнения фонаря от одной батарейки 1,5в.
Транзистор и сопротивление помещаются внутрь ферритового кольца
Белый светодиод работает от севшей батарейки ААА
Вариант модернизации «фонарик – ручка»
Возбуждение изображенного на схеме блокинг-генератора достигается трансформаторной связью на Т1. Импульсы напряжения, возникающие в правой (по схеме) обмотке складываются с напряжением источника питания и поступают на светодиод VD1. Конечно, можно было бы исключить конденсатор и резистор в цепи базы транзистора, но тогда возможен выход из строя VT1 и VD1 при использовании фирменных батарей с низким внутренним сопротивлением. Резистор задает режим работы транзистора, а конденсатор пропускает ВЧ составляющую.
В схеме использовался транзистор КТ315 (как самый дешевый, но можно и любой
другой с граничной частотой от 200 МГц), сверхяркий светодиод. Для изготовления
трансформатора потребуется кольцо из феррита (ориентировочный размер 10х6х3 и
проницаемостью около 1000 HH). Диаметр проволоки около 0,2-0,3 мм. На кольцо
наматываются две катушки по 20 витков в каждой.
Если нет кольца, то можно
использовать аналогичный по объему и материалу цилиндр. Только придется мотать
уже 60-100 витков для каждой из катушек.
Важный момент: мотать катушки нужно в
разные стороны.
Фотографии фонарика:
выключатель находится в кнопке «авторучки», а серый металлический
цилиндр проводит ток.
По типоразмеру батарейки делаем цилиндр.
Его можно изготовить из бумаги, или использовать отрезок любой жесткой
трубки.
Проделываем отверстия по краям цилиндра, обматываем его залуженным проводом,
пропускаем в отверстия концы проволоки. Фиксируем оба конца, но оставляем с
одного из концов кусок проводника: чтобы можно было подсоединить
преобразователь к спирали.
Кольцо из феррита не влезло бы в
фонарь, поэтому использовался цилиндр из аналогичного материала.
Цилиндр из катушки
индуктивности от старого телевизора.
Первая катушка — около 60 витков.
Потом вторая, мотается в обратную
сторону опять 60 или около того. Витки скрепляются клеем.
Собираем преобразователь:
Все располагается внутри нашего корпуса: Распаиваем транзистор, конденсатор резистор, подпаиваем спираль на цилиндре, и катушку. Ток в обмотках катушки должен идти в разные стороны! То есть если вы мотали все обмотки в одну сторону, то поменяйте местами выводы одной из них, иначе генерация не возникнет.
Получилось следующее:
Все вставляем вовнутрь, а в качестве
боковых заглушек и контактов используем гайки.
К одной из гаек подпаиваем выводы катушки, а к другой эмиттер VT1. Приклеиваем.
маркируем выводы: там, где у нас будет вывод от катушек ставим « — », где вывод
от транзистора с катушкой ставим «+» (чтобы было все как в батарейке).
Теперь следует изготовить «ламподиод».
Внимание: на цоколе должен быть минус
светодиода.
Сборка:
Как
понятно из рисунка, преобразователь представляет собой «заменитель» второй
батарейки. Но в отличие от нее, он имеет три точки контакта: с плюсом
батарейки, с плюсом светодиода, и общим корпусом (через спираль).
Его местоположение в батарейном отсеке является определенным: он должен контактировать с плюсом светодиода.
Современный фонарик c режимом эксплуатации светодиода питанием постоянным стабилизированным током.
Схема стабилизатора тока работает следующим образом:
При подаче питания на схему транзисторы Т1 и Т2 заперты, Т3 открыт, потому как на его затвор подано отпирающее напряжение через резистор R3 . Благодаря наличию в цепи светодиода катушки индуктивности L1 ток нарастает плавно. По мере возрастания тока в цепи светодиода возрастает падение напряжения на цепочке R5- R4, как только оно достигнет примерно 0,4V, откроется транзистор Т2, а вслед за ним и Т1, который в свою очередь закроет токовый ключ Т3. Нарастание тока прекращается, в катушке индуктивности возникает ток самоиндукции, который через диод D1 начинает протекать через светодиод и цепочку резисторов R5- R4. Как только ток уменьшиться ниже определенного порога, транзисторы Т1 и Т2 закроются, Т3 — откроется, что приведет к новому циклу накопления энергии в катушке индуктивности. В нормальном режиме колебательный процесс происходит на частоте порядка десятков килогерц.
О деталях:
Вместо транзистора IRF510 можно
применить IRF530, или любой n-канальный полевой ключевой транзистор на ток
более 3А и напряжение более 30 В.
Диод D1 должен быть обязательно с барьером
Шоттки на ток более 1А, если поставить обычный даже высокочастотный типа
КД212, КПД снизится до 75-80%.
Катушка индуктивности самодельная,
мотают ее проводом не тоньше 0,6 мм, лучше — жгутом из нескольких более тонких
проводов. Около 20-30 витков провода на броневой сердечник Б16-Б18 обязательно
с немагнитным зазором 0,1-0,2 мм или близкий из феррита 2000НМ. При возможности
толщину немагнитного зазора подбирают экспериментально по максимальному КПД
устройства. Неплохие результаты можно получить с ферритами от импортных катушек
индуктивности, устанавливаемых в импульсных блоках питания, а также в
энергосберегающих лампах. Такие сердечники имеют вид катушки для ниток, не
требуют каркаса и немагнитного зазора. Очень хорошо работают катушки на
тороидальных сердечниках из прессованного железного порошка, которые можно
найти в компьютерных блоках питания (на них намотаны катушки индуктивности
выходных фильтров). Немагнитный зазор в таких сердечниках равномерно
распределен в объеме благодаря технологии производства.
Эту же схему стабилизатора можно
использовать и совместно с другими аккумуляторами и батареями гальванических
элементов напряжением 9 или 12 вольт без какого-либо изменения схемы или
номиналов элементов. Чем выше будет напряжение питания, тем меньший ток будет
потреблять фонарик от источника, его КПД будет оставаться неизменным. Рабочий
ток стабилизации задают резисторы R4 и R5.
При необходимости ток может быть
увеличен до 1А без применения теплооотводов на деталях, только подбором
сопротивления задающих резисторов.
Зарядное устройство для аккумулятора
можно оставить «родное» или собрать по любой из известных схем или вообще
применить внешнее для уменьшения веса фонаря.
Светодиодный фонарь из калькулятора Б3-30
В основу преобразователя взята схема калькулятора Б3-30, в импульсном источнике питания которого используется трансформатор толщиной всего 5 мм, имеющий две обмотки. Использование импульсного трансформатора от старого калькулятора позволило создать экономичный светодиодный фонарь.
В результате получилась очень простая схема.
Преобразователь напряжения выполнен по
схеме однотактного генератора с индуктивной обратной связью на транзисторе VT1
и трансформаторе Т1. Импульсное напряжение с обмотки 1-2 (по принципиальной
схеме калькулятора Б3-30) выпрямляется диодом VD1 и подается на сверхъяркий
светодиод HL1. Конденсатор С3 фильтр. За основу конструкции взят фонарь
китайского производства рассчитанного на установку двух элементов питания типа
АА. Преобразователь монтируется на печатной плате из односторонне фольгированного
стеклотекстолита толщиной 1,5 мм рис.2 размерами, заменяющими один
элемент питания и вставляемой в фонарь вместо него. К торцу платы обозначенной
знаком «+» припаивается контакт, изготовленный из двухсторонне фольгированного
стеклотекстолита диаметром 15мм, обе стороны соединяются перемычкой и
облуживаются припоем.
После установки на плату всех деталей
торцевой контакт «+» и трансформатор Т1 заливаются термоклеем для увеличения
прочности. Вариант компоновки фонаря показан на рис.3 и в конкретном
случае зависит от типа используемого фонаря. В моем случае никакой доработки
фонаря не потребовалось, отражатель имеет контактное кольцо, к которому
подпаивается минусовой вывод печатной платы, а сама плата крепится к отражателю
с помощью термоклея. Печатная плата в сборе с отражателем вставляется вместо
одного элемента питания и зажимается крышкой.
В преобразователе напряжения использованы малогабаритные детали. Резисторы типа МЛТ-0,125, конденсаторы С1 и С3 импортные, высотой до 5 мм. Диод VD1 типа 1N5817 с барьером Шотки, при его отсутствии можно использовать любой выпрямительный диод, подходящий по параметрам, желательно германиевый ввиду более малого падения напряжения на нем. Правильно собранный преобразователь в налаживании не нуждается, если не перепутаны обмотки трансформатора, в противном случае поменяйте их местами. При отсутствии вышеуказанного трансформатора его можно изготовить самостоятельно. Намотка производится на ферритовое кольцо типоразмера К10*6*3 магнитной проницаемостью 1000-2000. Обе обмотки наматываются проводом ПЭВ2 диаметром от 0,31 до 0,44 мм. Первичная обмотка имеет 6 витков, вторичная 10 витков. После установки такого трансформатора на плату и проверки работоспособности его следует закрепить на ней с помощью термоклея.
Испытания фонаря с элементом питания типа АА представлены в таблице 1.
При испытании использовалась самая дешевая батарейка типа АА стоимостью всего 3 р. Начальное напряжение под нагрузкой составило 1,28 В. На выходе преобразователя напряжение, измеренное на сверхярком светодиоде 2,83 В. Марка светодиода неизвестна, диаметр 10 мм. Общий потребляемый ток 14 mА. Суммарное время работы фонаря составило 20 часов непрерывной работы.
При снижении напряжения на элементе питания ниже 1V яркость заметно падает.
Время, ч | V батареи, В | V преобр., В |
0 | 1,28 | 2,83 |
2 | 1,22 | 2,83 |
4 | 1,21 | 2,83 |
6 | 1,20 | 2,83 |
8 | 1,18 | 2,83 |
10 | 1,18 | 2.83 |
12 | 1,16 | 2.82 |
14 | 1,12 | 2.81 |
16 | 1,11 | 2.81 |
18 | 1,11 | 2.81 |
20 | 1,10 | 2.80 |
Самодельный фонарик на светодиодах
Основа — фонарик «VARTA» с питанием от двух батареек типа АА:
Поскольку диоды имеют сильно нелинейную ВАХ необходимо оснастить фонарь схемой для работы на светодиоды, которая обеспечит постоянную яркость свечения по мере разряда батареи и сохранит работоспособность при возможно более низком напряжении питания.
Основа стабилизатора напряжения, это микромощный повышающий DC/DC конвертор MAX756.
По заявленным характеристикам он работает при снижении входного напряжения до 0.7В.
Схема включения — типовая:
Монтаж выполнен навесным способом.
Электролитические конденсаторы — танталовые ЧИП. Они имеют низкое последовательное сопротивление, что несколько улучшает КПД. Диод Шоттки — SM5818. Дроссели пришлось соединить два в параллель, т.к. не оказалось подходящего номинала. Конденсатор С2 — К10-17б. Светодиоды — сверхяркие белые L-53PWC «Kingbright».
Как видно на рисунке, вся схема легко уместилась в пустом пространстве светоизлучающего узла.
Выходное напряжение стабилизатора в данной схеме включения равно 3.3V.
Поскольку падение напряжения на диодах в номинальном диапазоне токов (15-30мА)
составляет около 3.1V, то лишние 200мV пришлось гасить на резисторе,
включенном последовательно с выходом.
Кроме этого, небольшой последовательный
резистор улучшает линейность нагрузки и стабильность схемы. Связано это с тем,
что диод имеет отрицательный ТКС, и при разогреве его прямое падение напряжения
уменьшается, что приводит к резкому росту тока через диод, при питании его от
источника напряжения. Разравнивать токи через параллельно включенные диоды не
пришлось — различия яркости на глаз не наблюдалось. Тем более, что диоды были
одного типа и взяты из одной коробки.
Теперь о конструкции светоизлучателя. Как видно на фотографиях, светодиоды в
схеме не запаяны намертво, а являются съемной частью конструкции.
Потрошится родная лампочка, и во фланце с 4-х сторон делаются 4 пропила (один там уже был). 4 светодиода располагаются симметрично по кругу. Плюсовые выводы (по схеме) припаиваются на цоколь возле пропилов, а минусовые вставляются изнутри в центральное отверстие цоколя, обрезаются и тоже пропаиваются. «Ламподиод», вставляется на место обычной лампочки накаливания.
Тестирование:
Стабилизация выходного напряжения
(3.3V) продолжалась вплоть до снижения напряжения питания до ~1.2V. Ток
нагрузки при этом составлял около 100мА (~ по 25мА на диод). Затем выходное
напряжение начало плавно снижаться. Схема перешла в другой режим работы, при
котором она уже не стабилизирует, а выдает на выход все, что может. В таком
режиме она проработала до напряжения питания 0.5V! Выходное напряжение при этом
упало до 2.7В, а ток со 100мА до 8мА.
Немного о КПД.
КПД
схемы около 63% при свежих батарейках. Дело в том, что миниатюрные дроссели,
использованные в схеме, имеют чрезвычайно высокое омическое сопротивление —
около 1.5ом
Решение кольцо из µ-пермаллоя с
проницаемостью порядка 50.
40 витков провода ПЭВ-0.25, в один
слой — получилось около 80мкГ. Активное сопротивление около 0.2 Ом, а ток
насыщения по расчетам — более 3А. Выходной и входной электролит меняем на
100мкФ, хотя без ущерба для КПД можно уменьшить и до 47мкФ.
Схема светодиодного фонаря на DC/DC конверторе фирмы Analog Device — ADP1110.
Стандартная типовая схема включения ADP1110.
Данная микросхема-конвертер, согласно
спецификации фирмы-производителя, выпускается в 8 вариантах:
Модель | Выходное напряжение |
ADP1110AN | Регулируемое |
ADP1110AR | Регулируемое |
ADP1110AN-3.3 | 3.3 V |
ADP1110AR-3.3 | 3.3 V |
ADP1110AN-5 | 5 V |
ADP1110AR-5 | 5 V |
ADP1110AN-12 | 12 V |
ADP1110AR-12 | 12 V |
Микросхемы с индексами «N» и «R» отличаются только типом корпуса: R компактнее.
Если вы купили чип с индексом -3.3, можете пропускать следующий абзац и переходить к пункту «Детали».
Если нет — представляю вашему вниманию еще одну схему:
В ней добавлены две детали, позволяющие получить на выходе требуемые 3,3 вольта
для питания светодиодов.
Схему можно улучшить, приняв во
внимание, что для работы светодиодам нужен источник тока, а не напряжения.
Изменения в схеме, что бы она выдавала 60мА (по 20 на каждый диод), а
напряжение диоды нам выставят автоматически, те самые 3.3-3.9V.
резистор R1 служит для измерения тока. Преобразователь так устроен, что
когда напряжение на выводе FB (Feed Back) превысит 0.22V, он закончит повышать
напряжение и ток, значит номинал сопротивления R1 легко рассчитать R1 =
0.22В/Iн, в нашем случаи 3.6Ом. Такая схема помогает стабилизировать ток, и
автоматически выбрать необходимое напряжение. К сожалению, на этом
сопротивлении будет падать напряжение, что приведет к снижению КПД, однако,
практика показала, что оно меньше чем превышение, которое мы выбрали в первом
случаи. Я измерял выходное напряжение, и оно составило 3.4 — 3.6В. Параметры
диодов в таком включении также должны быть по возможности одинаковыми, иначе
суммарный ток в 60мА, распределился между ними не поровну, и мы опять, получим
разную светимость.
Детали
1. Дроссель подойдет любой от 20 до
100 микрогенри с маленьким (меньше 0.4 Ома) сопротивлением. На схеме указано 47
мкГн. Его можно сделать самому — намотать около 40 витков провода ПЭВ-0.25 на
кольце из µ-пермаллоя с проницаемостью порядка 50, типоразмера 10х4х5.
2. Диод Шоттки. 1N5818, 1N5819, 1N4148 или аналогичные. Analog Device НЕ
РЕКОМЕНДУЕТ использовать 1N4001
3. Конденсаторы. 47-100 микрофарад на 6-10 вольт. Рекомендуется использовать
танталовые.
4. Резисторы. Мощностью 0,125 ватта сопротивлением 2 Ома, возможно 300 ком и
2,2 ком.
5. Светодиоды. L-53PWC — 4 штуки.
Светодиодный фонарь
Преобразователь напряжения для питания светодиода DFL-OSPW5111Р белого свечения с яркостью 30 Кд при токе 80 мА и шириной диаграммы направленности излучения около 12°.
Ток, потребляемый от батареи напряжением 2,41V, — 143мА; при этом через светодиод протекает ток около 70 мА при напряжении на нем 4,17 В. Преобразователь работает на частоте 13 кГц, электрический КПД составляет около 0,85.
Трансформатор Т1 намотан на кольцевом магнитопроводе типоразмера К10x6x3 из феррита 2000НМ.
Первичную и вторичную
обмотки трансформатора наматывают одновременно (т. е. в четыре провода).
Первичная обмотка содержит — 2×41
витка провода ПЭВ-2 0,19,
Вторичная обмотка содержит — 2×44
витка провода ПЭВ-2 0,16.
После намотки выводы обмоток соединяют
в соответствии со схемой.
Транзисторы КТ529А структуры p-n-p
можно заменить на КТ530А структуры n-p-n, в этом случае необходимо изменить
полярность подключения батареи GB1 и светодиода HL1.
Детали размещают на рефлекторе,
используя навесной монтаж. Обратите внимание на то, чтобы был исключён контакт деталей
с жестяной пластиной фонаря, подводящей «минус» батареи GB1. Транзисторы
скрепляют между собой хомутом из тонкой латуни, который обеспечивает
необходимый отвод тепла, и затем приклеивают к рефлектору. Светодиод размещают
взамен лампы накаливания так, чтобы он выступал на 0,5… 1 мм из гнезда для её
установки. Это улучшает отвод тепла от светодиода и упрощает его монтаж.
При первом включении питание от
батареи подают через резистор сопротивлением 18…24 Ом чтобы не вывести из
строя транзисторы при неправильном подключении выводов трансформатора Т1. Если
светодиод не светит, необходимо поменять местами крайние выводы первичной или
вторичной обмотки трансформатора. Если и это не приводит к успеху, проверяют
исправность всех элементов и правильность монтажа.
Преобразователь напряжения для питания светодиодного фонаря промышленного образца.
Преобразователь напряжения для питания светодиодного фонаря
Схема взята из руководства фирмы Zetex по применению микросхем ZXSC310.
ZXSC310 — микросхема драйвера светодиодов.
FMMT 617 или FMMT 618.
Диод Шоттки — практически любой марки.
Конденсаторы C1 = 2.2 мкФ и C2 = 10 мкФ для поверхностного монтажа, 2.2 мкФ величина, рекомендованная производителем, а С2 можно поставить примерно от 1 до 10 мкФ
Катушка индуктивности 68 микрогенри на 0.4 А
Индуктивность и резистор устанавливают с одной стороны платы (где нет печати), все остальные детали — с другой. Единственную хитрость представляет изготовление резистора на 150 миллиом. Его можно сделать из железной проволоки 0.1 мм, которую можно добыть, расплетая тросик. Проволочку следует отжечь на зажигалке, тщательно протереть мелкой шкуркой, облудить концы и кусочек длиной около 3 см припаять в отверстия на плате. Далее в процессе настройки надо, измеряя ток через диоды, двигать проволочку, одновременно разогревая паяльником место ее припаивания к плате.
Таким образом, получается нечто вроде реостата. Добившись тока в 20 мА, паяльник убирают, а ненужный кусок проволочки обрезают. У автора вышла длина примерно 1 см.
Фонарик на источнике тока
Рис. 3. Фонарик на источнике тока, с автоматическим выравниванием тока в светодиодах, так что светодиоды могут быть c любым разбросом параметров (светодиод VD2 задает ток, который повторяют транзисторы VT2, VT3, таким образом, токи в ветвях будут одинаковыми)
Транзисторы конечно тоже должны быть одинаковыми, но разброс их параметров не так критичен, поэтому можно взять либо дискретные транзисторы, либо если сможете найти, три интегральных транзистора в одном корпусе, у них параметры максимально одинаковые. Проиграйтесь с размещением светодиодов, нужно подобрать пару светодиод-транзистор так что бы выходное напряжение было минимально, это повысит КПД.
Введение транзисторов выровняло яркость, однако они имеют сопротивление и на них падает напряжение, что вынуждает преобразователь повышать уровень выходного до 4В, для снижения падения напряжения на транзисторах можно предложить схему на рис.4, это модифицированное токовое зеркало, вместо опорного напряжения Uбэ=0.7В в схеме на рис.3 можно воспользоваться встроенным в преобразователем источником 0.22В, и поддерживать его в коллекторе VT1 при помощи операционика, также встроенным в преобразователь.
Рис. 4. Фонарик на источнике тока, с автоматическим выравниванием тока в
светодиодах, и с улучшенным КПД
Т.к. выход операционника имеет тип
«открытый коллектор» его необходимо «подтянуть» к питанию, что делает резистор
R2. Сопротивления R3, R4 выполняют функции делителя напряжения в точке V2 на 2,
таким образом операционник поддержит в точке V2 напряжение 0.22*2 = 0.44В, что
меньше чем в предыдущем случаи на 0.3В. Брать делитель еще меньше, чтобы
понизить напряжение в точке V2, нельзя т.к. биполярный транзистор имеет
сопротивление Rкэ и при работе на нем будет падать напряжение Uкэ, чтобы
транзистор правильно работал V2-V1 должно быть больше Uкэ, для нашего случая
0.22В вполне достаточно. Однако биполярные транзисторы можно заменить полевыми,
в которых сопротивление сток исток гораздо меньше, это даст возможность
уменьшить делитель, так чтобы, сделать разность V2-V1 совсем незначительной.
Дроссель. Дроссель нужно брать
с минимальным сопротивлением, особое внимание следует уделить максимальному
допустимому току он должен быть порядка 400 -1000 мА.
Номинал не играет такой роли как
максимальный ток, поэтому Analog Devices рекомендует, что-то между 33 и
180мкГн. В данном случаи, теоретически, если не обращать внимание на габариты,
то чем больше индуктивность, тем лучше по всем показателем. Однако на практике
это не совсем так, т.к. мы имеем не идеальную катушку, она имеет активное
сопротивление и не линейна, кроме того, ключевой транзистор при низких
напряжениях уже не выдаст 1.5А. Поэтому лучше попробовать несколько катушек
разного типа, конструкции и разного номинала, что бы выбрать катушку, при
которой самый высокий КПД, и самое маленькое минимальное входное напряжение,
т.е. катушку, с которой фонарик будет светиться максимально долго.
Конденсаторы. C1 может быть
любым. С2 лучше взять танталовым т.к. у него маленькое сопротивление это
повышает КПД.
Диод Шотки. Любой на ток до 1А,
желательно с минимальным сопротивлением и минимальным падением напряжения.
Транзисторы. Любые с током
коллектора до 30 мА, коэф. усиления тока порядка 80 с частотой до 100Мгц, КТ318
подойдет.
Светодиоды. Можно
белые NSPW500BS
со свечением в 8000мКд от Power Light Systems .
Преобразователь напряжения ADP1110, или его замену ADP1073, для его использования схему на рис.3 нужно будет изменить,
взять дроссель 760мкГ, а R1 = 0.212/60мА = 3.5Ом.
Фонарь на ADP3000-ADJ
Параметры:
Питание 2.8 — 10 В, КПД ок. 75%, два
режима яркости — полный и половина.
Ток
через диоды 27 мА, в режиме половинной
яркости — 13 мА.
В схеме для получения высокого КПД
желательно использовать чип-компоненты.
Правильно собранная схема в настройке
не нуждается.
Недостатком схемы является высокое
(1,25V) напряжение на входе FB (вывод
8).
В настоящее время выпускаются
DC/DC конвертеры с напряжением FB около
0,3V, в частности, фирмы Maxim, на
которых реально достичь КПД выше 85%.
Схема фонаря на Кр1446ПН1.
Резисторы R1 и R2 — датчик тока.
Операционный усилитель U2B — усиливает напряжение, снимаемое с датчика тока.
Коэффициент усиления = R4 / R3 + 1 и составляет примерно 19. Требуется такой
коэффициент усиления, чтобы при токе через резисторы R1 и R2 60 мА напряжение
на выходе открыло транзистор Q1. Изменяя эти резисторы, можно устанавливать
другие значения тока стабилизации.
В принципе операционный усилитель
можно и не ставить. Просто вместо R1 и R2 ставится один резистор 10 Ом, с него
сигнал через резистор 1кОм подаётся на базу транзистора и всё. Но. Это приведёт
к уменьшению КПД. На резисторе 10 Ом при токе 60 мА напрасно рассеивается 0.6
Вольта — 36 мВт. В случае применения операционного усилителя потери составят:
на резисторе 0.5 Ома при токе 60 мА = 1.8 мВт + потребление
самого ОУ 0.02 мА пусть при 4-х Вольтах = 0.08 мВт
= 1.88 мВт — существенно меньше, чем 36
мВт.
О компонентах.
На месте КР1446УД2 может работать любой малопотребляющий ОУ с низким минимальным значением напряжения питания, лучше подошёл бы OP193FS, но он достаточно дорогой. Транзистор в корпусе SOT23. Полярный конденсатор поменьше — типа SS на 10 Вольт. Индуктивность CW68 100мкГн на ток 710 мА. Хотя ток отсечки у преобразователя 1 А, она работает нормально. С ней получился наилучший КПД. Светодиоды я подбирал по наиболее одинаковому падению напряжения при токе 20 мА. Собран фонарик в корпусе для двух батарей AA. Место под батареи я укоротил под размер батарей AAA, а в освободившемся пространстве навесным монтажом собрал эту схему. Хорошо подойдёт корпус для трёх батарей AA. Ставить нужно будет только две, а на месте третьей разместить схему.
КПД получившегося устройства.
Входные
U I P
Выходные U I
P КПД
Вольт мА
мВт
Вольт мА мВт %
3.03 90
273
3.53 62 219 80
1.78 180
320
3.53 62 219 68
1.28 290
371
3.53 62 219 59
Замена лампочки фонарика “Жучёк” на модуль фирмы Luxeon Lumiled LXHL-NW98.
Получаем ослепительно яркий фонарик, с очень легким жимом (по сравнению с лампочкой).
Схема переделки и параметры модуля.
Преобразователи StepUP DC-DC конверторы ADP1110 фирма Analog devices.
Питание: 1 или 2 батарейки 1,5в
работоспособность сохраняется до Uвход.=0,9в
Потребление:
*при разомкнутом переключателе S1 =
300mA
*при замкнутом переключателе S1 =
110mA
Светодиодный электронный фонарь
С питанием всего от одной пальчиковой батареи типоразмера АА или AAA на микросхеме (КР1446ПН1), которая является полным аналогом микросхемы МАХ756 (МАХ731) и имеет практически идентичные характеристики.
За основу взят фонарь, в котором в качестве источника питания используются две пальчиковые батарейки (аккумуляторы) типоразмера АА.
Плата преобразователя помещается в фонарь вместо второго элемента питания. С одного торца платы припаян контакт из луженой жести для питания схемы, а с другого — светодиод. На выводы светодиода надет кружок из той же жести. Диаметр кружка должен быть чуть больше диаметра цоколя отражателя (на 0,2-0,5 мм), в который вставляется патрон. Один из выводов диода (минусовой) припаян к кружку, второй (плюсовой) проходит насквозь и изолирован кусочком трубочки из ПВХ или фторопласта. Назначение кружка — двойное. Он обеспечивает конструкции необходимую жесткость и одновременно служит для замыкания минусового контакта схемы. Из фонаря заранее удаляют лампу с патроном и помещают вместо нее схему со светодиодом. Выводы светодиода перед установкой на плату укорачивают таким образом, чтобы обеспечивалась плотная, без люфта, посадка «по месту». Обычно длина выводов (без учета пайки на плату) равна длине выступающей части полностью вкрученного цоколя лампы.
Схема соединения платы и аккумулятора приведена на рис. 9.2.
Далее фонарь собирают и проверяют его работоспособность. Если схема собрана правильно, то никаких настроек не требуется.
В конструкции применены, стандартные установочные элементы: конденсаторы типа К50-35, дроссели ЕС-24 индуктивностью 18-22 мкГн, светодиоды яркостью 5-10 кд диаметром 5 или 10 мм. Разумеется, возможно, применение и других светодиодов с напряжением питания 2,4-5 В. Схема имеет достаточный запас по мощности и позволяет питать даже светодиоды с яркостью до 25 кд!
О некоторых результатах испытаний
данной конструкции.
Доработанный таким образом фонарь
проработал со «свежей» батарейкой без перерыва, во включенном состоянии, более
20 часов! Для сравнения — тот же фонарь в «стандартной» комплектации (то есть с
лампой и двумя «свежими» батарейками из той же партии) работал всего 4
часа.
И еще один важный момент. Если
применять в данной конструкции перезаряжаемые аккумуляторы, то легко следить за
состоянием уровня их разрядки. Дело в том, что преобразователь на микросхеме
КР1446ПН1 стабильно запускается при входном напряжении 0,8-0,9 В. И свечение
светодиодов стабильно яркое, пока напряжение на аккумуляторе не достигло этого
критического порога. Лампа гореть при таком напряжении, конечно, еще будет, но
вряд ли можно говорить о ней как о реальном источнике света.
Рис. 9.2 Рис
9.3
Печатная плата устройства приведена на
рис. 9.3, а расположение элементов — на рис. 9.4.
Включение и выключение фонаря одной кнопкой
Схема собрана на микросхеме D-триггера CD4013 и полевом транзисторе IRF630 в режиме «выкл.» ток потребления схемы — практически 0. Для стабильной работы D-триггера на входе микросхемы подключен фильтр резистор и конденсатор их функция- устранение контактного дребезга. Не используемые выводы микросхемы лучше никуда не подключать. Микросхема работает от 2 до 12 вольт, в качестве силового ключа можно использовать любой мощный полевой транзистор, т.к. сопротивление сток-исток у полевого транзистора ничтожно мало и не нагружает выход микросхемы.
CD4013A в корпусе SO-14, аналог К561ТМ2, 564ТМ2
Простые схемы генератора.
Позволяют питать светодиод с напряжением загорания 2-3V от 1-1,5V. Короткие импульсы повышенного потенциала отпирают p-n переход. КПД конечно понижается, но это устройство позволяет «выжать» из автономного источника питания почти весь его ресурс.
Проволока 0,1 мм — 100-300 витков с отводом от середины, намотанные на тороидальное колечко.
Светодиодный фонарь с регулируемой яркостью и режимом «Маяк»
Питание
микросхемы — генератора с регулируемой скважностью (К561ЛЕ5 или 564ЛЕ5) которая
управляет электронным ключом, в предлагаемом устройстве осуществляется от
повышающего преобразователя напряжения, что позволяет питать фонарь от одного
гальванического элемента 1,5.
Преобразователь выполнен на
транзисторах VT1, VT2 по схеме трансформаторного автогенератора с положительной
обратной связью по току.
Схема генератора с регулируемой
скважностью на упомянутой выше микросхеме К561ЛЕ5 немного изменена с целью
улучшения линейности регулирования тока.
Минимальный потребляемый ток фонаря с
шестью параллельно включенными суперяркими светодиодами L-53MWC фирмы Kingbnght
белого свечения равен 2.3 мА Зависимость потребляемого тока от числа
светодиодов — прямо пропорциональная.
Режим «Маяк», когда
светодиоды с невысокой частотой ярко вспыхивают и затем гаснут, реализуется при
установке регулятора яркости на максимум и повторном
включении фонаря. Желаемую частоту световых вспышек регулируют подбором
конденсатора СЗ.
Работоспособность фонаря сохраняется
при понижении напряжения до 1.1v хотя при этом значительно уменьшается яркость
В качестве электронного ключа применен
полевой транзистор с изолированным затвором КП501А (КР1014КТ1В). По цепи
управления он хорошо согласуется с микросхемой К561ЛЕ5. Транзистор КП501А имеет
следующие предельные параметры, напряжение сток-исток — 240 В; напряжение
затвор—исток — 20 В. ток стока — 0.18 А; мощность — 0.5 Вт
Допустимо
параллельное включение транзисторов желательно из одной партии. Возможная
замена — КП504 с любым буквенным индексом. Для полевых транзисторов IRF540
напряжение питания микросхемы DD1. вырабатываемое преобразователем, должно быть
повышено до 10 В
В фонаре с шестью параллельно
включенными светодиодами L-53MWC потребляемый ток примерно равен 120 мА при
подключении параллельно VT3 второго транзистора — 140 мА
Трансформатор Т1 намотан на ферритовом
кольце 2000НМ К10- 6’4.5. Обмотки намотаны в два провода, причем конец первой
обмотки соединяют с началом второй обмотки. Первичная обмотка содержит 2-10
витков, вторичная — 2*20 витков Диаметр провода — 0.37 мм. марка — ПЭВ-2.
Дроссель намотан на таком же магнитопроводе без зазора тем же проводом в один
слой, число витков — 38. Индуктивность дросселя 860
мкГн
Схема преобразователя для светодиода от 0,4 до 3V — работающая от одной батарейки AAA. Этот фонарь повышает входное напряжение до нужного простым конвертером DC-DC.
Выходное напряжение составляет приблизительно 7 вт (зависит от напряжения установленного диода LEDs).
Building the LED Head Lamp
Что касается трансформатора в
конвертере DC-DC. Вы должны его сделать самостоятельно.
Изображение показывает, как собрать трансформатор.
Ещё вариант преобразователей для светодиодов _http://belza.cz/ledlight/ledm.htm
Фонарь на свинцово-кислотном герметичном аккумуляторе с зарядным устройством.
Свинцово кислотные герметичные
аккумуляторные батареи самые дешевые в настоящее время. Электролит в них
находится в виде геля, поэтому аккумуляторы допускают работу в любом
пространственном положении и не производят никаких вредных испарений. Им
свойственна большая долговечность, если не допускать глубокого разряда.
Теоретически они не боятся перезаряда, однако злоупотреблять этим не следует.
Подзарядку аккумуляторных батарей можно производить в любое время, не дожидаясь
их полной разрядки.
Свинцово-кислотные герметичные
аккумуляторные батареи подходят для применения в переносных фонарях,
используемых в домашнем хозяйстве, на дачных участках, на производстве.
Рис.1. Схема электрического фонаря
Электрическая принципиальная схема
фонаря с зарядным устройством для 6-вольтового аккумулятора, позволяющая
простым способом не допустить глубокий разряд аккумулятора и, таким образом,
увеличить его срок службы, показана на рисунке. Он содержит заводской или
самодельный трансформаторный блок питания и зарядно-коммутационное устройство,
смонтированное в корпусе фонаря.
В авторском варианте в качестве
трансформаторного блока применен стандартный блок, предназначенный для питания
модемов. Выходное переменное напряжение блока 12 или 15 В, ток нагрузки – 1 А.
Встречаются такие блоки и с встроенными выпрямителями. Они также подходят для
этой цели.
Переменное напряжение с
трансформаторного блока поступает на зарядно-коммутационное устройство,
содержащее вилку для подключения зарядного устройства X2, диодный мостик VD1,
стабилизатор тока (DA1, R1, HL1), аккумулятор GB, тумблер S1, кнопку
экстренного включения S2, лампу накаливания HL2. Каждый раз при включении
тумблера S1 напряжение аккумулятора поступает на реле К1, его контакты К1.1
замыкаются, подавая ток в базу транзистора VТ1. Транзистор включается,
пропуская ток через лампу HL2. Выключают фонарь переключением тумблера S1 в
первоначальное положение, в котором аккумулятор отключен от обмотки реле К1.
Допустимое напряжение разряда
аккумулятора выбрано на уровне 4,5 В. Оно определяется напряжением включения
реле К1. Изменять допустимое значение напряжения разряда можно с помощью
резистора R2. С увеличением номинала резистора допустимое напряжение разряда
увеличивается, и наоборот. Если напряжение аккумулятора ниже 4,5 В, то реле не
включится, следовательно, не будет подано напряжение на базу транзистора VТ1,
включающего лампу HL2. Это значит, что аккумулятор нуждается в зарядке. При
напряжении 4,5 В освещенность, создаваемая фонарем, неплохая. В случае
экстренной необходимости можно включить фонарь при пониженном напряжении
кнопкой S2, при условии предварительного включения тумблера S1.
На вход зарядно-коммутационного
устройства можно подавать и постоянное напряжение, не обращая внимание на
полярность стыкуемых устройств.
Для перевода фонаря в режим заряда
необходимо состыковать розетку Х1 трансформаторного блока с вилкой Х2,
расположенной на корпусе фонаря, а затем включить вилку (на рисунке не
показана) трансформаторного блока в сеть 220 В.
В приведенном варианте применен
аккумулятор емкостью 4,2 Ач. Следовательно, его можно заряжать током 0,42 А.
Заряд аккумулятора производится постоянным током. Стабилизатор тока содержит
всего три детали: интегральный стабилизатор напряжения DA1 типа КР142ЕН5А либо
импортный 7805, светодиод HL1 и резистор R1. Светодиод, кроме работы в
стабилизаторе тока, выполняет также функцию индикатора режима заряда
аккумулятора.
Настройка электрической схемы фонаря
сводится к регулировке тока заряда аккумулятора. Зарядный ток (в амперах)
обычно выбирают в десять раз меньше численного значения емкости аккумулятора (в
ампер-часах).
Для настройки лучше всего собрать
схему стабилизатора тока отдельно. Вместо аккумуляторной нагрузки к точке
соединения катода светодиода и резистора R1 подключить амперметр на ток 2…5 А.
Подбором резистора R1 установить по амперметру вычисленный ток заряда.
Реле К1 – герконовое РЭС64,
паспорт РС4.569.724. Лампа HL2 потребляет ток примерно 1А.
Транзистор КТ829 можно применить с
любым буквенным индексом. Эти транзисторы являются составными и имеют высокий
коэффициент усиления по току – 750. Это следует учитывать в случае замены.
В авторском варианте микросхема DA1
установлена на стандартном ребристом радиаторе размерами 40х50х30 мм. Резистор
R1 состоит из двух последовательно соединенных проволочных резисторов мощностью
12 Вт.
Схемы:
РЕМОНТ СВЕТОДИОДНОГО ФОНАРИКА
Номиналы
деталей (С, D, R)
C = 1 мкФ. R1 = 470 кОм. R2 = 22 кОм.
1Д, 2Д — КД105А (допустимое напряжение 400V предельный ток 300 mA.)
Обеспечивает:
зарядный ток = 65 — 70mA.
напряжение = 3,6V.
LED-Treiber PR4401 SOT23
Модернизация фонарика (альтернативная версия).
Вариант модернизации:
1. Более яркое свечение светодиода, чем при применении преобразователя из
статьи (Модернизация фонарика.).
2. Возможность отрегулировать свечение светодиода подбором емкости конденсатора
или ограничительного резистора.
3. Возможность питания до 3-4 светодиодов. Если конечно это вам нужно.
Схема и правила намотки
трансформатора:
О трансформаторе.
Мотаем его на ферритовом кольце диаметром 7мм и длиной 11мм (можно взять любое
другое ферритовое кольцо). Феррит берем целый, не раскалывая его. Провод берем
любой, какой влезет на ваш феррит до заполнения. Количество витков 20. Мотаем
сразу двумя проводами, свитыми в жгут. Затем начало одной обмотки соединяем с
концом другой обмотки. (не перепутайте, а то работать не будет). Начало обмоток
на схеме показано точками.
Транзистор VT1 2SC945 можно заменить на любой транзистор этой структуры, например
КТ315. D1 1N5819 — любой диод Шоттки такого типа, С1 — 47мф х 16В (можно и на
6В), R1 — 1Ком, R2 — 100 Ом (можно не ставить). С1 и R2 регулируют яркость и
ток светодиода.
Не перепутайте плюс и минус при подключении светодиода. При неверном подключении
светодиод сгорит! Помните об этом!
Если все сделано правильно преобразователь начинает работать сразу. Не
включайте его без нагрузки (светодиода) иначе конденсатор может выти из строя.
На холостом ходу преобразователь дает до 60В!
Теперь поговорим о конструировании каркаса преобразователя.
Нам понадобится:
1. Мерная часть шприца на 5мл (каркас
для преобразователя).
2. Алюминиевая плечевая часть тюбика (от зубной пасты, крема и т.д) вместе с
резьбой и крышечкой (это будет общий минус).
3. Пружина от автоматической шариковой авторучки (плюс, идущий к светодиоду) и
маленький кусочек изоляции для пружины.
4. Шуруп с шайбой или подходящая пружина (плюс, идущий к батарейке).
5. Парафин для заливания всего преобразователя (не обязательно).
Берём мерную часть шприца на 5мл, обрезаем
с одной стороны конус для одевания иглы, с другой стороны срезаем плечи. Делаем
заготовку похожую на ровную трубочку с дном. Вставляем преобразователь внутрь
шприца. Плюсовой вывод для батарейки выводим в отверстие для иглы и вкручиваем
туда же шуруп-саморез с шайбой. В центр плотно вставляем пружину от авторучки в
изоляции (это плюс идущий к светодиоду). Минус крепим к плечевой части с
помощью завинчивающей крышки просто зажав провод крышкой. (Внешний вид типа
спутниковой тарелки). Теперь припаиваем выводы этой так называемой тарелки к
выходу преобразователя и плотно вставляем в шприц. Вот и всё. Хотя можно всё
это ещё залить парафином для надёжности. Я этого делать не стал просто для того
чтобы показать внутренности преобразователя.
Если всей длины преобразователя не
хватает до плюса батарейки, просто поставьте металлическую втулку или
подходящую по длине пружину.
Светодиодный осветительный LED-фонарь на замечательном белом светодиоде Luxeon LXHL-NWE8 он примечателен своей яркостью — 500000mcd, а также потребляемым током — 350 mA. На фотографии с деталями он находится справа вверху.
Справа внизу — ParaLight EP2012-150BW1, но он явно уступает по параметрам люксеону.
Схема
включения срисована из даташита с подбором параметров деталей
опытным путем.
Все детали SMD — потому
что занимают меньше места — раз, надоело сверлить дырки в платах — два… Конденсаторы C2C3 танталовые, для
уменьшения паразитной индуктивности и увеличения общего КПД схемы.
Плата фонарика в DipTrace
Вся конструкция собрана в виде моноблока: детали с одной стороны, светодиод — с другой. Токоограничительный резистор R1 нужен для ограничения рабочего тока через светодиод и уменьшения общего энергопотребления схемы. Дроссель L1 — 40…50 витков медного провода на кольце диаметром 12 мм. из мю-пермаллоя.
При напряжении питания от 1,5 до 3 Вольт КПД преобразователя примерно равен 70%, что в общем не так уж и плохо. При понижении U питания менее 1 вольта микросхема уже не может выдать нормальное выходное напряжение и дает просто «все, что может» высасывая батарейку почти до 0,3 Вольта, после чего схема перестает работать.
Как из 1,5 сделать 5?
Как от 1,5 вольтовой батарейки запитать микроконтроллер, как засветить белый светодиод? Оказывается очень просто, в очередной раз постарались товарищи из фирмы MAXIM, изобрели вот такое чудо — MAX1674 (MAX1676).
Это повышающий индуктивный преобразовать со встроенным синхронным выпрямителем, позволяющим повысить эффективность, компактность схемы, избавиться от назойливых для таких схем диодов шоттки, так же повысить простоту изготовления. Характеристики преобразователя смотрим здесь:
Рабочее напряжение, В | 0,7…5,5 |
КПД (при Iнагр.=120мА), % | 94 |
Выходное напряжение, В | 3,3/5 |
Номинальный выходной ток, мА | 300 |
Ограничение выходного тока, А | 1 |
Ток холостого хода, мА | 0,1 |
Диапазон рабочих температур, °С | -40…+85 |
Чтобы получить выходной ток в 300мА указанный фирмой, нужно очень постараться. Если детально разобраться, то получим такую картинку — во первых учтём мощность на выходе преобразователя. Допустим берём 300мА при 5-ти вольтах и того имеем 1,5Вт, не будет учитывать потери и представим что КПД преобразователя 100%, значит от батарейки конвертор тоже потребит 1,5Вт, при 1,5В питания получится не много не мало 1А. А такой ток выдаст не каждая батарейка, к тому же под нагрузкой, это напряжение сразу же просядет. Это первый фактор. Второй — для нормальной работы преобразователя нужен дроссель с большим током насыщения, который быть больше импульсного тока внутреннего MOSFET транзистора, а значит всё это приведёт к немалыми габаритам индуктивности, а значит берем то, что реально нужно:
Номинальный выходной ток, не менее, мА | Индуктивность дросселя, мкГн |
300 | 47 |
120 | 22 |
70 | 10 |
Некоторые особенности включения микросхемы. Если вход FB соединен с общим проводом, выходное напряжение соответствует +5 В. Если этот вход соединить с выходом OUT, на нем установится выходное напряжение +3,3 В. Если же между выходом OUT и общим проводом включить делитель, его среднюю точку соединить с выводом FB, то на выходе преобразователя можно установить напряжение в диапазоне от 3,3 до 5 В. Плату следует разводить согласно рекомендациям фирмы-изготовителя, длину проводников выполнять минимальной, ширину максимальной. Среди возможного разнообразия дросселей следует выбрать с минимальным сопротивлением обмотки.
Во время экспериментов с «черновым» вариантом (фото), наибольший КПД наблюдался в районе 120мА. Преобразователь как к источнику напряжения был подключён к 4-м запараллелиным ионисторам, по 1 фараду каждый. Что дало возможность в ускоренном снижении входного напряжения следить за работой микросхемы. На удивление микросхема сохраняла работоспособность вплоть до 0,5В, правда, ток снимаемый с выхода был менее одного миллиампера.
Рекомендуемые дроссели из DataSheet-а
производителя:
Производитель, тип индуктивности | Индуктивность, мкГн | Сопротивление обмотки, Ом | Пиковый ток, А | Высота, мм |
Coilcraft DT1608C-103 | 10 | 0,095 | 0,7 | 2,92 |
Coilcraft DT1608C-153 | 15 | 0,200 | 0,9 | 2,92 |
Coilcraft DT1608C-223 | 22 | 0,320 | 0,7 | 2,92 |
Coiltronics UP1B-100 | 10 | 0,111 | 1,9 | 5,0 |
Coiltronics UP1B-150 | 15 | 0,175 | 1,5 | 5,0 |
Coiltronics UP1B-223 | 22 | 0,254 | 1,2 | 5,0 |
Murata LQh5N100 | 10 | 0,560 | 0,4 | 2,6 |
Murata LQh5N220 | 22 | 0,560 | 0,4 | 2,6 |
Sumida CD43-8R2 | 8,2 | 0,132 | 1,26 | 3,2 |
Sumida CD43-100 | 10 | 0,182 | 1,15 | 3,2 |
Sumida CD54-100 | 10 | 0,100 | 1,44 | 4,5 |
Sumida CD54-180 | 18 | 0,150 | 1,23 | 4,5 |
Sumida CD54-220 | 22 | 0,180 | 1,11 | 4,5 |
Как конечный результат экспериментов с данной микросхемой хочется отметить действительно высокий КПД построенного преобразователя, высокая нагрузочная способность, компактность собранной схемы. На фото данная схема «трудится» на светодиод Luxeon. Светодиод подключен без резистора. Схема питается от 1,5-вольтовой батарейке Kodak
Здесь можно посмотреть к чему привёли результаты эксперимента.
Предложенная Вашему вниманию схема, была использована для питания светодиодного фонарика, подзарядки мобильного телефона от двух металлгидритных аккумуляторов, при создании микроконтроллерного устройства, радиомикрофона. В каждом случае работа схемы была безупречной. Список, где можно использовать MAX1674 можно ещё долго продолжать.
Самый простой способ получить более-менее стабильный ток через светодиод — включить его в цепь нестабилизированного питания через резистор. Надо учитывать, что питающее напряжение должно быть как минимум в два раза больше рабочего напряжения светодиода. Ток через светодиод рассчитывается по формуле:
I led = (Uмакс.пит — U раб. диода) : R1
Эта схема чрезвычайно проста и во многих случаях является оправданной, но применять ее следует там, где нет нужды экономить электричество, и нет высоких требований к надежности.
Более стабильные схемы, — на основе линейных стабилизаторов:
В качестве стабилизаторов лучше выбирать регулируемые, или на фиксированное напряжение, но оно должно быть как можно ближе к напряжению на светодиоде или цепочке последовательно соединенных светодиодов.
Очень хорошо подходят стабилизаторы типа LM 317.
ный немецкий текст:iel war es, mit nur einer NiCd-Zelle (AAA, 250mAh) eine der neuen ultrahellen LEDs mit 5600mCd zu betreiben. Diese LEDs benötigen 3,6V/20mA. Ich habe Ihre Schaltung zunächst unverändert übernommen, als Induktivität hatte ich allerdings nur eine mit 1,4mH zur Hand. Die Schaltung lief auf Anhieb! Allerdings ließ die Leuchtstärke doch noch zu wünschen übrig. Mehr zufällig stellte ich fest, dass die LED extrem heller wurde, wenn ich ein Spannungsmessgerät parallel zur LED schaltete!??? Tatsächlich waren es nur die Messschnüre, bzw. deren Kapazität, die den Effekt bewirkten. Mit einem Oszilloskop konnte ich dann feststellen, dass in dem Moment die Frequenz stark anstieg. Hm, also habe ich den 100nF-Kondensator gegen einen 4,7nF Typ ausgetauscht und schon war die Helligkeit wie gewünscht. Anschließend habe ich dann nur noch durch Ausprobieren die beste Spule aus meiner Sammlung gesucht… Das beste Ergebnis hatte ich mit einem alten Sperrkreis für den 19KHz Pilotton (UKW), aus dem ich die Kreiskapazität entfernt habe. Und hier ist sie nun, die Mini-Taschenlampe:
Источники:
http://pro-radio.ru/
http://radiokot.ru/
http://radio-hobby.org/
Вернутся
Главная » Светодиодные фонари Раздел сайта «электроника схемы» содержит большое количество схем приборов, собранных на возможных открытых источниках интернета. Приборы, которые непременно будут вам полезны, приборы на все случаи жизни и для каждого, их можно сделать своими руками. В инструкциях по сборке подробно описан монтаж, приведены схемы, фотографии. Прочитав инструкции, вам будет намного проще собирать те или иные приборы. В этом разделе вы найдете схемы раций, блоков питания, преобразователей напряжения 12в 220в, инверторы, автомобильны, радио—технические, и другие полезные схемы. Все что вам потребуется для сбора устройств — это паяльник и немного терпения.
|
Простая схема светодиодной лампы из лома. Использует 5 светодиодов и потребляет всего 50 мА
Энергосберегающая светодиодная лампа из вашего мусорного бака.Эта схема разработана г-ном Ситараманом Субраманианом, и мы очень рады опубликовать ее здесь. В этой статье он показывает метод преобразования сломанной / неработающей КЛЛ в энергосберегающую светодиодную лампу.
Это просто схема светодиодной лампы, которая может работать от сетевого напряжения. Цепочка из пяти светодиодов управляется емкостным источником питания без трансформатора.В цепи 0,47 мкФ / 400 В полиэфирный конденсатор С1 снижает сетевое напряжение. R1 — это спускной резистор, который выводит накопленный заряд из C1, когда вход переменного тока выключен. Резисторы R2 и R3 ограничивают бросок тока при включении цепи. Диоды D1 – D4 образуют мостовой выпрямитель, который выпрямляет пониженное напряжение переменного тока, а C2 действует как конденсатор фильтра. Наконец, стабилитрон D1 обеспечивает регулировку, а светодиоды возбуждаются.
Фото.
Принципиальная схема.
Слова Ситхарамана о схеме : Я посылаю вам настольную лампу, сделанную из неработающей энергосберегающей лампы с разбитыми трубками. КЛЛ переделали в светодиодную лампу. Большинство компонентов будет доступно в одной коробке для лома. Также можно использовать несколько компонентов, имеющихся в печатной плате CFL.
Процедура
1. Осторожно снимите разбитые очки
2. Осторожно откройте сборку
3.Снять и утилизировать электронику
.4. Соберите схему в матричном ПК или на листе ламината толщиной 1 мм.
5. Отрежьте круглый лист ламината (ножницами)
6. Отметьте положение 6 круглых отверстий на листе
7. Просверлите отверстия, чтобы светодиоды встали заподлицо с шестью отверстиями
8. Используйте немного клея, чтобы удерживать светодиодный узел в положении
9. Закройте сборку
10.Убедитесь, что внутренние провода не касаются друг друга
11. Теперь проверьте на 230 В переменного тока
Ваша красивая компактная настольная лампа / комнатная лампа для пуджи / проходная лампа готова к использованию.
аварийных светодиодных фонарей. Мощный и дешевый LED-716 Circuit
Аварийные светодиодные фонари. Схема Powerful & Cheep Схема аварийного освещения LED-716LED-716 — одна из самых мощных и очень дешевых схем.Вы можете попробовать сделать его дома.
Рекомендуется для начинающих:
Щелкните изображение, чтобы увеличить.
Аварийный светодиодный светильник. Схема аварийного освещения Powerful & Cheep LED-716ДАННЫЕ для аварийного светодиодного освещения:
- D1 — D5 = IN4007
- Q1 = C945 NPN
- Q2 = D965 NPN
- C1 = CL-155J, 250 В
- C2 = 100 мкФ, 16 В.
- C3 = 1 мкФ, 50 В.
- R1 = 1 Ом
- R2 = 3 Ом
- R4 = 5.1 Ом
- R3 и R5 = 1 кОм
- R6 = 390 кОм.
- Аккумулятор = 1300-1600мАч.
- Светодиод = 30 цифр, цвет = белый.
ВХОД для аварийных светодиодных индикаторов:
Зарядка аккумулятора
- 90–240 В переменного тока.
- 50-60 Гц
- Кабель = 3А, 250В.
ВЫХОД аварийных светодиодных индикаторов:
- Ток = 0,1 А.
- Мощность = 1 Вт.
Переключатель с 3 вариантами или изменение шаблона
- Вариант 1 = Полный свет
- Вариант 2 = ВЫКЛ
- Вариант 3 = Нормальный свет
Время автономной работы лампы аварийного освещения.
Время автономной работы цепи аварийного светодиода
При варианте 1 (полный свет) = 4-6 часов
При варианте 2 (нормальный свет) 10 часов
Вот полная история того, как я это сделал публиковать и делиться с вами, ребята.
Вообще-то кто-то принес мне аварийную светодиодную лампу DP-716. Вот и взял лампу (на проверку / ремонт).
Здесь вы можете увидеть всю историю в картинках.
Вот открыли в ремонт. (Вы также можете примерить такую бытовую технику, но помните, что безопасность важнее….)
(щелкните изображения, чтобы увеличить)
Внутренние аварийные светодиодные фонари. Аварийный свет LED-716.
Теперь ясно, что на самом деле проблема на рис (два резистора вышли из строя), поэтому теперь мы хотим исправить это.
Рекомендуется: Как найти номинал сгоревшего резистора. По трем методам
другой вид. проверьте схему, что здесь проблема.
Здесь вы можете увидеть, что я сделал в этой схеме.потому что резистор на задней стороне (который я припаял) перегорел. Итак, корень проблемы был в том конкретном резисторе. Мы сделали свою работу. Теперь переключатель смены шаблона находится в положении 1, то есть на полном освещении. время поддержки составит 4-6 часов. В этом случае переключатель смены шаблона находится в положении 3, то есть на полном свету. время поддержки составит 8-10 часов. также обратите внимание, что вариант 2 предназначен для выключения лампы накаливания.
- Автор: Electrical Technology
- Обновлено: Уважаемый Жан ДЭВИД
Сделай сам — Настольная лампа
Вы когда-нибудь хотели сделать настольную лампу своими руками? Если да, то вы попали в нужный урок! В этом проекте показано, как сделать настольную лампу, используя набор светодиодов и схему таймера 555 .
]]>Рис. 1: Прототип контроллера настольной лампы
на базе микросхемы 555Настольная лампа «сделай сам»: окончательная установка
Необходимые компоненты
1. Блок питания 12В / 1А
2. 5 мм белые светодиоды X 18
3. 555 Таймер IC
4. ULN2803 Массив Дарлингтона IC
5. Резистор 4,7к, 10К, 680Е
6. Потенциометр 100К
7.Конденсаторы 0.1uF X 2, 10uF электролитические
8. Диод 1N914
9. Две маленькие печатные платы
Проектирование
Наша первая проблема заключается в том, что мы не можем подать 12 В напрямую на светодиод, который просто сожжет его. Что ж, вы можете сказать, что добавление последовательного резистора решило бы эту проблему, но давайте посмотрим, что произойдет, когда мы это сделаем.
]]>Рис. 2: Принципиальная схема драйвера светодиода
Мощность, потребляемая светодиодами: 40 мВт (прибл.)
Мощность, потребляемая резистором: 120 мВт
Мощность, потребляемая светодиодом + резистор: 160 мВт (прибл.)
Итак, при использовании последовательного резистора происходит потеря мощности в 120 МВт, и если это только для одного светодиода, то представьте, сколько энергии будет потрачено впустую для 18 таких светодиодов. Ну, хотя это немного, мы, инженеры, должны разработать эффективную систему, верно?
П.С. — Добавление регулятора напряжения будет иметь такой же эффект (потеря мощности из-за рассеивания тепла).
Так что еще мы можем сделать? Ответ: добавление светодиодов последовательно! Давайте посмотрим, что произойдет, если мы добавим к нему 3 последовательно соединенных светодиода и резистор.
]]>Рис. 3: Принципиальная схема драйвера
для нескольких светодиодовМощность, потребляемая каждым светодиодом: 41 МВт (прибл.)
Мощность, потребляемая резистором: 41 МВт
Мощность, потребляемая 3 светодиодами + резистор: 164 МВт
Таким образом, мы успешно снизили потери мощности почти на 80 МВт.Но все же как инженеры мы не удовлетворены. Мы?
Устранение резисторов
Мощность, подаваемая на светодиоды, должна быть ограничена, что обычно осуществляется резисторами или регулятором напряжения, но что еще может сделать это? Ответ — широтно-импульсная модуляция.
PWM в настоящее время широко используется в системах для управления мощностью, поступающей в конкретную систему. Это похоже на включение-выключение питания системы, но делается это так быстро, что вы не чувствуете изменения.Вместо этого вы чувствуете снижение мощности.
Итак, мы дадим нашим светодиодам источник питания 12 В, но с помощью ШИМ мы доведем среднюю мощность, отдаваемую им за цикл, до 10 В.
Здесь ИС массива Дарлингтона работает как переключатель, а таймер 555 выдает сигнал ШИМ, который используется для быстрого включения-выключения массива Дарлингтона.
Пайка
Часть 1: светодиоды
]]>Рис. 4: Изображение, показывающее светодиоды и печатную плату
Возьмите небольшую печатную плату и 18 белых светодиодов
]]>Рис.5: Изображение, показывающее светодиоды, расположенные в матрице на печатной плате
Расположите их в три ряда и 6 столбцов. Если вас устраивает расположение и расстояние между светодиодами, отметьте их положение маркером.
]]>Рис. 6: Изображение, показывающее, как выводятся светодиодные клеммы на задней стороне печатной платы
Теперь удалите все светодиоды и начните пайку столбец за столбцом, т. Е. По три за раз.
]]>Рис. 7: Изображение, показывающее припаянные светодиодные клеммы на печатной плате
Теперь согните отрицательный провод верхнего светодиода и положительный провод среднего светодиода друг к другу.Повторите ту же процедуру для среднего светодиода.
Затем аккуратно припаяйте их.
]]>Рис. 8: Изображение, показывающее полярность светодиодов, припаянных к плате
Сделайте то же самое для остальных 5 столбцов. Затем начните сгибать положительные выводы всех верхних светодиодов друг к другу.
]]>Рис. 9: Изображение, показывающее пайку плюсовых выводов светодиодов на печатной плате
Теперь припаяйте эти клеммы так, чтобы все колонки были подключены к одному и тому же положительному концу источника питания.
Вот как это выглядит после того, как все будет сделано.
]]>Рис. 10: Изображение, показывающее припаянные плюсовые выводы светодиодов на печатной плате
Вид печатной платы сверху
]]>Рис. 11: Изображение, показывающее светодиодную матрицу на печатной плате
Помните : при пайке на каждом этапе проверяйте правильность соединения и исправность светодиода с помощью функции непрерывности мультиметра. Таким образом, вы можете легко исправить ошибки в схеме, а также заменить светодиоды, если какой-либо из них поврежден.
Создание схемы
Часть 2: Схема
Возьмите еще одну небольшую печатную плату. Поскольку паять микросхемы непосредственно на печатную плату рискованно, я использую 8-контактную базу и 18-контактную базу для микросхем 555 Timer и ULN2803. Расположите основания, чтобы увидеть, достаточно ли места для других компонентов.
]]>Рис. 12: Изображение, показывающее держатели ИС, размещенные на печатной плате
Как только вы будете удовлетворены, приступайте к пайке оснований на печатной плате.
]]>Рис.13: Изображение, показывающее пайку держателей микросхем на печатной плате
После баз начните добавлять компоненты по одному.
]]>Рис. 14: Изображение, показывающее припаянные держатели IC на печатной плате
Примечание. Не добавляйте потенциометр прямо сейчас.
Как только схема готова, пора объединить схему с платой светодиодов. Для этого отрежьте 6 одинаковых кусков проводов и начните припаивать один конец к отрицательным выводам каждого нижнего светодиода.
]]>Рис.15: Изображение, показывающее соединения положительного и отрицательного проводов, снятые со светодиодной матрицы
.Теперь припаяйте другой конец этих 6 проводов к контактам с 13 по 18 основания.
]]>Рис. 16: Изображение, показывающее соединения проводов между светодиодной матрицей и схемой управления
]]>Рис. 17: Изображение, показывающее соединения между светодиодной матрицей и схемой управления
Теперь припаяйте два провода для источника питания, а также провод, соединяющий клемму + ve верхних светодиодов с линией + ve на печатной плате.
Рис. 18: Изображение, показывающее соединения источника питания для печатных плат
Теперь пора добавить потенциометр. Припаяйте два провода от платы (один от резистора R2, а другой от контакта 6 таймера 555), подключите его и проверьте свет, добавив источник питания.
]]>Рис. 19: Изображение, показывающее полную схему автоматической настольной лампы
на базе микросхемы 555Свет должен включиться, и когда вы отрегулируете значение POT, яркость светодиодов должна измениться.Если нет, значит, вы где-то ошиблись.
]]>Рис. 20: Изображение свечения светодиодов в LED Matrix
Поздравляем! Вы закончили со схемой и паяльной частью. Но все же это не похоже на лампу, не так ли?
Следующим шагом будет поиск подходящего корпуса для нашей схемы, который бы хорошо вписался в него. Я нашел подходящую для него прозрачную коробку.
]]>Рис. 21: Изображение, показывающее готовые схемы печатной платы для светодиодной матрицы и схемы на основе микросхемы 555
Теперь я проверил, поместив внутрь коробки, и все еще мог получить достаточно света от схемы.Поэтому я решил поставить светодиодную плату тоже только внутрь. Если у вас непрозрачный корпус, вам придется вырезать в нем прямоугольную прорезь, чтобы выдвинуть светодиодную плату.
]]>Рис. 22: Изображение, показывающее полную схему, собранную в коробке
Нам нужно сделать два отверстия в коробке, одно для ручки потенциометра, а другое для линии питания.
Закрепите горшок с помощью прилагаемой к нему гайки.
]]>Рис. 23: Изображение, показывающее размещение горшка на коробке для регулировки яркости настольной лампы
Сделайте еще одно отверстие, поставьте всю схему и припаяйте провода потенциометра.Подключите блок питания, и все готово. Готовая установка выглядит так:
]]>Рис. 24: Изображение, показывающее контроллер настольной лампы
на базе микросхемы 555 Принципиальные схемыВ рубрике: Electronic Projects
С тегами: светодиодная лампа
Светодиодная лента Внутренняя схема и информация о напряжении
В этой статье рассматривается внутренняя схема и принцип работы светодиодной ленты. Эта информация предназначена для обсуждения технических вопросов и не является необходимой для обычных пользователей, заинтересованных в регулярном использовании светодиодных лент.
Назад к основам — Напряжение светодиодного чипа
Указанное напряжение светодиодной ленты — например, 12 В или 24 В — в первую очередь определяется:
1) указанным напряжением используемых светодиодов и компонентов и
2) конфигурацией светодиодов на светодиодной ленте.
Светодиоды обычно представляют собой устройства с напряжением 3 В. Это означает, что если между положительным и отрицательным концами светодиода подать 3-вольтовый дифференциал, он загорится.
Что произойдет, если у вас будет несколько светодиодов в цепочке, один за другим (серией)? В этом случае напряжения отдельных светодиодов суммируются.
Следовательно, для трех последовательно соединенных светодиодов потребуется прямое напряжение 9 В (3 В x 3 светодиода), а для 6 последовательно соединенных светодиодов потребуется прямое напряжение 18 В (3 В x 6 светодиодов).
Помимо светодиодов, также необходим один или несколько токоограничивающих резисторов, чтобы гарантировать, что светодиодная лента не перейдет в режим перегрузки по току. Резистор также включен последовательно со светодиодами, и его значение сопротивления рассчитывается таким образом, чтобы он также потреблял примерно 3 вольта.
Итак, 3 последовательно соединенных светодиода требуют 9 вольт для светодиодов и 3 вольт для резистора, в результате чего мы получаем 12 вольт.
Для шести последовательно соединенных светодиодов требуется 18 вольт для светодиодов и 3 вольта на резистор (x2), что доводит нас до 24 вольт.
Это «строительные блоки» для каждой группы светодиодов на светодиодной ленте. То, как он размещен на светодиодной ленте, можно визуализировать на нашем рисунке ниже:
Что происходит с параллельными светодиодами? Напряжение остается прежним, но ток распределяется поровну между каждой из параллельных цепей. Следовательно, если у вас есть 3 параллельные группы, каждая из которых потребляет 50 мА при 24 В, общая потребляемая мощность составляет 150 мА, также при 24 В.
Эти два примера с 3 светодиодами и 6 светодиодами показывают, как сконфигурирована типичная светодиодная лента на 12 и 24 вольт. Поскольку в светодиодных лентах используются светодиодные устройства на 3 вольта, и они сконфигурированы так, чтобы иметь несколько параллельных цепочек из 3 или 6 светодиодов.
Вы должны подавать точно указанное напряжение?
Вам может быть интересно, означает ли 12 вольт ровно 12,0 вольт или 11,9 вольт все еще будут работать? Хорошая новость заключается в том, что мощность, подаваемая на светодиодную ленту, оставляет желать лучшего.
Ниже приведена диаграмма из таблицы данных светодиодов, показывающая, сколько тока будет проходить через светодиод в зависимости от напряжения.
Вы увидите, что, например, при 3,0 В этот конкретный светодиод потребляет около 120 мА. Если мы уменьшим напряжение до 2,9 В, светодиод будет потреблять немного меньше, всего около 80 мА. Если мы увеличим напряжение до 3,1 В, светодиод будет потреблять больше, примерно 160 мА.
Поскольку в светодиодной полосе 12 В имеется 3 последовательно соединенных светодиода и резистор, подача 11 В вместо 12 В немного похожа на уменьшение напряжения для каждого светодиода на 0.25В.
Будут ли светодиоды работать при 2,75 В? Если мы обратимся к таблице выше, окажется, что потребляемый ток упадет со 120 мА на светодиод до примерно 40 мА.
Хотя это довольно значительное падение, светодиоды будут работать нормально, хотя и с гораздо более низким уровнем яркости.
Что, если бы мы подавали только 10 В на светодиодную ленту на 12 В? В этом случае мы уменьшаем напряжение на каждый светодиод на 0,5 В. Если обратиться к таблице, то при 2,5 В светодиоды почти не потребляют ток.
Скорее всего, на этом уровне напряжения вы увидите очень тусклую светодиодную ленту.
Все напряжения ниже номинального значения светодиодной ленты являются безопасными, поскольку вы всегда будете потреблять меньший ток и, следовательно, исключить любую возможность повреждения или перегрева. Но как насчет уровней напряжения более 12 В?
Давайте посмотрим на питание 12,8 В светодиодной ленты 12 В. Это увеличивает напряжение на светодиод на 0,20 В.
На наш светодиод теперь подается напряжение 3,2 В, при котором диаграмма показывает потребляемый ток 200 мА.
Так уж получилось, что максимальный ток производителя составляет 200 мА.Если установить более высокое значение, вы рискуете повредить светодиод.
И имейте в виду, что каждый светодиод будет иметь разные характеристики, и присущие производственные различия могут повлиять на фактические диапазоны напряжения, которые допустимы для конкретной светодиодной ленты.
Мы показали, что для светодиодной ленты на 12 В она может переходить от темноты к перегрузке в узком диапазоне от 10 В до 12,8 В.
Хотя можно подавать напряжение, немного отличающееся от номинального, вы должны быть осторожны и точны, чтобы не повредить светодиоды.
Как насчет уменьшения яркости светодиодной ленты?
Один из способов уменьшить яркость светодиодной ленты — установить входное напряжение ниже номинального уровня, как мы видели выше. В действительности, однако, силовая электроника не очень хороша в снижении выходного напряжения таким образом.
Предпочтительным методом является использование так называемой ШИМ (широтно-импульсной модуляции), когда светодиоды включаются и выключаются с большой скоростью. Регулируя соотношение времени включения и выключения (рабочий цикл), можно отрегулировать видимую яркость светового потока светодиодной ленты.
Для светодиодной ленты 12 В это означает, что она всегда получает либо полное напряжение 12 В, либо 0 В, в зависимости от того, на какой части цикла ШИМ мы находимся.
Точно так же мы также знаем, что светодиод потребляет одинаковое количество тока, когда он находится в состоянии «включено», независимо от его рабочего цикла. Это дополнительное преимущество для светодиодных лент, цветовая температура которых должна оставаться постоянной даже при изменении яркости.
Итог
Одно из значительных преимуществ светодиодных лент — это простота, но универсальность: они сочетаются с простыми устройствами питания постоянного напряжения.
Иногда может быть полезно понять внутреннюю работу таких устройств, поскольку это может помочь нам понять некоторые из более тонких аспектов их работы, такие как изменение яркости и входного напряжения.
Светодиодная схема на солнечных батареях
Солнечная энергия — одна из обширных возобновляемых источников энергии, доступных на нашей Земле, эффективное использование солнечной энергии может помочь нам удовлетворить 30% наших потребностей в энергии.И именно по этой причине мы видим на рынке много продуктов, основанных на солнечной энергии. И сегодня мы собираемся увидеть дизайн простого светодиодного светильника на солнечной энергии с использованием светодиода высокой мощности, который можно использовать для бытовых целей вместо примитивных источников света.
LM317:
LM317 — это регулируемый стабилизатор напряжения, который может обеспечивать выходное напряжение в диапазоне от 1,2 В до 37 В. Он очень похож на обычный стабилизатор постоянного напряжения, но снабжен выводом ADJ для регулировки выходного напряжения, получаемого от него.К выводу ADJ должен быть подключен потенциометр или делитель напряжения, который, в свою очередь, изменяет выходное напряжение, получаемое от этой ИС. Формула для расчета напряжения Vout задается
.V out = 1,25 * (1 + R6 / R5) в соответствии с приведенной выше конструкцией.
РАБОТА ЦЕПИ:
Работа вышеуказанной схемы начинается с солнечной панели 9 В, которая преобразует падающую солнечную энергию в электрическую. Был подключен диод 1N4001, чтобы исключить риск обратного протекания тока в ночное время.Вход от солнечной энергии подается на микросхему регулятора LM317. К нему был подключен резистор R5 и R6, чтобы получить требуемый выход от IC. Давай займемся математикой
Применение значений R5 и R6 в LM317 V из формулы
Vout = 1,25 * (1 + 1200/240)
= 7,5 Вольт.
Получим 7,5 В на выходе микросхемы LM317. Причина, по которой мы используем 7,5 В для зарядки аккумулятора 6 В, заключается в свойстве свинцово-кислотных аккумуляторов. Свинцово-кислотный аккумулятор на 6 В будет заряжаться до 100% только при 7.На него подано 3 В. Поэтому, учитывая потери, мы выбрали R5 и R6, чтобы выдавать 7,5 В на выходе на выводе Vout.
РезисторR4 предназначен для ограничения входного зарядного тока батареи, поскольку на батарею должен подаваться ток, равный 1/10 ее номинального значения в ампер-часах. Поскольку мы используем батарею емкостью 5 Ач, входной ток зарядки должен составлять 0,5 А или 500 мА. Резистор R4 на 15 Ом использовался для ограничения тока до 500 мА в приведенной выше схеме.
Теперь перейдем к освещению. Здесь мы выбрали три белых светодиода высокой мощности с рейтингом 3.5 В при 350 мА. Резисторы R1, R2 и R3 используются для ограничения тока, подаваемого на светодиоды. Таким образом, общее потребление тока осветительной частью будет
.350 мА x 3 = 1050 мА (поскольку светодиоды включены параллельно).
Текущий рейтинг батареи составляет 5 Ач, что означает, что батарея может питать свет примерно
часов.Продолжительность = 5000 мА / 1050 мА
= 4,45 часа.
Таким образом, наш аккумулятор может заряжать, может включать свет на 4,45 часа перед подзарядкой, но рекомендуется оставить 25% заряда в аккумуляторе нетронутым.Таким образом, рекомендуемая продолжительность использования этого источника света будет около 3,30 часа.
ПРИМЕЧАНИЕ:
- Вы также можете использовать красный, желтый и другие светодиоды высокой мощности в указанной выше схеме.
- Обязательно проверьте спецификацию вашего высокомощного светодиода, так как неправильное использование может разрядить аккумулятор.
Связанное содержание
Цепь белой светодиодной лампы
230В Проект
Сделал это Вам никогда не приходило в голову, что массив белых светодиодов можно использовать в качестве небольшой лампы для гостинная? Если нет, читайте дальше.Светодиодные лампы доступны в готовом виде, посмотрите точно так же, как стандартные галогенные лампы, и может быть установлен в стандартный 230-вольтовый светильник. Мы открыли один, и, как и ожидалось, конденсатор был использован для сброса напряжение от 230 В до напряжения, подходящего для светодиодов. Этот метод дешевле и меньше по сравнению с использованием трансформатора. Лампа потребляет всего 1 ватт. и поэтому излучает меньше света, чем, скажем, галогенная лампа мощностью 20 Вт. В свет тоже немного синее. Схема работает следующим образом: C1 ведет себя как «резистор», понижающий напряжение, и гарантирует, что ток не будет слишком большим. высокий (около 12 мА).Мостовой выпрямитель превращает переменное напряжение в постоянное. Светодиоды могут работать только от постоянного напряжения. Они выйдут из строя даже при отрицательном напряжении выше 5 В. электролитический конденсатор выполняет двойную функцию: он обеспечивает напряжение, достаточное для включения светодиодов, когда напряжение в сети ниже допустимого. прямое напряжение светодиодов и заботится о пике пускового тока, который возникает при включении сети. В противном случае импульс тока мог бы повредить светодиоды.Затем есть резистор на 560 Ом, он обеспечивает ток через светодиод более постоянный, и поэтому световой поток больше униформа.
Падение напряжения
6,7 В через резистор 560 Ом, то есть через светодиоды протекает 12 мА. Это
безопасное значение. Таким образом, общее падение напряжения на светодиодах составляет 15 светодиодов раз.
3 В или около 45 В. Напряжение на электролитическом конденсаторе немного
более 52В. Чтобы понять, как работает C1, мы можем рассчитать импеданс
(то есть сопротивление переменному напряжению) следующим образом: 1 / (2π · f · C), или: 1 /
(2 · 3.14 · 50 · 220 · 10-9) = 14к4. Когда мы умножаем это на 12 мА, мы получаем напряжение
падение на конденсаторе 173 В. Это работает достаточно хорошо, так как 173-В
напряжение конденсатора плюс напряжение светодиода 52 В равняется 225 В. Достаточно близко к
сетевое напряжение, которое официально составляет 230 В.
Принципиальная схема:
Питание от сети Схема белой светодиодной лампы
Причем последний расчет не очень точный, потому что напряжение в сети на практике не совсем синусоидальный.Кроме того, сетевое напряжение, из которого удалено 50 В постоянного тока. далека от синусоидальной формы. Наконец, если вам нужно много белых светодиодов, то стоит рассматривая покупку одной из этих ламп и разбив ее молотком (с ткань или мешок вокруг лампы, чтобы стекло не разлеталось!) и утилизируйте светодиоды. от него. Это может быть намного дешевле, чем покупать отдельные светодиоды. Бестрансформаторная схема драйвера светодиодов
для надежных недорогих конструкций светодиодных ламп
Светодиодные лампысчитаются на 80% более эффективными, чем другие традиционные варианты освещения, такие как люминесцентные лампы и лампы накаливания.Быстрая адаптация светодиодных ламп уже заметна вокруг нас, и глобальная рыночная стоимость светодиодных ламп достигла примерно 5,4 миллиарда долларов в 2018 году. Проблема при разработке этих светодиодных ламп заключается в том, что светодиодный свет, как мы знаем, работает от постоянного напряжения и сети источник питания переменного тока, поэтому нам необходимо разработать схему драйвера светодиода , которая могла бы преобразовывать сетевое напряжение переменного тока в подходящий уровень постоянного напряжения, необходимого для светодиодной лампы. В этой статье мы разработаем такую практическую недорогую схему драйвера светодиода с использованием LNK302 Switching IC для питания четырех светодиодов (последовательно), которые могут обеспечить световой поток 200 люмен, работающий при 13.6 В и потребляет около 100-150 мА.
Предупреждение: Прежде чем мы двинемся дальше, очень важно убедиться, что вы очень осторожно работаете с сетью переменного тока. Схема и детали, представленные здесь, были протестированы и обработаны экспертами. Любая неудача может привести к серьезным повреждениям и даже к летальному исходу. Работайте на свой страх и риск. Вы были предупреждены.
Схема бестрансформаторного питанияОчень грубая схема драйвера светодиода может быть построена с использованием метода конденсаторной капельницы, точно так же, как мы это делали в нашем предыдущем проекте бестрансформаторного источника питания.Хотя эти схемы все еще используются в некоторых очень дешевых электронных продуктах, они страдают множеством недостатков, которые мы обсудим позже. Следовательно, в этом руководстве мы не будем использовать метод Capacitor Dropper, вместо этого создадим надежную схему драйвера светодиода с использованием переключающей ИС.
Недостаток цепи конденсаторного бестрансфермерного источника питанияБестрансформаторный источник питания этого типа на дешевле стандартного импульсного источника питания из-за небольшого количества компонентов и отсутствия магнитных полей (трансформатора).Он использует схему капельницы конденсатора , которая использует реактивное сопротивление конденсатора для падения входного напряжения.
Хотя этот тип бестрансформаторной конструкции оказывается очень полезным в некоторых случаях, когда стоимость производства конкретного продукта должна быть ниже, конструкция не обеспечивает гальванической развязки от сети переменного тока и, следовательно, должна использоваться только в изделиях, которые не поставляются. в прямом контакте с людьми. Например, его можно использовать в мощных светодиодных лампах , корпус которых сделан из твердого пластика, и никакая часть схемы не открыта для взаимодействия с пользователем после установки.Проблема с этими типами цепей заключается в том, что при выходе из строя блока питания он может отражать высокое входное напряжение переменного тока на выходе, что может стать смертельной ловушкой.
Еще одним недостатком является то, что эти схемы ограничены низким номинальным током . Это связано с тем, что выходной ток зависит от емкости используемого конденсатора, для более высокого номинального тока необходимо использовать конденсатор очень большой емкости. Это проблема, потому что громоздкие конденсаторы также увеличивают пространство на плате и увеличивают стоимость производства.Кроме того, схема не имеет схемы защиты , такой как защита от короткого замыкания на выходе, защита от перегрузки по току, тепловая защита и т. Д. Если их нужно добавить, это также увеличивает стоимость и сложность. Даже если все сделано хорошо, они ненадежны .
Итак, вопрос в том, есть ли какое-либо решение, которое может быть более дешевым, эффективным, простым и меньшим по размеру вместе со всеми схемами защиты для создания неизолированной схемы драйвера светодиодов высокой мощности переменного тока в постоянный? Ответ — да, и это именно то, что мы собираемся построить в этом уроке.
Выбор светодиода для светодиодной лампыПервым шагом в разработке схемы драйвера светодиодной лампы является выбор нагрузки, то есть светодиода, который мы собираемся использовать в наших лампах. Те, которые мы используем в этом проекте, показаны ниже.
Светодиоды в указанной выше полосе представляют собой 5730 пакетов, 0,5 Вт, светодиода холодного белого цвета со световым потоком 57 лм. Прямое напряжение составляет 3,2 В от минимум до 3.6 В максимум при прямом токе от 120 до 150 мА . Следовательно, для получения 200 люменов света можно использовать 4 светодиода последовательно. Требуемое напряжение этой полосы будет 3,4 x 4 = 13,6 В , и через каждый светодиода будет протекать ток 100–120 мА .
Вот схема светодиодов в серии —
LNK304 — ИС драйвера светодиодаДля этого приложения выбрана микросхема драйвера LNK304 .Он может успешно обеспечить требуемую нагрузку для этого приложения вместе с автоматическим перезапуском, коротким замыканием и тепловой защитой. Характеристики можно увидеть на изображении ниже —
Выбор других компонентовВыбор других компонентов зависит от выбранной микросхемы драйвера. В нашем случае в таблице данных в эталонной конструкции используется однополупериодный выпрямитель с двумя стандартными восстанавливающими диодами. Но в этом приложении мы использовали диодный мост для двухполупериодного выпрямления.Это может увеличить стоимость производства, но, в конце концов, компромиссы в конструкции также имеют значение для обеспечения надлежащей передачи мощности по нагрузке. Принципиальную схему без значений можно увидеть на изображении ниже, теперь давайте обсудим, как выбрать значения
.Итак, для этого приложения выбран диодный мост BR1 DB107 . Однако для этого приложения также можно выбрать диодный мост 500 мА. После диодного моста используется фильтр pi , где требуются два электролитических конденсатора вместе с катушкой индуктивности.Это исправит постоянный ток, а также снизит электромагнитные помехи. Емкость конденсаторов, выбранных для этого приложения, — электролитические конденсаторы 10 мкФ, 400 В. Значения должны быть выше 2,2 мкФ 400 В. В целях оптимизации затрат лучшим выбором может быть 4,7–6,8 мкФ.
Для индуктора рекомендуется более 560 мкГн при номинальном токе 1,5 А. Следовательно, C1 и C2 выбраны равными 10 мкФ, 400 В, а L1 — 680 мкГн, а диодный мост DB107 1,5 А для DB1.
Выпрямленный постоянный ток подается на микросхему драйвера LNK304 .Контакт байпаса должен быть подключен к источнику с помощью конденсатора 0,1 мкФ 50 В. Следовательно, C3 — керамический конденсатор 0,1 мкФ 50 В. D1 должен быть сверхбыстрым диодом с временем обратного восстановления 75 нс. Он выбран как UF4007.
FB — это вывод обратной связи, а резисторы R1 и R2 используются для определения выходного напряжения. Опорное напряжение на выводе FB составляет 1,635 В, ИС переключает выходное напряжение, пока не получит это опорное напряжение на своем выводе обратной связи. Следовательно, с помощью простого калькулятора делителя напряжения можно выбрать номинал резисторов.Итак, для , получающего 13,6 В на выходе , номинал резистора выбирается на основе приведенной ниже формулы
.Ввых. = (Напряжение источника x R2) / (R1 + R2)
В нашем случае Vout составляет 1,635 В, напряжение источника — 13,6 В. Мы выбрали значение R2 как 2,05k. Итак, R1 составляет 15к. В качестве альтернативы вы можете использовать эту формулу для расчета напряжения источника. Конденсатор С4 выбран на 10 мкФ 50 В. D2 — стандартный выпрямительный диод 1N4007. L2 такой же, как L1, но ток может быть меньше.L2 также составляет 680 мкГн с номиналом 1,5 А.
Конденсатор C5 выходного фильтра выбран как 100 мкФ 25 В. R3 — это минимальная нагрузка, которая используется в целях регулирования. Для регулирования нулевой нагрузки выбрано значение 2,4k. Обновленная схема со всеми значениями показана ниже.
Работа бестрансформаторной схемы драйвера светодиодаПолная схема работает в режиме MDCM (в основном с прерывистой проводимостью) Топология переключения индуктивности .Преобразование переменного тока в постоянное осуществляется диодным мостом и фильтром pi . После получения выпрямленного постоянного тока этап обработки мощности выполняется LNK304 и D1, L2 и C5. Падение напряжения на D1 и D2 почти одинаково, конденсатор C3 проверяет выходное напряжение и в зависимости от напряжения на конденсаторе C3 воспринимается LNK304 с помощью делителя напряжения и регулирования коммутируемого выхода на выводах истока.
Создание схемы драйвера светодиодаВсе компоненты, необходимые для построения схемы, кроме индукторов.Следовательно, мы должны намотать собственный индуктор , используя эмалированный медный провод. Теперь существует математический подход для расчета типа сердечника, толщины провода, количества витков и т. Д. Но для простоты мы просто сделаем несколько витков с имеющейся катушкой и медным проводом и воспользуемся измерителем LCR , чтобы проверить, если мы достигли необходимого значения. Поскольку наш проект не очень чувствителен к величине индуктивности, а номинальный ток низкий, этот грубый способ будет работать нормально. Если у вас нет измерителя LCR, вы также можете использовать осциллограф для измерения значения индуктивности с помощью метода резонансной частоты.
На изображении выше показано, что катушки индуктивности проверены и их значение превышает 800 мкГн. Он используется для L1 и L2. Для светодиодов также изготавливается простая плата, плакированная медью. Схема построена на макете.
Тестирование цепи драйвера светодиодаСхема сначала тестируется с использованием VARIAC (переменного трансформатора), а затем проверяется при универсальном входном напряжении, равном 110/220 В переменного тока. Мультиметр слева подключается к входу переменного тока, а другой мультиметр справа подключается к одному светодиоду для проверки выходного напряжения постоянного тока.
Показание снимается при трех различных входных напряжениях. Первый слева показывает входное напряжение 85 В переменного тока, а на одном светодиоде он показывает 3,51 В, тогда как напряжение светодиода на другом входном напряжении немного меняется. Подробное рабочее видео можно найти ниже.