Схема светодиодный светильник: Схемы подключения светодиодов к 220В и 12В

Содержание

Схемы подключения светодиодов к 220В и 12В

Рассмотрим способы включения лед диодов средней мощности к наиболее популярным номиналам 5В, 12 вольт, 220В. Затем их можно использовать при изготовлении цветомузыкальных устройств, индикаторов уровня сигнала, плавное включение и выключение. Давно собираюсь сделать плавный искусственный рассвет , чтобы соблюдать распорядок дня. К тому же эмуляция рассвета позволяет просыпаться гораздо лучше и легче.

Про подключение светодиодов к 12 и 220В читайте в предыдущей статье, рассмотрены все способы от сложных до простых, от дорогих до дешёвых.

Содержание

  • 1. Типы схем
  • 2. Обозначение на схеме
  • 3. Подключение светодиода к сети 220в, схема
  • 4. Подключение к постоянному напряжению
  • 5. Самый простой низковольтный драйвер
  • 6. Драйвера с питанием от 5В до 30В
  • 7. Включение 1 диода
  • 8. Параллельное подключение
  • 9. Последовательное подключение
  • 10.
    Подключение RGB LED
  • 11. Включение COB диодов
  • 12. Подключение SMD5050 на 3 кристалла
  • 13. Светодиодная лента 12В SMD5630
  • 14. Светодиодная лента RGB 12В SMD5050

Типы схем

Схема подключения светодиодов бывает двух типов, которые зависят от источника питания:

  1. светодиодный драйвер со стабилизированным током;
  2. блок питания со стабилизированным напряжением.

В первом варианте применяется специализированный  источник, который имеет определенный стабилизированный ток, например 300мА. Количество подключаемых LED диодов ограничено только его мощностью. Резистор (сопротивление) не требуется.

Во втором варианте стабильно только напряжение. Диод имеет очень малое внутреннее сопротивление, если его включить без ограничения Ампер, то он сгорит. Для включения  необходимо использовать токоограничивающий резистор.
Расчет резистора для светодиода можно сделать на специальном калькуляторе.

Калькулятор учитывает 4 параметра:

  • снижение напряжения на одном LED;
  • номинальный рабочий ток;
  • количество LED в цепи;
  • количество вольт на выходе блока питания.

Разница кристаллов

Если вы используете недорогие LED элементы китайского производства, то скорее всего у них будет большой разброс параметров. Поэтому реальное значение Ампер цепи будет отличатся и потребуется корректировка установленного сопротивления. Чтобы проверить насколько велик разброс параметров, необходимо включить все последовательно. Подключаем питание светодиодов и  затем понижаем напряжение до тех пор, когда они будут едва светиться. Если характеристики отличаются сильно, то часть LED будет работать ярко, часть тускло.

Это приводит к тому, что на некоторых элементах электрической цепи мощность будет выше, из-за этого они будут сильнее нагружены.  Так же будет повышенный нагрев, усиленная деградация, ниже надежность.

Обозначение на схеме

Для обозначения на схеме используется две вышеуказанные пиктограммы. Две параллельные стрелочки указывают, что светит очень сильно, количество зайчиков в глазах не сосчитать.

Подключение светодиода к сети 220в, схема

Для подключения к сети 220 вольт используется драйвер, который является источником стабилизированного тока.

Схема драйвера для светодиодов бывает двух видов:

  1. простая на гасящем конденсаторе;
  2. полноценная с использованием микросхем стабилизатора;

Собрать драйвер на конденсаторе очень просто, требуется минимум деталей и времени. Напряжение 220В снижается за счёт высоковольтного конденсатора, которое затем выпрямляется и немного стабилизируется. Она используется в дешевых светодиодных лампах. Основным недостатком является высокой уровень пульсаций света, который плохо действует на здоровье. Но это индивидуально, некоторые этого вообще не замечают. Так же схему сложно рассчитывать из-за разброса характеристик электронных компонентов.

Полноценная схема с использованием специализированных микросхем обеспечивает лучшую стабильность на выходе драйвера. Если драйвер хорошо справляется с нагрузкой, то коэффициент пульсаций будет не выше 10%, а  в идеале 0%. Чтобы не делать драйвер своими руками, можно взять из неисправной лампочки или светильника, если проблема у них была  не с питанием.

Если у вас есть более менее подходящий стабилизатор, но сила тока меньше или больше, то её можно подкорректировать с минимум усилий. Найдите технические характеристики на микросхему из драйвера. Чаще всего количество Ампер на выходе задаётся резистором или несколькими резисторами, находящимися рядом с микросхемой. Добавив к ним еще сопротивление или убрав один из них можно получить необходимую силу тока. Единственное нельзя превышать указанную  мощность.

Подключение к постоянному напряжению

..

Далее будут рассмотрены  схемы подключения светодиодов к постоянному напряжению. Наверняка у вас дома найдутся блоки питания со стабилизированный  полярным напряжением на выходе. Несколько примеров:

  1. 3,7В – аккумуляторы от телефонов;
  2. 5В – зарядные устройства с USB;
  3. 12В – автомобиль, прикуриватель, бытовая электроника, компьютер;
  4. 19В – блоки от ноутбуков, нетбуков, моноблоков.

Самый простой низковольтный драйвер

Простейшая схема стабилизатора тока для светодиодов состоит из линейной микросхемы LM317 или его аналогов. На выходе таких стабилизаторов может быть от 0,1А до 5А. Основные недостатки это невысокий КПД и сильный нагрев. Но это компенсируется максимальной простотой изготовления.

Входное до 37В, до 1,5 Ампера для корпуса указанного на картинке.

Для рассчёта сопротивления, задающего рабочий ток используйте калькулятор стабилизатор тока на LM317 для светодиодов.

Драйвера с питанием от 5В до 30В

Если у вас есть подходящий источник питания от какой либо бытовой техники, то для включения лучше использовать низковольтный драйвер. Они бывают повышающие и понижающие.  Повышающий даже из 1,5В сделает 5В, чтобы светодиодная цепь работала. Понижающий из 10В-30В сделает более низкое, например 15В.

В большом ассортименте они продаются у китайцев, низковольтный драйвер отличается двумя регуляторами от простого стабилизатора Вольт.

Реальная мощность такого стабилизатора будет ниже, чем указал китаец. У параметрах модуля пишут характеристику микросхемы и не всей конструкции. Если стоит большой радиатор, то такой модуль потянет 70% — 80% от обещанного. Если радиатора нет, то 25% — 35%.

Особенно популярны модели на LM2596, которые уже прилично устарели из-за низкого КПД. Еще они сильно греются, поэтому без системы охлаждения не держат более 1 Ампера.

Более эффективны XL4015, XL4005, КПД гораздо выше. Без радиатора охлаждения выдерживают до 2,5А. Есть совсем миниатюрные модели на MP1584 размером 22мм на 17мм.

Включение 1 диода

Чаще всего используются 12 вольт, 220 вольт и 5В. Таким образом делается маломощная светодиодная подсветка настенных выключателей на 220В. В заводских стандартных выключателях чаще всего ставится неоновая лампа.

Параллельное подключение

При параллельном соединении  желательно на каждую последовательную цепь диодов использовать отдельный резистор, чтобы получить максимальную надежность. Другой вариант, это ставить одно мощное сопротивление на несколько LED. Но при выходе одного LED из строя увеличится ток на других оставшихся. На целых будет выше номинального или заданного, что значительно сократит ресурс и увеличит нагрев.

Рациональность применений каждого способа  рассчитывают исходя из требований к изделию.

Последовательное подключение

Последовательное подключение при питании от 220в используют в филаментных диодах и светодиодных лентах на 220 вольт.  В длинной цепочке из 60-70 LED на каждом  падает 3В, что и позволяет подсоединять напрямую  к высокому напряжению. Дополнительно используется только выпрямитель тока, для получения плюса и минуса.

Такое соединение применяют в любой светотехнике:

  1. светодиодные лампах для дома;
  2. led светильники;
  3. новогодние гирлянды на 220В;
  4. светодиодные ленты на 220.

В лампах для дома обычно используется до 20 LED включенных последовательно, напряжение на них получается около 60В. Максимальное количество используется в китайских лампочках кукурузах, от 30 до 120 штук LED. Кукурузы не имеют защитной колбы, поэтому электрические контакты на которых до 180В полностью открыты.

Соблюдайте осторожность, если видите длинную последовательную цепочку, к тому же на них не всегда есть заземление.  Мой сосед схватил кукурузу голыми руками и потом рассказывал увлекательные стихи из нехороших слов.

Подключение RGB LED

Маломощные трёхцветные RGB светодиоды состоят из трёх независимых кристаллов, находящихся в одном корпусе. Если 3 кристалла (красный, зеленый, синий) включить одновременно, то получим белый свет.

Управление каждым цветом происходит независимо от других при помощи RGB контроллера. В блоке управления есть готовые программы и ручные режимы.

Включение COB диодов

Схемы подключения такие же, как у однокристальных и трехцветных светодиодов SMD5050, SMD 5630, SMD 5730. Единственное отличие, вместо 1 диода включена последовательная цепь из нескольких кристаллов.

Мощные светодиодные матрицы имеют в своём составе множество кристаллов включенных последовательно и параллельно. Поэтому питание требуется от 9 до 40 вольт, зависит от мощности.

Подключение SMD5050 на 3 кристалла

От обычных диодов SMD5050 отличается тем, что состоит из 3 кристаллов  белого света, поэтому имеет 6 ножек.  То есть он равен трём SMD2835, сделанным на этих же кристаллах.

При параллельном включении с использованием одного резистора надежность будет ниже. Если один их кристаллов выходит из строя, то увеличивается сила тока через оставшиеся 2. Это приводит к ускоренному выгоранию оставшихся.

При использовании отдельного сопротивления для каждого кристалла, выше указанный недостаток устраняется. Но при этом в 3 раза возрастает количество используемых резисторов и схема подключения светодиода становится сложней. Поэтому оно не используется в светодиодных лентах и лампах.

Светодиодная лента 12В SMD5630

Наглядным примером подключения светодиода к 12 вольтам является светодиодная лента. Она состоит из секций по 3 диода и 1 резистора, включенных последовательно. Поэтому разрезать её можно только в указанных местах между этими секциями.

 

Светодиодная лента RGB 12В SMD5050

В RGB ленте используется три цвета, каждый управляется отдельно, для каждого цвета ставится резистор. Разрезать можно только по указанному месту, чтобы в каждой секции было по 3 SMD5050 и она могла подключатся к 12 вольт.

О драйверах светодиодных светильников — sxemy-podnial.net

Предлагаю вашему вниманию схемы драйверов светодиодных светильников, которые мне пришлось недавно ремонтировать. Начну с простой (фото 1, справа) и схема на рисунке 1.

Светодиодные светильники. Фото 1.Драйвер светодиодного светильника на CL1502. Рис. 1.

В схеме этого драйвера установлена микросхема CL1502. Микросхем с подобными функциями выпущено уже много, и не только в корпусе с 8 ножками. На эту микросхему в интернете есть много технических данных, к примеру в [1]. Собран драйвер по «классической» схеме. Неисправность была в выгорании пары светодиодов. Первый раз просто закоротил их, так как находился вдали от «цивилизации». Тоже сделал и во второй раз. И когда сгорела третья пара, я понял, что жить этому светильнику осталось мало. Простым закорачиванием пар светодиодов, так просто не обойдёшься. Требовалось что-то по-кардинальные. Ранее я изучал схемотехнику и работу подобных микросхем, с целью укоротить светодиодную лампу, в корпусе трубчатой стеклянной люминисцентной 36 Ватт, с длины 120 сантиметров в 90, так как был в наличии такой светильник, установленный над рабочим столом. И всё удалось и работает. А здесь. Насколько я понял работу подобных светильников, с применением таких драйверов, то ничего плохого не должно происходить после закорачивания хотя бы всех светодиодов, кроме последней пары. Ведь всё в них решает датчик тока, в данной схеме это резисторы R3 и R4. Напряжение выделенное этими резисторами, попадая через выводы 7 и 8 микросхемы CL1502 к компаратору выключения силового ключа работают отлично. Но что-то всё же жжёт светодиоды. Но что? Моё предположение — их жжёт сам драйвер! Светодиоды применённые в этом светильнике, похожи на 2835SMDLED (0,5 Вт одного светодиода). И если это действительно они, то заявленная мощность светильника вполне оправдана. Но у меня, сильные подозрения, что в светильнике стоят 3528SMDLED, которые имеют параметры, чуть ли не на порядок ниже. Но понять мне это очень трудно, так как на SMD светодиодах нет обозначений. Что сделал я? Я убрал с платы резистор R4. При этом уменьшился ток через светодиоды и… светодиоды перестали сгорать. Что интересно, в строительном вагончике, в котором стояли три светильника одного типа, последовательно пришлось ремонтировать все три. И везде пришлось снять по одному резистору. И да, везде упал световой поток, хотя глазом это и трудно определить, но если сравнивать, то заметно.

В другом вагончике, было два светильника с внешними размерами 595х595 мм.. И они тоже «горели». В этих светильниках ячейки состояли из четырёх светодиодов в параллели и было таких 28 ячеек. Так как и там была подобная схема (поднять не удалось), то просто выпаял по одному резистору.

В итоге, можно сделать вывод, что ремонт можно выполнять, по подобной методике, то есть уменьшать ток через светодиоды, так как лучше, пусть светят темнее, чем совсем погаснут. Хотя конечно, правильнее поменять все светодиоды на 2835SMDLED, но это при их наличии.

Драйвер светодиодного светильника на B77CI. Рис. 2.

Схема второго драйвера, изображённого на рисунке 2, я «поднял» со светильника, который нашёл в металлоломе, с механическими поломками корпуса. На рисунке 3 схема четырёх плат светодиодов по 9 Вт каждая. Хотел снять светодиоды для запчастей. И даже, не сразу заметил невзрачную коробочку с драйвером. Схема оказалась почти «монстром».

Фонарь светодиодного светильника. Рис. 3.Внешний вид платы драйвера на B77CI. Фото 2.

Наличие двух микросхем, двух мощных полевых транзисторов, двух дросселей и двух электролитических конденсаторов 220 мк х 100 В включенных параллельно, указывало на то, что разработчики поработали на славу. Так же присутствует довольно хорошая схема фильтров (смотрите фото 2). Микросхема DX3360T — это, по всей видимости, стабилизатор напряжения, и возможно, с корректором мощности. Я в интернете нашёл только невзрачную картинку, без описания. А на микросхему B77CI не нашёл ни чего, и названия выводов на схеме ставил, по интуиции. В работе этот драйвер не видел. Но предполагаю хорошую работу. Но если, придётся уменьшать ток через светодиоды, то нужно или убрать с платы один-два резистора Rs4..Rs6, или менять на другие, расчётные.

И ещё. Совсем не понятно, как в подобных светильниках организован отвод тепла от светодиодов. Ведь они запаиваются на платки из фольгированного стеклотекстолита, шириной в 5 мм. и толщиной примерно в 1 мм.? Думаю, что почти ни как. Всё ширпотреб.

Литература:
1. https://www.dianyuan.com/upload/community/2014/04/10/1397117125-79110.pdf

Устройство, схема подключения светодиодного светильника

Самым эффективным способом сокращения электропотребления в быту является переход на искусственное освещение помещений в доме или квартире с использованием светодиодов, которые из всех типов ламп являются самыми высокоэффективными. Например, по сравнению с обычной лампой накаливания их энергопотребление более чем в 10 раз меньше при одинаковом световом потоке.

А кроме того светодиодные лампы во много раз превосходят люминесцентные энергосберегающие по сроку службы. Устанавливая светодиодные светильники Вы содействуйте сохранению  окружающей среды благодаря тому, что сокращается выделение продуктов горения топлива  в атмосферу от работы электростанций.


К основным достоинствам светодиодов относятся: экономичность, компактность, простота установки и отсутствие вредного влияния как на человека, так и природу. Будущее именно за ними и Я уверен,  что они вскоре вытеснят популярные сегодня компактные энергосберегающие лампы, у которых КПД и срок службы гораздо меньше.

Главный недостаток, который сдерживает всеобщее применение светодиодных светильников- это их цена. В Минске качественный светодиодный светильник дешевле, чем за 50 у. е. не найти, но уже наметилась тенденция по снижению цен на светодиодную продукцию. На лампочки уже  значительно снизились цены и они приближаются к энергосберегающим. Например, месяц назад Я заказал на известном китайском аукционе светодиодные лампы по цене 6 у. е.  за штуку, которые светят как 75 Вт лампа накаливания, а потребляют всего 5 Ватт электроэнергии.

Устройство светодиодного светильника.

Светильник состоит из корпуса с отражателем и набора небольших светодиодов. Светодиоды сильно греются, поэтому для их охлаждения используются специальный радиатор. На место соприкосновения светодиода и радиатора наносится термопаста, улучшающая контакт между ними, а значит и отвод тепла. Перегрев приводит к преждевременной поломке светодиодов, поэтому всегда при установке своими руками учитывайте, что должно быть свободное место вокруг радиатора и желательно не замкнутое.

Не устанавливайте светодиодный светильник возле нагревающихся поверхностей, приборов  и т. п.

Сумма  мощностей всех светодиодов и будет составлять общую мощность светильника. Количество светодиодов может варьироваться от одного до нескольких десятков, которые включаются в одну общую электрическую цепь и управляемой специально собранной схемой, подключенной через блок питания.

Если Вам необходимо функция диммирования или изменение уровня яркости, то Вам понадобятся специальные регуляторы и лампы с функцией диммирования. Подробнее об этом читайте в следующей нашей статье.

При выборе светодиодного светильника

необходимо учитывать доступность ламп для замены, особенно обращаем внимание на тип цоколя (патрона). Прежде чем отправляться за покупкой в магазин рекомендую прочитать нашу статью «Как правильно выбрать светильник или люстру для дома«.

Светодиодная лампа на 220 Вольт состоит, как правило из одного или нескольких сверхъярких светодиодов, которые защищает светорассеиватель или пластиковая колба. К патрону подключается драйвер или электронная схема преобразования электрического тока и питания светодиодов. За отвод тепла отвечает радиатор, который устанавливается под светодиодом.

Как подключить светодиодный светильник

Светодиоды работают на постоянном токе! Внимание! Обращайте внимание при покупке на рабочее напряжение светодиодной лампы, если рабочее напряжение равно 220 Вольт, то значит схема блока питания встроена в лампу и Вы можете напрямую подключить ее к электросети дома или квартиры по общей схеме подключения светильника или люстры.

А если светодиодный светильник или лампа на 12 или 24 Вольта, то  для нормальной его работы необходимо переменное напряжение 220 Вольт преобразовать в постоянное и уменьшить до необходимой величины, а для этого нужно собрать диодный мостик и установить гасящий резистор и емкость. Я рекомендую использовать вместо всего этого покупной блок питания заводской конструкции, который надежен, безопасен и долговечен.

При покупке блока питания главное, на что необходимо обратить внимание- это на величину выходного напряжения (12/24 В) и максимально допустимой величины тока (350 /  700 mA  и др. )

Необходимые данные Вы найдете в инструкции к светильнику или благодаря надписям на нем или лампе. Мощность блока питания лучше брать не меньше, чем с 20 процентным запасом. Для перевода в Ватты необходимо Миллиамперы умножить на 1000 для перевода в Амперы, а затем амперы умножить на рабочее напряжение, полученная величина и будет мощностью, потребляемой светильником или лампой.

Прежде, чем приступать к подключению светильника во избежание его поломки убедитесь, что блок питания не подключен к электросети.

Подключение производится к источнику питания со строгим соблюдением полярности «-» и «+».

Если необходимо подключить несколько светодиодных светильников к одному блоку питания, тогда соединяем их параллельно: плюсовые провода от всех светильников подключаются к  «плюсу» блока питания, а к «минусу»- минусовые выводы (как изображено на схеме).

 

Помните! Максимальное  количество  светильников, подключаемых к одному блоку питания в общей сумме не должно превышать его мощности! А сечение используемых электрических проводов или кабелей должно быть достаточным для прохождения соответствующей силы тока!

 Из своей многолетней практики электрика отмечу, что не стоит покупать светодиодные светильники или лампы на 12 или 24 В для дома. Гораздо проще купить и подключить своими руками обыкновенный накладной, встраиваемый светильник или люстру. Для них практически под все распространенные цоколи или патроны выпускаются светодиодные лампы на 220 Вольт, которым не нужен для подключения блок питания. Они подключаются на прямую к электропроводке, так же как и лампы накаливания или компактные энергосберегающие.

Устройство светодиодных потолочных светильников

Светодиодные светильники для дома потолочные могут отличаться оформлением, но всегда имеют общий принцип работы. Основа конструкции – лампа из одного либо нескольких светодиодов.

Простейшая схема состоит из двух компонентов: диодов и гасящего резистора. В более сложные модели входят:

  • Преобразователь;
  • Катушка индуктивности;
  • Стабилизатор тока;
  • Дополнительная защита от импульсных помех и статического электричества;
  • Некоторые другие компоненты.

Важно также обеспечить терморегуляцию, ведь при работе выделяется тепло, требующее отведения.

Количество светодиодов в одной лампе может варьироваться вплоть до нескольких десятков световых элементов. Обычно они объединены в одну цепь, подключенную к блоку питания для вывода к управляющей схеме.

Схема подключения светодиодов

Есть несколько основных вариантов подключения диодов в светильнике. Эта информация необходима каждому, кто планирует заниматься монтажом самостоятельно, а не поручить работу профессиональным бригадам.

  • Последовательное подключение. Распространенный тип, чаще всего использующийся при промышленном производстве. Самая простая, универсальная и наименее финансово затратная схема, за счет этого остающаяся достаточно уязвимой.
  • Параллельное подключение. Такая схема требует использования токоограничивающих резисторов, которые последовательно подключаются к каждой лампе, обеспечивая безопасность и стабильность работы.
  • Смешанное подключение. В этом случае параллельно соединяются целые блоки, собранные из последовательно подключенных элементов. Эта схема достаточно универсальна и часто используется в домах или офисах.

Выбор зависит от специфики поставленной задачи и условий эксплуатации. Важно также помнить о недостатках того или иного вида. Например, при последовательном подключении выход из строя одного светильника приведет к перегрузке или разрыву всей цепи.

При использовании параллельного подключения, поломка одного элемента не препятствует работе остальных. Максимум, она сказывается на итоговой мощности системы. Но такое подключение обходится гораздо дороже.

Смешанный тип сочетает преимущества обоих вариантов, позволяя достичь максимальной эффективности. Однако, это достаточно сложная схема, которая требует максимального профессионализма при реализации.

К содержанию ↑

Типы LED потолочных светильников

Сфера эксплуатации светодиодных потолочных светильников обширна и разнообразна. За счет этого разные модели могут существенно отличаться по техническим параметрам, особенностям конструкции и способам монтажа.

Исходя из предназначения, классифицируют светильники:

  • Общего назначения. Их задача – рассеянный, приятный свет, приближенный к естественному. Это оптимальный вариант для домов и офисов, позволяющий обойтись без традиционных массивных люстр.
  • Направленного света. Преимущественно декоративный элемент, который используется в интерьере и дизайне для подсветки отдельных участков или создания акцентов.
  • Линейные. Светильники в виде трубки с поворотным цоколем, благодаря чему можно менять угол освещения. Такие модели популярны в офисах, торговых помещениях, при организации стендов и выставочных площадок.

 

Для разных типов потолков необходимы разные конструкции. Отдельного внимания заслуживают:

  • Натяжные;
  • Подвесные;
  • Реечные;
  • Потолки армстронг;
  • Потолки грильято;
  • Более редкие и специфические разновидности.

Все они предполагают разный способ монтажа и крепления, что чрезвычайно важно учитывать при выборе.

Чаще всего потолочные светодиодные светильники представлены в двух категориях:

  • Встраиваемые или врезные (встроенные), которые идеально подходят для подвесных потолков или гипсокартонных конструкций. Они легко устанавливаются или заменяются, а также практически не нагреваются при использовании.
  • Накладные, предполагающие подготовительные работы с поверхностью. Они отличаются разнообразным дизайном и необычным оформлением, позволяя воплощать интересные и оригинальные идеи.

Характеристики и технические параметры

Существует несколько основных характеристик, исходя из которых следует выбирать светодиодные потолочные светильники:

  • Сила светового потока. Влияет на качество и количество освещения. Зачастую на упаковке указывается характеристика эквивалентной лампы накаливания.
  • Потребляемая мощность. Обычно варьируется в пределах 1-10 Вт. От этого показателя зависит, насколько энергосберегающей будет лампа.
  • Срок службы. Светодиодные светильники чрезвычайно долговечны, но со временем мощность постепенно снижается. Средний срок службы начинается от 25 тысяч часов.
  • Угол расходимости. Характеризует распределение светового потока по помещению: чем шире угол – тем равномернее свет. Лампы с небольшим показателем подходят для создания акцентов, а широкий угол – для полноценного освещения комнаты.
  • Цветопередача. Каждый осветительный прибор обладает своим коэффициентом, который должен обязательно указываться производителем. Оптимальный показатель – более 70.
  • Цвет излучения. Зависит от цветовой температуры лампы. Для дома наиболее комфортным считается освещение желтоватого оттенка, ведь слишком холодный и белый цвет мало пригоден для жилых помещений.
  • Пульсация. Любой световой поток пульсирует во время своего распространения. Такие колебания незаметны для человеческого глаза, но могут способствовать повышению утомляемости, если показатель будет слишком высок.

 К содержанию ↑

Монтаж потолочных светильников

Перед началом монтажных работ необходимо обратить внимание на некоторые особенности. Мощность светильников зависит от специфики помещения, начиная его размерами и заканчивая оформлением.

Не существует единственной схемы точного расчета, так что все нюансы должны учитываться индивидуально.

Использование исключительно потолочных светильников не всегда целесообразно. Для многих помещений оптимальным решением станет комбинация разных источников освещения, включая настенные, напольные, настольные модели, а также споты.

В некоторых случаях вместо стандартных светодиодных светильников можно использовать светодиодную ленту или другие оригинальные решения.

Перед установкой разрабатывается схема будущей проводки. В ней необходимо учесть типы соединения и основные функциональные точки. Угол падения света всегда равнее углу отражения, что немаловажно в помещениях с телевизорами и мониторами.

Для прокладки электропроводки используется специальный провод двойной изоляции.

Для потолочного освещения сечение обязательно рассчитывается отдельно, в зависимости от мощности и потребления тока. Монтаж может проводиться на любом этапе ремонта, исходя из текущего плана и удобства.

Перед началом работ на потолок переносится вся разметка с точками крепления и установки. Провода закрепляются каждые 40-50 сантиметров, чтобы в будущем избежать провисания. В процессе могут использоваться специальные дюбель-хомуты и прочая фурнитура.

Обычно после финишных потолочных работ проводка становится недоступной для полноценного обслуживания, так что каждый шаг должен быть выполнен максимально профессионально и надежно. Для сокращения объемов работ используются предварительно заготовленные жгуты и другие приемы.

Для закрепления светильника в потолке подготавливается отверстие, диаметр которого чуть меньше фланца корпуса.

Большинство моделей обладают специальными ушками на пружине, которые сводятся для проникновения в это отверстие, после чего отпускаются и фиксируют лампу. Конструкция позволяет с легкостью скрыть крепление, а также заменить элемент при необходимости.

Для работы с пластичными материалами потолка существуют дополнительные системы, благодаря которым со временем они не провиснут.

Специальная арматура, представленная в разных вариациях и размерах, чаще всего используясь для создания скрытой платформы, к которой и будут крепиться светильники.

После монтажа корпуса к нему подводится провод и фиксируется при помощи клеммной колодки. На цоколь надевается патрон, в корпуса вставляется лампочка, к примеру на 220в, а вся система снова фиксируется разжимной пружиной.

Установка светильников потолочных встроенных светодиодных

Замена лампочки светодиодной 220в для светильников потолочных

При замене лампы обязательно необходимо помнить о технике безопасности. Все работы должны производиться только на устойчивой поверхности и с выключенным освещением.

Сама замена состоит из трех основных этапов:

  • Разблокировка лампочки в корпусе, в котором она держится специальным фиксирующим кольцом, как  на фото выше.
  • Изучение характеристик лампы;
  • Замена на аналогичную модель и фиксация конструкции.

 

Если при использовании светодиодных ламп не хватало освещения, можно приобрести модель с другим цветом излучения – белым вместо желтого. Это позволит увеличить световой поток, не влияя на мощность.

 

Лучше использовать лампы одной модели, ведь только так можно достичь максимально равномерного и гармоничного освещения. Для работы рекомендуется использовать перчатки, чтобы не повредить лампу и не сократить срок ее службы.

Согласно отзывам экспертов особое внимание при выборе стоит уделить таким известным компаниям как Ecola и CREE, так как на данный момент именно они являются лидерами светодиодного освещения.

Преимущества светодиодных потолочных светильников

Сравнительно с традиционными лампами накаливания, светодиодные светильники имеют множество преимуществ:

  • Минимальное потребление энергии без ущерба для качества освещения;
  • Длительный срок службы, измеряющийся в годах и десятилетиях;
  • Практически мгновенное достижение максимальной мощности при включении;
  • Возможность выбора светильников с разным цветом освещения;
  • Создание привычного теплого света, оптимального для человеческого глаза;
  • Минимальные колебания для снижения утомляемости и повышения трудоспособности;
  • Отсутствие ультрафиолетового излучения;
  • Безопасность для здоровья;
  • Легкость монтажа, ухода и замены;
  • Возможность установки диммера для регуляции яркости света.

 К содержанию ↑

Недостатки светодиодных потолочных светильников
  • Стоимость, которая в несколько раз превышает цены на другие модели аналогичной эффективности.
  • Постепенная потеря яркости, которая снижается с годами интенсивной эксплуатации. Чаще всего это происходит если купить недорогие варианты. Впрочем, даже такие светильники сполна окупаются за счет энергосбережения.
  • Узконаправленный свет, за счет которого придется установить больше точек освещения.
  • Неприятный спектр излучения, недостаточно подходящий для комфортного проживания. Но это зачастую касается или дешевых, или неправильно подобранных моделей.

 

Область применения светодиодных потолочных светильников для дома

Светодиодные светильники в доме подходят для освещения практически любых помещений.

  • Спальня. Необходимо, чтобы свет не был слишком ярким или резким, ведь такое освещение контрастирует с самим предназначением комнаты.
  • Гостиная. Следует подобрать модели, которые будут вписываться в оформление. Светодиодные светильники в гостиной отлично подходят как для полноценного освещения, так и для воплощения необычных дизайнерских идей.
  • Ванная комната. Различные вариации позволяют добиться максимально комфортного освещения или выделить отдельные зоны, как например зеркало.
  • Кухня. Для кухни незаменимой находкой может стать направленная подсветка над рабочей поверхностью, мойкой или плитой. Нельзя устанавливать светильники поблизости от конфорок плиты, чтобы избежать отрицательного влияния разогретого воздуха.

Светодиодные потолочные светильники можно устанавливать не только в доме, но и за его пределами: в мастерских, гаражах и других хозяйственных постройках.

Заключение

Светодиодные потолочные светильники для дома – универсальный и практичный выбор.

Важно лишь подойти к вопросу взвешенно и тщательно планировать работы на каждом этапе. Любая комната может полностью преобразиться за счет грамотно установленного светодиодного освещения.

К содержанию ↑

Расскажите друзьям!

Понравилась статья? Подписывайтесь на обновления сайта по RSS, или следите за обновлениями В Контакте, Одноклассниках, Facebook, Twitter или Google Plus.

Подписывайтесь на обновления по E-Mail:

Если вы нашли неточность или у вас есть вопрос, напишите в форме комментария ниже:

Устройство и схема подключения светодиодного светильника

Если вы хотите снизить финансовые затраты на электроэнергию, пожалуй самым эффективным способом будет являться переход с ламп накаливания или галогенных ламп на использование специальных светодиодов. Энергопотребление таких ламп по сравнению с лампами накаливания будет во много раз меньше, тогда как световой поток останется неизменным.

Если сравнивать светодиоды с люминесцентными энергосберегающими лампами, превосходство также будет на их стороне — срок службы таких ламп существенно больше. Если вы заботитесь об экологии окружающей среды, светодиодные источники света также будут здесь на первом месте.

Содержание статьи

Достоинства светодиодных ламп

Исходя из вышестоящего текста, светодиоды обладают такими достоинствами как экономичность, долгий срок службы и отсутствие негативного влияния на экологию планеты и человека. К этому можно добавить компактность таких ламп, простоту установки, а также отсутствие нагрева лампы во время работы. Светодиодные лампы обладают самыми лучшими характеристиками среди других популярных на сегодняшний момент.

Единственный недостаток, свойственный светодиодным лампам, часто сдерживающий человека от их покупки — цена. Качественный светодиодный источник света стоит гораздо дороже аналогов, однако тенденция снижения цен на рынке на светодиодную продукцию уже наметилась. Цены на светодиоды постепенно снижаются, благодаря этому они становятся доступными для любого человека. Светодиоды можно заказать в интернете, на популярных сейчас китайских аукционах, по довольно низкой цене. Такие лампы излучают свет как обычная 75 Вт лампочка, а потребляют энергии всего 5 Ватт.

Устройство светодиодной лампы (светильника)

Строение светодиодного светильника довольно просто: несколько светодиодов и корпус со специальным отражателем. Для охлаждения светодиодов в лампе присутствует специальный радиатор, в месте соприкосновения которого со светодиодом проложен слой термопасты, улучшающей контакт, а также отвод тепла. Если светодиод перегреется, поломки лампы не избежать, поэтому при ее установке обязательно оставляйте свободное незамкнутое пространство вокруг радиатора. Также нельзя устанавливать светодиодную лампу возле нагревающихся поверхностей и приборов.

Общая мощность светильника будет равна сумме мощности всех входящих в нее светодиодов. Светодиодов может быть как совсем небольшое количество, например один, так и несколько десятков. Все эти светодиоды включены в общую электрическую цепь и управляются специально собранной схемой, подключенной через блок питания.

Светодиодная лампа мощностью 220 В состоит из нескольких светодиодов, которые защищены пластиковой колбой или светорассеивателем. К патрону подключена электронная схема преобразования тока. Радиатор для отвода тепла установлен под светодиодом.

Функциональность светодиодной лампы

Для возможности регулировать яркость светового потока и подключения диммера, нужно приобрести специальные светодиодные лампы с возможностью такой регулировки, а также специальные регуляторы.

Обратите внимание также на тип цоколя (патрона), он должен подходить к выбранным вами корпусам (светильникам). Для удобства поика нужных ламп для замены в дальнейшем, можно сохранить упаковку.

Подключение светодиодного светильника

Для работы светодиодов нужен постоянный ток. Если вы покупаете светильник для использования в стандартной квартире или доме с рабочим напряжением сети 220 В, вам нужно искать светодиодную лампу, на упаковке которой будет указана мощность 220 В. Это означает, что схема блока питания уже встроена в лампу и она подключается напрямую к вашей электросети по схеме подключения светильника (люстры).

Если же на упаковке светодиодной лампы указано значение 12 или 24 В, это означает, что для нормальной ее работы нужен преобразователь напряжения. Для этого возможно использовать специальный заводской блок питания, продающийся в специализированных отделах. Такой блок прослужит вам долгое время, он безопасен и надежен.

Если вы решили приобрести такой блок, обратите внимание на необходимую для ваших светодиодных ламп величину входного напряжения — 12 или 24 Вольта и максимально допустимую величину тока — 350 mA, 700 mA или другие значения.

Все необходимые данные можно посмотреть на упаковке светильника или в инструкции. Мощность блока питания должна быть с запасом, не менее чем 20%. Для правильного подсчета мощности следует mA умножить на 1000 (для перевода в Амперы), а затем амперы умножить на рабочее напряжение. Таким образом вы получите число, составляющее потребляемую мощность вашего светодиодного светильника.

Перед подключением лампы следует убедиться в том, что блок питания отключен от электросети, иначе поломки не избежать.

Произведите подключение к источнику питания, строго соблюдая полярность.

Подключение нескольких светодиодных светильников

Можно подключить несколько светодиодных ламп к одному блоку питания, для этого потребуется соединить их параллельно, плюсовые провода от всех светильников подключаются к «плюсу» блока питания, а к «минусу»- минусовые выводы (используйте схему).

Обязательно нужно помнить, что мощность всех светильников, которые вы подключаете к одному блоку питания, не должны превышать его мощности. Также внимание следует обратить на сечение используемых электрических проводов — оно должно быть достаточным для прохождения соответствующей силы тока.

Однако если вы хотите использовать светодиодные лампочки в своем доме или квартире, лучшим вариантом будет приобрести лампу, подходящую к вашему рабочему напряжению. Подключение такого встраиваемого светильника не составит для вас никакого труда и займет минимальное количество времени.

Светодиодные лампы 220 Вольт в настоящее время весьма распространены и вы легко подберете лампу с подходящим для вашего светильника или люстры цоколем или патроном. Для подключения этой лампы не нужен дополнительный блок питания, ее подключают напрямую к электросети как обычные лампы накаливания, галогенные или энергосберегающие лампы. Такой светодиодный светильник будет радовать вас качеством долгое время.

Понравилась статья? Поделиться с друзьями:

Светодиодный светильник аварийного освещения (схема, характеристики)

Согласно пожарным нормам, некоторые объекты нуждаются в аварийном освещении. Как альтернатива используется светодиодный светильник аварийного освещения с аккумулятором. Он пригоден для установки в любых помещениях, экономичен, экологически безвреден и просто красиво смотрится. Стоит сразу отметить, что аварийное освещение имеет две функции: эвакуационную – для эвакуации людей в случае ЧП, и освещение безопасности – чтобы исключить аварийную ситуацию, которая может возникнуть из-за отключения света. Аварийный светильник можно либо купить, либо сделать своими руками.

Покупные модели

Магазины электротоваров предлагают большой выбор светильников, в том числе и для нештатных ситуаций. Такие лампы должны обеспечивать достаточный световой поток, чтобы было видно, куда эвакуироваться при аварии, а также быть устойчивыми к агрессивной среде, которая может быть следствием нештатной ситуации. Лучшим вариантом являются светодиодные модели, так как при минимальном энергопотреблении они дают достаточно мощный поток света и при этом очень долговечны.

Вот некоторые модели:

Мощность – всего 2 ватта, однако его хорошо видно на расстоянии, что достигается благодаря исполнению на светодиодах. Переключается в течение одной секунды, заряда хватает на 1,5 часа работы. Конструкция предусматривает подвеску к потолку при помощи тросов. Возможны исполнения не со стрелкой, а с надписями: «выход», «запасной выход», «не входить».

EHP2-01 и его размеры

Кроме подвески к потолку при помощи тросов, имеет возможность крепления на стену. Те же характеристики, что и у предыдущего: время автономной работы при полной зарядке – 1,5 часа, переключение в течение одной секунды, но мощность уже 3 ватта. Вроде бы мелочь, но с учетом того, что это не лампы накаливания, разница будет ощутимая. При необходимости, можно купить такой фонарь с другой надписью: они есть с разными вариантами текста, так что подойдут для любого предприятия.

Эта модель полностью отличается от предыдущих. Здесь нет надписей, потому что его роль не в указании выхода или объяснении что делать, а в том, чтобы включиться при пропадании электричества и дать возможность произвести необходимые действия обученному персоналу. К примеру, предыдущие модели ламп, как правило, предназначены для установки в кинотеатрах, кафе и других местах, где люди, при возникновении непредвиденной ситуации, нуждаются в руководстве – куда идти, что делать. Эта же модель ничего не указывает, а просто светит.

Свет – белый, световой поток, который он дает – 300 Лм. Также снабжен аккумулятором с временем работы в автономном режиме 1,5 часа. Мощность – 5 ватт. Можно крепить на потолок, стену, а также можно носить в руке – очень удобная функция.

Читайте также:

Сборка светодиодной лампы своими руками

Какой выбрать?

Магазины предлагают большой выбор подобных ламп с различными характеристиками, поэтому вопрос «что выбрать именно мне?» вполне закономерен. Хотя универсального совета нет, однако некоторые рекомендации будут весьма полезны.

  1. Время работы. Понятно, что чем дольше, тем лучше, но желательно иметь какой-то минимум. В среднем, это должно быть не меньше 1,5–2 часов. Эта функция прямо пропорциональна емкости аккумуляторной батареи (чем выше, тем дольше), и обратно пропорциональна мощности лампы. Это важно знать, особенно если хотите доработать купленный прибор своими руками.
  2. Степень защиты. Обозначается как IP ХХ и означает степень защищенности прибора от пыли и влаги, где первая цифра – уровень защищенности от пыли, а вторая – уровень водонепроницаемости. Минимальное значение для нашего прибора – IP 20, среднее значение, пользующееся популярностью на рынке, – IP Значение IP 65 означает полную защиту от пыли и воды, с возможностью эксплуатировать лампу в местах сильного запыления и присутствия водных струй средней мощности.
  3. Тип крепления. Выбор крепления зависит от предполагаемого места установки: навесной, настенный, потолочный.

Также есть много других параметров, которые необходимо учесть: размер, цена, цель – будет это просто указатель эвакуационного выхода, или же нужно полноценное освещение места при отключении электроэнергии.

Как собрать самому

Есть много различных схем таких светильников, но если нет очень высоких требований, можно попробовать несложную схему, которую легко собрать своими руками. Она разработана компанией YMYA electronics и пользуется популярностью из-за своей простоты и надежности.

Принцип работы очень прост: как только пропадает 220 В, автоматически зажигаются 12 ярких светодиодов, которые так же автоматически гаснут при появлении напряжения сети.

Эта схема состоит из двух частей: схемы зарядки батареи и управления лампами типа LED. Зарядное устройство состоит из понижающего трансформатора 220/9 В, диодного моста, сглаживающего конденсатора, регулирующего элемента на микросхеме LM317.

Ограничение зарядного тока осуществляется при помощи резистора 16 Ом, 5 ватт, потенциометром 2,2 Ком регулируется ток зарядки, а стабилитрон в цепи базы транзистора ВС547 служит для автоматического отключения заряда батареи.

Вторая часть схемы состоит из транзистора BD140, в коллекторной цепи которого установлена матрица из 12 светодиодов. Резисторы 100 Ом – токоограничивающие. Так как потребляемый ток матрицы может доходить до 1,5 А, транзистор обязательно должен стоять на радиаторе во избежание перегрева и выхода из строя.

Если это слишком сложно, можно взять другую схему, которую собрать своими руками еще проще:

Напряжение 220 вольт подключается к гнезду J1, выпрямляется диодным мостом, собранном на диодах 1N 4004, и поступает на контакты электромагнитного реле. При пропадании напряжения сети реле обесточивается. Нормально закрытые контакты подключают батарею, аварийное освещение включается в работу.

При желании можно подключить не 220 В, а 5 В через контакты J2, J3: теперь схема будет отслеживать наличие этого напряжения. Гнездо J4 используется для подключения зуммера, звонка или любого другого устройства, которое будет оповещать о том, что произошла авария.

Как видим, такие фонари – это не настолько дефицитно или сложно, чтобы отказываться от исполнения требований техники безопасности. Если купить их в нужном количестве дорого, всегда есть альтернативный вариант – собрать своими руками, что будет значительно дешевле.

монтаж потолочных диодных светильников в потолок, схема подключения

Содержание:

Вопрос освещения собственного жилья всегда волнует владельцев квартир и частных домов. Энергоносители постоянно растут в цене, традиционные методы освещения негативно влияют на окружающую среду, да и сами по себе привычные лампы не очень удобны и эффективны. Все эти факторы способствуют увеличению популярности светодиодного освещения, которое отличается простой монтажа и эксплуатации, а также экологичностью и экономичностью. В данной статье будут рассмотрены светодиодные светильники и технология их установки.


Устройство светодиодных светильников

Светодиодная лампа, как понятно из названия, состоит из светодиодов, количество которых варьируется от одного до нескольких десятков. Эти элементы всегда соответствуют суммарной мощности лампы, управляющей схемы и корпуса прибора. Светильники, которые предназначаются для бытового использования, оснащаются цоколем Е14 или Е27, которые полностью идентичны цоколям традиционных ламп накаливания.


Все светодиоды в лампе подключаются к одной цепи, которая, в свою очередь, соединена с управляющей схемой и блоком питания. В процессе работы светодиодные элементы генерируют тепловую энергию. В качестве охладителей используются радиаторы, которые обычно устанавливаются непосредственно под светодиодами. Для повышения эффективности охлаждения участок соединения этих деталей покрывается термопастой.

Схема светодиодного светильника

Входная часть схемы является местом для установки гасящего резистора и емкости. Эти элементы используются системой в качестве понижающего блока питания. За ними располагается диодный мост, предназначенный для трансформации переменное напряжение в постоянное, которое требуется светодиодам.


Существует три принципиальных схемы соединения светодиодов в светильнике:

  • Последовательная;
  • Параллельная;
  • Смешанная.

В большинстве случаев отдельные светодиоды подключаются последовательно. Ключевая проблема такой схемы – если хотя бы один элемент в цепи придет в негодность, то и вся схема станет неработоспособной. Кроме того, всегда существует вероятность пробоя светодиода – и в таком случае питание продолжит поступать на остальные элементы, но в режиме перегрузки. В конечном итоге это приведет к перегоранию всех светодиодов. Само собой, такая схема светодиодного потолочного светильника не может считаться достаточно надежной.


Смешанная схема подключения потолочных светодиодных светильников тоже имеет недостатки последовательного подключения, но конструкция светильника отличается. Так, в данном случае лампы соединяются последовательно и объединяются в группы. Группы, в свою очередь, подключаются последовательно, что дает некую гарантию защиты схемы от полного перегорания.

Самой надежной схемой является параллельное подключение, в котором каждая лампа работает независимо от других. В случае любых неполадок с одной из ламп все остальные продолжат работать в штатном режиме, без перегрузок и риска пробоя. Недостатком такой схемы является дороговизна, во многом обусловленная тем, что к каждому светодиоду подводится отдельный резистор. Из-за высокой стоимости светодиодные светильники с параллельным подключением используются крайне редко.

Сборка

На сегодняшний день рынок осветительных приборов может похвастать невероятно богатым ассортиментом. Светодиодные светильники можно приобрести практически в любом строительном магазине, или же в магазине с бытовой электротехникой. Собрать светильник достаточно просто – но перед этим нужно определиться с желаемым типом освещения, ведь широкий ассортимент говорит о разнообразии характеристик.

Основная классификация светодиодных светильников включает в себя следующие группы приборов:

  • Линейные;
  • Потолочные;
  • Настенные;
  • Промышленные;
  • Прожекторы;
  • Подводные;
  • Контроллеры.

Стоит рассмотреть несколько наиболее распространенных видов светильников, чтобы понимать, о чем идет речь:

  1. Светодиодные ленты. Такое освещение лучше всего подходит для коридора, где особенной необходимости в точечных светильниках нет. Светодиодные ленты продаются в сборе. На одной стороне изделия располагается заглушка, а на другой – провода, которые подключаются к питанию. Разумеется, блок питания должен соответствовать мощности ленты, а при подключении нужно следить за полярностью проводов. Недостатком таких устройств является высокая степень нагрева, из-за чего их нельзя устанавливать в узких каналах с плохой вентиляцией.
  2. Точечные светильники. Поскольку светодиодных лент недостаточно для полноценного освещения больших помещений, в них приходится использовать точечные осветительные приборы. Такие устройства располагаются на стенах или потолке, причем нередко их немного наклоняют, чтобы создать наиболее комфортное освещение. Подбирая такие приборы, нужно очень хорошо рассчитать всю электросеть, чтобы ее отдельные элементы соответствовали друг другу.
  3. Светильники с датчиками движения. По большому счету, это всего лишь модификация обычных светодиодных ламп. В таких устройствах имеются датчики, отслеживающие движение и запускающие освещение только в то время, когда это необходимо. Такие устройства, во-первых, очень хорошо подходят для освещения участков, где постоянный свет не требуется, а во-вторых, имеют более высокий рабочий ресурс за счет значительно меньшего времени работы.
  4. Собранные светильники с радиаторами. Пожалуй, самый удобный вид устройств – готовые светильники не предполагают сборки. Обычно такие приборы покупают при отсутствии опыта или знаний, необходимых для самостоятельной сборки всех элементов устройства.

Впрочем, если все же есть необходимость собирать светильник самостоятельно, то нужно приобрести весь комплект деталей и приступать к работе. Сначала нужно к радиатору, покрытому термопастой, прикрепить светодиод (или светодиоды, если радиатор рассчитан на несколько ламп). При сборке нужно обязательно следовать инструкции и всегда следить за тем, чтобы мощность устанавливаемых светодиодов соответствовала мощности остальных элементов системы.

Установка на потолок

Монтаж светодиодных потолочных светильников возможен практически в любых помещениях. Даже для комнат со стабильно высокой влажностью можно найти подходящие изделия. Пожалуй, единственным ограничением является нагрев светодиодов, из-за которого его настоятельно не рекомендуется устанавливать на кухнях прямо возле плиты – регулярное воздействие высокой температуры существенно снизит срок службы освещения.


Установка светодиодных светильников может меняться в зависимости от конкретных условий – например, в случае с натяжным потолком элементы нужно устанавливать в такой последовательности:

  • Сначала ножки крепятся к потолку;
  • Потом монтируется стойка;
  • Дальше устанавливается защитное и термоизолирующее кольцо, между которыми и располагается полотно натяжного потолка;
  • В последнюю очередь монтируется сам светильник.

По такой же схеме светильники устанавливаются на гипсокартонные потолки. Для установки светодиодного освещения на бетонных перекрытиях точечные светильники не подойдут – придется выбирать из ассортимента накладных и подвесных приборов, которые крепятся прямо к бетону.

Подключение

Перед подключением любого электрического оборудования, в том числе светодиодных осветительных приборов, нужно убедиться в том, что напряжение в сеть не подается. В противном случае при выполнении работ мастер обязательно получит удар током.


Когда сеть выключена, можно начать подключение потолочного светодиодного светильника, которое выполняется так:

  1. Первым делом нужно смонтировать все коммуникационные линии, необходимые для работы электросети. В случае с подвесными и натяжными потолками для укладки проводов будет вполне достаточно гофрированной пластиковой трубы, которая крепится прямо к потолку. Если приходится иметь дело с бетонными плитами, то придется делать в них штробы.
  2. Когда провода со светильниками установлены, нужно организовать им хорошую вентиляцию – например, при помощи подвесного потолка. В коробе вырезается количество отверстий, совпадающее с количеством осветительных приборов. Лампы подключаются к выведенным из отверстий проводам и фиксируются на своем месте. Работать нужно осторожно, особенно если потолок смонтирован из натяжного полотна – его очень легко повредить. Для защиты натяжного потолка от нагрева нужно обязательно устанавливать термокольца, в отличие от гипсокартонных конструкций, которые могут обойтись без таких колец.

После подключения ламп и подачи напряжения в сеть нужно проверить систему на предмет работоспособности. Если светильники загорелись, то монтаж диодных светильников в потолок был выполнен корректно, а в противном случае придется искать проблему и доводить электросеть до рабочего состояния.

Замена светодиодной лампы

Несмотря на долговечность светодиодов, все же нередки ситуации, когда даже столь надежные элементы выходят из строя. Тому может быть несколько причин – от случайных изменений характеристик напряжения в сети до неправильной эксплуатации или монтажа светодиодного освещения. В любом случае, если хотя бы одна из ламп перегорела, ее необходимо менять.


Технология замены лампы выглядит следующим образом:

  • В первую очередь нужно отключить напряжение в помещении или во всей квартире, если возможность отключить одну комнату отсутствует;
  • Далее нужно осторожно снять стопорное кольцо, которое фиксирует защитное стекло светильника;
  • Лампа аккуратно извлекается со своего места, и на него же устанавливается новая;
  • Все предыдущие операции повторяются в обратной последовательности.

Лучше всего выполнять эти операции в защитных перчатках. Их смысл не в том, чтобы защитить мастера, а в предотвращении повреждений или загрязнений светодиодной лампы.

Заключение

Установка потолочных светодиодных светильников – это сравнительно простой комплекс операций, для выполнения которых требуется минимальный набор навыков работы с электрическими сетями. Впрочем, работы по подключению и разводке коммуникаций лучше все же доверить специалистам – ошибки при монтаже могут привести к повреждению всей системы, поэтому их лучше не допускать.


Что внутри и светодиодная лампа

от ЛЕЛАНД ТЕШЛЕР, исполнительный редактор

Сюрприз: заглянув внутрь пяти светодиодных ламп, предназначенных для замены ламп накаливания мощностью 60 Вт, можно увидеть, какие режимы проектирования варьируются от абсолютно простых до поразительно сложных.

Среднестатистический потребитель может подумать, что когда дело доходит до лампочек, одна примерно такая же, как и другая. Этот вид мог быть точным, когда в каждой розетке была лампа накаливания. Это, конечно, не так для светодиодных ламп, разработанных в качестве замены ламп накаливания.

Мы пришли к такому выводу после того, как разобрали пять светодиодных ламп, продаваемых как эквиваленты ламп накаливания мощностью 60 Вт. Все пять выбранных нами ламп получили высокие оценки журнала Consumer Reports. Но на этом общность остановилась. Когда мы вошли внутрь, мы обнаружили совершенно разные подходы к технологиям строительства, управлению температурным режимом и проектированию электроники.

Начнем с лампы под названием E27 A19 LED от Home EVER Inc. из Лас-Вегаса. Механика лампочки и ее электроники предельно просты.Двусторонняя печатная плата, похоже, была припаяна оплавлением. Два провода соединяют плату с металлической пластиной, на которой находится 30 светодиодов. Еще два провода идут к проводам розетки. Все четыре провода выглядят так, как если бы они были припаяны вручную.

Пластиковый корпус преобразователя постоянного / переменного тока Home EVER выдвинулся из нижней части радиатора. Плата преобразователя (справа) находится в пластиковом корпусе.

Лампа построена вокруг радиатора высотой 2 дюйма, который весит 2 унции и выглядит как отливка из металла. В основании лампы находится пластиковый корпус, в котором находится преобразователь постоянного / переменного тока.Электрические подключения к патрону лампы находятся на одном конце корпуса. Другой конец крепится к радиатору двумя маленькими винтами.

Радиатор и пластиковое основание лампы Home EVER удерживают преобразователь постоянного / переменного тока с удаленными металлическими резьбами. > Здесь соединение опорной ноги по-прежнему подключено к преобразователю.

Дополнительные приспособления к радиатору — это матовая поликарбонатная лампа, в которую заключены светодиоды, и металлическая пластина диаметром 2 дюйма, на которой находятся светодиоды. Пластиковая лампа, по-видимому, вставляется в радиатор, а светодиодная пластина крепится тремя винтами.Между светодиодной пластиной и радиатором нанесена пара точек теплопроводности.

Конструкция преобразователя постоянного / переменного тока проста. Единственные компоненты, не относящиеся к SMD, — это два больших конденсатора, импульсный резистор на входе и трансформатор. Соединения от платы к основанию винта и к плате светодиодов осуществляются дискретными проводами, но соединение с контактом ножки лампы было выполнено машинным способом. Однако электрическое соединение с металлической резьбой — это просто отрезок оголенного провода, зажатого между пластиковым корпусом и внутренней поверхностью резьбы.

Электроника преобразователя переменного / постоянного тока — голая. Диодный мост на входе — четыре дискретных диода. На плате есть единственная микросхема. Это источник питания с понижающей топологией, предназначенный для обеспечения постоянного тока и произведенный компанией Bright Power Semiconductor (BPS) в Китае. Чип, получивший название BP2812, включает полевой МОП-транзистор на 600 В. В спецификации указан рабочий ток микросхемы на уровне 200 мкА.

На плате Home EVER видны четыре диода, составляющие выпрямительный мост и микросхему BP2812 (внизу).На другой стороне платы (вверху) находятся компоненты управления энергией и плавкий предохранитель на входе.

«Типичная прикладная схема», указанная в спецификации BP2812, очень близка к реальной схеме, которую мы нашли на печатной плате светодиода. Семь резисторов входят в простые сети, которые обрабатывают напряжение Vcc, измеряют пиковый ток понижающей индуктивности и регулируют входное напряжение на ИС. Пять конденсаторов выполняют рутинную работу по фильтрации линии переменного тока, байпас переменного тока для выводов Vcc и датчиков линии, а также понижающую топологию.Встроенный предохранитель отключает питание всей цепи в случае слишком большого потребления тока.

Судя по графике на сайте BPS, похоже, что именно BPS собрал плату. Там есть изображения примеров плат для нескольких других светодиодных приложений, которые очень похожи на это.

Микросхема, питающая светодиодную лампу Home EVER, по сути, представляет собой источник постоянного тока, питающий встроенный MOSFET. Эталонная схема от производителя микросхем Bright Power Semiconductor близка к той, что мы нашли на печатной плате.

Следует отметить, что влияние температуры на работу светодиода не учитывается в преобразователе постоянного / переменного тока. Светодиоды излучают меньше света при повышении их температуры. Обычно это не проблема при небольших изменениях температуры. Чувствительность глаза к свету логарифмическая, и глаз не особенно чувствителен к небольшим изменениям яркости. Нет ничего необычного в том, что световой поток светодиода падает на 10% при повышении температуры перехода от комнатной до 150 ° C.

Но ток светодиода также можно уменьшить при более высоких температурах, чтобы уменьшить потребность в теплоотводе.Тем не менее, нет датчика температуры, который мы могли бы увидеть в преобразователе переменного / постоянного тока домашней лампы EVER. А схемы диммирования нет.

Но в целом светодиодная лампа, вероятно, хорошо работает там, где не требуется регулировка яркости.

Osram
Светодиодная лампа Osram Sylvania мощностью 60 Вт примечательна тем, что имеет относительно небольшой состоящий из двух частей радиатор. Одна часть представляет собой башню в форме пятиугольника высотой 1 дюйм, которая служит основой для шести светодиодных панелей, пять из которых имеют форму пятиугольника, а шестая находится на вершине башни пятиугольника.Другой — цилиндрический литой радиатор длиной 0,75 дюйма, который, по-видимому, защелкивается в верхней части пластикового купола, в котором размещены светодиоды. Цилиндрический литой радиатор и башня вместе весят 1,3 унции.

Вид на светодиодную лампу Osram с отрезанным пластиковым шаром, открывающий башню в форме пятиугольника, на которой расположены светодиоды. Видно, что провода от платы преобразователя постоянного / переменного тока припаяны к верхней пластине.

Основание устройства представляет собой цельный пластиковый корпус, в котором находится монтажная плата преобразователя переменного / постоянного тока.Два провода соединяют его с пятиугольной башней с 18 светодиодами, по три на каждой грани. Соединения между платами, похоже, были припаяны оплавлением. Но дискретные провода между печатной платой и светодиодной сборкой, похоже, были припаяны вручную. Точно так же соединения с цоколем лампы представляют собой дискретные провода, один из которых зажат между металлической резьбой, а другой — машиной, установленной на ножке лампы.

Заливочный материал, окружающий плату преобразователя переменного / постоянного тока лампы Osram и пластиковый корпус, из которого она была извлечена.

По причинам, которые не совсем ясны, разработчики лампы Osram решили закрепить плату преобразователя переменного / постоянного тока. Относительно небольшой радиатор на этой плате по сравнению с другими конструкциями, которые мы видели, может указывать на то, что заливка предназначена для улучшения рассеивания тепла, хотя заливочный материал не полностью заполняет пустое пространство между электронными компонентами и внешней оболочкой. Однако заливка действительно усложнила процесс расшифровки схемы.

Эталонная схема SSL21082AT кажется близкой к той, что мы нашли на печатной плате Osram.Чип имеет вход для резистора NTC, но мы не обнаружили его ни на печатной плате, ни на металлических пластинах, к которым крепятся светодиоды.

Основная плата для светодиодной лампы Osram двусторонняя. Он содержит две микросхемы, одна из которых представляет собой диодный мост для входа переменного тока, а другая — микросхему драйвера SSL21082AT от NXP Semiconductors. Функции, реализованные на микросхеме NXP, включают регулирование яркости, защиту от перегрева и контроль перегрева светодиодов, защиту от короткого замыкания на выходе и режим перезапуска в случае отключения электроэнергии. Эта ИС имеет встроенный внутренний переключатель высокого напряжения и работает как понижающий преобразователь с граничной проводимостью (BCM).

Основной радиатор светодиодной лампы Osram представляет собой отливку цилиндрической формы, которая показана здесь в виде четырех частей после извлечения из корпуса лампы. Металлическая резьба крепится к пластиковому корпусу, на котором крепится плата преобразователя переменного / постоянного тока, которая видна здесь.

BCM — это квазирезонансный метод, используемый для повышения энергоэффективности. Основная идея BCM заключается в том, что ток индуктора начинается с нуля в каждый период переключения. Когда силовой транзистор повышающего преобразователя включен на фиксированное время, пиковый ток катушки индуктивности пропорционален входному напряжению.Форма волны тока треугольная; поэтому среднее значение в каждом периоде переключения пропорционально входному напряжению.

После того, как герметизирующий материал был удален с печатной платы лампы Osram, на печатной плате стала видна ИС драйвера SSL21082AT от NXP Semiconductors. Другая микросхема на плате — это мостовой выпрямитель. Конденсаторы для управления энергией и катушки индуктивности установлены на другой стороне платы.

Запасы энергии в катушке индуктивности при включенном переключателе. Ток катушки индуктивности равен нулю, когда полевой МОП-транзистор включен.Амплитуда нарастания тока в катушке индуктивности пропорциональна падению напряжения на катушке индуктивности и времени, в течение которого переключатель MOSFET находится во включенном состоянии. Когда полевой МОП-транзистор выключен, энергия в катушке индуктивности направляется к выходу. Ток светодиода зависит от пикового тока через дроссель и от угла диммера. Новый цикл начинается, когда ток индуктора становится равным нулю.

3M
Светодиод 3M имеет особый вид благодаря белой цилиндрической колонне высотой 2 дюйма, видимой под полупрозрачным пластиковым куполом.Колонка — это просто металлический радиатор; очевидно, это не имеет ничего общего с рассеянием света.

Светодиодная лампа 3М со снятым пластиковым глобусом. Белая колонка является радиатором и мало влияет на светоотдачу. Светодиоды расположены вокруг обода пластиковой колбы в металлическом радиаторе.

Светодиоды расположены на гибкой печатной плате, прикрепленной к другому радиатору высотой 2 дюйма, который также служит опорой для основания лампы. Пластиковая втулка идет в нижней части радиатора, чтобы удерживать резьбу металлических винтов и поддерживать контакт ножек в нижней части основания.Радиатор и колонка вместе весят 2,4 унции.

Цоколь лампы 3M состоит из пластиковой втулки вокруг радиатора, к которой крепятся металлическая резьба и контактная ножка. Электрические соединения находятся на гибкой цепи, удерживающей светодиоды и преобразователь постоянного / переменного тока. Здесь виден контакт, который загибается за боковую часть пластиковой втулки, чтобы войти в контакт с металлической резьбой винта, и второй контакт, который касается стойки на контакте ступни (справа).

Гибкая печатная плата, на которой расположены светодиоды, также содержит схему драйвера переменного / постоянного тока.Это CL8800 от Microchip Technology. Эталонный дизайн состоит из CL8800, шести резисторов и мостового выпрямителя (устройство Fairchild). От двух до четырех дополнительных компонентов являются дополнительными для различных уровней защиты от переходных процессов. Эталонный дизайн Microchip очень близок к тому, что мы нашли в лампе 3M.

Эталонная схема для Microchip CL8800 близка к схеме на светодиодной лампе 3M, хотя лампа 3M включает дополнительную RC-цепь (здесь не показана) для регулирования фазового освещения.

Схема драйвера делит цепочку из 25 светодиодов на два набора по пять, один набор из четырех и один набор из шести. Мы не уверены, почему компания 3M разделила количество светодиодов таким образом. Однако интересна их ориентация. Они располагаются на выступе, образованном радиатором, и ориентированы прямо вверх. Прозрачный шар из карбоната помещается на тот же выступ, поэтому световой поток светодиода фактически направлен к краю самого пластикового шара, а не проходит через шар изнутри корпуса.

Крупный план гибкой схемы на светодиодной лампе 3M, которая удерживает как схему преобразователя переменного / постоянного тока, так и светодиоды.

Схема драйвера светодиода довольно проста и размещена на гибкой схеме без использования герметика, который мог бы мешать. Согласно паспорту Microchip, шесть линейных регуляторов тока потребляют ток на каждом ответвлении и последовательно включаются и выключаются, отслеживая входное синусоидальное напряжение. Микросхема минимизирует напряжение на каждом регуляторе при проводке, обеспечивая высокий КПД.

Выходной ток на каждом ответвлении индивидуально настраивается резистором. RC-цепь, состоящая из резистора и трех параллельно включенных конденсаторов, на входе мостового выпрямителя обеспечивает диммирование фазы. Два других компонента обеспечивают защиту от переходных процессов при подключении к линии переменного тока. Всего в гибкой схеме 13 дискретных компонентов, которые обеспечивают защиту от переходных процессов, диммирование фаз и задают токи в цепочках светодиодов.

Feit Electric Co.
Лампа от Feit Electric имела самую странную ориентацию для светодиодов из всех, что мы исследовали. Пластина диаметром 1 7⁄8 дюйма, на которой крепятся 36 светодиодов, частично скрыта в собранной колбе круглой пластиковой деталью с отверстием диаметром 1 дюйм посередине. Эта деталь устанавливается поверх светодиодной пластины. Итак, глядя на собранную лампу, можно увидеть пластиковую деталь и всего пять светодиодов, видимых в центре пластины под отверстием в ее середине.

Заливочный материал на печатной плате лампы Feit, видимый здесь у основания радиатора, также является структурным элементом, удерживающим контакт для ножек на месте.Три винта крепили светодиодную пластину к радиатору светодиодной лампы Feit. На обратную сторону светодиодной пластины, видимую здесь, была нанесена термопаста между теплоотводом и поверхностями светодиодной пластины.

Мы не понимаем, почему Feit установил пластиковую деталь поверх большинства своих светодиодов. Изделие блокирует большую часть излучаемого света. (У нас нет способа количественно оценить количество света, проходящего через пластик. Но неофициальные тесты показывают, что он почти не проникает.) Таким образом, подавляющее большинство излучаемых люменов исходит от пяти светодиодов в центре пластины.

Светодиодная лампа Feit помещала пластиковый диск поверх всех 36 светодиодов, кроме пяти. Мы не знаем почему.

Остальная часть механической конструкции лампы менее загадочна. Светодиодная пластина крепится к верхней части массивного литого металлического радиатора весом 3,8 унции с помощью трех винтов. Радиатор служит основным корпусом лампы. Схема преобразователя постоянного / переменного тока помещается в пластиковый цилиндр, который вставляется в основание радиатора и прикрепляется к нему двумя винтами.

После снятия заливочного материала на печатной плате светодиодной лампы Feit были обнаружены диодный мост IC и драйвер светодиода SSL2103T от NXP Semiconductors с одной стороны, большие элементы накопления энергии и силовые полевые МОП-транзисторы — с другой.

Электроника залита в пластиковый цилиндр, который служит его корпусом. Заливочный материал обширен и заполняет цилиндр. Он также служит конструктивным элементом, поддерживающим резьбовое основание лампы и контактную ножку. Печатная плата, на которой находится электроника, двусторонняя и простирается почти до основания цоколя лампы. Отрицательный вывод к плате удерживается заливочным материалом на резьбе металлических винтов. Два провода идут от платы к плате светодиода и кажутся припаянными вручную.Сама плата припаяна оплавлением.

Заливочный материал закрыл некоторые детали на печатной плате, но на плате находятся два силовых полевых МОП-транзистора, микросхема диодного моста, пять больших конденсаторов, трансформатор и по крайней мере 22 дискретных компонента, состоящих из резисторов, маленьких колпачков и диодов. Входной мостовой выпрямитель кажется защищенным предохранителем.

Основной микросхемой является драйвер светодиода SSL2103T от NXP Semiconductors. SSL2103 — это, по сути, обратный преобразователь, который работает в сочетании со схемой диммера с отсечкой фазы непосредственно от выпрямленной сети.Он реализует диммирование с помощью интегральной схемы, которая оптимизирует кривую диммирования. Выходы привода доступны для резистивного переключения утечки.

Хотя заливочный материал скрывает некоторые детали подключения, схема кажется близкой к эталонным проектам NXP для микросхемы. Напряжение сети выпрямляется, буферизуется и фильтруется во входной секции и подключается к первичной обмотке трансформатора. Переданная энергия накапливается в конденсаторе и фильтруется перед запуском цепи светодиодов.

Печатная плата также включает два силовых полевых МОП-транзистора. Кажется, что один из них является частью схемы регулирования яркости, которая разделяет и фильтрует выпрямленное напряжение сети, чтобы обеспечить вход для генерации кривой регулирования яркости. Выходной сигнал управления сбросом от микросхемы NXP управляет полевым МОП-транзистором для переключения резисторов сброса, которые участвуют в таймере функции диммирования. Другой полевой МОП-транзистор является главным переключателем обратноходового трансформатора.

Схема преобразователя переменного / постоянного тока Feit была близка к эталонной схеме, которую NXP Semiconductors предоставляет для своего преобразователя SSL2103.

Также имеется буферная схема, состоящая из двух конденсаторов и катушки индуктивности. Схема накапливает энергию, чтобы преобразователь мог непрерывно передавать мощность на светодиодную цепочку, несмотря на любые колебания напряжения в сети. Он также фильтрует ток пульсации, генерируемый преобразователем, чтобы уменьшить любые проводимые в сети излучения.

Наконец, другая часть схемы состоит из конденсатора, выпрямительного диода, резистора, ограничивающего пиковый ток, и защитного стабилитрона, и используется для генерации внешнего источника VCC для ИС.

Philips Lighting Co.
Один примечательный момент в лампе Philips касается теплоотвода. У других ламп, которые мы исследовали, были металлические радиаторы весом от 1,3 до 3,8 унции. Лампа Philips справляется с тепловыми проблемами без дополнительного теплоотвода. Единственный компонент, который распространяет тепло, — это диск диаметром 2,5 дюйма, на который крепятся 26 светодиодов, 13 сбоку. Более того, можно ожидать, что дизайнеры расположили светодиоды на диске так, чтобы они не устанавливались прямо напротив друг друга — такое расположение также могло бы способствовать распространению тепла.Но светодиоды по обе стороны от диска расположены прямо напротив друг друга. Похоже, что светодиодный нагрев просто не был проблемой в этой конструкции.

Одна из причин — наличие термистора с отрицательным температурным коэффициентом (NTC) на плате светодиода. Но точно проследить схему температурной компенсации не удалось, поскольку плата драйвера имеет три слоя, один из которых скрыт. Дальнейшее усложнение анализа схемы заключается в том, что две шестиконтактные ИС, кажется, обрабатывают преобразование переменного тока в постоянное, и ни одна из них не отмечена логотипом производителя или номером детали.

Поскольку основные ИС невозможно идентифицировать, мы можем только предполагать, как работает драйвер светодиода. Наличие на печатной плате трансформатора, двух больших конденсаторов и силового npn-транзистора (от STMicroelectronics) указывает на то, что преобразователь имеет конструкцию обратного хода. Мы предполагаем, что схема температурной компенсации заключается в смещении переключателя, подающего ток на светодиоды от обратноходового трансформатора. Кажется, что два транзистора обрабатывают ток светодиода. Всего мы насчитали 32 небольших дискретных компонента, состоящих из резисторов, диодов и конденсаторов.Компоненты платы завершали микросхема мостового выпрямителя и три других силовых конденсатора.

Светодиодная лампа Philips не имела радиатора, кроме двусторонней пластины, на которой крепятся светодиоды. Одна причина: температурная компенсация. На этом снимке светодиодной пластины виден резистор NTC.

Оказывается, механическая конструкция светодиодной лампы без радиатора может быть довольно простой (а некоторые могут назвать ее элегантной). Лампа Philips представляет собой пластиковый корпус, который закрывает светодиодную пластину и печатную плату драйвера, а также поддерживает металлическую резьбу и контактную ножку.

Диодный мост и силовой npn-транзистор видны на одной стороне печатной платы светодиодной лампы Philips. На другой стороне находятся компоненты накопителя энергии и две неопознанные ИС, обеспечивающие температурную компенсацию, диммирование и преобразование мощности.

Форм-фактор отличается от других лампочек за счет двусторонней светодиодной пластины. Лампа Philips — это не столько лампочка, сколько диск. Вместо того, чтобы заключать светодиоды в прозрачный шарообразный корпус, устройство Philips представляет собой плоский профиль с пластиком, закрывающим двустороннюю светодиодную пластину.Кажется, что корпус просто защелкивается поверх светодиодной пластины и печатной платы драйвера.

В светодиодной лампе нет ничего особенного, если она может быть изготовлена ​​без радиатора. Лампа Philips в основном состоит из печатной платы и светодиодной пластины, а также защелкивающегося пластикового корпуса, который также поддерживает контактную ножку. Контакт для ножки прикрепляется к печатной плате на лампе Philips с проводкой, видимой здесь. Контакт с металлической резьбой винта осуществляется посредством проволоки, зажатой между резьбой и пластиковым корпусом.

А поскольку лампа Philips не имеет радиатора, она довольно легкая.Но его дискообразный контур может показаться немного странным потребителям, привыкшим ввинчивать предметы, имеющие форму сфер, в розетки. И он излучает большую часть своего света с двух сторон, определяемых ориентацией светодиодных пластин. Он зависит от рассеивания через пластиковый корпус для освещения в других направлениях.

3 лучшие схемы светодиодных ламп, которые вы можете сделать дома

В сообщении подробно объясняется, как построить 3 простых светодиодных лампы, используя несколько светодиодов последовательно и запитав их через цепь емкостного источника питания

ОБНОВЛЕНИЕ :

После выполнения Проведя много исследований в области дешевых светодиодных ламп, я наконец смог придумать универсальную дешевую, но надежную схему, которая обеспечивает отказоустойчивую безопасность светодиодной серии без использования дорогостоящей топологии SMPS.Вот окончательный вариант дизайна для всех вас:

Универсальный дизайн, разработанный Swagatam

Вам просто нужно отрегулировать горшок, чтобы установить выход в соответствии с общим падением прямого падения струны серии светодиодов.

Это означает, что если полное напряжение серии светодиодов составляет, скажем, 3,3 В x 50 шт. = 165 В, то отрегулируйте потенциометр, чтобы получить этот выходной уровень, а затем подключите его к цепочке светодиодов.

Это мгновенно включит светодиоды на полную яркость и с полной защитой от перенапряжения и перегрузки по току или импульсных токов.

R2 можно рассчитать по формуле: 0,6 / Максимальный предел тока светодиода

Зачем нужны светодиоды

  • Сегодня светодиоды используются в огромных количествах для всего, что может включать освещение и освещение.
  • Белые светодиоды стали особенно популярными благодаря своим миниатюрным размерам, впечатляющим возможностям освещения и высокой эффективности с точки зрения энергопотребления. В одном из своих предыдущих постов я обсуждал, как сделать супер простую схему светодиодной трубки, здесь концепция очень похожа, но продукт немного отличается своими характеристиками.
  • Здесь мы обсуждаем создание простой светодиодной лампы. СХЕМА. Под словом «лампочка» мы подразумеваем форму устройства, и его фитинги будут похожи на форму обычной лампы накаливания, но на самом деле весь корпус «лампочка» будет включать дискретные светодиоды, расположенные рядами над цилиндрическим корпусом.
  • Цилиндрический корпус обеспечивает правильное и равномерное распределение создаваемого освещения по всем 360 градусам, так что все помещение одинаково освещено.На изображении ниже поясняется, как нужно установить светодиоды на предлагаемом корпусе.

Схема светодиодной лампы, описанная здесь, очень проста в сборке, а схема очень надежна и долговечна.

Интеллектуальная функция защиты от перенапряжения, включенная в схему, обеспечивает идеальное экранирование устройства от всех скачков напряжения во включенном состоянии.

Как работает схема

  1. На схеме показан один длинный ряд светодиодов, соединенных один за другим, чтобы сформировать длинную цепочку светодиодов.
  2. Если быть точным, мы видим, что в основном было использовано 40 светодиодов, которые соединены последовательно. На самом деле для входа 220 В вы, вероятно, могли бы включить около 90 светодиодов последовательно, а для входа 120 В будет достаточно около 45.
  3. Эти цифры получены делением выпрямленного 310 В постоянного тока (от 220 В переменного тока) на прямое напряжение светодиода.
  4. Следовательно, 310 / 3,3 = 93 числа, а для входов 120 В рассчитывается как 150 / 3,3 = 45 чисел. Помните, что по мере того, как мы сокращаем количество светодиодов ниже этих цифр, риск выброса при включении увеличивается пропорционально, и наоборот.
  5. Схема источника питания, используемая для питания этого массива, получена из высоковольтного конденсатора, значение реактивного сопротивления которого оптимизировано для понижения входного высокого тока до более низкого тока, подходящего для схемы.
  6. Два резистора и конденсатор на плюсовом источнике питания расположены для подавления начального скачка мощности при включении и других колебаний во время колебаний напряжения. Фактически, реальная коррекция помпажа выполняется C2, введенным после моста (между R2 и R3).
  7. Все мгновенные скачки напряжения эффективно поглощаются этим конденсатором, обеспечивая чистое и безопасное напряжение на встроенных светодиодах на следующем этапе цепи.

ВНИМАНИЕ: ЦЕПЬ, ПОКАЗАННАЯ НИЖЕ, НЕ ИЗОЛИРОВАНА ОТ СЕТИ ПЕРЕМЕННОГО ТОКА, ПОЭТОМУ ЧРЕЗВЫЧАЙНО ОПАСНО ПРИКАСАТЬСЯ В ПОЛОЖЕНИИ ПИТАНИЯ.

Принципиальная схема # 1

Список деталей
  • R1 = 1M 1/4 Вт
  • R2, R3 = 100 Ом 1 Вт,
  • C1 = 474/400 В или 0.5 мкФ / 400 В PPC
  • C2, C3 = 4,7 мкФ / 250 В
  • D1 — D4 = 1N4007
  • Все светодиоды = белый 5-миллиметровый вход типа соломенной шляпы = сеть 220/120 В …

Вышеупомянутый дизайн отсутствует подлинная функция защиты от перенапряжения и, следовательно, может быть серьезно подвержена повреждению в долгосрочной перспективе …. для защиты и гарантии конструкции от всех видов перенапряжения и переходных процессов

Светодиоды в вышеупомянутой схеме светодиодной лампы также могут быть защищены, и их срок службы увеличен за счет добавления стабилитрона к линиям питания, как показано на следующем рисунке.

Показанное значение стабилитрона составляет 310 В / 2 Вт и подходит, если светодиодная лампа включает от 93 до 96 В. Для другого меньшего количества светодиодных цепочек просто уменьшите значение стабилитрона в соответствии с расчетом общего прямого напряжения цепочки светодиодов.

Например, если используется цепочка из 50 светодиодов, умножьте 50 на прямое падение каждого светодиода, которое составляет 3,3 В, что дает 50 x 3,3 = 165 В, поэтому стабилитрон 170 В будет хорошо защищать светодиод от любого вида скачков напряжения или колебания …. и т. д.

Видеоклип, показывающий схему светодиодной схемы с использованием 108 светодиодов (две последовательные цепочки из 54 светодиодов, соединенные параллельно)

Высоковаттная светодиодная лампа с использованием светодиодов мощностью 1 Вт и конденсатора

Простая светодиодная лампа высокой мощности может быть построена с использованием 3 или 4 светодиодов мощностью 1 Вт последовательно, хотя светодиоды будут работать только с 30% -ной мощностью, тем не менее, освещение будет удивительно высоким по сравнению с обычными светодиодами 20 мА / 5 мм, как показано ниже. .

Более того, вам не потребуется радиатор для светодиодов, так как они работают только на 30% своей фактической мощности.

Аналогичным образом, объединив 90 шт. Светодиодов мощностью 1 Вт в приведенной выше конструкции, вы можете получить яркую и высокоэффективную лампу мощностью 25 Вт.

Вы можете подумать, что получение 25 Вт от 90 светодиодов «неэффективно», но на самом деле это не так.

Потому что эти 90nos светодиодов мощностью 1 Вт будут работать при меньшем токе на 70% и, следовательно, при нулевом уровне нагрузки, что позволит им прослужить почти вечно.

Далее, они могли бы комфортно работать без радиатора, так что вся конструкция могла быть сконфигурирована в очень компактный блок.

Отсутствие радиатора также означает минимум усилий и времени, затрачиваемых на строительство. Таким образом, все эти преимущества в конечном итоге делают этот 25-ваттный светодиод более эффективным и экономичным по сравнению с традиционным подходом.

Принципиальная схема № 2

Регулировка напряжения с контролем перенапряжения

Если вам требуется улучшенная или подтвержденная система контроля перенапряжения и регулирования напряжения для светодиодной лампы, то с указанной выше 3-ваттной светодиодной конструкцией можно применить следующий шунтирующий регулятор:

Видеоклип:

В приведенных выше видеороликах я намеренно мигал светодиодами, подергивая провод питания, просто чтобы убедиться, что цепь на 100% защищена от перенапряжения.

Схема полупроводниковой светодиодной лампы с регулятором яркости с использованием ИС IRS2530D

Здесь объясняется простая, но эффективная схема бестрансформаторного полупроводникового контроллера светодиода с использованием единственной полной мостовой схемы драйвера IRS2530D.


Настоятельно рекомендуется: простой высоконадежный неизолированный светодиодный драйвер — не пропустите, полностью протестирован


Введение

Обычно схемы управления светодиодами основаны на принципах понижающего повышения или обратного хода, где схема сконфигурирован для создания постоянного постоянного тока для освещения серии светодиодов.

Вышеупомянутые системы управления светодиодами имеют свои недостатки и положительные стороны, в которых диапазон рабочего напряжения и количество светодиодов на выходе определяют эффективность схемы.

Другие факторы, например, включены ли светодиоды в параллельном или последовательном соединении, а также необходимо ли их регулировать или нет, также влияют на приведенные выше типологии.

Эти соображения делают эти схемы управления светодиодами довольно рискованными и сложными. Схема, описанная здесь, использует другой подход и полагается на резонансный режим применения.

Хотя схема не обеспечивает прямой развязки от входного переменного тока, она позволяет управлять многими светодиодами с уровнем тока до 750 мА. Процесс мягкого переключения, включенный в схему, обеспечивает большую эффективность устройства.

Как работает контроллер светодиодов

В основном бестрансформаторная схема управления светодиодами построена на основе ИС управления диммером люминесцентных ламп IRS2530D. На принципиальной схеме показано, как была подключена ИС и как ее выход был изменен для управления светодиодами вместо обычной люминесцентной лампы.

Обычная ступень предварительного нагрева, необходимая для лампового освещения, использовала резонансный резервуар, который теперь эффективно заменен LC-схемой, подходящей для управления светодиодами. Поскольку ток на выходе является переменным, необходимость в мостовом выпрямителе на выходе стала обязательной. ; это гарантирует, что ток непрерывно проходит через светодиоды во время каждого цикла переключения частоты.

Измерение переменного тока осуществляется резистором RCS, размещенным поперек общего провода и нижней части выпрямителя.Это обеспечивает мгновенное измерение переменного тока амплитуды выпрямленного тока светодиода. Вывод DIM ИС получает указанное выше измерение переменного тока через резистор RFB и конденсатор CFB.

Это позволяет контуру управления диммером ИС отслеживать амплитуду тока светодиода и регулировать ее, мгновенно изменяя частоту схемы переключения полумоста, так что напряжение на светодиодах поддерживает правильное среднеквадратичное значение.

Петля диммера также помогает поддерживать постоянный ток светодиода независимо от напряжения в сети, тока нагрузки и изменений температуры.Независимо от того, подключен ли один светодиод или группа последовательно, параметры светодиодов всегда правильно поддерживаются IC.

В качестве альтернативы конфигурация может также использоваться в качестве сильноточной бестрансформаторной цепи питания.

Принципиальная схема № 3

Оригинальную статью можно найти здесь

Тонкая схема за светодиодным освещением

В августе года Министерство энергетики США объявило первого победителя в своем продолжающемся конкурсе по поощрению более эффективного освещения — Приз яркого освещения завтрашнего дня или приз L.Министерство энергетики присудило Philips Lighting North America 10 миллионов долларов США за разработку лампы, которая по размеру и яркости эквивалентна стандартной 60-ваттной лампе накаливания, но служит как минимум в 25 раз дольше и потребляет менее 10 Вт.

Хотя лампы с почти такой же эффективностью доступны уже больше года, отмеченный призом дизайн только сейчас поступает в продажу. Как и в подсветке современных мобильных телефонов и компьютерных мониторов, в этих лампах используются светодиоды для генерации белого света.Они предлагают долгий срок службы, приятные цвета и, самое главное, феноменальную энергоэффективность.

Не пора ли выбросить лампы накаливания, которые все еще скрываются в ваших осветительных приборах, и даже компактные люминесцентные лампы (КЛЛ), на которые вы перешли, и заменить их все светодиодными супер-лампами? Поскольку затраты часто колеблются в районе 25 долларов за штуку, немногие домовладельцы спешат сделать такой решительный шаг. Но цены падают, а производительность быстро улучшается. Таким образом, очевидно, что день, когда светодиодные лампы будут доминировать в освещении как жилых домов, так и предприятий, не за горами.

Почему светодиодные лампы лучше и почему их так сложно разработать? Вы можете представить, что ответы будут зависеть от тонкостей физики твердотельных полупроводников, которые управляют светодиодами высокой яркости. Да, но только до определенного момента. Практичность этих новых фонарей также зависит от более приземленной части упаковки, которая часто упускается из виду: схемы, необходимой для их управления. Здесь я объясню, какие требования предъявляются к этой схеме и почему проектирование соответствующей электроники может быть проблемой, хотя и не той, которая должна замедлить внедрение этой фантастической новой формы освещения.

Как ни крути, но ламп накаливания — вымирающая порода. Австралия и Европейский союз начали отказываться от традиционных ламп накаливания в 2009 году. Соединенные Штаты неуклонно движутся в том же направлении, а Китай стремится к 2016 году отказаться от ламп накаливания. Причина проста: старые лампы тратят огромное количество электроэнергии.

Полные 90 процентов энергии, которую вы вкладываете в обычную лампу накаливания, уходит на выработку тепла, а не света.Стандартная лампа мощностью 60 Вт излучает около 850 люмен света, что составляет около 14 люмен на ватт. Галогенные лампы (более сложный вид лампы накаливания с более высокой температурой нити накала) могут обеспечивать около 20 лм / Вт. КЛЛ значительно более эффективны, производя около 60 лм / Вт, но у них есть другие проблемы.

Одна из распространенных жалоб — то, что вы не можете уменьшить их яркость. (По правде говоря, некоторые из них могут быть затемнены, но их диапазон обычно ограничен.) Кроме того, КЛЛ загораются медленно, а поскольку их лампы содержат пары ртути, они представляют опасность для окружающей среды.Даже при наличии возможностей утилизации миллионы этих луковиц ежегодно попадают на свалки.

Светодиодные фонари

не имеют ни одного из этих недостатков, и они намного более эффективны, некоторые из них предлагают более 100 лм / Вт. Эти номинально белые огни, на самом деле, содержат синие светодиоды вместе с люминофорным покрытием, которое преобразует излучаемый ими свет с узкой длиной волны в то, что человеческий глаз воспринимает как белый. Используя подходящее сочетание люминофорных материалов, дизайнеры могут установить оттенок света от холодного до теплого, в зависимости от того, какое применение они имеют в виду.

Помимо высокой энергоэффективности, самым привлекательным качеством светодиодных ламп является их долговечность. Точный срок службы одного из них зависит от того, как он спроектирован и эксплуатируется, но большинство из них будут работать в течение 25 000 часов или более, сохраняя при этом не менее 70 процентов своей первоначальной светоотдачи. А многие производители рекламируют срок службы 35 000 часов. Таким образом, если вы используете светодиодную лампу в течение 10 часов в день, вы можете рассчитывать, что она прослужит от 7 до почти 10 лет. Это очень далеко от стандартной лампы накаливания, которая в среднем гаснет всего через 1000 часов использования.Он также превосходит КЛЛ, которые обычно служат от 6000 до 10 000 часов.

Такой длительный срок службы снижает одну из скрытых затрат на освещение, особенно для коммерческих и промышленных пользователей: затраты на техническое обслуживание и замену. Это, а также накопленная экономия энергии объясняют, почему крупномасштабные пользователи были первыми последователями. Например, в Лос-Анджелесе сейчас производится замена 140 000 натриевых уличных фонарей высокого давления на светодиоды. Крупные ритейлеры, такие как Walmart и McDonald’s, также в некоторых местах переходят на светодиодное освещение.На самом деле, единственное, что сдерживает такой бизнес, — это высокие первоначальные затраты и перспектива того, что технология светодиодного освещения скоро улучшится и станет еще более выгодной сделкой.

Один недостаток светодиода, однако, заключается в том, что, в отличие от лампы накаливания, он не может работать сразу от электрической сети. Рабочее напряжение стандартного светодиода белого света обычно находится в диапазоне от 3 до 3,6 вольт, что примерно соответствует напряжению литий-ионного аккумулятора в вашем мобильном телефоне. Хотя это упрощает использование светодиодов в мобильных устройствах, большинство осветительных приборов получают питание от сети.Таким образом, требуется схема преобразования для преобразования сетевого напряжения переменного тока в форму, которая может управлять отдельными светодиодами.

Необходимая схема аналогична той, что используется в зарядном устройстве для мобильного телефона или адаптере для ноутбука, с некоторыми ключевыми отличиями. Во-первых, поскольку светодиоды могут работать в течение многих лет, силовая электроника, которая ими управляет, должна либо прослужить столько же времени, либо быть сконфигурирована так, чтобы любые схемы, подверженные сбоям, можно было легко заменить. Кроме того, поскольку электроника привода часто должна быть встроена в ввинчиваемый источник света, схема должна быть очень компактной.Он также должен быть энергоэффективным, потому что любые потери в приводной электронике увеличивают общую мощность, которая должна потребляться от стенной розетки. Наконец, что довольно удивительно, схема привода должна выдерживать относительно высокие рабочие температуры.

Последнее утверждение требует пояснений. Как я уже отмечал, лампы накаливания превращают только 10 процентов потребляемой ими электроэнергии в свет, а остальная часть расходуется в виде тепла. Светодиоды преобразуют около 50 процентов подаваемой в них энергии в свет, что делает их гораздо более эффективными.Но есть одна сложность: лампы накаливания излучают отработанное тепло в пространство вокруг себя в виде инфракрасных волн, тогда как светодиоды излучают только видимый свет. Также керамические цоколи ввинчиваемых светодиодных ламп действуют как изоляторы. Таким образом, их отходящее тепло, каким бы скромным оно ни было, как правило, остается у источника. Это создает проблемы по нескольким причинам.

Во-первых, нагрев вызывает повышение температуры светодиодов — и здесь, чем горячее, не лучше. Светоотдача падает при повышении температуры лампы (прямо противоположно тому, что происходит с люминесцентными лампами).Хуже того, высокие температуры сокращают срок службы светодиодов. Другая проблема заключается в том, что по мере нагрева схемы привода различные электронные компоненты, особенно электролитические конденсаторы, изнашиваются быстрее.

Одним из способов решения этой проблемы разработчиками систем является использование металлического радиатора, позволяющего конвекцией отводить тепло в окружающую среду. Другой — избежать образования избыточного тепла, чем это абсолютно необходимо, за счет разработки высокоэффективной схемы привода.

Хотя к отдельным светодиодам иногда присоединяются специализированные схемы, чаще всего один комплект приводной электроники питает несколько светодиодов, соединенных вместе.Действительно, некоторые производители светодиодов монтируют массив светодиодов в интегрированном корпусе для достижения более высокой светоотдачи, хотя часто встречаются и одиночные светодиоды с высокой светоотдачей.

Изображение: Эмили Купер

Внутренний отдел: Светодиодные лампы содержат набор высокотехнологичных компонентов. Общий пример, показанный здесь, включает в себя массив светодиодов белого света и электронную схему для их управления, и все это упаковано в компактный ввинчиваемый блок.

Щелкните изображение, чтобы увеличить его.

В большинстве случаев отдельные светодиоды в каждой группе подключаются последовательно. Соединение их таким образом гарантирует, что через каждый из них протекает одинаковое количество тока, даже если есть незначительные различия в их электрических характеристиках. И это именно то, что вам нужно, потому что ток возбуждения определяет их светоотдачу и цвет. Поэтому вам нужно сделать все возможное, чтобы поддерживать заданный текущий уровень.

Этой потребности в постоянном токе нет в большинстве электронных устройств. Например, микропроцессор принимает фиксированное напряжение и, в зависимости от выполняемой задачи, потребляет больше или меньше тока. Однако вы не можете просто подать фиксированное напряжение на светодиод и ожидать, что через него пройдет установленный ток. Это связано с тем, что напряжение на диоде зависит от температуры, а также от величины потребляемого тока. Кроме того, между светодиодами могут быть значительные производственные различия, не говоря уже о различиях между аналогичными устройствами от разных поставщиков.

Однако часто бывает непрактично соединить все светодиоды, которые вам нужны, в одну большую последовательно соединенную цепь. Для желаемого количества света вам может потребоваться столько светодиодов, что напряжение для их возбуждения станет чрезмерным, если вы подключите их все последовательно. Очевидное решение — ограничить количество светодиодов в каждой цепочке и при необходимости подключить несколько цепочек параллельно.

Это просто, если каждая струна имеет свою собственную схему возбуждения, но если несколько струн используют один и тот же источник питания, жизнь усложняется.Во-первых, включение светодиодов в параллель требует, чтобы компоненты были хорошо согласованы, иначе ток (и светоотдача) в каждой цепочке не будут одинаковыми. И есть опасность, что один светодиод выйдет из строя и прервет поток электричества через гирлянду, в которой он находится, как это часто случалось со старомодными елочными лампами. Это, конечно, плохо, потому что вся струна темнеет. Кроме того, он будет посылать больший ток в параллельные цепочки, что увеличивает их температуру и повредит их, если ток будет слишком высоким.Однако разработчики могут избежать таких каскадных отказов, подключив светодиоды в параллельные цепочки. Тогда единственная точка отказа повлияет только на несколько других светодиодов.

В идеале, однако, каждая последовательно соединенная строка должна иметь свой собственный регулируемый драйвер, обеспечивающий необходимое количество тока. Производители светодиодов тщательно документируют величину тока, необходимого для данной светоотдачи, поэтому несложно решить, какой ток обеспечить. Напряжение, необходимое для поддержания этого уровня тока, может варьироваться, скажем, от 3 до 3.6 вольт. Так, если, например, восемь светодиодов соединены последовательно в одной лампе, схема возбуждения для нее должна обеспечивать требуемый уровень тока при напряжениях в диапазоне от 24 до 29 вольт.

Электроника привода должна включать в себя два основных функциональных элемента: схему преобразования мощности (по сути, транзисторный переключатель, который быстро включается и выключается) и чувствительную схему, которая контролирует средний ток через светодиоды и обеспечивает сигнал обратной связи для регулирования доли время, в течение которого переключатель преобразования мощности остается включенным.Во многих случаях трансформатор используется для изменения напряжения и изоляции светодиода от высоковольтной электрической сети. В таких конструкциях сигнал обратной связи часто передается оптически от чувствительной электроники к схеме преобразования мощности, чтобы не нарушать электрическую изоляцию между этими двумя каскадами.

Устроить все это достаточно просто для инженеров, разбирающихся в разработке импульсных источников питания, таких как зарядные устройства для мобильных телефонов или настольные компьютеры.Однако одна из надвигающихся проблем со светодиодным освещением заключается в том, что оно обещает сделать импульсные источники питания еще более распространенными, чем сейчас. Это отлично подходит для компаний, подобных той, в которой я работаю, On Semiconductor, расположенной в Фениксе, которая производит микросхемы для использования в таких расходных материалах. Но это может стать головной болью для электроэнергетических компаний, если не будут приняты дополнительные меры для обеспечения совместимости этих источников питания с сетью. Позволь мне объяснить.

Сила тока, потребляемого обычной лампочкой накаливания в любой момент времени, пропорциональна приложенному к ней напряжению.По мере того как величина этого переменного напряжения колеблется, изменяется и ток, протекающий через лампочку, вместе с затрачиваемой энергией. В результате энергия, которую генерирует местная коммунальная компания, плавно перетекает в лампочку, где она преобразуется в свет и тепло.

Однако многие электрические нагрузки содержат конденсаторы или катушки индуктивности, которые могут накапливать энергию и, таким образом, влиять на то, как устройство потребляет ток из электрической сети. Значительная емкость или индуктивность изменит синхронизацию колебаний напряжения и тока, позволяя энергии течь туда и обратно между нагрузкой и сетью.Другая проблема — это генерация гармоник основной частоты сети.

Энергетические компании могут справиться с этими сбоями, но они, тем не менее, доставляют много хлопот. Вот почему регулирующие органы пытаются ограничить проблемы, которые может создать светодиодное освещение. Обычный датчик для оценки, который называется коэффициентом мощности, который варьируется от 0 (когда энергия просто течет туда-сюда, не потребляя ее) до 1 (когда вся энергия плавно перетекает в нагрузку). В Соединенных Штатах, например, любая светодиодная лампа, потребляющая более 5 Вт, или любой светодиодный осветительный прибор, предназначенный для использования в жилых помещениях, должен иметь коэффициент мощности более 0.7, чтобы претендовать на рейтинг Energy Star. А светодиодные светильники, предназначенные для коммерческого использования, должны иметь коэффициент мощности более 0,9, чтобы соответствовать требованиям.

Принятие светодиодов для общего освещения, несомненно, будет одновременно эволюционным и революционным. С одной стороны, многие люди будут постепенно переходить на светодиоды, используя лампы, которые они всегда использовали, и просто покупая замену своим ввинчиваемым лампам накаливания и КЛЛ. С другой стороны, светодиоды предоставляют дизайнерам способы создания гораздо более инновационных форм освещения, которые используют преимущества длительного срока службы, направленности и мелкозернистой масштабируемости света, предлагаемого светодиодами.Дизайнерам освещения для домов и предприятий потребуется время, чтобы открыть для себя возможности, но как только они это сделают, новые фантастические виды освещения обязательно начнут освещать наши дома и офисы. И если цепи, которые управляют ими, построены правильно, эти фонари окажутся столь же надежными, сколь и привлекательными.

Изначально эта статья была напечатана как «За рулем света 21 века».

Об авторе

Берни Вейр, менеджер по приложениям и маркетингу в On Semiconductor, получил степень EE в Технологическом институте Роуза-Халмана.Он начал работать с электроникой, которая управляет светодиодными лампами, в начале 2000-х годов, но только в последние несколько лет соединились технические разработки и промышленная стандартизация светодиодного освещения, говорит он.

О фотографе

Для получения дополнительной информации о рентгеновских фотографиях в этой статье см. Предысторию, «Проникающее понимание».

Описание серии

и параллельных цепей

Надеюсь, те, кто ищет практическую информацию об электрических схемах и подключении светодиодных компонентов, первыми нашли это руководство.Вполне вероятно, что вы уже читали здесь в Википедии страницу о последовательных и параллельных схемах, возможно, несколько других результатов поиска Google по этой теме, но все еще неясны или желаете получить более конкретную информацию о светодиодах. За годы обучения, обучения и разъяснения клиентам концепции электронных схем мы собрали и подготовили всю критически важную информацию, которая поможет вам понять концепцию электрических цепей и их связь со светодиодами.

Перво-наперво, не позволяйте, чтобы электрические схемы и компоненты проводки светодиодов казались устрашающими или сбивающими с толку — правильное подключение светодиодов может быть простым и понятным, если вы следите за этим постом. Давайте начнем с самого основного вопроса…

Какой тип цепи мне следует использовать?
Один лучше другого… Последовательный, Параллельный или Последовательный / Параллельный?

Требования к освещению часто диктуют, какой тип схемы можно использовать, но если есть выбор, наиболее эффективным способом использования светодиодов высокой мощности является использование последовательной схемы с драйвером светодиодов постоянного тока.Последовательная схема помогает обеспечить одинаковое количество тока для каждого светодиода. Это означает, что каждый светодиод в цепи будет иметь одинаковую яркость и не позволит одному светодиоду потреблять больше тока, чем другому. Когда каждый светодиод получает одинаковый ток, это помогает устранить такие проблемы, как тепловой выход из строя.

Не волнуйтесь, параллельная схема по-прежнему является жизнеспособным вариантом и часто используется; позже мы обрисуем этот тип схемы.

Для начала давайте рассмотрим схему серии :

Часто называемый «гирляндным» или «замкнутым» током в последовательной цепи следует один путь от начала до конца, при этом анод (положительный) второго светодиода соединен с катодом (отрицательным) первого.На изображении справа показан пример: для подключения последовательной цепи, подобной показанной, положительный выход драйвера подключается к положительному выводу первого светодиода, а от этого светодиода выполняется соединение от отрицательного к положительному полюсу второго. Светодиод и так далее, до последнего светодиода в цепи. Наконец, последнее соединение светодиода идет от отрицательного вывода светодиода к отрицательному выходу драйвера постоянного тока, создавая непрерывную петлю или гирляндную цепь.

Вот несколько пунктов для справки о последовательной цепи:

  1. Одинаковый ток течет через каждый светодиод
  2. Общее напряжение цепи — это сумма напряжений на каждом светодиоде
  3. При выходе из строя одного светодиода вся цепь не будет работать
  4. Цепи серии
  5. проще подключать и устранять неисправности
  6. Различное напряжение на каждом светодиодах — это нормально

Питание последовательной цепи:

Концепция петли к настоящему времени не проблема, и вы определенно можете понять, как ее подключить, но как насчет питания последовательной цепи.

Второй маркер выше гласит: «Общее напряжение цепи — это сумма напряжений на каждом светодиоде». Это означает, что вы должны подать как минимум сумму прямых напряжений каждого светодиода. Давайте посмотрим на это, снова используя приведенную выше схему в качестве примера, и предположим, что светодиод представляет собой Cree XP-L, работающий от 1050 мА с прямым напряжением 2,95 В. Сумма трех из этих прямых напряжений светодиода равна 8,85 В постоянного тока . Таким образом, теоретически 8,85 В — это минимально необходимое входное напряжение для управления этой схемой.

В начале мы упоминали об использовании драйвера светодиода с постоянным током, потому что эти силовые модули могут изменять свое выходное напряжение в соответствии с последовательной схемой. Поскольку светодиоды нагреваются, их прямое напряжение изменяется, поэтому важно использовать драйвер, который может изменять свое выходное напряжение, но сохранять тот же выходной ток. Чтобы получить более полное представление о драйверах светодиодов, загляните сюда. Но в целом важно убедиться, что ваше входное напряжение в драйвере может обеспечивать выходное напряжение, равное или превышающее 8.85V мы рассчитали выше. Некоторым драйверам требуется вводить немного больше, чтобы учесть питание внутренней схемы драйвера (драйвер BuckBlock требует накладных расходов 2 В), в то время как другие имеют функции повышения (FlexBlock), которые позволяют вводить меньше.

Надеюсь, вы сможете найти драйвер, который сможет дополнить вашу светодиодную схему последовательно включенными диодами, однако существуют обстоятельства, которые могут сделать это невозможным. Иногда входного напряжения может быть недостаточно для питания нескольких светодиодов последовательно, или, может быть, слишком много светодиодов для подключения последовательно, или вы просто хотите ограничить стоимость драйверов светодиодов.Какой бы ни была причина, вот как понять и настроить параллельную схему светодиодов.

Параллельная цепь:

Если последовательная схема получает одинаковый ток к каждому светодиоду, параллельная схема получает одинаковое напряжение на каждый светодиод, а общий ток на каждый светодиод представляет собой общий выходной ток драйвера, деленный на количество параллельных светодиодов.

Опять же, не волнуйтесь, здесь мы увидим, как подключить параллельную светодиодную схему, и это должно помочь связать идеи воедино.

В параллельной схеме все положительные соединения связаны вместе и обратно к положительному выходу драйвера светодиода, а все отрицательные соединения связаны вместе и обратно к отрицательному выходу драйвера.Давайте посмотрим на это на изображении справа.

В примере, показанном с выходным драйвером 1000 мА, каждый светодиод будет получать 333 мА; общий выход драйвера (1000 мА), деленный на количество параллельных цепочек (3).

Вот несколько пунктов для справки о параллельной цепи:

  1. Напряжение на всех светодиодах одинаковое
  2. Полный ток — это сумма токов, протекающих через каждый светодиод
  3. Общий выходной ток распределяется через каждую параллельную цепочку
  4. Требуется точное напряжение в каждой параллельной цепочке, чтобы избежать перегрузки по току

А теперь давайте немного повеселимся, объединим их вместе и наметим серию / параллельную цепь :

Как следует из названия, последовательная / параллельная цепь объединяет элементы каждой цепи.Начнем с последовательной части схемы. Допустим, мы хотим запустить в общей сложности 9 светодиодов Cree XP-L на 700 мА каждый с напряжением 12 В постоянного тока ; прямое напряжение каждого светодиода при 700 мА составляет 2,98 В постоянного тока . Правило номер 2 из пунктов маркированного списка последовательной цепи доказывает, что 12 В постоянного тока недостаточно для последовательной работы всех 9 светодиодов (9 x 2,98 = 26,82 В, постоянного тока, ). Тем не менее, 12 В постоянного тока достаточно для работы трех последовательно соединенных (3 x 2,98 = 8,94 В, постоянного тока, ). И из правила № 3 параллельной схемы мы знаем, что общий выходной ток делится на количество параллельных цепочек.Итак, если бы мы использовали BuckBlock на 2100 мА и три параллельных ряда по 3 последовательно соединенных светодиода, то 2100 мА было бы разделено на три, и каждая серия получила бы 700 мА. На изображении в качестве примера показана эта установка.

Если вы пытаетесь настроить светодиодную матрицу, этот инструмент планирования светодиодных схем поможет вам решить, какую схему использовать. На самом деле он дает вам несколько разных вариантов различных последовательных и последовательных / параллельных цепей, которые будут работать. Все, что вам нужно знать, — это входное напряжение, прямое напряжение светодиодов и количество светодиодов, которые вы хотите использовать.

Падение нескольких светодиодных гирлянд:

При работе с параллельными и последовательными / параллельными цепями следует помнить, что если цепочка или светодиод перегорят, светодиод / цепочка будет отключена из цепи, так что дополнительная токовая нагрузка, которая шла на этот светодиод, будет раздать остальным. Это не большая проблема для массивов большего размера, поскольку ток будет рассеиваться в меньших количествах, но как насчет схемы с двумя светодиодами на цепочку? Затем ток будет удвоен для оставшегося светодиода / цепочки, что может быть более высокой нагрузкой, чем светодиод может выдержать, что приведет к перегоранию и разрушению вашего светодиода! Обязательно помните об этом и постарайтесь создать такую ​​настройку, которая не испортит все ваши светодиоды, если один из них перегорит.

Другая потенциальная проблема заключается в том, что даже когда светодиоды поступают из одной производственной партии (одного бункера), прямое напряжение все еще может иметь допуск 20%. Варьирование напряжений в отдельных цепочках приводит к тому, что ток не делится поровну. Когда одна струна потребляет больше тока, чем другая, перегруженные светодиоды нагреваются, и их прямое напряжение будет изменяться сильнее, что приведет к более неравномерному распределению тока; это называется тепловым разгоном. Мы видели, как многие схемы, настроенные таким образом, работают хорошо, но требуется осторожность.Для получения дополнительной информации об этой концепции и способах ее избежать (текущее зеркало) есть отличная статья на сайте LEDmagazine.com.

Общие сведения о драйверах светодиодов от LEDSupply

Драйверы светодиодов

могут сбивать с толку светодиодную технологию. Существует так много разных типов и вариаций, что временами это может показаться немного подавляющим. Вот почему я хотел написать небольшой пост с объяснением разновидностей, чем они отличаются, и на что вы должны обратить внимание при выборе драйвера (ов) светодиодов для вашего освещения.

Что такое драйвер светодиода, спросите вы? Драйвер светодиода — это электрическое устройство, которое регулирует мощность светодиода или цепочки светодиодов. Это важная часть светодиодной цепи, и работа без нее приведет к отказу системы.

Использование одного из них очень важно для предотвращения повреждения светодиодов, поскольку прямое напряжение (V f ) мощного светодиода изменяется в зависимости от температуры. Прямое напряжение — это количество вольт, которое светоизлучающий диод требует для проведения электричества и зажигания.По мере увеличения температуры прямое напряжение светодиода уменьшается, в результате чего светодиод потребляет больше тока. Светодиод будет продолжать нагреваться и потреблять больше тока, пока светодиод не перегорит сам себя, это также известно как термический побег. Драйвер светодиода — это автономный источник питания, выходы которого соответствуют электрическим характеристикам светодиода (-ов). Это помогает избежать теплового разгона, поскольку драйвер светодиода с постоянным током компенсирует изменения прямого напряжения, обеспечивая при этом постоянный ток к светодиоду.

На что следует обратить внимание перед выбором драйвера светодиода

  • Какие типы светодиодов используются и сколько?
    • Узнать прямое напряжение, рекомендуемый ток возбуждения и т. Д.
  • Нужен ли мне драйвер светодиода постоянного тока или драйвер светодиода постоянного напряжения?
    • Здесь мы сравниваем постоянный ток с постоянным напряжением.
  • Какой тип энергии будет использоваться? (Постоянный ток, переменный ток, батареи и т. Д.)
  • Каковы ограничения по месту?
    • Работаете в ограниченном пространстве? Не слишком много напряжения для работы?
  • Каковы основные цели приложения?
    • Размер, стоимость, эффективность, производительность и т. Д.
  • Нужны какие-то специальные функции?
    • Диммирование, импульсное, микропроцессорное управление и т. Д.

Прежде всего, вы должны знать…

Существует два основных типа драйверов: те, которые используют входное питание постоянного тока низкого напряжения (обычно 5–36 В постоянного тока), и те, которые используют входное питание переменного тока высокого напряжения (обычно 90–277 В переменного тока). Драйверы светодиодов, которые используют высоковольтное питание переменного тока, называются автономными драйверами или драйверами светодиодов переменного тока. В большинстве приложений рекомендуется использовать драйвер светодиода с низким напряжением постоянного тока.Даже если ваш вход представляет собой переменный ток высокого напряжения, использование дополнительного импульсного источника питания позволит использовать входной драйвер постоянного тока. Рекомендуются низковольтные драйверы постоянного тока, поскольку они чрезвычайно эффективны и надежны. Для небольших приложений доступно больше вариантов регулировки яркости и вывода по сравнению с высоковольтными драйверами переменного тока, поэтому у вас есть больше возможностей для работы в вашем приложении. Однако если у вас есть большой проект общего освещения для жилого или коммерческого освещения, вы должны увидеть, какие драйверы переменного тока могут быть лучше для этого типа работы.

Вторая вещь, которую вы должны знать

Во-вторых, вам нужно знать ток возбуждения, который вы хотите подать на светодиод. Более высокие токи возбуждения приведут к большему количеству света от светодиода, а также потребуют большей мощности для освещения. Важно знать характеристики своего светодиода, чтобы знать рекомендуемые токи возбуждения и требования к радиатору, чтобы не сжечь светодиод слишком большим током или чрезмерным нагревом. Наконец, хорошо знать, что вы ищете от своего осветительного приложения.Например, если вы хотите регулировать яркость, вам нужно выбрать драйвер с возможностью регулировки яркости.

Немного о затемнении

Регулировка яркости светодиодов зависит от используемой мощности; поэтому я рассмотрю варианты диммирования как постоянного, так и переменного тока, чтобы мы могли лучше понять, как регулировать яркость всех приложений, будь то постоянный или переменный ток.

Диммер постоянного тока

Низковольтные драйверы с питанием от постоянного тока можно легко уменьшить несколькими способами. Самым простым решением для этого является использование потенциометра.Это дает полный диапазон затемнения от 0 до 100%.

Потенциометр 20 кОм

Обычно это рекомендуется, когда у вас есть только один драйвер в вашей схеме, но если несколько драйверов диммируются от одного потенциометра, значение потенциометра можно найти из — KΩ / N — где K — значение вашего потенциометра, а N количество используемых вами драйверов. У нас есть подключенные BuckPucks, которые поставляются с потенциометром с поворотной ручкой 5K для регулирования яркости, но у нас также есть потенциометр 20K, который можно легко использовать с нашими драйверами BuckBlock и FlexBlock.Просто подключите провод заземления затемнения к центральному штырю, а провод затемнения к одной или другой стороне (выбор стороны просто определяет, каким образом вы поворачиваете ручку, чтобы уменьшить яркость).

Второй вариант регулировки яркости — использование настенного светорегулятора 0–10 В, например, нашего низковольтного регулятора яркости A019. Это лучший способ диммирования, если у вас несколько устройств, поскольку диммер 0-10 В может работать с несколькими драйверами одновременно. Просто подключите диммерные провода прямо ко входу драйвера, и все готово.

Диммирование переменного тока

Для высоковольтных драйверов переменного тока существует несколько вариантов регулировки яркости в зависимости от вашего драйвера. Многие драйверы переменного тока работают с регулировкой яркости 0-10 В, как мы уже говорили выше. У нас также есть светодиодные драйверы Mean Well и Phihong, которые предлагают диммирование TRIAC, поэтому они работают со многими передними и задними диммерами. Это полезно, поскольку позволяет светодиодам работать с очень популярными системами затемнения в жилых помещениях, такими как Lutron и Leviton.

Сколько светодиодов можно запустить с драйвером?

Максимальное количество светодиодов, которые вы можете запустить от одного драйвера, определяется делением максимального выходного напряжения драйвера на прямое напряжение ваших светодиодов.При использовании драйверов LuxDrive максимальное выходное напряжение определяется путем вычитания 2 вольт из входного напряжения. Это необходимо, потому что драйверы нуждаются в накладных расходах 2 вольта для питания внутренней схемы. Например, при использовании драйвера Wired 1000mA BuckPuck с входом 24 В у вас будет максимальное выходное напряжение 22 В.

Что мне нужно для питания?

Это приводит нас к определению того, какое входное напряжение нам нужно для наших светодиодов. В конце концов, входное напряжение равно нашему максимальному выходному напряжению для нашего драйвера после того, как мы учтем служебное напряжение схемы драйвера.Убедитесь, что вы знаете минимальное и максимальное входное напряжение для драйверов светодиодов. В качестве примера мы возьмем Wired 1000mA BuckPuck, который может принимать входное напряжение от 7 до 32 В постоянного тока. Чтобы определить, каким должно быть ваше входное напряжение для приложения, вы можете использовать эту простую формулу.

V o + (V f x LED n ) = V дюйм

Где:

В o = Накладные расходы по напряжению для драйверов — 2, если вы используете драйвер DC LuxDrive или 4, если вы используете драйвер AC LuxDrive

В f = прямое напряжение светодиодов, которые вы хотите запитать

LED n = количество светодиодов, которые вы хотите запитать

В в = Входное напряжение для драйвера

Технические характеристики продукта со страницы продукта Cree XPG2

Например, если вам нужно запитать 6 светодиодов Cree XPG2 от источника постоянного тока и вы используете проводную BuckPuck, указанную выше, то V в должно быть не менее 20 В постоянного тока на основе следующего расчета.

2 + (3,0 х 6) = 20

Определяет минимальное необходимое входное напряжение. Нет никакого вреда в использовании более высокого напряжения вплоть до максимального номинального входного напряжения драйвера, поэтому, поскольку у нас нет источника питания на 20 В постоянного тока, вы, вероятно, будете использовать источники питания 24 В постоянного тока для работы этих светодиодов.

Теперь это помогает нам убедиться, что напряжение работает, но для того, чтобы найти правильный источник питания, нам также необходимо определить мощность всей цепи светодиода.Расчет мощности светодиода:

В f x Управляющий ток (в амперах)

Используя 6 светодиодов XPG2 сверху, мы можем определить наши ватты.

3,0 В x 1 А = 3 Вт на светодиод

Общая мощность цепи = 6 x 3 = 18 Вт

При расчете мощности источника питания, подходящей для вашего проекта, важно предусмотреть 20% «амортизатора» при расчете мощности. Добавление этой 20% -ной подушки предотвратит перегрузку источника питания.Перегрузка блока питания может вызвать мерцание светодиодов или вызвать преждевременный выход блока питания из строя. Просто рассчитайте подушку, умножив общую мощность на 1,2. Таким образом, для нашего примера выше нам потребуется не менее 21,6 Вт (18 x 1,2 = 21,6). Ближайший общий размер блока питания будет 25 Вт, поэтому в ваших интересах получить блок питания на 25 Вт и выходное напряжение 24 В.

Что делать, если у меня недостаточно напряжения?

Использование LED Boost Driver (FlexBlock)

Драйверы светодиодов FlexBlock — это повышающие драйверы, что означает, что они могут выдавать более высокое напряжение, чем то, что на них подается.Это позволяет подключать больше светодиодов последовательно с одним драйвером светодиода. Это чрезвычайно полезно в приложениях, где ваше входное напряжение ограничено, и вам нужно получить

FlexBlock На

больше мощности для светодиодов. Как и в случае с драйвером BuckPuck, максимальное количество светодиодов, которое вы можете подключить с помощью одного последовательно подключенного драйвера, определяется делением максимального выходного напряжения драйвера на прямое напряжение ваших светодиодов. FlexBlock может быть подключен в двух различных конфигурациях и может варьироваться в зависимости от входного напряжения.В режиме Buck-Boost (стандартный) FlexBlock может обрабатывать светодиодные нагрузки, которые находятся выше, ниже или равны напряжению источника питания. Вы найдете максимальное выходное напряжение драйвера в этом режиме по следующей формуле:

48 В постоянного тока — В в

Итак, при использовании источника питания 12 В постоянного тока и светодиодов XPG2 сверху, сколько мы могли бы работать с 700 мА FlexBlock? Максимальное выходное напряжение составляет 36 В постоянного тока (48–12), а прямое напряжение XPG2, работающего при 700 мА, составляет 2,9, поэтому, разделив 36 В постоянного тока на это, мы видим, что этот драйвер может питать 12 светодиодов.В режиме Boost-Only FlexBlock может выдавать до 48 В постоянного тока от всего лишь 10 В постоянного тока. Таким образом, если вы были в режиме Boost-Only, вы могли включить до 16 светодиодов (48 / 2,9). Здесь мы рассмотрим использование повышающего драйвера FlexBlock для более глубокого питания ваших светодиодов.

Проверка мощности для входных драйверов переменного тока большой мощности

Теперь с драйверами входа переменного тока они выделяют определенное количество ватт для работы, поэтому вам нужно определить мощность ваших светодиодов. Вы можете сделать это по следующей формуле:

[Vf x ток (в амперах)] x LEDn = мощность

Итак, если мы пытаемся запитать те же 6 светодиодов Cree XPG2 на 700 мА, ваша мощность будет…

[2.9 x 0,7] x 6 = 12,18

Это означает, что вам нужно найти драйвер переменного тока, который может работать до 13 Вт, например, наш светодиодный драйвер Phihong 15 Вт.

ПРИМЕЧАНИЕ: При разработке приложения важно учитывать минимальное выходное напряжение автономных драйверов. Например, приведенный выше драйвер имеет минимальное выходное напряжение 15 вольт. Поскольку минимальное выходное напряжение больше, чем у нашего одиночного светодиода XPG2 (2,9 В), для работы с этим конкретным драйвером вам потребуется соединить не менее 6 из них последовательно.

Инструменты для понимания и поиска правильного драйвера светодиода

Итак, теперь у вас должно быть довольно хорошее представление о том, что такое драйвер светодиода и что вам нужно искать при выборе драйвера с источником питания, достаточным для вашего приложения. Я знаю, что вопросы по-прежнему будут, и для этого вы можете связаться с нами по телефону (802) 728-6031 или [email protected].

У нас также есть этот инструмент выбора драйверов, который помогает рассчитать, какой драйвер будет лучше всего, введя спецификации вашей схемы.

Если ваше приложение требует нестандартного размера и вывода, обратитесь в LEDdynamics. Их подразделение LUXdrive быстро разработает и изготовит нестандартные светодиодные драйверы прямо здесь, в Соединенных Штатах.

Спасибо за внимание, и я надеюсь, что этот пост поможет всем, кто интересуется, что такое светодиодные драйверы.

Список электрических схем светодиодов и световых приборов

Ночник с питанием от батареи

Эта схема может использоваться в качестве ночника, когда настенная розетка недоступна для подключения когда-либо работающего небольшого устройства с неоновой лампой.Чтобы обеспечить минимальное потребление заряда батареи, используется одна ячейка 1,5 В и простые удвоители напряжения приводят в действие пульсирующий сверхяркий светодиод: потребляемый ток составляет менее 500 мкА. Дополнительный фоторезистор отключает цепь при дневном свете или при включении комнатных ламп, что обеспечивает дополнительную экономию тока. Это устройство будет непрерывно работать около 3 месяцев на обычном элементе размера AA или около 6 месяцев на элементе щелочного типа, но при добавлении схемы фоторезистора время работы будет удвоено или, что весьма вероятно, втрое.IC1 генерирует прямоугольную волну с частотой около 4 Гц. C2 и D2 образуют удвоители напряжения, необходимые для повышения напряжения батареи до пикового значения, способного управлять светодиодом …. [подробнее]

Схема танцующих светодиодов

Базовая схема включает до десяти светодиодов последовательно, следуя ритму музыки или речи, улавливаемому маленьким микрофоном. Расширенная версия может работать с десятью полосами, состоящими из пяти светодиодов каждая, при напряжении питания 9 В.IC1A примерно в 100 раз усиливает аудиосигнал, улавливаемый микрофоном, и управляет IC1B, действующим как детектор пикового напряжения. Его выходные пики синхронны с пиками входного сигнала и тактового сигнала IC2, кольцевого декадного счетчика, способного последовательно управлять до десяти светодиодов …. [подробнее]

Свет любезности

Эта схема предназначена для того, чтобы позволить пользователю выключить лампу с помощью выключателя, расположенного далеко от кровати, что дает ему достаточно времени, чтобы лечь, прежде чем лампа действительно выключится…. [подробнее]

Схема регулятора яркости для небольших ламп и светодиодов

Это устройство было разработано по запросу; для управления интенсивностью света четырех ламп накаливания (т. е. кольцевого осветителя) с питанием от двух батареек AA или AAA, для съемки крупным планом с помощью цифровой камеры. Очевидно, что его можно использовать и по-другому, по желанию. IC1 генерирует прямоугольный сигнал частотой 150 Гц с переменной скважностью. Когда курсор P1 полностью повернут к D1, выходные положительные импульсы, появляющиеся на выводе 3 IC1, очень узкие…. [подробнее]

Темный активированный светодиод или мигалка лампы

Эта схема использует довольно необычную схему мультивибратора Bowes / White с эмиттерной связью. Частота колебаний составляет около 1 Гц и задается значением C1. Светодиод начинает мигать, когда фоторезистор почти не горит. Начало мигания можно установить путем подстройки R2 …. [подробнее]

Аварийный свет, управляемый ИС, с цепью зарядного устройства

Вот принципиальная схема управляемой ИС аварийной световой сигнализации с зарядным устройством или просто инвертора переменного тока от 12 В до 220 В.Показанная здесь схема является схемой аварийного освещения, управляемой интегральной схемой. Его основные особенности: автоматическое включение света при сбое электросети и зарядное устройство с защитой от перезарядки. Когда сеть отсутствует, реле RL2 находится в обесточенном состоянии, питая аккумуляторную батарею от секции инвертора через свои замыкающие контакты и переключатель S1 …. [подробнее]

Принципиальная схема двух мигающих светодиодов

Вот принципиальная схема двух мигающих светодиодов для различных приложений (например, для создания моделей) и для отдыха.Регулируемая скорость мигания с помощью двух потенциометров. Это совокупность нескольких активных и пассивных компонентов. Эта схема очень проста в сборке (хорошая идея для новичков) и может быть построена на печатной плате общего назначения или на плате Veroboard. Полное изображение и схема этого проекта показаны ниже … [подробнее]

Игра в кости со светодиодами

Каждый уважающий себя домашний мастер делает свои электронные кубики со светодиодами в качестве точек. Тогда вам больше не нужно бросать кости — просто нажмите кнопку.Электроника также гарантирует, что никто не сможет попытаться улучшить свою удачу, играя в кости. Жалко для обидчивых неудачников! Эта схема доказывает, что электронный кристалл, построенный с использованием стандартных компонентов, можно сделать довольно компактным. Ключевым компонентом здесь является цифровой счетчик типа 4060 (IC1) …. [подробнее]

Схема цепи заднего фонаря безопасности велосипеда

Эта схема была разработана для обеспечения четко видимого света, образованного 13 высокоэффективными мигающими светодиодами, расположенными в псевдовращающемся порядке.Благодаря низкому напряжению, низкому разряду батареи и небольшому размеру устройство подходит для установки на велосипедах в качестве фонаря или для ношения на бегунах / ходунках. IC1 — это CMos-версия микросхемы 555 IC, подключенная как нестабильный мультивибратор, генерирующий прямоугольную волну с коэффициентом заполнения 50% на частоте около 4 Гц …. [подробнее]

12 В диммер

Диммер довольно необычен в караване или на лодке. Здесь мы расскажем, как это сделать. Итак, если вы хотите иметь возможность регулировать настроение, когда развлекаете друзей и знакомых, эта схема позволит вам это сделать.Спроектировать диммер на 12 В — дело непростое. Диммеры, которые вы найдете в своем доме, предназначены для работы от переменного напряжения и используют это переменное напряжение в качестве основной характеристики для своей работы. Поскольку теперь нам нужно начать с 12 В постоянного тока, мы должны сами генерировать переменное напряжение … [подробнее]

Цепь мигающих ламп переменного тока 220 вольт

Эта схема предназначена как надежная замена термически активируемым выключателям, используемым для мигания елочных ламп.Устройство, образованное Q1, Q2 и соответствующими резисторами, запускает SCR. Время обеспечивается R1, R2 и C1. Чтобы изменить частоту мигания, не изменяйте значения R1 и R2: вместо этого установите значение C1 от 100 до 2200 мкФ …. [подробнее]

Ультраяркая светодиодная лампа

Эта сверхяркая светодиодная лампа белого цвета работает от сети переменного тока 230 В с минимальным энергопотреблением. Его можно использовать для освещения VU-метров, SWR-метров и т. Д. Сверхъяркие светодиоды, доступные на рынке, стоят от 8 до 15 рупий.Эти светодиоды излучают яркий белый свет 1000-6000 мКд, как сварочная дуга, и работают от 3 вольт, 10 мА. Их максимальное напряжение составляет 3,6 вольт, а сила тока — 25 мА. При обращении со светодиодами необходимо соблюдать антистатические меры … [подробнее]

Пилотный светильник с двумя светодиодами

Эта схема разрабатывается по запросу и может быть полезна тем, кто хочет, например, чтобы красный светодиод светился, когда прибор включен, и зеленый светодиод, когда тот же прибор выключен.Любой прибор, работающий от сети, может контролироваться этой схемой при условии, что для SW1 используется подходящий сетевой выключатель, способный выдерживать полный ток нагрузки. Когда SW1 замкнут, нагрузка и D4 находятся под напряжением, Q1 насыщается и замыкает D3, таким образом предотвращая его освещение …. [подробнее]

Солнечная лампа с использованием PR4403

PR4403 является усовершенствованным родственником драйвера светодиода PR4402 40 мА. У него есть дополнительный вход под названием LS, который можно перевести в низкий уровень для включения светодиода.Это позволяет очень легко построить автоматическую светодиодную лампу с использованием аккумуляторной батареи и солнечного модуля. Вход LS подключен непосредственно к солнечному элементу, что позволяет использовать модуль в качестве светового датчика одновременно с зарядкой аккумулятора через диод. Когда темнеет, падает и напряжение на солнечном модуле: когда оно ниже порогового значения, PR4403 включается. В течение дня аккумулятор заряжается, и при включенном светодиоде драйвер потребляет всего 100 мкА …. [подробнее]

Принципиальная схема плавного мигания

Обычные светодиодные мигалки резко включают и выключают светодиод, что через некоторое время может немного раздражать.Схема, показанная здесь, более щадящая для глаз: интенсивность света изменяется очень медленно и синусоидально, помогая создать расслабленное настроение. На схеме изображен фазосдвигающий генератор с регулируемым источником тока на выходе. Схема способна последовательно управлять двумя светодиодами, не влияя на ток …. [подробнее]

Переносной проблесковый маячок

Перед вами портативный мощный проблесковый маячок для электрических ламп накаливания.По сути, это двойной мигающий индикатор (чередующийся мигатель), который может обрабатывать две отдельные нагрузки 230 В переменного тока (лампочки L1 и L2). Схема полностью транзисторная и работает от батарей. Схема автономного генератора реализована на двух маломощных малошумящих транзисторах Т1 и Т2. Один из двух транзисторов всегда проводит, а другой блокирует …. [подробнее]

Один из девяти секвенсоров

Эта новая схема использует мигающий светодиод в качестве входа часов для декадного счетчика 4017.Типичные мигающие светодиоды (например, DSE cat Z-4044) мигают с частотой около 2 Гц, поэтому выходы Q0-Q9 будут циклически повторяться с этой частотой. Например, Q0 включится на полсекунды, затем Q1, затем Q2 и т. Д. До Q8, затем он снова начнется с Q0. Можно использовать до девяти выходов. Если вам нужно меньше выходов, подключите более ранний выход к MR, контакт 15. Если MR не используется, подключите его к 0V …. [подробнее]

Многоцветный светодиод HD

Большинство корпусов ПК имеют только один светодиод для индикации доступа к жесткому диску, при этом светодиод подключается к материнской плате через двухконтактный разъем.Однако этот индикатор работает только с дисками IDE, и если установлен контроллер диска SCSI, его активность не будет заметно заметна. Эта небольшая схема решает эту проблему с помощью многоцветного светодиода. Светодиод активности для интерфейса IDE обычно управляется подключенным устройством через один или несколько каскадов с открытым коллектором …. [подробнее]

Схема светодиода, работающего от сети

Вот простая и мощная светодиодная схема, которая может работать напрямую от сети переменного тока 100 вольт на переменный ток 230 вольт.Схема может использоваться как локатор сетевого питания, ночник и т. Д. Резистор R1, R2 и конденсатор C1 обеспечивают необходимое ограничение тока. Схема достаточно устойчива к скачкам и скачкам напряжения …. [подробнее]

Цепь мигания светодиода или лампы

Эта схема была разработана для обеспечения того, чтобы лампы постоянного света, уже подключенные к цепи, стали мигать. Просто вставьте цепь между существующей лампой и отрицательным питанием.Это устройство особенно подходит для автомобильных или панельных контрольных ламп, оно может управлять лампами мощностью до 10 Вт …. [подробнее]

Светодиод или лампа Pulsar Circuit

Эта схема управляет светодиодом в импульсном режиме, то есть светодиод выходит из выключенного состояния, постепенно загорается, затем постепенно гаснет и т. Д. Этот режим работы достигается генератором треугольной волны, образованным двумя операционными усилителями, содержащимися в очень дешевом 8-контактном разъеме. Корпус DIL IC. Q1 обеспечивает текущую буферизацию, чтобы получить лучшую нагрузку на привод.R4 и C1 — это компоненты синхронизации: используя значения, указанные в списке деталей, общий период составляет около 4 секунд …. [подробнее]

Светодиодный сигнализатор высокой интенсивности

Эта схема была разработана как сигнальная лампа для предупреждения участников дорожного движения об опасных ситуациях в темноте. В качестве альтернативы он может действовать как велосипедный фонарь (в соответствии с правилами дорожного движения и законодательством). Белые светодиоды рекомендуется использовать только в том случае, если цепь используется в качестве переднего велосипедного фонаря (т.е.е. для освещения дороги) и красные светодиоды только при использовании в качестве заднего фонаря. В течение дня две солнечные батареи на 1,6 В заряжают две батареи AA. В темноте напряжение солнечных элементов исчезает, и батареи автоматически питают цепь. Частота мигания составляет примерно одну в секунду, а время включения светодиода составляет примерно 330 мс …. [подробнее]

Мигающие глаза

Эта схема была специально разработана как забавный гаджет на Хэллоуин. Его следует разместить сзади значка или булавки с изображением типичного персонажа Хэллоуина, например.грамм. тыква, череп, черная кошка, ведьма, привидение и т. д. Два светодиода закреплены на месте глаз персонажа и будут более или менее ярко светиться, следуя ритму музыки или речи, улавливаемой из окружения маленьким микрофоном. Два транзистора обеспечивают необходимое усиление и управляют светодиодами …. [подробнее]

Принципиальная схема затухающих светодиодов

Эта схема управляет двумя светодиодными полосами в импульсном режиме, то есть одна светодиодная лента выходит из выключенного состояния, постепенно загорается, затем постепенно гаснет и т. Д.в то время как другая светодиодная лента делает наоборот. На каждую полосу можно собрать от 2 до 5 светодиодов при питании 9 В. Два операционных усилителя, входящие в состав IC1, образуют генератор треугольных волн … [подробнее]

Автоматический аварийный свет малой мощности

Вот аварийный свет на основе белых светодиодов, который имеет следующие преимущества. 1-Он очень яркий из-за использования белых светодиодов. 2-Индикатор включается автоматически при отключении сетевого питания и гаснет при его возобновлении.3-Имеет собственное зарядное устройство. Когда аккумулятор полностью заряжен, зарядка автоматически прекращается. Блок питания зарядного устройства построен на трехконтактном регулируемом стабилизаторе IC LM317 (IC1), а секция драйвера светодиода построена на транзисторе BD140 (Q2) …. [подробнее]

12-ступенчатый неоновый секвенсор (NE-2 / NE-51)

Эта схема аналогична светодиодным часам с использованием 12 неоновых индикаторных ламп вместо светодиодов. Он работает от 2 ячеек Ni-CAD большой емкости (2.5 вольт), которые сохранят его в течение пары недель. Высокое напряжение (70 В) для неоновых ламп получается от небольшого импульсного источника питания с использованием прямоугольного генератора Шмитта 74HC14, переключающего транзистора высокого напряжения и индуктора с высокой добротностью 10 мГн …. [подробнее]

Двухпроводной проблесковый маячок

Эта схема была разработана для обеспечения того, чтобы лампы постоянного света, уже подключенные к цепи, стали мигать. Просто вставьте цепь между существующей лампой и отрицательным питанием.Это устройство особенно подходит для автомобильных или панельных контрольных ламп, оно может управлять лампами мощностью до 10 Вт …. [подробнее]

Тройной стробоскоп

Эта схема позволяет наблюдать движение между другими стробоскопами. Генерация прямоугольного сигнала основана на NE555. Эта схема требует маломощного источника питания, который состоит из простого трансформатора TR1, традиционного выпрямительного моста и стабилитрона …. [подробнее]

Диммер TRIAC Light Dimmer

Эта небольшая схема может использоваться для приглушенного света до 350 Вт.Он использует простую, стандартную схему TRIAC, которая, по моему опыту, генерирует очень мало тепла. Обратите внимание, что эту схему нельзя использовать с люминесцентными лампами …. [подробнее]

Конфигурация цепи светодиода

| Основы электроники

прямое напряжение

Когда ток течет через светодиод в положительном направлении, напряжение, возникающее между анодом и катодом, называется прямым напряжением (VF). Единица измерения напряжения — вольт (В).
В таблице данных, например, представлен график характеристик прямого напряжения, генерируемого по отношению к текущему потоку (прямой ток IF против прямого напряжения VF).
Эта характеристика является наиболее важным параметром при рассмотрении реальной схемы светодиодного освещения.

Характеристики прямого тока (IF) — прямого напряжения (VF), пример 1

Характеристики IF-VF будут варьироваться в зависимости от материала светодиодного элемента, его размера и даже цвета излучения. Он также будет варьироваться в зависимости от температуры окружающей среды.Кроме того, существует характерное для полупроводников распределение значений характеристик, известное как изменчивость.
Изменения VF не являются проблемой, когда светодиоды работают в режиме постоянного тока, но для постоянного напряжения необходимо учитывать эти изменения и колебания при проектировании.

Схема светодиодного освещения

[В случае последовательной цепи освещения]

При последовательном включении светодиодов через привод постоянного напряжения схема обычно включает резистор, подключенный последовательно со светодиодами для управления током.

Для этого типа схемы сначала считайте прямой ток IF и прямое напряжение VF горящего светодиода из характеристик IF-VF.
Значение R (текущее управляющее сопротивление) определяется путем вычисления путем ввода этих значений в приведенное выше уравнение.

[В случае параллельной цепи освещения]

Для параллельного соединения с приводом постоянного напряжения мы рекомендуем конфигурацию схемы, в которой используется управляющий резистор для каждого светодиода (которые расположены бок о бок в указанной выше цепи последовательного освещения).

Характеристики

LED IF-VF зависят от материала элемента и цвета излучения. Более того, индивидуальные вариации, присущие полупроводникам, существуют, даже когда материал и цвет излучения одинаковы.
Как показано на графике ниже, когда VF светодиода ① и светодиода ② различаются, управление током с помощью всего одного резистора затрудняет управление током, протекающим к каждому светодиоду (IF1 и IF2).
Подключение резистора к каждому светодиоду позволяет индивидуально настраивать ток (IF1 и IF2), что позволяет настраивать индивидуальные настройки (т.е.е. для достижения текущего соответствия подавите колебания яркости). Кроме того, приложение высокого напряжения к резистору, например, путем увеличения входного напряжения Vin, позволяет реализовать конструкцию, которая учитывает изменения.

LED (светоизлучающий диод) на страницу продукта

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *