Котел на долгого горения на твердом топливе: Лучшие твердотопливные котлы длительного горения

Содержание

Немецкие котлы длительного горения на твердом топливе Бош (Bosch)


При условии отсутствия газификации, твердое топливо зачастую является единственной альтернативой природного газа. Котлы или печки, работающие на дровах или угле можно встретить практически в каждом доме, находящемся в сельской местности. При этом у всех твердотопливных агрегатов существует один недостаток – необходимость в постоянном обслуживании. Котлы длительного горения на твердом топливе Бош помогают решить эту проблему, так как могут работать одной закладки дров в течение суток.

Как устроены котлы

Принцип работы котлов длительного горения основан на процессе газогенерации или пиролиза. Было замечено, что любое твердое топливо при нагревании и недостатке кислорода, выделяет определенное количество газа.

Конструкция котла Bosch позволяет аккумулировать газообразное вещество в отдельной камере. В процессе сжигания CO, выделяется дополнительное количество тепловой энергии.

Именно этот принцип применяется во всех видах пиролизного отопительного оборудования. Главным отличием котла Бош является его конструкция, позволяющая работать на любом виде твердого топлива.

Время горения от одной закладки может различаться в зависимости от отопительного сезона и выбранной модификации. Отопительный твердотопливный котел длительного горения Бош имеет высокий КПД 85%, предназначен исключительно для системы отопления. Обеспечение ГВС только через внешний бойлер.

Особая конструкция, которую имеет напольный котёл Бош на твёрдом топливе, позволяет достичь следующих преимуществ:

  • Отапливать помещения с общей площадью до 560 м².
  • Использовать любой вид твердого топлива: брикеты, бурый и каменный уголь, дрова, опилки и древесные отходы. Максимальный КПД достигается при использовании сухих поленьев. Но, для увеличения времени автономной работы, лучше топить углем.
  • Комбинированный котёл на дровах, угле и опилках может устанавливаться в связке с электрическим или газовым котлом, а также использоваться в качестве основного источника тепла. Схема подключения зависит от технических параметров отапливаемого здания и предпочтения хозяев.
  • Уменьшенный расход топлива — установлены турбулизаторы, которые содействуют уменьшению количества недогара. В результате полного сгорания дров или угля выделяется больше тепловой энергии и увеличивается время автономной работы.
  • Простота обслуживания — чистка котла осуществляется сверху корпуса, обеспечивается беспроблемное полное удаление золы.


Единственным минусом, который относится к пиролизным агрегатам, являются высокие требования, предъявляемые для всех видов твердого топлива. Для процесса газогенерации необходимо, чтобы не был превышен максимальный порог влажности.

Немецкие отопительные дровяные котлы длительного горения Bosch имеют сравнительно небольшой вес, что существенно снижает требования к установке.

Как делается монтаж и подключение

Монтаж котла осуществляется следующим образом:

  • Подготавливается основание — немецкие дровяные твёрдотопливные котлы Бош могут устанавливаться на любой бетонный и деревянный пол. Для защиты от возгорания дерево предварительно покрывают металлическим или асбестовым листом.
  • Устанавливается котел — корпус должен быть выставлен по уровню. Подключается дымовая труба, а также система отопления дома. В инструкции четко указаны вводы и выводы, предназначенные для обвязки подачи и обратки.
  • Устанавливаются системы защиты от перегрева — монтируется расширительный бак, циркуляционный насос, клапан сброса давления и т.д. Терморегулятор позволяет избежать перегрева теплоносителя и контролирует процесс нагрева в соответствии с указанным режимом.
  • Проводятся пуско-наладочные работы — важно грамотно настроить котёл, чтобы избежать чрезмерного притока воздуха в топочную камеру и обеспечить длительное горение топлива. Проверяется соответствие подключения. Схема котла и рекомендации относительно монтажа приводятся в инструкции по эксплуатации.
Лучшим решением при подключении котла к системе дымоудаления является установить дымоход, собранный из сэндвич-трубы. Это позволит избежать появления конденсата и обеспечит достаточную силу тяги.

Особенности выбора и обслуживания котла

Согласно техническим данным, производительные котлы длительного горения на твердом топливе Bosch могут работать в диапазоне от 15 до 45 кВт. Соответственно объем отапливаемого помещения варьируется в зависимости от выбранной модели.

Сравнение котлов марки Бош пиролизного типа указывает на практически идентичные показатели и функциональные возможности. Единственным отличием является производительность. Именно мощность и стоит принимать во внимание при выборе установки.

О чем необходимо помнить в процессе эксплуатации?

  • Котел работает как газогенерирующий блок, только после нагрева топочной камеры до температуры свыше 300°C. Причем это правило применяется ко всем типам топлива.
  • Полная загрузка топки горит в течение 12 часов. Угольный агрегат в автономном режиме способен работать до 24 часов от одной закладки.
  • Растопка — сначала в обычном режиме протапливается топочная камера, в течение 15-20 минут. После оборудование переводится в режим газогенерации. Чтобы научиться правильно топить котёл, необходимо следовать рекомендациям производителя.


Котлы длительного горения Бош практически ничем не отличаются и от аналогичного оборудования других производителей. Небольшим недостатком являются высокие требования к используемому топливу и всего 12 часов работы в автономном режиме. При этом плюсом является высокий КПД и экономичность модели.

Котлы длительного горения на твердом топливе! Насос в подарок!

Твердотопливные котлы длительного горения пользуются широким спросом. Данный вариант поддержки необходимой температуры в помещениях является не самым дешевым, зато он обладает выдающимися конкурентными качествами и имеет ряд приемуществ.

Твердотопливные котлы имеют следующие характерные только им особенности:

· долгие промежутки времени между дозагрузками и длительное горение расходного материала, чему способствуют увеличенные размеры камеры горения по сравнению с другими конкурентными моделями и уникальная система принудительной подачи воздуха;

· динамичная зона горения внутри котла, котел выходит на полную мощность через 15 минут после розжига;

· невысокая температура в топке твердотопливных котлов полностью реализует возможность полного прогорания дров, а также увеличивает его износостойкость;

· эргономичные и компактные размеры твердотопливных котлов длительного горения позволяют им занимать минимум места;

· не нуждаются в накопителях тепла и баках косвенного нагрева.

Как правильно выбрать котел длительного горения?

Главным правилом, которого стоит придерживаться при выборе котла, является принцип достаточности, а в особых случаях даже немного избыточности. Данный принцип объясняется тем, что при морозе в 20-30 градусов дом будет нереально нагреть при использовании котла, который рассчитан на нагрев помещений при температуре не выше 10 градусов мороза. Другими словами если у вас дом площадью 100 м2 то лучше брать котел с запасом мощности +30 или +40%. Это повлияет на стабильную работу котла, не будет работать при максимальных показателях. Подходить к выбору с точки зрения «подешевле» не разумно, экономия на котле потом выйдет в избыточный расход топлива и вашего времени.

Вот почему нужно серьезно подходить к процессу покупки котла. Перед тем, как купить твердотопливный котел длительного горения, необходимо выяснить, какая мощность сможет удовлетворить потребности в поддержании теплоты в конкретном доме, находящимся в конкретной климатической зоне со своими возможными погодными условиями.

Перед выбором котла длительного горения на дровах, важно правильно спроектировать систему отопления, так как эффективность его работы зависит не только от его мощности, дополнительных характеристик и других параметров, но и от его взаимодействия с системой переноса тепла.

При выборе котла, пользуйтесь простой и понятной формулой 1 кВт мощности котла расчитан на 10 м2 площади отапливаемого помещения. Учитывайте что твердотопливные котлы имеют КПД до 85%, это значит что котел мощностью 10 кВт * 85% = 8,5 кВт тепла в чистом виде. Таким образом котел мощностью 10 кВт расчитан на площадь 85 м2. Не забывайте прибавить 30-40% запас мощности.

Котлы длительного горения: пиролизые, верхнего горения

Вопрос о том, как безопасно и экономно  отапливать свой дом, дачу или производственные площади — один из самых насущных  в нашей стране, где отопление работает большую часть года. Современные производители предлагают использовать для этих целей котлы длительного горения. В этой категории могут быть агрегаты, построенных по разным принципам, но их объединяет одно – высокая эффективность и более полное использование тепловой энергии горения. 

На каком топливе работают

Самым распространенным является котел, предназначенный для работы на дровах. Есть также большое количество модификаций на угле. Часто такое оборудование почти всеядно:  может работать на иных видах твердого топлива (торфяных, древесных и угольных брикетах, отходах переработки древесины и т.д.).

Чтобы продлить работу котла на одной закладке дров, топку делают большого объема: чем больше за один раз удастся заложить дров, тем дольше они будут гореть. Потому, выбирая котел длительного горения на дровах, в первую очередь обращайте внимание на объем топки для загрузки дров. Классическим примером являются котлы на дровах украинского производства КЧМ (котел чугунный модернизированный), по цене они довольно демократичны, качество неплохое, потому и популярны.

Твердотопливные котлы длительного горения на дровах

В некоторых моделях основным видом топлива является уголь. В этом случае стоит обратить внимание на толщину стенок в топке: температуры при горении угля очень высокие (особенно атнрацитов и длиннопламенных марок). Долговечность этого типа оборудования  определяется длительностью срока службы топки.

Потому кроме типа материала топки обращайте внимание на толщину ее стенок. В угольных котлах длительного горения  предпочтительнее топка из чугуна или толстой конструкционной, а лучше — нержавеющей стали.

Если вы хотите как можно меньше времени проводить возле котла, то вам подойдет пеллетный котел.  Время его автономной работы зависит исключительно от размеров бункера – резервуара, в который засыпают гранулы. Он может вмещать от 20 кг пеллет до нескольких тонн.

Работа оборудования построена так, что при наличии электричества, агрегат при помощи шнека самостоятельно подсыпает в топку необходимое количество топлива. Если у вас в бункер помещается месячный запас или более, то и наведываться вам в котельную придется только раз в месяц. Пеллетные котлы обладают хорошим КПД — до 90–95%, экономичны. Топливо сгорает почти полностью, так что и чисткой котла придется заниматься примерно раз в месяц. Недостаток таких котлов – довольно высокая стоимость и энегрозависимость (как и у большинства других котлов с автоматическим управлением).

Еще один нюанс: такое оборудование требовательно к качеству топлива: пеллеты должны быть целыми и малозольными. При использовании топлива низкого качества горелка забивается, котел останавливается.

Твердотопливные котлы длительного горения пелелтный

Очень привлекательны по многим параметрам многотопливные котлы их еще называют комбинированными. В таких агрегатах может использоваться уголь, дрова и брикеты, их комбинации. В некоторых моделях можно использовать электрический элемент нагрева, который включается после того, как прогорит закладка топлива и котел начнет остывать. Очень удобно.

Приобретая комбинированный котел,  обязательно выясните, какой из видов топлива является основным: проектируют оборудование под один из видов топлива, под остальные вносятся корректировки. Так что именно на основном топливе отопление будет самым эффективным. Потому, если у вас есть возможность заготавливать дрова самостоятельно, а углем планируете топить только в холода, то и основным видом топлива должны быть в этом случае дрова.

Классификация по принципу действия

Котлы на твердом топливе могут использовать два различные принципы действия. По этому параметру различают:

Котлы верхнего горения

Это котлы циклической закладки топлива. Это значит,  что пока не прогорит полностью предыдущая порция дров, угля или брикетов, новые закладывать нельзя. Агрегаты этой конструкции просты, но эффективны. Например, котлы длительного горения «Стропува» на одной закладке дров обогревают помещение до суток (при некоторых условиях до 30 часов), а на закладке угля вообще до 7 суток.  Хотя среднее время горения дров – 6-8 часов.

Принцип работы котла верхнего горения

За счет чего же достигается подобный эффект? Все просто, наиболее ярко этот принцип  можно продемонстрировать на примере вертикально расположенной горящей спички. В таком положении она будет гореть намного дольше, чем спичка, расположенная горизонтально или перевернутая головкой вниз.

Топливная камера в котлах верхнего горения устроена так, что горение происходит сверху вниз.

Для этого разработана и запатентована специальная подача воздуха именно в зону горения.  И сам процесс горения при таких условиях больше напоминает тление. А, как известно, при тлении из углеродосодержащего топлива в большом количестве выделяются газы. Большая их часть являются горючими. За счет дожига этих газов в верхней части топки происходит более полное использование энергии, что позволяет значительно увеличить теплоотдачу и уменьшить расход топлива.

К недостаткам таких котлов стоит отнести необходимость следить за качеством топлива: если загрузить сырые дрова или уголь, то КПД котла значительно снижается. Также с использованием топлива повышенной влажности выделяется большое количество золы и сажи. Прихотдится тогда  часто чистить печь и дымоход.

Не всегда хорошо и не иметь возможность подкинуть топливо во время процесса горения. Отрицательный момент состоит еще в том, что ограничена возможность автоматизации процесса управления. Пока такая не реализована. Регулировать можно только интенсивность горения и то в достаточно ограниченных пределах, уменьшая при этом КПД котла.

Пиролизные котлы длительного горения

В таких котлах используется процесс разложения топлива при недостатке кислорода. В результате образуется твердая составляющая (кокс в случае сжигания угля и древесный уголь в случае использования дров) и газообразная. Присутствуют также различные смолы, которые также горючи. Сам процесс разложения происходит с выделением значительного количества тепла.

Но это далеко не вся энергия. Полученные в результате разложения продукты сами по себе являются горючими веществами с высокой теплотворной способностью. Например, теплотворная способность древесного угля в 2,5 раза выше, чем у дров. Также выделенные при разложении пиролизные газы большей частью состоят из горючих компонентов. Не горит только азот и двуокись углерода. Они являются балластом и выводятся из топки. Остальные компоненты имеют очень высокую теплотворную способность, во много раз превышающую теплотворную способность дров, торфа и угля. Потому эти газы дополнительно разогреваются,  отправляются в камеру дожига, где смешиваются с воздухом и догорают, выделяя большое количество энергии.

Движение воздуха в топке при пироизе

Количество газов, выделяемое при пиролизе, зависит:

  • от типа топлива – больше газов выделяют дрова и торф;
  • от температуры – чем выше температура пиролиза, тем большее количество газов образуется и меньшее остается твердого кокса и древесного угля.

Установки, в которых пиролиз происходит при высоких температурах (до 1200oC), называют еще газогенераторными котлами.

Суть процесса пиролиза — в первично камере горит топливо — во вторичной — газы, которые при этом выделились

Особенность пиролизных котлов – две топки: в одной происходит первичное горения топлива (туда оно и закладывается), а во второй дожигаются газы. В обе топки раздельно подается воздух. Воздух для горения топлива называют первичным, а для горения газов – вторичным.

Подобное строение котлов длительного горения с использованием технологии пиролиза хорошо тем, что легко реализуется возможность регулирования интенсивности горения (ограничивая подачу воздуха как первичного, так и вторичного). Именно на этой технологии построены автоматизированные котлы.

В зависимости от того где какая камера располагается пиролизные котлы бывают с верхней или нижней камерой догорания.

При нижнем расположении камеры дожига производить закладку дров удобно. Она имеет выход в дымовой тракт, который располагают снизу. Дальше дым попадает в дымоход и выходит на улицу. Вроде бы все логично, однако чистить печь потребуется гораздо чаще, т. к. зола из верхней камеры горения будет падать вниз и засорять «пиролизную» камеру. Кроме этого, требуется пиролизные газы искусственно при помощи вентиляторов или дымососов направлять вниз, ведь сам по себе дым вниз двигаться не станет.

Разные типы устройства пиролизных котлов

Меньшее распространение получили агрегаты с верхним расположением камеры догорания, хотя тут искусственно создаваемая тяга не нужна, так как дым сам распространяется вверх. Однако такой котел имеет сложную конструкцию дымового канала, которая требуется для того, чтобы отобрать максимум тепла. При таком расположении топки дожига, камера догорания расположена ближе к дымоходу, и вверх стремится самая горячая часть воздуха, а нам необходимо максимальное количество энергии отдать на обогрев, а не выпустить в трубу. Потому дымоотводный тракт выполняют в виде змеевика.

Существенный недостаток пиролизных котлов – требовательность к качеству топлива. Если говорить о дровах, то оптимальная их влажность для пиролизных котлов – 13-20%. При использовании такого топлива выход газов будет максимальным и эффективность самой высокой. Допустима влажность дров до 30%. При использовании еще более «мокрых», резко снижается КПД, образуется сажа и большое количество зольного остатка.

Аналогично дело обстоит и с углем: тут тоже нужно использовать сухое топливо, причем с высокой теплотворной способностью. Оптимальным считается антрацит средних фракций, чуть хуже ведет себя длиннопламенный, тяжело работают агрегаты со спекающимися марками. Их лучше исключить, так как велика вероятность затухания котла. Зато пиролизные котлы очень хорошо работают с брикетами любой формы и из любого сырья (кроме пеллет – они просыпаются через колосники в некоторых моделях).

Основной недостаток многих печей длительного горения — требовательность к качеству топлива

Еще один недостаток пиролизных котлов длительного горения – значительная цена оборудования. Но это связано с тем, что для обеспечения долговечности при высоких температурах пиролиза требуются качественные и массивные жаростойкие материалы. Большое внимание из-за высоких температур уделяется системе безопасности, а это ведет к увеличению стоимости. Немалую роль в ценообразовании имеет и автоматика. Так что высокая стоимость обоснована. Нужно сказать, что высокая цена на пиролизные котлы, достаточно быстро оправдывает себя за счет экономии топлива.

Как превратить обычный твердотопливный в котел длительного горения?

Традиционная система отопления на базе твердотопливного котла имеет ряд недостатков.
В этой статье мы расскажем, как решить проблемы при использовании котла, работающего на дровах или пеллетах, сделать систему отопления с твердотопливным котлом максимально автоматизированной и превратить обычный котел на твердом топливе в столь желанный всеми твердотопливный котел длительного горения.

Подробнее о проблемах

Частые загрузки. Одной из главных проблем при использовании твердотопливных котлов в традиционной прямоточной системе является то, что загрузку топлива (дров, угля) приходится производить достаточно часто. Интервалы между загрузками обычно измеряются  несколькими часами. Естественно, это очень неудобно и отнимает много сил.

Не оптимальный режим работы котла – быстрый выход его из строя. Значительную часть времени твердотопливный котел работает  с пониженной мощностью, что ведет к снижению КПД, низкотемпературной коррозии и увеличению образования сажи и дегтя.

Перегрев котла при отключении электроснабжения. В случае естественной циркуляции проблем не возникнет. Рассмотрим ситуацию, когда твердотопливный котел работает в системе с принудительной циркуляцией (с использованием насоса). При отключении электроэнергии, циркуляционный насос останавливается, движение теплоносителя прекращается, но твердотопливный котел не может быстро перестать вырабатывать тепло, как газовый, электрический или жидкотопливный. Избыток тепла в камере сгорания котла приводит к закипанию теплоносителя и выходу котла из строя.

Как решить проблемы?

Одним из основных способов решения проблем является использование твердотопливного котла совместно с тепловым аккумулятором: котел работает на полную мощность, независимо от погодных условий, а избыток тепла аккумулируется в баке, из которого оно постепенно расходуется на отопление помещения, в том числе и при выключенном котле.
При этом, конечно, важно выбрать качественный теплоаккумулятор и создать правильную систему регулирования, которая будет эффективно управлять работой котла совместно с теплоаккумулятором.
Регулирование такой системы осуществляется путем создания двух контуров, один из которых, котловой, будет использоваться для возврата части нагретой воды в котел, а второй, отопительный, — для раздачи тепла потребителям (радиаторам, водонагревателям, теплому полу и т.п.). Осуществляется распределение  тепла между контурами специальным регулятором, а исполнительным механизмом служит трех- или четырехходовой смесительный клапан с сервоприводом, на который подается сигнал от регулятора.
Так проектировались твердотопливные системы отопления до недавнего времени. Но инженерная наука не стоит на месте, и недавно на рынке (в том числе на российском) появилось замечательное устройство Laddomat (Ладдомат), которое успешно заменяет собой классические соединения отдельных элементов и позволяет оптимизировать работу котла совместно с теплоакккмулятором. Производится устройство шведской компанией Termoventiler AB.  Применение устройства Laddomat с теплоаккумулятором позволяет решить все вышеописанные проблемы.

Чем же система с Laddomat отличается от традиционной системы?

Для того чтобы ответить на этот вопрос, для начала заглянем в аккумулирующий бак. Работа бака базируется на физическом принципе: горячая вода легче холодной. Горячая вода из котла поступает в верхнюю часть бака, в то время как холодная – в нижнюю. Для того чтобы этот процесс функционировал правильно, между слоями горячей и холодной воды должна быть резкая граница. Тогда горячая вода находится в верхней части бака и в системе отопления даже тогда, когда в нижней части бака вода уже остыла.
Если же горячая и холодная вода перемешиваются, эффективность процесса уменьшается, и в самом плохом варианте, теплой воды не хватит даже чтобы принять душ.
То есть главный секрет успешной работы системы с аккумулирующим баком – в резком перепаде температур между слоем горячей и слоем холодной воды. Стало быть, основная задача регулирующего устройства сводится к контролю скорости циркуляции воды так, чтобы он не нарушал границы температурных слоев. При эффективной температурной стратификации (разделение на слои) термоаккумуляторный бак вырабатывает на 50% больше тепла в период между растопками котла. Так бак объемом 1000 л при наличии температурной стратификации слоев воды вырабатывает такое же количество тепла, как обычный бак объемом 1500 л.
Именно с этой целью (создание оптимальной температурной стратификации слоев при заполнении бака водой) было сконструировано устройство Laddomat.

Как же решает Laddomat  проблемы твердотопливных систем?

Частые загрузки. Laddomat  быстро выводит котел на рабочий режим, так как в начале цикла вода циркулирует по малому (котловому) контуру. После выхода котла на рабочий режим, нагретая вода начинает подаваться в бак и систему отопления. Когда бак заполнится горячей водой, котел начнет постепенно охлаждаться, но система продолжит отапливаться теплом из аккумулирующего бака.
В системах без аккумулирующего бака котел необходимо растапливать несколько раз в день для того чтобы поддерживать тепло. При каждом запуске системы происходят потери тепла. Очевидно, что система с баком эффективнее: меньше запусков – меньше потерь.

Оптимальный режим работы котла. Как уже было сказано, аккумуляция избытков тепла в баке позволяет котлу работать постоянно на полную мощность, даже в период относительно теплой погоды, что для котла является оптимальным режимом работы. Это также защищает котел от коррозии, которая возникает при работе на низких температурах.

Перегрев котла при отключении электроснабжения. При отключении электропитания Laddomat переключит режим циркуляции теплоносителя с принудительной (через насос) на гравитационную (естественную). Тепло из котла будет поступать в бак. Давление в системе естественной циркуляции заполнит котел холодной водой. Пламя будет поддерживаться в течение некоторого времени с небольшой производительностью, пока электричество вновь не появится или котел полностью не остынет.
  
 

твердотопливные котлы на дровах, как работает универсальный топливный котел, работа автоматического котла

Содержание:

Для отопления собственного дома может использоваться несколько видов систем, и выбор подходящей – задача далеко не самая тривиальная. Долго тянуть с выбором не получится – ближайшая зима сделает проживание в неотапливаемом доме совершенно невозможным, не говоря уже о многократном снижении срока службы всей отделки, мебели и прочих объектов, находящихся в доме.

Самое традиционное решение – это обустройство водяного отопительного контура, в котором будет циркулировать теплоноситель, отдающий тепло помещениям посредством отопительных приборов. Разумеется, функционирование такой системы невозможно без нагревательного устройства. В последнее время все большую популярность приобретают котлы отопления длительного горения на твердом топливе, которые отличаются высокой эффективностью и экономичностью. Именно такие устройства и будут рассмотрены в данной статье.


Особенности котлов длительного горения

Самым популярным источником тепла для водяных отопительных систем является газовый котел. У таких устройств есть немало преимуществ, но существует и несколько ограничений на использование газовых котлов: во-первых, газовые магистрали проложены далеко не во всех населенных пунктах, особенно если речь идет о дачных поселках, а во-вторых, подключение к этой магистрали всегда обходится в достаточно крупную сумму. Кроме того, стоит отметить необходимость согласования установленного газового оборудования с соответствующими инстанциями.

Еще один доступный вариант – это использование электрического отопительного оборудования. У подобных устройств тоже есть масса положительных качеств – высокий КПД, гибкая настройка и наличие различных автоматизированных вспомогательных систем. Впрочем, за эти преимущества придется основательно платить – стоимость электроэнергии на сегодняшний день очень велика, поэтому эксплуатация электрического отопления обходится слишком дорого. К тому же, если регион характеризуется регулярными перебоями с электричеством, то подобный вариант отопления будет крайне нестабильным, а значит, недостаточно эффективным в деле создания комфорта в доме.


Вот здесь-то и стоит вспомнить о подзабытом варианте обогрева жилого дома – обычном твердотопливном котле на дровах. При достаточно высокой эффективности подобное оборудование отличается еще и экономичностью – дрова являются возобновляемым энергетическим ресурсом, поэтому их стоимость не очень велика. Кроме того, хорошие твердотопливные котлы не особо требовательны к качеству используемого топлива.

Конечно, простые печи нельзя назвать высокотехнологичным оборудованием. Их до сих пор можно встретить в деревнях, но использование обычных печей в современных постройках в качестве основного отопительного контура не практикуется, несмотря на способность долго отдавать тепло за счет толстых стенок и тщательно рассчитанной системы вывода продуктов сгорания.

Вся проблема заключается в том, что при подключении такой печи к водяному отопительному контуру приходится поддерживать определенную температуру теплоносителя, подкладывая новую партию дров каждые 2-3 часа. Разумеется, расход топлива при этом увеличивается на порядок, и ни о какой экономичности не может идти и речи.

Современные твердотопливные котлы длительного горения – это оборудование совершенно иного формата. Как понятно из названия, ключевой особенностью таких котлов является возможность горения на протяжении около 12 часов на одной закладке топлива (наиболее производительные модели могут работать на одной партии дров на протяжении нескольких суток).

В качестве топлива могут использоваться не только обычные дрова. Достаточно эффективным и недорогим топливом являются пеллеты – спрессованные брикеты, состоящие из отходов деревообрабатывающей промышленности. При большой необходимости такой материал можно сделать и самостоятельно. Для твердотопливных котлов также можно использовать уголь или торф (правда, в этом случае оборудование должно быть рассчитано именно на данный вид топлива). Хорошим вариантом будут и «евродрова», состоящие из древесных отходов, но имеющие форму привычных поленьев.

Принцип работы котлов отопления на твердом топливе

Обычные твердотопливные печи работают по довольно простому принципу:

  • В топливную камеру закладывается подходящий вид топлива и разжигается;
  • Поступающий в топку воздух, насыщенный кислородом, обеспечивает процесс горения;
  • Интенсивность горения регулируется подачей воздуха и площадью наружной поверхности закладки топлива.

С технологической точки зрения подобный процесс очень напоминает обычный открытый огонь, но в печи он получается заключенным в кирпичную или металлическую коробку. Продукты сгорания топлива выводятся наружу посредством дымоотводного канала, который при правильном проектировании существенно повышает эффективность системы. Впрочем, никакие технические особенности простой печи не могут повысить энергетическую ценность используемого топлива – оно все равно будет гореть достаточно быстро, активно и с большим количеством отходов, то есть теплоотдача самого топлива получается ниже предельно возможной.


Все дело в особенностях термического разложения древесины. При поверхностном изучении вопроса может показаться, что при горении дерево просто окисляется и переходит в состояние угля, выделяя в процессе углекислый и угарный газ. Если же углубиться в изучение, то станет ясно, что в процессе горения возникают еще и летучие углеводородные соединения, представляющие собой газообразное топливо, которое в традиционных печах просто уходит в трубу вместе с остальными продуктами сгорания.  Читайте также: «Устройство и принцип работы твердотопливного котла – теория и практика».

Горение (термическое разложение) дерева – это пиролиз, а выделяемые в процессе горения газы, соответственно, называются пиролизными. Теплоотдача такого вещества гораздо выше, чем у обычного топлива, а степень сгорания при выжигании газа в конечном итоге оказывается более полной – в воздух выбрасывается преимущественно водяной пар вместе с углекислым газом.

Если подвести промежуточные итоги, то можно сказать следующее – для достижения максимальной эффективности горения нужно сделать так, чтобы основным используемым топливом были именно пиролизные газы, а не сами дрова. Именно по этому правилу и происходит работа твердотопливного котла длительного горения.

Виды твердотопливных котлов на дровах и другом топливе

Поскольку отличительной особенностью котлов длительного горения является полное сгорание топлива, включая выделяемый им пиролизный газ, то основной задачей является обеспечение поступления воздуха и пиролизного газа в необходимых пропорциях в камеру сгорания, чтобы горение обеспечивало должную теплоотдачу.

Зная, как работает твердотопливный котел длительного горения, можно выделить несколько основных видов котлов длительного горения:

  1. Модели с встроенным вентилятором, обеспечивающим подачу воздуха. Настройка интенсивности подачи осуществляется за счет автоматического блока.
  2. Энергонезависимые устройства, в которых циркуляция воздуха осуществляется посредством естественной тяги, которая регулируется вручную.
  3. Котлы, обеспечивающие сгорание тонкого слоя дров сверху вниз.
  4. Устройства с автоматизированной подачей новых порций топлива в топочную камеру.

Первый вариант конструкции, включающий в себя вентилятор для принудительной подачи воздуха и блок автоматики, обычно имеет компоновку, в которой камера загрузки и топка расположены в верхней части устройства. Когда розжиг произведен, подача воздуха к топливу переключается на минимальный режим, а вентилятор проводит воздух через нижнюю огнеупорную камеру основного дожига.


Поскольку камера выложена из жаростойких материалов, то опасаться прогорания металлических элементов конструкции не стоит. Кроме того, накапливающие тепло детали обеспечивают дополнительную теплоотдачу. Созданная вентилятором тяга перемещает пиролизный газ в нижнюю камеру, оснащенную керамическими соплами, рассчитанными на работу в условиях экстремально высоких температур.

Сгорающий в топке пиролизный газ является основным топливом в котле длительного горения, поэтому именно его энергия используется для отопления здания. К камере подключается отопительный трубопровод дома, а движение теплоносителя в нем осуществляется за счет циркуляционного насоса.

Впрочем, рассмотренная компоновка для данной категории котлов не является единственно возможной. Например, модельный ряд «Gefest-profi» отличается задним расположением камеры дожига. Помимо расположения, она отличается сложной конфигурацией, благодаря которой достигается КПД около 90-93%. При таком показателе эффективности почти вся энергия отдается теплоносителю – на выходе в дымоотвод температура газа может снижаться до 70 градусов.

Устройства с электронным управлением очень хороши по всем параметрам, но без небольшой ложки дегтя все же не обошлось – наличие электронного блока говорит о том, что твердотопливный и электрический котел длительного горения находится в непосредственной зависимости от электроэнергии. При отключении электросети происходит вполне ожидаемое явление – вентилятор и автоматика прекращают свою работу, тем самым полностью парализуя функционирование отопительной системы.


Этот недостаток крайне существенен, ведь отопление в случае отсутствия электричества не станет работать даже при наличии естественной циркуляции теплоносителя. Конечно, существует частичное решение проблемы, которое заключается в установке бесперебойного питания – но от регулярных отключений электричества оно не спасет. К тому же, автоматика сама по себе очень плохо относится к перепадам напряжения в сети, поэтому котел придется дополнительно оборудовать отдельным стабилизатором.

Чтобы не зависеть от электроэнергии, можно установить энергонезависимый котел длительного горения. В таких устройствах используется естественная тяга, а интенсивность подачи воздуха регулируется без использования электронных приспособлений. Хорошим примером энергонезависимого котла является модель «Траян» отечественного производства.

Загрузочная камера в этой модели располагается в нижней части конструкции, а под ней установлен зольник – то есть устройство очень похоже на обычную печь. Установленная на дверце заслонка связана посредством цепочки с биметаллическим терморегулятором. Читайте также: «Как выбрать котел твердотопливный Купер – принцип работы. характеристики».

Как работает универсальный топливный котел

Рабочий процесс в таком котле происходит следующим образом:

  • В начальной фазе горения топлива заслонка открыта до упора – это позволяет дровам хорошо разгореться, а котлу запустить процесс пиролиза, для чего требуется температура свыше 200 градусов;
  • Когда топливо уверенно горит, заслонка прикрывается так, чтобы количество воздуха, попадающего в камеру, было минимальным;
  • Разогретый в каналах воздух посредством трубок с откалиброванными отверстиями подается в верхнюю камеру;
  • На выходе из горелок содержащийся в воздухе кислород вступает в реакцию с пиролизным газом, за счет чего и выделяется тепло, отдаваемое теплоносителю, находящемуся в контуре отопительной системы.

Учитывая полную независимость такого котла от электричества, его можно вполне эффективно использовать в связке с отопительными системами, в которых теплоноситель перемещается естественным путем. На отечественном пространстве перебои с электроэнергией встречаются во многих регионах, и в таких случаях автономные водогрейные твердотопливные котлы длительного горения будут лучшим выбором.  


Стоит обязательно отметить, что в плане эффективности подобные котлы длительного горения существенно уступают устройствам, оснащенным электронным блоком управления. Все-таки способность системы автоматически регулировать происходящие в ней процессы и принудительно подавать необходимое количество воздуха заметно повышает КПД котла.

Следующий вид котлов – это устройства, в которых обеспечивается сжигание дров сверху вниз, но слой топлива при этом очень тонкий. Такой принцип работы встречается, например, в продукции литовской компании «Stropuva». Одноименный модельный ряд твердотопливных котлов длительного горения уже давно популярен среди многих хозяев из-за своей эффективности.

Стальные твердотопливные котлы длительного горения данного типа представляют собой вертикально расположенный цилиндр. Для закладки могут использоваться любые виды твердого топлива – от привычных поленьев до опилок и прочих древесных отходов. Благодаря большому объему топливной камеры на одной загрузке котел может проработать от 1 до 3 суток, а при использовании угля этот срок увеличивается вплоть до недели.

Высокая эффективность и длительное прогорание топлива обеспечиваются принципом работы котла:

  1. Сначала в топку через специальное окно закладывается выбранный вид топлива. После того, как огонь разведен, на закладку опускается распределитель воздуха, который обеспечивает дозированную подачу кислорода исключительно в верхний слой топлива. Благодаря специальным каналам распределитель подает воздух равномерно, поэтому процесс горения достаточно стабилен и однороден.
  2. Для обеспечения максимально эффективного дожига газов воздух перед подачей в камеру прогревается в специальной камере, соединенной с распределителем посредством телескопического воздуховода. В результате получается следующее: распределитель самостоятельно опускается к топливу под давлением собственного веса и все время находится в нужной точке.
  3. После выделения газы отправляются на дожиг в верхнюю часть камеры. Для обеспечения горения в камеру через заслонку поставляется дополнительный воздух. Заслонка имеет несколько рабочих положений, позволяющих настраивать твердотопливный котел под разное топливо.
  4. Продукты сгорания, оставшиеся после всех рабочих процессов, происходящих в котле, попадают сначала в патрубок, а уже после него – в дымоотводный канал.
  5. Для регулировки интенсивности горения используется воздушная заслонка. Она связана с биметаллическим регулятором, который позволяет установить необходимое значение.
  6. Твердотопливный котел длительного горения находится в водяной рубашке, позволяющей отдавать тепло в отопительную систему. Разумеется, рубашка оснащена входным и выходным патрубками.
  7. Чтобы топка не засорялась, ее необходимо регулярно чистить, для чего используется ревизионное окошко.

В некоторых моделях котлов устанавливается еще и вентилятор, обеспечивающий принудительную тягу и тем самым повышая эффективность системы. Впрочем, энергозависимым такой универсальный твердотопливный котел длительного горения из-за наличия вентилятора не становится – естественная тяга обеспечит работу конструкции даже при ее отключении от электросети.


Удачная конструкция благодаря своей высокой эффективности стала прототипом для создания различных самодельных отопительных устройств. Конечно, самостоятельную сборку котлов длительного горения нужно рассматривать отдельно и более подробно, но вкратце можно сказать так – подобные устройства имеют полное право на существование и нередко создаются умелыми хозяевами.

Последним решением, которое может использоваться для обеспечения длительного горения в котле – автоматизация подачи топлива. По этому принципу работают как домашние, так и многие промышленные твердотопливные котлы длительного горения, использующие в качестве топлива пеллеты.

С конструктивной точки зрения отличий от обычных котлов длительного горения нет – в устройствах с автоматической подачей топлива присутствуют те же элементы, работающие по таким же принципам. Единственное отличие заключается в наличии специального шнека, постоянно подающего новые порции пеллет в топочную камеру. Система отслеживает наличие топлива посредством фото- и термодатчиков, и в зависимости от их показаний отправляет в топку дополнительное топливо.

Автоматический котел длительного горения на твердом топливе достаточно эффективен и перспективен. Конечно, недостатки тоже есть – в частности, для работы автоматики требуется электричество, и его отсутствие (или постоянные перебои) сделают выбор подобного котла неоправданным. Установка и настройка такого оборудования тоже сопряжены с немалыми трудностями. И последний заметный недостаток – недостаточная насыщенность рынка гранулированным топливом, поэтому с ним в процессе эксплуатации котла могут возникнуть серьезные осложнения.

Достоинства и недостатки

В арсенале твердотопливных котлов длительного горения имеется ряд положительных качеств, которые делают такое приобретение крайне выгодным:

  1. Высокий КПД. Топливные котлы длительного горения отличаются от обычных печей достаточно высоким КПД, который у отдельных моделей может достигать 95% – а этот показатель вполне сравним с эффективностью работы газовых отопительных котлов. Такая эффективность достигается за счет теплообменников и использования в качестве основного топлива пиролизного газа.
  2. Экологичность. Все модели твердотопливных котлов длительного горения выбрасывают в воздух только водяной пар и углекислый газ, которые не причиняют никакого вреда окружающей среде.
  3. Небольшая стоимость топлива, его доступность и автономность отопления. Работающие на дровах твердотопливные котлы длительного горения, не зависят от наличия газовых магистралей, а некоторые из них – еще и от электричества. Само по себе твердое топливо обходится не очень дорого, а отсутствие необходимости в согласовании отопительного оборудования делает твердотопливный котел очень выгодным приобретением.
  4. Возможность обеспечения горячей водой. В некоторых моделях котлов присутствуют встроенные контуры, необходимые для создания горячего водоснабжения. Даже если такой контур отсутствует, всегда можно докупить отдельный бойлер и подключить его к котлу.
  5. Долговечность и простота обслуживания. Правильно установленный котел отопления длительного горения на твердом топливе, который используется в соответствии с правилами эксплуатации, вполне может прослужить несколько десятков лет без каких-либо нареканий.


Из недостатков можно выделить следующие качества:

  1. Необходимость пополнения топливных запасов. Это самый заметный минус всех твердотопливных котлов – сколько бы времени не требовалось на прогорание одной партии топлива, рано или поздно придется закладывать следующую. Кроме того, для нормальной работы котла требуется иметь запас топлива, который может храниться только в специально оборудованном месте.
  2. Необходимость регулярной чистки. Обязательным пунктом в любой инструкции по эксплуатации твердотопливного котла является периодическая очистка котла от золы и сажи.
  3. Требовательность к месту установки. Твердотопливным отопительным котлам нужно отдельное помещение и хороший фундамент. Кроме того, в помещении должна быть нормальная вентиляция.

Заключение

Твердотопливные котлы длительного горения – это один из лучших вариантов автономных отопительных устройств для частных и загородных домов. Зная их достоинства и учитывая недостатки, можно сделать выводы об актуальности приобретения данных устройств и их эксплуатации.  


Котлы длительного горения 100-1000 кВт, купите по цене от 48 300 руб

Твердотопливные котлы длительного горения ЭПМ DG

Твердотопливные котлы длительного горения ЭПМ DG предназначены для отопления жилых и административных зданий, производств, объектов сельского хозяйства площадью до 10 000 м2. Их ценят за эффективность и безопасность.

Котлы длительного горения ЭПМ изготавливаются из жаростойкой стали 09Г2С, толщиной от 4 до 12 мм. Сварка осуществляется в среде защитных газов опытными специалистами, имеющими свидетельство НАКС. ЭПМ DG и Auto изготавливаются по конструкторской документации, разработанной в установленном порядке и соответствующей техническим условиям ГОСТ 30735-2001.

Котлы длительного горения на твердом топливе состоят из камеры сгорания с конвективным пучком, и водяного контура со всех сторон котла. В верхней части расположены водонаполненные трубы из жаропрочной стали, увеличивающие площадь теплообмена. Камера сгорания защищена огнеупорным кирпичем. Он защищает металл топки от воздействия открытого пламени. Тепловая энергия дольше сохраняется и плавно передается теплоносителю, что увеличивает долговечность и надежность котла.

ТТ котел длительного горения DG оборудован тремя дверьми. Верхняя – прочистка дымовых каналов от сажи. Средняя – загрузка топлива. Нижняя – ревизионная. За ней находится зольный ящик. В стандартную комплектацию котла входит центробежный вентилятор и электронная автоматика управления.

Преимущества котлов длительного горения ЭПМ

  • длительность работы до 24 часов на одной загрузке топлива.
  • повышенная тепловая эффективность.
  • высокое качество исполнения.
  • длительный срок службы теплообменника.
  • простота в эксплуатации и удобная чистка котла.
  • большая загрузочная дверца с удобным замком.
  • возможность сжигания различных видов топлива.
  • экологичность котла.
  • доступная цена.

Принцип работы котла ЭПМ DG

Загрузите сразу весь объем топлива в камеру сгорания котла длительного горения. Задайте температуру теплоносителя на выходе. Откройте заслонку подачи воздуха. Выполните розжиг. Вентилятор нагнетает первичный и вторичный воздух в камеру сгорания. Это позволяет сжигать топливо максимально эффективно. Когда прогорает очередной слой, воронкообразный распределитель удаляет золу в зольный ящик. Одновременно, через него подается воздух. Что делает процесс горения устойчивым.

Для наших котлов длительного горения подходит любой вид твердого топлива, преимущественно уголь, дрова и пеллеты. Процесс горения регулируется автоматикой и вентилятором, а не естественной тягой. Поэтому эффективность работы не зависит от влажности топлива и высоты дымохода. Электрика поддерживает заданную температуру в системе. Это позволяет создавать оптимальный микроклимат даже в крупных тепличных хозяйствах, где выращивают цветы, овощи и фрукты. Электроника обеспечивает защиту системы от перегрева и превышения нормы давления. Когда вы открываете дверь топки, автоматика мгновенно отключает вентилятор. Участие человека в работе системы сводится к минимуму.

Котел длительного горения Stropuva mini S8

Описание товара

Экономичность котла STROPUVA

Котлы на твердом топливе STROPUVA обеспечивают длительность горения на одной закладке (в зависимости от теплопотерь здания, внешней температуры, качества топлива) дров – до 30 часов, брикетов – до 48 часов, пеллет – до 72 часов, угля – до 5 суток. При подборе котла с большим запасом мощности, время горения существенно увеличивается. К примеру, есть объект, где котел на одной закладке угля работает 12 суток.

Столь большая длительность работы на одной закладке топлива – это экономия не только средств и времени, но и удобство в эксплуатации.


Вид топлива по моделям котлов:

  • mini S8, S15, S20, S30, S40 – дрова, топливные брикеты
  • mini S8P, S15P, S20P, S30P, S40P – пеллеты, дрова, топливные брикеты
  • mini S8U, S15U, S20U, S30U, S40U – уголь, пеллеты, дрова, топливные брикеты

КПД – до 90%

Данные характеристики котлов подтверждены многочисленными тестами и уже вторым десятилетием опыта эксплуатации в различных климатических условиях.

В связи с ростом стоимости газа для потребителей, твердотопливные котлы STROPUVA уже сейчас эффективно конкурируют с самыми экономичными еще недавно газовыми котлами. Для вновь строящихся домов установка котла STROPUVA видится ныне самым экономичным и дальновидным решением. При этом не нужно заботиться о дорогостоящем подведении газа и необходимости согласований.

Предвидя рост цен на газ, очень многие наши клиенты, проживая в уже давно построенных домах, устанавливают котел STROPUVA как второй резервный к существующему газовому или электрическому. Такой подход позволяет в любой момент переключиться на твердое топливо в случае резкого подорожания газа или электроэнергии.

Энергонезависимость котла STROPUVA

Отсутствие электронных систем управления твердотопливным котлом STROPUVA и процессом горения обеспечивает:

– для котлов дровяных – полную энергонезависимость (при работе на гравитационную систему циркуляции воды), что особенно актуально при нахождении дома в зоне отсутствия или проблем с подачей электроэнергии,

– для котлов универсальных – около 15-20 Вт/ч для узла подачи воздуха в топку.

Котлы на дровах при работе в системах отопления с естественной циркуляцией воды не требуют электричества вообще. Они с успехом могут применяться везде, где другие источники энергии недоступны или дороги.

Надежность и безопасность

Еще недавно существенными недостатками твердотопливных котлов были невозможность работы в полностью автономном режиме и необходимость частой загрузки топлива.

Котлы на твердом топливе STROPUVA лишены этих недостатков. В основе управления котла стоит очень простой по конструкции, а значит надежный автоматический клапан – биметалический регулятор тяги, который не требует электропитания. Это обеспечивает абсолютно автономную работу котла без каких-либо дополнительных автоматических, электронных и прочих устройств.

В отличие от котлов на электричестве, газе и дизтопливе, где всегда существует опасность замыкания электросети, взрыва газа или возгорания дизтоплива – твердотопливный котел STROPUVA абсолютно безопасен в принципе. Котел сконструирован таким образом, что в случае многократного превышения допустимых нагрузок, он не взорвется, а сожмется внутрь.

Простая конструкция и схема работы котла понятны любому пользователю с любым уровнем образования, что исключает какие-либо сложности в эксплуатации.

Котел длительного горения STROPUVA имеет европейский сертификат качества CE, обеспечен заводской гарантией 5 лет* (на корпус котла) и 2 года – на расходные материалы.

Модель котлаMini SP 8
Мощность (кw)8
Отапливаемая площадь (м²)50-110
Вмещение топлива (дм³)163,15
Вмещается дров (кг)37,43
Длина дров (см)45
Количество воды в котле (л)41
Продолжительность горения при одной закладке топлива (час.) ~18
Коэффициент полезного действия (%)85
Давление воды в котле, не более (бар)2
Клапан сохранения давления (бар)2
Поток нагреваемой воды (м³/час) мах0.25
Температура воды в котле С075
Размеры загрузочного проема (мм)230х215
Расстояние от низа котла до центра дымохода (мм)1076
Диаметр дымохода (мм)160
Минимальная поперечная площадь отверстия дымовой трубы (см²)***250
Габаритные размеры, без упаковки (мм) 
Высота1350
Диаметр557
Масса (кг)166

Пиролизный котел на твердом топливе.

Как выбрать твердотопливный пиролизный котел длительного горения

Сочетание эффективной работы, основанной на экономном использовании топлива, и простоты эксплуатации — ключевые требования при выборе отопительного котла. Основная цель инженерных разработок — максимальное использование тепла от сжигаемого топлива при уменьшении объема источника энергии. Пиролизный котел полностью соответствует условиям и представляет собой практичный вариант отопления жилья.

Виды и устройство пиролизного оборудования

Какие котлы можно отнести к пиролизным и есть ли конструктивные отличия между моделями? В чем преимущества и недостатки агрегатов? длительное горение? Для начала стоит отметить, что пиролизные котлы работают исключительно на твердом топливе. «Сердце» котла — камера сгорания, состоящая из двух отсеков:

  • Загрузочная часть для твердого топлива, генераторного газа.
  • Сектор дожигания, функцией которого является организация процесса сжигания пиролизных газов.

Этот сектор подключен к дымоходу, по которому тепловая энергия перемещается к теплоносителю. Здесь также оседают остатки сгорания твердого топлива в виде сажи. Поэтому второе название пиролизного аппарата — газогенераторный котел. Все такие агрегаты оснащены тяговыми выключателями. Отсутствие этого элемента превращает газогенератор в штатное оборудование прямого горения.Именно закрытие клапана обеспечивает начало процесса пиролиза при сгорании твердого топлива.

Существуют разные модели пиролизных котлов, разница между которыми заключается в расположении дожигателя. Его можно оборудовать сверху или снизу. Особенности популярной конструкции твердотопливного агрегата с нижней камерой дожига следующие:

  • Среди достоинств — удобная подача топлива, отработанные газы уходят в установленный снизу дымоход.
  • Существенным недостатком такого пиролизного котла является необходимость регулярной очистки нижней камеры из-за попадания золы из первичного отсека.


Пиролизная конструкция твердотопливного котла с верхней камерой дожига встречается реже, но имеет существенные преимущества. В нем пиролизный газ через форсунки попадает в отсек дожигания, а после полного сгорания попадает в дымовую трубу. После охлаждения продукты сгорания выводятся наружу.Отрицательным моментом данной модели является повышенный расход материала на возведение дымового тракта.

Конструктивные отличия твердотопливных котлов пиролизного типа обнаруживаются также в устройстве тяги, которое является форсированным и естественным.

Замечание! Аппараты с естественной тягой не зависят от наличия электричества и оснащены высоким дымоходом.

Для принудительной вентиляции установлены вентиляторы и дымососы, которые управляются автоматически.Их работа характеризуется длительным временем эффективного сгорания, но при условии наличия электричества.


Принцип работы

За счет чего пиролизная твердотопливная сборка имеет высокий КПД, рассмотрим подробно. Благодаря оборудованной камере сгорания и турбине одной закладки твердого топлива хватает на период от 10 до 12 часов. Как это работает:

  • Газогенераторные котлы оснащены программным устройством, функцией которого является установка удобного режима отопления.
  • После получения заданных параметров работа турбины регулируется автоматически.
  • В загрузочный отсек твердого топлива подается определенное количество воздуха, обеспечивающее необходимый режим горения. Это позволяет поддерживать желаемую температуру в системе.

Ключевым принципом эффективного функционирования пиролизных котлов является использование технологии газогенерации за счет разложения древесины. Это происходит при воздействии твердого топлива при высоких температурах в диапазоне 200-800 о С в условиях ограниченного притока воздуха.То есть получение основного потока тепловой энергии происходит не в загрузочной камере, где непосредственно происходит сжигание твердого топлива. Пиролизный газ, выделяющийся в условиях недостатка кислорода, проходит через сопла в камеру дожигания и, смешиваясь там с вторичным воздухом, сгорает при температуре 1100-1200 o C. Его воспламенению способствует дым. эксгаустер, создающий необходимую тягу. Этот процесс характеризуется выделением колоссального количества тепла.Части котла, где скапливается небольшое количество отходов в виде золы и сажи, нуждаются в регулярной чистке.

Продвижение пиролизного газа через теплообменник сопровождается передачей тепловой энергии теплоносителю, после чего она удаляется через дымоход. Это обеспечивает максимальное использование выделяемого тепла и продление сгорания твердого топлива.


Важно! Для эффективной работы пиролизного котла используется топливо с влажностью не более 20%, иначе процесс газовыделения невозможен.

Характеристики стальных и чугунных моделей

Корпус твердотопливного пиролизного котла преимущественно изготавливается из стали толщиной более 5 мм. Недостатком этого материала является подверженность процессам коррозии, что негативно сказывается на сроке службы оборудования. Избежать подобных проблем позволит покупка твердотопливного котла, корпус которого выполнен из чугуна, который отличается высоким качеством и надежностью. По сравнению со стальным прокатом характеристики чугунных пиролизных котлов выше на следующие позиции:

  • период эксплуатации;
  • теплопередача;
  • устойчивость к коррозионным процессам;
  • Чугунные котлы
  • меньше подвержены воздействию кислот и смол.


Нюансы выбора топлива

КПД пиролизного котла во многом зависит от типа используемого топлива. В целом для него подходит такое сырье органического происхождения:

  • дрова;
  • уголь;
  • пеллет;
  • торф;
  • отходы переработки древесины.

Загрузка опилок и стружки недопустима ввиду противоречия самому названию котла «на твердом топливе». Использование этих материалов не обеспечит процесс выделения газов пиролиза за счет мгновенного сгорания. Оптимальный вариант — древесина, горение которой сопровождается образованием больших объемов газа, превышающих все другие источники. Как было сказано выше, высокий КПД котла пиролизного типа возможен при условии загрузки сухого топлива.


Анализ стоимости источников тепловой энергии выявил лидеров: среди них пеллеты и пеллеты.Оба вида представляют собой результат деревообработки и имеют невысокую стоимость. Однако мелкодисперсный материал рекомендуется использовать в сочетании с дровами.

Замечание! У пиролизных котлов, работающих исключительно на пеллетах, КПД меньше, чем у дровяных агрегатов. То же самое можно сказать и об угольных пиролизных котлах.


Минимальный размер топлива для газового котла 7-10 см при поперечном измерении. Использование щепы или опилок допускается в объемах, не превышающих массы всего твердого топлива.

Преимущества и недостатки

Усовершенствование твердотопливных котлов дало пиролизным установкам ряд преимуществ, среди которых:

  • В условиях эксплуатации КПД котла 85-90%. Это достигается за счет сжигания твердого топлива без остатка.
  • Необходимость загружать дрова возникает дважды в день. Когда пиролизный котел используется на частичной мощности, процесс можно свести к единовременному пополнению в течение 24 часов.
  • Регулировка температуры в помещении обеспечивает снижение расхода топлива.
  • Взаимодействие пиролизного газа с углеродом сопровождается минимальным выделением вредных веществ. Вместе с почти полным сгоранием твердого топлива в котле это гарантирует низкий уровень загрязнения атмосферы. По отношению к традиционным агрегатам он снижен в три раза.
  • Уменьшение количества очисток пиролизного котла за счет полного сгорания всех компонентов древесины.

По отзывам потребителей твердотопливные пиролизные котлы имеют ряд недостатков:

  • Зависит от электроснабжения.
  • В большинстве своем пиролизные котлы являются одноконтурными, поэтому они выполняют единственную функцию обогрева помещения. Для организации процесса нагрева воды необходимо позаботиться об установке дополнительного оборудования, что сопровождается новыми материальными затратами.
  • Стоимость твердотопливного аппарата пиролизного типа выше, чем у традиционного твердотопливного котла. Однако в связи с экономным расходом сырья в будущем эту статью расходов удачно перекрывают.
  • Несмотря на автоматическую настройку процесса нагрева, твердое топливо в пиролизный котел загружается вручную. Данная процедура доставляет потребителям определенные неудобства из-за систематического контроля за расходом сырья.


Выбирая среди множества моделей пиролизных котлов, учитывайте, что агрегаты, работающие исключительно на пеллетах, сложно обслуживать, поэтому для них необходимо привлечение специалистов по обслуживанию. Стоимость всех пиролизных котлов напрямую зависит от наличия и количества технических доработок.

Как выбрать твердотопливный пиролизный котел длительного горения?

Российские города и села развиваются быстрыми темпами, но многие регионы до сих пор остаются без газа. А если вы относитесь к владельцам негазифицированного жилого помещения, вас наверняка заинтересует пиролизный котел длительного горения, о котором и пойдет речь в сегодняшней статье. Представленная здесь информация поможет вам оценить эффективность техники и рациональность выбора в ее пользу.

Зачем нужна замена?

Как выбрать нужную модель?

Сегодня многие производители занимаются производством и продажей пиролизного котельного оборудования, поэтому выбор лучшей современной модели становится довольно сложной задачей. На выбор покупателям из России предлагаются дешевые, недорогие и дорогие (в зависимости от мощности и оснащения) котлы российского, белорусского производства, а также модели компаний из Украины.Кроме того, вы можете найти множество предложений от немецких, польских, литовских, финских, чешских и других импортных производителей, которые производят профильное, промышленное, комбинированное и универсальное оборудование. При желании можно найти бу, самодельные модели и даже чертежи для изготовления водогрейных и воздухонагревательных приборов с дымоходом своими руками. Но на подобные эксперименты категорически не рекомендую. Лучше почитать отзывы и рейтинги в сети, чтобы сделать правильный выбор в пользу той или иной модели.

Популярные производители и модели: stropuva, ​​burzhuy to, buderus, Bear, Dakon, Candle, Bosh, Liepsnele, Benguer, Prometheus, Atmosphere, Bourgeois, Motor Sich, kmh, Wichlacz, Blizzard, Blago, Zota, Geyser, Kvr, сас, виадрус, данко, бастион, дефро, виссманн, юнкерс, корди, сморгонь, горнист, мелитополь.

выводы

Как видите, угольные твердотопливные печи сделали большой шаг вперед, в результате чего процесс обогрева помещения существенно упростился.Высочайшие экологические и экономические характеристики позволили пиролизному аппарату стать оптимальным решением для обогрева помещений до определенной температуры. Также необходимо решить, насколько рациональным будет использование соответствующего оборудования в вашем отапливаемом помещении. Возможно, лучше будет сделать выбор в пользу водогрейного, чугунного газового или пеллетного котла (на пеллетах), который будет отапливать территорию с большей эффективностью и меньшими экономическими затратами.

Вы пробовали жить в доме зимой без отопления? Нет? И не надо этого делать, ведь на дворе 21 век и наши разработчики не стоят на месте.Они постоянно внедряют новые идеи и проектируют современные отопительные приборы.

Сегодня старая русская печь уже заменена пиролизными твердотопливными котлами. Их принцип работы хоть и похож на печное отопление, но если познакомиться с ним поближе, есть одно отличие.

Современный пиролизный котел на твердом топливе способен сжигать не только дрова, но и газ, выделяющийся при их сгорании. Производители выпускают широкий спектр такой техники, и чтобы выбрать среди этого разнообразия вариант, необходимый для ваших условий, следует выяснить их отличия.

Виды отопительных агрегатов

Итак, что подразумевается под пиролизным оборудованием? Есть ли отличия в его разных моделях? И каковы преимущества и недостатки этого типа техники. Чтобы найти ответы на все поставленные вопросы, вернемся к самой сути. Котлы твердотопливные пиролизные — устройство, которое может работать только на дровах.

Их камера сгорания состоит из двух частей:

  • Нагрузочная или газогенераторная
  • Дожиг, на котором происходит процесс сгорания пиролизных газов

К этой части котла подсоединен дымовой тракт, в котором тепло от дымовых газов переходит к теплоносителю, а также здесь накапливаются отходы процесса — сажа.Именно поэтому пиролизный котел на твердом топливе и получил второе название — газогенераторный.

Посмотрите видео, принцип работы котла на топливном дереве:

Этот принцип был известен еще в царские времена, когда его использовали для освещения городов. А поскольку этот процесс состоит из нескольких фаз и одна из них — сжигание газов, твердотопливный пиролизный котел правильнее было бы назвать — газогенератором.


Все устройства данного типа оснащены тяговыми выключателями. Без этих устройств устройство могло бы работать как устройство прямого сжигания, и только после закрытия заслонки начинается процесс пиролиза.

Узнав принцип работы и особенности конструкции такого оборудования, стоит познакомиться с его различными видами. Таким образом, оборудование для сжигания твердого топлива подразделяется, в зависимости от расположения отсека дожигания, на модели с:

Наибольшее распространение получили твердотопливные пиролизные отопительные котлы с верхней камерой.Объясняется это удобной укладкой дров и возможностью вывода отработанных газов в дымоход, расположенный внизу. Однако у этой конструкции есть определенные недостатки. Когда дрова сгорают, зола из первичного отсека попадает в камеру дожигания, что требует дополнительной очистки.

Пиролизный котел на угле с верхним расположением отсека хоть и менее распространен, но имеет преимущества перед первой моделью. В нем пиролизный газ через форсунки отводится в отсек дожигания, сгорает в нем и попадает в дымоход, где охлаждается и затем отводится наружу. Однако в этом случае для создания дымового канала требуется больше материала.

Есть разные модели и в зависимости от типа тяги:

Первые не зависят от подачи электроэнергии и должны быть оборудованы высоким дымоходом. Аппараты второго типа могут быть оснащены дымососами и вентиляторами, работа которых регулируется автоматически. Они летучие, но в то же время имеют более длительное время эффективного сгорания.

Производство газа и длительное горение — сравните возможности


Среди рассматриваемых утеплителей следует выделить два наиболее эффективных типа устройств, работающих на древесине и отходах от ее обработки.Первыми рассмотрели пиролизные котлы на твердом топливе длительного горения. Это одно из самых экономически выгодных устройств в данном сегменте рынка.

Имеют специально оборудованную камеру сгорания и турбину, благодаря особенностям которой одна закладка может гореть более 10 часов. Твердотопливные пиролизные котлы длительного горения оснащены программатором, позволяющим выбирать режим отопления.

Далее происходит автоматическое управление работой турбины, при котором в камеру нагнетается определенное количество воздуха, что позволяет регулировать процесс горения и тем самым поддерживать определенную температуру в системе.

Внедрение данной технологии позволило спроектировать котлы с:

  • Длительное время горения
  • Высокие экономические показатели

Пиролизное оборудование еще сравнительно молодое, но уже завоевало популярность. Принцип работы твердотопливного пиролизного котла основан на технологии газообразования или термического разложения древесины при воздействии высоких температур и недостатке кислорода.

Смотрим преимущества газовых котлов:

И хотя в качестве основного топлива можно использовать только хорошо просушенные дрова, но горят они не, а газ, который выделяется под воздействием очень высоких температур.В самом начале процесса дрова сжигают с выделением пиролизного газа. Следующий шаг — пропустить его через форсунки, смешать со вторичным воздухом и сжечь при высокой температуре.

При прохождении через теплообменник газ отдает часть своего тепла воде и удаляется через дымоход. Это приводит к максимальному использованию энергии, выделяющейся при горении, и продлению самого процесса. Но у твердотопливного пиролизного котла на дровах есть один недостаток — влажность топлива не должна превышать 16%, иначе процесс газогенерации будет невозможен.

Корпус прибора — стальной или чугунный?

Самый распространенный пиролизный твердотопливный котел имеет стальной корпус. Причем толщина его листов не должна быть меньше 5 мм. Однако этот материал подвержен коррозии, что сказывается на сроке службы оборудования.

Поэтому производители уже разработали и выпускают пиролизные котлы на угле в чугунном корпусе и тем, кто выбирает себе такое устройство, прежде чем констатировать эффективность таких моделей, следует отметить, что чугун — один из самых надежных. и качественные материалы.

И это естественно, что котлы пиролизные, сделанные из него, обладают такими же качествами. Y значительно более высокие характеристики, такие как:

  • Теплоотдача
  • Прочность
  • Незначительная подверженность коррозии
  • Высокая стойкость к смолам и кислотам

Пиролизные котлы на дереве в чугунном корпусе обладают отличной теплопередачей, а это означает, что они более эффективны, имеют более высокий КПД и гораздо лучше справляются со своими обязанностями, чем модели в стальном корпусе.А благодаря тому, что чугун менее подвержен коррозии, устройство может эффективно работать на 50% мощности в межсезонье.

Чаще всего человека, покупающего твердотопливный пиролизный котел, интересует, на каком из видов топлива он будет работать наиболее эффективно? Теоретически для него можно использовать любые материалы органического происхождения:

  • Дрова
  • Пеллеты древесные
  • Уголь
  • Отходы деревообработки

Однако не пытайтесь искать пиролизные котлы на опилках, стружке или других подобных материалах. Лучшее видное топливо для них — дрова. Хоть и не отличается высокой теплоотдачей, но при его сгорании выделяется много пиролизного газа и этому показателю нет равных.

Важно только помнить, что он должен быть сухим, только в этом случае можно добиться высокого КПД.


Если сравнивать виды топлива по стоимости, то пиролизный котел на пеллетах или пеллетах считается наиболее выгодным. Они производятся из древесных отходов и имеют самую низкую стоимость.

Но их можно использовать только как добавку к дровам из-за мелкой фракции.Сегодня пиролизные котлы производятся на пеллетах, но они менее эффективны, чем котлы на дровах.

Для минимальных размеров топливо должно быть 70-100 мм в поперечнике. Возможно использование щепы и опилок, но опять же не более 25% от общей массы, поэтому при покупке пиролизного котла учтите, что на опилках он работать не будет.

Котлы твердотопливные и прочее

Как бы не рекламировалось газовое отопление, но оно давно превратилось из самого дешевого в недопустимую роскошь. Раньше к нему подключались целые поселки и города, а сегодня дружно ищут альтернативу. Подорожал природный газ, и с наступлением следующей зимы владельцы котлов, работающих на этом топливе, получают все больше счетов.


А дерево — было и остается самым дешевым видом, а конструктивные особенности, которыми обладает котел для пиролиза древесины, позволили очень экономно его использовать, достигая при этом высокого КПД оборудования.

Некоторые современные модели этого оборудования не зависят от электричества, и единственное, о чем стоит подумать, — это постоянное наличие дров.

Есть, конечно, и электрические модели отопительных приборов. У них много преимуществ: небольшие размеры и вес, простота в уходе и обслуживании. Но очень высокая стоимость энергии и частые сбои в ней делают это оборудование неконкурентоспособным и в отношении газогенераторного оборудования.

Аппараты на жидком топливе также проигрывают пиролизу.Цены на дизельное топливо постоянно растут, поэтому его использование в системах отопления нерентабельно.

С точки зрения экономичности и экономичности на первом месте остается твердое топливо. Причем пиролизные котлы — единственные, которые могут похвастаться не только высоким КПД, но и тем, что в отличие от других моделей используют не только тепло от сжигания древесины, но и энергию, выделяемую древесным газом.

Подведем итоги

Покупка отопительного прибора сейчас стоит в центре внимания при оснащении системы отопления.И если раньше этот вопрос решался очень просто — покупкой газового котла, то сегодня все большее количество потребителей выбирают твердотопливные модели.

Среди твердого топлива наилучшим КПД обладает. И единственный их недостаток — это чувствительность к влажности топлива. Поэтому придется отказаться от необработанной и замороженной древесины.

Но потребители, купившие твердотопливные пиролизные котлы, оставляют отзывы о работе этого оборудования исключительно положительно и приводят убедительные расчеты их высокой экономической эффективности.

Сопоставив все существующие модели отопительных приборов, рассмотрев их технические характеристики, виды используемого топлива, стоимость и другие аспекты эксплуатации, можно с уверенностью сказать, что пиролизные котлы на сегодняшний день являются наиболее рентабельными. Купив такой для обогрева жилого помещения, гаража или бани вы, несомненно, останетесь довольны его работой.

Объяснение

твердотопливных котлов | Руководство котла

Твердотопливный котел может быть идеальным выбором отопительной системы для автономной недвижимости.Они сжигают твердое топливо, такое как дрова или уголь (не рекомендуется), и являются отличной альтернативой газу, маслу и электричеству.

Традиционные твердотопливные котлы — это печи, которые можно подключать к системе центрального отопления. Более современный подход заключался бы в установке котла на биомассе, который представляет собой возобновляемую систему отопления, которая сжигает материалы растительного происхождения.

Что такое твердотопливный котел?

Старые системы отопления, которые включали твердотопливный котел, назывались дровяными или угольными печами.Совсем недавно котлы, работающие на биомассе, стали популярным вариантом для твердого топлива. Они так же эффективны и эффективны, как и другие системы отопления, но также являются возобновляемыми. Это потому, что они сжигают растительные организмы, полностью нейтральные по выбросам углерода.

Виды твердотопливных котлов

Печи твердотопливные

Печи на твердом топливе часто относятся к дровяным горелкам, но также существуют и угольные горелки.

Стоит отметить, что правительство постепенно отказывается от сжигания влажной древесины и некоторых видов угля.Это будет означать, что для покупки будут доступны только сухая древесина и промышленный уголь, поскольку они более экологически чистые.

Дровяные печи могут работать на древесной щепе, пеллетах или бревнах, причем дрова являются наиболее популярным вариантом. Это автономные обогреватели, а это значит, что они нагревают только ту комнату, в которой они встроены. С мая 2021 года обратите внимание на логотип «Ready to Burn» на запасах дров.

Многотопливные печи предлагают гибкость, поскольку они могут работать на дровах и в холоде.

Печи на твердом топливе обогревают только комнату, в которой они установлены, если они не подключены к системе центрального отопления. Узнайте, как подключить дровяную горелку к центральному отоплению.

Котлы на биомассе


Система отопления котла на биомассе сжигает природные материалы для обогрева дома. Обычно это древесные гранулы, щепа или бревна, но они также могут включать в себя растительные организмы.

Котлы на биомассе работают так же, как и обычные котлы. Они обеспечивают отопление и горячую воду за счет сжигания топлива, но единственный углерод, выпущенный в атмосферу, ранее поглощался древесным топливом.Это делает их углеродно-нейтральной возобновляемой системой отопления.

В отличие от твердотопливных печей, в которые нужно подавать топливо вручную, в котел, работающий на биомассе, можно автоматически подавать топливо через бункер. Хотя котлы на биомассе с ручной подачей также доступны.

Что такое котел на биомассе?

Установка котла, работающего на биомассе, требует принятия множества решений. А именно в зависимости от типа топлива, на котором должна работать система отопления, а также от того, нужно ли устанавливать модель с ручной или автоматической подачей.

В зависимости от модели котел на биомассе может работать на древесной щепе, бревнах или пеллетах (некоторые котлы на биомассе могут работать на более чем одном из этих видов топлива).

  • Древесная щепа: Более доступна по цене, чем пеллеты, но менее эффективна.
  • Дрова: Самое большое топливо для котла, работающего на биомассе, которое необходимо вручную подавать в котел, когда необходимо тепло. Потенциально может происходить из местных лесных массивов.
  • Древесные гранулы: Изготавливаются из прессованной древесной стружки и опилок и могут автоматически подаваться в котел из накопительного бака.

Зачем устанавливать твердотопливный котел?

Преимущества твердотопливных котлов

  • Низкие эксплуатационные расходы
  • Нет опасений по поводу перебоев в поставках
  • Выбирайте из множества видов твердого топлива
  • Увеличить вентиляцию помещения

Недостатки твердотопливных котлов

  • Уголь очень вреден для окружающей среды
  • Требуется дополнительное место для хранения топлива
  • Отапливать только одну комнату (если не подключено к системе отопления)
  • Считается «грязной» системой отопления, так как в основном это открытый огонь.

Теперь обратим внимание на котлы на биомассе.Это более современная версия твердотопливных котлов, потенциально обладающая множеством преимуществ автономной работы.

Преимущества котлов на биомассе

  • Углеродно-нейтральный
  • Достигните уровня эффективности более 90%
  • Обеспечить отопление и горячую воду всей собственности
  • Вы потенциально можете обогреть свой дом бесплатно (если у вас есть дрова)
  • Может иметь право на получение платежей в рамках программы поощрения за возобновляемое тепло

Недостатки котлов на биомассе

  • Более высокие первоначальные затраты, чем у газовых, масляных и электрических котлов
  • Топливо необходимо хранить у себя в собственности
  • Могут быть большие системы отопления
  • Зола из систем ручной подачи требует регулярной очистки

Сколько стоит твердотопливный котел?

Котлы на твердом топливе могут стоить от 499 до 5000 фунтов стерлингов.Это касается только самой печи, поэтому вам также нужно будет учесть стоимость установки. На стоимость установки может повлиять ряд факторов, в том числе:

  • Тарифы устанавливает установщик
  • Ваше местонахождение
  • Дымоход требует доработки
  • Нет дымохода? Затем нужно установить дымоход
  • Строительные нормы и правила гласят, что в помещении с печью необходима вентиляция.

Чтобы свести затраты на установку к минимуму, мы настоятельно рекомендуем сравнивать расценки.

Между тем, стоимость котла на биомассе с ручным питанием колеблется от 4 000 до 10 000 фунтов стерлингов по сравнению с 9 000 до 21 000 фунтов стерлингов для установки с автоматическим питанием.

Помимо предварительных цен, стоит также обратить внимание на долгосрочные затраты. Уголь — относительно недорогое топливо, но его использование постепенно прекращается, поэтому его использование не рекомендуется. Древесная щепа часто является самым дешевым видом топлива из биомассы, но, если ее можно добыть в лесистой местности, тогда древесные бревна потенциально можно найти бесплатно.

Тип топлива Средняя цена (пенсы / киловатт-час)
Уголь (твердое топливо) 4.13
Щепа 2,9
Бревна 6.93 (или бесплатно)
Пеллеты древесные 5,99

Выбор котла, работающего на биомассе, потенциально может дать вам право на оплату через программу поощрения возобновляемого тепла (RHI). По сути, RHI — это финансовый стимул для обогрева вашего дома с использованием возобновляемых источников энергии. С котлом, работающим на биомассе, вы можете получать 6,97 цента за киловатт-час тепла, произведенного в течение 7 лет.

Получить расценки на котел на твердом биомассе

Похоже ли котел на биомассе подходящей системой отопления для вашего дома? Тогда вы можете получить бесплатные расценки прямо здесь, в Boiler Guide.

Просто заполните нашу короткую форму запроса, а мы позаботимся обо всем остальном. Вскоре вы получите необязательные предложения от трех местных инженеров-теплотехников. Затем вы можете сравнить и установить новый котел на биомассе по наиболее конкурентоспособной цене.



Твердотопливные котлы длительного горения: рыночный ассортимент, правила установки

Твердотопливные котлы длительного горения

Твердотопливные котлы длительного горения — это специальные устройства, позволяющие организовать автономное отопление дома или квартиры. Первые конструкции этих устройств были известны с незапамятных времен, когда люди отапливали дом только с их помощью из-за отсутствия природного газа и электричества. Сейчас большинство домов газифицировано и электрифицировано, но в самых удаленных районах, где нет таких коммуникаций, без котла отопления на твердом топливе не обойтись.

Содержание

  • Специалисты по твердотопливным котлам
  • Типы и принципы работы
  • Монтаж твердотопливных котлов

Специалисты по твердотопливным котлам

Специалисты в области теплоснабжения выделяют ряд неоспоримых преимуществ твердого топлива котлы:

1.Бюджетный.

2. Возможность работы комбинированных и универсальных котлов на разных видах топлива.

3. Недорогое топливо (дрова в 15 раз дешевле электричества, дизельное топливо в 7 раз дешевле, уголь примерно в 2 раза).

4. Автономность: нет необходимости подключать их к электросети и другим коммуникациям.

5. Высокая эффективность и функция автоматического поддержания температуры воды.

6. Наличие пульта ДУ.

7. Это наиболее экологически чистый вид отопительного оборудования, продукты сгорания твердого топлива практически не загрязняют окружающую среду, чего нельзя сказать, например, о продуктах сгорания природного газа.

Твердотопливный котел отопления в салоне

А вот о твердотопливных котлах отзывы специалистов не всегда только положительные, они выделяют ряд недостатков:

1. Необходимость регулярной ручной загрузки топлива (в дешевых моделях — каждые 2-4 часа, при пиролизе — 2 раза в сутки).

2. Необходимость регулярного обслуживания.

3. Регулярная подача твердого топлива в котел и его предварительная подготовка перед загрузкой.

Типы и принципы работы

Эти котлы можно классифицировать:

1. По типу потребляемого топлива:

1.1. Традиционные (работают на твердом топливе: угле, дровах, торфе). Если вы хотите использовать твердотопливные котлы на дровах, но уголь, торф и т. Д. Используются редко, выбирайте специальные модификации, которые лучше всего подходят для этого топлива.Они сжигают древесину даже при влажности 35%.

Выбирайте высоту дымохода в зависимости от мощности котла и его внутренних размеров.

Традиционный твердотопливный котел — структурная схема

1.2. Комбинированный или газовый котел с функцией пиролизного сжигания дров. Их главное отличие от традиционных в том, что помимо самих дров может сжигаться древесный газ, выделяемый древесиной под воздействием высоких температур. В процессе горения появляется минимум золы, сажа не образуется, а выгорает вместе с тяжелыми соединениями.Главное преимущество таких котлов — высокий КПД 85%, а также возможность регулировки мощности. Но они значительно дороже традиционных, и можно использовать только сухую древесину. Среди производителей самыми известными чешскими компаниями являются Dakon, Atmos и немецкие — Olymp.

Устройство твердотопливного газового котла

1.3. Универсальный (может работать на твердом и жидком топливе, газообразном, а также на электричестве). Они очень популярны в Европе. Электроэнергия используется через встроенные в «рубашку» котла электронагреватели — электронагревательные элементы.ЭлектроТЭНы обычно используют в ночное время при выходе из строя основной топки.

2. По функциональным возможностям:

2.1. Одноконтурный (предназначен только для отопления помещений).

Одноконтурный твердотопливный котел встраивается только в контур отопления

2.2. Двухконтурный (способен отапливать помещение и работать на нагрев воды за счет встроенного контура горячего водоснабжения (ГВС)). Двухконтурный твердотопливный котел применяется для отопления помещений, а также для приготовления горячей воды накопительным или проточным способом.Накопительный — предполагает наличие специального встроенного бойлера до 60 литров. Проточный — предполагает наличие в котле теплообменника, с помощью которого вода нагревается в проточном режиме. Проточным способом горячая вода готовится быстро, но о больших объемах говорить не приходится.

3. По материалу, из которого они изготовлены:

3.1. Чугун. Твердотопливные чугунные котлы обычно комплектуются одной топкой, они состоят из нескольких секций, количество которых зависит от мощности агрегата.Они имеют большой срок службы — 50 лет, но часто требуют ремонта, например, замены прогоревшего участка. Такие котлы тяжелые, их нужно ставить на усиленный пол, они дороже стальных.

Чугунный твердотопливный котел — самый дорогой, но и самый длительный вариант

3.2. Стали. Твердотопливные котлы из стали нагреваются быстрее, чем чугунные и точнее поддерживают заданный режим.

Они оснащены змеевиком для нагрева воды, а некоторые модели оснащены электронагревателями.Срок службы 30 лет. Недостатки: для подачи угля решетку в них всегда нужно менять на чугунную или с водяным охлаждением.

4. По количеству камер:

4.1. Однопоточные (бывают и чугунные, и стальные). Однокотельные котлы нужно каждый раз перенастраивать, переходя с одного топлива на другое, так как параметры камеры для каждого вида топлива разные. Если вы собираетесь использовать в основном дрова, то выбирайте просторную топку.

4.2. Двухтопливный (только сталь).Их не нужно перенастраивать при переходе с одного вида топлива на другой, так как есть отдельные деревянные камеры для газа или жидкости. Такие котлы более эффективны, чем однокотловые. Чаще всего они универсальные с возможностью установки электронагревателей. Также эти котлы твердотопливные двухконтурные, всегда имеют второй контур — встроенный жаровню (как у Бош) или теплообменник.

Двухтопливный твердотопливный котел обслуживает системы отопления и горячего водоснабжения или два отопительных контура

5.По способу подачи топлива:

5.1. Ручной способ (в бытовых моделях). Полностью автоматизированные твердотельные котлы бытового назначения не распространены, хотя в этом направлении ведутся активные разработки.

5.2. Автоматизированный (используется только в промышленности). Промышленные твердотопливные котлы полностью автоматизированы. Их топят не дровами, а щепой, стружкой, прессованными пилами. Оборудован таким устройством, как кочегарка или бункерная горелка. Штоккер представляет собой металлический ящик, оборудованный шнековым транспортером, приспособленный для подачи топлива непосредственно к горелочному устройству, в котором находится нагнетательный вентилятор.Расход топлива тоже регулируется, и он зависит от температуры воды. В России такие агрегаты не производятся, только за рубежом.

Установка твердотопливного котла

Установка твердотопливного котла должна производиться в строгом соответствии с инструкцией, а также стандартами безопасности. Последовательность:

1. Устройство на полу из негорючего материала, то есть «площадки», на которой будет работать котел. Основание фундамента должно быть на 20 мм шире самого агрегата.

2. Установка котла.

3. Подключение котла к дымоходу.

4. Подключение прибора к системе отопления.

5. Проверка оборудования на наличие дефектов.

6. Первая пробная растопка.

При подключении твердотопливного котла необходимо строго соблюдать инструкции производителя и технологические правила.

Рекомендации:

  1. Расстояние доступа к котлу не должно быть <1м.
  2. Все легковоспламеняющиеся предметы можно размещать на расстоянии не менее 25 см от котла. А дрова, брикеты и другое топливо — не менее 40 см.
  3. Запрещается топить котел бензином, керосином, дизельным топливом, глянцевой бумагой, обрезками ламината, ДСП, ДВП, так как при их сгорании выделяются токсичные вещества.
  4. Лучшее топливо: сухие дрова, торф, опилки, кокс или пеллеты.
  5. Регулярно проверяйте оборудование. Перед каждой растопкой необходимо удалять золу, топливный шлак.
  6. Очищайте топку и зольник агрегата еженедельно, чтобы дымоходы не забивались.

При правильной эксплуатации эти агрегаты способны работать долго и очень эффективно. Твердотопливные котлы положительно характеризуются отзывами потребителей с большим опытом эксплуатации этих устройств. Люди, живущие в домах, где такие котлы — единственный способ обогреть помещение, отзываются о них как о надежных и долговечных отопительных приборах.

Руководство домовладельца по твердотопливным системам центрального отопления

Поскольку счета за отопление продолжают стремительно расти, все большее число домовладельцев обращаются к более экономичным способам обогрева своих домов.Когда приходит время заменить котел или вам просто надоело постоянное повышение цен, энергоэффективность должна стать вашим приоритетом номер один. В результате в последние годы резко возросла популярность систем отопления на твердом топливе, поскольку они намного более рентабельны в эксплуатации. Однако капитальный ремонт вашей системы центрального отопления — это нелегкий проект, поскольку затраты на установку и требуемые трудозатраты часто дороги и сложны.

Что такое центральное отопление на твердом топливе?

Большинство систем центрального отопления работают от гидроэнергии, природного газа или, в случае домов, где нет подключения к газу, от нефти, хранящейся локально в резервуаре.В некоторых квартирах и домах используются электрические котлы, хотя они самые дорогие по эксплуатационным расходам.

Твердое топливо, будь то дрова или уголь, использовалось на заре человеческой истории, и хотя газ, нефть и электричество стали предпочтительными видами топлива для подавляющего большинства домов в течение двадцатого века, твердое топливо быстро растет. возвращение.

В частности, в сельской местности многие люди используют комбинацию дровяных печей или открытых каминов и обычной системы центрального отопления.Это относительно доступно и эффективно, но с ростом цен на топливо многие рассматривают возможность полностью полагаться на твердое топливо для обогрева своих домов и обеспечения горячей водой.

Современные твердотопливные системы отопления намного сложнее открытых каминов, которые во многих городских районах и так запрещены. Если вы живете в экологически чистом районе страны, вы все равно можете воспользоваться твердотопливным центральным отоплением, потому что многие из них используют технологию чистого сжигания.

Что касается трубопроводов и радиаторов, то система, работающая на твердом топливе, работает точно так же, как и любая другая.Однако вода нагревается в баке, подключенном к плите или твердотопливному котлу, или, в случае некоторых небольших применений, к кухонной плите. В других системах может использоваться сочетание твердого топлива и газа, нефти или электричества, хотя их установка обычно намного дороже. В простейших из этих соединительных систем обычно есть задний котел, установленный на плите, который начинает работать, когда горит огонь. Более сложные системы полностью связаны в той степени, в которой несколько приборов, работающих на топливе, могут одновременно работать в одной и той же системе отопления.

Справочник по твердотопливным котлам

Безусловно, наибольшее беспокойство при покупке твердотопливного котла вызывает относительно высокая стоимость и беспорядок, связанный с загрузкой топлива. В конце концов, большинство домовладельцев не в восторге от того, чтобы постоянно поддерживать котел в рабочем состоянии, добавляя дрова или какое-либо другое топливо, которое он сжигает. К счастью, сейчас доступны автоматизированные системы, включающие питатели топлива, которые необходимо пополнять только каждые несколько дней или неделю.Существуют два основных типа автономных твердотопливных котлов:

. Конструкция

с гравитационной подачей имеет большой питатель топлива над топкой, который обычно может вмещать топливо на несколько дней. Топливо, используемое в котлах этого типа, обычно представляет собой древесные гранулы, уголь или антрацит. Котлы с гравитационным питанием — самые дорогие, но они намного удобнее и доступны во многих различных размерах.

Котлы с ручным питанием намного дешевле своих более удобных аналогов, но они требуют частой дозаправки, как обычный камин или печь.Тем не менее, они не требуют подключения к электросети, поскольку в них нет термостатов или каких-либо других электрических компонентов. Таким образом, котлы с ручным питанием обычно лучше подходят для небольших применений.

Как правило, более простые котлы с ручным питанием вполне доступны для чего-то достаточно мощного, чтобы обеспечить центральное отопление и горячую воду для типичного семейного дома. Однако котлы с гравитационным питанием могут легко стоить более чем в два раза. Как и в случае с любым котлом, чем больше ваш дом, тем более высокая мощность потребуется вашему котлу, а это может значительно увеличить стоимость.Наконец, вам также необходимо учесть стоимость достаточно большого резервуара для воды.

Заключительные слова

Системы отопления на твердом топливе больше не должны означать беспорядок и постоянную загрузку топлива, но более современные и сложные котлы, как правило, стоят вдвое дороже, чем газовые или электрические котлы. Однако с учетом быстро растущих расходов на отопление ваши вложения должны быстро окупиться через несколько зим, и все, что делает ваш дом более энергоэффективным, также повысит его стоимость.

Древесный дым: сжигание для получения тепла

Федеральные правила регулируют производство, распространение, рекламу, продажу и установку недавно установленных дровяных отопительных приборов. Начиная с 15 мая 2015 года, новые комнатные обогреватели на дровах (дровяные печи, каминные топки, печи на гранулах) и устройства центрального отопления (печи и водонагреватели или «бойлеры») должны иметь сертификат EPA.

Местные органы власти в Миннесоте могут принять и приняли местные постановления для дальнейшего регулирования древесного дыма в своих общинах, часто для решения жалоб на дым, связанных с жидкостными обогревателями.

Правила Миннесоты для отопительных приборов на дровах

К водяным обогревателям могут применяться правила штата Миннесота. Minn. R. 7011.0520 требует наличия стеллажа достаточной высоты для соблюдения стандартов качества воздуха. Если дровяной прибор достаточно большой, предприятию, использующему его, может потребоваться разрешение на выбросы в атмосферу. Свяжитесь с программой помощи малому бизнесу, чтобы определить требования к разрешениям на сжигание древесины вне домашних хозяйств.

Есть веские причины не сжигать мусор в дровяной печи.Побочные продукты сгорания в образующемся дыме не только токсичны, но и изнашивают дровяные обогреватели быстрее, чем просто дрова. Кроме того, запрещено сжигать отходы или мусор в более крупных дровяных обогревателях, таких как дровяные котлы и печи на открытом воздухе. Миннесота Р. 7011.1220 запрещает небольшие мусоросжигательные заводы, которыми они впоследствии стали.

Как местные органы власти регулируют древесный дым

Хотя федеральные стандарты и стандарты штата помогают обеспечить доступность более чистых дровяных отопительных приборов для домовладельцев и предприятий, иногда необходимо использовать правила их использования и местоположения для решения вопросов о воздействии древесного дыма на окрестности.

Более 60 местных органов власти в Миннесоте приняли постановления, призванные решить проблему дыма от древесины в своих общинах. Некоторые сообщества запрещают водяные обогреватели (также называемые дровяными котлами для установки вне помещений или устройствами, работающими на твердом топливе (SFHD)), присваивают статус несоответствия кодексу зонирования установленным в настоящее время дровяным котлам на открытом воздухе и / или запрещают новые установки.

MPCA составило сводку по городам с постановлениями, регулирующими использование и расположение дровяных обогревателей: местные постановления Миннесоты, касающиеся уличных жилых дровяных котлов

Постановления образца

MPCA сотрудничал с представителями местных органов власти в разработке типовых постановлений для решения проблемы твердых частиц в древесном дыме, производимом дровяными котлами на открытом воздухе.Типовое зонирование и постановления о неудобствах помогают защитить соседние объекты от неблагоприятного воздействия древесного дыма, создаваемого уличными дровяными котлами (также называемыми водяными обогревателями, уличными дровяными печами, водяными печами или устройствами, работающими на твердом топливе (SFHD)). Эти типовые постановления просвещают граждан и сообщества, пострадавшие от древесного дыма, и помогают владельцам собственности соблюдать их. Эти типовые постановления были разработаны для того, чтобы местные органы власти могли адаптировать постановления в соответствии с потребностями своей общины.

Федеральное правило 2015 года о деревянных обогревателях

Для защиты качества воздуха Агентство по охране окружающей среды США (EPA) требует, чтобы все вновь производимые дровяные обогреватели соответствовали ограничениям на выбросы твердых частиц и соответствующим стандартам производительности. Модельные линии должны быть сертифицированы EPA, прежде чем они будут рекламироваться, выставляться на продажу, распространяться, продаваться или устанавливаться в Соединенных Штатах.

Это правило применяется к обогревателям, предназначенным для сжигания угля, кукурузы или другого недревесного топлива, если устройство также можно использовать для сжигания дров.

Это правило не распространяется на существующие дровяные обогреватели, которые уже использовались до вступления стандартов в силу. Но, поскольку существующий парк плохо спроектированных старых дровяных обогревателей, используемых сегодня, постепенно заменяется новыми, имеющими сертификат EPA, дровяными обогревателями, загрязнение воздуха древесным дымом в районах, которые отапливаются дровами, должно снизиться.

Правило 2015 г. по деревянным обогревателям включает (1) Стандарты производительности для новых жилых деревянных обогревателей и (2) Стандарты производительности для новых жилых водяных обогревателей и печей с принудительной циркуляцией воздуха

Предельные значения выбросов твердых частиц, установленные Правилом для деревянных обогревателей 2015 г., становятся более строгими в два этапа (этап 1 и этап 2), чтобы дать производителям возможность выводить продукты на рынок при проектировании бытовой техники в соответствии с более строгими ограничениями 2020 года.По состоянию на 16 мая 2017 года все новые дровяные обогреватели должны быть сертифицированы EPA в соответствии с их пределами выбросов Step 1, чтобы их можно было законно производить, рекламировать, распространять, предлагать для продажи, продавать или устанавливать. Все новые дровяные обогреватели должны быть сертифицированы EPA на соответствие ограничениям выбросов Step 2 к 16 мая 2020 г.

«Сертификат EPA» для дровяного обогревателя, такого как дровяная печь, означает, что перед тем, как новая модельная линейка устройства может быть продана на рынок США, производители должны продемонстрировать EPA, что модельный ряд соответствует лимиты выбросов.Как только производитель продемонстрирует эту демонстрацию, модельный ряд может продаваться в США и должен иметь постоянную этикетку, подтверждающую, что он сертифицирован EPA в соответствии со стандартами производительности, действующими на момент сертификации.

На какие типы дровяных обогревателей распространяется правило 2015 года об обогревателях древесины?

Центральные обогреватели: Устройства для сжигания топлива, предназначенные для сжигания древесины или древесных гранул. Топливо, которое нагревает помещения, отличные от пространства, в котором находится устройство, путем распределения воздуха, нагретого печью, через каналы или жидкости, нагретой в устройстве и распределенной. обычно через трубы.К таким устройствам относятся бытовые печи с приточным воздухом (малые и большие) и бытовые водонагреватели.

  • Бытовые печи с принудительной подачей воздуха: Топливные устройства для сжигания топлива, предназначенные для сжигания дров или древесных гранул, которые нагревают помещения, отличные от помещения, в котором расположена печь, путем распределения воздуха, нагретого печью, по каналам.
  • Гидравлические обогреватели: Иногда их называют уличные дровяные котлы, уличные дровяные печи или водяные печи. Они используют жидкость, например воду, для передачи тепла по замкнутой системе труб для отопления помещений или воды.Они могут располагаться внутри или снаружи дома.
  • Бытовые водяные обогреватели: Топливные устройства, предназначенные для сжигания древесины или древесных гранул с целью обогрева строительного пространства и / или воды посредством распределения, обычно по трубам, жидкости, нагретой в устройстве, обычно смесь воды и антифриза.

Дровяные обогреватели для жилых помещений: означает закрытый дровяной прибор, предназначенный для обогрева жилых помещений или обогрева помещений и нагрева воды для бытовых нужд.Эти устройства включают дровяные обогреватели с регулируемой мощностью горения, дровяные обогреватели с одинарной мощностью горения и печи на гранулах. Дровяные обогреватели включают:

  1. Отдельно стоящие дровяные обогреватели — Дровяные обогреватели, которые устанавливаются на ножках, на пьедестале или подвешиваются к потолку.
  2. Дровяные обогреватели с каминными вставками — Дровяные обогреватели, предназначенные для установки в каменных полостях камина или в других помещениях.
  3. Встраиваемые дровяные обогреватели — Дровяные обогреватели, предназначенные для встраивания в стену.

Список сертифицированных древесных отопительных приборов

EPA поддерживает текущие списки сертифицированных EPA моделей комнатных обогревателей на древесном топливе, таких как дровяные печи, каминные топки и топочные камины, для центральных обогревателей, таких как водяные обогреватели, и для центральных обогревателей, таких как печи с принудительной подачей воздуха.Дополнительную информацию см. На странице EPA, посвященной дровяным обогревателям для жилых помещений.

Соответствие Правилу 2015 года по обогревателям древесины

Правило 2015 года о дровяных обогревателях устанавливает правила, которые применяются к производителям, поставщикам, дистрибьюторам и установщикам дровяных обогревателей. Ознакомьтесь со следующими руководствами и страницей Агентства по охране окружающей среды (EPA), посвященной дровяным обогревателям, для получения дополнительной информации:

Сжигание твердого топлива — обзор

Химический состав

Сжигание твердого топлива включает сушку, выделение и сжигание летучих, а также твердофазное сжигание.Сжигание Biochar приведет к образованию относительно крупных частиц (от микрометров до миллиметров), которые образуют зольный остаток и летучую золу (приблизительно от 1 до 200 мкм). Их образование сильно коррелирует с исходной зольностью биомассы, а точнее с количеством огнеупорного материала, то есть материалов, которые не плавятся при температуре печи, например оксидов кремния, кальция или магния.

В то же время сжигание нелетучих веществ приведет к постепенному испарению таких элементов, как натрий, калий, сера и хлор; эти элементы будут образовывать путем зародышеобразования и конденсации мелкие частицы сульфатов (от 1 нм до 1 мкм) и хлорид калия (или натрия), такие как KCl, K 2 SO 4 или NaCl.Эти элементы также могут конденсироваться или адсорбироваться на поверхности других частиц. Другие второстепенные элементы, присутствующие в биомассе в более низких концентрациях, также могут испаряться и следовать аналогичному поведению, таким образом участвуя в составе мельчайших частиц. Это касается кадмия, свинца и цинка, причем последний обычно является наиболее распространенным (Sippula et al., 2009).

Мелкие и ультратонкие частицы обычно более богаты следующими элементами: калием, натрием, серой, хлором, цинком и свинцом (Obernberger et al., 2006), которые могут быть использованы при образовании: K 2 SO 4 , KCl, (KCl) 2 , K 2 CO 3 , Na 2 SO 4 , NaCl, (NaCl) 2 , ZnO, ZnCl 2 , PbO и PbCl 2 (Jöller et al., 2007). Зола и мелкие частицы обычно классифицируются по соотношению основных элементов (алюминий, кальций, железо, калий, магний, натрий, фосфор, кремний и титан), второстепенных элементов (мышьяк, барий, кадмий, кобальт, хром, медь, ртуть, марганец, молибден, никель, свинец, сурьма, таллий, ванадий и цинк), а также содержание серы, хлора и кислорода (Baxter et al., 1998).

Химический состав топлива (в основном углерод, водород, кислород, азот, сера и хлор) влияет на механизм образования частиц. Сера и хлор будут производить сульфатные и хлорированные соли в виде твердых частиц по такому же механизму, что и для калия. Твердые частицы также могут образовываться при взаимодействии кислых газов (SO x и HCl) с основными газами, такими как аммиак (NH 3 ). В зависимости от температуры могут возникать более сложные механизмы, такие как зародышеобразование хлорида (KCl) на сульфатах (K 2 SO 4 ) (Christensen et al., 1998; Хименес и Баллестер, 2005, 2007). Механизмы образования частиц более широко изучены для угля; для сравнения, биомасса богаче калием, кремнием и кальцием и содержит меньше алюминия, железа и титана, что в некоторых случаях приводит к образованию различных типов частиц (Demirbas, 2004).

Сгорание летучих веществ, выделяемых на ранней стадии пиролиза топлива, также приведет к образованию мелких частиц (PM 0,1 до PM 2,5 ) в результате выделения ароматических органических соединений (ЛОС) в полициклические ароматические углеводороды и сажа.Эти явления, происходящие в пламени, сильно зависят от параметров горения.

Границы | Разработка и производительность многотопливного жилого котла, сжигающего сельскохозяйственные отходы

Введение

Рост населения, истощение и рост цен на ископаемое топливо и климатический кризис во всем мире требуют быстрого развития технологий использования возобновляемых источников энергии с минимальным воздействием на окружающую среду. Топливо из биомассы обладает значительным потенциалом для удовлетворения этих потребностей благодаря своему обилию, низкой стоимости и сокращению выбросов парниковых газов.К 2050 году до 33–50% мирового потребления может быть обеспечено за счет биомассы (McKendry, 2002).

ЕС поставил цель увеличить долю возобновляемых источников энергии в общем потреблении энергии до 27% к 2030 году (ЕС, 2014). Древесное топливо преимущественно использовалось как в крупных, так и в малых системах для производства тепла или электроэнергии. Однако растущая конкуренция за такие виды топлива в секторе отопления, лесопилении и бумажной промышленности, а также рост производства древесных гранул привели к росту цен на древесину и нехватке сырья (Uslo et al., 2010). Таким образом, для достижения цели роста использования биомассы потребуется более широкий ассортимент сырья (Carvalho et al., 2013; Cardozo et al., 2014; Zeng et al., 2018), что создаст дополнительную потребность в топливе. технологии переработки и контроля выбросов.

Для южноевропейских стран, где популярно отопление жилых домов с использованием топлива из биомассы в качестве более дешевой альтернативы, предпочтительным сырьем являются отходы сельского хозяйства и агропромышленности. Они легко доступны в больших количествах и обладают высоким энергетическим потенциалом, уменьшая путем сжигания объем отходов и увеличивая экономическую отдачу для сельских общин.В Греции доступно около 4 миллионов тонн в год, что эквивалентно примерно 50% валового потребления энергии (Vamvuka and Tsoutsos, 2002; Vamvuka, 2009).

Наиболее распространенными типами бытовых топочных устройств являются дровяные печи, дровяные котлы, печи на древесных гранулах и устройства для сжигания древесной щепы. Помимо дровяных печей и обычных котлов с бесконечными винтами, используются котлы смешанного горения с надстройками автоматизации, решениями для хранения и разнообразными механизмами подачи (Vamvuka, 2009; Sutar et al., 2015; Ан и Джанг, 2018). В прошлых исследованиях изучались выбросы дымовых газов, эффективность и проблемы, связанные с золой, при сжигании сельскохозяйственных остатков. Крупномасштабные агрегаты или небольшие пеллетные устройства для домашнего или жилого центрального отопления, некоторые из которых используют верхнюю подачу, вращающиеся или подвижные решетки (Vamvuka, 2009; Carvalho et al., 2013; Rabacal et al., 2013; Garcia-Maraver et al., 2014). ; Pizzi et al., 2018; Zeng et al., 2018; Nizetic et al., 2019). Однако по-прежнему недостаточно информации о характеристиках не гранулированного сырья с точки зрения эффективности и выбросов загрязняющих веществ в соответствии с пороговыми значениями в зависимости от различных конструкций небольших систем и условий эксплуатации.В основном использовалась древесная щепа (Kortelainen et al., 2015; Caposciutti and Antonelli, 2018), тогда как разработка котлов в странах Средиземноморья идет медленно.

Было доказано, что маломасштабные системы биомассы вносят значительный вклад в качество местного воздуха за счет выбросов загрязняющих веществ, таких как CO, SO 2 , NO x , полиароматических углеводородов и твердых частиц, которые могут серьезно повлиять на здоровье человека и климат. Эти выбросы зависят от свойств топлива, применяемой технологии и условий процесса, и их мониторинг и контроль очень важны для соблюдения экологических ограничений и экономической эффективности требований рынка.Было обнаружено, что выбросы CO варьируются от 600 до 680 частей на миллион v для персиковых косточек (Rabacal et al., 2013), 50-400 частей на миллион v для скорлупы бразильских орехов и 100-400 частей на миллион v для шелухи подсолнечника ( Cardozo et al., 2014). Было показано, что выбросы NO x находятся в диапазоне 300-600 мг / м 3 для персиковых косточек (Rabacal et al., 2013), 180-270 мг / м 3 для скорлупы бразильских орехов и 50-720 мг / м 3 для лузги подсолнечника (Cardozo et al., 2014). Для последнего выбросы SO 2 варьировались от 78 до 150 мг / м 3 .Сообщается, что КПД котла (Rabacal et al., 2013; Fournel et al., 2015) составляет от 63 до 83%, в зависимости от типа топлива.

Поскольку сельскохозяйственные остатки доступны только в течение ограниченного периода времени в течение года, их смеси увеличивают возможности поставок для действующих предприятий. Однако, когда смеси используются в качестве сырья, совместимость топлив в отношении характеристик сгорания должна быть должным образом оценена для эффективной конструкции и работы агрегатов сгорания.Переменный состав этих материалов предполагает тщательное знание их поведения в тепловых системах, чтобы избежать топливных комбинаций с нежелательными свойствами. Насколько известно авторам, смеси таких отходов, которые можно найти по низкой цене или бесплатно, не исследовались в бытовых приборах. Для определения выбросов твердых частиц и образования шлака использовались только гранулы древесного топлива или энергетических культур (Carroll and Finnan, 2015; Sippula et al., 2017; Zeng et al., 2018).

Основываясь на вышеизложенном, целью настоящего исследования было сравнить характеристики горения выбранных не гранулированных материалов сельскохозяйственных остатков, которые широко распространены в странах Южной Европы, и их смесей, чтобы изучить любые аддитивные или синергетические эффекты между компонентами топлива и получить выгоду. знания об использовании таких смесей в небольших котлах.Цель состояла в том, чтобы оценить производительность прототипа малозатратной установки для сжигания, позволяющей осуществлять предварительную сушку топлива и воздуха для горения выхлопными газами для производства тепловой энергии в зданиях, фермах, малых предприятиях и теплицах с точки зрения важности параметры, такие как сгорание и КПД котла, температура дымовых газов и выбросы в окружающую среду.

Экспериментальная часть

Топливо и характеристика

Сельскохозяйственные остатки для данного исследования были отобраны на основе их обилия и доступности в Греции и странах Средиземноморья в целом.Это были ядра оливок (OK), предоставленные AVEA Chania Oil Cooperatives (Южная Греция), ядра персика (PK), предоставленные Союзом сельскохозяйственных кооперативов Giannitsa (Северная Греция), скорлупа миндаля (AS), предоставленные частной компанией ( Agrinio, C. Греция) и скорлупа грецких орехов (WS), предоставленная компанией Hohlios (Северная Греция).

После сушки на воздухе, гомогенизации и рифления материалы измельчали ​​до размера частиц <6 мм, используя щековую дробилку и вибрационное сухое просеивание. Типичные образцы были измельчены до размера частиц -425 мкм с помощью режущей мельницы и охарактеризованы с помощью экспресс-анализа, окончательного анализа и теплотворной способности в соответствии с европейскими стандартами CEN / TC335.Содержание летучих измеряли термогравиметрическим анализом с использованием системы TGA-6 / DTG в диапазоне 25–900 ° C, в потоке азота 45 мл / мин и при линейной скорости нагрева 10 ° C / мин. Химический анализ золы проводили на рентгенофлуоресцентном спектрофотометре (XRF) типа Bruker AXS S2 Ranger (анод Pd, 50 Вт, 50 кВ, 2 мА). Тенденция осаждения золы была предсказана с помощью эмпирических индексов. Эти показатели, несмотря на их недостатки из-за сложных условий, которые возникают в котлах и связанном с ними теплопередающем оборудовании, широко используются и, вероятно, остаются наиболее надежной основой для принятия решений, если они используются в сочетании с испытаниями пилотной установки.

Отношение оснований к кислотам (уравнение 1) является полезным показателем, поскольку обычно высокий процент основных оксидов снижает температуру плавления, в то время как кислотные оксиды повышают ее. Это принимает форму (Vamvuka et al., 2017):

Rb / a =% (Fe2O3 + CaO + MgO + K2O + Na2O)% (SiO2 + TiO2 + Al2O3) (1)

, где на этикетке каждого соединения указывается его массовая концентрация в золе. Когда R b / a <0,5 склонность к осаждению низкая, когда 0,5 b / a <1 склонность к осаждению средняя и когда R b / a > 1 склонность к осаждению высока.Для значений R b / a > 2 этот индекс нельзя безопасно использовать без дополнительной информации.

Влияние щелочей на склонность золы биомассы к шлакованию / загрязнению является критическим из-за их тенденции к снижению температуры плавления золы. Один простой индекс, индекс щелочности (уравнение 2), выражает количество оксидов щелочных металлов в топливе на единицу энергии топлива в ГДж (Vamvuka et al., 2017):

AI = кг (K2O + Na2O) ГДж (2)

Когда значения AI находятся в диапазоне 0.17–0,34 кг / ГДж загрязнение или шлакообразование вероятно, тогда как при этих значениях> 0,34 обрастание или шлакование практически наверняка произойдет.

Для испытаний на сжигание были приготовлены смеси вышеуказанных материалов с соотношением компонентов до 50% по весу с наиболее распространенными в Греции сельскохозяйственными отходами — ядрами оливок.

Описание прототипа системы сгорания

Блок сжигания схематично показан на рисунке 1. Основными частями являются два бункера, эксикатор, система непрерывной подачи сырья и котел с поперечным потоком.Номинальная мощность 65 кВт т .

Рисунок 1 . Принципиальная схема многотопливного котла (сплошные стрелки показывают направление потока воздуха, пунктирные стрелки показывают направление потока биомассы).

Топливо хранится в главном бункере (A), боковые поверхности которого перфорированы для физического осушения топлива. В зависимости от наличия биомассы и особых потребностей в энергии открывается регулирующий клапан, и в систему подается соответствующее топливо. Затем биомасса переносится из бункера в эксикатор через наклонную стойку с направляющими, скорость которой регулируется в соответствии с потребностями котла.Горячий воздух поступает из выхлопных газов через систему обратной связи (H, J). В сушилке установлены две внутренние конвейерные ленты (B), состоящие из перфорированных медленно вращающихся роликов со стальной сеткой, позволяющих горячему воздуху проходить через него в восходящем направлении потока. Осушитель (B) имеет несколько отсеков, чтобы позволить воздуху перемещаться и в конечном итоге потерять часть своей температуры, создавая тем самым разницу температур. Специальная стальная сетка обладает высокой износостойкостью и довольно эффективно выдерживает экстремальные перепады температур.Скорость роликов тесно связана с влажностью биомассы и может изменяться в зависимости от потребностей автоматического управления. Затем сухая биомасса переносится (C) во временный бункер (D) и смешивается с теплым воздухом, поступающим из системы обратной связи (E), прежде чем направить его в горелку и зону сгорания котла. Используя горизонтальный теплый шнек диаметром 1 и 1/2 дюйма, обработанная биомасса подается в горелку (G). Скорость подачи регулируется двумя электронными диммерами. Первый диммер соответствует времени работы системы питания, а второй диммер соответствует времени задержки (винт выключен).Таким образом, подача сырья осуществляется полупериодическим способом. Первичный воздух для горения вводится через трубу в передней части топки и регулируется с помощью воздуходувки. Соотношение первичного и вторичного воздуха регулируется с помощью регулятора, установленного в дымоходе (K), с механическим регулятором, который позволяет изменять тягу в дымоходе. Котел (G) является гидравлическим и в основном производит горячую воду в замкнутой циркуляционной системе (F). Эта система имеет меры безопасности, чтобы поддерживать постоянное давление воды и транспортировать горячую воду к высокоэффективным фанкойлам для обогрева помещений.Датчики температуры Pt используются для измерения температуры воды в прямом и обратном потоке, а также в потоке внутри котла. Измеритель теплотворной способности измеряет расход воды и полезную энергию, получаемую водой. Выхлопные газы котла перед тем, как попасть в дымоход, проходят через теплообменник. Теплообменник (I) использует выхлопные газы для нагрева воздуха, который затем используется для сушки влажной биомассы.

Новинкой этого прототипа является конструкция эксикатора, питаемого выхлопными газами, выдерживающего экстремальные перепады температуры и работающего в соответствии с потребностями котла, теплообменник также питается выхлопными газами, а также прилагаются датчики температуры и измеритель теплотворной способности.Поскольку все основные части устройства являются стандартными, стоимость изготовления такой установки остается низкой. Уже установленные аналоговые датчики и детали будут заменены цифровыми датчиками и механическими деталями с цифровыми входами и выходами, в соответствии с результатами экспериментов по отклику агрегата. Ограничением системы является невозможность отрегулировать оптимальный коэффициент избытка воздуха, поэтому существует потребность в надежном управлении подаваемым воздухом для горения. Следует принять определение оптимальных параметров пользовательской системы автоматического управления, чтобы установка могла работать автономно.

Методика эксперимента и измерения данных

Эксперименты были структурированы таким образом, чтобы можно было построить аналитический профиль каждого материала, а также исследовать поведение типа топлива на различных стадиях процесса. Были проведены две серии экспериментов, чтобы изучить поведение и реакцию каждого остатка на технологическую цепочку устройства. Во время первой серии испытаний для каждого биотоплива проводилась калибровка скорости подачи в зависимости от диммерных переключателей.Скорость подачи определялась последовательностями интервалов задержки включения-выключения первого и второго диммера соответственно. Расход дымовых газов для каждой подачи сырья определялся путем измерения скорости вентилятора на выходе газа, установленного в положении (K), с помощью анемометра. Следовательно, каждое биотопливо было протестировано в установке для сжигания, чтобы оптимизировать тепловой КПД путем настройки его специальных параметров с учетом качества выбросов. Важными независимыми переменными были скорость подачи сырья, скорость вентилятора, регулирующего воздушный поток в котле, и внутренняя температура котла.В настоящем исследовании представлены результаты для одного набора этих параметров с целью сравнения характеристик сгорания между испытанными сельскохозяйственными остатками, а также их смесями при постоянных рабочих условиях. Параметрическое исследование для оптимизации процесса будет представлено в следующем отчете.

Для запуска котла было подожжено топливо, были включены питатель твердого вещества и воздуховоды и выставлены желаемые значения (вкл. / Выкл. 10/30 с / с). Перед снятием первых показаний печи давали поработать 30 мин.Циркуляционная система горячей воды была настроена на работу после того, как температура достигла ≥55 ° C. Когда температура воды превышала 70 ° C, подача сырья временно прекращалась.

Состав дымовых газов непрерывно контролировался во время испытаний с помощью многокомпонентного газоанализатора, модель Madur GA-40 plus от Maihak, оборудованного двухрядным фильтром и осушителем. Отбор проб производился с помощью нагревательной линии с зондом в соответствии с греческими стандартами ELOT 896. В анализаторе используются электрохимические датчики для измерения концентрации газа.Содержание CO 2 , CO, O 2 , SO 2 , NO x в потоке выхлопных газов, индекс сажи, тепловые потери дымовых газов, температура дымовых газов и коэффициент избытка воздуха ( λ) непрерывно регистрировались анализатором. Аналоговый выходной сигнал анализатора передавался в компьютер, где сигналы обрабатывались и вычислялись средние значения за период дискретизации 0,5 мин.

После проведения измерений в установившемся рабочем режиме и давая печи поработать около 3 часов, питатель топлива и воздуховод были отключены, смотровое окно было открыто, а вытяжной вентилятор был установлен на высокую мощность для охлаждения агрегата.Зольный остаток был осушен, взвешен и проанализирован на предмет потерь при сгорании из-за несгоревшего углерода. Эксперименты были повторены дважды, чтобы определить их воспроизводимость, которая оказалась хорошей.

Тепловой КПД системы был определен как доля полезной энергии, полученной водой котла, к энергии, потребляемой топливом:

ηt = QoutQin = qwcpwΔTwΔtmfQf (%) (3)

где, q w : массовый расход воды (кг / ч), c pw : теплоемкость воды (МДж / кг · K), ΔT w : разница температур прямого и обратного потока воды (° K), Δt: общее время горения при температуре воды 70 ° C, m f : масса сожженного топлива / смеси (кг), Q f : теплотворная способность топлива / смеси (МДж / кг).

Эффективность сгорания определялась следующим образом:

ηc = 100-SL-IL-La (%) (4)

где,

SL = (Tf-Tamb) (A [CO2] + B) (5) IL = a [CO] [CO] + [CO2] (6) La = 100 мес. (7)

где: T f : температура дымовых газов (° C), T amb : температура окружающего воздуха (° C), [CO] и [CO 2 ]: концентрации CO и CO 2 в дымовых газах (%), A, B, a: параметры горения, характерные для каждого вида топлива (данные анализатором), m o : общая масса сожженного органического вещества топлива (кг), m a : масса органического вещества в золе (кг).

Для каждого экспериментального испытания проверялось, достаточно ли имеющегося тепла дымового газа для предварительного нагрева входящего воздуха для сжигания топлива до 70 ° C, а также для сушки биомассы в эксикаторе системы:

или

mflcpflΔTf≥mambcpambΔTamb + Qd (9)

где: m fl , m amb : масса дымовых газов и воздуха на кг сожженной биомассы (кг), c pfl , c pamb : удельная теплоемкость дымового газа и воздуха (кДж / кг ° K), ΔT f , ΔT amb : разница температур дымовых газов на выходе и входе дымохода, а также предварительно нагретого и окружающего воздуха, соответственно (° K), Q d : теплота сушки биомассы ( Мойерс и Болдуин, 1997).Согласно последующим результатам, указанное выше неравенство сохранялось всегда.

Результаты и обсуждение

Анализы сырого топлива

В Таблице 1 указаны приблизительный и окончательный анализы изученных сельскохозяйственных остатков. Как можно видеть, все образцы были богаты летучими веществами и имели низкую зольность. В скорлупе миндаля самый высокий процент летучих веществ, а в скорлупе грецких орехов — самый низкий процент золы. Концентрация кислорода была значительной для всех образцов, а теплотворная способность колебалась в пределах 17.5 и 20,4 МДж / кг, что сопоставимо с верхним пределом для низкосортных углей. Содержание серы во всех остатках было практически нулевым, что свидетельствует о том, что выбросы SO 2 не вызывают беспокойства для этого биотоплива. С другой стороны, содержание азота в скорлупе миндаля было значительным, что могло быть проблемой во время термической обработки с точки зрения выбросов NO x .

Таблица 1 . Предварительный и окончательный анализы и теплотворная способность образцов (% от сухого веса).

Химический анализ золы, выраженный обычным способом для топлива в виде оксидов, сравнивается в Таблице 2 вместе с индексами шлакообразования / засорения и тенденцией к осаждению. Общей чертой этих золошлаковых материалов является то, что они были богаты Ca и K и в меньшей степени P и Mg. Отношение основания к кислоте было намного больше 2 из-за низкого содержания кремнезема и глинозема в этой золе, так что нельзя дать никаких определенных рекомендаций по поведению шлакования. Потенциал образования шлака / засорения, вызванного щелочью, можно более точно предсказать с помощью щелочного индекса.Таким образом, согласно значениям AI, для оливковых ядер и скорлупы миндаля неизбежна склонность к обрастанию из-за большого количества щелочи по отношению к единице топливной энергии, которую они содержат (для миндальной скорлупы склонность намного ниже), в то время как для ядер персиков и скорлупы грецких орехов не ожидается загрязнения котлов. Когда ядра оливок были смешаны с другими остатками при соотношении компонентов смеси до 50%, таблица 2 показывает, что значения AI были значительно снижены. Однако следует отметить, что для небольших систем, таких как та, которая использовалась в этой работе, работающих при температуре ниже 1000 ° C и в течение относительно короткого периода времени, явления шлакования или загрязнения из-за золы не наблюдались.

Таблица 2 . Химический анализ золы сырья и склонности к шлакованию / засорению.

Характеристики сжигания биотоплива из сельскохозяйственных остатков

Температура котловой воды

Изменение температуры воды на выходе из котла во время полной работы топочного агрегата показано на Рисунке 2. Ясно, что ядра персика и скорлупа грецких орехов начали гореть раньше, чем два других остатка, передавая свою тепловую энергию воде примерно На 6 мин раньше оливковых ядер для повышения температуры с 25 до 70 ° C.Однако поведение скорлупы грецкого ореха было совершенно другим. Температура воды во время фазы запуска поднялась до 78 ° C (второй диммер выключен), так что для трех полных циклов (включение / выключение) время горения было увеличено примерно на 20 минут по сравнению с оливковыми ядрами. Для скорлупы грецкого ореха и миндаля три цикла в исследованных условиях длились около 1 часа.

Рисунок 2 . Изменение температуры воды на выходе из котла для сырого топлива при полной работе агрегата.

Температура дымовых газов и выбросы

Температура дымовых газов (таблица 3) представляет собой зависимость от топлива.Таким образом, оно было выше для миндальной скорлупы, 267 ° C, для полной работы котла (в установившемся режиме), и ниже для ядер персика, 245 ° C, что означает большие и меньшие тепловые потери из печи, соответственно. Все значения температуры дымовых газов были достаточно высокими для предварительной сушки сырья (уравнение 9).

Таблица 3 . Характеристики горения топлива (средние значения) в установившемся режиме.

Концентрация

CO в дымовых газах при установившемся режиме работы печи (диммер включен) для четырех исследуемых остатков сравнивается на Рисунке 3.Повышенный уровень CO в биотопливе из ядер оливок, скорее всего, был связан с большим количеством летучих веществ, которые увеличивают концентрацию углеводородов в реакторе, препятствуя дальнейшему окислению CO до CO 2 , а также, в меньшей степени, более высокой зольностью это топливо, которое ослабляло проникновение кислорода к частицам полукокса. Тем не менее, все значения CO были ниже законодательных пределов для малых систем (ELOT, 2011).

Рисунок 3 . Концентрация CO в дымовых газах для сырого топлива в установившемся режиме.

Средние концентрации загрязняющих веществ (± стандартная ошибка) в установившемся режиме и в течение всей работы установки представлены и сравнены на рисунках 4A, B, соответственно. Выбросы SO 2 от всех видов биотоплива, являющиеся чрезвычайно низкими (0–13 частей на миллион против ), были исключены из графиков. На рис. 4A показано, что наибольшие выбросы CO были получены при сжигании ядер оливок, а наименьшие — при сжигании ядер персиков. Однако даже если во время полной работы котла (включая интервалы без подачи топлива, т.е.е., второй диммер выключен) Значения CO были выше (Рисунок 4B), они не превышали допустимых пределов (ELOT, 2011). Кроме того, выбросы NO x от всех изученных материалов были низкими и в соответствии с руководящими принципами стран ЕС (EC, 2001; ELOT, 2011) для небольших установок (200–350 мг / Нм 3 ). Более низкие уровни NO x в скорлупе миндаля, несмотря на их более высокое топливное N среди протестированных видов биотоплива, могут быть результатом временной восстанавливающей среды, создаваемой большим количеством летучих веществ в этом остатке (81.5%), что способствовало разложению NO x .

Рисунок 4 . Средние концентрации загрязняющих веществ в газах от сырого топлива (A) в установившемся режиме и (B) в течение всей работы установки.

Нынешние значения выбросов газов сопоставимы с теми, о которых сообщается в литературе для аналогичных видов топлива, в то время как значения NO x были значительно ниже. Для косточек персика выбросы CO варьировались от 600 до 680 частей на миллион от до (Rabacal et al., 2013), для скорлупы бразильских орехов от 50 до 400 частей на миллион v (Cardozo et al., 2014), для ядер пальмы от 2000 до 14000 частей на миллион v (Pawlak-Kruczek et al., 2020), для жмыха в гранулах от 1900 до 6500 частей на миллион против (Kraszkiewicz et al., 2015), а для гранул для обрезки оливок — 1800 частей на миллион против (Garcia-Maraver et al., 2014). С другой стороны, выбросы NO x были обнаружены для косточек персика 300–600 мг / м 3 (Rabacal et al., 2013), для скорлупы бразильских орехов 180–270 мг / м 3 (Cardozo et al. ., 2014), для пальмовых ядер от 90 до 200 частей на миллион v (Pawlak-Kruczek et al., 2020), для гранул жмыха 230-870 мг / м 3 (Kraszkiewicz et al., 2015) и для оливкового гранулы для обрезки 680 мг / м 3 (Garcia-Maraver et al., 2014).

Горение и тепловой КПД

Характеристики сгорания четырех остатков представлены в таблице 3. Эффективность сгорания считается удовлетворительной для небольших систем (77% в соответствии с европейскими стандартами EN 303-5) и колеблется от 84 до 86%.Эти значения контролировались температурами дымовых газов, которые отражали чувствительные тепловые потери и концентрацию CO в дымовых газах, которые представляли основные потери тепла из-за неполного сгорания. Таким образом, ядра персика с наименьшими потерями SL и IL горели с наибольшей эффективностью. Интересно отметить, что большее количество воздуха в случае оливковых ядер (коэффициент избытка воздуха λ = 1,9), увеличивая поток дыма, казалось, каким-то образом снижает температуру камина и, следовательно, увеличивает уровень CO и газообразные тепловые потери (IL).Кроме того, на тепловой КПД системы, показанный в Таблице 3, влияла эффективность сгорания топлива, и она была выше для ядер персика из-за улучшенного сгорания в печи и улучшенной рекуперации тепла в трубках системы за счет повышения температуры. разница между прямым и обратным потоком воды в котел (ΔT w = 26,2 ° C). Колебания, наблюдаемые в таблице, связаны с различным количеством сжигаемого биотоплива в зависимости от времени, когда котел работал с определенными интервалами включения / выключения диммеров, регулирующих подачу.Оптимизация расхода топлива и коэффициента избытка воздуха в сторону более низкого значения может привести к более высокой температуре камина (высокий поток подаваемого воздуха охлаждает печь), более низким выбросам CO из-за лучшего сгорания, более низкого содержания кислорода и более высоких концентраций CO 2 в дымах и, следовательно, снижение потерь тепла или топлива и повышение эффективности сгорания. Это, в свою очередь, улучшит рекуперацию тепла в трубках и повысит тепловой КПД. Кроме того, некоторые модификации печи для увеличения времени пребывания дымовых газов снизят их температуру на выходе и, следовательно, чувствительны к потерям тепла.

Тем не менее, КПД котла соответствует литературным данным. Значения 91%, 83–86% и 75–83% были зарегистрированы для древесных гранул (Kraiem et al., 2016), древесины сосны и персика (Rabacal et al., 2013), соответственно. Более того, для многотопливного котла, сжигающего древесные материалы, было обнаружено (Fournel et al., 2015), что термический КПД зависит от зольности каждого сырья, т. Е. При содержании золы 1% КПД составляет 74%, а для золы содержание 7% упало до 63%. В другом блоке, сжигающем лесные остатки и энергетические культуры, эффективность варьировалась от 69 до 75% (Forbes et al., 2014).

Характеристики сгорания смесей сельскохозяйственных остатков

Температура котловой воды

На рисунках 5A – C показано изменение температуры воды на выходе из котла как функция времени во время полной работы печи для смесей остатков ядер оливок с ядрами персика, скорлупой миндаля и грецкого ореха. Из этих рисунков можно заметить, что как фаза запуска, так и фаза, когда система работала на полную мощность, были задержаны при подаче смесей топлива, смещая кривые в сторону более высоких значений времени примерно на 4–6 мин.Кажется, что подача смесей и, как следствие, выгорание не были такими однородными, как ожидалось теоретически.

Рисунок 5 . Изменение температуры воды на выходе из котла при полной работе агрегата для смесей (A), OK / PK, (B), OK / AS и (C), OK / WS.

Температура дымовых газов и выбросы

Таблица 4 показывает, что температуры дымовых газов, которые влияют на чувствительные тепловые потери дымовых газов, для всех смесей в установившемся режиме варьируются между значениями компонентов топлива.Это показывает, что характеристики горения смесей зависели от вклада каждого остатка в смеси.

Таблица 4 . Характеристики горения топливных смесей (средние значения) в установившемся режиме.

Средние выбросы CO и NO x (± стандартная ошибка) в установившемся режиме для всех смесей сравниваются с выбросами сырого топлива на рисунках 6A – C. Выбросы SO 2 не представлены на графиках, так как они были чрезвычайно низкими (4–20 ppm v ).Значения CO в диапазоне от 1,121 до 1212 частей на миллион v находились в пределах значений, соответствующих компонентным видам топлива, и находились в допустимых пределах для малых установок (ELOT, 2011). Более того, уровни NO x (87–129 ppm v , или 174–258 мг / м 3 ) следовали той же тенденции и поддерживались ниже пороговых значений стран ЕС (EC, 2001; ELOT, 2011). . Наилучшие показатели по выбросам были достигнуты у смеси ОК / ПК 50:50.

Рисунок 6 .Средние выбросы CO и NO x газов в установившемся режиме из смесей (A) OK / PK, (B) OK / AS и (C) OK / WS.

Горение и тепловой КПД

Эффективность горения смесей ядер оливок с ядрами персика, миндаля и скорлупы грецких орехов варьировалась от 84,2 до 85,6%, как показано на Рисунке 7. Эти значения находились между значениями, соответствующими материалам компонентов, но не пропорциональными процентному содержанию каждого остатка в смесь.Как показано в Таблице 4, эффективность сгорания зависела от типа сырья и массового расхода, а также от коэффициента избытка воздуха, который определял температуру камина и дымовых газов и, следовательно, тепловые потери. Наибольшая эффективность была достигнута в случае смеси ОК / ПК 50:50, что, в свою очередь, отразилось на тепловом КПД котла за счет улучшенной рекуперации тепла из потока воды.

Рисунок 7 . Эффективность сгорания топливных смесей.

Выводы

Изученные сельскохозяйственные остатки характеризовались высоким содержанием летучих и низким содержанием золы.Их теплотворная способность составляла от 17,5 до 20,4 МДж / кг. Выбросы CO и NO x от всех видов топлива в течение всего периода эксплуатации агрегата в изученных условиях были ниже установленных законом пределов, а выбросы SO 2 были незначительными. Эффективность горения была удовлетворительной, от 84 до 86%. Ядра персика, за которыми следует скорлупа грецких орехов, сожженные с максимальной эффективностью из-за более низких чувствительных тепловых потерь и потерь от неполного сгорания топлива, выделяют более низкие концентрации токсичных газов и повышают эффективность котла за счет улучшения рекуперации тепла в трубах системы.

Совместное сжигание сельскохозяйственных остатков можно в значительной степени предсказать по сжиганию компонентов топлива, что может принести не только экологические, но и экономические выгоды. Путем смешивания ядер оливок с ядрами персика, миндаля или скорлупы грецкого ореха в процентном отношении до 50% была улучшена общая эффективность системы с точки зрения выбросов и степени сгорания. Эффективность борьбы с вредителями была достигнута при смешивании ядер оливок и ядер персика в соотношении 50:50.

Эффективность сгорания зависит от типа сырья, массового расхода и коэффициента избытка воздуха.Необходим надежный контроль подачи воздуха для горения и определение оптимальных параметров.

Заявление о доступности данных

Все наборы данных, созданные для этого исследования, включены в статью / дополнительный материал.

Авторские взносы

DV: руководитель, оценка результатов и написание статей. DL: эксперименты. ES: эксперименты. АВ: эксперименты. СС: оценка результатов. ГБ: техническая поддержка и оценка результатов. Все авторы: внесли свой вклад в статью и одобрили представленную версию.

Конфликт интересов

ГБ использовала компания Energy Mechanical of Crete S.A.

Остальные авторы заявляют, что исследование проводилось при отсутствии каких-либо коммерческих или финансовых отношений, которые могли бы быть истолкованы как потенциальный конфликт интересов.

Благодарности

Авторы любезно благодарят AVEA Chania Oil Cooperatives, Союз сельскохозяйственных кооперативов Янницы и частные компании Agrinio и Hohlios за предоставленное топливо, а также лаборатории химии и технологии углеводородов и неорганической и органической геохимии Технического университета Крита. , для анализов CHNS и XRF.

Список литературы

Ан, Дж., И Янг, Дж. Х. (2018). Характеристики сгорания 16-ти ступенчатого котла на древесных гранулах с колосниковой решеткой. Продлить. Энергия 129, 678–685. DOI: 10.1016 / j.renene.2017.06.015

CrossRef Полный текст | Google Scholar

Caposciutti, G., and Antonelli, M. (2018). Экспериментальное исследование влияния вытеснения воздуха и избытка воздуха на выбросы CO, CO 2 и NO x небольшого котла, работающего на биомассе с неподвижным слоем. Продлить.Энергия 116, 795–804. DOI: 10.1016 / j.renene.2017.10.001

CrossRef Полный текст | Google Scholar

Кардозо, Э., Эрлих, К., Алехо, Л., и Франссон, Т. Х. (2014). Сжигание сельскохозяйственных остатков: экспериментальное исследование для небольших приложений. Топливо 115, 778–787. DOI: 10.1016 / j.fuel.2013.07.054

CrossRef Полный текст | Google Scholar

Кэрролл Дж. И Финнан Дж. (2015). Использование добавок и топливных смесей для снижения выбросов от сжигания сельскохозяйственного топлива в небольших котлах. Биосист. Англ. 129, 127–133. DOI: 10.1016 / j.biosystemseng.2014.10.001

CrossRef Полный текст | Google Scholar

Карвалью Л., Вопиенка Э., Пойнтнер К., Лундгрен Дж., Кумар В., Хаслингер В. и др. (2013). Производительность пеллетного котла на сельскохозяйственном топливе. заявл. Энергия 104, 286–296. DOI: 10.1016 / j.apenergy.2012.10.058

CrossRef Полный текст | Google Scholar

EC (2001). Директива 2001/80 / ЕС Европейского парламента и Совета от 23 октября 2001 г. об ограничении выбросов в атмосферу определенных загрязнителей с крупных установок для сжигания .

Google Scholar

ELOT (2011). EN 303.05 / 1999. Предельные значения выбросов CO и NO x для новых тепловых установок, использующих твердое биотопливо . FEK 2654 / B / 9-11-2011.

Google Scholar

Forbes, E., Easson, D., Lyons, G., and McRoberts, W. (2014). Физико-химические характеристики восьми различных видов топлива из биомассы и сравнение сгорания и выбросов приводят к получению небольшого многотопливного котла. Energy Conv. Managem. 87, 1162–1169.DOI: 10.1016 / j.enconman.2014.06.063

CrossRef Полный текст | Google Scholar

Fournel, S., Palacios, J.H., Morissette, R., Villeneuve, J., Godbout, S., Heitza, M., et al. (2015). Влияние свойств биомассы на технические и экологические показатели многотопливного котла при внутрихозяйственном сжигании энергетических культур. заявл. Энергия 141, 247–259. DOI: 10.1016 / j.apenergy.2014.12.022

CrossRef Полный текст | Google Scholar

Гарсия-Маравер, А., Заморано, М., Фернандес, У., Рабакал, М., и Коста, М. (2014). Взаимосвязь между качеством топлива и выбросами газообразных и твердых частиц в бытовом котле на пеллетах. Топливо 119, 141–152. DOI: 10.1016 / j.fuel.2013.11.037

CrossRef Полный текст | Google Scholar

Kortelainen, M., Jokiniemi, J., Nuutinen, I., Torvela, T., Lamberg, H., Karhunen, T., et al. (2015). Поведение золы и образование выбросов в маломасштабном реакторе сжигания с возвратно-поступательной решеткой, работающем с древесной щепой, тростниковой канареечной травой и ячменной соломой. Топливо 143, 80–88. DOI: 10.1016 / j.fuel.2014.11.006

CrossRef Полный текст | Google Scholar

Крайем, Н., Ладжили, М., Лимузи, Л., Саид, Р., и Джегуирим, М. (2016). Рекуперация энергии из тунисских агропродовольственных отходов: оценка характеристик сгорания и характеристик выбросов зеленых гранул, приготовленных из остатков томатов и виноградных выжимок. Энергия 107, 409–418. DOI: 10.1016 / j.energy.2016.04.037

CrossRef Полный текст | Google Scholar

Крашкевич, А., Пшивара, А., Качел-Якубовска, М., и Лоренцович, Э. (2015). Сжигание пеллет растительной биомассы на решетке котла малой мощности. Agricul. Agricul. Sci. Proc. 7, 131–138. DOI: 10.1016 / j.aaspro.2015.12.007

CrossRef Полный текст | Google Scholar

Мойерс, К. Г., и Болдуин, Г. У. (1997). «Психрометрия, испарительное охлаждение и сушка твердых частиц», в Perry’s Chemical Engineers ‘Handbook, 7-е изд. , ред. Р. Х. Перри и Д. У. Грин (Нью-Йорк, Нью-Йорк: Mc Graw Hill).

Google Scholar

Низетич, С., Пападопулос, А., Радика, Г., Занки, В., и Ариси, М. (2019). Использование топливных гранул для отопления жилых помещений: полевое исследование эффективности и удовлетворенности пользователей. Энергетика. 184, 193–204. DOI: 10.1016 / j.enbuild.2018.12.007

CrossRef Полный текст | Google Scholar

Pawlak-Kruczek, H., Arora, A., Moscicki, K., Krochmalny, K., Sharma, S., and Niedzwiecki, L. (2020). Переход домашнего котла с угля на биомассу — Выбросы от сжигания сырых и обожженных оболочек ядра пальмы (PKS). Топливо 263, 116–124. DOI: 10.1016 / j.fuel.2019.116718

CrossRef Полный текст | Google Scholar

Пицци А., Фоппа Педретти Э., Дука Д., Россини Г., Менгарелли К., Илари А. и др. (2018). Выбросы отопительных приборов, работающих на агропеллетах, произведенных из остатков обрезки виноградной лозы, и экологические аспекты. Продлить. Энергия 121, 513–520. DOI: 10.1016 / j.renene.2018.01.064

CrossRef Полный текст | Google Scholar

Рабакал, М., Фернандес, У., и Коста, М. (2013). Характеристики горения и выбросов бытового котла, работающего на пеллетах из сосны, древесных отходах и персиковых косточках. Продлить. Энергия 51, 220–226. DOI: 10.1016 / j.renene.2012.09.020

CrossRef Полный текст | Google Scholar

Сиппула О., Ламберг Х., Лескинен Дж., Тиссари Дж. И Йокиниеми Дж. (2017). Выбросы и поведение золы в котле на пеллетах мощностью 500 кВт, работающем на различных смесях древесной биомассы и торфа. Топливо 202, 144–153.DOI: 10.1016 / j.fuel.2017.04.009

CrossRef Полный текст | Google Scholar

Сутар, К. Б., Кохли, С., Рави, М. Р., и Рэй, А. (2015). Кухонные плиты на биомассе: обзор технических аспектов. Продлить. Устойчивая энергетика Ред. 41, 1128–1166. DOI: 10.1016 / j.rser.2014.09.003

CrossRef Полный текст | Google Scholar

Вамвука Д. (2009). Биомасса, биоэнергетика и окружающая среда. Салоники: Публикации Циоласа.

Google Scholar

Вамвука, Д., Трикувертис, М., Пентари, Д., Алевизос, Г., и Стратакис, А. (2017). Характеристика и оценка летучей и зольной пыли от сжигания остатков виноградников и перерабатывающей промышленности. J. Energy Instit. 90, 574–587. DOI: 10.1016 / j.joei.2016.05.004

CrossRef Полный текст | Google Scholar

Вамвука Д. и Цуцос Т. (2002). Энергетическая эксплуатация сельскохозяйственных остатков на Крите. Energy Expl. Эксплуатировать. 20, 113–121. DOI: 10.1260 / 014459802760170439

CrossRef Полный текст | Google Scholar

Цзэн, Т., Поллекс, А., Веллер, Н., Ленц, В., и Неллес, М. (2018). Гранулы из смешанной биомассы в качестве топлива для маломасштабных устройств сжигания: влияние смешения на образование шлака в зольном остатке и варианты предварительной оценки. Топливо 212, 108–116. DOI: 10.1016 / j.fuel.2017.10.036

CrossRef Полный текст | Google Scholar

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *