Система заземления TT | Заметки электрика
Здравствуйте, уважаемые посетители сайта «Заметки электрика».
Мы сегодня продолжим изучение систем заземления. Вашему вниманию, я представляю систему заземления TT.
Чем же она отличается от других систем заземления?
Давайте во всем разберемся по-порядку.
Система заземления TT применяется в первую очередь там, где условия по электробезопасности в системах TN-C, TN-C-S и TN-S не полностью обеспечены, т.е. систему TT рекомендуется применять при неудовлетворительном состоянии питающей воздушной линии электропередач (ВЛ). С уверенностью могу сказать, что большинство воздушных линий (ВЛ) находятся в неудовлетворительном состоянии, выполнены они неизолированными проводами и большинство из них не имеют повторного заземления на опорах.
Со всеми недостатками неизолированных проводов Вы можете познакомиться в статье про СИП провод.
К ним относятся:
строительные и монтажные бытовки (вагончики)
металлические контейнеры, торговые павильоны и киоски
помещения с диэлектрической поверхностью стен, при наличии в них постоянной влажности и сырости
Принцип исполнения
Принцип системы заземления TT основан на том, что защитный проводник PE заземляется независимо от нулевого рабочего проводника N и запрещена какая-либо связь между ними.
Даже если рядом расположен контур заземления рабочего проводника N, то все равно защитный проводник PE должен заземляться через свой контур заземления, и эти два контура НЕ ДОЛЖНЫ сообщаться между собой.
Таким образом, мы полностью изолируем токопроводящие (металлические) поверхности временных строений и зданий от электрических сетей.
Это осуществляется простым способом — по всему периметру временного здания (строения) проводится защитный проводник PE в виде пластины или прутка, которые соединяется со своим отдельным контуром заземления.
Запрещено соединять заземленные части конструкций здания (строения) и корпуса электрооборудования с рабочим нулевым проводником N.
Основные требования и особенности системы ТТ
Ниже я перечислю Вам основные требования и особенности при монтаже системы заземления TT.
1. УЗО
Абсолютно на все групповые линии электропроводки должны быть установлены УЗО с уставкой не более 30 (мА). Это необходимо для защиты от случайного прямого или косвенного прикосновения к токоведущим частям электрооборудования, или при появлении неисправностей в электропроводке дома (появление токов утечки).
Также не стоит пренебрегать установкой УЗО на вводе с уставкой от 100-300 (мА), тем самым обеспечивая двухступенчатую селективную защиту своего дома.
Переходите по ссылочке, чтобы познакомиться со всеми разновидностями и типами УЗО.
2. Нулевой рабочий проводник N
Нулевой рабочий проводник N не должен соединяться с местным контуром заземления и шиной РЕ.
3. Перенапряжение
Для защиты электрических приборов от атмосферных перенапряжений необходимо устанавливать ограничители перенапряжения (ОПН) или ограничители импульсных перенапряжений (ОПС или УЗИП). Более подробно об этих устройствах мы поговорим в ближайших статьях.
4. Сопротивление контура заземления
Сопротивление контура заземления Rc должно удовлетворять условию ПУЭ (Глава 1.7., пункт 1.7.59) Rc*Iузо (ток срабатывания УЗО) < 50 (В).
Например, при УЗО с уставкой в 30 (мА) сопротивление контура заземления (заземлителя) должно быть не более 1666 (Ом). Или, если УЗО имеет уставку 100 (мА), то сопротивление не должно превышать 500 (Ом). Это минимальные требования к сопротивлению контура заземления при системе заземления ТТ.
Как произвести измерение сопротивления контура — читайте в статье измерение сопротивления заземления.
Для выполнения вышесказанного условия достаточно будет использовать один вертикальный заземлитель в виде уголка или прутка длиной около 2-2,5 метра. Но я Вам рекомендую выполнить контур более тщательно, забив несколько заземлителей. Хуже не будет.
Недостаток системы заземления ТТ
Пожалуй, единственным недостатком системы ТТ является факт одновременного отказа устройства защитного отключения (УЗО) и пробое фазы на заземленный корпус электрического прибора.
В таком случае защитные проводники РЕ и открытые токопроводящие поверхности окажутся под потенциалом (напряжением) сети по причине того, что автоматический выключатель поврежденной линии может не сработать при замыкании фазы на РЕ, т.к. ток короткого замыкания будет не достаточный. Поэтому единственной защитой в такой ситуации остается система уравнивания потенциала и установка двухступенчатой дифференциальной защиты, про которую я упоминал чуть выше.
P.S. В завершении статьи рекомендую Вам посмотреть мое видео про компоновку и сборку трехфазного щита учета 380 (В) для частного дома с системой заземления ТТ.
Если статья была Вам полезна, то поделитесь ей со своими друзьями:
обозначение, схема, применение, достоинства и недостатки
Система заземления ТТ
Сокращенное обозначение ТТ означает следующее:
- Первая буква Т – нейтраль источника питания соединена с землей (Т – образуется от английского слова «terra», что в переводе означает – «земля». То есть, это – система с глухозаземленной нейтралью, так же, как и TN.
- Вторая буква Т – все части электроустановок потребителей, способные оказаться под опасным для жизни напряжением, принудительно соединяются с землей. Но контур повторного заземления в системе ТТ не связывается электрически с контуром заземления нейтрали источника питания – генератора или трансформатора.
Васильев Дмитрий Петрович
Профессор электротехники СПбГПУ
Задать вопрос
В этом и есть существенное конструктивное отличие системы ТТ от TN. В системе TN-С контура источника и потребителя соединяются между собой при помощи PEN-проводника. В системе TN-S для этого применяется проводник РЕ. У ТТ эта электрическая связь отсутствует.
Но это не означает, что связи совсем нет никакой. Поверхность земли проводит электрический ток. На этом основаны принципы защиты в системах TN-C и TN-S.
Принципы защиты системы TN
Чтобы лучше понять разницу между TN и ТТ, рассмотрим, за счет чего происходит защита потребителя от появления опасного для жизни потенциала на корпусах электрооборудования. Междуфазные короткие замыкания не рассматриваем, так как действие защиты в этих системах ничем не отличается. С этим призваны бороться автоматические выключатели.
Эти же выключатели в системе TN должны справляться и с замыканиями фазы на корпус электрооборудования, представляющими опасность для жизни человека. Чтобы снизить до минимума вероятность поражения током людей и животных, применяются две меры защиты:
Защитное заземление – соединение корпуса с потенциалом земли. Если учесть, что прикасающийся к нему человек сам «стоит на земле», а сопротивление его тела в сотни раз больше, чем у соединяющего этот корпус с землей проводника, то большая часть тока пойдет в землю мимо тела. Та часть, что все-таки пройдет через живое существо, будет слишком мала, чтобы лишить его жизни.
Защитное отключение – отключение поврежденного участка за такое время, которого будет недостаточно для причинения вреда здоровью.
Васильев Дмитрий Петрович
Профессор электротехники СПбГПУ
Задать вопрос
С защитным отключением нужно разобраться поподробнее. Нормы времени, за которое нужно отключить поврежденную электроустановку, определены в результате медицинских исследований. Они предписаны ПУЭ для системы TN, в зависимости от фазного напряжения электроустановки.
Для соблюдения этого условия необходимо, чтобы ток замыкания на корпус лежал в диапазоне действия электромагнитного расцепителя автоматического выключателя.
Недостатки системы TN
А вот тут и возникают проблемы. Сопротивление линии от источника питания до повреждения порой настолько велико, что токи замыкания на землю (контур заземления) приводят только к запуску теплового расцепителя. Защита срабатывает со значительной выдержкой времени, а в некоторых случаях не способна сработать вообще.
За это время на человека, случайно оказавшегося в контакте с вроде бы и заземленной поверхностью, действует опасное для жизни напряжение.
Вторая опасность заключается в обрыве защитных проводников, соединяющих контур заземления источника с защищаемыми от появления опасных потенциалов корпусами. В этом случае то, что призвано защитить, становится еще опаснее. При отсутствии повреждений в электроустановке все заземленные ее части оказываются под напряжением. Если при этом контур повторного заземления отсутствует или недостаточно эффективен, вероятность поражения током человека стремительно возрастает.
Орлов Анатолий Владимирович
Начальник службы РЗиА Новгородских электрических сетей
Задать вопрос
Казалось бы, корпус электрооборудования заземлен, откуда на нем возьмется опасное напряжение? В системе TN-C это возможно в результате распределения потенциалов по мере прохождения токов от источника к земле. В системе TN-S следует учитывать тот факт, что в чистом виде их очень мало. В ходе реконструкции электроустановок реализуется система TN-C-S, в которой проводник PEN на каком-то участке просто разделяется на два: защитный РЕ и рабочий N.
Обрыв PEN-проводника до точки разделения приводит к появлению как на рабочих, так и на защитных проводниках всей отсеченной от источника сети напряжений, достигающих величины 380 В. Контур повторного заземления, если он есть, может сгладить опасный потенциал, но не удерет его совсем. А если этого контура нет?
Как система ТТ устраняет недостатки TN
Как уже указывалось ранее, заземляющие проводники в системе ТТ не связаны с нулевым проводником источника питания. Этим устраняется вероятность появления опасного потенциала на корпусах в результате обрыва нулевого проводника, являющегося при этом только рабочим.
Но что касается защитного отключения – при использовании только автоматических выключателей эта мера становится еще более невыполнимой. Отсутствие нулевого защитного проводника приводит к тому, что ток замыкания фазы на корпус идет к источнику только по поверхности земли. Логично, что он не исчезает совсем, но становится еще меньше.
Васильев Дмитрий Петрович
Профессор электротехники СПбГПУ
Задать вопрос
Поэтому автоматические выключатели в системе ТТ защищают только электроустановку от междуфазных коротких замыканий. Для защиты же человека в обязательном порядке применяются УЗО. ПУЭ указывает на то, что их дифференциальный ток не должен превышать 30 мА. Почему так? Он попадает в диапазон токов, при которых в подавляющем большинстве случаев человек из-за сокращений мышц не может отпустить оказавшийся под напряжением проводник.
Особые требования в системе ТТ предъявляются к контуру заземления электроустановки потребителя. Он должен обеспечивать срабатывание защиты (УЗО) при напряжении на защищаемом корпусе электрооборудования, не превышающем допустимого напряжения прикосновение – 50 В. То есть:
Rа Iа≤ 50 В,
где Iа — ток срабатывания защитного устройства (УЗО).
Ra- сопротивление заземлителя, сложенное с сопротивлением заземляющего проводника до корпуса электроприемника.
Если УЗО используется для защиты группы электроприемников, то в Ra входит сопротивление заземляющего проводника до самого удаленного из них.
Система заземления TT — как подключить схема (ПУЭ)
Основным методом предупреждения электротравм является защитное заземление металлического корпуса электроприборов. Надёжность этого вида защиты определяется вероятностью получения человеком электротравмы при нарушении изоляции между элементами, подключёнными к электросети, и корпусом.
В ПУЭ гл.1.7 описываются 5 схем заземления, отличающихся по своей конструкции, самой из которых является схема TN-S. Она предполагает наличие проводника РЕ, проложенного от подстанции до электроприбора. При отсутствии технической возможности смонтировать эту систему используется схема TN-C-S. В Правилах Устройства Электроустановок в п.7.1.13 указано, что этот тип защиты должен заменить схему типа TN-C.
В небольших домах с однофазной электропроводкой и двухжильным вводным кабелем использовать эту схему защиты затруднительно. В таких местах устанавливается система заземления TT.
Основным отличием этой схемы является то, что заземляющий проводник PE соединён не с заземлённой средней точкой вторичной обмотки питающего трансформатора, а с контуром заземления, который смонтирован рядом с зданием. Именно к нему присоединяются заземляющие контакты розеток и металлические корпуса электроприборов.
В данной статье рассмотрим принцип работы и схему исполнения системы заземления TT и в каких случаях ее предпочтительно применять.
Область применения
Защитное заземление типа ТТ отличается от других схем. Согласно ПУЭ 1.7.57 в бытовых сетях используется подключение сетей к трансформатору с глухозаземлённой нейтралью TN. В этой схеме питания заземляющие контакты в розетках и на клеммнике соединены с заземлённой нейтралью трансформаторной подстанции.
Схема защиты TN имеет несколько разновидностей, отличающихся способом соединения заземляющих контактов в розетке с зпземлённой средней точкой вторичной обмотки трансформатора:
- TN-C — заземляющий проводник отсуствует. Вместо него используется нейтральный провод. Не обеспечивает необходимой безопасности, поэтому в жилых зданиях не применяется.
- TN-C-S — от нейтрали питающего трансформатора проложен один проводник PEN, совмещающий функции нулевого и заземляющего проводников. В водном щитке в здании он разделяется на два провода — нейтраль N и заземление РЕ. Место разделения дополнительно заземляется. Это самая распространённая схема из-за простоты переоборудования в неё схемы защиты типа TN-C.
- TN-S — заземляющий провод РЕ проложен от подстанции к электроприборам без разрывов и соединения с нейтралью. Самый надёжный метод защиты.
В ПУЭ гл.1.7 указаны условия выбора каждого из видов защиты. Если эти требования выполнить невозможно, то устанавливается система заземления TT. Чаще всего при заземлении дома схема TT в зданиях с вводом по воздуху, выполненным двумя проводами. Провода, проложенные ещё в советское время, в плохом состоянии и разделение PEN проводника на РЕ и N на вводе в дом не обеспечивает необходимого уровня защиты.
Ещё одна причина выполнить монтаж защиты здания по схеме TT — плохое техническое состояние магистральных воздушных линий. Согласно требованиям ПУЭ п.1.7.102 провод PEN должен заземляться на столбах, по которым он проложен. Естественно, за много лет, прошедших с момента прокладки, контур заземления на многих опорах вышел из строя.
Эти требования вызваны тем, что при обрыве провода РЕN и отсутствии повторного заземления на металлических элементах корпуса электроприбора окажется опасное для жизни напряжение.
В связи с этим система заземления TT применяется на дачах, в охотничьих домиках, временных сооружениях на стройках и других аналогичных ситуациях. Достоинство этой конструкции в том, что для изготовления заземления достаточно простого землеройного инструмента и электросварки.
В связи с тем, что сопротивление заземления может быть недостаточным для надёжной защиты и отключения автоматического выключателя, в ПУЭ п.1.7.59 указывается на обязательность установки УЗО или дифавтомата. Ток утечки, появляющийся при замыкании на корпус или прикосновении к элементам, находящимся под напряжением, человека, достаточен для срабатывания этой защиты.
Важно! Использовать заземление в качестве нейтрального провода нельзя. Это приведёт к быстрой коррозии контура и его разрушению. |
Расшифровка обозначения схемы TT
Название и расшифровка системы заземления ТТ указывает на её основные особенности:
- 1. Т (англ. terra — земля). Показывает, что нейтраль источника питания, как в системах TN, подключена к заземлению без автоматов и переключателей.
- 2. Т (англ. terra — земля). Указывает, что все элементы корпуса подключены к защитному заземлению возле здания.
Из названия видно, что заземление РЕ не связано с питающим трансформатором и подключается к собственному контуру заземления. Именно наличие этого контура является основным отличием схемы заземления ТТ от систем типа TN, в которых корпус оборудования и заземляющие клеммы соединены с нейтралью источника питания проводами PE или PEN.
Схема исполнения системы заземления TT
Принцип работы защиты типа ТТ заключается в том, что провод заземления РЕ подключается к независимому контуру заземления и не связан с источником питания. При этом элементы конструкции здания и коммуникации оказываются заземлёнными и не соединёнными с источником питания.
Даже при установке трансформаторной подстанции рядом со схемой заземления TT контур нейтрали трансформатора и контур заземления не соединяются.
Важно! Соединять провода РЕ и N в системе TT между собой напрямую или через другие элементы запрещено. Это автоматически превращает схему в защиту типа TN-C-S |
Какие требования предъявляются к системе TT
В ПУЭ 1.7.59 указывается, где применяется система заземления TT и основные технические условия для этой конструкции.
1. Установка УЗО
Система ТТ является более опасной и не обеспечивает такую же надёжную защиту от поражения электрическим током, как схема TN-S. Поэтому при монтаже этой схемы является обязательной установка на все линии электропроводки УЗО с порогом срабатывания тока утечки не более 30мА.
Такое требование аргументировано тем, что при перекрытии фазы на заземленный корпус оборудования ток короткого замыкания может быть настолько мал, что автоматический выключатель не сработает. Следовательно, единственной защитой в этом случае будет Устройство Защитного Отключения (УЗО).
2. Отсутствие связи между N и PE проводниками
Нейтральный провод N и заземляющий РЕ запрещено соединять между собой. Именно это разделение является отличительной особенностью системы типа ТТ.
В ПУЭ п.1.7.59 указано, что она применяется только в том случае, если требования для других схем защиты невозможно выполнить, а соединение N и РЕ преобразовывает схему TT в одну из систем типа TN, требования к которой в данной ситуации невыполнимы.
3. Качественный контур заземления
Одним из основных элементов защиты типа TT является контур заземления. В отличие от других схем он находится возле здания с этой защитной системой. Главным параметром контура является его сопротивление. Для надёжной работы контур необходимо регулярно осматривать и проверять его прибором для проверки заземления.
Достоинства и недостатки
У системы защиты типа ТТ есть достоинства, делающие её удобной для применения в некоторых случаях. Повреждения линии электропередач не влияют на безопасность людей, а монтаж заземления в электропроводке не требует замены или реконструкции питающей линии.
Опасность для жителей дома появляется только в случае одновременного отказа УЗО, нарушения изоляции между токоведущими частями и корпусом и нарушении работы заземляющего устройства. Именно контур заземления является слабым местом этой системы.
Для качественного монтажа этого элемента необходимо выполнить значительный объём земляных работ, а в дальнейшем конструкцию следует периодически осматривать и проверять по правилам, указанным в ПУЭ п. 1.8.36.
Похожие материалы на сайте:
Понравилась статья — поделись с друзьями!
Система заземления TT: особенности конструкции + фото
Система заземления TT поможет обезопасить ваш дом. Она имеет широкий спектр распространения, и применяют ее в тех местах, где системы заземления TN-C, TN-C-S и TN-S обеспечены не полностью. Применять эту систему необходимо в том случае если воздушная линия имеет неудовлетворительное состояние.
На сегодняшний день большинство воздушных линий имеют неудовлетворительное состояние. На большинстве опорах нет дополнительного заземления. Также эта система заземления TT активно применяется для защиты людей от поражения током через металлические поверхности. К этим поверхностям можно отнести:
- Строительные вагончики.
- Металлические контейнеры.
- Помещения, которые имеют диэлектрическую поверхность стен.
Если вам интересно, тогда читайте, как выполнить заземление автомобиля.
Система заземления TT и ее принцип исполнения
Принцип системы TT достаточно прост. Он основывается на том, что защитный проводник PE должен заземляться независимо от нулевого проводника N. Связь между этими проводниками запрещена. Даже если рядом располагается контур заземления нулевого проводника, то защитный проводник должен заземляться через свой контур заземления. Эти контуры не должны соприкасаться между собою.
Таким образом, вы сможете полностью заизолировать токопроводящие поверхности. Сделать монтаж системы заземления TT достаточно просто. Вот схема системы заземления TT, которая поможет выполнить монтаж.
Для монтажа системы вам необходимо по всему периметру здания провести защитный проводник PE. Проводник должен иметь вид пластины или прутка, которые должны соединяться отдельным контуром заземления.
Важно знать!!! Запрещается соединять заземленные части конструкции и корпуса электрооборудования с рабочим нулевым проводником N.
Требования и особенности системы заземления TT
Сейчас мы перечислим основные особенности, которые помогут выполнить монтаж системы:
Все групповые линии должны иметь УЗО уставка которого должна составлять не более 30 мА. Это необходимо для защиты от косвенного соприкосновения к токоведущим частям. Также это поможет обезопасить вашу жизнь при появлении неисправной проводки.
- Нулевой проводник N
Нулевой рабочий проводник обязательно должен соединяться с местным контуром заземления и шиной PE.
- Перенапряжение
Для того чтобы защитить все приборы от перенапряжения вам необходимо установить ограничители перенапряжения. Также вы можете установить ограничители импульсных перенапряжений.
- Сопротивление контура заземления
Это сопротивление полностью должно удовлетворять ПУЭ. Для того чтобы определить действующее сопротивление необходимо провести измерение сопротивления заземления. Чтобы удовлетворить эти требования вам необходимо использовать один вертикальный заземлитель в виде уголка длиною около двух метров. При необходимости вы можете сделать несколько заземлителей. Контур заземления в частном доме можно подключить к этой системе.
Недостаток системы заземления TT
Система заземления TT имеет ряд преимуществ, о которых мы говорили выше. Также она может иметь и некоторые недостатки. На сегодняшний день естественным недостатком можно считать факт отказа УЗО и пробои фазы на заземленный корпус. В этом случае все проводники окажутся под напряжением сети.
Это может случиться из-за того, что выключатель не сработает при замыкании фазы на PE. Единой защитой, которая справится с этой проблемой, может служить система уравнивания потенциала. Выполнять монтаж системы заземления TT должны только специалисты. Они имеют необходимый опыт в этой сфере.
Рекомендуем вашему вниманию: система заземления: TN-C-S.
Система заземления TT в частном доме
Система заземления TT поможет обезопасить ваш дом. Она имеет широкий спектр распространения, и применяют ее в тех местах, где системы заземления TN-C, TN-C-S и TN-S обеспечены не полностью. Применять эту систему необходимо в том случае если воздушная линия имеет неудовлетворительное состояние.
На сегодняшний день большинство воздушных линий имеют неудовлетворительное состояние. На большинстве опорах нет дополнительного заземления. Также эта система заземления TT активно применяется для защиты людей от поражения током через металлические поверхности. К этим поверхностям можно отнести:
- Строительные вагончики.
- Металлические контейнеры.
- Помещения, которые имеют диэлектрическую поверхность стен.
Если вам интересно, тогда читайте, как выполнить заземление автомобиля.
Блок: 1/4 | Кол-во символов: 774
Источник: https://vse-elektrichestvo.ru/elektromontazh/zazemlenie/sistema-zazemleniya-tt.html
Принцип действия
Стандарт используется в электросетях с глухозаземленными нейтралями. Система TT функционирует по достаточно простому принципу. Токоведущие элементы соединяют на стороне потребителя. Защитный проводник PE заземляется независимо от нуля (N). Контакт между данными проводниками не допускается. Даже при наличии в непосредственной близости контура заземления нуля защитный проводник заземляется через собственный контур. Не разрешается контактирование контуров друг с другом.
На рисунке внизу показана схема, по которой работает система TT.
Блок: 2/5 | Кол-во символов: 556
Источник: https://220.guru/electroprovodka/zazemlenie-molniezashhita/sistema-tt.html
Расшифровка обозначения схемы TT
Название и расшифровка системы заземления ТТ указывает на её основные особенности:
- 1. Т (англ. terra — земля). Показывает, что нейтраль источника питания, как в системах TN, подключена к заземлению без автоматов и переключателей.
- 2. Т (англ. terra — земля). Указывает, что все элементы корпуса подключены к защитному заземлению возле здания.
Из названия видно, что заземление РЕ не связано с питающим трансформатором и подключается к собственному контуру заземления. Именно наличие этого контура является основным отличием схемы заземления ТТ от систем типа TN, в которых корпус оборудования и заземляющие клеммы соединены с нейтралью источника питания проводами PE или PEN.
Блок: 3/5 | Кол-во символов: 715
Источник: https://electricvdome.ru/zazemlenie/sistema-zazemlenija-tt.html
Область применения
Защитное заземление типа ТТ отличается от других схем. Согласно ПУЭ 1.7.57 в бытовых сетях используется подключение сетей к трансформатору с глухозаземлённой нейтралью TN. В этой схеме питания заземляющие контакты в розетках и на клеммнике соединены с заземлённой нейтралью трансформаторной подстанции.
Схема защиты TN имеет несколько разновидностей, отличающихся способом соединения заземляющих контактов в розетке с зпземлённой средней точкой вторичной обмотки трансформатора:
- TN-C — заземляющий проводник отсуствует. Вместо него используется нейтральный провод. Не обеспечивает необходимой безопасности, поэтому в жилых зданиях не применяется.
- TN-C-S — от нейтрали питающего трансформатора проложен один проводник PEN, совмещающий функции нулевого и заземляющего проводников. В водном щитке в здании он разделяется на два провода — нейтраль N и заземление РЕ. Место разделения дополнительно заземляется. Это самая распространённая схема из-за простоты переоборудования в неё схемы защиты типа TN-C.
- TN-S — заземляющий провод РЕ проложен от подстанции к электроприборам без разрывов и соединения с нейтралью. Самый надёжный метод защиты.
В ПУЭ гл.1.7 указаны условия выбора каждого из видов защиты. Если эти требования выполнить невозможно, то устанавливается система заземления TT. Чаще всего при заземлении дома схема TT в зданиях с вводом по воздуху, выполненным двумя проводами. Провода, проложенные ещё в советское время, в плохом состоянии и разделение PEN проводника на РЕ и N на вводе в дом не обеспечивает необходимого уровня защиты.
Ещё одна причина выполнить монтаж защиты здания по схеме TT — плохое техническое состояние магистральных воздушных линий. Согласно требованиям ПУЭ п.1.7.102 провод PEN должен заземляться на столбах, по которым он проложен. Естественно, за много лет, прошедших с момента прокладки, контур заземления на многих опорах вышел из строя.
Эти требования вызваны тем, что при обрыве провода РЕN и отсутствии повторного заземления на металлических элементах корпуса электроприбора окажется опасное для жизни напряжение.
В связи с этим система заземления TT применяется на дачах, в охотничьих домиках, временных сооружениях на стройках и других аналогичных ситуациях. Достоинство этой конструкции в том, что для изготовления заземления достаточно простого землеройного инструмента и электросварки.
В связи с тем, что сопротивление заземления может быть недостаточным для надёжной защиты и отключения автоматического выключателя, в ПУЭ п.1.7.59 указывается на обязательность установки УЗО или дифавтомата. Ток утечки, появляющийся при замыкании на корпус или прикосновении к элементам, находящимся под напряжением, человека, достаточен для срабатывания этой защиты.
Важно! Использовать заземление в качестве нейтрального провода нельзя. Это приведёт к быстрой коррозии контура и его разрушению.
Блок: 2/5 | Кол-во символов: 2866
Источник: https://electricvdome.ru/zazemlenie/sistema-zazemlenija-tt.html
Требования и особенности системы заземления TT
Сейчас мы перечислим основные особенности, которые помогут выполнить монтаж системы:
Все групповые линии должны иметь УЗО уставка которого должна составлять не более 30 мА. Это необходимо для защиты от косвенного соприкосновения к токоведущим частям. Также это поможет обезопасить вашу жизнь при появлении неисправной проводки.
- Нулевой проводник N
Нулевой рабочий проводник обязательно должен соединяться с местным контуром заземления и шиной PE.
- Перенапряжение
Для того чтобы защитить все приборы от перенапряжения вам необходимо установить ограничители перенапряжения. Также вы можете установить ограничители импульсных перенапряжений.
- Сопротивление контура заземления
Это сопротивление полностью должно удовлетворять ПУЭ. Для того чтобы определить действующее сопротивление необходимо провести измерение сопротивления заземления. Чтобы удовлетворить эти требования вам необходимо использовать один вертикальный заземлитель в виде уголка длиною около двух метров. При необходимости вы можете сделать несколько заземлителей. Контур заземления в частном доме можно подключить к этой системе.
Блок: 3/4 | Кол-во символов: 1144
Источник: https://vse-elektrichestvo.ru/elektromontazh/zazemlenie/sistema-zazemleniya-tt.html
Недостаток системы заземления TT
Система заземления TT имеет ряд преимуществ, о которых мы говорили выше. Также она может иметь и некоторые недостатки. На сегодняшний день естественным недостатком можно считать факт отказа УЗО и пробои фазы на заземленный корпус. В этом случае все проводники окажутся под напряжением сети.
Это может случиться из-за того, что выключатель не сработает при замыкании фазы на PE. Единой защитой, которая справится с этой проблемой, может служить система уравнивания потенциала. Выполнять монтаж системы заземления TT должны только специалисты. Они имеют необходимый опыт в этой сфере.
Рекомендуем вашему вниманию: система заземления: TN-C-S.
Блок: 4/4 | Кол-во символов: 675
Источник: https://vse-elektrichestvo.ru/elektromontazh/zazemlenie/sistema-zazemleniya-tt.html
Достоинства и недостатки
Главное достоинство стандарта ТТ — независимость от качества линий электропитания, от их потенциального повреждения. Поскольку заземляющее устройство расположено рядом с защищаемым объектом, вероятность обрыва электросвязи резко уменьшается.
Однако создание полноценной защиты по данной технологии сопряжено с большим объемом земляных работ. Не обойтись без УЗО, что делает схему более сложной и дорогостоящей.
Блок: 5/5 | Кол-во символов: 436
Источник: https://220.guru/electroprovodka/zazemlenie-molniezashhita/sistema-tt.html
Количество использованных доноров: 3
Информация по каждому донору:
- https://220.guru/electroprovodka/zazemlenie-molniezashhita/sistema-tt.html: использовано 2 блоков из 5, кол-во символов 992 (14%)
- https://electricvdome.ru/zazemlenie/sistema-zazemlenija-tt.html: использовано 2 блоков из 5, кол-во символов 3581 (50%)
- https://vse-elektrichestvo.ru/elektromontazh/zazemlenie/sistema-zazemleniya-tt.html: использовано 3 блоков из 4, кол-во символов 2593 (36%)
: Системы заземления: разновидности и применение
Заземление – специальное электрическое соединение конкретной точки сети, электрооборудования с заземляющим устройством. Электрики при помощи него добиваются защиты от опасного влияния тока путем снижения напряжения прикосновения до безопасного для живых организмов.
Также заземление используются для эксплуатации земли в качестве проводника (к примеру, в проводной электросвязи). Типовая система состоит из заземлителя, благодаря которому происходит прямой контакт с поверхностью, и заземляющего проводника. При проектировании, установке и использовании техники, оборудования и осветительных сетей одним из важнейших факторов обеспечения стабильной работы и безопасности является точный расчет и монтаж заземления.
Обозначения систем
Главный регламент эксплуатации всех систем заземления на территории РФ является ПУЭ. Он писался с учетом принципов работы, видов и способов устройства разных заземляющих устройств, одобренных отдельным протоколом Международной электротехнической комиссии. Так, были введены некоторые обозначения, основанные на сочетании первых букв слов французского происхождения:
- Terre – земля;
- Neuter – нейтраль;
- Isole – изолирование.
Также используются и английские слова вроде «combined» и «separated» (пер. комбинированный и разделенный). Пояснения:
- Т – заземление;
- N – подключение к нейтрали;
- I – изолирование;
- С – комбинирование функций, соединение функционального и защитного нулевых проводов;
- S – раздельная эксплуатация функционального и защитного нулевых проводов во всей системе.
В названиях эксплуатируемых систем специального заземления по первой букве удается определить способ отвода электрической энергии из источника (генератора и др.), а по второй – потребителя. Чаще всего разделяют TN, TT, IT разновидности. Первая из них также делится на три более мелких типа: TN-C, TN-S, TN-C-S.
Аббревиатуры и расшифровка обозначений дают общее знание о системах, но для глубокого понятия каждое заземление нужно рассматривать отдельно.
Системы с глухонемой нейтралью
Обозначение схем, в которых для соединения нулевых функциональных и защитных проводников эксплуатируется общая глухозаземленная нейтраль источника или понижающего трансформатора. Тут все корпусные элементы, способные передавать энергию и экраны потребителя обязательно соединяются с общим нулевым проводником, подключенным к этой нейтрали. Согласно ГОСТУ, нулевые проводники разного формата также помечают латинскими обозначениями:
- N – рабочий ноль;
- PE – защитный ноль;
- Комбинирование рабочего и защитного нулевых проводников – PEN.
Интересно! Принцип работы каждой системы заземления разный, потому правила не разрешают эксплуатировать конкретные типы заземления до проверки соответствия нормам определенных электрических сетей.
Виды и их назначение
Типы заземления:
ТN и ее разновидности
Это самая часто используемая система, в которой ноль совмещен с землей по всей длине. Особенности такой схемы в том, что для ее обустройства рядом с трансформатором должен находиться вспомогательный реактор. Его цель – гашение дуги, образующейся в проводке.
Система TN делится на 3 подтипа: -С, -S, -CS.
TN-C характеризуется тем, что для обеспечения безопасности задействован один комбинированный проводник, в котором предусмотрена и земля и нейтраль. Схему чаще обустраивают в жилых зданиях, в промышленных помещениях и др.
Отличительные характеристики:
- Среди преимуществ выделяется простота монтажа – подобное заземление можно устроить без профессиональных навыков;
- Заметным недостатком считается отсутствие отдельного провода заземления. В панельном доме подобное решение может стать не только неэффективным, но и опасным. Также, когда напряжение проходит по незащищенным проводникам, они могут оказаться под током. Во избежание этого мастеру придется отдельно выстроить защитное зануление.
- Перед началом работ должны проводиться тщательные расчеты сечения проводников.
- Схема не позволяет выполнять выравнивание потенциалов.
- Чаще система применяется на дачах, в старых квартирах или частных домах. В современных зданиях схема встречается реже, так как она не соответствует техническим требованиям.
Теперь рассмотрим систему TN-S. Если сравниваться с –С, -S отличается большей безопасностью в бытовом плане. Она проводится по двум проводникам: заземление и зануление. Если монтируется проводка в новом здании, то лучше остановиться именно на этом раздельном варианте – он лучше подходит для строения жилого дома.
Тянется заземление от трансформаторной подстанции, где напрямую подсоединено к заземляющему контуру. Это усложняет работы при монтаже. Кроме этого техническое проектирование и требования регламента заставляют использовать 3-х или 5-ти жильный кабель при реализации этой схемы.
Для упрощения заземления была разработана система, включающая преимущества и нивилирующая недостатки систем –С и –S – это TN-C-S. Тут имеется нулевой провод, как в TN-C, но он раздельный, как в TN-S. Благодаря такому решению происходит мгновенная реакция отвода напряжения в случае опасной ситуации.
Также эта система не требует монтажа дорогостоящего пятижильного кабеля и может быть использована в любых зданиях с разными сечениями проводников. Заземление обустраивается по стоякам в подъезде, потому заранее нужно оформить разрешение у энергоснабжающей организации. К недостатку можно отнести то, что при обрыве PEN проводника, заземляющий провод может оказаться под напряжением.
ТТ
При подаче электричества по стандартной для районов сельской и загородной местности линии – по воздуху, сложно добиться должного уровня защиты. Тут все чаще выбирают схему ТТ, которая подразумевает передачу 3-х фазового напряжения по 4 проводам (последний – это функциональный ноль).
Со стороны потребителя монтируется местный, часто модульно-штыревой заземлитель. К нему подсоединяются все проводники защитного заземления РЕ, связанные с корпусными элементами.
Эта схема совсем недавно была разрешена к обустройству на территории России, но уже успела распространиться по сельской местности для обеспечения подачи электричества потребителям. В городах система ТТ чаще применяется при подводке энергии к точкам оказания услуг и розничной торговли.
Изолированная нейтраль – IT
Все перечисленные виды заземления связаны одной особенностью – нейтраль соединяется с землей, что делает их надежными, но сказывается в виде проблемы прокладки четвертого провода. Более дешевым и практичным решением считаются схемы, в которых нейтраль совсем не связывается с землей.
Один из примеров – систем IT. Такой вариант подключения обычно монтируется в зданиях медицинского назначения для подачи энергии в технику жизнеобеспечения, на заводах по нефтепереработке и энергетике, научных центрах с крайне чувствительными приборами и других важных строениях.
Классическая схема, главной чертой которой считается изолированная нейтраль от источника, а также имеющийся на стороне потребитель контура защитного заземления (IT). Напряжение с одной стороны в другую передается по минимально возможному числу проводов, а все токопроводящие элементы корпуса техники-потребителя обязательно надежно соединены с заземлителем. Нулевой функциональный проводник на отрезке от потребителя к источнику в варианте схемы IT не предусмотрен.
Безопасность и заземление
Все ныне эксплуатируемые системы заземления разработаны для максимальной безопасности и надежности использования электрической техники и оборудования, а также для исключения случаев увечий людей путем получения травмы током.
При расчетах и проектировании схем все должно быть продумано максимально точно, что максимально снизить риск образования напряжения на корпусах приборов – оно опасно для жизни живых организмов. Система должны или нейтрализовать опасный потенциал на поверхности предмета, либо обеспечить срабатывание механизмов защиты в срочном порядке. Любая ошибка может стоить человеческой жизни.
Система заземления TT! В каких случаях использовать систему заземления TT?!
Официально именно заземление считается основным способом защиты от удара током. Имеется в виду защита при работе с оборудованием и устройствами, функционирующими от электропитания по кабелю. Название способа недвусмысленно намекает на способ осуществления – открытые проводники тока физически стыкуются с контуром заземления. Причем организовать эту систему безопасности можно по-разному, с учетом особенностей конструкции оборудования и сетей. Обычно тип системы выбирают при проектировании или по предписанию.
Система заземления TT ориентирована на сети с глухим заземлением нейтрали. Токопроводящие элементы заземляемого оборудования обеспечиваются защитой со стороны потребителя, т.е. нет контакта между заземлением у нового подключившегося к сети и заземлителем трансформатора – тот на подстанции защищен отдельно, по другой системе.
Когда применяют систему TT?
Сейчас она еще не стала обыденной – в ПУЭ для сетей с глухим заземлением нейтрали рекомендуется система TN. Там тоже есть разные варианты, но объединяет их характерная черта: общее заземление нейтрали трансформатора и электрооборудования у потребителей, т.е. контуры объединены. Причина проста: так проще организовать защиту при подключении к сетям новых потребителей – не надо на каждом объекте заземление делать
Но если система TN явно не обеспечит должного уровня безопасности, делают TT. Чаще всего этот вариант востребован при электропитании по открытым кабелям (по воздуху), когда состояние линий из рук вон плохое, особенно если они временные. Это явный риск повреждения заземлителя, т.е. возможно нарушение контакта заземления на подстанции с потребителями. Как следствие, если случится пробой изоляции, при касании электроприборов напряжение тока окажется как в рабочем режиме конкретной сети. Неудивительно, что система TT популярна для обеспечения безопасности объектов с временным электропитанием – к примеру, строительных площадок.
Уже который год наблюдается рост строительства частного жилья. И в моде всяческая автономия – своя канализация, скважина и прочее. Но личное заземление электросети – удовольствие и недешевое, и трудоемкое. Не всякий домовладелец может себе позволить строительство заземляющего устройства, чтобы оно соответствовало всем действующим правилам. А еще систему предварительно должны спроектировать квалифицированные специалисты, выбрать и установить автоматическую защиту (УЗО). А в довершение эксплуатацию готового контура придется согласовывать с электроснабжающей организацией – или строить собственную электростанцию.
Официальные требования к устройству защиты
Согласно ПУЭ, эксплуатация оборудования с заземлением по системе TT без УЗО запрещена. Должен быть механизм, отключающий оборудование при появлении тока утечки, когда повреждается изоляция. Устройство автоматически срабатывает от разности потенциала тока, идущего по нулевому кабелю и по фазе. Конечно, утечку оно не прекращает, но перенаправляет на заземлитель.
Определяющая характеристика защитного контура – сопротивление. Есть официальные требования к нему и для системы TT: R≤50B/Iср.узо. Если в системе стоит сразу несколько приборов УЗО, учитывают дифференциальный ток по наибольшему значению. При организации заземления обязательно выполняется уравнивание потенциалов – соединяются заземлитель объекта, молниезащита, трубы инженерных коммуникаций (водо- и газопровод, отопление и пр.), каркас защищаемой постройки и все металлическое в вентиляции.
Выглядит готовая система TT как контур вокруг всего защищаемого объекта, сделанный из пластины либо прутка. И еще видна связь с собственным заземлителем, скрытым в грунте.
Плюсы и минусы системы TT
Основное преимущество очевидно: местное заземление надежнее связи через линии электропитания. Уровень безопасности выше, локальная система неуязвима для повреждений на линиях. Чем ближе заземление к защищаемому объекту – тем ниже риск обрыва связи.
Главный недостаток тоже упоминался выше – хлопоты при сооружении полноценной защиты, стоимость этой затеи и сроки ее реализации. Придется выполнять земляные работы, нести расходы, внедрять в систему УЗО. Но расходы времени и денег меркнут перед риском синхронного пробоя фазы на защищенный электроприбор и несрабатывания УЗО. Открытые линии и система безопасности могут оказаться под напряжением питающей сети из-за неисполнения выключателем прямой функции – отключения при повреждении линии снабжения. Т.е. фазу замкнет, но ток окажется недостаточным для автоматического срабатывания предохранителя. Тогда вся надежда на систему уравнивания потенциала. Причем развитая защита в две ступени – насущная необходимость для локальных сетей с отдельным заземляющим контуром.
Альтернативные варианты
Например, в частном доме вместо системы TT можно обустроить TN-C-S. Также практикуются версии TN-C, TN-S. В наших реалиях очень много кабелей на опорах подвешено без изоляции и повторного заземления, поэтому если нужна максимальная безопасность, TT отлично подойдет. Так реально заземлить привезенную ненадолго бытовку, большую емкость или конструкцию из металла, киоск, практически любую комнату с изолирующей отделкой стен.
Важный момент: защита по системе TT всегда независима. Никакой связи с рабочим проводником не должно быть и даже если его контур заземления совсем рядом, все равно нужен отдельный. Зато полная изоляция любых металлических конструкций и поверхностей гарантирована.
Технические подробности
В групповых линиях должны быть УЗО не выше 30 мА, чтобы защитить от касания либо тока утечки. Также рекомендуется УЗО на вводе от 100-300 мА, что формирует селективную защиту в две ступени – для частного дома в самый раз. Нулевой рабочий кабель не должен соединяться с шиной и местным заземлением.
На случай атмосферного перенапряжения тоже нужна защита, особенно для бытовых электроприборов. Есть стандартные устройства: ОПН, УЗИП, ОПС. Они ограничивают перенапряжение, в т.ч. импульсное. Есть требования ПУЭ по сопротивлению заземляющего контура – каким должен быть ток срабатывания защиты. Например, для УЗО с уставкой на 30 мА этот показатель заземлителя не должен превышать 1666 Ом, а для уставки на 100 мА – до 500 Ом. Эти цифры являются минимальными для заземления по системе TT.
Чтобы контур заземления удовлетворял вышеописанным критериям, достаточно забить в грунт вертикально металлический прут либо уголок, длиной не меньше 2 м. Но лучше закопать несколько таких заземлителей – сильно длинные не надо, 2,5 м хватит.
Рекомендации
Здравый смысл и практический опыт подсказывают, что выполнять проектирование и электромонтаж заземления должны исключительно квалифицированные специалисты. По любой системе, а тем более – относительно новой TT. И пользоваться готовым заземлением надо правильно, регулярно осматривая состояние контура и связи, проверяя исправность, что тоже должен делать специалист. Безопасности много не бывает, короткое замыкание не промахнется.
Система заземленияTT: простое руководство
Добро пожаловать в Linquip. Мы уже давали вам полную статью о системе заземления и ее различных типах. В данной статье мы намерены представить вам концепцию системы заземления TT. В следующих разделах, поскольку вы, возможно, не читали ранее созданную статью о системе заземления, мы рассмотрим некоторые ранее представленные идеи и данные о том, что такое система заземления. Затем мы упомянем некоторые из наиболее важных целей использования систем заземления в промышленности и быту, а также в бытовой технике.В следующем разделе этой статьи мы собираемся подробнее рассказать о некоторых типах систем заземления, а затем о том, что такое система заземления TT и чем она отличается от других типов систем заземления. В двух последних разделах статьи мы поговорим об основных характеристиках и достоинствах и недостатках системы заземления ТТ. Оставайтесь с нами до конца, чтобы получить ответы на свои вопросы по этой теме.
Что такое заземление и для чего нужна система заземления?
Система заземления или система заземления соединяет определенные части электроустановки с землей, обычно проводящей поверхностью Земли, в целях безопасности и функциональных целей.Электрическое заземление известно как процесс передачи мгновенного разряда электрического потока непосредственно на землю. Этот переход осуществляется с помощью провода с низким сопротивлением.
Выбор системы заземления может повлиять на безопасность и электромагнитную совместимость установки. Правила для систем заземления значительно различаются в разных странах, хотя большинство из них следуют рекомендациям Международной электротехнической комиссии. Правила могут определять особые случаи заземления в шахтах, в зонах ухода за пациентами или во взрывоопасных зонах промышленных предприятий.
Хотя заземление иногда используется в функциональных целях, обычно оно используется в целях безопасности. Например, в случае телеграфных линий заземление используется в качестве проводника, чтобы сэкономить на стоимости обратного провода в длинной цепи.
Если в электрической установке возникла неисправность, и эта установка не имеет системы заземления, человек может быть поврежден электрическим током, так как он касается металлической детали под напряжением, потому что электричество использует корпус оборудования как путь к земле.Работа по заземлению заключается в обеспечении альтернативного пути прохождения тока короткого замыкания на землю.
Насколько важно заземление?
В предыдущем разделе мы говорили о том, что такое система заземления и для чего она нужна. Теперь мы собираемся перечислить некоторые из наиболее важных целей, для которых используется заземление. Ниже приводится несколько причин, которые показывают, почему важно использовать систему заземления.
Электрические цепи могут быть подключены к земле по нескольким причинам.Заземление выполняет следующие функции:
- Индивидуальная защита
- Имущественная / эксплуатационная защита
- Заземление с градацией потенциала
- Защита от электромагнитных импульсов
- Молниезащита
Типы Системы заземления
В предыдущем разделе мы привели некоторые важные цели и задачи, для которых используется заземление. Мы говорили о разных видах защиты, которые обеспечивает система заземления.Теперь поговорим о различных типах систем заземления.
Существует 4 основных метода заземления и обеспечения нейтрали электроустановки. Пять методов и их сокращения названы и подробно описаны ниже.
TN-S
В этом методе существует единственная точка соединения между нейтралью питания и землей на трансформаторе питания. Питающие кабели имеют отдельные нулевой и заземляющий защитный провод (S.N.E.). в основном нейтральный проводник представляет собой четвертую «жилу», а заземляющий провод образует защитную оболочку.Заказчик может подключить клемму заземления к оболочке служебного кабеля или отдельный провод заземления.
В Великобритании и до введения систем защитного заземления (PME или TN-C-S) метод TN-S был в значительной степени стандартной схемой.
TN-C-S
В этом методе кабели питания имеют комбинированную металлическую внешнюю оболочку нейтрали и земли с покрытием из ПВХ. Комбинированная оболочка заземления нейтрали представляет собой PEN (защитное заземление нейтраль).
Электропитание в помещениях заказчика обычно осуществляется по TN-S, что означает, что нейтраль и земля будут отдельными, соединенными только на месте обслуживания. При прочесывании нейтрали и земли в помещении система TN-C.
IT
Это система без прямого соединения между токоведущими частями и землей, но с заземленными открытыми проводящими частями установки. Иногда обеспечивается соединение с землей с высоким импедансом для упрощения схемы защиты, необходимой для обнаружения первого замыкания на землю.
TT
Этот метод представляет собой систему, в которой источник питания заземляется только в одной точке, но оболочки кабеля и открытые металлические конструкции установки заказчика соединяются с землей через отдельный электрод, который не зависит от питающего электрода.
Система заземления TT - LinquipЧто такое система заземления TT?
Метод TT относится к системе защиты, которая напрямую заземляет металлический корпус электрического устройства, которая называется системой защитного заземления, также называемой системой TT.Первый символ T указывает, что нейтральная точка энергосистемы напрямую заземлена; второй символ T указывает на то, что проводящая часть нагрузочного устройства, не контактирующая с токоведущим телом, напрямую связана с землей, независимо от того, как заземлена система. Любое заземление нагрузки в системе ТТ называется защитным заземлением. Характеристики этой системы питания следующие.
В настоящее время некоторые строительные единицы используют систему ТТ. Когда строительная единица заимствует источник питания для временного использования электроэнергии, используется специальная линия защиты, чтобы уменьшить количество стали, используемой для заземляющего устройства.
В конфигурации TT потребители используют заземление внутри помещения, которое не зависит от любого заземления на стороне источника. Этот тип заземления обычно используется в ситуациях, когда поставщик услуг распределительной сети (DNSP) не может гарантировать низковольтное подключение обратно к источнику питания.
Основные характеристики системы заземления TT
Ниже мы перечислим некоторые наиболее важные характеристики, которыми обладает система TT.
- Самое простое решение для проектирования и установки.Используется в установках, снабжаемых непосредственно общественной распределительной сетью низкого напряжения.
- Не требует постоянного контроля во время работы.
- Защита обеспечивается специальными устройствами, устройствами защитного отключения (УЗО), которые также предотвращают риск возгорания, когда они настроены на ≤ 500 мА.
- Каждое нарушение изоляции приводит к прерыванию подачи питания, однако отключение ограничивается неисправной цепью, устанавливая УЗО последовательно (селективные УЗО) или параллельно (выбор цепи).
- Нагрузки или части установки, которые во время нормальной работы вызывают высокие токи утечки, требуют специальных мер для предотвращения ложных отключений, т. Е. Снабжают нагрузки разделительным трансформатором или используют специальные УЗО.
Преимущества системы TT
Вот некоторые из наиболее важных и выдающихся преимуществ системы TT, которые могут побудить каждого использовать ее.
- Простота (очень мало вычислений при установке)
- Удлинитель без необходимости рассчитывать длину
- Низкие токи короткого замыкания
- Очень мало обслуживания
- Безопасность людей при поставке переносных устройств или при неисправном заземлении (с 30 мА УЗО)
- Работа от источника при малом предполагаемом токе
Недостатки системы ТТ
Ниже мы перечислим некоторые из наиболее существенных минусов системы ТТ, которые необходимо учитывать.
- Отсутствие дифференциальной селективности, если только одно устройство на стороне питания установки
- Необходимость в УЗО на каждой исходящей линии для получения горизонтальной селективности (стоимость)
- Риск ложного срабатывания
- Соединение открытых проводящих частей с одной землей подключение (распространенные установки) или УЗО, необходимое для каждой группы открытых проводящих частей
- Уровень безопасности зависит от величины заземления
Заключение
В этой статье мы постарались дать вам всю важную и исчерпывающую информацию о системе заземления ТТ.мы поговорили об основных определениях и дадим вам некоторую информацию о том, что такое система заземления. Затем мы подробно остановились на целях использования системы заземления. На следующем этапе мы подошли к основной части статьи — «что такое система заземления ТТ?». В двух последних разделах статьи мы поговорим об основных характеристиках и преимуществах системы заземления ТТ. Все, что мы сделали в этой статье, было попыткой облегчить вам понимание концепции системы заземления TT, используемой в различных электрических установках.
Если у вас есть опыт использования этого типа системы заземления и вы знаете о нем больше, мы будем очень рады услышать ваше мнение в комментариях на нашем сайте Linquip. Более того, если у вас есть какие-либо вопросы по этой теме, вы можете зарегистрироваться на нашем сайте и ждать, пока наши специалисты ответят на ваши вопросы. Надеюсь, вам понравилась эта статья.
Какие бывают системы питания переменного тока (заземление TN, TT и IT) и какую из них выбрать? — E-Mobility Simplified
Какие они? Чем они отличаются друг от друга? Почему у нас не может быть единой стандартной схемы заземления? Какие причины заставляют монтажников и производителей электрооборудования выбирать эти разные схемы?
Эта статья может дать быстрое (и, надеюсь, упрощенное) объяснение всего вышеперечисленного.
Электромонтажники во всем мире могут называть распределительные системы по-разному: например, трехфазная трехпроводная система, трехфазная четырехпроводная система, однофазная одна проводная, однофазная = двухпроводная система и т. Д.
Но чтобы привести единообразное определение, Международная электротехническая комиссия (МЭК) в соответствии со стандартом МЭК 60364-3 классифицировала системы распределения питания переменного тока в соответствии с различными методами заземления как: системы TN, TT и IT; а система TN дополнительно разделяется на TN-C, TN-S, TN-C-S.
Характеристики различных систем питания / заземления
Заземление TN-C:
Система электропитания в режиме TN-C использует рабочую нейтральную линию в качестве линии защиты от перехода через нуль, которую можно назвать защитной нейтральной линией и обозначить как PEN.Заземление TN-C-S:
Для временного источника питания системы TN-CS, если передняя часть питается по методу TN-C, а строительный кодекс указывает, что на строительной площадке должна использоваться система питания TN-S, общая распределительная коробка может быть разделен в задней части системы.TN-S заземление
Система электропитания в режиме TN-S — это система электропитания, которая строго отделяет рабочую нейтраль N от выделенной защитной линии PE. Она называется системой питания TN-S.Система питания ТТ
Метод TT относится к защитной системе, которая напрямую заземляет металлический корпус электрического устройства, которая называется системой защитного заземления, также называемой системой TT. Первый символ T указывает, что нейтральная точка энергосистемы напрямую заземлена; второй символ T указывает на то, что проводящая часть нагрузочного устройства, не контактирующая с токоведущим телом, напрямую связана с землей, независимо от того, как заземлена система.Любое заземление нагрузки в системе ТТ называется защитным заземлением.Характеристики данной системы питания следующие.
1) Когда металлический корпус электрического оборудования заряжен (фазовая линия касается корпуса или изоляция оборудования повреждена и протекает), защита от заземления может значительно снизить риск поражения электрическим током. Однако низковольтные автоматические выключатели (автоматические выключатели) не обязательно срабатывают, в результате чего напряжение утечки на землю устройства утечки превышает безопасное напряжение, которое является опасным.
2) При относительно небольшом токе утечки даже предохранитель может не перегореть. Следовательно, для защиты также требуется устройство защиты от утечки. Поэтому популяризировать систему TT сложно.
3) Заземляющее устройство системы TT потребляет много стали, и его трудно утилизировать, время и материалы.
В настоящее время некоторые строительные единицы используют систему ТТ. Когда строительная единица заимствует источник питания для временного использования электроэнергии, используется специальная линия защиты, чтобы уменьшить количество стали, используемой для заземляющего устройства.
Система питания TN
В системе TN, то есть трехфазной пятипроводной системе, линия N и линия PE прокладываются отдельно и изолированы друг от друга, а линия PE подключается к корпусу электрического устройства вместо N-линия.Следовательно, самое важное, о чем мы заботимся, — это потенциал провода PE, а не потенциал провода N, поэтому повторное заземление в системе TN-S не является повторным заземлением провода N. Если линия PE и линия N заземлены вместе, поскольку линия PE и линия N соединены в повторяющейся точке заземления, линия между повторяющейся точкой заземления и рабочей точкой заземления распределительного трансформатора не имеет разницы между линией PE и линия N.
Исходная строка — это строка N. Предполагаемый ток нейтрали делится между линией N и линией PE, а часть тока шунтируется через повторяющуюся точку заземления. Поскольку можно считать, что на передней стороне повторяющейся точки заземления нет линии PE, только линия PEN, состоящая из исходной линии PE и линии N, включенных параллельно, преимущества исходной системы TN-S будут потеряны, поэтому линия PE и линия N не могут быть общим заземлением.
По вышеуказанным причинам в соответствующих правилах четко указано, что нейтральная линия (т.е.N line) не следует повторно заземлять, за исключением нейтральной точки источника питания.
IT-система
Система питания в режиме IT «I» указывает на то, что сторона источника питания не имеет рабочего заземления или заземлена с высоким сопротивлением. Вторая буква T означает, что электрическое оборудование на стороне нагрузки заземлено.Система питания в режиме IT отличается высокой надежностью и хорошей безопасностью, когда расстояние до источника питания невелико. Обычно он используется в местах, где отключение электроэнергии запрещено, или в местах, где требуется строгое постоянное электроснабжение, например, в сталеплавильном производстве, в операционных в крупных больницах и в подземных шахтах.
Условия электроснабжения в подземных шахтах относительно плохие, а кабели подвержены воздействию влаги. При использовании системы с питанием от IT, даже если нейтральная точка источника питания не заземлена, после утечки в устройстве относительный ток утечки на землю по-прежнему невелик и не повредит баланс напряжения источника питания. Следовательно, это более безопасно, чем система заземления нейтрали источника питания. Однако, если источник питания используется на большом расстоянии, распределенную емкость линии электропитания относительно земли нельзя игнорировать.
Когда короткое замыкание или утечка нагрузки приводят к тому, что корпус устройства становится под напряжением, ток утечки образует путь через землю, и устройство защиты не обязательно срабатывает. Это опасно. Это безопаснее, только если расстояние от источника питания не слишком велико. На стройплощадке такой вид электроснабжения встречается редко.
Причины использования разных систем заземления
Почему у нас разные системы заземления, такие как TN, TN-C, TN-S, TT и IT? Почему у нас не может быть единой стандартной схемы заземления? Какие причины заставляют монтажников и производителей электрооборудования выбирать эти разные схемы?Выбор схемы заземления не такой прямой; Все дело в экономии денег и обеспечении достаточной защиты от поражения электрическим током.
Например,
➤ TT- в основном предназначен для бытовых источников питания. Владелец должен установить защиту от заземления путем собственного подключения к земле. Преимущество — снижение шума высокой или низкой частоты, отсутствие риска отказа и пригодность для помещений, где все цепи питания переменного тока защищены устройством защитного отключения (УЗО).
➤ IT-Эта система похожа на систему TT, но отличается от источника заземления. Система распределителя имеет только соединение с высоким сопротивлением.Этот тип не идеален для электропитания потребителей и используется для распределителей энергии, таких как подстанция или зона генерации.
➤ Система TN-S Клемма заземления потребителя обычно подключается к металлической части распределительного кабеля. Он используется для подземного электроснабжения помещения или завода от распределительной подстанции до подстанции потребителя.
➤ Система TN-C-S. В этой системе нейтральный провод питания распределительной магистрали соединен с землей в источнике в качестве защитного многократного заземления.
➤ TN-C-Эта система представляет собой комбинированный провод PEN, выполняющий функции как PE (защитный провод), так и N (нейтральный) провод.
Выше отражены только общие сценарии; но нужно всегда придерживаться местных правил, если таковые имеются. Как уже упоминалось, стандартного решения не существует, необходимы разные типы заземления для удовлетворения конкретных потребителей, таких как бытовые, промышленные, HT / LT и т. Д.
Система электроснабженияс помощью устройств защиты от перенапряжения SPD
Базовая система электроснабжения, используемая в электроснабжении для строительных проектов, представляет собой трехфазную трехпроводную и трехфазную четырехпроводную систему и т. Д., Но смысл этих терминов не очень строгий.Международная электротехническая комиссия (МЭК) разработала единые положения для этого, и это называется системой TT, системой TN и системой IT. Какая система TN делится на систему TN-C, TN-S, TN-C-S. Ниже приводится краткое введение в различные системы электропитания.
система электропитания
В соответствии с различными методами защиты и терминологиями, определенными МЭК, низковольтные системы распределения электроэнергии делятся на три типа в соответствии с различными методами заземления, а именно системы TT, TN и IT, и описываются как следует.
Система электропитания TN-C
Система электропитания в режиме TN-C использует линию рабочей нейтрали в качестве линии защиты от перехода через нуль, которую можно назвать линией защиты нейтрали и обозначить как PEN.
Система электропитания TN-CS
Для временного электропитания системы TN-CS, если передняя часть питается по методу TN-C, а строительный кодекс указывает, что строительная площадка должна использовать TN-S система электропитания, общая распределительная коробка может быть разделена в задней части системы.Помимо линии PE, система TN-CS имеет следующие особенности.
1) Рабочая нулевая линия N соединена со специальной защитной линией PE. Когда несимметричный ток линии велик, на нулевую защиту электрооборудования влияет нулевой потенциал линии. Система TN-C-S может снизить напряжение корпуса двигателя на землю, но не может полностью устранить это напряжение. Величина этого напряжения зависит от дисбаланса нагрузки проводки и длины этой линии.Чем больше несимметрична нагрузка и чем длиннее проводка, тем больше смещение напряжения корпуса устройства относительно земли. Следовательно, требуется, чтобы ток неуравновешенности нагрузки не был слишком большим и чтобы линия защитного заземления заземлялась повторно.
2) Линия PE не может войти в устройство защиты от утечки ни при каких обстоятельствах, поскольку устройство защиты от утечки на конце линии вызовет срабатывание переднего устройства защиты от утечки и вызовет крупномасштабный сбой питания.
3) В дополнение к линии PE необходимо подключить к линии N в общей коробке, линия N и линия PE не должны подключаться в других отсеках.На линии защитного заземления нельзя устанавливать переключатели и предохранители, и заземление не должно использоваться в качестве защитного заземления. линия.
С помощью приведенного выше анализа система электропитания TN-C-S была временно изменена в системе TN-C. Когда трехфазный силовой трансформатор находится в хорошем рабочем состоянии заземления и трехфазная нагрузка относительно сбалансирована, влияние системы TN-C-S на использование электроэнергии в строительстве все еще возможно. Однако в случае несимметричных трехфазных нагрузок и специального силового трансформатора на строительной площадке необходимо использовать систему электропитания TN-S.
Система электропитания TN-S
Система электропитания режима TN-S — это система электропитания, которая строго отделяет рабочую нейтраль N от выделенной защитной линии PE. Она называется системой питания TN-S. Характеристики системы питания TN-S следующие.
1) Когда система работает нормально, на выделенной линии защиты нет тока, но есть несимметричный ток на рабочей нулевой линии. На линии PE относительно земли нет напряжения, поэтому нулевая защита металлического корпуса электрооборудования подключена к специальной линии защиты PE, которая является безопасной и надежной.
2) Рабочая нейтральная линия используется только как цепь однофазной осветительной нагрузки.
3) Специальная защитная линия PE не может разрывать линию и не может попасть в реле утечки.
4) Если устройство защиты от утечки на землю используется на линии L, рабочая нулевая линия не должна повторно заземляться, а линия PE имеет повторное заземление, но она не проходит через устройство защиты от утечки на землю, поэтому устройство защиты от утечки также может быть установлен на линии L источника питания системы TN-S.
5) Система электроснабжения TN-S безопасна и надежна, подходит для систем электроснабжения низкого напряжения, таких как промышленные и гражданские здания. Перед началом строительных работ необходимо использовать систему электроснабжения TN-S.
Система электропитания TT
Метод TT относится к системе защиты, которая напрямую заземляет металлический корпус электрического устройства, которая называется системой защитного заземления, также называемой системой TT. Первый символ T указывает, что нейтральная точка энергосистемы напрямую заземлена; второй символ T указывает на то, что проводящая часть нагрузочного устройства, не контактирующая с токоведущим телом, напрямую связана с землей, независимо от того, как заземлена система.Любое заземление нагрузки в системе ТТ называется защитным заземлением. Характеристики этой системы питания следующие.
1) Когда металлический корпус электрического оборудования заряжен (фазовая линия касается корпуса или изоляция оборудования повреждена и протекает), защита от заземления может значительно снизить риск поражения электрическим током. Однако низковольтные автоматические выключатели (автоматические выключатели) не обязательно срабатывают, в результате чего напряжение утечки на землю устройства утечки превышает безопасное напряжение, которое является опасным.
2) При относительно небольшом токе утечки даже предохранитель может не перегореть. Следовательно, для защиты также требуется устройство защиты от утечки. Поэтому популяризировать систему TT сложно.
3) Заземляющее устройство системы TT потребляет много стали, и его трудно утилизировать, время и материалы.
В настоящее время некоторые строительные единицы используют систему ТТ. Когда строительная единица заимствует источник питания для временного использования электроэнергии, используется специальная линия защиты, чтобы уменьшить количество стали, используемой для заземляющего устройства.
Отделите линию PE новой добавленной специальной защитной линии от рабочей нулевой линии N, которая характеризуется:
1 Отсутствует электрическое соединение между общей линией заземления и рабочей нейтральной линией;
2 При нормальной работе рабочая нулевая линия может иметь ток, а линия специальной защиты не имеет тока;
3 Система TT подходит для мест с очень разрозненной защитой грунта.
Система электропитания TN
Система электропитания режима TN Этот тип системы электропитания представляет собой систему защиты, которая соединяет металлический корпус электрооборудования с рабочим нулевым проводом.Она называется системой нулевой защиты и представлена TN. Его особенности заключаются в следующем.
1) После подачи питания на устройство система защиты от перехода через ноль может увеличить ток утечки до тока короткого замыкания. Этот ток в 5,3 раза больше, чем у системы ТТ. Фактически, это однофазное короткое замыкание, и предохранитель предохранителя перегорел. Расцепитель низковольтного выключателя немедленно отключится и отключится, что сделает неисправное устройство более безопасным и отключенным.
2) Система TN экономит материалы и человеко-часы и широко используется во многих странах и странах Китая. Это показывает, что система TT имеет много преимуществ. В системе питания с режимом TN он делится на TN-C и TN-S в зависимости от того, отделена ли линия защитного нуля от рабочей нулевой линии.
Принцип работы:
В системе TN открытые проводящие части всего электрического оборудования подключены к защитной линии и подключены к точке заземления источника питания.Эта точка заземления обычно является нейтральной точкой системы распределения электроэнергии. Система питания системы TN имеет одну точку, которая напрямую заземлена. Открытая электропроводящая часть электрического устройства подключается к этой точке через защитный провод. Система TN обычно представляет собой трехфазную сеть с заземленной нейтралью. Его особенностью является то, что открытая проводящая часть электрооборудования напрямую подключена к точке заземления системы. Когда происходит короткое замыкание, ток короткого замыкания представляет собой замкнутый контур, образованный металлической проволокой.Образуется металлическое однофазное короткое замыкание, приводящее к достаточно большому току короткого замыкания, чтобы защитное устройство могло надежно срабатывать для устранения повреждения. Если рабочая нейтральная линия (N) повторно заземляется, при коротком замыкании корпуса часть тока может быть отведена в точку повторного заземления, что может привести к сбою надежной работы защитного устройства или во избежание отказа, тем самым расширяя неисправность. В системе TN, то есть трехфазной пятипроводной системе, линия N и линия PE прокладываются отдельно и изолированы друг от друга, а линия PE подключается к корпусу электрического устройства вместо N-линия.Поэтому самое важное, о чем мы заботимся, — это потенциал провода PE, а не потенциал провода N, поэтому повторное заземление в системе TN-S не является повторным заземлением провода N. Если линия PE и линия N заземлены вместе, поскольку линия PE и линия N соединены в повторяющейся точке заземления, линия между повторяющейся точкой заземления и рабочей точкой заземления распределительного трансформатора не имеет разницы между линией PE и линия N. Исходная линия — это линия N.Предполагаемый ток нейтрали делится между линией N и линией PE, а часть тока шунтируется через повторяющуюся точку заземления. Поскольку можно считать, что на передней стороне повторяющейся точки заземления нет линии PE, только линия PEN, состоящая из исходной линии PE и линии N, включенных параллельно, преимущества исходной системы TN-S будут потеряны, поэтому линия PE и линия N не могут быть общим заземлением. По указанным выше причинам в соответствующих правилах четко указано, что нейтральная линия (т.е. линия N) не должна заземляться повторно, за исключением нейтральной точки источника питания.
IT-система
IT-система питания I показывает, что сторона источника питания не имеет рабочего заземления или заземлена с высоким сопротивлением. Вторая буква T означает, что электрическое оборудование на стороне нагрузки заземлено.
Система электропитания в режиме IT отличается высокой надежностью и хорошей безопасностью, когда расстояние до источника питания невелико. Обычно он используется в местах, где отключение электроэнергии запрещено, или в местах, где требуется строгое постоянное электроснабжение, например, в сталеплавильном производстве, в операционных в крупных больницах и в подземных шахтах.Условия электроснабжения в подземных шахтах относительно плохие, а кабели подвержены воздействию влаги. При использовании системы с питанием от IT, даже если нейтральная точка источника питания не заземлена, после утечки в устройстве относительный ток утечки на землю по-прежнему невелик и не повредит баланс напряжения источника питания. Следовательно, это более безопасно, чем система заземления нейтрали источника питания. Однако, если источник питания используется на большом расстоянии, распределенную емкость линии электропитания относительно земли нельзя игнорировать.Когда короткое замыкание или утечка нагрузки приводят к тому, что корпус устройства становится под напряжением, ток утечки образует путь через землю, и устройство защиты не обязательно срабатывает. Это опасно. Это безопаснее, только если расстояние от источника питания не слишком велико. На стройплощадке такой вид электроснабжения встречается редко.
Типы систем заземления — Что означает заземление TT, IT и TN?
Стандарты, используемые для определений систем заземления
За последнее столетие стандарты электробезопасности превратились в высокоразвитые системы, охватывающие все основные аспекты безопасной установки, включая системы заземления.В электроустановках низкого напряжения (LV) стандарт IEC 60364 используется для мер, которые должны быть реализованы, чтобы гарантировать защиту персонала и имущества.
Стандарт IEC 60364 определил три типа систем заземления, а именно системы TT, IT и TN. Поскольку IEC публикует международные стандарты для всех электрических, электронных и связанных технологий и является ведущей международной организацией в своей области, IEC 60364 является документом высшего уровня, который информирует о стандартах для электроустановок низкого напряжения во всем мире.Таким образом, три типа систем заземления, определенные в IEC 60364, также признаны во многих национальных стандартах. BS 7671: 2008, также известный как 17-е издание IEE Wiring Rules, — это британский стандарт, опубликованный в январе 2008 года, используемый в Великобритании и других странах. Аналогичным образом, Индийский стандарт IS 732: 1989 (R2015) используется в Индии для электрических установок.
Следите за нашими обновлениями в LinkedIn.
TN-C, TN-S, TN-CSСистема TN далее подразделяется на TN-C, TN-S и TN-CS, поэтому мы будем ссылаться на 5 типов систем заземления, распространенных во всем мире.
Номенклатура
Первая буква каждой системы относится к источнику питания от обмотки, соединенной звездой.
Вторая буква относится к потребляющему оборудованию, которое необходимо заземлить.
Из «Справочника по электротехнике: для специалистов в нефтегазовой и нефтехимической промышленности» Алана Л. Шелдрейка
В первой букве : «T означает, что начальная точка источника надежно заземлена. , который обычно находится в непосредственной близости от обмотки.
I обозначают, что начальная точка и обмотка изолированы от земли. Начальная точка обычно связана с индуктивным сопротивлением или сопротивлением. Емкостный импеданс никогда не используется ».
А для вторая буква , “T означает, что потребитель надежно заземлен независимо от метода заземления источника.
N означает, что провод с низким сопротивлением отводится от заземляющего соединения в источнике и направляется непосредственно к потребителю для конкретной цели заземления потребляющего оборудования.
S означает, что нейтральный проводник, проложенный от источника, отделен от проводника защитного заземления, который также проложен от источника. Это означает, что для трехфазного потребителя необходимо проложить пять проводов.
C означает, что нейтральный проводник и провод защитного заземления являются одним и тем же проводником. Это означает, что для трехфазного потребителя необходимо проложить четыре провода ».
Проще говоря:
T = прямое соединение с землей, T означает Terra, что означает земля
I = изолированный
N = нейтральный
S = отдельный
C = объединить
Самыми распространенными системами являются TT и TN.Некоторые страны, например Норвегия, используют ИТ-систему. В таблице ниже приведены примеры систем заземления, используемых для общественного распределения (потребители низкого напряжения) в нескольких странах.
TT Система заземления
В этом типе системы заземления подключение к источнику питания напрямую подключается к заземлению и концу нагрузки, либо монтажные металлоконструкции также напрямую подключаются к земле. Следовательно, в случае воздушной линии обратным путем для линии будет масса земли.Нейтральный и заземляющий проводники должны быть разделены во время установки, поскольку распределитель мощности обеспечивает только нейтраль питания или защитный провод для подключения к потребителю.
Система заземления IT
Распределительная система не имеет заземления или имеет только высокоомное соединение. Основная особенность системы заземления IT заключается в том, что в случае короткого замыкания между фазами и землей система может продолжать работать без перебоев.Такая ошибка называется «первой ошибкой». Таким образом, обычная защита от заземления для данной системы не эффективна и этот тип не предназначен для электроснабжения потребителей. Система заземления IT используется для систем распределения электроэнергии, таких как подстанции или генераторы.
TN-S Система заземления
В этой системе заземляющий и нейтральный проводники разделены по всей распределительной системе. Защитный проводник — это металлическое покрытие кабеля, питающего установку.Все открытые токопроводящие части установки подключаются к этому защитному проводу или через главный зажим заземления установки.
Система заземления TN-C
Нейтраль и защитное заземление объединены в один провод во всей системе. Все открытые и токопроводящие части установки подключены к PEN-проводу. Согласно пункту 8 (4) Правил электробезопасности, качества и непрерывности электроснабжения 2002 года, «Потребитель не должен совмещать нейтральную и защитную функции в одном проводе в установке своего потребителя».
TN-C-S Система заземления
Нейтраль и защитное заземление объединены в одном проводе в части системы. Этот тип заземления также известен как многократное защитное заземление. PEN-проводник системы питания заземляется в двух или более точках, и может потребоваться заземляющий электрод в месте установки потребителя или рядом с ним. Все открытые проводящие части установки подключаются к PEN-проводнику через главную клемму заземления и нейтраль, и эти клеммы соединяются вместе.
Здесь вы можете ознакомиться с нашим широким ассортиментом оборудования для заземления и заземления. Вы можете связаться с нами , если вам нужно предложение или у вас есть дополнительные вопросы относительно продуктов, необходимых для заземления, заземления или соединения.
Эта статья является частью нашей серии статей по молниезащите, защите от перенапряжения и заземлению, вы можете прочитать больше по следующим ссылкам:
Введение в основы молниезащиты и заземления и Стандарты (IEC 62305 и UL 467)
Проектирование систем молниезащиты и продукты
Устройства защиты от перенапряжения (SPD)
Зоны молниезащиты и их применение для выбора SPD
Как устроен грозозащитный разрядник Работа?
Для получения дополнительной информации свяжитесь с нами по адресу www.axis-india.com/contact-us/
Сравнение характеристик трех систем заземления для защиты микросетей в режиме подключения к сети
Интеллектуальные сети и возобновляемые источники энергии
Vol.2 № 3 (2011), Идентификатор статьи: 6647,10 страниц DOI: 10.4236 / sgre.2011.23024
Сравнение характеристик трех систем заземления для защиты микросетей в режиме подключения к сети
Рашад Мохаммедин Камель, Аймен Чауачи, Кен Нагасака
Экологическая энергетика, Департамент электроники и информационной инженерии, Токийский университет сельского хозяйства и технологий, Токио, Япония.
Электронная почта: [email protected], [email protected], [email protected]
Поступила 31 декабря 2010 г .; отредактировано 22 мая 2011 г .; принята 29 мая 2011 г.
Ключевые слова: Защита микросетей, системы заземления, ток короткого замыкания, напряжение прикосновения, микроисточники и инверторы, режим подключения к сети
РЕЗЮМЕ
В этой статье представлены, проверены и сравниваются три системы заземления (TT , TN и IT) для защиты микросетей (MG) от различных типов неисправностей в подключенном режиме.Основным вкладом в эту работу является включение моделей всех микроисточников, подключенных к MG с помощью силовых электронных инверторов. Поочередные инверторы снабжены ограничителями тока, которые также включены в модели инверторов, чтобы точно имитировать реальную ситуацию в MG во время отказов. Результаты показали, что наиболее подходящей системой заземления для защиты MG в режиме подключения является система заземления TN.Эта система приводит к соответствующему значению тока короткого замыкания, достаточному для активации реле защиты от перегрузки по току. При использовании системы TN напряжения прикосновения к неисправной шине и шинам всех других потребителей меньше безопасного значения, если ограничитель тока включен в трансформатор главной сети, соединяющей MG. Для двух других систем заземления (TT и IT) ток короткого замыкания невелик и почти равен току перегрузки, поэтому реле защиты от перегрузки по току не может различать ток короткого замыкания и ток перегрузки.Все модели микроисточников, систем заземления, инверторов, главной сети и схем управления построены с использованием среды Matlab ® / Simulink ® .
1. Введение
Заземление электросети требует, чтобы ее сетевой объект и электрооборудование потребителя были заземлены, чтобы обеспечить безопасность и снизить вероятность повреждения оборудования.Эффективное заземление предотвращает длительные перенапряжения и сводит к минимуму риск поражения электрическим током. Заземление также обеспечивает заранее определенный путь для токов утечки на землю, которые используются для отключения неисправной установки или цепи путем срабатывания защитных устройств. Микросеть (MG) является уникальным примером распределительной системы и требует тщательной оценки, прежде чем принимать решение о системе заземления.
MG состоит из группы микроисточников, систем хранения энергии (например, маховика) и нагрузок, работающих как единая управляемая система. Уровень напряжения MG составляет 400 Вольт или меньше. Архитектура MG выполнена радиальной с несколькими фидерами. MG часто обеспечивает как электричество, так и тепло в местные районы. MG может работать как в режиме подключения к сети, так и в изолированном режиме, как подробно описано в нашем предыдущем исследовании [1-10].
Микроисточники обычно изготавливаются из множества новых технологий, например микрогазовая турбина, топливный элемент, фотоэлектрическая система и несколько видов ветряных турбин. Система накопления энергии часто представляет собой систему с маховиком. Микроисточники и маховик не подходят для подачи энергии в сеть напрямую [11]. Они должны быть связаны с сетью через каскад инвертора.Таким образом, использование силовых электронных интерфейсов в MG приводит к ряду проблем при проектировании и эксплуатации MG. Одной из основных задач является проектирование защиты MG для соответствия соответствующим национальным кодам распределения и для поддержания безопасности и стабильности MG как в режиме подключения к сети, так и в изолированном режиме.
Однако MG на основе инвертора обычно не может обеспечить требуемых уровней тока короткого замыкания.В крайних случаях вклад тока короткого замыкания от микроисточников может быть только вдвое или меньше тока нагрузки [12,13]. Некоторые устройства измерения перегрузки по току даже не будут реагировать на этот уровень перегрузки по току. Кроме того, защита от повышенного / пониженного напряжения и частоты может не обнаруживать неисправности MG из-за управления напряжением и частотой MG. Эта уникальная природа MG требует свежего взгляда на конструкцию и работу защиты.Это задача данной рукописи.
В этой рукописи представлены и применены три системы заземления для защиты MG в режиме соединения. Два основных вклада в эту рукопись: 1) Рассмотрение моделей всех микроисточников (и их инверторов), установленных в MG, и 2) Включенный ограничитель тока с каждым инвертором внутри MG для точного моделирования реальной ситуации.
Три системы заземления реализованы и протестированы на MG. Приведено сравнение производительности трех систем. Наиболее подходящая система заземления определяется путем сравнения.
Для проведения предлагаемого исследования эта рукопись организована следующим образом: Раздел 2 описывает три разработанные системы заземления.В разделе 3 представлены характеристики неисправностей в каждой системе заземления, а также преимущества и недостатки каждой системы. Сеть MG включала все микроисточники, инверторы и систему заземления, представленную в разделе 4. В разделе 5 представлены результаты, полученные с применением трех систем заземления, и последовательность событий, происходящих с каждой системой заземления. Выводы представлены в разделе 6.
2. Типы систем заземления
Распределительную систему низкого напряжения (НН) можно определить по ее системе заземления. Они обозначаются с помощью пяти букв T (прямое соединение с землей), N (нейтраль), C (комбинированный), S (отдельный) и I (изолированный от земли). Первая буква обозначает способ заземления нейтрали трансформатора (источника питания), а вторая буква обозначает способ заземления металлоконструкций установки (каркаса).Третья и четвертая буквы обозначают функции нейтрального и защитного проводов соответственно. Возможны три конфигурации [14]:
1) TT: нейтраль трансформатора заземлена, корпус заземлен.
2) TN: нейтраль трансформатора заземлена, корпус подключен к нейтрали.
3) IT: незаземленная нейтраль трансформатора, заземленный корпус.
Система TN включает три подсистемы: TN-C, TN-S и TN-C-S, как описано в следующих подразделах.
2.1. Система заземления TT
В этой системе источник питания имеет прямое соединение с землей. Все открытые проводящие части установки также подключены к заземляющему электроду, который электрически не зависит от заземления источника.Структура системы TT показана на рисунке 1 [15].
Рисунок 1. Конфигурация системы заземления TT.
2.2. Система заземления TN
В системе заземления TN источник питания (нейтраль трансформатора) напрямую подключается к земле, а все открытые проводящие части установки подключаются к нейтральному проводнику.Безопасность персонала гарантируется, а вот безопасность имущества (пожар, повреждение электрооборудования) — в меньшей степени. Три подсистемы в системе заземления TN описаны ниже с их основными характеристиками.
2.2.1. Система заземления TN-C
Как показано на Рисунке 2 (a), система TN-C имеет следующие особенности:
1) Функции нейтрали и защиты объединены в одном проводе всей системы.(PEN — защитная заземленная нейтраль).
2) Источник питания напрямую подключен к земле, а все открытые проводящие части установки подключены к PEN-проводу.
2.2.2. Система заземления TN-S
Архитектура системы TN-S показана на Рисунке 2 (b) и имеет следующие особенности:
1) Система TN-S имеет отдельные нейтральный и защитный проводники по всей системе.
2) Источник питания напрямую заземлен. Все открытые токопроводящие части установки подключаются к защитному проводу (PE) через главный заземляющий зажим установки.
2.2.3 Система заземления TN-CS
Конфигурация системы заземления TN-CS показана на Рисунке 2 (c) и имеет следующие особенности:
1) Функции нейтрали и защиты объединены в одном проводе в части система TN-CS.Электропитание — TN-C, а расположение в установке — TN-S.
2) Использование TN-S ниже TN-C.
3) Все открытые токопроводящие части установки подключаются к PEN-проводнику через главную клемму заземления и нейтраль, причем эти клеммы соединяются вместе.
2.3. Система заземления IT
В этой системе источник питания подключается к
(a) (b) (c)
Рисунок 2. (a): Конфигурация системы заземления TN-C; (b): конфигурация системы заземления TN-S; (c): система заземления TN-C-S.
Заземление посредством преднамеренно введенного высокого импеданса заземления (заземленная по сопротивлению система IT) или изолировано от земли, как показано на рисунке 3. Все открытые проводящие части установки подключены к заземляющему электроду.
Каждая открытая проводящая часть должна быть заземлена, чтобы удовлетворять следующим условиям для каждой цепи [16]:
(1)
где:
R b : Сопротивление заземляющего электрода для открытых проводящих частей.
I d : Ток повреждения, учитывающий токи утечки и полное сопротивление заземления электроустановки.
3. Поведение при отказе и характеристики различных систем заземления
Нарушение изоляции в электрической установке представляет опасность для людей и оборудования.В то же время это может вызвать отключение электроэнергии. Токи и напряжения короткого замыкания различаются от одной системы заземления к другой, как описано в следующих подразделах.
3.1. Поведение при повреждении в системе заземления TN
На рисунке 4 показано поведение при повреждении в системе заземления TN и путь тока повреждения.При наличии повреждения изоляции ток повреждения I d ограничивается только импедансом кабелей контура повреждения. Короткое замыкание pro-
Рис. 4. Поведение при неисправности в системе заземления TN-S.Устройства защиты
(автоматический выключатель или предохранители) обычно обеспечивают защиту от повреждений изоляции с автоматическим отключением в соответствии с заданным максимальным временем отключения (в зависимости от напряжения между фазой и нейтралью U o ). Типичные времена отключения в системе заземления TN приведены в таблице 1 в соответствии с IEC 60364 (U L — ограниченное безопасное напряжение).
3.1.1. Преимущества системы заземления TN
1) Система заземления TN всегда обеспечивает обратный путь при повреждениях в сети низкого напряжения. Заземлители трансформатора и всех потребителей соединены между собой. Это обеспечивает распределенное заземление и снижает риск того, что у клиента нет безопасного заземления.
2) Уменьшите сопротивление заземления PEN-проводника.
3) Система TN имеет то преимущество, что в случае нарушения изоляции напряжения повреждения (напряжения прикосновения) обычно меньше, чем в системах заземления TT. Это связано с падением напряжения в фазном проводе и меньшим импедансом PEN-проводника по сравнению с заземлением потребителей в системах TT.
4) Отсутствие перенапряжения для изоляции оборудования.
5) Система TN-S обладает наилучшими характеристиками электромагнитной совместимости (ЭМС) для 50 Гц и высокочастотных токов, особенно когда применяется кабель низкого напряжения с заземленной оболочкой.
6) Система заземления TN может работать с простой защитой от перегрузки по току.
7) Высокая надежность отключения неисправности более чем на
Таблица 1. Время торможения в системе TN (взято из таблиц 41 и 48A IEC 60364).
текущих устройства (т.е. ток короткого замыкания достаточно велик, чтобы активировать устройства защиты от перегрузки по току).
3.1.2. Недостатки системы заземления TN
1) Неисправности в электрической сети на более высоком уровне напряжения могут переместиться в заземление сети низкого напряжения, вызывая напряжения прикосновения у потребителей низкого напряжения.
2) Неисправность в сети низкого напряжения может вызвать напряжение прикосновения у других потребителей низкого напряжения.
3) Повышение потенциала открытых проводящих частей с нейтральным проводником в случае обрыва нейтрального сетевого проводника, а также для замыканий фазы низковольтной сети на нейтраль и фазы на землю и коротких замыканий среднего и низкого напряжения.
4) Коммунальное предприятие несет ответственность не только за надлежащее заземление, но и за безопасность потребителей во время нарушений в электросети.
5) Установка защиты в случае модификации сети (увеличение сопротивления контура короткого замыкания).
6) Система TN-C менее эффективна в отношении проблем электромагнитной совместимости (ЭМС).
3.2. Поведение при отказе в системе заземления TT
Рисунок 5 поясняет, что в системе заземления TT возникает неисправность. Когда происходит нарушение изоляции, ток повреждения I d в основном ограничивается сопротивлениями заземления (R a и R b ).По крайней мере, одно устройство защитного отключения (УЗО) должно быть установлено на стороне питания установки. Для увеличения доступности электроэнергии использование нескольких УЗО обеспечивает селективность по времени и току при отключении [16].
3.2.1. Преимущества системы заземления TT
1) Наиболее распространенная система заземления.
2) Неисправности в сети низкого и среднего напряжения не переносятся на других потребителей в сети низкого напряжения.
3) Хорошее состояние безопасности, так как повышение потенциала заземленной проводящей части должно быть ограничено на уровне 50 В для неисправности внутри установки и 0 В для неисправности в сети.
4) Простое заземление установки и простота реализации.
5) Нет влияния расширения сети.
3.2.2. Недостатки системы заземления TT
1) Каждому заказчику необходимо установить и поддерживать свою собственную систему заземления
Рис. 5. Поведение при неисправности в системе заземления TT.
заземляющий электрод. Безопасность и защита зависят от заказчика, поэтому полная надежность не гарантируется.
2) Высокое перенапряжение может возникнуть между всеми токоведущими частями и между токоведущими частями и проводом защитного заземления.
3) Возможное перенапряжение для изоляции оборудования установки.
3.3. Поведение при повреждениях в системе заземления IT
3.3.1. Первое повреждение в системе заземления IT
На рисунке 6 показано возникновение первого повреждения в системе заземления IT. Напряжение короткого замыкания низкое и не опасно. Следовательно, нет необходимости отключать установку в случае единичной неисправности.Однако важно знать, что есть неисправность, и ее необходимо отслеживать и устранять в кратчайшие сроки, прежде чем произойдет вторая неисправность. Для удовлетворения этой потребности информация о неисправностях предоставляется устройством контроля изоляции (IMD), контролирующим все токоведущие проводники, включая нейтраль [16]. Когда нейтраль не распределена (трехфазное трехпроводное распределение), должно выполняться следующее условие [16]:
(2)
где:
Z S = полное сопротивление контура замыкания на землю, включающего фазный провод. и защитный провод.
I f = ток повреждения.
U o = напряжение между фазой и нейтралью.
Когда нейтраль распределена (трехфазное четырехпроводное распределение и однофазное распределение), должно выполняться следующее условие [16]:
(6.3)
, где:
= полное сопротивление контура замыкания на землю, включающего нейтральный провод и защитный провод.
Рисунок 6. Ток первого повреждения изоляции в системе заземления IT.
3.3.2. Вторая неисправность в системе заземления IT
На рисунке 7 показано возникновение второй неисправности в системе заземления IT. Максимальные времена отключения для системы заземления IT приведены в таблице 2 (как в таблицах 41B и 48A IEC 60364) [16].
Система заземления IT, используемая, когда важны безопасность людей и имущества, а также непрерывность обслуживания.
Рисунок 7. Второй ток повреждения изоляции в системе IT (распределенная нейтраль).
Таблица 2. Максимальное время отключения в системе заземления IT (вторая неисправность).
4. Архитектура исследуемой микросети
На рисунке 8 представлена однолинейная диаграмма исследуемого MG. Исследуемый MG подключен к основной сети через трехфазный трансформатор ∆ / 400 кВА, 20 / 0,4 кВ. MG состоит из 7 автобусов. Маховик (накопитель) мощностью 30 кВт / 0,5 кВтч подключен к шине 1.Система ветроэнергетики (10 кВт) подключена к шине 2. Две фотоэлектрические панели мощностью 10 кВт и 3 кВт подключены к шинам 4 и 5 соответственно. Одновальная микротурбина (SSMT) мощностью 25 кВт подключена к шине 6. Автобус 7 снабжен твердооксидным топливным элементом (SOFC) мощностью 20 кВт. Все компоненты MG (микроисточники, инверторы с разными схемами управления, нагрузки и т. Д.)) подробно смоделированы в нашем предыдущем исследовании [1-10].
Разработанная модель носит общий характер и может использоваться для исследования поведения MG при всех типах неисправностей. Короткое замыкание, представленное в этом исследовании, представляет собой однофазное замыкание на землю, которое является наиболее распространенным повреждением в помещениях потребителей. В имитационной модели учтены микроисточники. Предполагается, что все силовые электронные инверторы, которые используются для взаимодействия с микроисточниками, снабжены ограничителями тока для ограничения тока повреждения примерно до 150% от тока полной нагрузки инвертора.Этот ограничитель тока включен в каждую схему инвертора, чтобы защитить полупроводниковые переключатели инвертора от повреждений и точно представить реальную ситуацию. На рисунке 8 проиллюстрирован исследуемый MG. Параметры линии приведены в таблице 3 [17-21].
Полная модель Matlab ® / Simulink ® , созданная для тестирования трех систем заземления, показана в конце этого документа (рисунок 17).
5. Производительность трех систем заземления в защите MG в режиме соединения
В этом случае MG работает в режиме соединения. Основная сетка представляет собой свободную (опорную) шину для MG. Исследуемое возмущение представляет собой короткое замыкание (однофазное замыкание на землю), возникающее на питании потребителей на шине №2. Ток повреждения, напряжения прикосновения на всех потребителях, напряжение исправных фаз и напряжение нейтрали главного трансформатора показаны ниже. цифры (рисунки 9-16), когда в MG используются три системы заземления (TN-S, TT и IT).
Из результатов, показанных на предыдущих рисунках, можно сделать следующие выводы:
1) На рисунке 9 показан ток короткого замыкания в режиме подключения к сети. При использовании системы заземления TN-S ток короткого замыкания очень высок (максимальное значение почти 1900 А). Это связано с тем, что основная сеть участвует в большей части тока короткого замыкания.В нашем случае с основной сеткой нет ограничителя тока. В реальных ситуациях ограничитель тока обычно включается последовательно с основным.
Рисунок 8. Однолинейная схема исследуемого MG.
Рисунок 9.Ток короткого замыкания с тремя системами заземления в режиме подключения к сети.
Сетьво время периода отказа, чтобы ограничить ток короткого замыкания до определенного уровня, который может быть легко сброшен с помощью устройств защиты от перегрузки по току небольшого номинала. С другой стороны, в системах заземления TT и IT ток короткого замыкания немного больше, чем значение в установившемся режиме.
2) На рисунке 10 показано напряжение прикосновения в месте повреждения. При использовании системы заземления TN-S значение напряжения прикосновения мало по сравнению с двумя другими системами заземления, однако оно больше, чем значение, ограниченное безопасностью (U L = 50 Вольт). Это связано с высоким значением тока короткого замыкания. В реальной ситуации это напряжение прикосновения (с системой заземления TN-S) меньше, чем значение, показанное на Рисунке 10, из-за уменьшения тока короткого замыкания путем включения ограничителя тока последовательно с основной сетью.С другой стороны,
Рисунок 10. Напряжение прикосновения на потребителе шины №2 (неисправная шина).
с использованием системы заземления TT, напряжение прикосновения в месте повреждения очень высокое. Чтобы уменьшить это значение с помощью системы заземления TT, потребители должны использовать заземляющий электрод с низким сопротивлением.Для системы заземления IT напряжение прикосновения в месте повреждения равно нулю. На всех оставшихся шинах MG напряжение прикосновения с системой заземления TN-S меньше предельного значения безопасности, как показано на Рисунках 11–14. Напряжения прикосновения на всех шинах MG, кроме неисправной шины, при использовании систем заземления TT и IT почти одинаковы. до нуля.
3) На рисунке 15 показаны напряжения исправных фаз (неповрежденных фаз) в месте повреждения.Как показано, наиболее опасной системой является система IT, в которой напряжение между исправными фазами и нейтралью подскакивает до значения, равного фазному напряжению (т. все автобусы MG. В системах заземления TT и TN-S напряжения на исправных фазах имеют небольшое падение.
Рисунок 11.Напряжение прикосновения на потребителе шины №4.
Рисунок 12. Напряжение прикосновения на потребителе шины №5.
Рисунок 13. Напряжение прикосновения на потребителе шины №6.
Рисунок 14. Напряжение прикосновения на потребителе шины №7.
Рисунок 15. Напряжение исправных фаз (на шине №2).
4) На рисунке 16 показано напряжение нейтральной точки основной сети.Как показано, при использовании системы заземления IT это значение перескакивает на значение фазного напряжения (в идеале равное нулю) и вызывает скачок напряжения всех исправных фаз до линейного значения на всех шинах MG. В двух других системах заземления (TN-S и TT) напряжение нейтральной точки имеет небольшое значение из-за несимметричных нагрузок в MG.
5) В заключение, система TN-S является наиболее подходящей системой заземления для защиты MG в режиме подключения к сети, однако ограничитель тока следует использовать последовательно с основной сетью для ограничения тока повреждения, снижения напряжения прикосновения на поврежденной шине и снизить номинальные характеристики устройств максимальной токовой защиты, используемых для устранения неисправностей в MG в режиме подключения к сети.
6. Выводы
В этом документе используются три системы заземления для защиты MG от различных повреждений в режиме подключения к сети. Из результатов видно, что
Рисунок 16. Напряжение в нейтральной точке главного трансформатора.
Рисунок 17. Matlab © / Simulink © Разработанная модель MG с системой стирания.
Наиболее подходящей системой является система заземления TN. Это связано с тем, что тока короткого замыкания с системой заземления TN достаточно для срабатывания реле защиты.С другой стороны, для двух других систем заземления (TT и IT) реле защиты не может различать ток повреждения и ток перегрузки. Кроме того, напряжения прикосновения на неисправной шине меньше, чем напряжение прикосновения при использовании системы заземления TT. В то время как с системой заземления TT напряжение прикосновения на неисправной шине очень высокое и превышает предельное значение безопасности. Чтобы решить эту проблему, все потребители должны использовать заземляющие электроды с низким сопротивлением, чтобы снизить напряжение прикосновения до предельного значения безопасности.При использовании системы заземления IT, напряжения исправных фаз почти удвоятся (220 В стало 380 В) и вызовут напряжение для всего оборудования, которое питается от исправных фаз. В режиме подключения к сети следует использовать ограничитель тока, чтобы уменьшить ток повреждения, который участвует в основной сети, и, следовательно, снизить напряжение прикосновения на неисправной шине.
В заключение следует отметить, что система заземления TN является самой лучшей системой для защиты MG с точки зрения тока короткого замыкания и напряжений прикосновения.Судя по результатам этой статьи, система заземления TN является наиболее рекомендуемой системой для защиты MG в режиме подключения к сети. Кроме того, следует использовать ограничитель тока основной сети для снижения напряжения прикосновения на всех потребителях MG.
ССЫЛКИ
- Камель Р.М. и Б. Керманшахи, «Разработка и реализация моделей для анализа динамических характеристик распределенных генераторов в микросети. Часть I: микротурбина и твердооксидный топливный элемент», Scientia Iranica, Transactions D, Computer Наука и инженерия и Электротехника, Vol.17, No. 1, июнь 2010 г., стр. 47-58.
- Р. М. Камель, А. Чауачи и К. Нагасака, «Повышение динамического отклика MicroGrid с помощью нового пропорционального интегрального контроллера шага ветровой турбины и нейро-нечеткого фотоэлектрического контроллера слежения за точкой максимальной мощности», Электрические компоненты и системы, Vol. 38, No. 2, Januaruy 2010, pp. 212-239.
- р.М. Камель, А. Чауачи и К. Нагасака, «Сглаживание энергии ветра с использованием контроллера шага с нечеткой логикой и системы конденсаторов энергии для улучшения характеристик микросетей в автономном режиме», Energy, Vol. 35, № 4, март 2010 г., стр. 2119-2129. doi: org / 10.1016 / j.energy.2010.01.030
- RM Kamel, A. Chaouachi и K. Nagasaka, «Повышение динамического отклика в переходных процессах микросети во время snd после огромных и множественных сбоев путем подключения к ближайшим микросетям», Международный журнал устойчивой энергетики, Vol.30, № 4, август 2010 г., стр. 223–245. doi: org / 10.1080 / 1478646X.2010.509499
- Р.М. Камель, А. Чауачи и К. Нагасака, «Влияние сбоя микроисточников на динамические характеристики микросети во время и после процесса островков», ISESCO Science and Technology Vision, Vol. 6, No. 9, май 2010 г., стр. 2-10.
- Камель Р.М., Камель А.Чауачи и К. Нагасака, «Улучшение переходного динамического отклика микросети, последующее отключение и отказ микроисточников за счет двух соединенных соседних микросетей», ISESCO Science and Technology Vision, Vol. 5, № 8, ноябрь 2009 г., стр. 46-55.
- Р. М. Камель, А. Чауаши и К. Нагасака, «Новый контроллер шага PI и система конденсаторов энергии для уменьшения колебаний мощности ветра и поддержания стабильности микросетей после последующего обострения», Международный журнал энергетических и энергетических систем, том.30, No. 2, апрель 2010 г., стр. 131-138.
- Р. М. Камель и Б. Керманшахи, «Оптимальный размер и расположение распределенных генераторов для минимизации потерь мощности в первичной распределительной сети», Scientia Iranica, Transactions D, Компьютерные науки и инженерия и Электротехника, Vol. 16, № 6, декабрь 2009 г., стр. 137–144.
- р.М. Камель, А. Чауаши и К. Нагасака, «Снижение выбросов углерода и снижение потерь мощности помимо улучшения профилей напряжения с использованием микросетей», «Низкоуглеродная экономика», Vol. 1, No. 1, октябрь 2010 г., стр. 1-7. doi: org / 10.4236 / lce.2010.11001
- Р. М. Камель, А. Чауачи и К. Нагасака, «Влияние рейтинга ветроэнергетической системы на переходные динамические характеристики микросети в автономном режиме», Низкоуглеродная экономика, Том.1, № 1, октябрь 2010 г., стр. 28–37. doi: org / 10.4236 / lce.2010.11005
- С. Барсали и др., «Методы управления рассредоточенными генераторами для улучшения непрерывности электроснабжения», Зимнее собрание энергетического общества, Нью-Йорк, 27–31 января 2002 г., том . 2. С. 27-37.
- С. Р. Уолл, «Производительность распределенной генерации с инверторным интерфейсом», Конференция и выставка по передаче и распределению IEEE / PES 2001 г., Атланта, 28 октября — 2 ноября 2001 г., Vol.2. С. 945-950.
- Н. Джаяварна и др., «Задача TE2 — Вклад тока повреждения от преобразователей», Проект отчета микросетей для задачи TE2, Европейская комиссия, 2004 г.
- К. Преве, «Защита электрических сетей», ISTE Ltd, Лондон, 2006.
- Б. Лакруа и Р. Кальвас, «Системы заземления в низковольтном оборудовании», Методика Кайера Schneider Electric, No.172, март 2002 г.
- Н. Джаяварна, М. Лоренцу и С. Папатанассиу, «Обзор заземления в микросети», проект «Крупномасштабная интеграция микрогенерации в низковольтные сети» MICROGRIDS, РАБОЧИЙ ПАКЕТ E, № 1 , 23 апреля 2004 г.
- С. Папатанассиу, Н. Хациаргириу и К. Струнц, «Эталонная сеть микросетей низкого напряжения», Материалы симпозиума СИГРЭ: Энергетические системы с рассредоточенной генерацией, Афины, 13–16 апреля 2005 г.
- W. Xueguang, N. Jayawarna, Y. Zhang, N. Jenkins, JP Lopes, C. Moreira, A. Madureira и J. Pereira da Silva, «Рекомендации по защите микросетей», конечный результат DE2 для микросетей ЕС проект, июнь 2005 г.
- WGE4 — Рабочая группа по безопасности подстанций, «Руководство IEEE по безопасности при заземлении подстанций переменного тока», Стандарт IEEE 80-2000 (пересмотр стандарта IEEE 80-1986), 2000.
- «Анализ подстанций в городских районах», Safe Engineering Services & Technologies Ltd., Монреаль, версия 8, январь 2000 г.
- К. Марней, Ф. Дж. Робджо и А. С. Сиддики, «Форма микросети», Зимнее собрание IEEE PES, нов. Йорк, январь 2001 г.
Монтаж заземляющих устройств (TNC, TN-S, TNC-S, TT)
Заземление сетей низкого напряжения
Заземление сетей низкого напряжения в Великобритании в значительной степени определяется уровнем Low Источники напряжения .Однако, если входящие источники питания находятся под напряжением 11 кВ и трансформаторы находятся в собственности пользователя, источники питания низкого напряжения могут быть заземлены менее традиционным способом с использованием высокого импеданса. Такое расположение не допускается для общественных поставок.
Процедуры монтажа заземляющих устройств (TNC, TN-S, TNC-S и TT) — фото предоставлено: Эдвард CSANYIТем не менее, это полезная система, когда более важно поддерживать электропитание, чем устранять первое замыкание на землю. .
ПРИМЕР: Схема аварийного освещения для эвакуации персонала из опасной зоны могла бы использовать систему с высоким импедансом, если бы считалось менее опасным поддерживать электропитание после первого замыкания на землю, чем полностью отключать свет. Туннель под Ла-Маншем может быть таким случаем.
Даже в этих обстоятельствах исходное замыкание на землю следует устранять как можно быстрее.
Более традиционные схемы заземления:
- TN-C , где земля и нейтраль объединены (PEN) и
- TN-S , где они разделены (5 проводов) или
- TN-C- S .
Последний очень распространен, поскольку он позволяет питать однофазные нагрузки по фазе и нейтрали с полностью отдельной системой заземления, соединяющей вместе все открытые проводящие части, прежде чем подключать их к проводнику PEN через главную клемму заземления, которая является также подключен к нейтральному выводу.
Принципы заземленияДля защитных проводников из того же материала, что и фазный провод, площадь поперечного сечения должна быть такого же размера, что и фазный провод , до 16 мм 2 . ВАЖНО: Когда фазный провод превышает 16 мм 2 , тогда защитный провод может оставаться на расстоянии 16 мм 2 до тех пор, пока фазовый провод не станет 35 мм 2 , после чего защитный провод должен быть вдвое меньше фазного проводника.
Для проводников из разных материалов площадь поперечного сечения должна быть скорректирована в соотношениях коэффициента k из таблицы 43A в BS 7671. Коэффициент k учитывает удельное сопротивление, температурный коэффициент и теплоемкость проводников. материалы проводника, а также начальную и конечную температуры.
Наконец, есть система TT, которая использует материнскую землю как часть возврата земли.
Нейтраль и заземленные части соединяются вместе только через систему электродов обратно к заземлению источника (и нейтрали).Чтобы проверить, что обычные системы являются удовлетворительными, т. Е. Что защита срабатывает при возникновении замыкания на землю, необходимо рассчитать полное сопротивление контура замыкания на землю (Z s ) и убедиться, что ток короткого замыкания через него вызовет защита для работы.
Это довольно утомительный процесс, включающий расчет импедансов, обеспечиваемых не только заземлением, но и:
- Фазный провод
- Питающий трансформатор
- Питание сеть
- Любое полное сопротивление нейтрали.
Эту информацию необходимо запрашивать заранее. Распределитель электроэнергии должен иметь возможность указать уровень неисправности или эквивалентное сопротивление питающей сети, а производитель может предоставить соответствующие импедансы для трансформатора.
Однако для получения ответов потребуется время, поэтому запросы следует делать в начале проекта.
На подстанции будут установлены автоматические выключатели предохранителей для подключения основных кабелей к распределительным щитам и центрам управления двигателями.Эти защитные устройства должны отличаться от устройств, расположенных дальше по линии, ближе к предельным нагрузкам. Поэтому системное исследование должно установить правильные характеристики оборудования подстанции, чтобы отличить его от распределительной сети.
Заземление оборудования должно быть электрически полным и подтверждено механически прочным и герметичным.
Болт заземления на крыше распределительного щитаЗаземляющие провода (, ранее называвшиеся заземляющими проводами ) должны быть проверены на соответствие правилам IEE, т.е.е. они не должны быть алюминиевыми и должны быть не менее 25 мм 2 для меди и 50 мм 2 для стали , если они не защищены от коррозии. Эти проводники предназначены для подключения к заземляющим электродам.
Защитные проводники, ранее известные как проводники непрерывного заземления , также должны соответствовать BS 7671 (Правила IEE) и в целом для фазных проводов менее 16 мм 2 ; это означает, что защитные проводники должны быть того же размера, что и фазные проводники.Когда фазный провод больше 16 мм 2 , тогда защитный проводник остается на 16 мм 2 до тех пор, пока фазовый провод не станет 35 мм 2 , после чего защитный провод должен быть половиной поперечного сечения фазного проводника. .
Еще один важный момент, на который следует обратить внимание, это то, что заземляющий провод к заземляющему электроду должен иметь четкую и постоянную маркировку « БЕЗОПАСНОЕ ЭЛЕКТРИЧЕСКОЕ СОЕДИНЕНИЕ — НЕ УДАЛЯТЬ », и он должен быть размещен на месте соединения проводника с электродом.Наклейка
: БЕЗОПАСНОЕ ЭЛЕКТРИЧЕСКОЕ ПОДКЛЮЧЕНИЕ — НЕ УДАЛЯЙТЕ.Номиналы предохранителей также должны быть проверены по отношению к другим номиналам предохранителей в цепи питания или по уставкам защитных реле, чтобы гарантировать правильную последовательность работы и селективность. Для обеспечения безопасной работы выключателей и разъединителей необходимо заполнить монтажные схемы распределительных щитов и наклеить ярлыки с обозначениями.
Все испытания должны проводиться в соответствии с требованиями стандарта BS 7671, часть 7, и сертификата электроустановки, выдаваемого подрядчиком лицу, заказавшему работы.
Многие установки теперь включают в себя устройства защиты от УЗО и тока короткого замыкания. Они также должны быть протестированы с использованием соответствующего испытательного оборудования, полную информацию о котором можно найти в BS 7671 или для более сложных устройств в BS 7430 и Руководящих указаниях, которые публикуются отдельно и дополняют требования Британского стандарта.
Номинальное напряжение в настоящее время составляет:
- 230 В + 10% и -6%
- 400 В + 10% и -6%
Ссылка: Справочник по практике электромонтажа, четвертое издание — Eur Ing GEOFFREY STOKES
Введение в заземление и соединение
Заземление и соединение — это два очень разных, но часто путающих метода предотвращения поражения электрическим током.
Принцип заземления состоит в том, чтобы ограничить продолжительность напряжения прикосновения, если вы вступите в контакт с оголенной проводящей частью. Земля создает безопасный путь для прохождения тока вместо поражения электрическим током.
Целью соединения является снижение риска поражения электрическим током, если вы прикасаетесь к отдельным металлическим частям при неисправности где-то в электрической установке. В этом случае защитные заземляющие провода уменьшают величину напряжения прикосновения.
Заземление и соединение являются важными требованиями любой электрической установки и соответствуют требованиям безопасности BS7671.
Что такое система заземления?В простейшем случае система заземления — это устройство, с помощью которого электрическая установка соединяется со средством заземления. Обычно это делается в целях безопасности, но иногда и для функциональных целей, например, в случае телеграфных линий, которые используют землю в качестве проводника, чтобы сэкономить на стоимости обратного провода в длинной цепи.Если в электрической установке возникнет неисправность, человек может получить удар электрическим током, прикоснувшись к находящейся под напряжением металлической части, потому что электричество использует тело как путь к земле. Заземление обеспечивает альтернативный путь прохождения тока короткого замыкания на землю.
В Великобритании существуют три основные системы заземления, используемые для неспециализированных установок и определенные в Правилах проводки IET, две — это системы TN (где оператор распределительной сети (DNO) отвечает за заземление), а другая — система TT ( который не имеет собственного заземления):
Обозначения: T = Земля (земля), N = нейтраль, C = комбинированный, S = отдельный
СистемыTN-S имеют одно соединение нейтрали с землей, расположенное как можно ближе к трансформатору питания, и отдельные кабели питания повсюду.В источниках низкого напряжения трансформатор можно даже подключить к оболочке кабеля питания, который даст отдельный путь обратно к трансформатору подстанции. Максимальное сопротивление внешней цепи замыкания на землю DNO в этих конфигурациях обычно составляет 0,8 Ом.
Это наиболее распространенная конфигурация, используемая в Великобритании. Он также известен как защитное многократное заземление (PME) и обеспечивает подачу низкого напряжения с надежным и безопасным заземлением. Эта система позволяет нескольким пользователям использовать один кабель питания.Возникающее в результате увеличение тока вызывает повышение напряжения в защитной заземленной нейтрали (PEN), которая требует многократного подключения к земле на всем протяжении маршрута питания. Нейтраль заземляется рядом с источником питания, на входе в установку и в необходимых точках распределительной системы. Поскольку DNO использует комбинированный нейтраль и обратный тракт PEN, максимальное сопротивление внешней цепи замыкания на землю составляет 0,35 Ом.
Несмотря на свою популярность, схема TN-C-S может оказаться опасной, если PEN-проводник станет разомкнутой цепью в источнике питания, потому что ток не будет немедленно возвращаться на уровень подстанции.Из-за этого есть определенные объекты, где его нельзя использовать, в том числе заправочные станции, строительные площадки, автостоянки и некоторые хозяйственные постройки.
Конфигурация аналогична системе TN-S, но не дает потребителям индивидуального заземления. Вместо этого потребители должны поставлять свою землю, например, закапывая стержни или плиты под землю, чтобы обеспечить путь с низким сопротивлением. Часто системы TT используются там, где устройства TN-C-S не могут быть использованы (например, в приведенном выше примере заправочной станции) или в сельской местности, где питание осуществляется на воздушных столбах.Меры защиты от ударов, такие как УЗО, часто используются для обеспечения автоматического отключения питания там, где существуют различные типы грунта, которые могут вызвать значения полного сопротивления контура внешнего замыкания на землю.
Что такое склеивание?Электрическое соединение — это практика соединения всех открытых металлических предметов, не предназначенных для передачи электричества в зоне, с использованием защитного соединительного проводника, целью которого является защита людей, которые могут коснуться двух отдельных металлических частей, от поражения электрическим током в случае электрического повреждения.Это снижает напряжение, которое могло быть там.
Как упоминалось ранее, знать, когда элемент следует заземлить, а когда — соединить, может сбить с толку.
В качестве примера возьмем металлический кабельный лоток, который часто используется в электрических установках. Если:
- Лоток является открытой проводящей частью (т. Е. К нему можно дотронуться, и он обычно не находится под напряжением), его НЕОБХОДИМО заземлить.
- Лоток является внешней проводящей частью (т. Е. Значение омического сопротивления между предполагаемой внешней частью и землей меньше 22 кОм), и он НЕОБХОДИМО соединить.