Удельная теплоемкость этиленгликоля: Физические свойства этиленгликоля и глицерина :: HighExpert.RU

Содержание

Физические свойства этиленгликоля и глицерина :: HighExpert.RU

Этиленгликоль (этандиол, гликоль) — это простейший двухатомный спирт, его химическая формула HO-CH2CH2-OH. Этиленгликоль широко применяется в качестве антифриза, также используется в органическом синтезе. В очищенном виде представляет собой прозрачную бесцветную жидкость слегка маслянистой консистенции. Этиленгликоль не имеет запаха и обладает сладковатым вкусом. Этиленгликоль токсичен.

Глицерин (триоксипропан) — это простейший представитель трехатомных спиртов, его химическая формула HOCH2CH(OH)-CH2OH (C3H8O3). Глицерин находит широкое применение в при изготовлении бумаги, косметики и мыла, а также в производстве кондитерских изделий и алкогольных напитков; применяется в технологических процессах, предотвращает замораживание рабочих жидкостей, способствует продлению срока службы деталей из эластомеров.

Глицерин является бесцветной вязкой жидкостью, неограниченно растворимой в воде. Обладает сладким вкусом.

Теплофизические свойства этиленгликоля

При нормальных условиях вязкость этиленгликоля в ~19 раз больше вязкости воды. Теплофизические свойства водного раствора этиленгликоля зависят от его содержания в смеси.
ТемператураПлотность, ρУдельная теплоемкость, CpКинематическая вязкость**, νТеплопроводность, λКоэффициент температуропроводности, a
Число Прандтля, Pr
оСкг/м3кДж / (кг • К)м2/с • 106Вт/(м • К)м2/с • 107
01130,12,29467,620,2420,933615,0
201116,12,38219,170,2490,938204,0
401100,82,4748,690,2560,93893,0
601087,12,5624,750,2600,93151,0
801077,02,6502,980,2620,92232,4
1001057,92,7422,030,2630,90822,4

При проведении инженерных расчётов проще использовать приближённые формулы для определения физических свойств этиленгликоля.

Плотность этиленгликоля

⋆ [ кг/м3 ]

Теплоёмкость этиленгликоля

⋆ [ Дж/(кг • К) ]

Теплопроводность этиленгликоля

⋆ [ Вт/(м • K) ]

Кинематическая вязкость этиленгликоля

⋆ [ м2/с ]



Температуропроводность этиленгликоля

[ м2/с ]

Число Прандтля

[ — ]

Динамическая вязкость этиленгликоля

[ Па • c ]


Теплофизические свойства глицерина

В таблице приведены физические свойства глицерина, которые существенно зависят от температуры этой жидкости. При температуре +20 градусов Цельсия динамическая вязкость глицерина составляет около 1,41…1,48 Па•c и снижается в ~100 раз при повышении температуры до +100 градусов Цельсия. Теплофизические свойства водного раствора глицерина зависят от его концентрации в смеси.

Кинематическая вязкость глицерина при нормальных условиях примерно в 1100 раз превышает вязкость воды.
ТемператураПлотность, ρУдельная теплоёмкость, CpДинамическая вязкость**, μКинематическая вязкость***, νТеплопроводность, λКоэффициент температуропроводности, aЧисло Прандтля, PrПоверхностное натяжение, σ
оСкг/м3кДж / (кг • К)(Н • c/м
2
) • 103
м2/с • 106Вт/(м • K)м2/с • 107Н/м • 103
01273 (1275)2,26112070 (12100)9466,670,2830,98296432
101267 (1269)2,3203900 (3950)3078,1431915
201262 (1263)2,386 (2,35)1410 (1480)1111,110,2840,95711846(59,4)
301255 (1257)612 (600)487,655154(59,0)
401249 (1251)(2,45)284 (330)224,860,2860,9332827(58,5)
50(1244)2,512182 (180)(0,283)0,9051598(58,0)
60(1238)(2,56)81,3 (102)64,68919(57,4)
7050,6 (59)(56,7)
80(1224)(2,67)31,9 (35)25,50,2850,872
328
(55,9)
9021,3 (21)(55,0)
100(1208)(2,79)14,8 (13)15,7(0,289)0,857125(54,2)
1101202(53,2)
1201194 (1188)(2,90)(5,2)4,37(52,2)
1301187(51,1)
1401180 (1167)(3,01)(1,8)1,54(50,0)
1601164 (1143)(3,12)(1,0)0,96

При проведении инженерных расчетов удобнее использовать приближённые формулы для определения физических свойств глицерина.

Плотность глицерина

⋆ [ кг/м3 ]

Теплоёмкость глицерина

⋆ [ Дж/(кг • К) ]

Теплопроводность глицерина

⋆ [ Вт/(м • K) ]

Кинематическая вязкость глицерина

⋆ [ м2/с ] формула для диапазона температур от 273 до 313 K


Динамическая вязкость глицерина

[ Па • c ]

Число Прандтля

[ — ]

Температуропроводность глицерина

[ м2/с ]

⋆ Приближённые формулы получены авторами настоящего сайта.

Размерность величин: температура — К (Кельвин).

Приближённые формулы действительны в диапазоне температур от 273 К до 333 К.

* Табличные подготовлены по материалам справочника «Свойства веществ», а также данным с сайта https://www.dow.com/

Вязкость указана для концентрации 100%.

Табличные значения кинематической вязкости рассчитаты исходя из имеющихся данных динамической вязкости и плотности.

Теплофизические свойства водного раствора этиленгликоля, концентрация и температура замерзания, теплопроводность и теплоемкость, кинематическая и динамическая вязкость

Вода, как теплоноситель, обладает идеальными свойствами — высокой теплоемкостью и теплопроводностью, практически нулевой вязкостью, незначительным тепловым расширением, практически неограниченными природными ресурсами и самое важное — повсеместной доступностью, практически нулевой стоимостью и абсолютной экологической безопасностью. И единственным. непреодолимым недостатком — низкой (нулевой) температурой замерзания и при этом замерзая расширяется, образуя очень твердую и прочную кристаллическую решетку, давление которой не способны выдержать никакие инженерные устройства, механизмы и системы.

Производства пищевых продуктов и фармпроизводства, системы промышленного кондиционирования требуют поддержания в помещениях необходимой температуры, что невозможно обеспечить без применения незамерзающих (низкозамерзающих) жидкостей — антифризов, хладагентов, теплоносителей. В качестве незамерзающей жидкости в последние годы широко применяются водные растворы гликолей — этиленгликоля и пропиленгликоля.

Поподробнее рассмотрим теплофизические свойства и характеристики водного раствора этиленгликоля. Водный раствор этиленгликоля обладает:

  • 1) Более высокой плотностью по сравнению с водой как теплоносителем, на 8%-9% и плотность раствора повышается с увеличением концентрации этиленгликоля.
  • 2) Теплоемкость и теплопроводность уменьшаются ( по сравнению с водой) в пределах до 20% с ростом концентрации этиленгликоля и снижением рабочей температуры в минусовой зоне.
  • 3) Кинематическая и динамическая вязкость выше чем у воды 2-3 раза в зоне положительных температур и возрастают в 8-10 раз при повышении концентрации до практических предельных 65% и соответственно понижении температуры кристаллизации до минус -65°C.

Повышенная вязкость водного раствора этиленгликоля в зоне отрицательных рабочих температур приводит к значительному возрастании гидравлических потерь на трение в трубопроводах и на преодоление гидравлических сопротивлений во всех узлах системы охлаждения и промышленного кондиционирования ( см. Табл. №№1, 2, 3). Также и значительное снижение, до 18%, теплоемкости и теплопроводности раствора этиленгликоля требует повышение скорости циркуляции тепло-хладоносителя в системе или других технических решений для обеспечения передачи (приема) необходимой тепловой мощности (энергии).

Все эти факторы, как следствие, приведут к особым исключительным ситуациям (условиям) при эксплуатации инженерных систем в различных климатических условиях. И их следует учесть при проектировании и эксплуатации систем отопления и промышленного кондиционирования.


Табл. 1. Теплофизические свойства 20% водного раствора этиленгликоля, температура кристаллизации минус — 10°C
Температура раствора, t°CПлотность, кг/м**3Теплоемкость, Ср, кДж/(кг*К) Теплопроводность, Вт/(м*К) Динамическая вязкость, *10-3[Н*с/м**2] Кинематическая вязкость, *10-6[(м**2/с]
-10°C10383,850,4985,195,0
0°C10363,870,5003,113,0
20°C10303,900,5121,651,6
40°C10223,930,5211,021,0
60°C10143,960,5310,710,7
80°C10063,990,5400,5230,52
100°C9974,020,5500,4090,41

Табл. 2. Теплофизические свойства 36% водного раствора этиленгликоля, температура кристаллизации минус — 20°C


Температура раствора, t°CПлотность, кг/м**3Теплоемкость, Ср, кДж/(кг*К) Теплопроводность, Вт/(м*К) Динамическая вязкость, *10-3[Н*с/м**2] Кинематическая вязкость, *10-6[(м**2/с]
-20°C10693,510,46211,7611,0
0°C10633,560,4664,894,6
20°C10553,620,4702,322,2
40°C10443,680,4731,571,5
60°C10333,730,4751,010,98
80°C10223,780,4780,6950,68
100°C10103,840,4800,5150,51

Табл. 3. Теплофизические свойства 54% водного раствора этиленгликоля, температура кристаллизации минус — 40°C


Температура раствора, t°CПлотность, кг/м**3Теплоемкость, Ср, кДж/(кг*К) Теплопроводность, Вт/(м*К) Динамическая вязкость, *10-3[Н*с/м**2] Кинематическая вязкость, *10-6[(м**2/с]
-40°C11083,040,416 110,8100
-20°C11003,110,409 27,5025
-10°C10963,150,407 17,5618,5
0°C10923,190,405 10,379,5
20°C10823,260,402 4,874,5
40°C10693,340,398 2,572,4
60°C10573,410,394 1,591,5
80°C10453,490,390 1,051,0
100°C10323,560,385 0,7220,7


Мы за взаимовыгодное сотрудничество

Физические свойства этиленгликоля C2h5(OH)2 — водный раствор (антифриз)

Физические свойства водного раствора этиленгликоля

В таблице представлены следующие теплофизические и физические свойства этиленгликоля в виде водного раствора различной концентрации ζ: плотность ρ, температура замерзания tз, теплоемкость C, динамическая вязкость μ, кинематическая вязкость ν, теплопроводность λ, температуропроводность a, число Прандтля Pr этиленгликоля.

Физические свойства раствора этиленгликоля приведены в таблице в зависимости от температуры и его концентрации в растворе.

По данным таблицы видно, что с увеличением концентрации этиленгликоля в растворе его теплоемкость и теплопроводность уменьшаются, а температура замерзания раствора снижается при концентрации этиленгликоля до 66,3%. При дальнейшем увеличении концентрации этиленгликоля, температура замерзания раствора начинает повышаться.

В случаях применения раствора этиленгликоля в качестве антифриза в системе охлаждения автомобиля, снижение величин этих физических свойств этиленгликоля приведет к меньшему теплоотводу от двигателя. Таким образом, чем более концентрированный раствор этиленгликоля применяется в качестве охлаждающей жидкости, тем менее эффективно будет работать система охлаждения автомобиля в части отвода тепла от двигателя.

Физические свойства этиленгликоля даны в диапазоне температуры от минус 30 до 50°С и при концентрации этиленгликоля в растворе от 4,6 до 46,4 %.

Плотность и температура замерзания раствора этиленгликоля

В таблице даны значения плотности и температуры замерзания смеси технического этиленгликоля и воды в зависимости от концентрации. Следует отметить, что с увеличением содержания этиленгликоля в растворе, увеличивается плотность раствора. Температура замерзания раствора этиленгликоля при увеличении его концентрации в растворе снижается (до содержания этиленгликоля 66,3%), а затем начинает расти.

Таким образом, раствор этиленгликоля обладает свойством не замерзать до температуры -68°С при концентрации этиленгликоля в растворе 66,3%. Такие свойства раствора этиленгликоля в воде позволяют применять его в качестве антифриза во множестве систем.

Источники:

  1. Данилова Г.Н. и др. Сборник задач по процессам теплообмена в пищевой и холодильной промышленности. М.: «Пищевая промышленность» 1976.- 240 с.
  2. Лиханов В.А., Лопатин О.П. Технические жидкости: Учебное пособие. – Киров: Вятская ГСХА, 2005. – 43 с.

Этиленгликоль — Вода. Плотность, температура замерзания, теплоемкость Cp, теплопроводность, водного раствора этиленгликоля = monoethylenglycol — основного антифриза и теплоносителя для систем отопления и центрального кондиционирования в РФ.


Навигация по справочнику TehTab.ru:  главная страница  / / Техническая информация / / Свойства рабочих сред / / Антифризы.  / / Этиленгликоль — Вода. Плотность, температура замерзания, теплоемкость Cp, теплопроводность, водного раствора этиленгликоля = monoethylenglycol — основного антифриза и теплоносителя для систем отопления и центрального кондиционирования в РФ.

Этиленгликоль — Вода. Плотность, температура замерзания, теплоемкость Cp, теплопроводность, водного раствора этиленгликоля = monoethylenglycol = MEG= C2H4(OH)2 — основного антифриза=теплоносителя для систем отопления / центрального кондиционирования в РФ.

Объемная доля в смеси % Минимальная рабочая температура ( замерзания), °C Температура
раствора °C
Плотность
r
кг/м3
Теплоемкость Cp
кДж/(кг*К)
Теплопроводность
Вт/(м*К)
Динамическая вязкость
10-3 (Н*с/м2)
Кинематическая вязкость
10-62/с)=мм2/с=cSt

20

-10

-10

1038

3,85

0,498

5,19

5,0

0

1036

3,87

0,500

3,11

3,0

20

1030

3,90

0,512

1,65

1,6

40

1022

3,93

0,521

1,02

1,0

60

1014

3,96

0,531

0,71

0,7

80

1006

3,99

0,540

0,523

0,52

100

997

4,02

0,550

0,409

0,41

34

-20

-20

1069

3,51

0,462

11,76

11,0

0

1063

3,56

0,466

4,89

4,6

20

1055

3,62

0,470

2,32

2,2

40

1044

3,68

0,473

1,57

1,5

60

1033

3,73

0,475

1,01

0,98

80

1022

3,78

0,478

0,695

0,68

100

1010

3,84

0,480

0,515

0,51

52

-40

-40

1108

3,04

0,416

110,8

100

-20

1100

3,11

0,409

27,50

25

0

1092

3,19

0,405

10,37

9,5

20

1082

3,26

0,402

4,87

4,5

40

1069

3,34

0,398

2,57

2,4

60

1057

3,41

0,394

1,59

1,5

80

1045

3,49

0,390

1,05

1,0

100

1032

3,56

0,385

0,722

0,7




Физические и теплофизические свойства этиленгликоля и глицерина и его водных растворов. Плотность, теплоемкость, вязкость, температуропроводность, теплопроводность, поверхностное натяжение, температуры замерзания и кипения.

Этиленгликоль (этандиол — 1,2 ; гликоль, этиленгликоль, 1,2-диоксиэтан, 1,2-этандиол) — это простейший двухатомный спирт, HO-CH2CH2-OH = C2H4(OH)2. Этиленгликоль, вернее его смеси часто применяется в качестве антифризов, тем и известны в основном. Чиистый этиленгликоль представляет собой прозрачную бесцветную маслянистую. Этиленгликоль не имеет запаха и обладает сладковатым вкусом — это примечание глупое, потому, что Этиленгликоль весьма токсичен.

Глицерин (триоксипропан, глицерол, пропантриол-1,2,3. ) — трехатомный спирт, его химическая формула HOCH2CH(OH)-CH2OH = C3H8O3). Глицерин находит широкое применение в при изготовлении бумаги, косметики и мыла, а также в производстве кондитерских изделий и алкогольных напитков; применяется в технологических процессах, предотвращает замораживание рабочих жидкостей, способствует продлению срока службы деталей из эластомеров. Глицерин является бесцветной вязкой жидкостью, неограниченно растворимой в воде. Обладает сладким вкусом.

Плотность, теплоемкость, вязкость, температуропроводность, теплопроводность, число Прандтля, этиленгликоля. Таблица.

Примечание — при нормальных условиях вязкость этиленгликоля примерно в 20 раз больше вязкости воды.

Коэффициент температуропроводности, α, 10-7 м2

Число Прандтля/ Prandtl Number, Pr

0

1130,1

2,294

67,62

0,242

0,933

615,0

20

1116,1

2,382

19,17

0,249

0,938

204,0

40

1100,8

2,474

8,69

0,256

0,938

93,0

60

1087,1

2,562

4,75

0,260

0,931

51,0

80

1077,0

2,650

2,98

0,262

0,922

32,4

100

1057,9

2,742

2,03

0,263

0,908

22,4

Плотность, теплоемкость, вязкость, температуропроводность, теплопроводность, поверхностное натяжение, число Прандтля глицерина. Таблица.

Теплофизические свойства водного раствора глицерина зависят от его концентрации в смеси с водой (смотри ниже).

Замечание — кинематическая вязкость глицерина при нормальных условиях примерно в 1100 раз превышает вязкость воды.

Температура

Плотность, ρ, кг/м3

Удельная теплоёмкость, Cp, кДж/(кг*К)

Динамическая вязкость, μ 10-3 (Н*с/м2)

Кинематическая вязкость ν,
=мм2/с=10-6м2

Теплопроводность, λ Вт/(м*К)

Коэффициент температуропроводности, α, 10-7 м2

Число Прандтля/ Prandtl Number, Pr

Поверхностное натяжение, σ 1дин/см = 10-3 Н/м

0

1273 (1275)

2,261

12070 (12100)

9466,67

0,283

0,982

96432

10

1267 (1269)

2,320

3900 (3950)

3078,14

31915

20

1262 (1263)

2,386 (2,35)

1410 (1480)

1111,11

0,284

0,957

11846

(59,4)

30

1255 (1257)

612 (600)

487,65

5154

(59,0)

40

1249 (1251)

(2,45)

284 (330)

224,86

0,286

0,933

2827

(58,5)

50

(1244)

2,512

182 (180)

(0,283)

0,905

1598

(58,0)

60

(1238)

(2,56)

81,3 (102)

64,68

919

(57,4)

70

50,6 (59)

(56,7)

80

(1224)

(2,67)

31,9 (35)

25,5

0,285

0,872

328

(55,9)

90

21,3 (21)

(55,0)

100

(1208)

(2,79)

14,8 (13)

15,7

(0,289)

0,857

125

(54,2)

110

1202

(53,2)

120

1194 (1188)

(2,90)

(5,2)

4,37

(52,2)

130

1187

(51,1)

140

1180 (1167)

(3,01)

(1,8)

1,54

(50,0)

160

1164 (1143)

(3,12)

(1,0)

0,96

Физические и теплофизическине свойства водных растворов глицерина

Плотность водного раствора глицерина в зависимости от температуры и концентрации. Таблица.

Плотность смеси глицерина и воды приведена в таблице для концентрации глицерина от 10% до 70% по массе в диапазоне температур от нуля до ста градусов Цельсия.

Температура, °C

Плотность водного раствора глицерина (содержание в процентах по массе) / ρ, г/см3

10%

20%

30%

40%

50%

60%

70%

0

1,025

1,052

1,079

1,107

1,135

1,163

1,192

20

1,022

1,047

1,073

1,099

1,126

1,154

1,181

40

1,016

1,039

1,064

1,089

1,115

1,142

1,169

60

1,006

1,030

1,053

1,078

1,103

1,130

1,156

80

0,994

1,017

1,041

1,066

1.091

1,117

1.144

100

0,982

1,004

1,027

1,052

1,077

1,104

1,302

Динамическая вязкость водного раствора глицерина в зависимости от температуры и концентрации. Таблица.

Вязкость водного раствора глицерина приводится в таблице в диапазоне температур смеси от нуля до ста градусов Цельсия и концентрации глицерина от 10% до 70%. Примечательно, что добавление всего лишь 10% (по массе) глицерина в воду позволяет повысить динамическую вязкость раствора на 30%.

Температура, °C

Вязкость абсолютная (динамическая) водного раствора глицерина (содержание в процентах по массе) μ, Па*с

10%

20%

30%

40%

50%

60%

70%

0

2,44*10-3

3,44*10-3

5,14*10-3

8,25*10-3

14,6*10-3

29,9*10-3

76,0*10-3

20

1,31*10-3

1,76*10-3

2,5*10-3

3,72*10-3

6,0*10-3

10,8*10-3

22,5*10-3

40

0,826*10-3

1,07*10-3

1,46*10-3

2,07*10-3

3,10*10-3

5,08*10-3

9,4*10-3

60

0,575*10-3

0,731*10-3

0,956*10-3

1,30*10-3

1,86*10-3

2,85*10-3

4,86*10-3

80

0,69*10-3

0,918*10-3

1,25*10-3

1,84*10-3

2,9*10-3

100

0,668*10-3

0,91*10-3

1,28*10-3

1,93*10-3

Теплопроводность смеси глицерина с водой в зависимости от температуры и концентрации. Таблица.

Значения теплопроводности водного раствора глицерина показаны в таблице для диапазона температур от 20 до 80 градусов Цельсия и концентрации глицерина от 10% до 70%. С увеличением концентрации глицерина теплопроводность водного раствора снижается. При содержании 50% глицерина теплопроводность смеси примерно на 29% меньшей, чем у чистой воды.

Температура Теплопроводность смеси глицерина (содержание в процентах по массе) с водой Вт/(м*°C)
10% 20% 30% 40% 50% 60% 70%

20

0,557

0,519

0,481

0,448

0,414

0,381

0,352

40

0,586

0,540

0,502

0,460

0,423

0,385

0,356

60

0,611

0,565

0,519

0,477

0,435

0,393

0,360

80

0,636

0,590

0,540

0,494

0,448

0,402

0,364

Теплоемкость водного раствора глицерина в зависимости от температуры и концентрации. Таблица.

Оценочные значения теплоемкости водного раствора глицерина приводятся в таблице для температур от 20 до 80 градусов Цельсия и концентраций глицерина от 10 до 70%. С увеличением концентрации глицерина теплопроводность раствора снижается. При нормальных условиях и содержании 10% глицерина теплоемкость смеси примерно в 2 раза меньше теплоемкости чистой воды.

Температура, °С

Теплоемкость смеси глицерина (содержание в процентах по массе) с водой кДж/(кг*°C)

10%

20%

30%

40%

50%

60%

70%

20

1,998

1,907

1,816

1,725

1,634

1,542

1,452

40

2,002

1,916

1,830

1,744

1,659

1,573

1,487

60

2,010

1,929

1,848

1,767

1,687

1,606

1,525

80

2,024

1,948

1,871

1,795

1,718

1,642

1,608

Концентрация глицерина по массе и по объёму в водном растворе

В таблице ниже приведены соотношения концентрации глицерина в водном растворе по массе и по объёму.

Концентрация глицерина в водном растворе по массе 5% 10% 20% 30% 40% 50% 60% 70%
Концентрация глицерина по объёму в водном растворе 4,0% 8,1% 16,58% 25,49% 34,84% 44,63% 54,86% 65,56%
 

Температура кипения смеси глицерина с водой (при нормальном атмосферном давлении)

  • Вода (без глицерина): 100°C
  • Вода (90%) + Глицерин (10%): 100.7°C
  • Вода (70%) + Глицерин (30%): 102,9°C
  • Вода (50%) + Глицерин (50%): 106,7°C
  • Глицерин (80%) + Вода (20%): 121,5°C
  • Глицерин (90%) + Вода (10%): 139,8°C
  • Глицерин (95%) + Вода (5%): 168 °C

Температура замерзания смеси глицерина с водой (при нормальном атмосферном давлении)

Источник, в основном: Богданов, Бурцев, Иванов, Куприянова «Холодильная Техника, Кондиционирование воздуха. Свойства веществ. » СПб. 1999

  • Вода (90%) + Глицерин (10%): -2,2°C
  • Вода (70%) + Глицерин (30%): -8,8°C
  • Вода (50%) + Глицерин (50%): -21,4°C
  • Глицерин (70%) + Вода (30%): -41,5°C

АНТИФРИЗЫ на основе этилен- и пропиленгликолей и ВОДА. Растворы этиленгликоля. Растворы пропиленгликоля. Температуры замерзания. Вязкости. Плотности. Теплоемкости

АНТИФРИЗЫ на основе этилен- и пропиленгликолей и ВОДА. Растворы этиленгликоля. Растворы пропиленгликоля. Температуры замерзания. Вязкости. Плотности. Теплоемкости.

Антифризы это — жидкости, применяемые для охлаждения двигателей внутреннего сгорания, радиоэлектронной аппаратуры, промышленных теплообменников и других установок, работающих при температурах ниже 0°С. Основные требования к антифризам: низкая температура замерзания, высокие теплоемкость и теплопроводность, небольшая вязкость при низких температурах, малая вспениваемость, высокие температуры кипения и воспламенения. Кроме того, антифризы не должны вызывать разрушения конструкционных материалов, из которых изготовлены детали систем охлаждения.

Наиболее распространены антифризы на основе водных растворов этиленгликоля и пропиленгликоля (см.ниже). Однако такие растворы вызывают значительную коррозию металлов, поэтому в них добавляют ингибиторы коррозии — Na2HPO4, Na2MoO4, Na2B4O7, KNO3, декстрин, бензоат К, меркаптобензотиазол и другие. В ряде случаев, в качестве антифризов используют водные растворы солей; наиболее широко распространен раствор СаСl2. Недостатки таких антифризов – исключительно высокая коррозионная активность и кристаллизация солей при испарении воды.

СВОЙСТВА АНТИФРИЗОВ НА ОСНОВЕ ВОДНЫХ РАСТВОРОВ СОЛЕЙ (справочная таблица для интереса, такие антифризы практически вышли из употребления)
Соль Содержание соли, % по массе Температура замерзания, °С
NH4Cl 18,7 -15,8
NaCl 22,4 -21,2
MgCI2*6H2O 20,6 -33,6
CaCl2*6H2O 29,9 -55,0
К2С03*1,5Н20 39,9 -16,5

ЭТИЛЕНГЛИКОЛЬ (1,2-этандиол) НОСН2СН2ОН, бесцветная вязкая гигроскопичная жидкость без запаха, сладковатого вкуса; температура плавления -12,7 °С, температура кипения 197,6 °С. При растворении этиленгликоля в воде выделяется теплота и происходит уменьшение объема. Водные растворы замерзают при низких температурах. Этиленгликоль токсичен при попадании внутрь, действует на центральную нервную систему и почки; смертельная доза 1,4 г/кг. ПДК в воздухе рабочей зоны 5 мг/м3.

ПРОПИЛЕНГЛИКОЛИ (пропандиолы) С3Н6 (ОН)2 Известны 2 изомера: 1,2-П. СН3СНОНСН2ОН (1,2-пропандиол) и 1,3-П. СН2ОНСН2СН2ОН. Пропиленгликоли бесцветные вязкие гигроскопичные жидкости сладковатого вкуса, без запаха. Для 1,2-П. температура плавления -60 °С, температура кипения 189 °С. Для 1,3-П. температура плавления -32°С, температура кипения 213,5°С. 1,2-П. растворим в воде, диэтиловом эфире, одноатомных спиртах, карбоновых кислотах, альдегидах, аминах, ацетоне, этиленгликоле, ограниченно растворим в бензоле. При смешении его с водой или аминами резко снижается температура замерзания растворов. Токсичность 1,2-П. (ЛД50 34,6 мг/кг, крысы) ниже, чем у этиленгликоля.

Уровни безопасности для усредненных сроков хранения (биохимической активности) продуктов при добавлении в них 0,2% массового количества хладоносителя приведены ниже.
Показатель оценивается по пятибалльной шкале. Пятерка не означает, что продуктом нельзя отравиться в принципе.

Антифриз Показатель Расшифровка
Вода 5 Нейтрален
Этанол 5 Нейтрален
Пропиленгликоль 5 Нейтрален
Хлорид натрия 5 Нейтрален
Формиат калия 4 Слабо опасен
Ацетат калия 4 Слабо опасен
Метанол 3 Умеренно опасен
Этиленгликоль 3 Умеренно опасен
Глицерин 3 Умеренно опасен
Аммиак 3 Умеренно опасен
Хлорид магния 2 Опасен
Хлорид кальция 1 Очень опасен
 

Температура замерзания водных растворов этиленгликоля и пропиленгликоля

Массовая концентрация
гликоля %
ЭТИЛЕНГЛИКОЛЬ ПРОПИЛЕНГЛИКОЛЬ
° C ° C
10 -3 -3
15 -5 -5
20 -8 -7
25 -11 -10
30 -14 -13
40 -22 -21
50 -34 -33
60 -48 -51
 

Физические свойства водного раствора этиленгликоля.
Присадки антифризов могут несколько изменить параметры, подстрахуйтесь.

Объемная доля
в смеси
%
Минимальная
рабочая температура
t, °C
Температура
раствора
t, °C
Плотность

кг/м3

Теплоемкость

КДж/кг*K

Теплопроводность

Вт/м*K

Динамическая вязкость
сПуаз=мПа*с=10-3*Н*с/м2
Кинематическая вязкость
сСт=мм2/с=10-6м2
20 -10 -10 1038 3,85 0,498 5,19 5,0
0 1036 3,87 0,500 3,11 3,0
20 1030 3,90 0,512 1,65 1,6
40 1022 3,93 0,521 1,02 1,0
60 1014 3,96 0,531 0,71 0,7
80 1006 3,99 0,540 0,523 0,52
100 997 4,02 0,550 0,409 0,41
34 -20 -20 1069 3,51 0,462 11,76 11,0
0 1063 3,56 0,466 4,89 4,6
20 1055 3,62 0,470 2,32 2,2
40 1044 3,68 0,473 1,57 1,5
60 1033 3,73 0,475 1,01 0,98
80 1022 3,78 0,478 0,695 0,68
100 1010 3,84 0,480 0,515 0,51
52 -40 -40 1108 3,04 0,416 110,8 100
-20 1100 3,11 0,409 27,50 25
0 1092 3,19 0,405 10,37 9,5
20 1082 3,26 0,402 4,87 4,5
40 1069 3,34 0,398 2,57 2,4
60 1057 3,41 0,394 1,59 1,5
80 1045 3,49 0,390 1,05 1,0
100 1032 3,56 0,385 0,722 0,7
 

Физические свойства водного раствора пропиленгликоля ( 1,2-Пропиленгликоль C3H6(OH)2)
Присадки антифризов могут несколько изменить параметры, подстрахуйтесь.

Объемная доля
в смеси
%
Минимальная
рабочая температура
t, °C
Температура
раствора
t, °C
Плотность

кг/м3

Теплоемкость

КДж/кг*K

Теплопроводность

Вт/м*K

Динамическая вязкость
сПуаз=мПа*с=10-3*Н*с/м2
Кинематическая вязкость
сСт=мм2/с=10-6м2
25 -10 -10 1032 3,93 0,466 10,22 9,9
0 1030 3,95 0,470 6,18 6,0
20 1024 3,98 0,478 2,86 2,8
40 1016 4,00 0,491 1,42 1,4
60 1003 4,03 0,505 0,903 0,9
80 986 4,05 0,519 0,671 0,68
100 979 4,08 0,533 0,509 0,52
38 -20 -20 1050 3,68 0,420 47,25 45
0 1045 3,72 0,425 12,54 12
20 1036 3,77 0,429 4,56 4,4
40 1025 3,82 0,433 2,26 2,2
60 1012 3,88 0,437 1,32 1,3
80 997 3,94 0,441 0,897 0,9
100 982 4,00 0,445 0,687 0,7
47 -30 -30 1066 3,45 0,397 160 150
-20 1062 3,49 0,396 74,3 70
-10 1058 3,52 0,395 31,74 30
0 1054 3,56 0,395 18,97 18
20 1044 3,62 0,394 6,264 6
40 1030 3,69 0,393 2,978 2,9
60 1015 3,76 0,392 1,624 1,6
80 999 3,82 0,391 1,10 1,1
100 984 3,89 0,390 0,807 0,82
 

Физические свойства воды.
Присадки водоподготовки (и санитарные) могут несколько изменить параметры, подстрахуйтесь.

Температура
t,(°C)
Давление
насыщенных паров
103*Па
Плотность

кг/м3

Удельный объем
(м3/кг)x105
Теплоемкость

КДж/кг*K

Энтропия

КДж/кг*K

Динамическая вязкость
сПуаз=мПа*с=10-3*Н*с/м2
Кинематическая вязкость
сСт=мм2/с=10-6м2
Коэффициент
объемного расширения
K-1*10-3
Энтальпия

КДж/кг*K

Число Прандтля
0 0,6 1000 100 4,217 0 1,78 1,792 -0,07 0 13,67
5 0,9 1000 100 4,204 0,075 1,52 21,0
10 1,2 1000 100 4,193 0,150 1,31 1,304 0,088 41,9 9,47
15 1,7 999 100 4,186 0,223 1,14 62,9
20 2,3 998 100 4,182 0,296 1,00 1,004 0,207 83,8 7,01
25 3,2 997 100 4,181 0,367 0,890 104,8
30 4,3 996 100 4,179 0,438 0,798 0,801 0,303 125,7 5,43
35 5,6 994 101 4,178 0,505 0,719 146,7
40 7,7 991 101 4,179 0,581 0,653 0,658 0,385 167,6 4,34
45 9,6 990 101 4,181 0,637 0,596 188,6
50 12,5 988 101 4,182 0,707 0,547 0,553 0,457 209,6 3,56
55 15,7 986 101 4,183 0,767 0,504 230,5
60 20,0 980 102 4,185 0,832 0,467 0,474 0,523 251,5 2,99
65 25,0 979 102 4,188 0,893 0,434 272,4
70 31,3 978 102 4,190 0,966 0,404 0,413 0,585 293,4 2,56
75 38,6 975 103 4,194 1,016 0,378 314,3
80 47,5 971 103 4,197 1,076 0,355 0,365 0,643 335,3 2,23
85 57,8 969 103 4,203 1,134 0,334 356,2
90 70,0 962 104 4,205 1,192 0,314 0,326 0,698 377,2 1,96
95 84,5 962 104 4,213 1,250 0,297 398,1
100 101,33 962 104 4,216 1,307 0,281 0,295 0,752 419,1 1,75
105 121 955 105 4,226 1,382 0,267 440,2
110 143 951 105 4,233 1,418 0,253 461,3
115 169 947 106 4,240 1,473 0,241 482,5
120 199 943 106 4,240 1,527 0,230 0,249 0,860 503,7 1,45
125 228 939 106 4,254 1,565 0,221 524,3
130 270 935 107 4,270 1,635 0,212 546,3
135 313 931 107 4,280 1,687 0,204 567,7
140 361 926 108 4,290 1,739 0,196 0,215 0,975 588,7 1,25
145 416 922 108 4,300 1,790 0,190 610,0
150 477 918 109 4,310 1,842 0,185 631,8
155 543 912 110 4,335 1,892 0,180 653,8
160 618 907 110 4,350 1,942 0,174 0,189 1,098 674,5 1,09
165 701 902 111 4,364 1,992 0,169 697,3
170 792 897 111 4,380 2,041 0,163 718,1
175 890 893 112 4,389 2,090 0,158 739,8
180 1000 887 113 4,420 2,138 0,153 0,170 1,233 763,1 0,98
185 1120 882 113 4,444 2,187 0,149 785,3
190 1260 876 114 4,460 2,236 0,145 807,5
195 1400 870 115 4,404 2,282 0,141 829,9
200 1550 863 116 4,497 2,329 0,138 0,158 1,392 851,7 0,92
220 0,149 1,597 0,88
225 2550 834 120 4,648 2,569 0,121 966,8
240 0,142 1,862 0,87
250 3990 800 125 4,867 2,797 0,110 1087
260 0,137 2,21 0,87
275 5950 756 132 5,202 3,022 0,0972 1211
300 8600 714 140 5,769 3,256 0,0897 1345
325 12130 654 153 6,861 3,501 0,0790 1494
350 16540 575 174 10,10 3,781 0,0648 1672
360 18680 526 190 14,60 3,921 0,0582 1764

Влияние концентрации на температуру кристаллизации и прочие рабочие свойства теплоносителя

Обычная вода обладает такими теплофизическими свойствами, которые позволяют отнести ее к идеальным теплоносителям. Это высокая теплопроводность и теплоемкость, оптимальная вязкость, невысокая цена. Все вышеперечисленные преимущества перекрываются следующими недостатками: высокой температурой кристаллизации, высоким коэффициентом объемного расширения, коррозионной активностью. Именно по этим причинам в системах промышленного кондиционирования и на объектах с автономными системами отопления важно применять рабочие жидкости с температурой замерзания заметно ниже нуля. Такими свойствами обладают только низкотемпературные теплоносители – антифризы.

1.1.Что может выступать в качестве антифриза?

За последние годы рынок промышленных теплоносителей с низкими температурами кристаллизации заметно расширился. С него практически исчезли неэффективные и небезопасные составы (наиболее яркий пример – глицерин, который обладает большей вязкостью (в сравнении с МЭГ) и выделяет предельно токсичное соединение — акролеин). Эти продукты вытеснили высокотехнологичные гликолевые антифризы с пакетом антикоррозионных присадок.

Каждый из составов, выпускаемых отечественными или зарубежными производителями, имеет ряд особенностей и отличительный свойств, но все они базируются на одной основе – водном растворе этилен- или пропиленгликоля. Они обладают следующими теплофизическими свойствами:

  • Теплопроводность и теплоемкость раствора гликоля ниже, чем у воды, причем показатель уменьшается со снижением рабочей температуры в отрицательной зоне на 20 %.
  • Динамическая и кинематическая вязкость в сравнении с водой выше в 4-5 раз в зоне положительных рабочих температур и в 10-15 раз выше при понижении температуры до порога кристаллизации. В отличие от воды, раствор гликоля не образует прочную кристаллическую решетку, а переходит в вязкое, кашеообразное состояние.

Вышеперечисленные факторы могут привести к возникновению непредвиденных и исключительных ситуаций при эксплуатации инженерных систем в условиях резкой смены климатического режима. По этой причине важно учитывать все нюансы как при проектировании систем промышленного кондиционирования и охлаждения, так и при выборе концентрации антифриза.

1.2.Концентрация раствора этиленгликоля и рабочие параметры его водной смеси

Ключевой теплофизический параметр рабочей смеси на основе водно-гликолевой смеси – это зависимость температуры кристаллизации раствора от его концентрации. Данная зависимость не носит линейный характер. Так, предельно низкая температура замерзания раствора (65 градусов ниже нуля) наблюдается при объемной концентрации раствора в 65 %. По мере повышения концентрации до 98 % увеличивается и температура замерзания. У практически чистого этиленгликоля (98 %) она составляет 13 градусов ниже нуля. С экономической точки зрения нецелесообразно производить и тем более применять водные растворы этиленгликоля с объемной концентрацией свыше 65 %.

Незначительное уменьшение концентрации гликоля с одной стороны, влечет за собой повышение температуры замерзания, а с другой – улучшает эксплуатационные характеристики раствора – теплопроводность и теплоемкость. Менее концентрированный раствор обладает уменьшенной вязкостью, что улучшает прокачиваемость жидкости и снижает нагрузки на конструкционные узлы системы.

1.3.Зависимость температуры замерзания раствора пропиленгликоля от его концентрации в растворе

При анализе свойств раствора пропиленгликоля наблюдается аналогичная картина: нелинейный характер зависимости, которая выражается в изменении температуры замерзания с повышением концентрации в растворе. Практический минимум в 58 градусов ниже нуля наблюдается при концентрации в 70 %. С ее увеличением температура кристаллизации раствора резко не увеличивается, а остается практически неизменной. В связи с этим использовать раствор пропиленгликоля более высокой концентрации, чем 70 %, экономически невыгодно, что отражается и на объемах производства в России и других странах мира.

Водный раствор пропиленгликоля с концентрацией 45 % имеет температуру кристаллизации 30 градусов ниже нуля, что достаточно для использования в регионах с умеренным климатом. Теплофизические характеристики смеси приведены в таблице

1.4.Выбираем оптимальную концентрацию

При выборе антифриза необходимо учитывать описанный ранее нелинейный характер зависимости между объемной концентрацией основного вещества в растворе и температурой его замерзания. Оптимальный вариант – это обеспечение максимальной отрицательной рабочей температуры с запасом примерно в 3 градуса. Если не брать в качестве примера единичные промышленные объекты с особыми условиями эксплуатации, то максимально допустимая концентрация основного вещества в гликолевых тепло- и хладоносителях для реальных климатических систем имеет строгие пределы. Они устанавливаются с учетом влияния температуры кристаллизации на эксплуатационные характеристики инженерного оборудования:

  • Для этиленгликолевых антифризов – 65 %-ый раствор с температурой начала кристаллизации 65 градусов ниже нуля;
  • Для пропиленгликолевых антифризов – 55 %-ый раствор с температурой замерзания 40 градусов ниже нуля.

Статистика показывает, что в условиях ЦФО РФ с его умеренным климатом около 25 % промышленных объектов ориентируются на температуру кристаллизации в – 25 градусов, а 75 % объектов и инженерных систем – на – 30 градусов.

Если выбирать между антифризами на основе растворов этилен- и пропиленгликоля, то этиленгликолевые составы более теплопроводны и теплоемки, что позволяет использовать радиаторы и теплообменники меньшего размера. Этиленгликоль имеет меньшую вязкость, которая снижает гидродинамические потери оборудования, но в силу токсичности обладает ограниченной сферой применения. Пропиленгликоль примерно в полтора раза дороже, имеет большую вязкость, зато полностью безопасен, что делает возможным применение антифризов на его основе в медицинских учреждениях и на пищевых производствах.

Вам могут быть интересны следующие товары

Вам могут быть интересны услуги

Интернет-ресурс с информацией о материалах — MatWeb

MatWeb, ваш источник информации о материалах

Что такое MatWeb? MatWeb’s база данных свойств материалов с возможностью поиска включает паспорта термопластов и термореактивных полимеров, таких как АБС, нейлон, поликарбонат, полиэстер, полиэтилен и полипропилен; металлы, такие как алюминий, кобальт, медь, свинец, магний, никель, сталь, суперсплавы, сплавы титана и цинка; керамика; плюс полупроводники, волокна и другие инженерные материалы.

Преимущества регистрации в MatWeb
Премиум-членство Характеристика: — Данные о материалах экспорт в программы CAD / FEA, включая:

Как найти данные о собственности в MatWeb

Нажмите здесь, чтобы узнать, как войти материалы вашей компании в MatWeb.

У нас есть более 150 000 материалы в нашей базе данных, и мы постоянно добавляем к этому количеству, чтобы обеспечить Вам доступен самый полный бесплатный источник данных о собственности материалов в Интернете. Для вашего удобства в MatWeb также есть несколько конвертеров. и калькуляторы, которые делают общие инженерные задачи доступными одним щелчком мыши. кнопки. MatWeb находится в стадии разработки.Мы постоянно стремимся найти лучшее способы служить инженерному сообществу. Пожалуйста, не стесняйтесь свяжитесь с нами с любыми комментариями или предложениями.

База данных MatWeb состоит в основном из предоставленных таблиц данных и спецификаций. производителями и дистрибьюторами — сообщите им, что вы видели их данные о материалах на MatWeb.


Рекомендуемый материал:
Меламино-арамидный ламинат




Теплоноситель на основе этиленгликоля

Водные растворы на основе этиленгликоля широко используются в системах теплопередачи, где температура теплоносителя может быть ниже 32 o F (0 o C) .Этиленгликоль также обычно используется в системах отопления, которые временно не могут работать (в холодном состоянии) в среде с морозными условиями — например, в автомобилях и машинах с двигателями с водяным охлаждением.

Этиленгликоль — наиболее распространенная антифризная жидкость для стандартных систем отопления и охлаждения. Следует избегать использования этиленгликоля, если есть малейшая вероятность утечки в питьевую воду или системы обработки пищевых продуктов. Вместо этого обычно используются растворы на основе пропиленгликоля.

Удельная теплоемкость, вязкость и удельный вес раствора воды и этиленгликоля значительно зависят от процентного содержания этиленгликоля и температуры жидкости.Свойства настолько сильно отличаются от чистой воды, что системы теплопередачи с этиленгликолем должны быть тщательно рассчитаны для фактической температуры и раствора.

Точка замерзания водных растворов на основе этиленгликоля

Точки замерзания водных растворов на основе этиленгликоля при различных температурах указаны ниже

Точка замерзания
Раствор этиленгликоля
(% по объему )
0 10 20 30 40 50 60 80 90 100
Температура ( o F) 25.9 17,8 7,3 -10,3 -34,2-63 ≈ -51 ≈ -22 9
( o C) 0 — 3,4 -7,9 -13,7 -23,5 -36,8 -52,8 ≈ -46 ≈ -30 -12,8

Этиленгликоль и вода из-за возможного образования слякоти растворы не следует использовать в условиях, близких к точкам замерзания.

Динамическая вязкость водных растворов на основе этиленгликоля

Динамическая вязкость — μ водных растворов на основе этиленгликоля при различных температурах указана ниже

900 2)
Динамическая вязкость — μ — (сантипуаз )
Температура Раствор этиленгликоля (% по объему)
( o F) ( o C) 25 30 40 50 60 65 100
0 -17.8 1) 1) 15 22 35 45 310
40 4,4 3 3,5 4,8 6,5 9 10,2 48
80 26,7 1,5 1,7 2,2 2,8 3,8 4,5 15,5
120 48.9 0,9 1 1,3 1,5 2 2,4 7
160 71,1 0,65 0,7 0,8 0,95 1,3 0,95 1,3 3,8
200 93,3 0,48 0,5 0,6 0,7 0,88 0,98 2,4
240 115.6 2) 2) 2) 2) 2) 2) 1,8
280 137,8 2) 2) 2) 2) 2) 1,2
  1. ниже точки замерзания
  2. выше точки кипения точка

Примечание! Динамическая вязкость водного раствора на основе этиленгликоля увеличивается по сравнению с динамической вязкостью чистой воды.Как следствие, потеря напора (потеря давления) в системе трубопроводов с этиленгликолем на увеличена на по сравнению с чистой водой.

Удельный вес водных растворов на основе этиленгликоля

Удельный вес — SG — водных растворов на основе этиленгликоля при различных температурах указан ниже

9
Удельный вес — SG —
Температура Раствор этиленгликоля (% по объему)
( o F) ( o C) 25 30 40 50 60 65 100
-40-40 1) 1) 1) 1) 1.12 1,13 1)
0 -17,8 1) 1) 1,08 1,10 1,11 1,12 1.16 40 4,4 1,048 1,057 1,07 1,088 1,1 1,11 1,145
80 26,7 1.04 1.048 1.06 1.077 1.09 1.095 1.13
120 48.9 1.03 1.038 1.05 1.064 1.05 1.064 1.05 1.064 1.05 1.064 1.05 1.064
160 71,1 1.018 1.025 1.038 1.05 1.062 1.068 1.1
200 93.3 1.005 1.013 1.026 1.038 1.049 1.054 1.084
240 115.6 2) 2) 2) 2) 2) 1.067
280 137,8 2) 2) 2) 2) 2) 2) 1.05
  1. ниже точки замерзания
  2. выше точки кипения

Примечание! Удельный вес водных растворов на основе этиленгликоля увеличен по сравнению с удельным весом чистой воды.

Плотность водных растворов на основе этиленгликоля

Поверните экран, чтобы увидеть всю таблицу.

Пример — Объем расширения в системе обогрева с этиленгликолем

Система обогрева с объемом жидкости 0.8 м 3 защищен от замерзания 50% (по массе, массовая доля 0,5) этиленгликоля. Температура установки системы составляет 0 o C , а максимальная рабочая температура среды составляет 80 o C .

Из приведенной выше таблицы видно, что плотность раствора при температуре установки может достигать 1090 кг / м 3 — а средняя плотность при рабочей температуре может составлять всего 1042 кг / м 3 .

Массу жидкости при установке можно рассчитать как

м inst = ρ inst V inst (1)

= (1090 кг / м 3 ) (0,8 м ) 3 )

= 872 кг

где

м inst = масса жидкости при установке (кг)

ρ inst = плотность при установке (кг / м 3 )

V inst = объем жидкости при установке (м 3 )

Масса жидкости в системе во время работы будет такой же, как масса в системе во время установки

м inst = м op (2)

= ρ op V op 9010 1

где

м op = масса жидкости при работе (кг)

ρ op = плотность при работе (кг / м 3 )

V op = объем жидкости при работе 3 )

(2) можно изменить для расчета рабочего объема жидкости как

V op = м inst / ρ op (2b)

= (872 кг) / ( 1042 кг / м 3 )

= 0.837 м 3

Требуемый объем расширения, чтобы избежать давления, можно рассчитать как

ΔV = V op — V inst (3)

= (0,837 м 3 ) — (0,8 м 3 )

= 0,037 м 3

= 37 литров

где

ΔV = объем расширения (м 3 )

Объем расширения можно рассчитать как

ΔV = ( ρ inst / ρ op — 1 ) V inst (специфический 4)
Теплота водных растворов на основе этиленгликоля

Удельная теплоемкость — c p — водных растворов на основе этиленгликоля при различных t температуры указаны ниже.

Поверните экран на всю таблицу.

  • Температура замерзания 100% этиленгликоля при атмосферном давлении составляет -12,8 o C (9 o F)
  • 1 БТЕ / (фунт м o F) = 4186,8 Дж / (кг K) = 1 ккал / (кг o C)

Примечание! Удельная теплоемкость водных растворов на основе этиленгликоля на меньше, чем на , чем удельная теплоемкость чистой воды. Для системы теплопередачи с этиленгликолем циркулирующий объем должен быть увеличен на по сравнению с системой только с водой.

В растворе 50% с рабочими температурами выше 36 o F удельная теплоемкость снижается примерно до 20% . Сниженная теплоемкость должна быть компенсирована циркуляцией большего количества жидкости.

Примечание! Плотность этиленгликоля выше, чем у воды — проверьте приведенную выше таблицу удельного веса (SG), чтобы снизить чистое воздействие на теплопередающую способность. Пример — удельная теплоемкость водного раствора этиленгликоля 50% / 50% равна 0.815 при 80 o F (26,7 o C). Удельный вес при тех же условиях составляет 1,077. Чистое воздействие можно оценить как 0,815 * 1,077 = 0,877.

Автомобильные антифризы не следует использовать в системах отопления, вентиляции и кондиционирования воздуха, поскольку они содержат силикаты, которые могут вызвать загрязнение. Силикаты в автомобильных антифризах используются для защиты алюминиевых деталей двигателя.

Примечание! Для растворов этиленгликоля следует использовать дистиллированную или деионизированную воду. Городскую воду можно обрабатывать хлором, который вызывает коррозию.

Системы автоматической подпитки не следует использовать, так как утечка приведет к загрязнению окружающей среды и ослаблению защиты системы от замерзания.

Точки кипения Растворы этиленгликоля

Для полной таблицы с точками кипения — поверните экран!

Температура кипения
Раствор этиленгликоля
(% по объему)
0 10 20 30 40 50 80 7097 90 100
Температура ( o F) 212 214 216 220 220 225 232 288 386
( o C) 100 101.1 102,2 104,4 104,4 107,2 111,1 118 127 142 197

Увеличение потока, необходимое для 50% раствора этиленгликоля в циркулирующем потоке

для 50% растворов этиленгликоля по сравнению с чистой водой указаны в таблице ниже

Температура жидкости Увеличение потока
(%)
( o F) ( o C)
40 4.4 22
100 37,8 16
140 60,0 15
180 82,2 14104 220104 220

Коррекция перепада давления и комбинированная поправка перепада давления и объемного расхода для 50% раствора этиленгликоля

Коррекция перепада давления и комбинированная поправка перепада давления и увеличения расхода для 50% раствора этиленгликоля по сравнению с чистой водой указаны в таблице ниже

Температура жидкости Коррекция падения давления при равных скоростях потока
(%)
Комбинированная коррекция падения давления и расхода
(%)
( o F) ( o C)
4 0 4.4 45114
100 37,8 10 49
140 60,0 0 32
180 82,2 82,2
220 104,4-10 18

WebWISER — Домашняя страница

WISER — это система, предназначенная для оказания помощи аварийно-спасательным службам в инцидентах с опасными материалами.WISER предоставляет широкий спектр информации об опасных веществах, включая вещества идентификационная поддержка, физические характеристики, информация о здоровье человека и советы по сдерживанию и подавлению. Для начала настройте свой профиль и выберите элемент ниже.

Последние новости

  • Что нового — WISER 6.1 ×

    Взгляните на то, что включено в этот выпуск:

    • ERG 2020 уже в продаже!
      • Французский перевод теперь предоставляется только для ограниченного содержимого, относящегося к ERG (справочная страница ERG и большинство данных о безопасном расстоянии). Скоро появятся испанские переводы этого контента.
      • материалов ERG без ООН, новый процесс маркировки для ERG 2020, теперь обрабатываются как внутри компании, так и в рамках API совместного использования WISER.
    • Критерии поиска транспорта (плакаты, железнодорожные вагоны и автоприцепы) для инструмента WISER Help Identify Chemical были обновлены и обновлены.
    • WISER для Android API обновлены, улучшая совместимость с новыми устройствами.
    • Добавлено множество мелких исправлений и обновлений для всех платформ WISER.

    Подробнее см. Ниже.

    ERG 2020

    Теперь доступен полностью интегрированный контент из Руководства по реагированию на чрезвычайные ситуации 2020 Министерства транспорта (ERG 2020).Это включает в себя страницу руководства ERG 2020 и информацию о защитном расстоянии, а также возможность просматривать материалы ERG 2020 вместе с результатами поиска веществ WISER.

    Информация, относящаяся к

    ERG (справочная страница ERG и данные о защитном расстоянии), предоставляется на французском языке, если таковая имеется. Эта экспериментальная функция ограничена только данными ERG. Испанские переводы будут добавлены позже.

  • Что нового — WISER 6.0 ×

    Взгляните на то, что включено в этот выпуск:

    • Совместное использование и совместная работа теперь доступны на всех платформах.
      • Делитесь ссылками на вещества, данные о веществах, карты защитного расстояния и справочные документы.
      • Общедоступный API теперь доступен для сторонней интеграции.
    • Более 60 новых веществ
    • Различные улучшения функции поиска WISER, чтобы сделать его более точным и гибким
    • Улучшения защитного расстояния, в том числе:
      • Обновления пользовательского интерфейса на всех платформах
      • Улучшенная поддержка для регионов за пределами США
      • Обновления экспорта KML
    • Обновление данных PubChem
    • Множество мелких обновлений и улучшений

    Подробнее см. Ниже.

    Совместное использование и совместная работа

    Все платформы теперь предоставляют возможность обмениваться веществами, данными о веществах (например, процедурами пожаротушения или реактивностью), картами защитных расстояний и справочными документами. Кроме того, теперь доступен общедоступный API для сторонней интеграции.

    Чтобы поделиться с вашего устройства, выберите значок общего доступа в меню или на панели инструментов. Затем следуйте инструкциям на вашем устройстве, чтобы поделиться ссылкой через приложение (например, текстовое сообщение) или скопируйте ссылку на данные в буфер обмена.В WebWISER скопируйте ссылку из меню или, в случае более сложных данных (например, химическая реактивность и защитное расстояние), нажмите соответствующую кнопку «Копировать ссылку».

    Ссылки могут использоваться совместно со всех платформ и открываться непосредственно на платформах iOS и Android. Если на вашем устройстве не установлен WISER или вы используете платформу Windows, ссылки будут автоматически открываться в WebWISER.

    Общедоступный API является открытым, бесплатным для использования и используется для обеспечения перечисленных выше функций совместного использования.Есть вопросы? Пожалуйста свяжитесь с нами.

    60+ новых веществ

    В состав WISER были добавлены следующие вещества. Новые субстанции выбираются исходя из потребительского спроса и экспертной оценки. Экспертная проверка включает анализ вероятности столкновения с веществом, опасности, которую это вещество представляет, а также информацию, полученную от аварийно-спасательных служб, токсикологов и медицинского персонала.

    Есть идеи для следующей версии WISER? Пожалуйста, свяжитесь с нами и дайте нам знать!

    • Хлорат натрия
    • Озон
    • Бензальдегид
    • Метомил
    • Ангидрид уксусной кислоты
    • 1-бутен
    • Изобутилен
    • Циклогексан
    • формамид
    • Ацетат свинца
    • N-метилформамид
    • 2-аминотолуол
    • Фенилацетонитрил
    • 1-хлор-2-пропанон
    • Мононитротолуолы
    • Сульфат аммония
    • Пентахлорид фосфора
    • Муравьиная кислота
    • Формиат аммония
    • Дихромат натрия
    • Нитроэтан
    • Иодоводород
    • Гидроксид аммония
    • Гидроксид кальция
    • Циклогексанол
    • Ацетат натрия
    • Псевдоэфедрин
    • (L) -эфедрин
    • Сульфат натрия
    • Ацетилхлорид
    • Фенилмагнийхлорид
    • Хлорат калия
    • Палладий элементарный
    • Карбонат бария
    • Сульфат бария
    • Бензолсульфонилхлорид
    • изобутилацетат
    • Пиррол
    • Сафрол
    • Содуим тиосульфат
    • п-Толуолсульфоновая кислота
    • Альфентанил
    • Суфентанил
    • PCP (фенциклидин)
    • Циклогексанон
    • Бисульфит натрия
    • Бромбензол
    • LSD
    • Ацетамид
    • Аллилхлорид
    • Изосафрол
    • N, N-диметилацетамид
    • 1,4-бензохинон
    • Амфетамин
    • Аргон
    • 1,1,1,2-тетрафторэтан
    • Треххлористый бор
    • гидрид кальция
    • Гидроксид тетраметиламмония
    • Паракват
    • Метамфетамин
  • COVID-19 ×

    COVID-19 — это быстро развивающаяся ситуация.Будьте в курсе последней информации по следующим адресам:

  • Что нового — WISER 5.4 ×

    Взгляните на то, что включено в этот выпуск:

    • Новости и уведомления, подобные этой, теперь содержат подробную информацию о каждом выпуске WISER.
    • Подробные библиографии теперь доступны для большей части данных по веществам в WISER.
    • Отображение защитного расстояния теперь поддерживает экспорт данных KML (Keyhole Markup Language) на платформах WISER для Windows и WebWISER.
    • Обновлена ​​возможность отображения защитных расстояний WISER для Windows.
    • Добавлено множество небольших обновлений и исправлений ошибок.

    Подробнее см. Ниже.

    Новости и уведомления

    Все платформы WISER теперь позволяют пользователям просматривать функции, добавленные в последних выпусках.Просмотрите эти элементы, чтобы увидеть последние обновления содержимого и функций, добавленные в WISER.

    Библиографии

    Большая часть данных WISER взята из банка данных по опасным веществам Национальной библиотеки медицины (HSDB). Данные, предоставляемые этим важным рецензируемым и обновленным источником данных, теперь включают подробную библиографию в WISER.

    Кроме того, было изменено отображение библиографий. Библиографии представлены в виде простого заголовка, при выборе которого будет отображаться полная библиография.В случае согласия нескольких источников контент теперь отображается один раз вместе со всеми соответствующими библиографическими данными.

    Обновления защитного расстояния

    Отображение защитного расстояния теперь поддерживает экспорт данных KML (Keyhole Markup Language) на платформах WISER для Windows и WebWISER. Поделитесь созданной зоной защитного расстояния с любым сторонним приложением, поддерживающим импорт KML, например Программное обеспечение MARPLOT от CAMEO.

    Отображение защитных расстояний в WISER для Windows было переработано.Новая собственная реализация Windows включает значительно улучшенную производительность наряду с множеством небольших обновлений, например лучший зум и определение местоположения.

  • Что нового — WISER 5.3 ×

    Взгляните на то, что включено в этот выпуск:

    • Добавлен отчет о веществах четвертого поколения и справочные материалы.
    • Добавлен прототип инструмента для принятия решений ASPIRE (алгоритм, предлагающий пропорциональное реагирование на инциденты) и рекомендации PRISM (Primary Response Incident Scene Management).
    • Обновлены использование и отображение библиографий данных.
    • Реализованы обновления совместимости операционных систем Android и iOS.
    • Добавлено множество небольших обновлений и исправлений ошибок.

    Подробнее см. Ниже.

    Агенты четвертого поколения

    Агенты четвертого поколения, также известные как новичок или нервно-паралитические агенты серии А, относятся к категории боевых отравляющих веществ, которые представляют собой уникальные фосфорорганические соединения.Они более стойкие, чем другие нервно-паралитические вещества, и по крайней мере так же токсичны, как VX. Данные WISER для агентов четвертого поколения теперь включают полную запись вещества, а также справочные материалы, включенные как часть медицинского руководства CHEMM (Chemical Hazards Emergency Medical Management).

    АСПИРА и ПРИЗМА

    ASPIRE (Алгоритм, предлагающий пропорциональное реагирование на инциденты) — это прототип инструмента для принятия решений, разработанный экспертами в области медицины и экстренного реагирования, чтобы помочь определить потребность пациентов, подвергшихся воздействию химических агентов, провести влажную дезактивацию.

    Руководство

    PRISM (Primary Response Emergency Scene Management), которое включено в состав инструмента ASPIRE, было написано, чтобы предоставить авторитетное, основанное на фактах руководство по разоблачению и обеззараживанию массовых пострадавших во время химического инцидента. См. Полный набор рекомендаций PRISM здесь.

WebWISER лучше всего просматривать в следующих браузерах (указанной версии или выше): Internet Explorer 9, Firefox 26, Safari 7 или Google Chrome 30.

WISER также доступен как отдельное приложение для ПК и различных мобильных платформ, включая устройства iOS и Android. См. Домашнюю страницу WISER для бесплатных загрузок и дополнительной информации о WISER.

Выберите свой профиль, чтобы настроить WISER’s контент, который лучше подходит для вашей роли в чрезвычайной ситуации.

Прочие аварийные химические ресурсы на NLM

Прочие чрезвычайные химические ресурсы

Произошла ошибка при настройке пользовательского файла cookie

Этот сайт использует файлы cookie для повышения производительности.Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


Настройка вашего браузера для приема файлов cookie

Существует множество причин, по которым cookie не может быть установлен правильно. Ниже приведены наиболее частые причины:

  • В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
  • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались.Чтобы принять файлы cookie с этого сайта, используйте кнопку «Назад» и примите файлы cookie.
  • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
  • Дата на вашем компьютере в прошлом. Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
  • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie.Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.

Почему этому сайту требуются файлы cookie?

Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу. Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


Что сохраняется в файле cookie?

Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

Как правило, в файлах cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта. Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.

Таблица удельной теплоемкости жидкостей — JPC France

Жидкости Удельная теплоемкость (c p ) Плотность (ρ)
SI Британский / США Метрическая SI Британский / США
кДж / (кг o C) o
BTU / (фунт м F)
ккал / (кг o C) кг / м3 фунт / фут3
Уксусная кислота 2.18 0,51 0,51 1048 65,4
Спирт, этил, 95% при 0 o C (32 o F) (этанол) 2,3 0,55 0,55 807 50,4
Аммиак, @ 40 o C (104 o F) 4,86 ​​ 1,16 1,16 767 47,9
Теплоноситель Dowtherm @ 50 o C (120F) 1.55 0,37 0,37 944 58,9
Этиленгликоль 25% по объему / вода, @ 70 o C (160F) 3,93 3,93 0,94 0,94 1018 63,5
Этиленгликоль 30% по объему / вода, @ 70 o C (160F) 3,87 0,925 0,925 1025 64,0
Этиленгликоль 40% по объему / вода, @ 70 o C (160F) 3.73 0,89 0,89 1038 64,8
Этиленгликоль / вода, 50% по объему при 70 o C (160F) 3,56 0,85 0,85 1050 65,5
Этиленгликоль чистый 2,36 0,56 0,56 1120 69,9
Насыщенный фреон R-12 @ 50 o C (120F) 1.02 0,244 0,244 1310 81,8
Мазут мин. 1,67 0,4 0,4 809 50,5
Мазут макс. 2,09 0,5 0,5 944 58,9
Бензин 2,22 0,53 0,53 673 42,0
Глицерин 2.43 0,58 0,58 1261 78,7
Керосин 2,01 0,48 0,48 809 50,5
Молоко 3,93 0,94 0,94 1028 64,2
Масло растительное 1,67 0,4 0,4 921 57,5 ​​
Оливковое масло 1.97 0,47 0,47 929 58,0
Парафин 2,13 0,51 0,51 897 56,0
Масло соевое 1,97 0,47 0,47 920 57,4
Вода пресная 4,19 1 1 1000 62,4
Вода, море при температуре 2 o C (36 o F) 3.93 0,94 0,94 1028 64,2

Этиленгликоль и пропиленгликоль: различия и применение

Для низкотемпературных гидравлических систем, систем, в которых чиллеры и кондиционеры расположены на открытом воздухе, или другого оборудования, используемого в низкотемпературных процессах, некоторая форма гликоля является критическим ингредиентом . Он снижает температуру замерзания жидкости, обеспечивая работу при более низких температурах и предотвращая замерзание.

В принципе, если есть какой-либо риск того, что ваше оборудование, содержащее жидкость, подвергнется воздействию отрицательных температур, ему потребуется какая-то форма гликоля.Для этой функции используются два основных типа гликоля: этилен и пропилен. Между ними существуют некоторые важные различия, и их следует понять, прежде чем принимать решение.

Что такое этиленгликоль?

Этиленгликоль (CH2OH₂), также известный как 1,2-этандиол, представляет собой органическое соединение на спиртовой основе, часто используемое в качестве антифриза в оборудовании HVAC и системах транспортных средств, среди прочего. Это бесцветная вязкая жидкость без запаха, обладающая сладким вкусом.

В чистом виде этиленгликоль замерзает при температуре около -10 ° F, но при смешивании с водой он может оставаться жидким при гораздо более низких температурах. Например, смесь, состоящая из 40% воды и 60% гликоля, может выдерживать температуры, близкие к -50 ° F, перед замерзанием. [1]

Для гликолей, используемых в качестве теплоносителя, вязкость — сопротивление жидкости потоку — является критическим свойством, влияющим на скорость потока, потери на трение и, в конечном итоге, на тепловые характеристики. По сравнению с пропиленгликолем, о котором мы поговорим позже, этиленгликоль менее вязкий.Для теплопередачи более предпочтительна более низкая вязкость. Более высокая вязкость означает более высокие потери на трение, т. Е. Требуется больше энергии для перемещения более вязкого вещества через систему. Приложения, в которых требуется гликоль, также часто включают турбулизаторы, которые помогают минимизировать влияние вязкости гликоля за счет создания турбулентного потока.

Нравится то, что вы читаете? Подпишитесь на наш блог и никогда не пропустите ни одного поста!

Когда следует использовать этиленгликоль?

Между этиленом и пропиленгликолем этиленгликоль является более теплопроводным из двух (см. Таблицу ниже).Следовательно, этиленгликоль — хороший выбор для приложений, в которых тепловые характеристики являются наивысшим приоритетом.

По сути, если ни одно из обстоятельств, описанных в следующем разделе, не описывает ваше приложение, этиленгликоль, вероятно, будет лучшим вариантом.

Когда нельзя использовать этиленгликоль?

Этиленгликоль токсичен для человека, вызывая ряд физиологических проблем при проглатывании, включая смерть (Центры по контролю за заболеваниями оценивают летальную дозу от 1400 до 1600 мг / кг).В результате этиленгликоль не следует использовать в приложениях, в которых возможно загрязнение питьевой воды. Его также не следует использовать для систем отопления или охлаждения на предприятиях, таких как предприятия пищевой промышленности, или на других предприятиях, производящих продукты для потребления.

Причина этого двоякая. Этиленгликоль вреден для наземных и водных животных, и при попадании в водные пути его биоразложение занимает от 10 до 30 дней. Гликоли биоразлагаются посредством аэробного биоразложения, во время которого разложение гликолей осуществляется бактериями, которым для выполнения этой функции требуется кислород.Это действие снижает уровень кислорода в затронутых водных путях, что может иметь разрушительные последствия, если количество гликоля и скорость биоразложения достаточно велики.

Что такое пропиленгликоль?

Пропиленгликоль (C₃H₈O₂), также называемый пропан-1,2-диолом, представляет собой синтетическую жидкость, используемую для множества целей в десятках отраслей промышленности. Это вязкая, бесцветная жидкость почти без запаха, обладающая слегка сладковатым вкусом.

Как и этиленгликоль, пропиленгликоль комбинируется с водой в различных концентрациях для снижения температуры замерзания рабочей жидкости в системах теплопередачи.

Температура эвтектики или минимально возможная температура замерзания, достижимая при любом соотношении двух веществ (пропиленгликоль + вода), составляет -76 ° F при концентрации 60% пропиленгликоля и 40% воды. Однако в коммерческих продуктах это соотношение обычно меняется на противоположное: 40% пропиленгликоля и 60% воды, температура замерзания которых ближе к -50 ° F [2].

Когда следует использовать пропиленгликоль?

Ответ на этот вопрос также отвечает на вопрос «когда не следует использовать пропиленгликоль?» также.По сравнению с этиленгликолем более высокая вязкость и потери на трение пропиленгликоля в сочетании с его более низкой теплоемкостью обычно ограничивают его использование в областях, связанных с проблемами безопасности.

Очень мало, если таковые имеются, случаев, когда пропиленгликоль был бы выбран из-за его тепловых характеристик. Он просто менее эффективен, чем этиленгликоль, по своему назначению. Но, учитывая токсичность этиленгликоля, существует несколько приложений, для которых необходимо использовать пропиленгликоль, например, те, которые мы рассмотрели ранее в этом посте, а именно производство продуктов питания, приложения, в которых возможно загрязнение воды, и системы HVAC на объектах этих типов.

Пропиленгликоль считается относительно безопасным для человека. Это распространенный ингредиент в различных косметических продуктах, фармацевтических препаратах и ​​пищевых добавках непрямого действия. Хотя пропиленгликоль менее токсичен, чем этиленгликоль, он может представлять некоторые проблемы для окружающей среды.

Пропилен, как и этиленгликоль, расщепляется аэробными средствами, но если для биоразложения этилена требуется примерно 10–30 дней, то для пропиленгликоля это происходит за 20–30 дней или более.

Все еще не уверены, какой тип гликоля лучше всего подходит для вашей области применения? Позвоните компании Super Radiator Coils, и давайте поговорим.

Не оставайтесь незамеченными, когда речь идет об информации о теплопередаче. Чтобы быть в курсе самых разных тем по этой теме, подпишитесь на The Super Blog, наш технический блог, Doctor’s Orders и подпишитесь на нас в LinkedIn, Twitter и YouTube.

[1] Зигфрид Ребсдат; Дитер Майер. «Этиленгликоль». Энциклопедия промышленной химии Ульмана. Вайнхайм: Wiley-VCH

[2] «Свойства некоторых частных решений» (PDF). Портал ДМТ. Проверено 22 сентября 2020 г.

ОБЫЧНАЯ ВОДА или АНТИФРИЗ, изменение температуры охлаждающей жидкости

MGA с привязкой
ОБЫЧНАЯ ВОДА или АНТИФРИЗ — CO-122
Изменение температуры охлаждающей жидкости

27 июня 2012 г., JH Cole в Хэмпшире, Великобритания написал:
«У меня была утечка из нижнего шланга радиатора, из-за которой слилось много охлаждающей жидкости, которую я не обнаружил. Я впервые заметил это, когда датчик температуры зашкаливал за отметку 230. Долив охлаждающую жидкость до дома, слил радиатор и заменил шланг. Обычно я использую 25% антифриз, но на этот раз долил обычную дождевую воду. Что меня удивляет, так это то, что мой двигатель теперь работает по крайней мере на 10 градусов ниже температуры с обычных 190 градусов до 180 градусов. Почему это должно быть так? Дело в том, что теплопроводность воды лучше, чем у антифриза, или из-за того, что высокая температура кипения воды нарушила что-то, например, стат или датчик температуры «?

Короткий ответ: я не знаю, почему вы видите каплю охлаждающей жидкости на 10dF температура, потому что переход с антифриза / охлаждающей жидкости на обычную воду не должен иметь большого значения.Я могу сказать вам, в чем должна быть разница (если у вас хватит терпения вынести объяснение).

Теплоемкость при постоянном давлении этиленгликоля составляет 2,42 Дж / г К.
Теплоемкость воды при постоянном давлении составляет около 4,20 Дж / г К.
Удельная теплоемкость воды определяется как 1,0 в качестве базового значения для единицы удельной теплоемкости. .
Удельный вес воды определяется как 1,0 в качестве базового значения для единицы удельного веса.
Этиленгликоль примерно на 10% тяжелее воды (в зависимости от рабочей температуры).
Таким образом, удельный вес этиленгликоля равен 1,10.
Это делает удельную теплоемкость этиленгликоля 2,42 / 4,20×1,10 = 0,634.
Это означает, что этиленгликоль (обычный антифриз) переносит на 37% меньше тепла на единицу объема.
Это не так плохо, как может показаться.

Когда охлаждающая жидкость двигателя представляет собой смесь этиленгликоля с водой в соотношении 50/50 (по объему), результирующая удельная теплоемкость смешанной жидкости будет около 0,82. Чтобы эта жидкость уносила такое же количество отработанного тепла из двигателя, повышение температуры в двигателе и понижение температуры в радиаторе должны составлять 1/0.82 = 1,22, или на 22% больше изменение температуры жидкости. Это тоже не так плохо, как вы думаете.

Это не значит, что радиатор должен быть больше. Холодопроизводительность радиатора зависит от теплопередачи от внутренней жидкости к внешнему воздуху. Эта функция теплопередачи через стенку радиатора от жидкости к воздуху одинакова независимо от (почти) того, какая жидкость находится внутри радиатора. Также радиатор должен будет отводить одинаковое количество тепла, независимо от того, какая жидкость находится внутри.По мере увеличения температуры жидкости разница внешних температур увеличивается, и радиатор становится более эффективным, требуя немного меньшего повышения температуры для утилизации того же количества тепла.

В качестве исходной базовой линии с простой водой в системе охлаждения предположим, что температура составляет 190dF в верхней части сердечника радиатора и 160dF в нижней части сердечника для разницы температур 30dF (повышение температуры в двигателе и падение температуры в радиаторе). Также предположим, что температура окружающего воздуха составляет 100dF, и что термостат (возможно, открывающийся термостат на 180dF) широко открыт (нет ограничений для потока).Также предположим, что вся система находится в состоянии динамической устойчивости, при этом температура не повышается и не понижается со временем. То есть температура охлаждающей жидкости повысилась и стабилизировалась на уровне 190dF (показание датчика рядом с верхним шлангом радиатора), чтобы отводить все отходящее тепло по мере необходимости.

Затем замените внутреннюю жидкость с простой воды на смесь антифриза 50/50. Без изменения потока охлаждающей жидкости или воздушного потока, тогда повышение температуры в двигателе должно составить 1,22×30 = 36,6dF, поэтому вы можете «ожидать» увидеть 6.Повышение температуры охлаждающей жидкости на 6dF рядом с выпускным отверстием для жидкости двигателя (корпус термостата или верхняя часть радиатора). Но этого не происходит.

Имейте в виду, что общее количество отработанного тепла осталось прежним, а температура окружающего воздуха и воздушный поток не изменились, поэтому разница между температурой воздуха и средней температурой внутри радиатора также должна быть неизменной. Хитрость здесь в том, что при более высокой температуре в верхней части сердечника теплопередача воздуху немного увеличивается, поэтому больше тепла передается от верхней половины сердечника.Это оставляет меньше отходящего тепла, которое необходимо отводить от нижней половины активной зоны, поэтому более низкая температура активной зоны будет немного ниже, а температура жидкости на выходе будет ниже. Поначалу это может показаться нелогичным, но на самом деле это происходит именно так.

В конце концов, для требуемого увеличения «разницы» температур жидкости на входе и выходе на 6,6dF температура будет примерно на 3,4dF выше в верхней части радиатора (как видно на манометре) и примерно на 3,2dF ниже температуры на нижняя часть радиатора (в нижнем шланге радиатора).Таким образом, конечный результат перехода с воды на антифриз 50/50 — повышение температуры примерно на 3,4dF, как видно на датчике. Не так уж и плохо, а?

В другом сценарии, если система переохлаждена или если температура окружающего воздуха ниже, она может работать с частично открытым термостатом, чтобы ограничить поток жидкости (чтобы поддерживать надлежащую минимальную рабочую температуру двигателя). В этом случае, когда вы переходите с воды на смесь антифриза 50/50, термостат откроется больше, чтобы обеспечить больший поток жидкости.Когда поток жидкости через радиатор увеличивается примерно на 20%, он уносит необходимое количество отработанного тепла с очень небольшим изменением температуры жидкости, возможно, только изменение на 1 или 2dF, показываемое на манометре. Условие более сильного изменения температуры на манометре (из-за смены жидкости) возникает только тогда, когда система находится на полной динамической теплопередаче при широко открытом термостате.

Итак, что касается вопроса, я не знаю, почему температура жидкости может быть на 10dF ниже после того, как вы перешли на обычную воду.Я подозреваю, что у нас нет полной информации о других изменениях условий. Может, температура окружающего воздуха упала. Возможно, вы сдули какие-то жучки с сердечника радиатора, чтобы увеличить поток воздуха. Возможно, у вас была охлаждающая жидкость на ремне вентилятора, что привело к проскальзыванию и низкой скорости вентилятора перед заменой жидкости.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *