особенности, описание, виды и принцип работы термоэлектрических датчиков
Термопара — это термоэлектрический преобразователь. Иными словами – это прибор, используемый для измерения температур в разных областях: в медицине, в промышленности, науке, в системах автоматики, а также в быту. В настоящее время термопары широко распространены и применяются практически повсюду. На практике чаще всего используются термопары K типа, а также J и Т. С их помощью измеряют температуры воды, воздуха, газов, смазочных материалов и так далее.
Классификация по типам
При желании возможно создать такой прибор даже самостоятельно. Однако следует все же знать некоторые особенности таких преобразователей, их различие по типу применяемых материалов. А классифицируются виды термопар так:
- Тип E. Используется сплав хромель – константан. Эти датчики обладают высокой чувствительностью – до 68 мкВ/°C. Подходят для криогенного использования. Температуры, при которых возможно применение, колеблются от -50 °C до +740 °C.
- Тип J. Здесь применяют состав железо – константан. Используются для условий в температурных диапазонах от -40 °C до +750 °C. Имеет повышенную производительность –50 мкВ / °С.
- Термопары типа K выполняются на основе сплава хромеля и алюминия. Это, несомненно, самые популярные датчики широкого назначения. Обладают производительностью до 41 мкВ/°C. Применяются в температурных диапазонах от -200 °С до +1350 °C. В неокисляющих и инертных условиях датчики типа K используются до 1260 °C.
- Тип M. Эти термопары применяются в основном в вакуумных печах. Используются при температурах до +1400 °C.
- Регуляторы типа N — никросил-нисиловые. Они стабильны и стойки к окислению, имеют производительность 39 мкВ/ °C. Поэтому их используют при температурах от -270 °C до +1300 °C.
- Устройства типов B, R и S выпускаются из сплава родия и платины. Класс B, R и S — датчики довольно дорогие и имеют низкую производительность: всего 10 мкВ/° C. Используются благодаря высокой надежности исключительно для измерения высоких температур.
- Датчики на основе сплавов рения и вольфрама. В основном они работают в автоматике промышленных процессов, в производстве водорода и так далее. Не рекомендуется применять в кислотных средах.
Технические характеристики прибора
Примечательно, что термопарам не нужны никакие дополнительные источники питания. Они применяются для измерения температур достаточно большого диапазона: от -200 °C до +2000 °C. При этом они обладают меняющимися параметрами. Проблематично еще и то, что
Ярким примером использования приборов, созданных по принципу термопар, служат компактные цифровые термометры. В настоящее время — это основной и, пожалуй, самый массовый прибор для осуществления статических и динамических измерений.
Выходным сигналом термопары является постоянное напряжение. Он достаточно просто преобразуется в цифровой код. А затем его можно измерить с помощью простейших приборов. Для этих целей можно взять, к примеру, малогабаритный цифровой мультиметр.
Измерительные приборы на основе термопар отличает высокая точность и чувствительность, а также правильность характеристик преобразования. Обычно напряжение на выходе колеблется от 0 до 50 мВ, а типичная производительность — от 10 до 50 мкВ/°C. Все зависит от используемых в датчике материалов.
Основной принцип работы
В основу принципа работы термопары положен термоэлектрический эффект, называемый иначе эффект Зеебека. Он гласит, что когда проводник подвергается воздействию, соответственно изменяется его сопротивление и напряжение.
Принцип действия термопары состоит в том, что если соединить последовательно два разнородных металлических проводника, то при этом образуется замкнутая электрическая цепь. Если затем нагреть это соединение, то в цепи возникнет электродвижущая сила (термо-ЭДС). Под ее воздействием в замкнутой цепи и возникает электрический ток.
Место нагрева, как правило, называют горячим спаем, соответственно холодный спай не нагревается. Значение термо-ЭДС измеряется путем подключения в разрыв электрической цепи гальванометра или микровольтметра. То есть она напрямую зависит от разности температур между холодным и горячим спаем.
Вследствие нагревания места соединения проводников термопары между свободными концами образуется разность потенциалов. Она легко преобразовывается в цифровой код. Возникает возможность определения температуры нагрева на месте соединения проводников.
Для точности проведения измерений холодный спай должен всегда иметь неизменную температуру. Поскольку этого довольно сложно добиться, применяются компенсационные схемы.
Достоинства и недостатки
Термопары обладают многими достоинствами в сравнении с аналогичными термоэлектрическими датчиками температуры. К плюсам, например, относят:
- простая конструкция;
- прочность;
- надёжность;
- универсальность;
- низкая стоимость;
- можно пользоваться в самых разных условиях;
- можно измерять самые разные температуры;
- точность произведенных измерений.
Однако, как и любой другой прибор, эти датчики имеют свои недостатки:
- довольно низкое напряжение на выходе;
- нелинейность.
Измерение температур с использованием термопар, изобретенное еще в XIX веке, достаточно широко применяется в современном производстве. Кроме того, существуют такие сферы деятельности, где применение этих датчиков становится порой единственным возможным способом получения необходимых измерений.
Внимание! Если Вы обнаружили ошибку на сайте, то выделите ее и нажмите Ctrl+Enter. Вам понравилась эта статья?! Добавьте ее в свои закладки.
|
|
| Термопара (термоэлектрический преобразователь) — устройство, применяемое в промышленности, научных исследованиях, медицине, в системах автоматики для измерения температуры. Термопара (термоэлектрический преобразователь) — это два проводника из разных материалов, спаянных с одной стороны (горячий спай) и свободных с другой стороны (холодный спай- условный спай). Приспособление несложное, и принцип действия тоже – когда термопара нагревается или охлаждается, разные металлы меняют температуру с разной скоростью, и разница позволяет возникнуть термоэлектродвижущей силе (ЭДС), или, говоря другими словами, происходит эффект Зеебека. Благодаря этому удается измерить температуру. Непосредственное участие в измерении ложится на горячий спай, а свободные концы подключаются к измерительному прибору. Главной характеристикой термопар, является их Тип, который определяется разновидностью спаянных металлов. На прибор от термопары поступает напряжение в милливольтах, которое он сопоставляет с таблицей напряжений (согласно типу термопары), таблица заложена в памяти прибора и отражает текущее значение измерения.
Периодически у многих клиентов возникают проблемы с определением типа термопары, когда нет описательных характеристик и необходимо подобрать замену или аналог. Решить ее довольно просто, главное знать принципы классификации термопар. В системе классификации термоэлементов есть цветовая маркировка изоляции проводников. Например, европейская классификация по сплавам для термопар Тип L (Fe-CuNi) и Тип J (Fe-CuNi) одинаковая, очень важно понимать что они не взаимозаменяемые и напряжение на выходе при одной и той же температуре у этих термопар будет разное. Таблица стандартов по цветовой маркировке изоляции проводов будет очень полезна в определении типа термопары, если нет никакой маркировки. Также необходимо отметить разновидность исполнения сенсорной части (горячего спая) термопар. Они бывают с изолированным и неизолированным рабочим спаем. Показатель быстродействия при измерении температуры у неизолированной термопары выше, чем у изолированной. Но при этом усложняется схема подключения и требуются изолированные модули ввода. Поскольку разница в быстродействии не столь существенна, в основном используются термопары с изолированным спаем. Как и все измерители температуры, термопары имеют классификацию по точности. Для примера классы точности Тип K и Тип J, самых распространенных в использовании термопар Класс 1: ±1.5 °C или ±0.004 x T (Тип K: -40 до +1000 °C), (Тип J :-40 до +750 °C) Класс 2: ±2.5 °C или ±0.0075 x T (Тип K: -40 до +1200 °C), (Тип J :-40 до +750 °C) Технические характеристики наиболее популярных термоэлектрических преобразователей (термопар) в соответствии с ГОСТ 3044 приведены в таблице:
Многие клиенты заблуждаются в том, что если типу термопары соответствует рабочий диапазон, например, 1200оС, то все модели термопары с этим типом будут работать в данном диапазоне. Незащищенный спай термопары быстро выгорит, и термопара выйдет из строя. Именно поэтому, сообразно задачам в измерении и рабочим диапазонам, есть разные по конструктиву и степени защиты модели термопар. Самой распространенной защитой для спая/термопары является металлический чехол или гильза из сплава Инконель 600 (2.4816, жаропрочный сплав на никелевой основе). Изоляцией для спая служит окись магния (MgO), сжатая под давлением. Такая защита делает термопару устойчивой к самым экстремальным условиям эксплуатации (повышенное давление, вибрация, сотрясения), позволяет выдерживать высокие механические нагрузки и обеспечивает долгий срок службы термопары, а также в зависимости от диаметра позволяет термопаре быть гибкой. Ярким примером такой термопары, которая достаточно универсальна в своем прикладном характере, является термопара в жаропрочной оболочке MKG/E: Поскольку сферы применения термопар очень многогранны, то и модификации термопар имеют достаточное многообразие. Например, для измерения температуры вязких веществ в экструдерах или измерении температуры подшипников, часто используются байонетные термопары. Такие, как BF1/T или BF2/T. В пищевой промышленности часто используются прокалывающие термопары, для измерения температуры продукта. Это может быть просто необходимым условием, чтобы соблюдать технологический процесс. Обращаем ваше внимание на то, что очень часто для сохранения точности в измерении температуры посредством термопар, требуются особые компоненты для их подключения, это коннекторы и компенсационный кабель.
Термопары самых различных модификаций Вы сможете найти в нашем каталоге, это позволит решить вам задачи по измерению температуры с уверенностью в надежности и качестве. Важно отметить, что немецкая компания FuehlerSysteme может изготовить для вас термопары по вашим чертежам и с учетом ваших пожеланий, в том числе в минимальных количествах, небольшими партиями, ведь ни для кого не секрет, что термопары очень часто требуется подобрать под индивидуальные нужды клиента. Нам по силам: изменить диаметр и длину измерительной части, увеличить до необходимого длину кабеля и подобрать его изоляцию. Возможно изготовление индивидуальных модификаций по вашим чертежам.
Область применения термопар очень широка, и, как правило, заменить их нельзя никаким другим прибором. Вот лишь некоторые из способов использования термопар:
Почти каждый и нас в той или иной степени сталкивается с применением термопар, поэтому полезно иметь о них хотя бы общее представление. Надеемся , что данная статья была полезна для вас, но если у вас остались вопросы, то мы с радостью ответим на них по телефонам по телефонам 8 (800) 500-09-67 и 8 (812) 340-00-57. |
Типы термопар: ТЕРМОЭЛЕМЕНТ
Термопары зависимо от сферы применения, величины измеряемых температур и своего состава делятся на разные типы.Хромель-алюмель тип К
Это один из самых применяемых типов термопар. На протяжении долгого времени измеряет температуры до 1100 0С, в коротком – до 1300 0С. Измерение пониженных температур возможно до -200 0С. Отлично функционирует в условиях окислительной атмосферы и инертности. Возможно применение в сухом водороде, и недолго в вакууме. Чувствительность – 40 мкВ/ 0С. Это самый стойкий тип термопары способный работать в реактивных условиях.Минусами является высокая деформация электродов и нестабильная ЭДС.
Хромель-алюмель или термопара типа К не применяется в среде с содержанием О2 более чем 3%. При большем содержании кислорода хром окисляется и снижается термическая ЭДС. Тип К с защитным чехлом можно использовать в переменной окислительно-восстановительной атмосфере.
Для защиты термопары ХА применяется оболочка из фарфорового, асбестового, стекловолоконного, кварцевого, эмалевого материала или высокоогнеупорных окислов.
Чаще всего хромель-алюмель выходит из строя из-за разрушения алюмелевого электрода. Происходит это после нагревания электрода до 650 градусов в серной среде. Предотвратить коррозию алюмели можно лишь исключив попадание серы в рабочую среду термопары.
Хром портится из-за внутреннего окисления, когда в атмосфере содержится водяной пар или повышенная кислотность. Защитой является применение вентилируемой защиты.
Хромель-копель тип L
Это также часто применяемая термопара позволяющая измерять в инертной и окислительной среде. Длительное измерение до 800 0С, короткое – 1100 0С. Нижний предел -253 0С. Длительная работа до 600С. Это самая чувствительная термопара из всех измерительных устройств промышленного типа. Обладает линейной градуировкой. При температуре 600 градусов выделяется термоэлектрической стабильностью. Недостатком является повышенная предрасположенность электродов к деформациям.Положительным электродом у термопары типа L является хромель, а отрицательным – копель. Рабочая среда – окислительная или с инертно газовой составляющей. Возможно применение в вакууме при повышенной температуре короткое время. Используя хорошую газоплотную защиту ТХК можно использовать в серосодержащей и окислительной среде. В хлорной или фторсодержащей атмосфере возможна эксплуатация, но только до 200 градусов.
Железо-константан тип J
Используется в восстановительной, окислительной, инертной и вакуумной среде. Измерение положительных сред до 1100 0С, отрицательных – до -203 0С. Именно тип J рекомендуется применять в положительной среде с переходом в условия отрицательной температуры. Только в отрицательной среде ТЖК использовать не рекомендуется. На протяжении длительного времени измеряет температуры до 750 0С, в коротком интервале 1100 0С. Минусы: высокочувствительна — 50-65 мкВ/ 0С, поддается деформациям, низкая коррозийная стойкость электрода содержащего железо.Положительным электродом у термопары типа J есть технически чистое железо, а отрицательным – медно-никелевый сплав константан.
ТЖК устойчива к окислительной и восстановительной среде. Железо при температурах от 770 0С поддается магнитным и ↔- превращениям, влияющим на термоэлектрические свойства. Нахождение термопары в условиях больше 760 0С не способно далее в точности измерять показатели температуры нижеуказанных цифр. В данном случае ее показания не соответствуют градуировочной таблице.
Скоки эксплуатации зависят от поперечного сечения электродов. Диаметр должен соответствовать измеряемым показателям.
В условиях температур выше 500С с содержанием серы в атмосфере рекомендуется применять защитный газоплотный чехол.
Вольфрам-рений тип А-1, А-2, А-3
Отлично измеряет температуры до 1800 градусов. В промышленности используется для измерения показателей около 3000 0С. Нижний предел ограничивается – 1300 0С. Можно эксплуатировать в аргоновой, азотной, гелиевой, сухой водородной и вакуумной средах.Термо-ЭДС при 2500 0С — 34 мВ для измерительных устройств из сплавов ВР5/20 и ВАР5 /ВР20 и 22 мВ, для термопар из сплава ВР10/20, чувствительность – 7-10 и 4-7 мкВ/ 0С.
ТВР характеризуется механической устойчивостью даже в условиях высокой температуры, справляется со знакопеременными нагрузками и резкими тепловыми сменами. Удобна в установке и практически не теряет свойств при загрязнении.
Минусы: низкая производимость термо-ЭДС; при облучениях нестабильная термо-ЭДС ; падение чувствительности при 2400 0С и более.
Более точные результаты у сплавов ВАР5/ВР20 наблюдаются при длительном измерении, что не так характерно для сплавов ВР5/20.
В ТВР электроды изготавливаются из сплавов ВР5 – положительный и ВР20 – отрицательный; ВАР5 – положительный и ВР20 – отрицательный или ВР10 – положительный и ВР20 – отрицательный электрод.
Незначительное наличие О2 способно вывести термопару вольфрам-рений из строя. В окислительной среде используются лишь в быстротекущем процессе. В условиях сильного окисления моментально выходит из строя.
Иногда эта термопара может использоваться в работе высокотемпературной печи совместно с графитовым нагревательным элементом.
В качестве электродных изоляторов применяют керамику. Оксид бериллия можно применять, как изолятор в том случае, когда воздействующая на него температура не превышает температур плавления. При измерении значений меньше 1600 0С электроды защищают чистым оксидом алюминия или магния. Керамический изолятор должен быть прокален для возможности очистки разных примесей. В условиях повышенного окисления используются чехлы из металла и сплавов Mo- Re, W-Re с покрытиями. Измерительный прибор с защитой из иридия можно кратковременно использовать на воздухе.
Вольфрам-молибден
Эксплуатируется в инертной, водородной и вакуумной сфере. Температуры измерений – 1400 0С -1800 0С, пределы рабочих показателей — 2400 0С. Чувствительность — 6,5 мкВ/ 0С. Обладает высокой механической прочностью. Не нуждается в химической чистоте.Минусы: низкая термо-ЭДС; инверсия полярности, повышение хрупкости при повышенных температурах.
Рекомендуется применять в водородной, инертногазовой и вакуумной среде. Окисление на воздухе происходит при 400 градусах. При повышении термической подачи окисление ускоряется. ТВМ не вступает в реакцию с Н и инертным газом до температур плавления. Данный тип термопары лучше не использовать без изоляторов, так как она при повышении температуры может вступать в реакцию с окислами. При наличии керамического изолятора возможно кратковременное применение в окислительной среде.
Для измерения термической составляющей жидкого металла изолируется обычно глиноземистой керамикой с применением кварцевого наконечника.
Платинородий-платина типы R, S
Самые распространенные типы термопары для температур до 1600 0С. К данным устройствам относятся платина со сплавом платины и родия 10%-ти или 13%-ным составом. Применяются в инертной и окислительной среде. Длительное использование при 1400С, кратковременное — 1600С. Обладают линейной термоэлектрической особенностью в диапазоне 600-1600 0С. Показатель чувствительности — 10-12 мкВ/ 0С (10% Rh) и 11-14 мкВ/С (13% Rh). Производят высокоточное измерение, обладают высокой воспроизводимостью и стабильностью термо-ЭДС.Минусы: нестабильность в облучаемой среде, повышенная чувствительность к загрязнениям.
ТПП с хорошим изолятором может применяться в восстановительной среде, и в условиях содержащих мышьяковые пары, серу, свинец, цинк и фосфор.
Практически не используются для измерения отрицательных температур по причине снижения чувствительности. Но, в отдельной сборке возможно измерение значений до -50 градусов. Для значений 300-600 0С применяются в качестве сравнительных показателей. Краткое применение – до 1600 0С, длительное – 1400 0С. С наличие защиты можно длительно эксплуатировать при 1500 0С.
Изоляторами в условиях температуры до 1200 0С применяются кварцевые и фарфоровые материалы или муллит и силлиманит. Образцовые термопары изолируют плавленым кварцем.
При использовании с вырабатываемой температурой в 1400 0С в качестве изолятора лучше применять керамику с окислю Al2O3. При слабоокислительной и восстановительной среде около 1200 0С.
В слабоокислительных и восстановительных условиях с температурой выше 1200 и независимо от условий с температурами выше 1400 0С необходимо в качестве изолятора использовать керамический высокочистый оксид алюминия. В восстановительной среде возможно применение оксида магния.
Обычно внутренний чехол для термопары состоит из того же материала из которого выполнен изолятор. Данные материалы должны быть газоплотными. В условиях разового измерения температур жидкой стали, чтобы защитить рабочий спай измерителя используются кварцевые наконечники.
Вся рабочая длина электродов должна быть заизолирована трубкой из керамики двухканального типа. Места стыка трубки и чехла, электрода и трубки должны иметь зазоры для вентиляции. Электроды должны тщательно очищаться от смазки перед установкой в изолятор. В свою очередь металлический чехол тоже должен быть сухим и чистым. Перед установкой на объект все компоненты термопары должны пройти отжиг. Термоэлектроды не должны выполнять опорную функцию для изолятора. Особенно это важно для вертикальных термопар.
Платинородий-платинородий тип В
Используется в окислительных и нейтральных условиях. Возможна эксплуатация в вакуумной среде. Максимальная температура измерений длительного потока 1600 0С, кратковременная — 1800С. Чувствительность — 10,5-11,5 мкВ/ 0С. Выделяется хорошей стабильностью термического ЭДС. Возможно применение без удлинительных проводов из-за низкой чувствительности в температурном диапазоне от 0 до 100 0С.Изготавливается из сплава платины и родия ПР30 и ПР6.
В атмосфере восстановительного типа и паров металлического и неметаллического состава необходима надежная защита. В качестве изолятора используется керамическое сырье из чистого Al2O3.
Характеристики эксплуатации и прочностные данные соответствуют термопарам типов R, S. Но, выходят они из строя намного реже по причине низкой подверженности химзагрязнениям и росту зерен.
Термопара — WIKA Россия
Термопара – это температурный датчик, который передает напряжение электрического тока, зависящее от температуры. По сути термопара представляет собой два провода, изготовленных из разных материалов (металлов) и скрепленных или сваренных вместе. Место соединения образует спай. При воздействии на спай изменяющейся температуры термопара реагирует, генерируя напряжение, пропорциональное по величине изменениям температуры. В отличие от терморезисторов термопара подходит для измерения более высоких температур (до 1 700 °C). Другим преимуществом является минимальный диаметр зонда термопары. Использование без защитной гильзы обеспечивает максимально короткое время отклика. Такие температурные датчики реагируют быстрее терморезисторов.
Термопара преимущества:
- широкий диапазон температур
- спай термопары может быть заземлен или изолирован
- надежность и прочность конструкции, простота изготовления
Термопара недостатки:
- необходимость контроля температуры холодных спаев. В современных конструкциях измерителей на основе прибора термопара используется измерение температуры блока холодных спаев с помощью встроенного термистора или полупроводникового сенсора и автоматическое введение поправки к измеренной ТЭДС
- возникновение термоэлектрической неоднородности в проводниках, и, как следствие, изменение градуировочной характеристики из-за изменения состава сплава в результате коррозии и других химические процессов
- материал электородов не является химически инертным и при недостаточной герметичность корпуса термопары может подвергаться влиянию агрессивных сред, атмосферы и т.д.
- на большой длине термопарных и удлинительных проводов может возникать эффект «антенны» для существующих электромагнитных полей
- зависимость ТЭДС от температуры существенно нелинейна. Это создает трудности при разработке втоничных преобразователей сигнала
В линейке датчиков WIKA вы можете подобрать подходящую модель термопары для каждого типа применения:
Термопара со встроенной защитной гильзой
Защитная гильза не допускает контакта агрессивных сред с температурным датчиком, а также воздействия других вредных факторов на него. Таким образом, обеспечивается защита персонала и окружающей среды.
Фланцевые модели защитных гильз из нержавеющей стали предназначены для установки в емкости и трубы. Резьбовые модели подходят для прямого присоединения к технологическому процессу посредством вкручивания их в резьбовые фитинги. У датчиков для измерения высоких температур термоэлектрические проводники встроены в защитную гильзу. Это позволяет осуществлять измерение очень высоких температур. Приборы для измерения температуры дымовых газов подходят для измерения температуры газообразных сред при низком диапазоне давления (до 1 бара).
Термопара для монтажа в имеющуюся защитную гильзу
Данная термопара может использоваться в сочетании с большим количеством конструкций защитных гильз. Благодаря специальному исполнению соединительной головки, датчика, длине штока и т. д. вы можете подобрать температурный датчик, который подходит для защитных гильз любого размера и применения.
Термопара для непосредственной установки в процесс
Эти приборы используются в случаях, когда необходимо измерить температуру технологического процесса. Термопара устанавливается непосредственно в сам процесс. Температурный датчик без защитных гильз подходит для применения в условиях отсутствия агрессивных и абразивных сред.
Термопара для измерение температуры поверхности
В линейке продукции WIKA вы можете найти термопару с зондом для измерения температуры поверхности. Различные исполнения позволяют осуществлять замеры на плоских поверхностях, в том числе внутри печей для подогрева сырья и температуру поверхности труб промышленного и лабораторного назначения. Данный температурный датчик также может устанавливаться прямо в просверленное отверстие.
Термопара для использования в производстве пластмасс
Эти горячеканальная термопара специально разработаны для использования при производстве пластмасс. Термопара подходит для таких задач измерения температуры, при которых происходит ее запрессовка в канал с пазами вместе с обработанными деталями или когда металлический наконечник датчика устанавливается непосредственно в просверленное отверстие.
Индивидуальные решения
В портфолио продукции WIKA представлено огромное количество моделей, изготавливаемых по индивидуальному заказу. Например, для применения в условиях высокого давления, при производстве и переработке полиэтилена или использовании в многозонных элементах в химической промышленности.
Наиболее точная термопара — с термоэлектродами из благородных металлов:
- платинородий — платиновые ПП
- платинородий — платонородиевые ПР
Преимуществом является значительно меньшая термоэлектрическая неоднородность, чем у термопар из неблагородных металлов, устойчивость к окислению, высокая стабильность.
Термопара WIKA имеет широкий диапазон температур окружающего воздуха (рабочих температур) от -60 до +80°C. Согласно обновленному свидетельству об утверждении типа средств измерений термопара WIKA имеет расширенный межповерочный интервал 4 года.
Свяжитесь с нами
Вам нужна дополнительная информация? Напишите нам:
Термопара хромель алюмель(ТХА). Высокотемпературные термопары. ТХА (тип К)
Термопара (термоэлектрический преобразователь температуры) — термоэлемент, широко применяемый для измерения температуры различных объектов, а также в автоматизированных системах управления и контроля. Сама термопара состоит из двух проволок (термоэлектродов) — положительного и отрицательного. Особая популярность термопар связана с использованием их в измерении температур в муфельных печах и сушильных шкафах. Достоинства термопар: надежность, возможность работать при измерении высоких температур до 2200°С, точность измерения до ±0,01°С и все это за небольшую стоимость. Самыми популярными на российском рынке являются термопары типа ТХА (К), за свой универсализм и доступность.
Наша компания предлагает несколько видов термопар для муфельных печей, в том числе и для электропечей СНОЛ (SNOL).
Термопара ТХА — сплав хромеля (никель, хром) и алюмеля (никель, алюминий, марганец, кремний и кобальт). Основное применение в лабораторных электропечах СНО и печи SNOL 7,2/1100. Наша компания выпускает термопары типа ТХА самых различных размеров, а также в специальном защитном кожухе (из керамики, либо жаропрочной стали) для использования в агрессивных и химических средах.
Также наше предприятие может Вам поставить термопары типа ТХА 0001, 0002, 0006, 0007, 0011, 0104, 0109, 0192, 0193, 0194, 0196, 0203, 0206, 0292, 0297, 0306, 0308, 0309, 0314, 0395, 0495, 0496, 0499, 0595, 0603, 1192, 1193, 1292, 1293, 1392, 1393, 1395, 1592, 9310, 9311, 9312, 9414, 9215, 9416, 9419, 9420, 9421
Термопара J (ТЖК) — положительный термоэлектрод сделан из железа, отрицательный из сплава меди, никеля, марганца и железа. Используется от -200 дл +750 °С. Основное применение — в сушильных шкафах SNOL 24/200, 58/350, 67/350, а также станках. Также предлагаем Вашему вниманию термопары типа «ТЖК» 0009, 2488
Термопара K — разновидность ТХА, но с немножко другими пропорциями содержания основных элементов. Применяется в электропечах типа SNOL 8,2/1100.
Также наша компания занимается производством термопар типа ТХА для электропечей сопротивления, учитывая особенности их использования. То есть можем сделать термопару защищенной от агрессивных и химических сред.
Термопары:
Тип ТХА (K) Тип J
Принцип работы термопары, определение, типы и виды термопар, схемы работы термопары, способы подключения
Термопара — термоэлектрический преобразователь — это два разных сплава металла (проводники) которые образуют замкнутую цепь (термоэлемент). Термопара — один из наиболее распространенных в промышленности температурный датчик. Применяется в любых сферах промышленности, автоматики, научных исследованиях, медицине — везде, где нужно измерять температуру. Так же применяется в термоэлектрических генераторах для преобразования тепловой энергии в электрическую.
Действие термопары основано на эффекте, который впервые был открыт и описан Томасам Зеебеком в 1822 г. — термоэлектрический эффект или эффект Зеебека. В замкнутой цепи, состоящей из разнородных проводников, возникает термоэлектрический эффект (термо-ЭДС), если места контактов поддерживают при разных температурах. Цепь, которая состоит только из двух различных проводников, называется термоэлементом или термопарой. В сочетании с электроизмерительным прибором (милливольтметром, потенциометром и т. п.), термопара образует термоэлектрический термометр.
Измерительный прибор подключают либо к концам термоэлектродов, либо в разрыв одного из них. В среду, которую контролируют, помещают рабочий спай, а свободные концы подсоединяются к измерительному прибору. Чем больше различие между свойствами проводников и тепловой перепад на концах, тем выше термо-ЭДС.
По-простому — термопара это две проволоки из разнородных металлов (например, Хромель и Копель), сваренных или скрученных между собой. Место сварки (скрутки) называется рабочий спай Т1, а места соединения с измерительным прибором Т2 называют холодными спаями. То есть рабочий спай помещают в среду, температуру которой необходимо измерить, а холодные спаи подключают к приборам (милливольтметр). Но надо знать прибор — например, ИРТ 7710 не меряет температуру рабочего спая, он меряет разницу температур холодного и рабочего спаев. Это значит простым милливольтметром (тестером) мы можем узнать, поступает ли сигнал с рабочего спая (есть обрыв или нет), узнать где у термопары плюс (+) а где (-), примерно узнать какой тип термопары (но для этого нужен точный милливольтметр).
Типы, виды термопар
Типы российских термопар приведены в ГОСТ 6616-94.
Почему российские термопары? Термопара ТХК, то есть Хромель-Копель была придумана в СССР и сейчас выпускается только у нас и в странах СНГ. Не известно почему, но везде пишут ХК (L) — в скобках подразумевается международный тип, но это не так — на западе тип L это (Fe-CuNi). Может быть, они чем то и похожи по названию металлов входящих в сплав, но самое главное — у них разные таблицы НСХ. Мы с этим столкнулись, заказывая термопару из Италии. Наш совет — когда закупаете термопарный провод или кабель, сравнивайте таблицы НСХ, т.е. номинальные статические характеристики преобразователя ГОСТ Р 8.585-2001.
Таблица соответствия типов отечественных и импортных термопар
Тип температурного датчика |
Сплав элемента |
Российская маркировка температурных датчиков |
Температурный диапазон |
|
Термопара типа ТХК — хромель, копель (производства СССР или РФ) |
хромель, копель |
-200 … 800 °C |
Термопара типа U |
медь-медьникелевые |
|
-200 … 500 °C |
Термопара типа L |
хромель, копель |
ТХК |
-200 … 850 °C |
Термопара типа B |
платинородий — платинородиевые |
ТПР |
100 … 1800 °C |
Термопара типа S |
платинородий — платиновые |
ТПП |
0 … 1700 °C |
Термопара типа R |
платинородий — платиновые |
ТПП |
0 … 1700 °C |
Термопара типа N |
нихросил нисил |
ТНН |
-200 … 1300 °C |
Термопара типа E |
хромель-константановые |
ТХКн |
0 … 600 °C |
Термопара типа T |
медь — константановые |
ТМК |
-200 … 400 °C |
Термопара типа J |
железо — константановые |
ТЖК |
-100 … 1200 °C |
Термопара типа K |
хромель, алюмель |
ТХА |
-200 … 1300 °C |
Таблица ANSI Code (Американский национальный институт стандартов) и IEC Code (Международная электротехническая комиссия — МЭК)
В настоящее время в её состав входят более 76 стран (наша в том числе).
Термопара типа K | Термопара типа K
Хромель {90% никеля и 10% хрома} Alumel {95% никеля, 2% марганца, 2% алюминия и 1% кремния}
Твитнуть
Термопара типа K
Это наиболее распространенный тип термопар, обеспечивающий самый широкий диапазон рабочих температур. Термопары типа K обычно работают в большинстве случаев, поскольку они сделаны на основе никеля и обладают хорошей коррозионной стойкостью.
• 1. Положительная нога немагнитная (желтый), отрицательная — магнитная (красный).
• 2. Традиционный выбор недрагоценных металлов для высокотемпературных работ.
• 3. Подходит для использования в окислительной или инертной атмосфере при температурах до 1260 ° C (2300 ° F).
• 4. Уязвим к воздействию серы (воздерживаться от воздействия серосодержащей атмосферы).
• 5. Лучше всего работать в чистой окислительной атмосфере.
• 6. Не рекомендуется для использования в условиях частичного окисления в вакууме или при чередовании циклов окисления и восстановления.
Состоит из положительной ветви, состоящей примерно из 90% никеля, 10% хрома и отрицательной ветви, состоящей примерно из 95% никеля, 2% алюминия, 2% марганца и 1% кремния. Термопары типа K являются наиболее распространенными термопарами общего назначения. термопара с чувствительностью примерно 41 мкВ / ° C, хромель положительный по отношению к алюмелю. Он недорогой, и доступен широкий выбор датчиков в диапазоне от -200 ° C до + 1260 ° C / от -328 ° F до + 2300 ° F. Тип K был определен в то время, когда металлургия была менее развита, чем сегодня, и, следовательно, характеристики значительно различаются между образцами.Один из составляющих металлов, никель, является магнитным; Характерной чертой термопар, изготовленных из магнитного материала, является то, что они претерпевают ступенчатое изменение выходной мощности, когда магнитный материал достигает точки отверждения (около 354 ° C для термопар типа K).
Термопары типа K (хромель / алюминий)
Термопары типа K обычно работают в большинстве приложений, поскольку они сделаны на основе никеля и обладают хорошей коррозионной стойкостью. Это наиболее распространенный тип калибровки датчиков, обеспечивающий самый широкий диапазон рабочих температур.Благодаря своей надежности и точности термопара типа K широко используется при температурах до 2300 ° F (1260 ° C). Этот тип термопары должен быть защищен подходящей металлической или керамической защитной трубкой, особенно в восстановительной атмосфере. В окислительной атмосфере, такой как электрические печи, защита труб не всегда необходима, когда подходят другие условия; тем не менее, он рекомендуется для обеспечения чистоты и общей механической защиты. Тип K обычно дольше, чем тип J, потому что проволока JP быстро окисляется, особенно при более высоких температурах.
Диапазон температур:
• Провод класса термопары, от −454 ° до 2300 ° F (от −270 до 1260 ° C)
• Провод класса удлинения, от −32 ° до 392 ° F (от 0 до 200 ° C)
• Точка плавления, 2550 ° F (1400 ° C)
Точность (в зависимости от того, что больше):
• Стандарт: ± 2,2 ° C% или ± 0,75%
• Специальные пределы погрешности: ± 1,1 ° C или 0,4%
Отклонения в сплавах могут повлиять на точность термопар.Для термопар типа K первый класс точности составляет ± 1,5 K в диапазоне от -40 до 375 ° C. Однако отклонения между термопарами одного производства очень малы, и гораздо более высокая точность может быть достигнута путем индивидуальной калибровки.
Металлургические изменения могут вызвать отклонение калибровки от 1 до 2 ° C за несколько часов, которое со временем увеличится до 5 ° C. Доступен специальный сплав типа K, который может поддерживать особую предельную точность до десяти раз дольше, чем обычный сплав.
Термопарытипа K используются для измерений в различных средах, таких как вода, мягкие химические растворы, газы и сухие зоны. Двигатели, масляные обогреватели и котлы — примеры мест, где их можно найти. Они используются в качестве термометров в больницах и пищевой промышленности.
Плюсы
• Хорошая линейность ЭДС относительно температуры измерения.
• Хорошая стойкость к окислению при температуре ниже 1000 ° C (1600 ° F).
• Самая стабильная среди термопар из недорогого материала.
Cons
• Не подходит для восстановительной атмосферы, но выдерживает пары металлов.
• Старение характеристики ЭДС по сравнению с термопарами из благородных материалов (B, R и S).
Муфта из хромелевой и алюмелевой проволоки, имеет диапазон от -270 ° C до 1260 ° C и выходную мощность от -6,4 до 54,9 мВ в максимальном диапазоне температур. Это одно из основных преимуществ термопары типа k по сравнению с другими термопарами в целом или другими датчиками температуры, такими как термистор или резистивный датчик температуры (RTD).
Его способность работать в суровых условиях окружающей среды и в различных атмосферах делает его предпочтительным по сравнению с другими устройствами для измерения температуры.
В устройствах с термопараминеобходимо использовать соответствующий провод, поскольку разные провода измеряют различные диапазоны температур. Тип К популярен благодаря широкому диапазону температур. Из четырех основных типов термопар тип K охватывает самый широкий диапазон от −200 ° C до 1260 ° C (приблизительно от минус 328 ° F до 2300 ° F).
При защите или изоляции керамическими шариками или изоляционным материалом.
Благодаря своей надежности и точности, тип K широко используется при температурах до 1260 ° C (2300 ° F). Рекомендуется защищать этот тип термопары подходящей металлической или керамической защитной трубкой, особенно в восстановительной атмосфере. В окислительной атмосфере, такой как электрические печи, защита труб не всегда необходима, когда подходят другие условия; тем не менее, он рекомендуется для обеспечения чистоты и общей механической защиты.Тип K обычно дольше, чем тип J, потому что проволока JP (железная) быстро окисляется, особенно при более высоких температурах.
При защите уплотненной минеральной изоляцией и внешней металлической оболочкой (MGO).
Тип K можно использовать при температуре от -35 до 1260 ° C (от -32 до 2300 ° F). Если температура применения составляет от 600 до 1100 ° F, мы рекомендуем тип J или N из-за короткого диапазона заказа, который может вызвать дрейф от + 2 ° до + 4 ° F за несколько часов. Тип К относительно устойчив к передаче излучения в ядерной среде.Для применений при температуре ниже 0 ° C (32 ° F) обычно требуется выбор специальных сплавов.
При выборе типа необходимо учитывать чувствительность провода термопары и пределы погрешности. Тип K имеет более высокий предел погрешности, чем другие типы проводов для термопар; производители, выбирающие этот тип, обычно готовы пожертвовать точностью ради широкого диапазона чувствительности. Тип K имеет погрешность в процентах от измеренной температуры. Это примерно 0,75 ‰ или 2,2 ° C, в зависимости от того, что больше.Тип K имеет экспоненциально увеличивающееся напряжение, разность напряжений становится легче измерить и точнее при более высоких температурах. При очень низких температурах от минус 260 ° C до минус 250 ° C напряжения термопар типа K различаются всего на одну или две тысячных милливольта на каждый градус Цельсия. При очень высоких температурах около 1350 ° C напряжение различается примерно на 3,3 сотых милливольта на градус Цельсия.
Пробники с проволокой без покрытия быстрее реагируют на температуру.Провода с покрытием показывают разное время отклика в разных средах. Некоторые химические вещества испытуемого могут повредить открытые зонды и провода. Термопара типа K в оболочке без заземления шириной 1/4 дюйма реагирует на изменения температуры воды примерно за 2,25 секунды. Оголенный провод термопары срабатывает чуть более 0,6 секунды.
Термопара с заземлением
Это наиболее распространенный тип спая. Термопара заземляется, когда оба провода термопары и оболочка свариваются вместе, образуя одно соединение на конце зонда.Заземленные термопары имеют очень хорошее время отклика, потому что термопара находится в прямом контакте с оболочкой, что позволяет легко передавать тепло. Недостатком заземленной термопары является то, что термопара более восприимчива к электрическим помехам. Это связано с тем, что оболочка часто контактирует с окружающей областью, создавая путь для помех.
Незаземленная термопара
Термопара не заземлена, когда провода термопары свариваются вместе, но они изолированы от оболочки.Провода часто разделены минеральной изоляцией.
Открытые термопары (или «термопары с неизолированной проволокой»)
Термопара становится оголенной, когда провода термопары свариваются вместе и непосредственно вставляются в технологический процесс. Время отклика очень быстрое, но оголенные провода термопары более подвержены коррозии и разрушению. Если ваше приложение не требует открытых соединений, этот стиль не рекомендуется.
Измеритель проводов для термопар типа K
Проводники для термопар бывают разных размеров.В зависимости от вашего приложения, выбранный манометр будет влиять на представление. Чем больше размер датчика, тем большую тепловую массу будет иметь термопара с соответствующим уменьшением отклика. Чем больше размер манометра, тем выше стабильность и срок службы. И наоборот, датчик меньшего размера будет иметь более быструю реакцию, но может не обеспечить требуемой стабильности или срока службы.
Нержавеющая сталь 316
Максимальная температура: 1650.Лучшая коррозионная стойкость среди аустенитных марок нержавеющей стали. Широко применяется в пищевой и химической промышленности. Возможны опасные выделения карбида при температуре от 482 ° C до 870 ° C (от 900 ° F до 1600 ° F).
Нержавеющая сталь 316L
Максимальная температура: 1650 ° F (900 ° C). То же, что и нержавеющая сталь 316 (04), за исключением того, что низкоуглеродистая версия обеспечивает лучшую сварку и изготовление.
304 нержавеющая сталь
Максимальная температура: 1650 ° F (900 ° C).Чаще всего используется низкотемпературный материал оболочки. Широко используется в пищевой, химической и других отраслях промышленности, где требуется устойчивость к коррозии.
Промышленность: Возможны опасные осадки карбида в диапазоне от 900 до 1600 ° F (от 480 до 870 ° C). Самый дешевый доступный коррозионно-стойкий материал оболочки.
Нержавеющая сталь 304L
Максимальная температура: 900 ° C (1650 ° F).Низкоуглеродистая версия из 304 SST (02). Низкое содержание углерода позволяет сваривать и нагревать этот материал в диапазоне от 900 до 1600 ° F (от 480 до 870 ° C) без ущерба для коррозионной стойкости.
310 нержавеющая сталь
Максимальная температура: 2100 ° F (1150 ° C). Механическая и коррозионная стойкость аналогична нержавеющей стали 304, но лучше. Очень хорошая термостойкость.
Этот сплав содержит 25% хрома, 20% никеля.Не такой пластичный, как нержавеющая сталь 304.
321 Нержавеющая сталь
Максимальная температура: 1600 ° F (870 ° C). Аналогичен 304 SS, за исключением титана, стабилизированного для межкристаллитной коррозии.
Этот сплав разработан для преодоления предрасположенности к осаждению углерода в диапазоне от 900 до 1600 ° F (от 480 до 870 ° C). Используется в аэрокосмической и химической промышленности.
446 Нержавеющая сталь
Максимальная температура: 2100 ° F (1150 ° C).Ферритная нержавеющая сталь, обладающая хорошей стойкостью к сернистой атмосфере при высоких температурах.
Хорошая коррозионная стойкость к азотной кислоте, серной кислоте и большинству щелочей. Благодаря содержанию хрома 27% этот сплав имеет наивысшую термостойкость среди всех ферритных нержавеющих сталей.
Инконель 600
Максимальная температура: 2150 ° F (1175 ° C). Наиболее широко используемый материал оболочки термопары.Хорошая термостойкость, коррозионная стойкость, стойкость к коррозионному растрескиванию под напряжением хлорид-ионами и стойкость к окислению при высоких температурах.
Не использовать в серосодержащих средах. Хорошо подходит для азотирования.
Инконель 601
Максимальная температура: 2150 ° F (1175 ° C) непрерывно, 2300 ° F (1260 ° C) периодически. Аналогичен сплаву 600 с добавлением алюминия для обеспечения исключительной стойкости к окислению.Разработан для устойчивости к высокотемпературной коррозии.
Этот материал хорош в среде науглероживания и имеет хорошую прочность на разрыв при ползучести. Не использовать в вакуумных печах! Восприимчивы к межкристаллитной атаке при длительном нагревании в диапазоне температур от 1000 до 1400 ° F (от 540 до 760 ° C).
Инконель 800
Максимальная температура: 2000 ° F (1095 ° C).Широко используется в качестве материала оболочки нагревателя. Минимальное использование в термопарах. Превосходит сплав 600 по сере, цианистым солям и плавленым нейтральным солям.
Восприимчив к межкристаллитной атаке в некоторых случаях при воздействии температурного диапазона от 1000 до 1400 ° F (от 540 до 7607 ° C).
Как измерить температуру с помощью термопары типа K
Цепь термопары содержит два соединения из сплава, соединители с проволочным песком и устройство для измерения напряжения.Когда два перехода испытывают разные температуры, через цепь протекает измеримый ток. Сила тока связана с перепадом температур. Поскольку измерение является относительным, для вычисления абсолютной температуры должна быть известна одна из температур. В ранних термопарах температура одного спая поддерживалась при 0 ° C, погружаясь в баню с ледяной водой. Сегодня один из стыков, «холодный спай», электрически компенсирован для поддержания стандарта. Другой спай, «горячий спай», подвергается измерению в окружающей среде.
Сбор данных с термопары типа К
Термопару типа K можно подключить к вольтметру для простого сбора данных. В этом случае выходом является напряжение, и считыватель должен преобразовать уровень напряжения в температуру, используя формулу преобразования. Для записи данных термопару можно подключить к регистратору данных или системе сбора данных для хранения собранных данных. В этих случаях можно использовать схему преобразования или программную операцию для расчета температуры с использованием выходного напряжения.
Как и все термопары, они недороги, имеют быстрое время реакции, малы по размеру и надежны.
Они могут точно измерять экстремальные температуры. В зависимости от того, где они производятся, они варьируются от -270 ° до 1370 ° C или Цельсия с погрешностью от 0,5 до 2 градусов C. Они имеют чувствительность, составляющую примерно 41 микровольт на градус C.
ТипыK обычно используются при температурах выше 540 ° C. Чтобы ограничить чрезмерную погрешность, рекомендуется использовать в окислительной или полностью инертной атмосфере в диапазоне от -200 ° до 1260 ° C.
Все термопары имеют недостатки. Перед использованием их необходимо очень тщательно откалибровать. Их выходные сигналы очень малы, поэтому у них могут быть проблемы с шумом. Они подвержены нагрузкам, деформациям и коррозии, особенно с возрастом. Однако у K-типов есть особые проблемы.
Термопарытипа K стабильны только в течение коротких периодов времени при определенных температурах, после чего они имеют тенденцию дрейфовать в положительном направлении. Размер дрейфа зависит от температуры.Например, при 1093 ° C их показания могут отличаться на целых пять градусов. Попеременное или циклическое воздействие ниже 371 ° C и выше 760 ° C дает нестабильные измерения. Длительное воздействие от 427 ° до 649 ° C ускоряет их старение.
Хромель подвержен так называемой «зеленой гнили». Когда это происходит, хром окисляется, становится зеленым и корродирует. Это происходит в среде с пониженным содержанием кислорода от 815 ° до 1040 ° C. Такая среда с обедненным кислородом называется восстановительной, и термопары K-типа никогда не должны использоваться ни в восстановительной, ни в циклически окисляющей и восстанавливающей атмосфере.Кроме того, их не следует использовать в сернистой среде, потому что они станут хрупкими и быстро сломаются. Присутствие хрома делает их непригодными для использования в вакууме, за исключением непродолжительных периодов времени. Это потому, что может произойти испарение.
Проблемы можно свести к минимуму, если использовать их при рекомендуемых температурах и средах. Тщательная калибровка, установка их с соответствующими разъемами и проводами, а также использование схем компенсации также могут помочь. Типы K, сконструированные для уменьшения ошибок, включают те, которые хорошо изолированы, предварительно состарены или отожжены выше их рабочих температур.Некоторые пользователи также стараются часто их заменять. Другие переходят на тип N, который был специально сконструирован как улучшение по сравнению с K.
Pyromation | Типы термопар | Тип J, Тип K, Тип N, Тип T, Тип E, Тип R, Тип S, Тип B, Тип C
Термопара состоит из сварного «горячего» спая между двумя разнородными металлами — обычно проводами — и эталонным спаем на противоположном конце.Металлические сплавы, выбранные в качестве Провода положительной и отрицательной ветви термопары определяют тип термопары. Выбор подходящего типа термопары для конкретного применения определяется температурой. ожиданиями и окружающей средой, в которой будет размещен датчик.
Далее следуют популярные общие и торговые названия для наиболее распространенных комбинаций проводов типа термопар, а также типичные области применения и ограничения для каждой из них.
Термопара типа K
Комбинация сплавов: Chromel® / Alumel® Темп.Диапазон: (от 0 до 1260) ° C [от 32 до 2300] ° F
Термопары типа K рекомендуются для непрерывной окислительной или нейтральной атмосферы и обычно используются при температуре выше 538 ° C [1000 ° F]. Они могут выйти из строя, если подвергается воздействию серы. Предпочтительное окисление хрома в положительной ветви при определенных низких концентрациях кислорода вызывает в большинстве случаев « зеленую гниль » и большие отрицательные отклонения калибровки. серьезные в диапазоне (от 816 до 1038) ° C [от 1500 до 1900] ° F. Эти проблемы могут предотвратить вентиляция или инертное уплотнение защитной трубки.
Термопара типа J
Комбинация сплавов: железо / константан Темп. Диапазон: (от 0 до 760) ° C [от 32 до 1400] ° F
Термопара типа J подходит для вакуума, восстановительной или инертной атмосферы, окислительной атмосферы с уменьшенным сроком службы. Железо быстро окисляется при температуре выше 538 ° C [1000 ° F], поэтому только Для высокотемпературных применений рекомендуется проволока большого сечения. Открытые элементы не должны подвергаться воздействию сернистой атмосферы выше 538 ° C [1000 ° F].
Термопара типа T
Комбинация сплавов: медь / константан Темп. Диапазон: (от -200 до 370) ° C [от -328 до 700] ° F
Термопары типа T могут использоваться в окислительной, восстановительной или инертной атмосфере, а также в условиях вакуума. Они не подвержены коррозии во влажной атмосфере. См. Наш каталог «Пределы погрешности», опубликованный для диапазонов температур ниже нуля.
Термопара типа E
Комбинация сплавов: Chromel® / Constantan Temp.Диапазон: (от 0 до 870) ° C [от 32 до 1600] ° F
Термопары типа E рекомендуются для работы в окислительной или инертной атмосфере. Минусовые пределы погрешности не установлены. Этот тип имеет самую высокую термоэлектрическую вывод общих калибровок.
Термопара типа N
Комбинация сплавов: Nicrosil® / Nisil® Temp. Диапазон: (от 0 до 1260) ° C [от 32 до 2300] ° F
Термопары типа N могут использоваться в приложениях, где элементы типа K имеют более короткий срок службы и проблемы со стабильностью из-за окисления и развития «зеленой гнили».
Термопара типа S и термопара типа R
Комбинация сплавов типа S: платина / платина (10% родий)
Комбинация сплавов типа R: платина / платина (13% родий)
Темп. Диапазон: (от 538 до 1481) ° C [от 1000 до 2700] ° F
Очевидно, что термопары типов S и R очень похожи. Оба они рекомендуются для высокотемпературных применений и должны быть защищены неметаллическим покрытием. защитная гильза и керамические изоляторы.Продолжительное использование при высоких температурах вызывает рост зерна, что может привести к механическому повреждению. Отрицательный дрейф калибровки может быть вызвано диффузией родия в чистую ветвь, а также испарением родия. Термопара типа R используется в промышленности, а тип S — в лаборатории.
Термопара типа B
Комбинация сплавов: платина (6% родий) / платина (30% родий)
Темп. Диапазон: (871–1704) ° C [1600–3100] ° F
Термопара типа B очень похожа на тип R и тип S, но мощность ниже.Он также менее подвержен разрастанию и сносу зерна.
Ищете термопары в сборе по стилю? См. Нашу страницу о термопарах.
Ищете точные характеристики? Смотрите наш каталог.
Chromel и Alumel являются зарегистрированными товарными знаками Hoskins Mfg. Co.
.Nicrosil и Nisil являются зарегистрированными товарными знаками Amax Specialty Metals Corp.
Термопара типаK — Введение, использование и состав
Скачать PDF
Термопаратипа K обеспечивает самый широкий диапазон рабочих температур.Он состоит из немагнитного положительного полюса и немагнитного отрицательного полюса. В термопарах типа K используется традиционный основной металл, благодаря чему он может работать при высоких температурах и обеспечивать самый широкий диапазон рабочих температур. Одним из составляющих металлов в термопарах типа K является никель, который по своей природе является магнитным.
Характеристики термопары типа K заключаются в том, что они претерпевают отклонение на выходе, когда магнитный материал достигает точки Кюри, примерно при 185 ° C.Термопары типа K очень хорошо работают в окислительной атмосфере при температурах до 1260 ° C (2300 ° F), а их класс допуска составляет ± 1,5 K в диапазоне от -40 до 375 ° C.
Почему следует отдавать предпочтение термопаре типа K
- Одним из основных преимуществ термопар типа K перед другими термопарами является то, что они могут работать в суровых условиях окружающей среды и в различных атмосферах
- Он имеет интегрированную композицию из хромелевой и алюмелевой проволоки, имеет диапазон от -270 ° C до 1260 ° C и выходную мощность -6.От 4 до 9 мВ в максимальном диапазоне температур.
- Также известна как термопара общего назначения из-за широкого диапазона температур
- Тип K имеет более длительный срок службы, чем тип J, поскольку в проволоке типа J Fe (железо) быстро окисляется, особенно при более высоких температурах.
- Стоят они недорого.
- Быстрая реакция
- Небольшие по размеру и надежные.
- Обычно используется при температурах выше 540 ° C
Состав термопары типа К
Положительная ветвь термопары типа K состоит из 90% никеля, 10% хрома, а отрицательная ветвь состоит из 95% никеля, 2% алюминия, 2% марганца и 1% кремния.Это наиболее распространенные термопары общего назначения с чувствительностью около 41 мкВ / ° C.
Изоляционный материал типа K
В термопарах типа K используются в основном два типа изоляции. Во-первых, используется изоляция с керамическими шариками, поскольку это легкий изолирующий продукт. Он изготовлен из алюмосиликатных материалов высокой чистоты. Он имеет низкую тепловую массу, что означает, что он не сохраняет тепло, низкую теплопроводность и является чрезвычайно эффективным изоляционным материалом, поскольку он может выдерживать высокую температуру 1260 ° C, поэтому он лучше всего подходит для термопар типа K.
Используется вторично уплотненная минеральная изоляция и внешняя металлическая оболочка (MgO). Оксид магния обладает высокой диэлектрической прочностью, быстро реагирует на температурные изменения и очень долговечен. Он имеет типичный состав MgO стандартного качества (97%) и MgO и AI2O3 высокой чистоты.
Изоляция из оксида магниярекомендуется для термопары типа K, когда термопара должна быть погружена в жидкости, высокую влажность, агрессивные газы или высокое давление. Термопара может быть сформирована так, чтобы достигать недоступных в противном случае участков.
Диапазон температур
Чтобы найти подходящий диапазон термопар, мы должны использовать соответствующий провод, потому что разные провода измеряют разные диапазоны температур. Из четырех основных типов термопар тип K охватывает самый широкий диапазон: —
- Проволока для термопар, от –454 до 2300F (от –270 до 1260 ° C)
- Удлинительный провод, от 32 до 392F (от 0 до 200 ° C)
Точность (в зависимости от того, что больше)
- Стандарт: +/- 2.2 ° C или +/-. 75%
- Специальные пределы погрешности: + / — л ° C или 0,4%
Класс допуска
График зависимости ЭДС от температуры для термопары типа K
Плюсы и минусы:
Плюсы
- Для измерения температуры обеспечивает хорошую линейность ЭДС
- Обеспечивает хорошую стойкость к окислению при температуре ниже 1000 ° C (1600 ° F).
- Высокостабильный выход
- Сравнительно рентабельно, чем другие термопары.
Минусы
- Не подходит для восстановительной атмосферы, но может выдерживать металл
- Старение характеристики ЭДС по сравнению с термопарами из благородных металлов (B, R и S).
- Не подходит для работы в вакууме из-за испарения хрома в положительном элементе.
- Феномен Грина-Ротиса может возникать из-за низкого уровня кислорода в термопарах, которые используются при температуре от 815 ° C до 1040 ° C (от 1500 ° F до 1900 ° F). Термопары
- типа K не следует использовать в серной среде, так как оба элемента будут быстро корродировать, а отрицательный элемент в конечном итоге выйдет из строя механически из-за того, что он станет хрупким.
Использование термопары типа K
В основном они используются при температурах от 550 ° C до максимального рабочего давления термопары.
- Они используются во многих отраслях промышленности, таких как сталь и чугун, для контроля температуры и химического состава в процессе производства стали
- Используется для тестирования температур, связанных с технологическими установками, например химическое производство и нефтеперерабатывающие заводы
- Используется для проверки безопасности отопительных приборов
- Тип K обычно используется в ядерных приложениях из-за его относительной радиационной стойкости.
Что такое термопара типа K?
Что такое термопара?
Термопары — это электронный датчик, используемый для контроля температуры. Термопары бывают разных марок и типов. Двумя наиболее распространенными являются типы J и K. Однако есть несколько других. Типы T, N, E, B, R и S. Типы J, K, T и E известны как «термопары из недрагоценных металлов» и встречаются чаще. R, S и B сделаны из благородных металлов. Они используются при очень высоких температурах.В приведенной ниже таблице показаны различные типы термопар, их состав и диапазоны температур.
Как работают термопары?
Термопара преобразует температуру в небольшое напряжение постоянного тока. Как видно из приведенной выше таблицы, они состоят из двух разнородных металлических проводов, которые встречаются в двух или более местах. Выходное напряжение изменяется линейно в зависимости от разницы температур между двумя переходами. Чем выше температура, тем больше выходное напряжение постоянного тока.Рекомендуется защитить термопару подходящим покрытием или трубкой. Обычно для защиты проводов термопары от повреждений используется металлическое покрытие или керамическая трубка.
Что такое термопара типа K?
Термопара типа K, вероятно, является наиболее распространенным типом. его низкая стоимость и относительно хорошая точность вместе с широким диапазоном температур делают его универсальным датчиком. Они подходят для непрерывного воздействия температур около 1100 ° C с максимальной температурой 1372 ° C (от -328 ° F до 2501 ° F).
Для изготовления положительных и отрицательных проводов различных типов термопар используются разные металлы. Термопары типа K изготовлены на основе никеля и поэтому обладают хорошей устойчивостью к коррозии. Это делает их пригодными для использования в окислительной атмосфере. Термопары типа K используют хромель, никель-хром (10% хрома) для положительной ветви. Отрицательная ветвь — алюминий, никель-алюминий (5% алюминия). Точность термопары типа K обычно составляет максимум +/- 2,2 ° C или +/- 0,75%, в зависимости от того, что больше.Однако могут быть различия между разными термопарами, даже из одной производственной партии, из-за различий в сплавах. Поэтому рекомендуется проводить индивидуальную калибровку термопар.
Термопары типаK используются во многих отраслях промышленности, таких как водная, химическая, газовая и пищевая промышленность. Это одни из самых недорогих термопар с хорошей устойчивостью к окислению, линейностью измерений и стабильностью.
Тип К Точность термопары
Термопары типаK стабильны только в течение короткого периода времени при определенных температурах.У них есть тенденция дрейфовать в положительном направлении. Величина дрейфа зависит от температуры, которой они подвергаются. Например, чем выше температура, тем больше дрейф. При 1000 ° C показания могут отличаться на 5 ° C. Продолжительное воздействие температуры выше 427 ° C ускоряет старение термопары.
Соединения для термопар типа K
Существуют разные способы соединения положительного и отрицательного проводов.
Спай термопары с заземлением
Это наиболее распространенный тип развязки.В этом типе и провода термопары, и оболочка свариваются, образуя одно соединение на конце зонда. Термопары с заземленным спайом имеют отличное время отклика благодаря прямому контакту термопары с оболочкой.
Незаземленный спай термопары
Термопара не заземлена, когда положительный и отрицательный провода свариваются вместе, но изолированы от оболочки.
Открытый или оголенный спай термопары
В термопаре открытого типа проволока сваривается и вставляется непосредственно в рукоятку.Эти термопары имеют очень быстрое время отклика, но они более подвержены повреждениям, коррозии и деградации, так как их нет защитной оболочки.
Цветовое кодирование термопары
Различные термопары имеют цветовую маркировку в соответствии с их типом. Термопары типа K имеют желтый цвет.
Контроль термопар типа K
Термопарывыводят небольшую шкалу напряжения, которая по формуле преобразуется в показания температуры. Количество измеренных милливольт арифметически приравнивается к определенной температуре.Термопары типа K имеют хороший линейный отклик. На приведенном ниже графике показаны различные типы термопар, их выходное напряжение в милливольтах и эквивалентное значение температуры для этого показания.
AKCP предоставляет решения для мониторинга термопар типа J и K, позволяя контролировать значения в режиме онлайн через встроенный веб-интерфейс базового блока AKCP. Уведомления по протоколу SNMP, электронной почте и SMS отправляются, если превышены определенные пороговые значения температуры. Адаптеры термопар AKCP типа J и K подключаются к любой стандартной термопаре типа J или K.AKCP также поставляет полный комплект адаптера и термопары.
Сводка
Термопары типаK недорогие, компактные, надежные и имеют быстрое время реакции. Они могут измерять температуру в широком диапазоне от -270 ° C до 1372 ° C с небольшой степенью погрешности. Обычно термопары типа K используются при температурах выше 540 ° C и в окислительной атмосфере.
Зеленая гниль в термопарах типа K и что с ней делать
Зеленая гниль наиболее выражена, когда термопары типа K подвергаются воздействию температур примерно от 800 ° C до 1260 ° C (от 1472 ° F до 2300 ° F) и когда низкая концентрация кислорода.Эта проблема вызывает отрицательные дрейфы, неточные измерения и даже обрыв цепи из-за поломки, вызванной охрупчиванием. В тех случаях, когда кислород в избытке или совсем отсутствует, зеленая гниль не возникает.
Недорогие, быстро реагирующие, прочные промышленные термопары с автономным питанием являются лучшим выбором для измерения температуры и широко используются во многих приложениях. Термопары состоят из двух проводов (ножек) из разных металлов (сплавов), соединенных на одном конце и образующих точку измерения (горячий спай).
Термопары бывают нескольких типов, обозначенных буквой. Каждый тип имеет различную характеристику зависимости температуры от ЭДС (электродвижущей силы) из-за особого спаривания проводников. Некоторые термопары лучше работают при более низких температурах, в то время как другие даже не регистрируют большую часть ЭДС до более высоких температур.
Чаще всего используется термопара типа K, которая хорошо работает в широком диапазоне температур — от -200 ° C до 1260 ° C (от -328 ° F до 2300 ° F).Его положительная ножка изготовлена из никель-хромового (NiCr) сплава, а ее отрицательная ножка — из никель-алюминиевого (NiAl) сплава (ферромагнитного).
Хотя термопары типа K прочны и долговечны, они, как и все термопары, теряют точность с возрастом и в зависимости от условий эксплуатации. «Зеленая гниль» — одна из проблем, которые могут повлиять на это универсальное устройство измерения температуры.
Что такое зеленая гниль?
Пример зеленой гнили
Зеленая гниль — другое название окисления хрома.Он появляется в условиях высоких температур — обычно от 800 ° C до 1260 ° C (от 1472 ° F до 2300 ° F) — и когда процесс происходит в среде с низким содержанием кислорода. Слой оксида на поверхности ножки NiCr обычно защищает ее от окисления. Но в присутствии водорода или другого восстановителя окисление хрома ускоряется. В результате на положительной ножке появляется слой чешуйчатой зеленой коррозии.
По мере того, как окисление разъедает хром, обычно немагнитная ветвь NiCr становится магнитной, вызывая уменьшение термоэлектрического напряжения на опорном спайе (холодный спай).Чем больше коррозия, тем больше становится отрицательный дрейф напряжения, что приводит к значительным ошибкам измерения температуры. Зеленая гниль также делает ногу из NiCr более хрупкой. Если не проверить коррозию, положительный вывод может сломаться, разомкнув цепь и выведя устройство из строя.
Что делать с зеленой гнилью
Профилактические меры могут минимизировать образование зеленой гнили, тем самым обеспечивая точные измерения температуры и продлевая срок службы термопары типа K.Эти шаги включают:
- Очистка и / или удаление любых восстанавливающих соединений изнутри защитной трубки термопары или защитной гильзы.
- Подача дополнительного кислорода в защитную гильзу.
- Подача инертного газа в защитную гильзу.
- Включает в себя жертвенный кислородопоглощающий титановый проводник в термопару.
- Использование кабелей в оболочке с минеральной изоляцией (MI).
Эти профилактические меры могут минимизировать, но не устранить, образование оксида хрома.Вот почему термопары типа K лучше всего подходят для работы в окислительных или инертных газовых средах. Для точного измерения температуры в среде с низким содержанием кислорода может быть лучше использовать термопару другого типа. Например, термопара типа N имеет диапазон, сравнимый с термопарой типа K, но ее положительный полюс изготовлен из сплава никель-кремний, а кремний добавляет слой защиты от коррозии.
Термопары — идеальное решение для измерения температуры. Однако, чтобы избежать «зеленой гнили» и других проблем, пользователи должны тщательно выбирать подходящие для своих приложений.WIKA производит несколько линеек термопар. Обратитесь к специалистам WIKA за советом экспертов относительно того, какая термопара лучше всего подходит для вашего применения.
Поиск подходящего типа термопары для вашего проекта
Выбор подходящей термопары для вашего испытательного или производственного процесса имеет важное значение для сбора точных данных и обеспечения качества и согласованности продукции. Ранее мы обсудили некоторые соображения, которые следует учитывать при выборе термопар, такие как диапазон рабочих температур и химическая среда, время отклика термопары и физическое место, где будут проводиться измерения.После того, как вы определили рабочие параметры и определили требования к термопарам, пора перейти к алфавитному списку типов термопар, чтобы сделать свой выбор.
Термопарыбывают разных типов, каждая с уникальным составом легированной проволоки. Свойства проволоки определяют диапазон рабочих температур термопары, уровень точности и характеристики технологической среды. При выборе термопары вы должны сравнить эти характеристики с вашими требованиями к испытаниям.Имея это в виду, давайте обсудим несколько распространенных типов термопар, и когда наиболее распространенный тип термопары может быть , а не , лучшим выбором.
Популярные термопары: тип K, тип J и тип T Термопарытипа K часто выбирают, потому что они являются долговечным и недорогим вариантом, подходящим для различных промышленных процессов и испытаний. Эти термопары распространены, потому что они работают в широком диапазоне температур: от нескольких сотен градусов ниже нуля до более 2000 ° F.Термопары типа K обычно используются для измерения высоких температур в химической промышленности, автомобильных двигателях и некоторых процессах производства электроэнергии.
Хотя они могут показаться универсальными термопарами, термопары типа K не всегда подходят для определенных процессов тестирования и производства. Например, термопары типа K превосходны в большинстве химических сред, но могут не работать хорошо в процессах, которые включают в себя восстановительную атмосферу. Если этот сценарий применим к вам, рассмотрите термопару типа J.Эти термопары также хорошо работают при давлении на уровне вакуума. Тип J не имеет такого широкого диапазона рабочих температур, как тип K, но они аналогичны по точности и стоимости.
А как насчет точного измерения низких температур? Термопары типа T могут быть предпочтительнее, чем тип K, несмотря на широкий диапазон измерения температуры типа K. Тип T может выдерживать большинство химических атмосфер, но также может измерять чрезвычайно низкие температуры с большей точностью. Эти термопары часто подходят для пищевой промышленности, где рабочие температуры значительно ниже нуля, а точные измерения имеют решающее значение для безопасности продукции.
Новый лидер в области измерения температуры: термопары типа NВ K-Tec Systems мы работаем со многими отраслями промышленности над модернизацией термопар типа K до термопар типа N для многих производственных и испытательных процессов. Эти два типа термопар работают в одном и том же диапазоне температур и в одинаковых рабочих условиях, но изменения в составе проводов увеличивают срок службы и стабильность типа N при очень высоких рабочих температурах. В результате термопары типа N набирают обороты, особенно в автомобильной промышленности и в процессах термообработки.Хотя базовая цена термопар типа N немного выше, их более длительный срок службы может сделать их экономичным выбором для жестких условий эксплуатации — и с дополнительным преимуществом более надежного измерения при очень высоких температурах.
Следующие шаги в выборе подходящей термопарыВыбор подходящего типа термопары для вашего процесса — отличный первый шаг в планировании стратегии измерения температуры. Имейте в виду, что другие факторы, такие как диаметр провода, изоляция провода и оболочки термопар, также должны быть тщательно выбраны для вашего приложения, и поэтому мы рекомендуем проконсультироваться со специалистом K-Tec Systems.K-Tec Systems может помочь вам выбрать наиболее точную термопару, соответствующую вашим требованиям к испытаниям.
Термопара Skutt типа K (калибр 8) с блоком и проволокой — Krueger Pottery Supply
Krueger Pottery Номера деталей1000116
Номера деталей Skutt
1506
Как узнать, какая термопара мне нужна для моей печи?
Skutt упрощает замену термопары, потому что почти в каждой печи используется одна и та же термопара типа K 8 Gauge.Даже если у вас есть термопара старого образца типа M1, вы можете заменить ее новым 8-м калибром.
Единственное, что вам действительно нужно определить на вашей печи Skutt, — это термопара у вас типа K или типа S. Если оболочка вокруг провода, идущего от термопары, желтого цвета, у вас тип K, а если провод зеленый, у вас тип S. Тип K НАМНОГО более распространен, чем тип S.
В чем разница между термопарами типа K и S?
Все термопары изготовлены из двух разных металлов, сваренных вместе на наконечнике, и из-за разницы в электрических свойствах этих двух металлов при нагревании возникает небольшой электрический ток.К счастью для гончаров, количество электричества очень точное и может быть измерено и соотнесено с температурой, которую может интерпретировать компьютерный контроллер. Различные типы термопар изготавливаются из разных металлов. В большинстве печей, используемых домашними и студийными гончарами, используются так называемые термопары типа K, которые сделаны из хромеля и алюмеля, недороги и достаточно точны. Термопары типа S изготавливаются из платины и родия, они более дорогие, но более точные.
Нужно ли мне заменять фарфоровый блок и проволоку, если я заменяю термопару?
№Пока провод и блок не повреждены и не корродированы, вам не нужно их заменять.
Какой провод положительный, а какой отрицательный?
На термопаре красный провод отрицательный, а желтый провод положительный.
Помогите! Я заменил свою термопару, и теперь температура падает …
Если вы поменяете местами красный и желтый провода, температура начнется с комнатной температуры, а затем начнет снижаться, а не повышаться при запуске печи.В конечном итоге вы вызовете сообщение ERR D (ERRD), и стрельба прекратится. Чтобы решить эту проблему, просто поменяйте местами провода. Убедитесь, что полярность правильная на всем протяжении цепи термопары.
Замена термопары 8 манометров — Стандартная термопара
Как заменить старую термопару типа оболочки M1 на новую термопару 8 манометра
Замена термопары
.