Температура отопления на подаче и обратке: Нормы температуры теплоносителей | Статьи и обзоры «Техноформ»

Содержание

Большая разница температуры между подачей и обраткой

Оптимальная разница температуры между подачей и обраткой. Изменения в конструкции обогрева


Постепенно температура теплоносителя увеличивается до необходимой, нагревая радиаторы.

Циркуляция жидкости может быть естественной, называемой гравитационной, и принудительной – с помощью насоса.Обратка – это теплоноситель, который, пройдя через все отопительные приборы, входящие в контур, отдает свое тепло и, охлажденный, поступает снова в котел для очередного подогрева. Батареи можно подключить тремя способами:

  • 2. Диагональное подключение.
  • 3. Боковое подключение.
  • 1. Нижнее подключение.

При первом способе подвод теплоносителя и отвод обратки осуществляется в нижней части батареи.

Подача и обратка в системе отопления

Двухтрубная система более продумана – параллельно подключены две трубы (подача и обратка).

Для того, чтобы продлить срок службы котла, систему отопления стараются изначально продумать так, чтобы «роса» не выпадала, т.е. стараются снизить разницу температур между двумя трубами. Чаще всего, этого добиваются включением бойлера горячего водоснабжения в систему отопления или подогревом теплоносителя обратки.

Бойлер устанавливают рядом с котлом.

Оптимальная разница температуры между подачей и обраткой.

Нормы и оптимальные значения температуры теплоносителя

При нагреве свыше 90 °С начинают разлагаться пыль и лакокрасочное покрытие.

По этим причинам санитарные нормы запрещают осуществлять больший нагрев.

Для расчета оптимальных показателей могут быть использованы специальные графики и таблицы, в которых определены нормы в зависимости от сезона:

  1. При -40 °С за окном для всех приборов отопления ставят максимально допустимые значения. На подаче это – от 95 до 105 °С, а на обратке – 70 °С.
  2. При среднем показателе за окном 0 °С подача для радиаторов с различной разводкой устанавливается на уровне от 40 до 45 °С, а температура обратки – от 35 до 38 °С;
  3. При -20 °С на подачу осуществляется нагрев от 67 до 77 °С, а норма обратки при этом должна быть от 53 до 55 °С;

h3_2 Автономное отопление помогает избегать многих проблем, которые возникают с централизованной сетью, а оптимальная температура теплоносителя может регулироваться в соответствии к сезону.

Оптимальная разница температуры между подачей и обраткой. Защита котла от холодной обратки

При нагреве свыше 90 °С начинают разлагаться пыль и лакокрасочное покрытие.

По этим причинам санитарные нормы запрещают осуществлять больший нагрев. Для расчета оптимальных показателей могут быть использованы специальные графики и таблицы, в которых определены нормы в зависимости от сезона:

  1. При -40 °С за окном для всех приборов отопления ставят максимально допустимые значения. На подаче это – от 95 до 105 °С, а на обратке – 70 °С.
  2. При -20 °С на подачу осуществляется нагрев от 67 до 77 °С, а норма обратки при этом должна быть от 53 до 55 °С;
  3. При среднем показателе за окном 0 °С подача для радиаторов с различной разводкой устанавливается на уровне от 40 до 45 °С, а температура обратки – от 35 до 38 °С;

h3_2 Автономное отопление помогает избегать многих проблем, которые возникают с централизованной сетью, а оптимальная температура теплоносителя может регулироваться в соответствии к сезону.

Норматив разницы температуры в подаче и обратке.

В чем разница между подачей и обраткой отопления

Также должна быть установлена по правилам максимальная температура в системе отопления во избежание дальнейших неисправностей. Радиаторы к системе отопления подключают одним из трех способов: нижним, боковым или диагональным. Также нижнее подключение еще называют по-разному: « », седельное.

По такой схеме обратка и подвод устанавливаются в нижней части батареи.

В большинстве случаев ее применяют, когда трубы проложены под плинтусом либо под поверхностью пола.

Подачу воды в качестве теплового носителя осуществляют в верхней части, а обратка подключается снизу, чтобы температура обратки в системе отопления считалась равнозначной.

Температура обратки в системе отопления.

В чем разница между подачей и обраткой отопления

Подача носителя тепла регулируется вводными задвижками, после которых вода попадает в грязевики, а оттуда раздается по стоякам, а с них подаётся в батареи и радиаторы, обогревающие жильё.Количество задвижек коррелирует с количеством стояков. При выполнении ремонтных работ в отдельно взятой квартире существует возможность отключения одной вертикали, а не всего дома.Отработавшая жидкость частично уходит по обратной трубе, а частично подаётся в сеть горячего водоснабжения.Воду для обогревательной конфигурации готовят на ТЭЦ или в котельной.

Нормы температуры воды в системе отопления прописаны в строительных правилах: компонент должен быть разогрет до 130-150 °С.Подачи рассчитывается с учетом параметров наружного воздуха.

Так, для региона Южный Урал принимается к расчету минус 32 градуса.Чтобы жидкость не закипела, её надо в сеть подавать под давлением 6-10 кгс.

Но это теория. Фактически большинство

Как понизить температуру обратки в системе отопления. В чем разница между подачей и обраткой отопления

Подача носителя тепла регулируется вводными задвижками, после которых вода попадает в грязевики, а оттуда раздается по стоякам, а с них подаётся в батареи и радиаторы, обогревающие жильё.Количество задвижек коррелирует с количеством стояков.

При выполнении ремонтных работ в отдельно взятой квартире существует возможность отключения одной вертикали, а не всего дома.Отработавшая жидкость частично уходит по обратной трубе, а частично подаётся в сеть горячего водоснабжения.Воду для обогревательной конфигурации готовят на ТЭЦ или в котельной. Нормы температуры воды в системе отопления прописаны в строительных правилах: компонент должен быть разогрет до 130-150 °С.Подачи рассчитывается с учетом параметров наружного воздуха.

Так, для региона Южный Урал принимается к расчету минус 32 градуса.Чтобы жидкость не закипела, её надо в сеть подавать под давлением 6-10 кгс.

Но это теория. Фактически большинство

Часто задаваемые вопросы

При образовании нагара ухудшается теплопередача и повышается температура дымовых газов.

Если при той же вырабатываемой мощности котла температура дымовых газов увеличилась, значит необходимо уменьшить время между чистками. По окончании отопительного сезона перед полным выключением котла рекомендуется с пульта включить чистку теплообменника в ручном режиме.Генератор выбирается в зависимости от типа циркуляционного насоса: если насос однофазный, то и генератор можно однофазный.

Допустимая разница температур между подачей и обраткой.

Обратка батареи отопления холодная – устройство, причины, способы устранения

Так же имеют высокую безопасность эксплуатации, продуктивность и оптимальное использование всего оборудования в целом. Затем теплоноситель, то есть вода или антифриз, пройдя по всем имеющимся радиаторам, теряет свою температуру и подается обратно для нагрева.

Самая незамысловатая структура отопления представляет собой нагреватель, две магистрали, расширительный бак и набор радиаторов.

Сантехнический вопрос. точнее отопительный. Для знающих. :)) Какая, именно по вашему мнению, лучше разница температур между подачей и обраткой?
Говорим про индивидуальные системы отопления.
10 или 20 градусов.
Понятно, что при 10-ти ументшается расход энергии, расходуемой котлом на нагрев.. вроде экономия.. Но так же при этиом увеличивается подача насоса, а значит снижается напор, и как следствие уменьшается производительность (фактически мощность) насоса.

При 20-ти значительно уменьшается подача, а соответственно увеличивается напор, что ведет к увеличению производительности насоса и системы, но ведет к бОльшим затратам энергии на котле на нагрев.

Так вот, что по вашему мнению все же предпочтительней, насос большей производительности, но меньше затрат на нагрев теплоносителя, или насос меньшей производительности, но больше затрат на нагрев?

Золотую середину тут не придумать, так что о ней не говорим. :)))
О золотой середине не говорим. 8 лет Еще раз. Ни о каких датчиках не говорим.. . Это совсем другая тема.. . И уточню.. . я не ломаю голову.. . Мне интересно мнение дргух по этому вопросу.. . Дополнен 8 лет назад

Надёжность и производительность отопительной системы зависит от эффективной работы всех частей, входящих в неё.

К ним относятся: котёл для подогрева теплоносителя, определённым образом подсоединённые к нему и между собой радиаторы, расширительный бак, циркуляционный насос, запорная и регулирующая арматура, трубопровод необходимого диаметра.

Создание высокоэффективной системы отопления возможно, благодаря специальным знаниям и опыту в этой сфере деятельности. Немаловажную роль в рабочем процессе отопления помещения играет трубопровод обратки.

Обратка в системе отопления, что это такое

Обратка представляет собой часть трубопровода контура отопления,

осуществляющая передачу охлаждённого теплоносителя, после его прохождения по системе через подключённые радиаторы, в котёл для повышения температуры. Теплоносителем в основном является вода, иногда антифриз.

Фото 1. Схема отопления с использованием твердотопливного котла. Обратка обозначена синим цветом.

Виды отопительных схем

Для многоэтажных зданий часто применяют однотрубную прямую систему разводки. Она не имеет чёткого разделения труб на подвод жидкости в радиаторы и обратку, поэтому полный контур условно делят на две равные части. Стояк, выходящий из котла, называют подача, а трубы, выходящие из последнего радиатора — обраткой. Преимущества этой схемы:

  • экономия времени и материальных затрат;
  • удобство и простота монтажных работ;
  • эстетичный вид;
  • отсутствие стояка обратки и последовательное расположение радиаторов (теплоноситель подаётся на 1-й, затем 2-й, 3-й и так далее).

Для однотрубной системы распространена вертикальная разводка с вертикальным контуром и подводом тепла сверху.

При двухтрубной системе разводки подразумевается установка двух замкнутых, параллельно подключённых, контуров, один из них обеспечивает функцию подвода теплоносителя к отопительному прибору (радиатору), второй — функцию его отвода (обратка).

Радиаторы подключаются несколькими способами:

  • Нижний (или седельный, серповидный). Предусматривает подключение подвода и обратки к нижним соединительным отверстиям радиатора. На верхние отверстия устанавливают кран Маевского и заглушку. Применяют для систем, в которых трубы скрыты под полом или плинтусом. Целесообразны для многосекционных радиаторов, при небольшом числе секций потери тепла доходят до 15%.
  • Боковой способ, пользуется популярностью. Трубы подсоединяют к радиатору с одной стороны: подвод теплоносителя через верх, обратку — через низ. Не подходит для приборов с большим числом секций.

Фото 2. Двухтрубная схема отопления с боковым типом подключения. Указана температура подачи и обратки.

  • Диагональный (или боковой перекрёстный) способ подразумевает подачу горячей воды сверху, подключение обратки — снизу и с другой стороны. Подходит для радиаторов с числом секций не менее 14 шт.
  • Третьим вариантом организации схемы отопления является гибридный способ, основанный на одновременном использовании однотрубной и двухтрубной систем. Например, коллекторная схема предполагает подачу теплоносителя через одиночный стояк, дальнейшая разводка на месте осуществляется по индивидуальному плану.

Принцип работы, как повысить производительность

Одиночный контур не обеспечивает равномерного прогревания отопительных приборов, теплоотдача уменьшается по мере удаления от котла (в последние радиаторы поступает теплоноситель холоднее, чем на первые). Недостаток подобной системы — большие значения давления теплоносителя.

Справка. производительность однотрубной системы повышается при наличии циркулярного насоса или байпасов, сформированных на каждом этаже.

Преимущества двухтрубного варианта отопления:

  • прогрев достаточного числа приборов в равной степени, вне зависимости от их расстояния до источника тепла;
  • корректирование температурного режима, проведение ремонтных мероприятий на отдельном приборе не оказывает влияние на работу других.

Недостатки:

  • сложность схемы разводки;
  • трудоёмкость установки и подключения.

Оптимальным выбором для частного строительства является самая производительная двухтрубная система, которую также часто выбирают для отопления элитного жилья.

Монтаж двухтрубной системы целесообразно проводить с установкой циркуляционного насоса, который позволяет использовать трубы меньшего диаметра.

После него, с целью предохранения контура рециркуляции от продавливания, ставят обратный клапан.

При монтаже системы без циркулярного насоса соблюдается правило: подача возможна если есть уклон от или к котлу. Теплоноситель с более высокой температурой через подвод (наклон от котла к отопительному прибору) поступает в радиатор и прогревает его, а затем выходит через обратку (наклон от радиатора к котлу), но с уже меньшей температурой. Опытные мастера нередко прибегают к замене рециркуляционного насосного кольца на систему 3-х или 4-х ходовых смесителей.

Важно! При естественной циркуляции, весь трубопровод от стояка к радиаторам не должна иметь большую длину.

Особенности

Продолжительная работа котельного оборудования возможна при правильно спроектированной системе разводки труб, которая обеспечивает определённую разницу температур между трубами, выводящими и подводящими теплоноситель.

Внимание! Наличие существенной разницы температурных значений является причиной образования на камере сгорания обильного конденсата.

Капли воды, особенно в соединении с образующимся при горении оксидом углерода (в случае твердотопливного оборудования), быстро разъедают стенки камеры, нарушается герметичность важного элемента, и котёл выходит из строя.

Приемлемым решением в данной ситуации является подсоединение дополнительного водонагревающего устройства — бойлера. Он устанавливается рядом с котлом специальным образом, чтобы теплоноситель, пройдя по всем приборам системы, попал в него, а затем в котёл.

Фото 3. Система отопления с бойлером для нагрева воды. Прибор установлен рядом с газовым котлом.

Таблица температуры в трубопроводе отопления

Температура отопления, включая трубы обратки, напрямую зависит от показателей уличных термометров. Чем холоднее воздух на улице и выше скорость ветра, тем больше затрат на тепло.

Разработана нормативная таблица, отражающая значения температур на входе, подаче и выходе теплового носителя в системе отопления. Представленные в таблице показатели обеспечивают комфортные условия для человека в жилом помещении:

Темп. внешняя, °С+8+5+1-1-2-5-10-15-20-25-30-35
Темп. на входе424753555658626976839097104
Темп. радиаторов40445051525457647076828894
Темп. обратки34374142434446505458626769

Важно! разница между температурами значениями подачи и обратки зависит от направления движения теплоносителя. Если разводка сверху, перепады составляют не больше 20°С, если снизу — 30°С.

Норма давления

Эффективная передача и равномерное распределение теплоносителя, для производительности всей системы с минимальными потерями тепла возможны при нормальном рабочем давлении в трубных магистралях.

Давление теплоносителя в системе подразделяется по способу действия на в виды:

  • Статическое. Сила воздействия неподвижного теплоносителя на единицу площади.
  • Динамическое. Сила действия при движении.
  • Предельный напор. Соответствует оптимальному значению давления жидкости в трубах и способному поддержать работу всех обогревательных приборов на нормальном уровне.

Согласно СНиП оптимальный показатель равен 8—9,5 атм, снижение давления до 5—5,5 атм. нередко приводит к перебоям отопления.

Для каждого конкретного дома показатель нормального давления индивидуален. На его значение влияют факторы:

  • мощность насосной системы, подающей теплоноситель;
  • диаметр трубопровода;
  • отдалённость помещения от котельного оборудования;
  • износ частей;
  • напор.

Контролировать давление позволяют манометры, монтирующиеся непосредственно в трубопровод.

Почему не работает обратка

Существует множество проблем, связанных с обраткой в отопительной системе.

Передавливает подачу

Температура воды в трубопроводе обратки определяется устройством системы отопления, соответствует значению в графике температур, утверждённому обслуживающей организацией.

Нередко жильцы квартир сталкиваются с проблемой, когда обратка передавливает подачу.

Распространённая причина — переход горячего теплоносителя из магистрали подачи в контур обратки через всевозможные части (например, перемычки) трубопровода горячего водоснабжения или вентиляцию. При автоматическом приборе регулирования, как правило, достаточно его правильно настроить.

Теплоноситель плохо сходит

При нарушении циркуляции жидкости в тепловом контуре, вода в трубах обратки плохо сходит. Первоначально проверяют соответствие мощности циркуляционного насоса требованиям. Причина может скрываться в банальной протечке трубопровода. Ситуация с плохой циркуляцией типична для многоквартирных домов, расположенных на конечном участке теплотрассы с недостаточным перепадом давления.

Обратка холодная, забиты трубы

Низкая температура обратки — серьёзная проблема, мешающая обеспечить комфорт в помещении. Причины холодной обратки:

  • неправильная разводка отопления;
  • воздушный пузырь в системе или стояке;
  • недостаточный расход воды по сети;
  • заниженная температура в подводных трубах;
  • увеличенные объёмы теплопотерь;
  • неэффективность насосного оборудования, результат: слабая циркуляция и недостаточный перепад температур между подачей тепла и обраткой;
  • пониженное давление;
  • забитые трубы и радиаторы.

Применение кранов Маевского позволяет ликвидировать воздушные пробки, препятствующие движению теплоносителя.

Фото 4. Кран Маевского, установленный на радиаторе отопления. При помощи него можно спустить лишний воздух из системы.

Важно правильно спускать воздух:

  • запорной арматурой остановить подачу тепла;
  • открыть кран Маевского, спускать теплоноситель с воздухом;
  • восстановить перемещение тепла, открыв запор.

Узкий проход регулировочного крана нередко объясняет заниженную температуру обратки, это повод заменить его на новый.

Периодически проверяют трубопровод на засорённость, которая мешает движению теплоносителя. Грязь и отложения удаляют. Если восстановить проходимость труб не получается, участок заменяют новым трубопроводом.

Внимание! Установить точную причину неполадки можно после проверки всей отопительной системы.

Температура обратки отопления | Блог инженера теплоэнергетика

          Доброго времени суток, уважаемые читатели! Если вы хотя бы немного сталкивались с эксплуатацией и обслуживанием систем центрального отопления, то вам наверняка приходилось слышать про такое понятие, как перегрев обратки.Что же это такое, почему возникает, и как с ним бороться?

         Перегрев обратки – это когда температура воды на выходе с дома превышает температуру, которая должна быть по температурному графику. То есть по графику допустим, в обратке должно быть  63 °С, по факту 67 °С. Причем перегрев по температурному графику надо смотреть не по температуре наружного воздуха, так как тепловая сеть инерционна, а температура в течение дня меняется. Сравнивать нужно по температуре t1, то есть температуре в подаче.

       Смотрим вначале показания термометра по подаче t1, затем  в температурный график, какая должна быть соответствующая температура t2. Затем смотрим по термометру фактическую t2 и сравниваем с t2 по графику. Хорошо, когда t2 совпадает или чуть меньше t2 по температурному графику. И плохо если по факту температура обратка завышена против графика. Согласно пункту 9.2.1 «Правил технической эксплуатации тепловых энергоустановок» “среднесуточная температура обратной сетевой воды не должна превышать заданную температурным графиком температуру более чем на 5%”.

       Сейчас ушлые энергетики включают в обязательном порядке этот пункт из Правил в договоры теплоснабжения. То есть если перегрев у вас выскочит за пределы 5% , то вам дополнительно насчитают денежный штраф за превышение обратки. Если перегрев укладывается в эти 5%, штрафа не будет, но лучше вам все равно перегрев устранить. Идеальный вариант – когда обратка у вас в графике, или немного ниже.

          Причин перегрева в основном две. Первая – переток через различные перемычки между подачей и обраткой, то есть из подачи в обратку. В основном это происходит либо через линию горячего водоснабжения, либо через вентиляцию. Поэтому если у вас обнаружился перегрев, в первую очередь посмотрите, нет ли перетока из подачи в обратку. Но по факту такое происходит нечасто.

         Основная и главная причина перегрева, в 95 % случаев – это повышенный расход сетевой воды. То есть сетевой воды при перегреве через ваш теплоузел проходит больше, чем вам нужно на самом деле. Почему же энергетики так борются с перегревом? Повышенный расход сетевой воды свидетельствует о не расчетном расходе теплоносителя, то есть расход завышен и больше расчетного. А это – завышенная циркуляция, при которой происходит рост расхода электроэнергии на привод сетевых насосов на теплоисточнике. Электроэнергия стоит денег, поэтому завышенная обратка – прямые убытки для теплоснабжающей организации.

         Приходилось слышать мнение,  что завышенная обратка выгодна потребителю. Дескать, если вернуть с дома Т2 с перегревом от графика, то теплопотребление станет меньше, т.к. разница Т1-Т2 уменьшится. Однако это не так. Количество тепла Qпотр., Гкал, считается в общем случае так. Количество тепла по подаче Q 1 = G1* ( t1- tх.в.)*0,001 где G1 – это расход воды в тоннах в час; т/час; t1 – температура воды по подаче ; tх.в. – температура холодной воды, которая подготавливается и нагревается на теплоисточнике, обычно tх.в. принимается  5 °С.

       Количество тепла по обратке считается аналогично: Q 1  = G2*(t2- tх.в.)*0,001. Расход потребленного тепла определяется по формуле: Qпотр = Q1— Q2= G1*( t1- tх.в.)*0,001- G2*(t2- tх.в.)*0,001. Вот и получается, что хоть разница t1- t2 и уменьшается в случае перегрева, но повышенный расход G формуле в итоге перевешивает, и количество тепла Qпотр все же получается больше. Вообщем вывод такой: для потребителя перегрев по обратке означает перетоп всего здания и повышение количества потребленного тепла и потребителю однозначно экономически невыгоден.

         Как устранить перегрев? Для этого в ИТП (теплоузле) на подаче, до элеватора необходимо отрегулировать регулятор давления (либо регулятор расхода), смотря что установлено. Что такое регулятор давления РД, я писал здесь. Регулируя через РД давление, и смотря по показанием теплосчетчика, либо термометров и манометров, можно выставить необходимое давление, при котором расход не будет превышать расчетный. Лучше конечно, пусть это сделают специалисты. Если  теплоузел у автоматизирован современной автоматикой, то при нормальном режиме работы оборудования перегрев невозможен в принципе.

      Совсем недавно я написал и выпустил книгу, полностью посвященную  обратке отопления, перегреву по обратке. Она называется «Все,что вы хотели знать про перегрев обратки!».

Вот содержание этой книги:

1. Введение

2. Что такое обратка отопления?

3. Из за чего возникает перегрев обратки?

4. Штрафные санкции со стороны теплоснабжающей организации за перегрев обратки.

5. Как отрегулировать систему отопления и устранить перегрев по обратному трубопроводу?

6. Заключение

Просмотреть ее можно по ссылке ниже:

Все, что вы хотели знать про перегрев обратки!

         Буду рад комментариям к статье.


что это такое, таблица норм температуры, почему не работает, передавливает подачу, плохо сходит

Надёжность и производительность отопительной системы зависит от эффективной работы всех частей, входящих в неё.

К ним относятся: котёл для подогрева теплоносителя, определённым образом подсоединённые к нему и между собой радиаторы, расширительный бак, циркуляционный насос, запорная и регулирующая арматура, трубопровод необходимого диаметра.

Создание высокоэффективной системы отопления возможно, благодаря специальным знаниям и опыту в этой сфере деятельности. Немаловажную роль в рабочем процессе отопления помещения играет трубопровод обратки.

Обратка в системе отопления, что это такое

Обратка представляет собой часть трубопровода контура отопления, осуществляющая передачу охлаждённого теплоносителя, после его прохождения по системе через подключённые радиаторы, в котёл для повышения температуры. Теплоносителем в основном является вода, иногда антифриз.

Фото 1. Схема отопления с использованием твердотопливного котла. Обратка обозначена синим цветом.

Виды отопительных схем

Для многоэтажных зданий часто применяют однотрубную прямую систему разводки. Она не имеет чёткого разделения труб на подвод жидкости в радиаторы и обратку, поэтому полный контур условно делят на две равные части. Стояк, выходящий из котла, называют подача, а трубы, выходящие из последнего радиатора — обраткой. Преимущества этой схемы:

  • экономия времени и материальных затрат;
  • удобство и простота монтажных работ;
  • эстетичный вид;
  • отсутствие стояка обратки и последовательное расположение радиаторов (теплоноситель подаётся на 1-й, затем 2-й, 3-й и так далее).

Для однотрубной системы распространена вертикальная разводка с вертикальным контуром и подводом тепла сверху.

При двухтрубной системе разводки подразумевается установка двух замкнутых, параллельно подключённых, контуров, один из них обеспечивает функцию подвода теплоносителя к отопительному прибору (радиатору), второй — функцию его отвода (обратка).

Радиаторы подключаются несколькими способами:

  • Нижний (или седельный, серповидный). Предусматривает подключение подвода и обратки к нижним соединительным отверстиям радиатора. На верхние отверстия устанавливают кран Маевского и заглушку. Применяют для систем, в которых трубы скрыты под полом или плинтусом. Целесообразны для многосекционных радиаторов, при небольшом числе секций потери тепла доходят до 15%.
  • Боковой способ, пользуется популярностью. Трубы подсоединяют к радиатору с одной стороны: подвод теплоносителя через верх, обратку — через низ. Не подходит для приборов с большим числом секций.

Фото 2. Двухтрубная схема отопления с боковым типом подключения. Указана температура подачи и обратки.

  • Диагональный (или боковой перекрёстный) способ подразумевает подачу горячей воды сверху, подключение обратки — снизу и с другой стороны. Подходит для радиаторов с числом секций не менее 14 шт.
  • Третьим вариантом организации схемы отопления является гибридный способ, основанный на одновременном использовании однотрубной и двухтрубной систем. Например, коллекторная схема предполагает подачу теплоносителя через одиночный стояк, дальнейшая разводка на месте осуществляется по индивидуальному плану.

Принцип работы, как повысить производительность

Одиночный контур не обеспечивает равномерного прогревания отопительных приборов, теплоотдача уменьшается по мере удаления от котла (в последние радиаторы поступает теплоноситель холоднее, чем на первые). Недостаток подобной системы — большие значения давления теплоносителя.

Справка. производительность однотрубной системы повышается при наличии циркулярного насоса или байпасов, сформированных на каждом этаже.

Преимущества двухтрубного варианта отопления:

  • прогрев достаточного числа приборов в равной степени, вне зависимости от их расстояния до источника тепла;
  • корректирование температурного режима, проведение ремонтных мероприятий на отдельном приборе не оказывает влияние на работу других.

Недостатки:

  • сложность схемы разводки;
  • трудоёмкость установки и подключения.

Оптимальным выбором для частного строительства является самая производительная двухтрубная система, которую также часто выбирают для отопления элитного жилья.

Монтаж двухтрубной системы целесообразно проводить с установкой циркуляционного насоса, который позволяет использовать трубы меньшего диаметра.

После него, с целью предохранения контура рециркуляции от продавливания, ставят обратный клапан.

При монтаже системы без циркулярного насоса соблюдается правило: подача возможна если есть уклон от или к котлу. Теплоноситель с более высокой температурой через подвод (наклон от котла к отопительному прибору) поступает в радиатор и прогревает его, а затем выходит через обратку (наклон от радиатора к котлу), но с уже меньшей температурой. Опытные мастера нередко прибегают к замене рециркуляционного насосного кольца на систему 3-х или 4-х ходовых смесителей.

Важно! При естественной циркуляции, весь трубопровод от стояка к радиаторам не должна иметь большую длину.

Вам также будет интересно:

Особенности

Продолжительная работа котельного оборудования возможна при правильно спроектированной системе разводки труб, которая обеспечивает определённую разницу температур между трубами, выводящими и подводящими теплоноситель.

Внимание! Наличие существенной разницы температурных значений является причиной образования на камере сгорания обильного конденсата.

Капли воды, особенно в соединении с образующимся при горении оксидом углерода (в случае твердотопливного оборудования), быстро разъедают стенки камеры, нарушается герметичность важного элемента, и котёл выходит из строя.

Приемлемым решением в данной ситуации является подсоединение дополнительного водонагревающего устройства — бойлера. Он устанавливается рядом с котлом специальным образом, чтобы теплоноситель, пройдя по всем приборам системы, попал в него, а затем в котёл.

Фото 3. Система отопления с бойлером для нагрева воды. Прибор установлен рядом с газовым котлом.

Таблица температуры в трубопроводе отопления

Температура отопления, включая трубы обратки, напрямую зависит от показателей уличных термометров. Чем холоднее воздух на улице и выше скорость ветра, тем больше затрат на тепло.

Разработана нормативная таблица, отражающая значения температур на входе, подаче и выходе теплового носителя в системе отопления. Представленные в таблице показатели обеспечивают комфортные условия для человека в жилом помещении:

Темп. внешняя, °С+8+5+10-1-2-5-10-15-20-25-30-35
Темп. на входе424753555658626976839097104
Темп. радиаторов40445051525457647076828894
Темп. обратки34374142434446505458626769

Важно! разница между температурами значениями подачи и обратки зависит от направления движения теплоносителя. Если разводка сверху, перепады составляют не больше 20°С, если снизу — 30°С.

Норма давления

Эффективная передача и равномерное распределение теплоносителя, для производительности всей системы с минимальными потерями тепла возможны при нормальном рабочем давлении в трубных магистралях.

Давление теплоносителя в системе подразделяется по способу действия на в виды:

  • Статическое. Сила воздействия неподвижного теплоносителя на единицу площади.
  • Динамическое. Сила действия при движении.
  • Предельный напор. Соответствует оптимальному значению давления жидкости в трубах и способному поддержать работу всех обогревательных приборов на нормальном уровне.

Согласно СНиП оптимальный показатель равен 8—9,5 атм, снижение давления до 5—5,5 атм. нередко приводит к перебоям отопления.

Для каждого конкретного дома показатель нормального давления индивидуален. На его значение влияют факторы:

  • мощность насосной системы, подающей теплоноситель;
  • диаметр трубопровода;
  • отдалённость помещения от котельного оборудования;
  • износ частей;
  • напор.

Контролировать давление позволяют манометры, монтирующиеся непосредственно в трубопровод.

Почему не работает обратка

Существует множество проблем, связанных с обраткой в отопительной системе.

Передавливает подачу

Температура воды в трубопроводе обратки определяется устройством системы отопления, соответствует значению в графике температур, утверждённому обслуживающей организацией.

Нередко жильцы квартир сталкиваются с проблемой, когда обратка передавливает подачу.

Распространённая причина — переход горячего теплоносителя из магистрали подачи в контур обратки через всевозможные части (например, перемычки) трубопровода горячего водоснабжения или вентиляцию. При автоматическом приборе регулирования, как правило, достаточно его правильно настроить.

Теплоноситель плохо сходит

При нарушении циркуляции жидкости в тепловом контуре, вода в трубах обратки плохо сходит. Первоначально проверяют соответствие мощности циркуляционного насоса требованиям. Причина может скрываться в банальной протечке трубопровода. Ситуация с плохой циркуляцией типична для многоквартирных домов, расположенных на конечном участке теплотрассы с недостаточным перепадом давления.

Обратка холодная, забиты трубы

Низкая температура обратки — серьёзная проблема, мешающая обеспечить комфорт в помещении. Причины холодной обратки:

  • неправильная разводка отопления;
  • воздушный пузырь в системе или стояке;
  • недостаточный расход воды по сети;
  • заниженная температура в подводных трубах;
  • увеличенные объёмы теплопотерь;
  • неэффективность насосного оборудования, результат: слабая циркуляция и недостаточный перепад температур между подачей тепла и обраткой;
  • пониженное давление;
  • забитые трубы и радиаторы.

Применение кранов Маевского позволяет ликвидировать воздушные пробки, препятствующие движению теплоносителя.

Фото 4. Кран Маевского, установленный на радиаторе отопления. При помощи него можно спустить лишний воздух из системы.

Важно правильно спускать воздух:

  • запорной арматурой остановить подачу тепла;
  • открыть кран Маевского, спускать теплоноситель с воздухом;
  • восстановить перемещение тепла, открыв запор.

Узкий проход регулировочного крана нередко объясняет заниженную температуру обратки, это повод заменить его на новый.

Периодически проверяют трубопровод на засорённость, которая мешает движению теплоносителя. Грязь и отложения удаляют. Если восстановить проходимость труб не получается, участок заменяют новым трубопроводом.

Внимание! Установить точную причину неполадки можно после проверки всей отопительной системы.

Вам также будет интересно:

Перегрев обратного теплоносителя

Иногда температура на выходе, наоборот, выше нормы на 5% и более, чем в таблице температур. Если причина в повышенном расходе воды, то его следует отрегулировать до нормального уровня. Если вода в обратке горячее, чем в подаче, проверяют правильность подсоединения труб к стоякам магистральной системы.

Регулировка

Поддерживать температуру радиатора на определённом уровне и разницу температур труб подвода и обратки на минимуме позволяет специальный регулятор температур.

Справка. Монтирование прибора проводится на трубе с горячей водой перед входом всех радиаторов. Отсутствие регулятора подразумевает регулировку одновременно всех подключённых к стояку.

Зачем нужен клапан

Правильный проект системы отопления разрабатывают с учётом разницы температурных значений в трубах подвода теплоносителя и обратки.

Нередко, вместо установки бойлера, применяют другой вариант защиты, обеспечивающий продолжительную эксплуатацию твердотопливного котельного оборудования.

Помогает подсоединение байпаса, который представляет собой специально врезанную трубу, позволяющую остывшему теплоносителю изменить направление движения в обход котла.

Байпас обеспечивает циркуляцию теплоносителя по, так называемому, малому контуру. При формировании этого контура, в месте соединения байпаса и обратки ставят термостатический или трёхходовой кран.

Он срабатывает в зависимости от предварительно настроенного режима температуры. По достижении теплоносителем, циркулирующим по малому кругу, заданной температуры (обычно 55—60°), клапан приоткрывается. Это обеспечивает поступление очередной порции остывшего теплоносителя из системы обратки и позволяет значительно сократить время его нагрева перед поступлением в котёл.

Постоянное смешивание горячего и холодного теплоносителя поддерживает температуру жидкости, входящей в котёл, на оптимальном значении.

Важно! Малый циркуляционный круг позволяет прогреть достаточно большой объём воды, что предотвратит процесс образования конденсата на камере сгорания и сохраняет её герметичность, а значит и работоспособность, длительное время.

Полезное видео

Посмотрите видео, в котором рассказывается о том, как выполнить балансировку системы отопления.

В работе отопительной системы «мелочей» нет

Чтобы дома было тепло, важно следить за производительностью всех составляющих отопительной системы. Зачастую проблемы трубопровода обратки появляются вследствие нарушения работы или поломки другого узла. Не всегда дефект можно устранить самостоятельно, иногда следует обратиться за помощью к квалифицированным специалистам.

Температура воды на подаче и обратке

Температура обратки в системе отопления

Защита котла от холодной обратки

Многие производители котельного оборудования требуют, чтобы на входе в котел была вода не ниже определенной температуры, т. к. холодная обратка плохо сказывается на котле:

    • снижается КПД котла,
    • увеличивается выпадение конденсата на теплообменнике, что приводит к коррозии котла,
    • из-за большой разницы температур на входе и выходе теплообменника его металл расширяется по разному — отсюда напряжения и возможное растрескивание тела котла.

Ниже мы рассмотрим как защитить котел от холодной обратки.
Способ первый — идеальный, но дорогой. Esbe предлагает готовый модуль для подмеса в обратку котла и управления загрузкой теплоаккумулятора (актуально для твердотопливных котлов) — устройство LTC 100 — аналог популярного узла Laddomat (ладдомат).
Фаза 1. Начало процесса горения. Смесительное устройство позволяет быстро повысить температуру котла, таким образом начиная циркуляцию воды только в контуре котла.
Фаза 2: Начало загрузки накопительного бака. Термостат, открывая подключение от накопительного бака, задаёт температуру, которая зависит от версии изделия. Высокая, гарантированная обратная температура к котлу, поддерживается благодаря всему циклу сгорания
Фаза 3: Накопительный бак в процессе загрузки. Хорошее управление обеспечивает эффективную загрузку накопительного бака и правильное расслоение в нём.
Фаза 4: Накопительный бак полностью загружен. Даже на окончательном этапе цикла сгорания, высокое качество регулировки обеспечивает хороший контроль обратной температуры к котлу с одновременной полной загрузкой накопительного бака
Фаза 5: Окончание процесса сгорания. Полностью закрывая верхнее отверстие, поток прямо направляется в накопительный бак, используя тепло в котле
Способ второй — попроще, используя трехходовой термосмесительный клапан высокого качества .
Например клапаны от ESBE VTC511-60С или VTC531-60С или VTC300. Эти клапаны различаются в зависимости от мощности используемого котла. VTC300 используется при мощности котла до 30кВт, VTC511 и VTC531 — при более мощных котлах от 30 до 150 кВт

Термостатический смесительный клапан ESBE VTC300
— для подмеса в обратку котла мощностью до 30 кВт
Термостатический смесительный клапан ESBE VTC500 —
для подмеса в обратку котла мощностью от 30 до 150 кВт

Клапан монтируется на байпасной линии между подачей и обраткой котла. Встроенный термостат открывает вход «А» при температуре на выходе «АВ» равной настройке термостата (50, 55, 60, 65, 70 или 75°C). Вход «В» полностью закрывается когда когда температура на входе «А» превышает номинальную температуру открытия на 10°C.
Подобный клапан выпускает Herz Armaturen — трехходовой термосмесительный клапан Антиконденсат . Выпускается два вида клапанов Heiz Антиконденсат — с отключаемым и фиксированным байпасом.
Схема применения трехходового смесительного клапана Heiz Антиконденсат

Работа клапана с отключаемым байпасом (Heiz антиконденсат DN25, DN32):При температуре теплоносителя на выходе клапана «АВ» менее 61°C, вход «А» закрыт, через вход «В» идет горячая вода от подачи котла в обратку. При превышении температуры теплоносителя на выходе «АВ» более 63°C байпасный вход «B» перекрывается и теплоноситель из обратки системы через вход «А» поступает в обратку котла. Байпасный выход «В» открывается вновь при падении температуры на выходе «АВ» до уровня 55°C

Работа клапана с фиксированным байпасом (Heiz антиконденсат байпас DN25, DN32):При прохождении через выход «АВ» теплоносителя температурой менее 61°C, вход «А» с обратки системы закрыт, на выход «АВ» подается горячий теплоноситель с байпаса «В». При достижении на выходе «АВ»температуры более 63°C вход «А» открывается, и вода из обратки смешивается с водой из байпаса «В». Для уравнивания байпаса (чтобы котел не работал постоянно на малый круг циркуляции) перед входом «В» на байпасе требуется установить балансировочный клапан.

Если же вы не уверены в том какая температура смешения требуется — есть решение — трехходовой смесительный клапан ESBE VTC422 для котлов на твердом топливе до 50 кВт, с регулируемой температурой подмеса от 50°C до 70°C.

Данный клапан может быть установлен как для подмеса воды в обратку котла, так и для заполнения теплоаккумулятора, просто переверните клапан согласно инструкции.

Tермозапорный клапан начинает открывать соединение A, когда температура выходящего смешанного теплоносителя в соединении AB находится в диапазоне 50-70ºC (в зависимости от настроек клапана VTC422). Условия стабильности температуры действительны, если горячий теплоноситель >10°C теплее, чем смешанный теплоноситель, а холодный теплоноситель >20°C холоднее, чем смешанный.

Источник: https://www.heiz.ru/articles/1391.html

Температура обратки твердотопливного котла

Отопительный котёл длительного горения на твердом топливе представляет собой довольно удачный вариант для организации обогрева помещений, а также горячего водоснабжения. Материалом для изготовления таких котлов является сталь или чугун. Выделение тепловой энергии происходит в процессе сгорания твёрдого топлива: дров, угля, торфа, а также брикетов и специальных гранул (пеллет). Подобный тип оборудования считается отличной альтернативой газовым установкам и часто используется в тех местах, где их монтаж нерентабелен. К преимуществам можно отнести невысокую стоимость применяемого топлива, а также долговечность, надёжность и экономичность.

Работа твердотопливного пиролизного котла предполагает некоторые особенности, которые должны учитываться в ходе функционирования. В качестве теплоносителя используется обычная вода и её температура должна поддерживаться на определённом уровне. Падение температуры обратки твердотопливного котла отопления ниже 60 градусов по Цельсию приводит к негативным результатам, в частности т к обильному образованию конденсата. Следует подробнее рассмотреть указанный фактор, поскольку он играет важную роль в процессе обеспечения работы устройства. Так откуда берётся вода внутри котла? Даже если древесина полностью сухая, то примерно 5-7 процентов от её массы составляет водород. Этот элемент содержится в подавляющем большинстве топлива, используемого для подобных устройств. В процессе сгорания образуется вода, которая быстро переходит в парообразное состояние и конденсируется на холодных поверхностях котла. Если топливо находилось не в герметичной упаковке, то оно впитывает некоторый процент влаги из воздуха.

Конденсат в твердотопливном котле

Образование конденсата представляет собой серьёзную опасность для металлических поверхностей. Вкупе с высокой температурой весьма быстро протекают процессы окисления. Коррозия постепенно разрушает материал, а также уменьшает эффективность всей установки. Особенно высокая чувствительность к образованию конденсата демонстрируется у котлов изготовленных из сталей с высоким КПД и низкой температурой уходящих дымовых газов. Образование конденсата в твердотопливном котел лучше не допускать

Как показывает практика, подобный фактор представляет проблему, если температура находится на уровне ниже 60 градусов. Это «точка росы» для твердотопливных котлов длительного горения. В случае превышения установленного параметра, образования конденсата в процессе работы происходить не будет. Наиболее эффективные методы борьбы с конденсатом – нагрев теплоносителя свыше 60 градусов, безсернистое топливо, а также утеплённая труба для дымовых газов.

Источник: https://www.trayan-kotel.com/articles/temperatura-obratki-tverdotoplivnogo-kotla

Температурный график отопления — AQUEO.RU

Подача тепла в помещение связана с простейшим температурным графиком. Температурные значения воды, которая подается из котельной, не изменяются в помещении. Они имеют стандартные значения и находятся в пределах от +70ºС до +95ºС. Такой температурный график системы отопления является самым востребованным.

Регулировка температуры воздуха в доме

Не везде на территории страны есть централизованное отопление, поэтому многие жители устанавливают независимые системы. Их температурный график отличается от первого варианта. В этом случае температурные показатели значительно снижены. Они зависят от эффективности современных котлов отопления.

Если температура доходит до +35ºС, то котел будет работать на максимальной мощности. Это зависит от нагревательного элемента, где тепловая энергия может забираться уходящими газами. Если температурные значения будут больше +70ºС, то производительность котла падает. В таком случае в его технической характеристике указывается КПД 100%.

Температурный график и его расчет

Как будет выглядеть график, зависит от температуры наружного воздуха. Чем больше отрицательное значение наружной температуры, тем больше теплопотери. Многие не знают, откуда брать данный показатель. Эта температура прописана в нормативных документах. За расчетное значение принимают температуры самой холодной пятидневки, причем берется самое низкое значение за последние 50 лет.

График зависимости наружной и внутренней температуры

На графике представлена зависимость наружной и внутренней температуры. Допустим, температура наружного воздуха равна -17ºС. Проведя вверх линию до пересечения с t2, получим точку, характеризующую температуру воды в системе отопления.

Благодаря температурному графику, можно подготовить систему отопления даже под самые суровые условия. Также он сокращает материальные затраты на установку отопительной системы. Если рассматривать этот фактор с точки зрения массового строительства, экономия является существенной.

Температура внутри помещения зависит от температуры теплоносителя, а также других факторов:

  • Температура наружного воздуха. Чем она меньше, тем отрицательнее это сказывается на отоплении;
  • Ветер. При возникновении сильного ветра теплопотери увеличиваются;
  • Температура внутри помещения зависит от теплоизоляции конструктивных элементов здания.

За последние 5 лет принципы строительства изменились. Строители увеличивают стоимость дома с помощью теплоизоляции элементов. Как правило, это касается подвалов, крыш, фундаментов. Эти дорогостоящие мероприятия впоследствии позволяют жильцам экономить на системе отопления.

Температурный график отопления

На графике показывается зависимость температуры наружного и внутреннего воздуха. Чем ниже температура наружного воздуха, тем выше будет температура теплоносителя в системе.

Температурный график разрабатывается для каждого города во время отопительного периода. В малых населенных пунктах составляется температурный график котельной, которая обеспечивает необходимое количество теплоносителя потребителю.

Изменять температурный график можно несколькими способами:

  • количественным – характеризуется изменением расхода теплоносителя, подаваемого в систему отопления;
  • качественным – состоит в регулировании температуры теплоносителя перед подачей в помещения;
  • временным – дискретный метод подачи воды в систему.

Температурный график представляет собой график отопительных трубопроводов, который распределяет отопительную нагрузку и регулируется с помощью централизованных систем. Существует также повышенный график, он создается для замкнутой системы отопления, то есть для обеспечения подачи горячего теплоносителя в подключаемые объекты. При применении открытой системы необходимо проводить корректировку температурного графика, так как теплоноситель расходуется не только на отопление, но и бытовое водопотребление.

Расчет температурного графика производится по простому методу. Чтобы его построить, необходимы исходные температурные данные воздуха:

  • наружного;
  • в помещении;
  • в подающем и обратном трубопроводе;
  • на выходе из здания.

Кроме того, следует знать номинальную тепловую нагрузку. Все остальные коэффициенты нормируются справочной документацией. Расчет системы производится для любого температурного графика, в зависимости от назначения помещения. Например, для крупных промышленных и гражданских объектов составляется график 150/70, 130/70, 115/70. Для жилых домов этот показатель составляет 105/70 и 95/70. Первый показатель показывает температуру на подачи, а второй — на обратке. Результаты расчетов заносятся в специальную таблицу, где показывается температура в определенных точках отопительной системы, в зависимости от наружной температуры воздуха.

Основным фактором при расчете температурного графика является наружная температура воздуха. Расчетная таблица должна быть составлена так, чтобы максимальные значения температуры теплоносителя в системе отопления (график 95/70) обеспечивали обогрев помещения. Температуры в помещении предусмотрены нормативными документами.

Температура отопительных приборов

Температура отопительных приборов

Основной показатель — температура отопительных приборов. Идеальным температурным графиком для отопления является 90/70ºС. Добиться такого показателя невозможно, так как температура внутри помещения должна быть не одинаковой. Она определяется в зависимости от назначения помещения.

В соответствии со стандартами, температура в угловой жилой комнате составляет +20ºС, в остальных – +18ºС; в ванной – +25ºС. Если наружная температура воздуха равна -30ºС, то показатели увеличиваются на 2ºС.

Кроме того, существует нормы для других типов помещений:

  • в помещениях, где находятся дети – +18ºС до +23ºС;
  • детские учебные учреждения – +21ºС;
  • в культурных заведениях с массовым посещением – +16ºС до +21ºС.

Такая область температурных значений составлена для всех видов помещений. Она зависит от выполняемых движений внутри комнаты: чем их больше, тем меньше температура воздуха. Например, в спортивных учреждениях люди много двигаются, поэтому температура составляет всего +18ºС.

Температура воздуха в помещении

Существуют определенные факторы, от которых зависит температура отопительных приборов:

  • Температура наружного воздуха;
  • Вид системы отопления и перепад температур: для однотрубной системы – +105ºС, а для однотрубной – +95ºС. Соответственно перепады в для первой области составляют 105/70ºС, а для второй – 95/70ºС;
  • Направление подачи теплоносителя в отопительные приборы. При верхней подаче разница должна быть 2 ºС, при нижней – 3ºС;
  • Вид отопительных приборов: теплоотдачи отличаются, поэтому будет отличаться температурный график.

В первую очередь, температура теплоносителя зависит от наружного воздуха. Например, на улице температура равна 0ºС. При этом температурный режим в радиаторах должен быть равен на подаче 40-45ºС, а на обратке – 38ºС. При температуре воздуха ниже нуля, например, -20ºС, эти показатели изменяются. В данном случае температура подачи становится равна 77/55ºС. Если показатель температуры доходит до -40ºС, то показатели становятся стандартными, то есть на подаче +95/105ºС, а на обратке – +70ºС.

Дополнительные параметры

Чтобы определенная температура теплоносителя дошла до потребителя, необходимо следить за состоянием наружного воздуха. Например, если она составляет -40ºС, котельная должна подавать горячую воду с показателем в +130ºС. По ходу теплоноситель теряет тепло, но все равно температура остается большой при поступлении в квартиры. Оптимальное значение +95ºС. Для этого в подвалах монтируют элеваторный узел, служащий для смешивания горячей воды из котельной и теплоносителя с обратного трубопровода.

За теплотрассу отвечает несколько учреждений. За подачу горячего теплоносителя в систему отопления следит котельная, а за состоянием трубопроводов – городские тепловые сети. За элеваторный элемент несет ответственность ЖЕК. Поэтому чтобы решить проблему подачи теплоносителя в новый дом, необходимо обращаться в разные конторы.

Монтаж отопительных приборов производят в соответствии с нормативными документами. Если собственник сам производит замену батареи, то он отвечает за функционирование отопительной системы и изменение температурного режима.

Способы регулировки

Демонтаж элеваторного узла

Если за параметры теплоносителя, выходящего из теплого пункта, отвечает котельная, то за температуру внутри помещения должны отвечать работники ЖЕКа. Многие жильцы жалуются на холод в квартирах. Это происходит из-за отклонения температурного графика. В редких случаях бывает, что температура повышается на определенное значение.

Регулировку параметров отопления можно произвести тремя способами:

  • Рассверливание сопла.

Если температура теплоносителя на подаче и обратке существенно занижена, то необходимо увеличить диаметр сопла элеватора. Таким образом, через него будет проходить больше жидкости.

Как это осуществить? Для начала перекрывается запорная арматура (домовые задвижки и краны на элеваторном узле). Далее снимается элеватор и сопло. Затем его рассверливают на 0,5-2 мм, в зависимости от того, насколько необходимо повысить температуру теплоносителя. После этих процедур, элеватор монтируется на прежнее место и запускается в эксплуатацию.

Чтобы обеспечить достаточную герметичность фланцевого соединения, необходимо заменить паронитовые прокладки на резиновые.

  • Глушение подсоса.

При сильных холодах, когда возникает проблема замерзания отопительной системы в квартире, сопло можно полностью снять. В этом случае подсос может стать перемычкой. Для этого необходимо его заглушить с помощью стального блина, толщиной в 1 мм. Такой процесс выполняется только в критических ситуациях, так как температура в трубопроводах и отопительных приборах будет достигать 130ºС.

  • Регулировка перепада.

В середине отопительного периода может возникнуть значительное повышение температуры. Поэтому необходимо регулировать ее с помощью специальной задвижки на элеваторе. Для этого подачу горячего теплоносителя переключают на подающий трубопровод. На обратку монтируется манометр. Регулировка происходит путем закрытия задвижки на подающем трубопроводе. Далее задвижка приоткрывается, при этом следует контролировать давление с помощью манометра. Если ее просто открыть, то возникнет просадка щечек. То есть повышение перепада давления происходит на обратном трубопроводе. Каждый день показатель увеличивается на 0,2 атмосферу, причем температуру в системе отопления необходимо постоянно контролировать.

Теплоснабжение. Видео

Как устроено теплоснабжение частных и многоквартирных домов, можно узнать из видео ниже.

При составлении температурного графика отопления необходимо учитывать различные факторы. В этот список входят не только конструктивные элементы здания, но температура наружного воздуха, а также вид системы отопления.

Facebook

Twitter

Вконтакте

Одноклассники

Какая температура теплоносителя в системе отопления зимой?

Температура теплоносителя в отопительной системе зависит от того какая температура воздуха на улице, ее поддержание осуществляется согласно температурному графику разработанному специалистами для каждого источника теплоснабжения по-разному, все зависит от местных погодных условий. Эти графики разрабатываются так, чтобы даже при очень низких температурах воздуха на улице в жилищах поддерживалась комфортная для людей температура, около 20-22оС.

Насколько тепло должно быть в помещении?

Список температур в различных помещениях, предусмотренный нормативом:

  • жилая комната — +18°C;
  • угловое помещение — +20°C;
  • кухня — +18°C;
  • ванная комната — +25°C;
  • вестибюль и на лестничной площадке — +16°C;
  • лифтовое помещение — +5°C;
  • подвал — +4°C;
  • чердак — +4°C.
  • помещения, предназначенные для детей – от +18оС до +230С.
  • бассейны – не ниже +300С;
  • веранды для прогулки – не ниже +120С;
  • детские школы — не ниже 210С;
  • спальни интернатов – не ниже 160С;
  • культурно-массовых заведениях — от 160С до 210С.
  • библиотеки – до 180С.

Измерение этой температуры производится на внутренней стене каждого помещения, главное условие при проведении данного мероприятия – расстояние от наружной стены должно быть 1 м, а от пола 1,5 м.

Помещение должно обладать определенной кратностью воздухообмена, к примеру, площадь жилой комнаты составляет 18 или 20 м2, в этом случае кратность должна составлять 3м3 /ч на 1м2, эти же характеристики должны быть соблюдены и в регионах где столбик термометра опускается ниже – 31оС.

В кухнях общежития и квартирах, которые оборудованы газовыми и электроплитами с двумя конфорками, чья площадь  доходит до 18 м2, аэрация должна составлять 60м3/ч. В том случае когда в комнате располагается трех конфорочная плита, аэрация соответственно должна быть увеличена до 75 м3/ч, а кода конфорки четыре данная характеристика должна быть увеличена до 90 м3/ч.

Ванные комнаты площадь которых составляет 25 м2, кратность аэрации должна составлять 25м3/м, а для индивидуального туалета чья площадь составляет 18 м2 – 25 м3/ч. В том случае когда санузел совмещенный, воздухообмен должен быть не менее 50 м3/ч, а в случае если в нем еще установлен писуар, тогда необходимо на  него добавить еще 25 м3/м.

В том случае, когда помещение является угловым, температура в комнате должна быть выше на 2о чем обычно.

В теплое время в лифтовой комнате не должна превышать 40оС.

В том случае если будут заметны ежечасные отклонения от установленных характеристик, плата должна быть снижена на 0,15%.

https://www.youtube.com/watch?v=Na_YQk_4feY

Как измерить температуру теплоносителя?

Температура теплоносителя в системе отопления предусматривает следующие нормы:

  1. Горячая вода в кране должна быть круглый год и ее температура должна составлять от +50оС до +70оС;
  2. Во время отопительного сезона этой жидкостью заполняют обогревательные приборы.

Для того чтобы узнать температуру отопительного радиатора необходимо открыть кран и подставить емкость с градусником. В это время температура может повыситься на 4°С.

Когда в этом вопросе появляется проблема, нудно подать жалобу в ЖЭК, но в случае завоздушивания батарей, жалоба пишется в ДЕЗ. В течение недели должен прийти специалист для того чтобы все исправить.

Существует еще несколько способов измерения температуры батарей отопления многоквартирного дома:

  1. При помощи термометра меряется температура труб отопления либо непосредственно самих радиаторов, к полученному результату необходимо прибавить 1 -2оС;
  2. Для более точного измерения данных необходимо купить термометр-пирометр, который способен замерить температуру с точностью до 0,5оС;
  3. Необходимо взять спиртовой термометр и приложить его на определенное место на батарее отопления, после чего приматывают скотчем и обматывают любым термоизолятором (поролон, маховушка). Теперь он будет играть роль постоянного измерителя температуры отопительной системы;
  4. В том случае, когда под рукой имеется электронный измерительный прибор, к примеру, мультиметр, с функцией измерения температуры, провод с термопарой приматывается к радиатору, и измеряют температуру теплоносителя.

Если вас не устраивает температура ваших отопительных приборов или любые другие параметры теплоносителя, то после подачи жалобы к вам придет комиссия, задачей которой будет измерение температуры циркулирующей жидкости в отопительной системе.

Они должны строго действовать согласно пункту 4, который указан в «Методах контроля» ГОСТ 30494−96, а у прибора должна быть регистрация, а также сертификаты поверки и качества. Диапазон измерений должен колебаться от +5 до +40оС, допускаемая погрешность должна быть в пределе 0,1°С.

От чего зависит температура?

Есть еще несколько факторов, которые оказывают влияние на температуру в помещениях:

  1. Если температура воздуха снаружи низкая, соответственно и в помещении она будет ниже;
  2. Скорость ветра также оказывает свое влияние на температуру. Более сильные нагрузки от ветра, тем больше теплопотерь будет через окна и входные двери;
  3. Герметичность заделки стыков в стенах дома. К примеру, металлопластиковые окна и утепление фасадных стен может существенно сказаться на температуре внутри жилища.

Все описанное ранее, несомненно, важно. Но, главным фактором, который сильно влияет на температуру в помещениях – является непосредственно температура самих радиаторов отопления. Обычно батареи отопления, запитанные от центральной системы, имеют температуру 70 — 90°С.

Известно что требуемой температуры внутри помещения, только данным фактором достигнуть невозможно, с учетом того что в разных комнатах должен быть разный температурный режим из-за их разного предназначения.

На температурный режим внутри комнаты также оказывает влияние и то насколько интенсивно движение людей внутри нее. Температура будет выше там, где люди совершают меньше всего движений.

Это является основой распределения тепла. Как доказательство – в спортивных учреждениях, где люди постоянно двигаются, температуру поддерживают на уровне 18оС, так как поддерживать более высокую температуру не целесообразно.

Факторы, оказывающие влияние на температуру радиаторов:

  1. Температура за пределами помещения;
  2. Тип отопительной системы. Норма однотрубной системы: +105 оС, у двухтрубной: +95оС. Разница между подачей и обраткой не должна быть более 105 — 70 оС и 95-70 оС соответственно;
  3. Направления поступления теплоносителя в батареи. В том случае, когда разводка сверху – разница будет составлять: + 20 оС, снизу- +30 оС;
  4. Вид отопительного устройства. Радиаторы и конвекторы различаются по теплоотдаче, а это говорит о том, что и температурный режим тоже разный. У конвекторов теплоотдача ниже, чем у радиаторов.

Всем естественно понятно, что независимо будь это конвектор или радиатор, теплоотдача напрямую будет зависеть от температуры на улице. При нулевой уличной температуре, тедим теплоотдачи радиаторов должен варьироваться в рамках 40-45 оС подача и 30-35 оС обратка. К конвекторов эти характеристики следующие: 41-49 оС подача и 36-40 оС обратка.

При падении столбика термометра до -20 оС эти характеристики будут следующие: для радиаторов — подача 67-77 оС, обратка 53-55 оС, для конвекторов – подача 68-79 оС и обратка 55-57 оС. Но при достижении метки термометра в -40 оС, что у радиатаров, что у конвекторов эти характеристики будут одинаковыми: подача 95-105 оС , температура обратки 70 оС.

Как рассчитываются нормы?

Как было описано выше, на температурный график напрямую влияет температура воздуха снаружи. Соответственно чем более низкая температура на улице, тем больше теплопотерь. Появляется вопрос, какими показателями пользоваться для расчета?

Данный показатель можно найти в нормативных документах. Его основой является средняя  температура пяти наиболее холодных дней в году. В расчет принимается период в 50 лет и выбирается 8 наиболее холодных зим. По каким причинам именно таким образом рассчитывается средняя температура за день?

Во-первых, благодаря этому есть возможность быть готовым в зимний период к низким температурам, которые бывают раз в несколько лет. Кроме того, учитывая данные показатели, можно существенно сэкономить на затратах во время создания систем отопления. В случае массового строительства, данная сумма будет весьма существенной.

Соответственно температура теплоносителя будет напрямую влиять на температуру отапливаемого помещения.

Исходя из показателей уличной температуры, производятся расчеты температуры теплоносителя и имеют следующие значения:

Воспользовавшись данными из таблицы можно легко определить температуру теплоносителя в отопительной системе панельного дома. Просто необходимо замерить при помощи градусника температуру теплоносителя во время спуска из батарей. Данные в 5 и 6 столбце это показатели подачи, 7 столбец – обратка. Необходимо обратить внимание, что в первых трех столбцах указывается температура теплоносителя на вводе, т.е. без учета потерь на теплотрассах.

Основанием для того чтобы был осуществлен перерасчет за отопление может быть несоответствие нормативной и фактической температуры теплоносителя. Кроме того можно установить прибор учета, но при этом все квартиры в вашем доме должны быть подключены к центральному отоплению. Данные приборы должны проверятся каждый год.

Таким образом, комфортное проживание в квартире многоэтажки, в загородном доме или в коттедже напрямую зависит от обустройства в помещении системы отопления. Для этого необходимо знать наиболее благоприятную температуру теплоносителя, чтобы создать в жилище как можно больше уюта.

Все специальные параметры есть в различных нормативных документах, в том случае, когда из-за каких-то причин, они нарушаются или не выполняются, в ЖЭКе должны рассмотреть жалобу или заявление и произвести соответствующий контроль всех работ по исправлению данного недоразумения.

Теплоотдача радиаторов – выбор радиаторов для дома

В паспорте любого радиатора можно обнаружить данные производителя по теплоотдаче. Часто указываются цифры в диапазоне 180 – 240 Вт на одну секцию. Эти значения отчасти являются рекламным трюком, так как недостижимы при реальных условиях эксплуатации. А потребитель нередко тут же выбирает тот, у которого цифра больше.

  • Под цифрами мощности всегда имеется надпись об условиях, при которых она была достигнута, часто мелким шрифтом, например, — «при DT 50 град С».

Это и есть то условие, которое напрочь перечеркивает надежды потребителя на чудодейственный обогрев в домашних условиях от обычного радиатора. Разберемся, какая теплоотдача радиаторов будет действительно в домашней сети отопления, на что обращать внимание при выборе радиаторов и их монтаже…

Что такое ДТ,  DT, dt, Δt в характеристиках радиаторов

DT, dt, Δt – разные обозначения одного и того же, — так называемого, температурного напора. Это разница между средней температурой самого радиатора и температурой воздуха в комнате, где он установлен.

От этой разницы и будет зависеть реальная теплоотдача.

  • Чем горячей радиатор, тем, больше тепла он отдаст воздуху. Чем теплее воздух в комнате, тем меньше теплоотдача радиатора.
  • Что такое средняя температура радиатора? – это среднее значение между температурой теплоносителя на подаче и обратке. Например, подача 70 град, обратка 50 град, тогда средняя температура радиатора 60 град.

При температуре воздуха в комнате 20 град, разница с радиатором со средней температурой 60 град, составит 40 град. Т.е. DT, dt, Δt = 40 град С.

Производители чаще указывают телплоотдачу одной секции радиатора при тепловом напоре Δt = 50 град С. Или просто пишут: «при подаче 80 град, обратке 60 град, воздухе в комнате 20 град.», что и соответствует dt 50 град.

Какая реальная температура радиатора

Как видим, даже Δt = 50 град С оказывается практически не достижимым результатом в домашних условиях. Автоматизированные котлы отключаются при достижении температуры в теплообменнике 80 град, при этом на подаче радиаторов в лучшем случае бывает 74 град. Чаще же эксплуатируются до 70 град на подаче. Температура обратки может колебаться в зависимости от температуры воздуха в доме, мощности теплогенератора, настроек котла… Но чаще меньше от подачи на 20 град.

Таким образом, принимаем типичную среднюю температуру радиатора как 60 град. (подача 70, обратка 50). При температуре в комнате 20 град, — Δt оказывается равным 40 град С. А если воздух в комнате прогрелся до 25 град, то и Δt = 35 град С.

Какая теплоотдача радиатора во время эксплуатации

Какую следует принять мощность одной секции?

  • Если производитель указывает Δt = 50 град, то значение, обычно представленное как 170 – 180 Вт, следует поделить на 1,3.
  • Если указывается «при температуре подачи 90 град» (т.е. Δt = 60 град), то значение (обычно 200 Вт) нужно поделить на 1,5.

В любом случае для стандартного алюминиевого радиатора с межосевым расстоянием 500 мм получается приблизительно 130 Вт на секцию. Это и нужно принимать, в общем -то, но есть еще несколько условий…

Что делать если указана теплоотдача секции больше 200 Вт

Нередко пишут, что мощность радиатора (одной стандартной секции) составляет 240 или даже больше ватт, но при этом указывают что Δt = 70 град. Т.е. производитель принимает вовсе фантастические условия эксплуатации, когда, при температуре в комнате 20 град, подача будет 100 град, а обратка 80. Тогда средняя температура радиатора составит 90 град.

Понятно, что ни в каких домашних системах отопления 100 град на подаче, кроме аварийного случая с твердотопливным котлом, не достижимы. Тем не менее, производители указывают эти цифры для того, чтобы «блеснуть» самой большой рекламой по заманиванию покупателя. Для таких случаев, когда указан Δt = 70 град,  даже разработана таблица с коэффициентами для определения реальной мощности.

Переводим 240Вт на Δt = 40 град, получаем примерно 120 Вт…

Какую мощность радиаторов принять, что еще учитывать

В конечном итоге нас интересует сколько секций нужно поставить в ту или иную комнату радиатора стандартных размеров (глубина, ширина, высота) с межосевым расстоянием обычно 500 мм, или какой размер панели стального радиатора принять… Для этого нужно знать реальную теплоотдачу одной секции.

То, что мы здесь вычислили для стандартного размера алюминиевого (биметаллического, чугунного МС-140) радиатора, — мощность секции как 130 Вт, при разогретом «на всю» котле (74 град на выходе), — все же не совсем подходит для реальных условий. Часто нужен резерв мощности отопительных приборов. Т.е. желательно ставить радиаторы с запасом размеров.

  • Бывают дни с пиковыми морозами, когда желательно бы подтопить получше…
  • Многие хотят температуру побольше – все 25 град, а в отдельных местах 27 град…
  • Помещение может быть плохо утеплено, при строительстве нужно реально оценивать – «удовлетворительная» или нет теплоизоляция и вентиляция в жилище…
  • Многие рекомендуют низкотемпературный обогрев, как создающий меньше пыли.

Учитывая подобные обстоятельства можно рекомендовать устанавливать радиаторы из расчета, что мощность стандартной секции с межосевым расстоянием составляет всего 110 Вт. При этом котел большинство времени может работать в более низкотемпературном режиме – 55 – 60 град (но выше точки росы на теплообменнике).

  • Если же в доме есть теплые полы и их надежность оценивается близкой к 100%, то многие специалисты считают, что можно сэкономить и установить 50% мощности радиаторов или внутрипольные конвектора в угоду дизайну… Отказываться же вовсе от радиаторов недопустимо, разве что по обстоятельствам самой жесткой экономии…

 

Идеальный возврат — температура обратного теплоносителя — CIBSE Journal

Что может быть проще тепловых сетей — перекачка горячей воды по трубам не может быть слишком сложной задачей, не так ли? Принцип может быть простым, но вы не можете разработать экономически эффективные схемы централизованного теплоснабжения с использованием стандартного подхода к обслуживанию зданий — расчета на пик с температурой обратного потока 82/71 ° C недостаточно.

Данные о производительности показывают, что многие из недавно построенных тепловых сетей в Великобритании неэффективны из-за высоких тепловых потерь. 1 Причин тому несколько: переоценка пикового потребления тепла с добавлением кумулятивной маржи; отсутствие учета работы системы при малых нагрузках; недостаточная осведомленность о величине тепловых потерь; ввод в эксплуатацию и эксплуатация без достижения проектных характеристик. Помимо стоимости этих тепловых потерь, серьезной проблемой является перегрев в некоторых коммунально-отапливаемых зданиях.

Распространенным решением для снижения тепловых потерь является применение большей изоляции.Это немного упрощенно и демонстрирует отсутствие анализа. Мы должны разбить проблему потери тепла на отдельные факторы, которые на нее влияют: площадь поверхности; температура; а также уровни утепления.

В этой статье рассматривается важность достижения низких температур обратного потока, поскольку это помогает минимизировать площадь поверхности и температуру. Конечно, необходима хорошая изоляция. На многих сайтах я видел плохо настроенную и установленную изоляцию; например, неизолированные или плохо изолированные опоры для труб, клапаны и комплекты для ввода в эксплуатацию.

Температура обратки — ключевой показатель эффективности тепловой сети. Низкая температура обратки приводит к большему перепаду Т, что означает, что для той же мощности потребляемой мощности требуется меньший расход. Это означает, что необходимы насосы и трубы меньшего размера — первые снижают капитальные затраты и энергопотребление, а вторые уменьшают площадь поверхности и, следовательно, тепловые потери. Обратный трубопровод охладителя также снижает тепловые потери. Снижение температуры обратного потока для увеличения дельты Т имеет много преимуществ по сравнению с увеличением температуры подачи.Более низкие температуры могут повысить эффективность котлов, тепловых насосов и ТЭЦ. Повышение температуры подачи можно выгодно рассматривать как часть системы с регулируемой температурой, в которой температура подачи будет повышаться только во время пикового потребления.

Температура обратной линии тепловой сети определяется индивидуальной температурой обратной линии пяти процессов: производство горячей воды (ГВС); система отопления помещений; установка — например, блоки интерфейса тепла (HIU) — работа без нагрузки; действие любых байпасов на тепловую сеть; и теплообменники на тепловых сетях.

В бытовых схемах HIU обычно устанавливает температуру ГВС и температуру обратной магистрали. Для ГВС следует избегать использования емкостных водонагревателей, поскольку для предотвращения появления легионеллы необходимо, чтобы температура хранимой воды для ГВС составляла 60 ° C, а для достижения температуры обратной линии ниже 60 ° C при нагреве водонагревателя до 60 ° C требуются сложные средства управления и ввод в эксплуатацию. В Скандинавии 50 ° C является допустимой температурой для проточного водонагревателя и обычно может обеспечивать температуру обратной воды ниже 30 ° C, практически не требуя ввода в эксплуатацию.

Чтобы лучше понять работу HIU, для разработки теста HIU было использовано финансирование исследований DECC. 2 Тестирование детализирует характеристики производства горячей воды, подачи горячей воды и работы в режиме ожидания. Протестированные HIU от крупнейших поставщиков Великобритании, и на рисунках 1 и 2 справа показаны их характеристики на испытательном стенде. Ключевыми результатами тестирования являются средневзвешенная по объему температура возврата (VWART). На рисунках показан VWART для ГВС, режима ожидания и отопления помещений. Исходя из них, общий VWART рассчитывается, чтобы представить комбинированную среднюю температуру обратки, основанную на типичном сочетании ГВС и отопления помещения.Мгновенное производство ГВС из HIU имеет тенденцию приводить к низким температурам в обратном трубопроводе. Но между HIU есть различия.

Для отопления помещений тест предполагает хорошую установку радиатора, работающего при 70/40 ° C, но между HIU наблюдались значительные различия, все развивающиеся температуры были намного выше, чем температуры вторичного возврата 40 ° C. На практике температура в обратной магистрали обычно даже выше, поскольку в настоящее время в Великобритании редко можно увидеть радиаторы, работающие на температуре возврата до 40 ° C.В Великобритании мы должны следовать скандинавскому опыту и использовать предварительно настроенные TRV, которые устанавливают достаточно низкий расход радиаторов, чтобы достичь температуры возврата 40 ° C.

Резервный VWART показал наибольшую разницу между HIU из-за ряда подходов, которые производители используют для поддержания тепла в HIU, чтобы обеспечить быструю подачу ГВС. Возникают ключевые вопросы: как быстро следует подавать ГВС? Каков штраф за потерю тепла за более быструю подачу горячей воды? Каков оптимальный баланс между стоимостью дополнительных тепловых потерь и более быстрой подачей горячей воды?

На Рисунке 2 показан объем первичного потока ЦТ, потребляемый типичным HIU, обслуживающим новую квартиру с двумя спальнями, за год.График показывает важность производительности HIU в режиме ожидания. В совокупности тесты показывают диапазон производительности HIU, доступных на рынке Великобритании. Разработчики и разработчики должны лучше понимать характеристики HIU, чтобы гарантировать, что установленные и введенные в эксплуатацию HIU обеспечивают самые низкие температуры обратки.

Байпасы могут устанавливаться на тепловых сетях для промывки, поддержания минимального расхода насоса или температуры системы, а также для очистки воды. Все это может вызвать резкий скачок температуры в обратной магистрали, если их влияние не будет полностью продумано (см. Панель «Как байпасы могут повысить температуру в обратной линии»).

Как байпасы могут повысить температуру обратки


На рисунке 3 показано подключение нового здания к существующей действующей тепловой сети, обслуживающей 460 квартир. В новом здании из более чем 200 квартир несколько байпасов для промывки оставлены открытыми, и скорость потока увеличивается с 10-20 м 3 / час до 60 м 3 / час, а дельта T уменьшается с 25-30K до менее 5K. Между периодами времени 2000–2 500 ЦТС в новое здание иногда отключается. В это время расход падает ниже 10 м 3 / час (ниже, чем раньше, потому что в апреле потребности в отоплении ниже; также был проведен небольшой байпас, используемый для поддержания качества воды в магистрали ЦТ в новое здание. закрытый — дальнейшее снижение расхода).Теперь (позже указанного периода), когда все байпасы закрыты, температура обратной воды постоянно ниже 50 ° C.

Обычно над каждым HIU устанавливают байпасы для промывки. На другом объекте подрядчик по проектированию и строительству спроектировал эти байпасы для промывки путем промывки в точках подключения HIU перед установкой HIU.

Часто байпасы устанавливаются в верхней части стояков для поддержания минимального расхода насоса. Рисунок 4 демонстрирует влияние этих «малых» минимальных потоков, которые, будучи небольшими при пиковых нагрузках, очень значительны при низких нагрузках ЦТ.

На Рисунке 4 показаны измеренные данные о температуре подачи и возврата с 15-минутными интервалами за пятимесячный период с августа по конец декабря. Он демонстрирует влияние байпасов с «маленькими» фиксированными расходами, которые часто используются для обеспечения постоянного поддержания минимального расхода насоса. Контролируемые данные расхода и температуры обратного потока для системы, в которой нет таких байпасов, показаны в виде кривой продолжительности потока (оранжевая линия) на рисунке 4. Кривая продолжительности потока представляет собой данные за шесть месяцев, отсортированных в порядке убывания, и показывает, сколько в то время как скорость потока составляет лишь часть пикового значения.Синяя линия — это температура возврата, зарегистрированная в каждой из точек измерения расхода на кривой продолжительности потока. Чтобы смоделировать влияние постоянно работающего байпаса с фиксированным расходом, к записанным данным возврата ЦТ был добавлен расход 4,2 м 3 / час при 80 ° C, и были рассчитаны комбинированные расход и температура возврата. При высоких расходах имитируемый байпасный поток оказывает незначительное влияние, но при малых расходах байпас более чем вдвое увеличивает возвратный поток ЦТ, поэтому более половины обратного потока составляет вода при 80 ° C — отсюда очень значительный рост обратная температура.Расход 4,2 м 3 / час составляет 10% от измеренного пикового расхода, но только 5,6% от пикового расчетного расхода установленного насосного агрегата.

Чтобы предотвратить такое повышение температуры обратного потока, не следует устанавливать байпасы. Вместо этого насосный агрегат должен иметь достаточно большой диапазон изменения, чтобы работать при минимальном потоке в системе. Этого можно добиться: не переоценивать пик; использование нескольких насосов меньшего размера; отсутствие полной пиковой избыточности; или использование небольших жокейных насосов вместе с большими насосами с пиковым расходом. 3

Более низкая температура возврата означает, что проектировщики могут уменьшить размеры труб. Уменьшение трубы на один размер снижает производительность на 36%, а уменьшение трубы на два размера снижает производительность на 62%. Наихудший вариант системы тепловых сетей в Великобритании может быть спроектирован на основе дельта Т 20 ° C — температура подачи / возврата 80 ° C / 60 ° C. Но на основе более точных технических характеристик и обратной связи с данными о производительности HIU, трубы могут быть рассчитаны по размеру из расчета 80/40 ° C для тепла помещения (снижение расхода на 50%) и 80/20 ° C (снижение расхода на 67%). тариф) на ГВС.Это потенциально может позволить уменьшить на два размера трубы.

Уменьшение труб на один размер снижает потери тепла в среднем на 10% (при исходных температурах), а уменьшение труб на два размера приводит к снижению потерь тепла в среднем на 19%.

Как правило, большинство новых тепловых сетей работают при дельте Т около 5K — обычно 80/75 ° C из-за плохой конструкции и / или ввода в эксплуатацию. Но если может быть достигнута температура обратной линии 45 ° C, а также указаны трубы на два размера меньше, тогда потери тепла уменьшатся на 43% при неизменных технических характеристиках изоляции.

Новые тепловые сети в Великобритании будут продолжать работать плохо, пока отрасль не начнет учиться на действующих схемах. Существуют данные, показывающие, что типичная пиковая диверсифицированная тепловая нагрузка для новой квартиры в Лондоне составляет 2,5 кВт 3 и что HIU, доставляющий ГВС, может генерировать дельту T до 60K (тесты HIU), поэтому проекты ЦТ должны начать отражать это. данные для уменьшения размеров оборудования и трубопроводов — и то, и другое снизит капитальные и эксплуатационные расходы. Разработчикам необходимо оценить эксплуатационные характеристики своих схем, чтобы они могли учиться на своих ошибках.Клиенты и сетевые операторы должны понимать, существует ли большой разрыв между дизайном и эксплуатационными характеристиками их сетей, прежде чем соглашаться на владение новыми тепловыми сетями.

Свод правил для тепловых сетей CIBSE / ADE может помочь в решении этих и других ключевых проблем.

Артикул:

  1. Использование данных для оптимизации тепловых сетей, стр. 34–36, CIBSE Journal, , май 2016 г.
  2. HIU отопление, Fairheat.
  3. Энергоэффективное централизованное теплоснабжение на практике — важность достижения низких температур обратки , M, Crane.2016, Технический симпозиум CIBSE, стр. 10.

Мартин Крейн — директор Carbon Alternatives

Использование большого перепада температур для повышения эффективности систем отопления

Каким образом можно достичь максимальной эффективности при большом перепаде температур?

Стремление к максимальной эффективности конденсационных котельных систем является одним из факторов, определяющих потребность в более широком диапазоне температур.

Тревор Струк объясняет,

«Большая разница температур подачи / возврата традиционно была резервом для больших стальных котлов с высоким содержанием воды, но не способных к конденсации.Теперь специалисты по спецификациям и консультанты хотят получить эту возможность, а также все преимущества, связанные с меньшими конденсационными котлами — полностью регулируемое с лучшим диапазоном изменения, более высокую эффективность работы, низкие выбросы NOx, быстрое реагирование и соответствие правительственному законодательству ».

Как большой перепад температур может снизить затраты на систему отопления?

Разработка системы, работающей с более низким расходом, может дать ряд преимуществ как установщику, так и конечному пользователю / владельцу.

Более низкие скорости потока подходят для труб меньшего диаметра. Трубы меньшего размера дешевле покупать, их легче устанавливать, и они будут тратить меньше энергии, поскольку они имеют более низкий уровень тепловыделения из-за меньшей площади поверхности.

Водосодержание системы отопления также будет ниже, что даст прямую экономию на дозировании химикатов и ингибиторов. При скорости дозирования, как правило, 1%, дозирование системы будет стоить меньше, и ее будет быстрее вводить как на этапе установки, так и при текущем техническом обслуживании и повторном дозировании.

Как большой перепад температур снижает потери давления?

Некоторые современные конденсационные котлы могут иметь довольно значительные потери давления при работе с узким перепадом температур. При работе с более широким перепадом температуры и более низким расходом можно уменьшить потерю давления, что окажет существенное влияние на размер насоса.

Пример — конденсационный котел 250 кВт

  • Работа при дельте t 11 ° C и расходе 5.4 л / сек будут иметь потерю давления 1300 мбар.
  • При работе при дельте t 30 ° C и расходе 2 л / сек потеря давления составит всего 180 мбар.

Понижение более чем на 1100 мбар?

Это дает возможность сэкономить на выборе размера циркуляционного насоса. Поскольку меньшие насосы намного дешевле купить, это может дать экономию более 2000 фунтов стерлингов (исходя из прейскурантной цены циркуляционных насосов для этого примера).

Комментарий Тревора,

« Стоимость приобретения насосов приобрела особую важность после введения в действие Директивы по энергетическим продуктам (ErP).С января 2013 года влияние ErP привело к тому, что циркуляционные насосы стали с регулируемой скоростью, а это означает, что они будут работать только с той скоростью, с которой они должны работать, а не с насосами с фиксированной скоростью, которые все время работают с максимальной производительностью. Насосы, соответствующие стандарту ErP, более энергоэффективны, но также более сложны и, следовательно, более дороги.

Температура обратного потока — обзор

21.4 Требования к проекту

Коэффициенты, которые следует применять на стадии проектирования, включают расход воды, расчетное значение по влажному термометру, требуемую температуру обратного потока в расчетной точке, стоимость власти и земли, и анализ воды.Расход воды обычно определяется оборудованием, которое обслуживает градирня (например, теплообменниками). Исторически сложилось так, что разработчики процессов оставляют градирню напоследок (в конце концов, это последний радиатор). Когда затраты на воду были незначительными, это было приемлемо, но с увеличением затрат и, в некоторых случаях, ограничениями на доступность воды, этот подход пришлось изменить. Больше внимания следует уделять всей системе. Опыт последних десяти лет показал, что экономическая оптимизация может привести к более эффективной градирне с соответствующим снижением стоимости теплообменника.Это особенно верно в отношении производства электроэнергии и промышленных процессов.

Расчетные влажные луковицы могут быть определены на основе опубликованных метеорологических данных для рассматриваемой территории. Сложность состоит в том, чтобы решить, как связать годовой охват с производительностью градирни в любой момент времени.

В течение нескольких лет было обычной практикой указывать три разные цифры, основанные на производительности башни в процентах от года. Например. в области кондиционирования воздуха можно было показать, что башня будет достигать своей проектной цели в течение 95% года.В качестве альтернативы, башня, стоящая на 15% меньше, может получить свой расчетный параметр в течение 85–90% в год. Только оператор будет знать, приемлемы ли 85–90% или меньше, в то время как экономисты приветствовали бы экономию финансового капитала.

В настоящее время наблюдается тенденция к непосредственному проектированию для трех самых теплых месяцев в году или в соответствии с указаниями запрашивающего покупателя, или для удовлетворения требований, определенных требованиями поставщика оборудования. Выбор градирни больше не дает 3 альтернативы по влажному термометру, поскольку выбор окончательной спецификации может повлиять на получение неправильно подходящей градирни.Таким образом, экономический аргумент больше не учитывается при выборе.

Частые неудачи в достижении даже указанных сокращенных процентных показателей привели к переоценке, и нынешний проект стал более точным. В некотором отношении это также связано с улучшением дизайна упаковки, особенно на европейском и американском рынках. Однако следует еще раз сказать, что при оптимизации выбора градирни проектировщик должен быть проинформирован обо всех соответствующих факторах. Обсуждения с проектировщиками градирни в самом начале могут сэкономить время и деньги в будущем.

Качество воды важно не только с экологической точки зрения, но и по отношению к типу упаковки, которую необходимо указать. Анализ оборотной воды получить просто, но проектировщику градирни предлагается его очень редко. Качество или его отсутствие будут определять тип используемой упаковки, выбор конструкционных материалов и то, должна ли башня быть с принудительной или принудительной тягой, противотоком или поперечным потоком. Обработка воды в виде химикатов для контроля pH и действия противокоррозионных агентов или биоцидов — все это имеет отношение к выбору градирни.

Современные упаковки из пленки могут предлагаться для различных уровней «общего содержания взвешенных веществ» (TSS) в циркулирующей воде, то есть обычно с использованием наиболее эффективных конструкций упаковки. Концентрация TSS не должна превышать 50 мг / л.

Альтернативные конструкции пленочного потока могут быть поставлены для уровней концентрации до 100 мг / л и 180 мг / л. Очевидно, что другие факторы могут изменять эти параметры, но этого достаточно для общего правила. Потребуются конструкции брызговиков с концентрацией более 180 мг / л. И такие конструкции потребуются, и такие конструкции теперь основаны на пластиковых решетках для брызг, а не на деревянных планках / планках.

Синдром «Легионелла » привел к тому, что органы здравоохранения Великобритании применили законодательные нормы, которые напрямую отражаются в капитальных затратах и ​​выборе материала башни. Чтобы избежать этого, ответственные проектировщики уже разработали конструкции градирен, которые не только соответствуют нормативным требованиям, но и предусматривают более строгие законы в будущем.

Следующий список информационных факторов должен быть доступен любому поставщику, чтобы можно было обсудить технические требования до оптимизации (см. Приложения 21.1 и 21.2).

Достижение низких температур обратки от подстанций централизованного теплоснабжения

Основные моменты

Быстрое обнаружение неисправностей по перепаду температур на подстанциях централизованного теплоснабжения новым методом.

Неисправности из-за разницы температур можно определить в течение одного дня.

Новый метод также может быть использован для обеспечения качества устраненных неисправностей.

Частота отказов из-за перепада температур на подстанциях составляет около 5% в год.

Реферат

Системы централизованного теплоснабжения способствуют низкому снабжению первичной энергией в энергосистеме, обеспечивая теплом от тепловых активов, таких как комбинированное производство тепла и электроэнергии, сжигание отходов, геотермальное тепло, древесные отходы и промышленное избыточное тепло. В противном случае эти тепловые активы были бы потрачены впустую или не использовались. Тем не менее, есть несколько причин использовать эти активы как можно более эффективно, например, способность конкурировать, дальнейшее сокращение использования первичных энергоресурсов и меньшее воздействие на окружающую среду.Низкие температуры подачи и возврата в распределительных сетях являются важными эксплуатационными факторами для получения эффективной системы централизованного теплоснабжения. Для достижения низких температур обратного потока потребительские подстанции и вторичные системы отопления должны работать без температурных сбоев. В будущих системах централизованного теплоснабжения четвертого поколения потребуются более низкие температуры распределения. Чтобы иметь хорошо работающие подстанции и вторичные системы клиентов, потребуется постоянный ввод в эксплуатацию, чтобы иметь возможность обнаруживать температурные неисправности без каких-либо задержек.Также очень важно иметь возможность качественного контроля устраненных неисправностей. Системы автоматического считывания показаний счетчиков, недавно внедренные в системы централизованного теплоснабжения, открыли путь для разработки новых методов, которые будут использоваться при непрерывном вводе в эксплуатацию подстанций. В этой статье представлен новый метод, использующий сигнатуру разницы температур для обнаружения неисправностей, связанных с разницей температур, и обеспечения качества устраненных неисправностей. Ежегодные почасовые наборы данных со 140 подстанций были проанализированы на предмет неисправностей из-за разницы температур.Из этих 140 подстанций 14 были идентифицированы с разницей температур, появившейся или устраненной в течение анализируемого года. Девять появилось в течение года, что указывает на частоту неисправностей из-за годовой разницы температур более 6%.

Ключевые слова

Централизованное теплоснабжение

Разница температур

Низкая температура обратки

Низкая температура подачи

Почасовые показания счетчика

Обнаружение неисправностей

Рекомендуемые статьи Цитирующие статьи (0)

Copyright © 2014 Авторы.Опубликовано Elsevier Ltd.

Рекомендуемые статьи

Ссылки на статьи

Четыре отрицательных эффекта высоких температур в обратном трубопроводе

Высокие температуры в обратном трубопроводе являются серьезной проблемой в сетях централизованного теплоснабжения (ЦТ). Высокая температура обратки означает

  1. Повышенный расход воды, перекачиваемой по сети
  2. Пониженная мощность сети по отпуску тепла
  3. Повышенные тепловые потери
  4. Уменьшение рекуперации тепла из газовых двигателей и котлов, работающих на биомассе

На рисунке 1 показана простая блок-схема сети централизованного теплоснабжения.Система подает тепло в систему отопления здания через теплообменник. Горячая вода перекачивается по сети централизованного теплоснабжения, а затем возвращается в энергоцентр для отопления.

Рисунок 1 — Система централизованного теплоснабжения, работающая с температурой обратной линии 50 ° C

увеличенный расход воды, перекачиваемой по сети

Большинство сетей централизованного теплоснабжения работают с фиксированной температурой подачи. Это устанавливается температурой воды, производимой в котлах или ТЭЦ.

Высокая температура обратки означает, что разница температур в сети ( TFLOW - TRETURN ) уменьшится. Меньшая разница температур означает перекачку большего количества воды для доставки того же количества тепла. См. Этот предыдущий пост, если вы не понимаете, как работают эти отношения.

Перекачивание большего количества воды означает, что насосы потребляют больше электроэнергии. Это означает увеличение стоимости электроэнергии и выбросов углерода из схемы.

снижена мощность сети по отпуску тепла

Размеры труб ограничивают пропускную способность сети централизованного теплоснабжения по подаче воды.

При пиковой скорости потока небольшая разница температур означает, что мы можем отдавать намного меньше тепла, чем та же сеть с большим перепадом температур. Схема с перепадом температур, равным половине расчетной, означает, что мы удваиваем эффективные капитальные затраты нашей сети на МВт тепловой мощности.

Большая разница температур означает, что мы сможем избежать установки новых трубопроводов (и связанных с этим капитальных затрат!) По мере расширения нашей сети. Проектирование новых сетей с большими перепадами температур будет означать меньшие трубы.Меньшие трубы означают меньшие капитальные затраты и меньшие тепловые потери.

повышенные тепловые потери

Тепловые потери зависят от площади поверхности трубы и разницы между температурой трубы и окружающей среды. Более высокая температура возврата означает большие потери тепла в обратных трубопроводах.

Тепловые потери являются недостатком схем ЦО по сравнению с местными газовыми котлами. Схемы ЦО теряют намного больше тепла из-за большой длины сетевых труб по сравнению с местными системами. Минимизация потерь тепла имеет решающее значение для работы эффективной сети ЦТ.

Повышенные тепловые потери означают, что в энергоцентре требуется больше тепла. Это означает более высокий расход газа и выбросы углерода.

снижение рекуперации тепла из газовых двигателей и котлов, работающих на биомассе

Схемы централизованного теплоснабжения приносят чистую выгоду потребителям и окружающей среде за счет использования низкоуглеродной генерации в энергоцентре.

Эффективное использование таких технологий, как газовые двигатели или котлы, работающие на биомассе, имеет решающее значение для успеха централизованного теплоснабжения.Преимущества использования низкоуглеродной генерации могут компенсировать потери тепла в сетях ЦО.

В схемах централизованного теплоснабжения используются газовые двигатели для совместного производства тепла и электроэнергии. Газовые двигатели вырабатывают примерно половину рекуперируемого тепла в виде горячих выхлопных газов (> 500 ° C) и половину от низких температур (<100 ° C). Котлы, работающие на биомассе, производят только горячий выхлопной газ.

Термодинамические причины потери рекуперации тепла одинаковы для этих трех источников тепла. Повышенная температура обратной линии ЦТ увеличивает конечную температуру, до которой может охлаждаться источник тепла.

Это означает, что меньше тепла передается между источником тепла и водой ЦО. Ниже мы рассмотрим пример утилизации низкотемпературного тепла газового двигателя.

Газовые двигатели работают с низкотемпературным контуром горячей воды. Этот водяной контур удаляет воду из рубашки и смазочное масло из двигателя. Это тепло может генерировать горячую воду для системы горячего водоснабжения.

Рисунок 2 показывает, что температура обратной магистрали (85 ° C) приводит к тому, что мы можем охладить контур двигателя только до 85 ° C.Это ограничивает рекуперацию тепла в теплообменнике.

Рисунок 2 — Низкотемпературная утилизация отходящего тепла газового двигателя с высокой температурой возврата

Это также заставляет нас использовать самосвальный радиатор для охлаждения контура двигателя до 70 ° C, требуемого двигателем. Если бы схема не была оборудована отвалом радиатора, то двигатель был бы вынужден снижать выработку или останавливаться.

На рис. 3 показана диаграмма зависимости температуры от тепла (T-Q) для теплообменника при низкой температуре возврата (50 ° C).Работа с низкой температурой возврата означает, что мы полностью восстанавливаем 1 МВт из водяного контура двигателя.

Рисунок 3 — Рекуперация тепла от двигателя при низкой температуре возврата в сети (50 ° C)

Теперь посмотрим, что происходит при высокой температуре обратного потока (80 ° C). На рисунке 4 показано, что сейчас мы восстанавливаем только 400 кВт тепла.

Рисунок 4 — Рекуперация тепла от двигателя с высокой температурой возврата в сети (80 ° C)

Газовые котлы должны будут вырабатывать дополнительно 600 кВт тепла, необходимого для сети.Это означает повышенное потребление газа и выбросы углерода.

Тот же принцип применяется к рекуперации тепла из источников с более высокой температурой, таких как выхлопные газы газовых двигателей или продукты сгорания котлов на биомассе. Высокая температура обратного теплоносителя ограничивает рекуперацию тепла.

почему возникают высокие температуры возврата?

Высокая температура возврата в сети может возникать по разным причинам. Чаще всего это связано с системами отопления, предназначенными для локальных газовых котлов, подключенных к сетям ЦО.

Основной проблемой является использование байпасов. Байпасы отводят небольшое количество горячей воды, подаваемой в теплообменник, непосредственно из потока в обратку. На рис. 5 показан байпас, увеличивающий температуру возврата сети с 80 до 95 ° C.

Рисунок 5 — Байпас, вызывающий высокую температуру возврата

Байпасы устанавливаются для поддержания минимального потока через сеть, когда потребность в тепле низкая. Это предотвращает истощение насосов при низкой потребности в тепле.

Байпасы не вызывают проблем в местных системах отопления котельных, но являются серьезной проблемой в системах централизованного теплоснабжения.

Эти байпасы представляют собой трубы, предназначенные для пропускания только небольшого количества воды в обход теплообменника. Однако при низком расходе в сети они также оказывают пропорционально большое влияние на температуру возврата!

Вместо установки байпасов насосные системы должны работать с более высоким диапазоном изменения. Этого можно добиться с помощью систем с несколькими насосами.

Другой причиной высоких температур обратного потока в сети является строительство контуров, в которых используется вода более высокой температуры, чем требуется.Например, для местных водонагревателей требуется температура выше 60 ° C, чтобы предотвратить появление легионеллы.

Местное накопление воды не имеет смысла в сети ЦО — накопление тепла должно происходить в энергоцентре. Это позволит операторам сетей ЦТ оптимально управлять накоплением тепла.

Местные водонагреватели с горячей водой также могут вызывать пики спроса, если они настроены на одновременную подачу. Это будет рассматриваться как огромный пик потребности в тепле во всей сети. Операторам сетей ЦТ может быть сложно справиться с пиковыми потребностями.

Спасибо за чтение!

Найдите свой баланс — Услуги для современных зданий

Пит Миллс

Котлы

более эффективны, чем когда-либо, но есть простые улучшения, которые могут принести дополнительную выгоду для умных пользователей. Пит Миллс объясняет, как можно использовать перебалансировку системы и погодную компенсацию для экспоненциального повышения эффективности даже в старых системах.

Часто говорят, что система отопления и горячего водоснабжения «вне поля зрения, вне поля зрения», но с учетом энергии, используемой для обогрева большого коммерческого или многоквартирного дома, система отопления в конечном итоге привлечет внимание здания. владельцы и пользователи.

Одна из основных причин заключается в том, что отопление, вероятно, будет одной из самых больших затрат владельца здания, и многие будут искать способы настроить систему, чтобы обеспечить ее максимально эффективную и действенную работу.

К счастью, существуют решения, которые очень подходят для сценариев модернизации — это означает, что система, изначально рассчитанная на модели использования 20 лет назад, все еще может быть оптимизирована для немного других моделей, которые мы видим сегодня.

Вон со старым…

Одна из проблем более старых систем заключается в том, что они, как правило, проектировались для работы при температуре подачи 82 ° C и температуре обратки 71 ° C, с соответствующими размерами радиаторов. Если вернуться в 1970-е годы, то технология, используемая для расчета тепловых потерь и размеров радиаторов, была далеко не такой точной, как сегодня. Это, в сочетании с консервативным подходом консультантов по проектированию систем, означало, что размеры радиаторов часто преднамеренно увеличивались по принципу «на всякий случай».

Проблема с этими температурами возврата в том, что они просто слишком высоки. Для конденсации в бойлере температура обратной воды должна быть 55 ° C или ниже, что, в свою очередь, позволит ему работать с максимальной эффективностью.

Так как же обеспечить максимальную конденсацию в котле при типичном годовом графике отопления?

Один из лучших способов повысить эффективность системы отопления и горячего водоснабжения — использовать преимущества перебалансировки системы и погодной компенсации.

Существует много доступной информации, объясняющей преимущества изменения баланса старых систем, ранее работавших при 82/71 ° C (подача / возврат), на температуру 80/60 ° C. Хотя этот процесс действительно требует определенной работы, поскольку подрядчику обычно приходится физически повторно балансировать каждый радиатор, такие технологии, как дифференциальные термометры, могут сделать этот процесс намного более простым, чем многие могут предположить.

Каскад промышленных котлов обеспечивает комфорт и энергоэффективность.

Когда система отопления сбалансирована таким образом, радиаторы, естественно, не будут выделять столько тепла, как раньше. Тем не менее, в этом может не быть необходимости, учитывая, что подавляющее большинство радиаторов в зданиях Великобритании считаются негабаритными. Это означает, что существует огромный потенциал для безопасного перебалансирования температуры бойлера до 80/60 ° C и сохранения достаточной тепловой мощности от радиаторов. Хотя это отчасти стало возможным из-за вышеупомянутой проблемы чрезмерного размера, этому также несколько помогли улучшения стандартов изоляции и типичных тканей, которые мы используем для строительства современных зданий.

Ошибаться в сторону осторожности и оставаться верным более привычным, более высоким температурам может показаться привлекательным, но такой образ мышления равносилен потере денег. С этой целью ребалансировка системы может принести реальные дивиденды.

Не вините погоду

Возможность перебалансировки системы до 80/60 ° C приближает нас к температурам, необходимым для конденсации в котле, но реальные дополнительные преимущества начинают проявляться, когда мы вводим погодную компенсацию, которая регулирует дневную температуру потока. -сегодня в соответствии с наружной температурой.Последствием этого являются значительные периоды года, когда температура обратки также значительно ниже, что позволяет котлу конденсироваться. Популярные на большей части континентальной Европы меры по компенсации погодных условий обеспечивают быструю окупаемость при относительно небольших начальных инвестициях.

На рынке существует несколько заблуждений, которые предполагают, что конденсационные котлы не очень хорошо подходят для старых систем, но существует множество доказательств того, что они могут отлично работать, достигая при этом значительного повышения эффективности.

К сожалению, для многих обновления, как правило, происходят в аварийном сценарии, когда требуются срочные действия, чтобы возобновить работу системы отопления после неисправности или поломки. Это может оставить подрядчикам очень мало времени или желания для точной настройки системы и оптимизации ее эффективности, например, путем изменения баланса. Тем не менее, если вы потратите немного дополнительного времени на обслуживание или ремонт, то вскоре сможете окупить себя созданным в результате повышением производительности.

Проще говоря, те, кто приложит максимум усилий для изменения баланса своих систем и модернизации их с помощью более интуитивно понятных технологий, таких как компенсация погодных условий, получат наибольшие выгоды.

Пит Миллс (Pete Mills) — менеджер по коммерческим техническим операциям в Bosch Commercial and Industrial

Ссылки по теме:
Статьи по теме:

Обратный трубопровод котла холодный? Вот почему [и что делать дальше]

HeatingForce поддерживается считывателем.Когда вы совершаете покупку по ссылкам на нашем сайте, мы можем получать партнерскую комиссию. Узнать больше

В нашем 5-минутном справочнике по температурам подающей и обратной линии котла содержится все, что вам нужно знать о подающей и обратной трубах котла.

Здесь также объясняется, почему температура подающей и обратной линии различается, а также правильный размер подающей и обратной трубы и почему подающая труба горячая, а обратная холодная.

Что такое подающая и обратная трубы котла

Когда ваш бойлер нагревает воду, она откачивается и циркулирует по вашей системе центрального отопления; эта горячая вода выходит из подающей трубы.

Затем вода перемещается по вашей отопительной системе и возвращается в котел по обратной трубе.

Почему различаются температуры подачи и возврата

Вы заметите, что поток быстро нагревается и обычно горячее, чем возвратный трубопровод.

Это потому, что все трубопроводы и радиаторы остаются холодными, когда вы запускаете котел. Они поглощают часть тепла из воды, поэтому вода, возвращающаяся через возврат, более прохладная.

По мере того, как центральное отопление медленно нагревается, разница температур между двумя трубами становится ближе.

Размер подающей и обратной трубы

Для быстрой циркуляции горячей воды бойлер должен быть оборудован медной подающей и обратной трубой диаметром не менее 22 мм. Он может увеличиваться до 28 мм и более для больших объектов или коммерческих котлов.

Проблемы с возвратной трубой котла

Подводящая труба горячая, а обратная холодная

Это наиболее распространенная проблема, связанная с проблемами, связанными с температурами подающего и обратного трубопроводов; холодный обратный трубопровод котла, даже если поток горячий.

Естественно, поток нагревается быстрее обратного. Но если обратная труба не нагревается (или, по крайней мере, не нагревается), есть несколько потенциальных виновников.

# 1 — Неисправный насос или неправильная установка скорости

После того, как ваш котел нагрел воду, задача насоса — обеспечить циркуляцию этой воды по системе.

Если насос неисправен, скорее всего, не циркулирует достаточно быстро. К тому времени, когда вода вернется в котел по обратной линии, она значительно остынет.

Значит, обратная труба будет намного холоднее, чем подающая.

Это могло произойти из-за:

  • Грязная отопительная вода блокирует насос
  • Неправильная настройка скорости насоса
  • Вал на насосе заклинило
  • PCB неправильно обменивается данными с насосом.
Исправление

Мы создали подробное руководство по проблемам с тепловым насосом и их устранению.

# 2 — система с воздушным замком

Воздушные шлюзы любого типа могут вызвать прерывистую работу системы отопления.

Шлюзы могут быть в:

  • Насосы
  • Вешалка для полотенец
  • Радиаторы
Исправление

Необходимо удалить весь воздух из системы. Радиаторы и полотенцесушители имеют спускной клапан, который пропускает воздух. Их можно прокачать с помощью ключа для прокачки.

Если обратная труба все еще холодная, проблема может заключаться в насосе с воздушной пробкой.

В этом случае велика вероятность, что вы слышали стук и стук при неисправности насоса.

Поскольку для удаления воздуха из насоса необходимо снять внешний кожух, вам необходимо вызвать инженера по газобезопасности.

# 3 — Засорение в системе отопления

Когда обратные трубы холодные, но подающая к котлу подача горячая, наиболее распространенной причиной является засорение.

Засорение обычно происходит от:

Накипь образуется из минералов, содержащихся в воде, и прикрепляется практически к любому месту.

Нагревательный шлам, с другой стороны, возникает из-за внутренней ржавчины радиаторов и трубопроводов.Когда он сломается, он может заблокировать радиаторы и даже обратную трубу вашего котла.

Это ограничивает поток горячей воды, поэтому радиаторы не нагреваются и, конечно же, температура воды в обратном трубопроводе в лучшем случае Лука-теплая.

Исправление

Во-первых, вам необходимо произвести горячую промывку системы с помощью чистящих химикатов. Это позволит избавиться от большинства отложений и накипи.

Затем вам понадобится:

  • Редуктор накипи для улавливания накипи
  • Фильтр котла для улавливания теплового шлама

Стоит отметить, что оба вышеуказанных устройства необходимо чистить при каждом обслуживании.В противном случае они заполнятся мусором и не смогут уловить что-либо еще, циркулирующее в системе.

# 4 — Трубопровод микроканализа

Далее у нас есть микроканальный трубопровод.

Если у вас радиаторы с трубчатым питанием 8 или 10 мм и полотенцесушители, есть вероятность, что поток либо ограничен, либо заблокирован (см. № 3).

Исправление

Когда к вам приедет инженер-теплотехник, чтобы диагностировать и устранить проблему, убедитесь, что вы показываете им все микроканальные трубопроводы.

В зависимости от расположения вашего трубопровода, возможно, потребуется его замена. Есть вероятность, что он установлен неправильно.

# 5 — Вы добавили дополнительные держатели для полотенец или радиаторы

Системы отопления указаны в BTU. Это измерение тепла.

Трубопроводы, радиаторы, ваш котел и даже насос котла будут спроектированы с учетом BTU вашей собственности.

Добавляя радиаторы или полотенцесушители, вы заставляете бойлер нагреть дополнительную воду, а насос — циркулировать больше воды.

Это не очень распространено, но если вы добавили полотенцесушители или радиаторы (особенно большие, например, 1600 мм +), есть вероятность, что система отопления выйдет из строя, и это приведет к холодной обратной трубе на бойлере.

Исправление

Без осмотра размера собственности, котла, насоса котла, количества полотенцесушителей и радиаторов трудно понять, является ли это проблемой.

Пригласите квалифицированного инженера-теплотехника проверить вашу систему отопления.

Что дальше?

Спасибо за прочтение нашего 5-минутного руководства по температурам подающей и обратной линии центрального отопления и котла. Надеюсь, это указывает на то, почему обратная труба котла не нагревается, а подающая труба нагревается.

Избегайте дорогостоящих поломок

Обещание замены бойлера: если ему меньше 7 лет и мы не можем его отремонтировать, мы заменим его.

Попробуйте YourRepair .От £ 9 / мес

Все планы включают: годовое обслуживание котла, все запчасти и ремонт, неограниченную поддержку и круглосуточную службу поддержки.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *