Солнечная батарея принцип работы: Солнечные батареи: принцип работы, как сделать своими руками в домашних условиях

Содержание

Солнечные батареи: принцип работы, как сделать своими руками в домашних условиях

Использование солнечной энергии для обеспечения жизненных потребностей в 21 веке является актуальным вопросом не только для корпораций, но и для населения. Теперь использование солнечных батарей для получения экологической электроэнергии привлекает много людей своей доступностью, автономностью, неиссякаемостью и минимальными вложениями. Теперь эти явления настолько привычны и обыденны, что уже давно прочно обосновались в нашу каждодневную жизнь.

Данный источник электроэнергии используется для освещения, функционирования бытовых электроприборов и отопления. Уличные фонари на солнечных батареях используются повсеместно в городской черте, на дачных участках и территориях загородных коттеджей.

Содержание

Принцип работы солнечной батареи

Устройство предназначено для непосредственного преобразования лучей солнца в электричество. Этот действие называется фотоэлектрическим эффектом. Полупроводники (кремневые пластины), которые используются для изготовления элементов, обладают положительными и отрицательными заряженными электронами и состоят их двух слоев n-слой (-) и р-слой (+). Излишние электроны под воздействием солнечного света выбиваются из слоев и занимают пустые места в другом слое. Это заставляет свободные электроны постоянно двигаться, переходя из одной пластины в другую вырабатывая электричество, которое накапливается в аккумуляторе.

Как работает солнечная батарея, во многом зависит от ее устройства. Первоначально фотоэлементы изготавливались из кремния. Они и сейчас очень популярны, но поскольку процесс очистки кремния достаточно трудоемок и затратен, разрабатываются модели с альтернативными фотоэлементами из соединений кадмия, меди, галлия и индия, но они менее производительны.

КПД солнечных батарей с развитием технологий вырос. На сегодняшний день это показатель возрос от одного процента, который регистрировался в начале столетия, до более двадцати процентов. Это позволяет в наши дни использовать панели не только для обеспечения бытовых нужд, но и производственных.

Технические характеристики

Устройство солнечной батареи довольно простое, и состоит из нескольких компонентов:

  • Непосредственно фотоэлементы / солнечная панель;
  • Инвертор, преобразовывающий постоянный ток в переменный;
  • Контроллер уровня заряда аккумулятора.

Аккумуляторы для солнечных батарей купить следует с учетом необходимых функций. Они накапливают и отдают электроэнергию. Запасание и расход происходит в течение всего дня, а ночью накопленный заряд только расходуется. Таким образом, происходит постоянное и непрерывное снабжение энергией.

Чрезмерная зарядка и разрядка батареи укорачивает ее эксплуатационный срок. Контроллер заряда солнечной батареи автоматически приостанавливают накопление энергии в аккумуляторе, когда он достиг максимальных параметров, и отключают нагрузку устройства при сильной разрядке.

(Tesla Powerwall — аккумулятор для солнечных панелей на 7 КВт — и домашняя зарядка для электромобилей)

Сетевой инвертор для солнечных батарей является самым важным элементом конструкции. Он преобразовывает полученную от солнечных лучей энергию в переменный ток различной мощности. Являясь синхронным преобразователем, он совмещает выходное напряжение электрического тока по частоте и фазе со стационарной сетью.

Фотоэлементы могут соединяться как последовательно, так и параллельно. Последний вариант увеличивает параметры мощности, напряжения и тока и позволяет устройству работать, даже если один элемент потеряет функциональность. Комбинированные модели изготовлены с использованием обеих схем. Эксплуатационный срок пластин около 25 лет.

Установка солнечных батарей

Если конструкции будут использоваться для электрообеспечения жилых пространств, то место установки следует выбирать тщательно. Если панели будут загорожены высотными зданиями или деревьями, то трудно будет получить необходимую энергию. Их необходимо разместить там, где поток солнечных лучей максимален, то есть на южную сторону. Конструкцию лучше установить под наклоном, угол которого равен географической широте месторасположения системы.

Солнечные панели должны размещаться таким образом, чтобы хозяин имел возможность периодически очищать поверхность от пыли и грязи или снега, поскольку это приводит к более низкой способности выработки энергии.

Солнечная батарея своими руками

Те, кто хочет сэкономить, задумываются, как сделать солнечную батарею в домашних условиях самостоятельно, чтобы она обладала необходимыми эксплуатационными параметрами и полностью обеспечивала энергетические потребност. Это особенно актуально для мест отдаленных от главных артерий цивилизации.

Солнечные батареи своими руками в домашних условиях изготавливаются из соответствующих элементов, которые можно купить в открытом доступе в специализированных компаниях или через интернет магазины. Если кремниевые пластины должны приобретаться у производителей, то остальные элементы, такие как лента, рамка, пленка, стекло, припой и прочее можно вполне обнаружить и дома в хозяйстве.

Солнечная батарея своими руками из подручных средств изготавливается некоторыми умельцами из медных листов, зажимов, мощных электроплит, соли и из других материалов. Такие кустарные устройства не смогут полностью обеспечить необходимой электроэнергией и могут использоваться лишь в небольших масштабах.

Лучше всего солнечные батареи купить у производителя, поскольку они обладают гарантией и необходимыми функциональными и эксплуатационными параметрами, и, значит, не подведут. Производство солнечных батарей базируется на применении новейших технологий, которые постоянно развиваются, предлагая более усовершенствованные модели. В зависимости от размеров устройств, они могут использовать для различных целей в местах, где нет снабжения электроэнергией. Они встречаются на калькуляторах, часах, различных мобильных устройствах.

Так, например, рюкзак с солнечной батареей будет незаменимым помощником тех, кто любит путешествовать с комфортом. Он накопит достаточно энергии, чтобы зарядить фонарик для освещения туристической палатки или чтобы во время похода заряжать необходимые гаджеты. Судя по отзывам, солнечные батареи используются часто и с удовольствием для удовлетворения разнообразных нужд не только на природе, но и в быту.

Современные устройства со встроенными солнечными модулями

  • Power bank с солнечной батареей – внешний накопитель с фотоэлементами для преобразования солнечных лучей в заряд аккумулятора. Он обладает несколькими портами и предназначен для зарядки смартфонов или планшетов. Это незаменимое устройство для тех кто, много времени тратят в дороге и пользуются гаджетами. Устройство, зависимо от модели может дополняться различными функциями, как, к примеру, фонариком.
  • Робот конструктор – наборы с различными элементами, из которых можно собрать несколько конструкций, которые двигаются автономно. Это лучшая игрушка для любознательных детей. Робот конструктор на солнечной батарее купить интересно будет не только малышам, но и вполне взрослым дяденькам, поскольку захватывающим является не только движение робота, но и сам процесс сборки.
  • Уличные садовые светильники на солнечных батареях – идеальное решение для сада, огорода или приусадебного участка. Благодаря накопленному заряду они будут светиться всю ночь. Для этого не нужно прокладывать специальную проводку. Их можно брать с собой на рыбалку или семейный поход. Чрезвычайная мобильность, компактность и удобство делают фонари самыми востребованными изделиями на солнечных батареях.

Возможности эксплуатации настолько разнообразны, а технологии так быстро развивается, что скоро солнечные модули охватят все сферы жизни современного человека.

Принцип работы солнечной батареи — как работает солнечная панель?

Если раньше люди были зависимы от централизованного энергоснабжения, то сейчас у всех есть хорошая альтернатива – солнечные батареи. Такое оборудование идеально для установки в частных домах, дачах, на промышленных объектах. Электростанции стали доступнее по цене и разнообразнее по видам и мощности. В этой публикации мы детальнее рассмотрим принцип работы солнечной батареи, ее виды и преимущества использования в быту и на производстве.

Устройство и история появления солнечных батарей

Человечество уже давно задумывалось об использовании неиссякаемой энергии солнца. Первые попытки предпринимались еще в двадцатом веке. Тогда была разработана концепция термальной электростанции. Однако на практике она показывала очень низкую эффективность, ведь концепция подразумевала трансформацию энергии солнца. Проанализировав первую неудачу, ученые пришли к выводу, что необходимо использовать солнечные лучи напрямую. Такой принцип был открыт в 1839 году. Его основал Александр Беккерель. Однако до появления первых полупроводников прошло немало лет. Они были изобретены лишь в 1873 году. Этот год можно назвать началом работы над современными прототипами электростанций.

Если говорить о том, из чего состоит солнечная батарея, то изначально стоит упомянуть фотоэлементы. Их можно назвать маленькими генераторами. Именно они выполняют основную функцию – собирают энергию солнца. Сегодня есть несколько видов солнечных панелей, о которых будет рассказано в следующем разделе. Однако, независимо от вида, современная панель представляет собой основу определенного размера, на которой размещаются вышеупомянутые фотоэлементы. Эти элементы очень хрупкие, поэтому они дополнительно защищаются стеклом и полимерной подложкой.

Однако солнечные панели – это лишь часть всей электростанции. Также в нее входят другие элементы:

  1. Аккумуляторная батарея.
  2. Контролер заряда.
  3. Инвертор.
  4. Стабилизатор.

Каждый из перечисленных устройств выполняет свою функцию. Аккумулятор – накапливает и хранит добытую энергию, контролер – контролирует мощность, подключает и отключает батарею, анализируя уровень заряда. Инвертор называют еще преобразователем. Это оборудование превращает прямой ток в переменный. Благодаря ему электричество можно использовать для бытовых целей. Последней составляющей электростанции является стабилизатор. Он защищает всю систему от скачков напряжения.

Какие виды солнечных батарей существуют?

Есть несколько классификационных признаков, по которым все солнечные панели делятся на разные виды:

  1. Тип устройств.
  2. Материал изготовления фотоэлектрического слоя.

По типу устройства выделяют два вида: гибкие и жесткие. Первый тип отличается своей пластичностью. Такую панель можно легко скрутить в трубочку, ничего не повредив. Твердая панель не меняет своей формы. По материалу изготовления есть три вида: аморфные, поликристаллические, монокристаллические.

Аморфные батареи могут быть гибкими. Они непривередливы к месту установки, но КПД такого устройства очень низкий. Он составляет не более шести процентов. Поликристаллические изделия отличаются низкой ценой. Однако они более эффективны в пасмурную погоду. В очень жаркую погоду их выработка снижается чуть больше чем у монокристаллических модулей.

Если необходим максимальный эффект от электростанции, то следует отдавать предпочтение панелям с монокристаллическими элементами. Уровень их КПД достигает двадцати пяти процентов. Монокристаллические панели являются более дорогими, так как монокристаллический кремний при производстве требует больших энерго и временных затрат.

Сфера применения солнечных батарей

С разработкой новых технологий и развитием концепции питания от солнечной энергии сфера применения панелей стала довольно широкой. Раньше такие устройства обычно устанавливались на небольших частных домах или дачах. Они применялись исключительно в бытовых нуждах, так как потребляемая мощность была минимальная. Сейчас же есть мощнейшие электростанции, показывающие высокую эффективность работы. По этой причине сфера применения панелей стала больше.

Интересный факт! Энергии, которую выделает Солнце за одну секунду, может хватить для обеспечения электричеством всего человечества на пятьсот тысяч лет.

Солнечные батареи стали активно применяться на промышленных и коммерческих объектах, позволяя значительно экономить на их энергоснабжении. Также панели устанавливают на сельскохозяйственных предприятиях, на фермах, военно-космических объектах. Менее мощные панели применяются для изготовления различных приспособлений для быта: фонариков, калькуляторов, зарядных устройств, др. Они служат источником энергии там, где нет возможности подключиться к центральной сети. Такие приспособления пользуются большим спросом у охотников, рыбаков, любителей походов.

Важно! Солнечные электростанции современного образца будут эффективны везде: как в доме, так и на большом промышленном объекте. Однако для этого они должны быть правильно подобраны по необходимой мощности. Расчет данного параметра должен осуществляться специалистом.

Как работает солнечная панель: принцип работы устройства простым языком

Если предстоит покупка солнечных батарей, то нужно обязательно ознакомиться не только с их устройством, но и с принципом работы. Итак, как работает солнечная панель? Несмотря на внешнюю простоту устройства, принцип работы такой электростанции довольно сложный. Он основан на фотоэлектрическом эффекте, который достигается при помощи фотоэлементов.

Солнечные панели собирают лучи. Они попадают на фотоэлектрический слой. Солнечный свет приводит к высвобождению электронов из двух слоев. На освободившиеся место из первого слоя встают электроны второго слоя. Происходит постоянное движение электронов, что приводит к естественному образованию напряжения на внешней цепи. В результате один из фотоэлектрических слоев приобретает отрицательный заряд, а второй – положительный.

Эти действия приводят в работу аккумулятор. Он начинает набирать и хранить заряд. При этом уровень заряда аккумулятора постоянно контролируется. Если он низкий, контролер включает в работу солнечную панель. В случае высокого заряда это же устройство панель отключает. Далее включается в работу инвертор. Он преобразовывает ток из постоянного в переменный. С его помощи на выходе электростанции появляется напряжение в 220 В. Это дает возможность подключать и питать от электростанции бытовые приборы.

Подключение солнечной панели

Эффективность и правильность работы солнечных батарей зависит не только от их вида, мощности, но и от установки и подключения. Должна быть разработана правильная схема подключения всех элементов электростанции и грамотно выбрано место для установки солнечных панелей. Такую работу можно доверять только профессионалам.

Не секрет, что выходное напряжение одной панели относительно невысокое. Обычно используются несколько батарей одновременно. Все панели должны подключаться параллельно-последовательным способом. Такой тип подключения позволяет обеспечивать максимальную эффективность работы оборудования.

Преимущества, недостатки панелей

Солнечные батареи стали дешевле, что сделало их доступнее для более широкого круга потребителей. Однако перед покупкой каждый человек должен детально ознакомиться с преимуществами и недостатками этого источниками энергоснабжения. Среди его неоспоримых достоинств стоит отметить следующие:

  • экологическая безопасность. В наше время экология – это одна из насущных проблем. Солнечные электростанции работают без вреда окружающей среде. Они не выделяют при работе вредных веществ;
  • быстрая окупаемость. Стоимость электричества, как для бытовых пользователей, так и для предприятий, постоянно растет. С установкой панелей удается полностью или частично перейти на альтернативный источник энергии, являющийся абсолютно бесплатным и доступным каждому. Благодаря этому, покупка и установка оборудования окупается за считанные годы работы;
  • легкость использования электростанции. Несмотря на сложное устройство и принцип работы, эксплуатировать станцию довольно просто. Главное – следить за исправностью ее составляющих и не экономить на обслуживании, которое требуется не так часто;
  • быстрая установка. Профессионалы монтируют все элементы станции буквально за несколько часов или дней (в зависимости от количества панелей, мощности, др.). Больше времени занимает подбор составляющих и покупка оборудования.

Недостатки у таких установок тоже имеются. Самый основной заключается в дороговизне оборудования. Однако не стоит забывать, что большой вклад при покупке быстро окупится многолетним бесплатным использованием энергии солнца. Вторым серьёзным недостатком солнечных панелей является их зависимость от внешних факторов. Эффективность их работы зависит от погоды, температурных условий, положения по отношению к Солнцу, от чистоты поверхности.

Как достичь максимальной эффективности работы батарей?

Солнечную электростанцию имеет смысл ставить только в регионах с длительным световым днем. Там, где день короткий, можно применять панели только в качестве дополнительного источника света, но не основного. Как уже было замечено, разные виды солнечных батарей имеют свой КПД. Чтобы добиться максимального эффекта, следует выбирать устройства с максимальной производительностью, несмотря на их дороговизну.

Большую роль будет играть правильность расчета мощности всей установки. Это позволит подобрать необходимый размер и количество панелей, мощность других комплектующих станции. Также залогом эффективной работы панелей является мощный аккумулятор. В системе должно быть два аккумулятора, особенно в зимнее время года. Второй аккумулятор позволит накапливать достаточно энергии для обеспечения электричеством объекта в короткие световые дни.

Нельзя забывать и о других факторах, которые влияют на работу станции. Панели должны быть расположены под правильным углом, их нужно обязательно держать в чистоте. В противном случае, КПД батарей будет значительно снижаться.

Принцип работы солнечной батареи: как устроена панель

Эффективное преобразование бесплатных лучей солнца в энергию, которую можно использовать для электроснабжения жилья и иных объектов, – заветная мечта многих апологетов зеленой энергетики.

Но принцип работы солнечной батареи, и ее КПД таковы, что о высокой эффективности таких систем пока говорить не приходится. Было бы неплохо обзавестись собственным дополнительным источником электроэнергии. Не так ли? Тем более что уже сегодня и в России с помощью гелиопанелей “дармовой” электроэнергией успешно снабжается немалое количество частных домохозяйств. Вы все еще не знаете с чего начать?

Ниже мы расскажем вам об устройстве и принципах работы солнечной панели, вы узнаете, от чего зависит эффективность гелиосистемы. А размещенные в статье видеоролики помогут собственноручно собрать солнечную панель из фотоэлементов.

Содержание статьи:

Солнечные батареи: терминология

В тематике «солнечной энергетики» достаточно много нюансов и путаницы. Часто новичкам разобраться во всех незнакомых терминах поначалу бывает трудно. Но без этого заниматься гелиоэнергетикой, приобретая себе оборудование для генерации “солнечного” тока, неразумно.

По незнанию можно не только выбрать неподходящую панель, но и попросту сжечь ее при подключении либо извлечь из нее слишком незначительный объем энергии.

Галерея изображений

Фото из

Установка из солнечных панелей позволяет рационально использовать бесплатную, к тому же неисчерпаемую энергию солнечных лучей

Миниатюрные электростанции, собранные из солнечных батарей, обеспечат энергией неэлектрифицированные объекты и дома, расположенные в регионах с перебоями в поставке электричества

Установки, перерабатывающие УФ излучение в электроэнергию, занимают минимум места. их располагают на крышах домов, хозпостроек, гаражей, беседок, веранд. Реже их располагают на открытых, не занятых постройками и насаждениями площадках

Солнечные батареи — незаменимое оборудование для любителей путешествий. Оно обеспечит энергией вдали от источников электропитания

Использование солнечной энергии предоставит возможность существенно сократить затраты на содержание дач и загородных домов. собрать и установить экономически полезную систему без затруднений можно собственными руками

Расположенные на корме яхты, палубе корабля или носу катера солнечные батареи обеспечат электроэнергией, благодаря которой можно поддерживать стабильную связь с берегом

Портативная солнечная панель с аккумулятором исключит возникновение экстремальных ситуаций вдали от населенных пунктов, гарантирует зарядку мобильных устройств для общения с близкими

Выпускаемые специально для походов легкие компактные зарядные устройства на основе солнечных батарей обеспечат энергией телефоны, рации, планшеты и медиа-технику

Рациональное использование природных ресурсов

Обеспечение энергией неэлектрифицированных объектов

Монтаж солнечных панелей на крыше

Мобильная солнечная батарея в кемпинге

Самостоятельный монтаж на дачном участке

Генератор энергии в морских прогулках

Портативная солнечная панель с аккумулятором

Занимающий минимум места прибор

Вначале следует разобраться в существующих разновидностях оборудования для гелиоэнергетики. Солнечные батареи и солнечные коллекторы – это два принципиально разных устройства. Оба они преобразуют энергию лучей солнца.

Однако в первом случае на выходе потребитель получает энергию электрическую, а во втором тепловую в виде нагретого теплоносителя, т.е. солнечные панели используют для .

Максимум отдачи от солнечной панели можно будет получить, только зная, как она работает, из каких компонентов и узлов состоит и как все это правильно подключается

Второй нюанс – это понятие самого термина «солнечная батарея». Обычно под словом «батарея» понимается некое аккумулирующее электроэнергию устройство. Либо на ум приходит банальный отопительный радиатор. Однако в случае с гелиобатареями ситуация кардинально иная. Они ничего в себе не накапливают.

Солнечной панелью генерируется постоянный электроток. Чтобы преобразовать его в переменный (используемый в быту), в схеме должен присутствовать инвертор

Солнечные батареи предназначены исключительно для генерации электрического тока. Он, в свою очередь, накапливается для снабжения дома электричеством ночью, когда солнце опускается за горизонт, уже в присутствующих дополнительно в схеме энергообеспечения объекта аккумуляторах.

Батарея здесь подразумевается в контексте некой совокупности однотипных компонентов, собранных в нечто единое целое. Фактически это просто панель из нескольких одинаковых фотоэлементов.

Внутреннее устройство гелиобатареи

Постепенно солнечные батареи становятся все дешевле и эффективней. Сейчас они применяются для подзарядки аккумуляторов в уличных фонарях, смартфонах, электроавтомобилях, частных домах и на спутниках в космосе. Из них стали даже строить полноценные солнечные электростанции (СЭС) с большими объемами генерации.

Гелиобатарея состоит из множества фотоэлементов (фотоэлектрических преобразователей ФЭП), преобразующих энергию фотонов с солнца в электроэнергию

Каждая солнечная батарея устроена как блок из энного количества модулей, которые объединяют в себе последовательно соединенные полупроводниковые фотоэлементы. Чтобы понять принципы функционирования такой батареи, необходимо разобраться в работе этого конечного звена в устройстве гелиопанели, созданного на базе полупроводников.

Виды кристаллов фотоэлементов

Вариантов ФЭП из разных химических элементов существует огромное количество. Однако большая их часть – это разработки на начальных стадиях. В промышленных масштабах сейчас выпускаются пока что только панели из фотоэлементов на основе кремния.

Кремниевые полупроводники используются при изготовлении солнечных батарей из-за своей дешевизны, особо высоким КПД они похвастаться не могут

Обычный фотоэлемент в гелиопанели – это тонкая пластина из двух слоев кремния, каждый из которых имеет свои физические свойства. Это классический полупроводниковый p-n-переход с электронно-дырочными парами.

При попадании на ФЭП фотонов между этими слоями полупроводника из-за неоднородности кристалла образуется вентильная фото-ЭДС, в результате чего возникает разность потенциалов и ток электронов.

Кремниевые пластины фотоэлементов различаются по технологии изготовления на:

  1. Монокристаллические.
  2. Поликристаллические.

Первые имеют более высокий КПД, но и себестоимость их производства выше, нежели у вторых. Внешне один вариант от другого на солнечной панели можно различить по форме.

Галерея изображений

Фото из

Гелио-электростанция на загородном участке

Солнечные монокристаллические батареи

Внешний вид солнечных батарей на монокристаллах

Монокристаллическая единица солнечной батареи

Поставка готовой к монтажу солнечной батареи

Поликристаллический фотоэлемент для солнечной батареи

Гелио-батарея из поликристаллических фотоэлементов

Изготовление солнечной батареи своими руками

У монокристаллических ФЭП однородная структура, они выполняются в виде квадратов со срезанными углами. В отличие от них поликристаллические элементы имеют строго квадратную форму.

Поликристаллы получаются в результате постепенного охлаждения расплавленного кремния. Метод этот предельно прост, поэтому такие фотоэлементы и стоит недорого.

Но производительность в плане выработки электроэнергии из солнечных лучей у них редко превышает 15%. Связано это с “нечистотой” получаемых кремниевых пластин и внутренней их структурой. Здесь чем чище p-слой кремния, тем более высокий выходит КПД у ФЭП из него.

Чистота монокристаллов в этом отношении гораздо выше, нежели у поликристаллических аналогов. Их делают не из расплавленного, а из искусственно выращенного цельного кристалла кремния. Коэффициент фотоэлектрического преобразования у таких ФЭП уже достигает 20-22%.

В общий модуль отдельные фотоэлементы собираются на алюминиевой раме, а для защиты их сверху закрывают прочным стеклом, которое нисколько не препятствует солнечным лучам

Обращенный к солнцу верхний слой пластинки-фотоэлемента делается из того же кремния, но уже с добавлением фосфора. Именно последний будет источником избыточных электронов в системе p-n-перехода.

Настоящим прорывов в области использования солнечной энергии стала разработка гибких панелей с аморфным фотоэлектрическим кремнием:

Галерея изображений

Фото из

Гибкий вариант солнечной батареи

Наклейка гибкого фотоэлемента на жалюзи

Зарядка для мобильников на гибкой батарее

Устойчивая к механическим воздействиям панель

Принцип работы солнечной панели

При падении солнечных лучей на фотоэлемент в нем генерируются неравновесные электронно-дырочные пары. Избыточные электроны и «дырки» частично переносятся через p-n-переход из одного слоя полупроводника в другой.

В итоге во внешней цепи появляется напряжение. При этом на контакте p-слоя формируется положительный полюс источника тока, а на n-слоя – отрицательный.

Разность потенциалов (напряжение) между контактами фотоэлемента появляется из-за изменения числа «дырок» и электронов с разных сторон p-n-перехода в результате облучения n-слоя солнечными лучами

Подключенные к внешней нагрузке в виде аккумулятора фотоэлементы образуют с ним замкнутый круг. В результате солнечная панель работает, как своеобразное колесо, по которому вместе белки “бегают” электроны. А аккумуляторная батарея при этом постепенно набирает заряд.

Стандартные кремниевые фотоэлектрические преобразователи являются однопереходными элементами. Переток в них электронов происходит только через один p-n-переход с ограниченной по энергетике фотонов зоной этого перехода.

То есть каждый такой фотоэлемент способен генерировать электроэнергию только от узкого спектра солнечного излучения. Вся остальная энергия пропадает впустую. Поэтому-то и эффективность у ФЭП так низка.

Чтобы повысить КПД солнечных батарей, кремниевые полупроводниковые элементы для них в последнее время стали делать многопереходными (каскадными). В новых ФЭП переходов уже несколько. Причем каждый из них в этом каскаде рассчитан на свой спектр солнечных лучей.

Суммарная эффективность преобразования фотонов в электроток у таких фотоэлементов в итоге возрастает. Но и цена их значительно выше. Здесь либо простота изготовления с невысокой себестоимостью и низким КПД, либо более высокая отдача вкупе с высокой стоимостью.

Солнечная батарея может работать как летом, так и зимой (ей нужен свет, а не тепло) – чем меньше облачность и ярче светит солнце, тем больше гелиопанель сгенерирует электрического тока

При работе фотоэлемент и вся батарея постепенно греется. Вся та энергия, что не пошла на генерацию электротока, трансформируется в тепло. Часто температура на поверхности гелиопанели поднимается до 50–55 °С. Но чем она выше, тем менее эффективно работает фотогальванический элемент.

В итоге одна и та же модель солнечной батареи в жару генерирует тока меньше, нежели в мороз. Максимум КПД фотоэлементы показывают в ясный зимний день. Тут сказываются два фактора – много солнца и естественное охлаждение.

При этом если на панель будет падать снег, то электроэнергию она генерировать все равно продолжит. Более того, снежинки даже не успеют на ней особо полежать, растаяв от тепла нагретых фотоэлементов.

Эффективность батарей гелиосистемы

Один фотоэлемент даже в полдень при ясной погоде выдает совсем немного электроэнергии, достаточной разве что для работы светодиодного фонарика.

Чтобы повысить выходную мощность, несколько ФЭП объединяют по параллельной схеме для увеличения постоянного напряжения и по последовательной для повышения силы тока.

Эффективность солнечных панелей зависит от:

  • температуры воздуха и самой батареи;
  • правильности подбора сопротивления нагрузки;
  • угла падения солнечных лучей;
  • наличия/отсутствия антибликового покрытия;
  • мощности светового потока.

Чем ниже температура на улице, тем эффективней работают фотоэлементы и гелиобатарея в целом. Здесь все просто. А вот с расчетом нагрузки ситуация сложнее. Ее следует подбирать исходя из выдаваемого панелью тока. Но его величина меняется в зависимости от погодных факторов.

Гелиопанели выпускаются с расчетом на выходное напряжение, кратное 12 В – если на аккумулятор надо подать 24 В, то две панели к нему придется подсоединить параллельно

Постоянно отслеживать параметры солнечной батареи и вручную корректировать ее работу проблематично. Для этого лучше воспользоваться , который в автоматическом режиме сам подстраивает настройки гелиопанели, чтобы добиться от нее максимальной производительности и оптимальных режимов работы.

Идеальный угол падения лучей солнца на гелиобатарею – прямой. Однако при отклонении в пределах 30-ти градусов от перпендикуляра эффективность панели падает всего в районе 5%. Но при дальнейшем увеличении этого угла все большая доля солнечного излучения будет отражаться, уменьшая тем самым КПД ФЭП.

Если от батареи требуется, чтобы она максимум энергии выдавала летом, то ее следует сориентировать перпендикулярно к среднему положению Солнца, которое оно занимает в дни равноденствия по весне и осени.

Для московского региона – это приблизительно 40–45 градусов к горизонту. Если максимум нужен зимой, то панель надо ставить в более вертикальном положении.

И еще один момент – пыль и грязь сильно снижают производительность фотоэлементов. Фотоны сквозь такую “грязную” преграду просто не доходят до них, а значит и преобразовывать в электроэнергию нечего. Панели необходимо регулярно мыть либо ставить так, чтобы пыль смывалась дождем самостоятельно.

Некоторые солнечные батареи имеют встроенные линзы для концентрирования излучения на ФЭП. При ясной погоде это приводит к повышению КПД. Однако при сильной облачности эти линзы приносят только вред.

Если обычная панель в такой ситуации будет продолжать генерировать ток пусть и в меньших объемах, то линзовая модель работать прекратит практически полностью.

Солнце батарею из фотоэлементов в идеале должно освещать равномерно. Если один из ее участков оказывается затемненным, то неосвещенные ФЭП превращаются в паразитную нагрузку. Они не только в подобной ситуации не генерируют энергию, но еще и забирают ее у работающих элементов.

Панели устанавливать надо так, чтобы на пути солнечных лучей не оказалось деревьев, зданий и иных преград.

Схема электропитания дома от солнца

Система солнечного электроснабжения включает:

  1. Гелиопанели.
  2. Контроллер.
  3. .
  4. Инвертор (трансформатор).

Контроллер в этой схеме защищает как солнечные батареи, так и АКБ. С одной стороны он препятствует протеканию обратных токов по ночам и в пасмурную погоду, а с другой – защищает аккумуляторы от чрезмерного заряда/разряда.

Аккумуляторные батареи для гелиопанелей следует подбирать одинаковые по возрасту и емкости, иначе зарядка/разрядка будут происходить неравномерно, что приведет к резкому снижению срока их службы

Для трансформации постоянного тока на 12, 24 либо 48 Вольта в переменный 220-вольтовый нужен . Автомобильные аккумуляторы применять в такой схеме не рекомендуется из-за их неспособности выдерживать частые перезарядки. Лучше всего потратиться и приобрести специальные гелиевые AGM либо заливные OPzS АКБ.

Выводы и полезное видео по теме

Принципы работы и не слишком сложны для понимания. А с собранными нами ниже видеоматериалами разобраться во всех тонкостях функционирования и установки гелиопанелей будет еще проще.

Доступно и понятно, как работает фотоэлектрическая солнечная батарея, во всех подробностях:

Как устроены солнечные батареи смотрите в следующем видеоролике:

Сборка солнечной панели из фотоэлементов своими руками:

Каждый элемент в коттеджа должен быть подобран грамотно. Неизбежные потери мощности происходят на аккумуляторах, трансформаторах и контроллере. И их обязательно надо сократить до минимума, иначе и так достаточно низкая эффективность гелиопанелей окажется сведена вообще к нулю.

В ходе изучения материала появились вопросы? Или вы знаете ценную информацию по теме статьи и можете сообщить ее нашим читателям? Пожалуйста, оставляйте свои комментарии в расположенном ниже блоке.

Солнечные батареи: как это работает

Солнечные батареи уже сейчас используются для питания самой разнообразной техники: от мобильных гаджетов до электромобилей. Как устроены, какими бывают и на что способны современные солнечные батареи, вы узнаете из этой статьи.

История создания

Так исторически сложилось, что солнечные батареи – это уже вторая попытка человечества обуздать безграничную энергию Солнца и заставить ее работать себе на благо. Первыми появились солнечные коллекторы (солнечные термальные электростанции), в которых электричество вырабатывает нагретая до температуры кипения под сконцентрированными солнечными лучами вода.

Солнечная термальная электростанция в испанском городе Севилья

Солнечные же батареи производят непосредственно электричество, что намного эффективнее. При прямой трансформации теряется значительно меньше энергии, чем при многоступенчатой, как у коллекторов (концентрация солнечных лучей, нагрев воды и выделение пара, вращение паровой турбины и только в конце выработка электричества генератором).

Современные солнечные батареи состоят из цепи фотоэлементов – полупроводниковых устройств, преобразующих солнечную энергию напрямую в электрический ток. Процесс преобразования энергии солнца в электрической ток называется фотоэлектрическим эффектом.

Данное явление открыл французский физик Александр Эдмон Беккерель в середине XIX века. Первый же действующий фотоэлемент спустя полвека создал русский ученый Александр Столетов. А уже в двадцатом столетии фотоэлектрический эффект количественно описал не требующий представления Альберт Эйнштейн.

Беккерель, Столетов и Эйнштейн – именно этому «трио» ученых мы обязаны созданием солнечных батарей

 

Принцип работы

Полупроводник – это такой материал, в атомах которого либо есть лишние электроны (n-тип), либо наоборот, их не хватает (p-тип). Соответственно, полупроводниковый фотоэлемент состоит из двух слоев с разной проводимостью. В качестве катода используется n-слой, а в качестве анода – p-слой.

Лишние электроны из n-слоя могут покидать свои атомы, тогда как p-слой эти электроны захватывает. Именно лучи света «выбивают» электроны из атомов n-слоя, после чего они летят в p-слой занимать пустующие места. Таким способом электроны бегут по кругу, выходя из p-слоя, проходя через нагрузку (в данном случае аккумулятор) и возвращаясь в n-слой.

Схема работы фотоэлемента

Первым в истории фотоэлектрическим материалом был селен. Именно с его помощью производили фотоэлементы в конце XIX и начале XX веков. Но учитывая крайне малый КПД (менее 1 процента), селену сразу же начали искать замену.

Массовое же производство солнечных батарей стало возможным после того как телекоммуникационная компания Bell Telephone разработала фотоэлемент на основе кремния. Он до сих пор остается самым распространенным материалом в производстве солнечных батарей. Правда, очистка кремния – процесс крайне затратный, а потому мало-помалу пробуются альтернативы: соединения меди, индия, галлия и кадмия.

Селен – исторически первый, а кремний – самый массовый материал в производстве фотоэлементов

Понятное дело, что мощности отдельных фотоэлементов недостаточно, чтобы питать мощные электроприборы. Поэтому их объединяют в электрическую цепь, тем самым формируя солнечную батарею (другое название – солнечная панель).

На каркас солнечной батареи фотоэлементы крепятся таким образом, чтобы их в случае выхода из строя можно было заменять по одному. Для защиты от воздействия внешних факторов всю конструкцию покрывают прочным пластиком или закаленным стеклом.

Мобильный телефон Samsung E1107 оснащен солнечной батареей

 

Существующие разновидности

Классифицируются солнечные батареи по мощности вырабатываемого электричества, которая зависит от площади панели и ее конструкции. Мощность потока солнечных лучей на экваторе достигает 1 кВт, тогда как в наших краях в облачную погоду она может опускаться ниже 100 Вт. В качестве примера возьмем средний показатель (500 Вт) и в дальнейших расчетах будем отталкиваться от него.

Наручные часы Citizen Eco-Drive с солнечной батареей вместо циферблата

Самым низким коэффициентом фотоэлектрического преобразования обладают аморфные, фотохимические и органические фотоэлементы. У первых двух типов он равен примерно 10 процентам, а у последнего – всего лишь 5 процентам. Это означает, что при мощности солнечного потока в 500 Вт солнечная панель площадью один квадратный метр будет вырабатывать соответственно 50 и 25 Вт электроэнергии.

Монтаж солнечных панелей на крыше жилого дома

В противовес вышеупомянутым типам фотоэлементов выступают солнечные батареи на основе кремниевых полупроводников. Коэффициент фотоэлектрического преобразования на уровне 20%, а при благоприятных условиях — и 25% для них привычное дело. Как результат, мощность метровой солнечной панели может достигать 125 Вт.

Гоночный электромобиль Honda Dream на солнечных батареях появился еще в 1996 г.

Конкурировать по мощности с кремниевыми солнечными батареями способны разве что решения на основе арсенида галлия. Используя это соединение, инженеры научились создавать многослойные фотоэлементы с КФП свыше 30% (до 150 Вт электричества с квадратного метра).

Портативная солнечная панель Solarland мощностью 130 Вт и стоимостью $860

Если же говорить о площади солнечных батарей, то существуют как миниатюрные «пластинки» мощностью до 10 Вт (для частой транспортировки), так и широченные «листы» на 200 Вт и более (сугубо для стационарного использования).

Беспилотный самолет, разработанный NASA Ames Research Center, способен на солнечной энергии пролететь от восточного побережья США до западного

На работу солнечных батарей может негативно влиять ряд факторов. К примеру, с ростом температуры снижается КФП фотоэлементов. Это при том, что солнечные батареи как раз-то и устанавливают в жарких солнечных странах. Получается своеобразная палка о двух концах.

Солнечную батарею Voltaic можно носить у себя за спиной

А если затемнить часть солнечной панели, то неактивные фотоэлементы не только прекращают вырабатывать электричество, но и становятся дополнительной, зловредной нагрузкой.

«Солнечное дерево – культурный и одновременно научный символ австрийского городка Глайсдорф

 

Крупнейшие производители

Лидерами глобального производства солнечных батарей являются компании Suntech, Yingli, Trina Solar, First Solar и Sharp Solar. Первые три представляют Китай, четвертая – США, а пятая, как нетрудно догадаться, является подразделением японской корпорации Sharp.

Гольфкар на солнечных батареях – бесшумное и экологически чистое средство передвижения

Американская компания First Solar не только производит солнечные батареи, но и принимает непосредственное участие в проектировании и строительстве солнечных электростанций. Мощнейшая в мире СЭС Агуа-Калиенте, которая находится в штате Аризона, США – дело рук инженеров First Solar.

Крупнейшую же украинскую СЭС «Перово» строила и снабжала солнечными панелями австрийская компания Activ Solar.

Китайская же компания Suntech прославилась тем, что готовила к летней Олимпиаде-2008 футбольный стадион под названием «Птичье гнездо» в Пекине. Вырабатываемая на протяжении дня с помощью солнечных батарей электроэнергия аккумулируется, а затем используется для освещения стадиона, полива травы на футбольном поле и работы телекоммуникационного оборудования.

Национальный стадион в Пекине густо усеян солнечными батареями производства Suntech

 

Выводы

Еще два десятилетия назад диковинкой казались микрокалькуляторы с фотоэлементами, что позволяло не менять в них «батарейку-таблетку» годами. Сейчас же мобильные телефоны со встроенной в заднюю крышку солнечной панелью никого не удивляют. А ведь это мелочь в сравнении с автомобилями и самолетами (пусть и беспилотными), которые научились передвигаться при помощи одной лишь солнечной энергии.

Будущее солнечных батарей видится точно таким же светлым, как само солнце. Хочется верить, что именно солнечные батареи позволят наконец-то вылечить смартфоны и планшеты от «розеткозависимости».

Принцип работы и устройство солнечной батареи

Одним из источников энергии является солнечная батарея, генерирующая альтернативную энергию Солнца. Она появилась сравнительно недавно, но уже успела обрести популярность в странах Евросоюза, за счет высокой эффективности и приемлемой стоимости.

Солнечная батарея является почти неисчерпаемым источником энергии, способным накапливать и преобразовывать световые лучи в энергию и электричество. В странах СНГ новый источник энергии постепенно только набирает популярность. (Кстати, статью о том, как выбрать солнечную батарею, Вы можете прочитать здесь.)

Компоненты

Само устройство и принцип работы энергоисточника можно называть простым. Оно состоит всего из двух частей:

  • основного корпуса;
  • преобразовательных блоков.

В большинстве случаев корпус делают из пластика. Он похож на обыкновенную плитку, к которой прикреплены преобразовательные блоки.

Преобразовательным блоком является кремниевая пластинка. Она может изготавливаться двумя способами:

  • поликристаллическим;
  • монокристаллическим.

Поликристаллический способ является менее затратным, а монокристаллический считается наиболее эффективным.

Все остальные дополнительные части (например, контроллеры и инверторы), гаджеты и микросхемы присоединяют только для увеличения работоспособности и функционирования источника энергии. Без них солнечная батарея также сможет работать.

Имейте в виду: для того чтобы данный источник начал функционировать нужно правильно и аккуратно подключить все преобразовательные блоки.

С расчётом мощности солнечных батарей может помочь данная статья: https://teplo.guru/eko/solnechnyie-batarei-kpd.html

Существует два вида их подключения:

  • последовательное;
  • параллельное.

Разница лишь в том, что в параллельном соединении происходит увеличение силы тока, а при последовательном увеличивается напряжение.

Если есть необходимость в максимальной работе сразу двух параметров, то используется параллельно-последовательное.

Но стоит учитывать, что высокие нагрузки могут способствовать тому, что некоторые контакты могут перегореть. Для предотвращения этого используют диоды.

Один диод способен защитить одну четвертую часть фотоэлемента. Если их нет в устройстве, то есть большая вероятность, что весь источник энергии прекратит своё функционирование после первого же дождя или урагана.

Важный момент: ни накопление, ни сила тока совершенно не соответствуют возможным параметрам современной бытовой техники, поэтому приходится перераспределять и накапливать электроэнергию.

Для этого рекомендуется дополнительно подключать минимум два аккумулятора. Один будет являться накопительным, а второй запасным или резервным.

Приведем пример работы дополнительных аккумуляторов. Когда на улице хорошая и солнечная погода, то заряд идет быстро и через малое количество времени появляется уже лишняя энергия.

Поэтому весь этот процесс контролирует специальный реостат, который способен в определенный момент перевести всю ненужную электроэнергию в дополнительные резервы.

Познакомиться с отзывами владельцев солнечных батарей можно в данной статье: https://teplo.guru/eko/solnechnyie-batarei-dlya-doma-otzyivy.html

Принцип работы

В чем же заключается принцип работы альтернативного источника энергии?

Во-первых, фотоэлементы являются кремниевыми пластинами. В свою очередь, кремний по своему химическому составу имеет максимальную схожесть с чистым силицием. Именно этот нюанс дал возможность понизить стоимость солнечной батареи и запустить ее уже на конвейер.

Кремний в обязательном порядке кристаллизуют, так как сам по себе он является полупроводником. Монокристаллы изготавливаются намного проще, но при этом не имеют много граней, за счет чего электроны имеют возможность двигаться прямолинейно.

Важно знать, что добавлением фосфора или мышьяка повышается электропроводность. Также, одним из важных свойств силиция является невидимость для инфракрасного излучения.

Благодаря этому элементу, преобразовательные блоки поглощают только полезные части солнечного спектра.

Последовательность действий солнечной батареи:

  1. Принцип работы солнечной батареи. (Для увеличения нажмите)

    Энергия солнца попадает на пластины.

  2. Пластины нагреваются и освобождают электроны.
  3. Электроны активно двигаются по проводникам.
  4. Проводники дают заряд аккумуляторам.

Вот мы и выяснили, из чего состоят солнечные батареи и каков их принцип действия.

Подробнее узнать об основных видах солнечных панелей можно здесь: https://teplo.guru/eko/vidyi-solnechnyih-paneley.html

В заключение хотелось бы добавить, что такую альтернативу можно сделать дома самостоятельно, при наличии всех необходимых частей.

Смотрите видео, в котором в легкой и познавательной форме объясняется принцип работы солнечных батарей:

Оцените статью: Поделитесь с друзьями!

Принцип работы солнечной батареи

Солнечные батареи, как источник альтернативной энергии, сегодня уже не относят к инновационным технологиям науки. Впервые, использованные уже более сорока лет назад для электропитания станций в открытом космосе, они с успехом применяются, в качестве независимого источника экологически чистой электроэнергии.

Элементы солнечных батарей изготавливают из материалов, преобразующих солнечный свет в электричество. Фотоэлектрическая батарея конструктивно состоит из нескольких модулей, электрически и механически соединенных между собой. Каждый солнечный модуль – это устройство, объединяющее несколько фотоэлектрических элементов и выходные клеммы для подключения электроприемников. Фотоэлектрический элемент состоит из 2-х пластин полупроводникового материала. Основную часть, выпускающихся промышленностью элементов батарей, изготавливают из чистого кремния. На одну пластину, с целью придания ей свойств проводника отрицательных зарядов (n-область), наносят бор. Вторую же, с целью создания проводника положительных зарядов, покрывают фосфором (р – область).

Под воздействием солнечных лучей в зоне соприкосновения двух пластин возникает электродвижущая сила, которая способна создавать электрический ток во внешнем контуре, электрически соединенном с р- и n-областями. Для того, чтобы снять ток с батарей их пропаивают тонкими полосами меди. Спаянные друг с другом пластины спаивают, ламинируют, а затем закрепляют на стекле. Для придания конструкции прочностных свойств соединенные пластины размещают в алюминиевую раму.

Явление, в основе которого лежит принцип работы солнечных батарей, имеет название «внешний фотоэффект». Мощность, вырабатываемая батареей, напрямую зависит от площади ее поверхности. На эффективность работы солнечных батарей оказывает влияние также положение относительно Солнца модулей и интенсивность излучения. Таким образом, КПД батарей зависит от времени года, места установки, погоды.

Энергия, генерируемая фотоэлектрической установкой, не предназначена для непосредственного подключения потребителей. Между электрогенерирующей установкой и потребляющей сетью необходимо подключать инвертор, с целью трансформирования напряжения в стандартные величины одно или трехфазного номинала (220 или 380В).

Солнечные фотоэлектрические модули способны вырабатывать электроэнергию в течение 25 и больше лет. Технический износ в большинстве случаев возникает вследствие влияния окружающей среды, поскольку в таких установках отсутствуют подвижные механизмы, а также нет никаких термодинамических процессов. Грамотно смонтированная солнечная батарея станет экологически безопасным, бесшумным и надежным источником электроэнергии на долгие годы.

Доступными словами принципы работы солнечных батарей



Почти 100% всей энергии, которую мы используем в повседневной жизни – это энергия солнца, так или иначе преобразованная. Уголь – это умершие растения, которые жили благодаря фотосинтезу, нефть – растения и животные, которые вымерли миллионы лет назад и росли за счет энергии солнца. Даже когда вы сжигаете дрова – вы даете выход солнечной энергии, которую в себя впитала древесина. По сути, любая тепловая электростанция преобразовывает аккумулированную в виде угля, нефти, газа и др. ископаемых солнечную энергию в электричество.

Солнечная батарея просто делает это напрямую, без участия «посредников». Электричество – наиболее удобная форма применения солнечной энергии. Весь быт человечества сейчас построен вокруг электричества, и цивилизацию без него очень сложно представить. Несмотря на то, что первые фотоэлементы появились более полувека назад, солнечная энергетика пока не нашла должного распространения. Почему? Об этом в конце статьи, а пока разберемся, как это все работает.

Все дело в кремнии

Солнечные батареи состоят из ячеек меньшего размера – фотоэлементов, которые сделаны из кремния.

Солнечная панель состоит из нескольких фотоэлементов.

Важно. Кремний – наиболее распространенный полупроводник на Земле (около 30% всей земной коры)

Кремний располагается между двумя токопроводящими слоями.

«Сэндвич» из кремния и токопроводящих слоев

Каждый атом кремния соединен с соседними четырьмя сильными связями, которые удерживают электроны на месте, поэтому так ток течь не может.

Структура атомов кремния

Для того, чтобы получить ток используют два различных слоя кремния:

  • Кремний N-типа имеет избыток электронов
  • Кремний Р-типа – дополнительные места для электронов (дырки)

Кремний Р и N типа

Там, где соединяются два типа кремния, электроны могут перемещаться через Р-N переход, оставляя положительный заряд на одной стороне и отрицательный на другой.

Чтобы это было легче представить, лучше думать о свете, как о потоке частиц (фотонов), которые ударяются о нашу ячейку настолько сильно, что выбивает электрон из его связи, оставляя дырку. Отрицательно заряженный электрон и место положительно заряженной дырки теперь могут свободно перемещаться, но т.к. мы имеем электрическое поле на Р-N переходе, они движутся только в одном направлении. Электрон – в сторону N-проводника, дырка стремится на Р — сторону пластины.

После «освобождения» электрон стремится к проводнику

Все электроны собираются металлическими проводниками вверху ячейки и уходят во внешнюю сеть, питая токоприемники, аккумуляторы для солнечных батарей или электрический стул для хомяка 🙂 . После проведенной работы электроны возвращаются к обратной стороне пластины и занимают места в тех самых «дырках».

Работа фотоэлемента

Стандартная пластина, 150х150 мм номинально вырабатывает только 0,5 вольта, но если объединить их в одну большую панель, то можно получить бо́льшую мощность и вольтаж. Для зарядки мобильника нужно объединить 12 таких пластин. Для питания дома нужно затратить гораздо больше пластин и панелей.

Благодаря тому, что в фотоэлементах единственной подвижной частью являются электроны, солнечные панели не нуждаются в обслуживании и могут служить 20-25 лет не изнашиваясь и не ломаясь.

Почему человек не перешел на солнечную энергию полностью?



Можно много рассуждать о политике, бизнесе и прочей конспирологии, но в рамках этой статьи хотелось бы рассказать о других проблемах.

  1. Неравномерное распределение солнечной энергии по поверхности планеты. Одни области более солнечные, чем другие и это тоже непостоянною. Солнечной энергии гораздо меньше в пасмурные дни и совсем нет ночью. И чтобы полностью рассчитывать на солнечную энергию, необходимы эффективные способы получения электричества для всех областей.
  2. КПД. В лабораторных условиях удалось достичь результата в 46%. Но коммерческие системы не достигают даже 25% эффективности.
  3. Хранение. Самым слабым звеном в солнечной энергетике является отсутствие эффективного и дешевого способа сохранять полученную электроэнергию. Существующие аккумуляторные батареи тяжелы и значительно снижают эффективность и без того слабые показатели солнечной системы. В целом, хранить 10 тонн угля проще и удобнее, чем 46 мегаватт, выработанных этим же углем или солнцем.
  4. Инфраструктура. Для того, чтобы питать мегаполисы – площадей крыш этих городов будет недостаточно, чтобы удовлетворить все запросы, поэтому для внедрения солнечной энергетики нужно транспортировать энергию, а для этого необходимо строить новые энергетические объекты

Видео о том, как производят солнечные батареи.

В ролике подробно описывается процесс изготовления поликристаллических солнечных батарей, принцип их работы в системе солнечных электростанций, принцип работы контроллера заряда и инвертора.



Фотомануал: солнечная батарея своими руками шаг за шагом Выгодно ли покупать комплектом солнечные батареи для дачи Реальное применение тонкопленочных солнечных батарей Как выбрать солнечную панель — обзор важных параметров

Принцип солнечной батареи | О солнечной энергии | Наш дух солнечной энергии | Солнечная энергия | Продукция

Преобразование солнечного света в электричество

Солнечная батарея
(мультикристаллический кремний)
Фотоэлектрические модули, обычно называемые солнечными модулями, являются ключевыми компонентами, используемыми для преобразования солнечного света в электричество. Солнечные модули сделаны из полупроводников, которые очень похожи на те, которые используются для создания интегральных схем для электронного оборудования.Наиболее распространенный тип полупроводников, используемых в настоящее время, состоит из кристаллов кремния. Кристаллы кремния разделены на слои n-типа и p-типа, уложенные друг на друга. Свет, падающий на кристаллы, вызывает «фотоэлектрический эффект», который генерирует электричество. Произведенное электричество называется постоянным током (DC), и его можно использовать немедленно или хранить в батарее. Для систем, установленных в домах, обслуживаемых коммунальной сетью, устройство, называемое инвертором, преобразует электричество в переменный ток (AC), стандартную мощность, используемую в жилых домах.

Производство электроэнергии с использованием шлюза P-N
Кристаллы кремния высокой чистоты используются для производства солнечных элементов. Кристаллы перерабатываются в солнечные элементы методом плавления и литья. Отливку кубической формы затем разрезают на слитки, а затем нарезают на очень тонкие пластины.

Обработка пластин
Атомы кремния имеют четыре «руки». В стабильных условиях они становятся идеальными изоляторами.Комбинируя небольшое количество пятиконечных атомов (с избыточным электроном), возникает отрицательный заряд, когда солнечный свет (фотоны) попадает в избыточный электрон. Затем электрон разряжается из плеча, чтобы свободно перемещаться. Кремний с такими характеристиками проводит электричество. Это называется полупроводником n-типа (отрицательным) и обычно возникает из-за того, что кремний «легирован» фосфорной пленкой.

Напротив, объединение трехрукавных атомов, у которых отсутствует один электрон, приводит к образованию дырки с отсутствующим электроном.Тогда полупроводник будет нести положительный заряд. Это называется полупроводником p-типа (положительным), и его обычно получают, когда бор вводится в кремний.


p-n-переход формируется путем размещения полупроводников p-типа и n-типа рядом друг с другом. P-тип с одним электроном меньше, притягивает излишки электронов n-типа, чтобы стабилизироваться. Таким образом, электричество перемещается и генерирует поток электронов, также известный как электричество.

Когда солнечный свет попадает на полупроводник, возникает электрон, который притягивается к полупроводнику n-типа. Это вызывает больше негативов в полупроводниках n-типа и больше плюсов в p-типе, тем самым генерируя больший поток электричества. Это фотоэлектрический эффект.




Региональные офисы

Связанная информация

Как работают солнечные батареи? Обзор

Последнее обновление 19.08.2021

Поскольку интерес к технологиям накопления энергии растет, полезно понять, как на самом деле работают системы накопления энергии.Знание того, как системы хранения энергии интегрируются с системами солнечных панелей, а также с остальной частью вашего дома или бизнеса, может помочь вам решить, подходит ли вам накопление энергии.

Ниже мы расскажем, как системы хранения энергии работают с солнечной батареей и что это означает для того, что вы можете ожидать от своей системы хранения. Мы также более подробно рассмотрим, что именно происходит внутри вашей батареи, чтобы накапливать эту энергию.

Как батареи работают с солнечными панелями

Чтобы понять, как накопители работают с солнечными панелями, сначала стоит быстро вспомнить, как работают системы солнечных панелей.

Обычно, когда вы устанавливаете солнечные панели, вы устанавливаете «привязанную к сети» систему солнечных панелей с сетевым счетчиком. Это означает, что когда ваши солнечные панели производят больше электроэнергии, чем вам нужно, вы можете экспортировать эту избыточную электроэнергию обратно в сеть и, наоборот, вы можете получать электроэнергию непосредственно из сети, когда вы потребляете больше электроэнергии, чем производят ваши панели. Чистый счетчик работает, позволяя вам включать счетчик электроэнергии в обратном направлении, когда вы подключаете дополнительную энергию в сеть, и запускать его вперед, когда вы потребляете энергию из сети, при этом коммунальные предприятия выставляют вам счет в сети за использованную электроэнергию.

При использовании накопительной системы Solar Plus вместо того, чтобы экспортировать излишки солнечной энергии в сеть, вы можете сначала использовать эту электроэнергию для зарядки вашей системы накопления энергии. Затем, когда вы используете электричество после захода солнца, вы можете использовать солнечную батарею, а не электрическую сеть.

Что вы получаете с системой хранения Solar Plus

Когда вы устанавливаете батарею вместе с вашей системой солнечных батарей, у вас будет возможность тянуть ее либо из сети, либо из батареи, когда она заряжена.Это имеет два основных значения:

Аккумуляторы обеспечивают резервное питание

Даже несмотря на то, что вы все еще будете подключены к сети, вы можете работать в автономном режиме, поскольку соединение солнечной батареи с накопителем создаст небольшой энергетический островок в вашем доме. Таким образом, в случае отключения электричества из-за экстремальных погодных условий или отключения электричества вы все равно сможете включить свет.

Два замечания по поводу резервного питания. Во-первых, если у вас просто солнечная панель без батареи, у вас не будет электричества в случае отключения электричества, даже если это солнечный день.Это связано с тем, что ваша система солнечных панелей отключится в случае отключения электроэнергии, поэтому она не будет отправлять электричество на линии электропередачи, пока работники коммунальных служб пытаются их починить, что может представлять угрозу безопасности.

Во-вторых, большинство батарей обеспечивают резервное питание только части, а не всего вашего дома. Если вы также не установите интеллектуальную электрическую панель с вашей батареей (что является отличным способом получить максимальную отдачу от системы хранения), при установке большинства батарей вам потребуется выбрать, какие части вашего дома вы хотите использовать для резервного копирования с помощью батареи, и перетянуть эти грузы на панель критической нагрузки.Однако многие батареи могут быть «сложены», то есть вы можете добавлять дополнительные батареи до тех пор, пока не получите желаемую емкость. Таким образом, хотя можно обеспечить резервное копирование всего дома, покупка достаточного количества батарей для обеспечения такого уровня поддержки может оказаться непомерно дорогостоящей.

Батареи могут помочь вам избежать высоких тарифов на коммунальные услуги

Позволяя вам работать от батареи, а не от электрической сети, соединение системы хранения с солнечными панелями может помочь вам избежать высоких тарифов на коммунальные услуги.Есть два способа сделать это с помощью батарей. Во-первых, если вы используете время использования или другой изменяющийся во времени тариф, вы можете снимать с аккумулятора в то время, когда ваша коммунальная сеть взимает больше за электроэнергию, то есть в часы пик. И, во-вторых, если вы используете тариф со спросом, который более типичен для коммерческих и промышленных компаний, чем для домовладельцев, аккумулятор может помочь вам снизить ежемесячный спрос на него, что является значительным финансовым преимуществом.

Как аккумуляторы накапливают энергию

Теперь, когда вы знаете, как накопители работают с солнечными батареями, вы отлично подготовлены, чтобы принять решение, добавлять ли накопители к вашей системе солнечных панелей.Но если вам интересно узнать о том, как аккумуляторы на самом деле накапливают энергию, читайте дальше.

Как работают литий-ионные батареи

Самый распространенный тип батареи, представленный сегодня на рынке для домашнего накопления энергии, — это литий-ионная батарея. Литий-ионные аккумуляторы питают все виды бытовой техники, от сотовых телефонов до автомобилей, так что это хорошо изученная и безопасная технология.

Литий-ионные батареи

называются так потому, что они работают, перемещая ионы лития через электролит внутри батареи.Поскольку ионы представляют собой частицы, которые приобрели или потеряли электрон, перемещение ионов лития от анода к катоду приводит к появлению свободных электронов, то есть электронов, высвобожденных из атомов лития. Накопление этих свободных электронов — это то, как аккумуляторы в конечном итоге заряжают и накапливают электричество. Когда вы разряжаете электричество, хранящееся в батарее, поток ионов лития меняется на противоположный, что означает, что процесс повторяется: вы можете заряжать и разряжать литий-ионные батареи сотни или даже тысячи раз.

Литий-ионные батареи

, используемые в домашних системах накопления энергии, сочетают в себе несколько литий-ионных аккумуляторных элементов со сложной силовой электроникой, которая контролирует производительность и безопасность всей аккумуляторной системы. Существует несколько различных типов литий-ионных аккумуляторов, в которых используется несколько разный химический состав, что обеспечивает различные характеристики, от улучшенной плотности мощности до более длительного срока службы.

Примечательно, что литий-ионные аккумуляторы — не единственный тип аккумуляторов, используемых в приложениях для хранения энергии дома, на работе или в коммунальном хозяйстве.Другие типы батарей накапливают энергию с помощью аналогичных механизмов, но с совершенно отдельным набором плюсов и минусов.

Найдите подходящую солнечную систему с накоплением на EnergySage

EnergySage — это национальный онлайн-рынок солнечной энергии и хранилища: когда вы регистрируете бесплатную учетную запись, мы связываем вас с компаниями в вашем регионе, которые конкурируют за ваш бизнес, с индивидуальными ценами на солнечную батарею и хранилище, адаптированными к вашим потребностям. Ежегодно в EnergySage приходят более 10 миллионов человек, чтобы узнать о солнечных и домашних батареях, приобрести их и инвестировать в них.Зарегистрируйтесь сегодня, чтобы узнать, сколько вы можете сэкономить.

Как солнечные батареи работают в вашем доме?

Солнечные батареи — неотъемлемая часть энергетической независимости дома. Здесь мы подробно рассмотрим, как именно работают солнечные батареи. В этом примере мы предположим, что батарея работает в паре с солнечной системой, а не просто с отдельной батареей.

Шаг 1: Солнечная энергия

Процесс начинается с того, что солнечная батарея на крыше вырабатывает электроэнергию. Солнечный свет попадает на панели, которые преобразуют видимый свет в электрический ток.

Электроэнергия постоянного тока, производимая солнечной системой, затем может быть преобразована в мощность переменного тока или сохранена как мощность постоянного тока, в зависимости от того, использует ли система аккумулятор переменного или постоянного тока. Подробнее об этом чуть позже.

Шаг 2: Зарядка аккумулятора

Дом будет иметь первостепенное значение для солнечной энергии.Электроэнергия, производимая панелями, будет напрямую питать главную электрическую панель дома и питать все в доме, от телевизоров и освещения до кондиционирования воздуха и зарядки электромобилей.

Часто солнечные системы могут производить больше энергии, чем требуется дому в данный момент. Представьте себе прекрасный весенний день, когда погода умеренная, поэтому дом не потребляет много электроэнергии, но панели вырабатывают много энергии. В таких условиях мощность солнечной системы может легко превысить потребности дома.

Без батареи эта дополнительная энергия будет возвращаться в сеть посредством процесса, известного как чистое измерение. Фактически, эта дополнительная мощность будет «вращать счетчик в обратном направлении» и предоставить домовладельцу кредит, который поможет компенсировать мощность, потребляемую из сети, когда система не удовлетворяет все потребности дома (например, ночью).

С батареей, вместо того, чтобы идти в сеть, дополнительное электричество, производимое солнечной системой, поступает в батарею и заряжает ее.Скорость зарядки аккумулятора зависит от количества производимой дополнительной энергии, что само по себе зависит от множества факторов, таких как размер солнечной системы и текущая потребность в электроэнергии в доме.

Шаг 3: Зарядка постоянным и переменным током

В то время как дома работают от переменного тока, все батареи нуждаются в постоянном токе для зарядки. Вот почему на кабеле вашего ноутбука есть такая большая коробка — он преобразует мощность переменного тока, идущую от стены, в мощность постоянного тока для зарядки аккумулятора ноутбука.

Если все батареи требуют питания постоянного тока для зарядки, то что же такое батарея переменного тока?

Аккумулятор переменного тока — это аккумулятор, который может принимать входящую мощность переменного тока, и он использует встроенный инвертор для преобразования его в мощность постоянного тока, который затем заряжает аккумулятор. Когда батарея подает электроэнергию в дом, инвертор затем преобразует мощность постоянного тока, поступающую от аккумуляторной батареи, обратно в переменный ток, который затем подается в дом.

Большинство современных солнечных батарей, включая Tesla Powerwall, являются батареями переменного тока.Самым большим преимуществом батарей переменного тока является то, что их можно использовать с любой солнечной системой. К ним можно подключить любой солнечный инвертор, включая микроинверторы, поскольку они могут принимать выход переменного тока от любой системы. Это делает их очень гибкими и легко модернизируемыми для существующих солнечных систем.

Напротив, батареи постоянного тока, такие как LG Chem, не имеют встроенного инвертора. В результате их необходимо заряжать напрямую от источника постоянного тока. Для этого требуется специализированный инвертор, который может передавать мощность постоянного тока, вырабатываемую солнечными панелями, непосредственно в батарею, не преобразуя ее сначала в переменный ток.Когда аккумулятор нуждается в питании дома, мощность постоянного тока от источника питания подается на внешний солнечный инвертор, где она преобразуется в мощность переменного тока, которая затем питает дом.

Самым большим преимуществом батарей постоянного тока является то, что они имеют более высокую эффективность при прохождении цикла приема-передачи. Каждый раз, когда электричество переключается с постоянного тока на переменный (или наоборот), примерно 5% мощности теряется на тепло. Следовательно, чем больше раз вы инвертируете мощность, тем больше энергии вы потеряете. В результате батареи постоянного тока более эффективны, чем батареи переменного тока, поскольку они реже инвертируют мощность.Батареи постоянного тока также обычно дешевле, поскольку в них нет дополнительного инверторного оборудования.

Шаг 4: Разрядка аккумулятора

Теперь, когда аккумулятор заряжен дополнительной солнечной энергией, будь то переменный или постоянный ток, эта накопленная энергия может быть использована в доме позже. Есть две основные причины, по которым домовладелец хотел бы иметь дополнительную энергию, запасенную для дальнейшего использования.

Первая причина в том, что в доме отключено электричество из сети.Как только произойдет отключение электроэнергии, резервный шлюз аккумуляторной системы изолирует дом от сети и активирует аккумулятор, чтобы немедленно обеспечить питание цепей, к которым он подключен. В этом отношении батарея будет работать как обычный генератор, за исключением того, что батареи намного лучше генераторов во всех важных аспектах.

Вторая причина хранить энергию для дальнейшего использования — это воспользоваться тарифными планами по времени использования (TOU) от коммунальных компаний. Многие коммунальные предприятия переводят домовладельцев на тарифы TOU, потому что эти планы более точно отражают изменения оптовых цен на электроэнергию в течение дня.В Калифорнии домовладельцы крупных коммунальных предприятий, принадлежащих инвесторам (PGE, SCE, SDGE), должны перейти на тарифный план TOU при установке солнечных батарей.

Согласно тарифному плану TOU дополнительная энергия, которую панели производят в середине дня, менее ценно, чем энергия, потребляемая из сети в ночное время. В результате использование солнечной батареи может помочь домовладельцам сэкономить больше денег, поскольку они не будут платить за коммунальные услуги в вечернее время. Вы можете узнать больше о ставках TOU и экономии здесь.

Заключение

Это действительно так просто! Солнечные батареи улавливают излишки солнечной энергии и позволяют использовать эту энергию, когда это наиболее выгодно для домовладельца, например, во время отключения электричества или для дополнительной экономии на счетах за электроэнергию.Поговорите с одним из наших консультантов по энергетике, чтобы увидеть вашу индивидуальную солнечную и аккумуляторную систему!

Солнечный элемент: принцип работы и конструкция (схемы в комплекте)

Что такое солнечный элемент?

A Солнечный элемент (также известный как фотоэлектрический элемент или фотоэлектрический элемент) определяется как электрическое устройство, которое преобразует световую энергию в электрическую энергию посредством фотоэлектрического эффекта. Солнечный элемент — это в основном диод с p-n переходом. Солнечные элементы представляют собой форму фотоэлементов, определяемых как устройство, электрические характеристики которого, такие как ток, напряжение или сопротивление, изменяются под воздействием света.

Отдельные солнечные элементы могут быть объединены в модули, обычно известные как солнечные панели. Обычный кремниевый солнечный элемент с одним переходом может производить максимальное напряжение холостого хода приблизительно от 0,5 до 0,6 вольт. Само по себе это немного, но помните, что эти солнечные элементы крошечные. При объединении в большую солнечную панель можно вырабатывать значительное количество возобновляемой энергии.

Конструкция солнечного элемента

Солнечный элемент в основном представляет собой переходной диод, хотя по своей конструкции он немного отличается от обычных диодов с p-n переходом.Очень тонкий слой полупроводника p-типа выращивается на относительно более толстом полупроводнике n-типа. Затем мы накладываем несколько более тонких электродов на верхнюю часть полупроводникового слоя p-типа.

Эти электроды не препятствуют проникновению света в тонкий слой p-типа. Чуть ниже слоя p-типа находится p-n переход. Мы также предоставляем токосъемный электрод внизу слоя n-типа. Мы герметизируем всю сборку тонким стеклом, чтобы защитить солнечную батарею от любых механических ударов.

Принцип работы солнечного элемента

Когда свет достигает p-n перехода, световые фотоны могут легко попасть в переход через очень тонкий слой p-типа. Световая энергия в виде фотонов поставляет в переход достаточно энергии для создания ряда электронно-дырочных пар. Падающий свет нарушает условие теплового равновесия перехода. Свободные электроны в обедненной области могут быстро перейти на сторону n-типа перехода.

Точно так же отверстия в истощении могут быстро попасть на сторону p-типа перехода.После того, как вновь созданные свободные электроны попадают на сторону n-типа, они не могут дальше пересекать переход из-за барьерного потенциала перехода.

Точно так же вновь созданные отверстия, когда-то выходящие на сторону p-типа, не могут далее пересекать переход, стали с тем же барьерным потенциалом, что и переход. Когда концентрация электронов становится выше на одной стороне, то есть на стороне n-типа перехода, а концентрация дырок увеличивается на другой стороне, то есть на стороне p-типа перехода, p-n переход будет вести себя как маленький аккумуляторный элемент.Устанавливается напряжение, известное как фото-напряжение. Если мы подключим небольшую нагрузку через соединение, через него будет протекать крошечный ток.

V-I Характеристики фотоэлектрического элемента

Материалы, используемые в солнечном элементе

Материалы, которые используются для этой цели, должны иметь ширину запрещенной зоны, близкую к 1,5 ev. Обычно используемые материалы — кремний

  1. .
  2. GaAs.
  3. CdTe.
  4. CuInSe 2

Критерии для материалов, которые будут использоваться в солнечной батарее

  1. Должна иметь ширину запрещенной зоны от 1 Ev до 1.8ев.
  2. Он должен иметь высокое оптическое поглощение.
  3. Должен иметь высокую электропроводность.
  4. Сырье должно быть доступно в изобилии, а стоимость материала должна быть низкой.

Преимущества солнечной батареи

  1. Отсутствие загрязнения окружающей среды.
  2. Он должен прослужить долго.
  3. Нет затрат на обслуживание.

Недостатки солнечной батареи

  1. Имеет высокую стоимость установки.
  2. Имеет низкий КПД.
  3. В пасмурный день энергия не может производиться, а также ночью мы не получаем солнечную энергию.

Использование систем солнечной генерации

  1. Может использоваться для зарядки аккумуляторов.
  2. Используется в люксметрах.
  3. Применяется для питания калькуляторов и наручных часов.
  4. Может использоваться в космических кораблях для выработки электроэнергии.

Заключение: Хотя солнечный элемент имеет некоторый связанный с ним недостаток, но ожидается, что недостатки будут преодолены по мере развития технологии, поскольку технология развивается, стоимость солнечных батарей, а также стоимость установки снизятся. так что каждый может приложить усилия для установки системы.Кроме того, правительство уделяет большое внимание солнечной энергии, поэтому через несколько лет мы можем ожидать, что каждое домашнее хозяйство, а также каждая электрическая система будет питаться от солнечной или возобновляемой энергии.

Как работают солнечные панели? | Фотоэлементы

На протяжении десятилетий рекламируются как многообещающий альтернативный источник энергии, солнечные панели венчают крыши домов и придорожные знаки, а также помогают поддерживать питание космических аппаратов. Но как работают солнечные панели?

Проще говоря, солнечная панель работает, позволяя фотонам или частицам света выбивать электроны из атомов, создавая поток электричества.Солнечные панели на самом деле состоят из множества небольших блоков, называемых фотоэлектрическими элементами. (Фотоэлектрические элементы просто означают, что они преобразуют солнечный свет в электричество.) Многие элементы, соединенные вместе, составляют солнечную панель.

Каждый фотоэлектрический элемент представляет собой сэндвич, состоящий из двух пластин полупроводящего материала, обычно кремния — того же материала, что и в микроэлектронике.

Связанный: Как работают атомные часы?

Для работы фотоэлектрическим элементам необходимо создать электрическое поле.Подобно магнитному полю, которое возникает из-за противоположных полюсов, электрическое поле возникает, когда противоположные заряды разделены. Чтобы получить это поле, производители «смешивают» кремний с другими материалами, придавая каждому кусочку сэндвича положительный или отрицательный электрический заряд.

В частности, они вводят фосфор в верхний слой кремния, который добавляет к этому слою дополнительные электроны с отрицательным зарядом. Между тем, нижний слой получает дозу бора, что приводит к меньшему количеству электронов или положительному заряду.Все это складывается в электрическое поле на стыке между слоями кремния. Затем, когда фотон солнечного света выбивает электрон, электрическое поле выталкивает этот электрон из кремниевого перехода.

Пара других компонентов ячейки превращает эти электроны в полезную энергию. Металлические проводящие пластины по бокам ячейки собирают электроны и переносят их на провода. В этот момент электроны могут течь, как любой другой источник электричества.

Недавно исследователи создали ультратонкие гибкие солнечные элементы, в которых всего 1.Толщина 3 микрона — примерно 1/100 ширины человеческого волоса — и в 20 раз легче листа офисной бумаги. На самом деле, элементы настолько легкие, что могут находиться на вершине мыльного пузыря, и при этом они производят энергию с такой же эффективностью, как и солнечные элементы на основе стекла, сообщили ученые в исследовании, опубликованном в 2016 году в журнале Organic Electronics. Такие более легкие и гибкие солнечные элементы могут быть интегрированы в архитектуру, аэрокосмические технологии или даже в носимую электронику.

Существуют и другие типы технологий солнечной энергии, в том числе солнечная тепловая и концентрированная солнечная энергия (CSP), которые работают иначе, чем фотоэлектрические солнечные панели, но все они используют энергию солнечного света для производства электричества или нагрева воды или воздуха. .

Примечание редактора : эта статья была первоначально опубликована 16 декабря 2013 г. и обновлена ​​6 декабря 2017 г., чтобы включить последние достижения в солнечной технологии.

Первоначально опубликовано на Live Science .

Как работают солнечные батареи?

Солнечная батарея — это батарея, которая накапливает энергию от солнечной фотоэлектрической системы. Панели системы поглощают энергию солнца и преобразуют ее в электричество, которое затем проходит через инвертор и используется в вашем доме.Батарея — это дополнительный компонент, который может позволить вам накапливать энергию, вырабатываемую панелями, и использовать ее в более позднее время, например, вечером, когда панели больше не производят энергию.

Если у вас нет автономной системы, ваша солнечная фотоэлектрическая система подключена к электросети, что позволяет вашему дому продолжать получать электроэнергию, если ваши панели не производят достаточно энергии для удовлетворения ваших потребностей в энергии. Когда производительность вашей системы превышает потребление энергии, избыточная энергия отправляется обратно в сеть, это процесс, называемый «нетто-учет».Когда это произойдет, вы получите кредит на ваш следующий счет за электроэнергию, который уменьшит вашу сумму платежа.

Но для тех, кто отключен от сети или предпочитает хранить избыточную энергию самостоятельно, а не отправлять ее обратно в сеть, солнечные батареи могут стать отличным дополнением к их солнечной фотоэлектрической системе.

Как работает солнечная батарея?

Как упоминалось ранее, избыточная энергия вашей солнечной фотоэлектрической системы откладывается в батарее. Это означает, что излишки энергии могут храниться в нем и могут быть легко использованы вами на месте, когда ваши солнечные батареи не вырабатывают достаточно электроэнергии.

При выборе типа батареи для хранения энергии учитывайте следующее:

  1. Срок службы батареи и гарантия
  2. Мощность
  3. Глубина разряда (DoD)

Срок службы батареи обычно составляет от пяти до 15 лет, хотя ожидается, что он значительно увеличится, чтобы не отставать от роста солнечных панелей с годами. Гарантия на батареи обычно указывается в годах или циклах, например, sonnenBatterie имеет гарантию 10 лет или 10 000 циклов (в зависимости от того, что наступит раньше).

Емкость относится к общему количеству электричества, которое может сохранить батарея. Солнечные батареи обычно штабелируются, то есть вы можете иметь дома несколько аккумуляторных батарей для увеличения емкости.

DoD измеряет степень использования батареи по отношению к ее общей емкости. Если батарея имеет 100% DoD, это означает, что вы можете использовать полную емкость аккумулятора (например, 2,5 кВтч) для питания вашего дома. Если батарея имеет степень защиты 94%, это означает, что вы можете использовать до 94% емкости батареи (например,грамм. для аккумулятора на 2,5 кВт вы можете использовать до 2,35 кВт, прежде чем аккумулятор потребуется снова зарядить).

Общие типы солнечных батарей
  1. Литий-ионный

Для обеспечения максимального срока службы и защиты от повреждений лучшим выбором для домашнего аккумулятора будет литий-ионный аккумулятор. Большинство новых домашних аккумуляторов используют эту технологию, так как они имеют более длительный срок службы и более высокую степень повреждения. Литий-ионные аккумуляторы также более компактны, хотя и дороже свинцово-кислотных аккумуляторов.Примеры литий-ионных батарей включают sonnenBatterie, LG Chem Resu и Tesla Powerwall.

  1. Свинцово-кислотный

Свинцово-кислотные батареи используются в течение десятилетий и являются одними из самых дешевых вариантов домашнего накопления энергии для автономных энергосистем. Недостатком покупки этого типа технологий является то, что они устаревают и имеют более низкую степень разряда по сравнению с другими типами батарей.

Преимущества хранения батарей

Аккумуляторная батарея позволяет вам стать более энергонезависимыми.Батареи максимально увеличивают потребление солнечной энергии, уменьшая количество электроэнергии, которую вам нужно покупать из сети. Они также позволяют вашему дому продолжать использовать солнечную энергию в вечернее время, сохраняя избыточную солнечную энергию, производимую в течение дня, чтобы ее можно было использовать, когда она вам нужна.

В более крупном масштабе батареи могут помочь сбалансировать краткосрочные колебания мощности, управлять пиковым потреблением и действовать в качестве резервного для предотвращения или восстановления после отключения электроэнергии, затрагивающего всю сеть.Установка решений для хранения энергии также влияет на предложение и спрос на возобновляемые источники энергии. Более чистые источники энергии могут быть легче интегрированы в экосистему электричества, когда будут разработаны решения по хранению энергии, и они могут дать нам больше гибкости в производстве и использовании электроэнергии.

Солнечная батарея не обязательно подходит для работы со всеми солнечными фотоэлектрическими системами. Во-первых, вам необходимо убедиться, что ваша система совместима с добавленной к ней батареей, и если вы хотите добавить батарею, чтобы еще больше снизить счета за электроэнергию, вам необходимо убедиться, что ваша система производит достаточно избыточной энергии для зарядки аккумулятор после того, как он обеспечит текущую ежедневную потребность в энергии в ваш дом.В противном случае вам может потребоваться увеличить мощность солнечных панелей, чтобы обеспечить необходимую избыточную энергию.

Если вам нужна дополнительная информация о том, подходит ли аккумулятор для вашей ситуации, свяжитесь с нами сегодня.

Принцип работы солнечной панели

— ваше руководство по электрике

Привет, друзья, в этой статье я собираюсь обсудить принцип работы солнечной панели и надеюсь, вам понравятся мои усилия.

В солнечной фотоэлектрической системе солнечная энергия напрямую преобразуется в электрическую.Это делает систему намного более удобной и компактной по сравнению с тепловыми методами преобразования солнечной энергии.

Технология солнечных батарей — это самая быстрорастущая технология производства электроэнергии в мире. Это связано с тем, что становятся доступными солнечные элементы с эффективностью преобразования более 40%.


Фотоэлектрический элемент также называется солнечным элементом. Это полупроводниковое устройство, преобразующее солнечный свет в постоянный ток с помощью фотоэлектрического эффекта. Практически все солнечные элементы представляют собой фотодиоды из полупроводникового материала, например кремния.Солнечный элемент работает в три этапа:

  • Фотоны солнечного света попадают в солнечный элемент и поглощаются полупроводниковым материалом.
  • Отрицательно заряженные электроны отрываются от своих атомов и начинают течь в том же направлении, создавая электрический ток.
  • Типичный кремниевый солнечный элемент может производить до 0,5 В и ток до 6 А. Таким образом, его максимальная мощность составляет 3 Вт.

Поскольку мощность одного солнечного элемента очень мала, большое количество солнечных элементов соединены между собой, образуя солнечный модуль, комбинация солнечных модулей называется панелью, а комбинация панелей называется солнечной батареей. Это делается для получения требуемой выходной мощности от фотоэлектрической системы.

Когда солнечные элементы соединены последовательно, их напряжение увеличивается на столько же, сколько и количество элементов, соединенных последовательно. Но ток остается прежним.

При параллельном соединении ячеек напряжение остается постоянным, как и у одной ячейки, но ток увеличивается. Ячейки, модули или панели можно подключать параллельно, только если их напряжения одинаковы. Основные компоненты солнечной фотоэлектрической системы:

Блокирующие диоды


Массивы SPV подключены к батарее.В солнечные часы панели вырабатывают электричество, которое заряжает аккумулятор. Но когда нет солнечного света или ночью, ток будет пытаться течь в обратном направлении, то есть от батареи к массивам. Это может повредить массивы. Поэтому, чтобы избежать этого обратного тока, используются блокирующие диоды.

Регулятор напряжения


Выходное напряжение фотоэлектрических панелей зависит от интенсивности солнечного света. Это приведет к колебаниям тока нагрузки.Стабилизаторы напряжения будут следить за тем, чтобы колебания напряжения оставались в установленных пределах.

Инвертор


Поскольку мощность, вырабатываемая фотоэлектрической антенной, является постоянным током, для преобразования ее в переменный ток используется инвертор, чтобы мы могли легко ее использовать. Инверторный блок с различными защитными устройствами обеспечивает безопасность системы и выполняет автоматическое переключение нагрузки и доступных источников питания.

Аккумуляторы


Используются накопители солнечной энергии.Они являются наиболее важными компонентами солнечной фотоэлектрической системы. Успех солнечной фотоэлектрической системы во многом зависит от аккумуляторной системы хранения.

Контроллеры батарей


Это устройства, обеспечивающие правильную зарядку аккумуляторов. Они контролируют зарядный ток и защищают аккумулятор от перезарядки. Это делается путем постоянного контроля тока, напряжения и температуры батареи.

Типы солнечных фотоэлектрических систем


По способу использования может быть две конфигурации:

  • Автономная система
  • Система, подключенная к сети

Автономная система


В этой системе мощность подается на нагрузку без использования какой-либо общей сети или подключения к любой другой системе и работает автономно и независимо.Он используется для резервного питания, когда подключение к сети очень дорого. Его можно использовать для питания нагрузок постоянного тока, а также нагрузок переменного тока с помощью инвертора.

Существуют разные типы автономных систем. Но чаще всего используется гибридная автономная система .

В гибридной автономной системе используются один или несколько источников в дополнение к фотоэлектрическим панелям. Источники, такие как генераторы, топливные элементы, сеть переменного тока и т. Д., Могут использоваться вместе с фотоэлектрическими батареями. Таким образом снижается зависимость от какого-либо одного источника.Это также снижает емкость аккумулятора и размер фотоэлектрических массивов.

Система, подключенная к сети


В этой системе мощность, генерируемая фотоэлектрической батареей, передается в сеть или на нагрузки переменного тока напрямую. Когда выработка электроэнергии превышает потребности нагрузок, она подается в коммерческую сеть. Таким образом, система становится частью большой сети. В этой системе, когда мощность, вырабатываемая фотоэлектрической антенной, превышает требования локальной нагрузки, она подается в сеть.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *