Автоматический выключатель c характеристика: Характеристики срабатывания автоматов. Принцип выбора

Содержание

A, B, C и D

Автоматическими выключателями называются приборы, отвечающие за защиту электроцепи от повреждений, связанных с воздействием на нее тока большой величины. Слишком сильный поток электронов способен вывести из строя бытовую технику, а также вызвать перегрев кабеля с последующим оплавлением и возгоранием изоляции. Если вовремя не обесточить линию, это может привести к пожару, Поэтому, в соответствии с требованиями ПУЭ (Правила устройства электроустановок), эксплуатация сети, в которой не установлены электрические автоматы защиты, запрещена. АВ обладают несколькими параметрами, один из которых – время токовая характеристика автоматического защитного выключателя. В этой статье мы расскажем, чем различаются автоматические выключатели категории A, B, C, D и для защиты каких сетей они используются.

Особенности работы автоматов защиты сети

К какому бы классу ни относился автоматический выключатель, его главная задача всегда одна – быстро определить появление чрезмерного тока, и обесточить сеть раньше, чем будет поврежден кабель и подключенные к линии устройства.

Токи, которые могут представлять опасность для сети, подразделяются на два вида:

  • Токи перегрузки. Их появление чаще всего происходит из-за включения в сеть приборов, суммарная мощность которых превышает ту, что линия способна выдержать. Другая причина перегрузки – неисправность одного или нескольких устройств.
  • Сверхтоки, вызванные КЗ. Короткое замыкание происходит при соединении между собой фазного и нейтрального проводников. В нормальном состоянии они подключены к нагрузке по отдельности.

Устройство и принцип работы автоматического выключателя – на видео:

Токи перегрузки

Величина их чаще всего незначительно превышает номинал автомата, поэтому прохождение такого электротока по цепи, если оно не затянулось слишком надолго, не вызывает повреждения линии. В связи с этим мгновенного обесточивания в таком случае не требуется, к тому же нередко величина потока электронов быстро приходит в норму. Каждый АВ рассчитан на определенное превышение силы электротока, при котором он срабатывает.

Время срабатывания защитного автоматического выключателя зависит от величины перегрузки: при небольшом превышении нормы оно может занять час и более, а при значительном – несколько секунд.

За отключение питания под воздействием мощной нагрузки отвечает тепловой расцепитель, основой которого является биметаллическая пластина.

Этот элемент нагревается под воздействием мощного тока, становится пластичным, изгибается и вызывает срабатывание автомата.

Токи короткого замыкания

Поток электронов, вызванный КЗ, значительно превосходит номинал устройства защиты, в результате чего последнее немедленно срабатывает, отключая питание. За обнаружение КЗ и немедленную реакцию аппарата отвечает электромагнитный расцепитель, представляющий собой соленоид с сердечником. Последний под воздействием сверхтока мгновенно воздействует на отключатель, вызывая его срабатывание. Этот процесс занимает доли секунды.

Однако существует один нюанс. Иногда ток перегрузки может также быть очень большим, но при этом не вызванным КЗ. Как же аппарат должен определить различие между ними?

На видео про селективность автоматических выключателей:

Здесь мы плавно переходим к основному вопросу, которому посвящен наш материал. Существует, как мы уже говорили, несколько классов АВ, различающихся по времятоковой характеристике. Наиболее распространенными из них, которые применяются в бытовых электросетях, являются устройства классов B, C и D. Автоматические выключатели, относящиеся к категории A, встречаются значительно реже. Они наиболее чувствительны и используются для защиты высокоточных аппаратов.

Между собой эти устройства различаются по току мгновенного расцепления. Его величина определяется кратностью тока, проходящего по цепи, к номиналу автомата.

Характеристики срабатывания защитных автоматических выключателей

Класс АВ, определяющийся этим параметром, обозначается латинским литером и проставляется на корпусной части автомата перед цифрой, соответствующей номинальному току.

В соответствии с классификацией, установленной ПУЭ, защитные автоматы подразделяются на несколько категорий.

Автоматы типа МА

Отличительная черта таких устройств – отсутствие в них теплового расцепителя. Аппараты этого класса устанавливают в цепях подключения электрических моторов и других мощных агрегатов.

Защиту от перегрузок в таких линиях обеспечивает реле максимального тока, автоматический выключатель только предохраняет сеть от повреждений в результате воздействия сверхтоков короткого замыкания.

Приборы класса А

Автоматы типа А, как было сказано, обладают самой высокой чувствительностью. Тепловой расцепитель в устройствах с времятоковой характеристикой А чаще всего срабатывает при превышении силой тока номинала АВ на 30%.

Катушка электромагнитного расцепления обесточивает сеть в течение примерно 0,05 сек, если электроток в цепи превышает номинальный на 100%. Если по какой-либо причине после увеличения силы потока электронов в два раза электромагнитный соленоид не сработал, биметаллический расцепитель отключает питание в течение 20 – 30 сек.

Автоматы, имеющие времятоковую характеристику А, включаются в линии, при работе которых недопустимы даже кратковременные перегрузки. К таковым относятся цепи с включенными в них полупроводниковыми элементами.

Защитные устройства класса B

Аппараты категории B обладают меньшей чувствительностью, чем относящиеся к типу A. Электромагнитный расцепитель в них срабатывает при превышении номинального тока на 200%, а время на срабатывание составляет 0,015 сек. Срабатывание биметаллической пластины в размыкателе с характеристикой B при аналогичном превышении номинала АВ занимает 4-5 сек.

Оборудование этого типа предназначено для установки в линиях, в которые включены розетки, приборы освещения и в других цепях, где пусковое повышение электротока отсутствует либо имеет минимальное значение.

Автоматы категории C

Устройства типа C наиболее распространены в бытовых сетях. Их перегрузочная способность еще выше, чем у ранее описанных. Для того, чтобы произошло срабатывание соленоида электромагнитного расцепления, установленного в таком приборе, нужно, чтобы проходящий через него поток электронов превысил номинальную величину в 5 раз. Срабатывание теплового расцепителя при пятикратном превышении номинала аппарата защиты происходит через 1,5 сек.

Установка автоматических выключателей с времятоковой характеристикой C, как мы и говорили, обычно производится в бытовых сетях. Они отлично справляются с ролью вводных устройств для защиты общей сети, в то время как для отдельных веток, к которым подключены группы розеток и осветительные приборы, хорошо подходят аппараты категории B.

Это позволит соблюсти селективность защитных автоматов (избирательность), и при КЗ в одной из веток не будет происходить обесточивания всего дома.

Автоматические выключатели категории Д

Эти устройства имеют наиболее высокую перегрузочную способность. Для срабатывания электромагнитной катушки, установленной в аппарате такого типа, нужно, чтобы номинал по электротоку защитного автомата был превышен как минимум в 10 раз.

Срабатывание теплового расцепителя в этом случае происходит через 0,4 сек.

Устройства с характеристикой D наиболее часто используются в общих сетях зданий и сооружений, где они играют подстраховочную роль. Их срабатывание происходит в том случае, если не произошло своевременного отключения электроэнергии автоматами защиты цепи в отдельных помещениях. Также их устанавливают в цепях с большой величиной пусковых токов, к которым подключены, например, электромоторы.

Защитные устройства категории K и Z

Автоматы этих типов распространены гораздо меньше, чем те, о которых было рассказано выше. Приборы типа K имеют большой разброс в величинах тока, необходимых для электромагнитного расцепления. Так, для цепи переменного тока этот показатель должен превышать номинальный в 12 раз, а для постоянного – в 18. Срабатывание электромагнитного соленоида происходит не более чем через 0,02 сек. Срабатывание теплового расцепителя в таком оборудовании может произойти при превышении величины номинального тока всего на 5%.

Этими особенностями обусловлено применение устройств типа K в цепях с исключительно индуктивной нагрузкой.

Приборы типа Z тоже имеют разные токи срабатывания соленоида электромагнитного расцепления, но разброс при этом не столь велик, как в АВ категории K. В цепях переменного тока для их отключения превышение токового номинала должно быть трехкратным, а в сетях постоянного – величина электротока должна быть в 4,5 раза больше номинальной.

Аппараты с характеристикой Z используются только в линиях, к которым подключены электронные устройства.

Наглядно про категории автоматов на видео:

Заключение

В этой статье мы рассмотрели время токовые характеристики защитных автоматов, классификацию этих устройств в соответствии с ПУЭ, а также разобрались, в каких цепях устанавливаются приборы различных категорий. Полученная информация поможет вам определить, какое защитное оборудование следует использовать в сети, исходя из того, какие устройства к ней подключены.

A, B, C, D, K и Z

На сегодняшний день автоматические выключатели стали незаменимым частью электрической цепи как на производстве, так и в быту. Все автоматические выключатели обладают множеством параметров, один из которых – время токовая характеристика. В данной статьи мы рассмотрим, чем отличаются автоматы с время токовой характеристиками категории A, B, C, D и где данные выключатели применяются.


Работа автоматического выключателя

Независимо от того к какому классу относится автоматический выключатель, его основная задача — это срабатывание в случае появления чрезмерного тока в сети, и прежде, чем произойдет повреждение защитного оборудования и кабеля автомат должен обесточить сеть.

 В сети бывают 2 вида опасных для сети токов:

Сверхтоки вызванный КЗ. Причиной возникновения короткого замыкания является замыкание нейтрального и фазного проводника между собой. В обычном состоянии фазный и нейтральный провод подключены к нагрузке отдельно друг от друга.

Токи перегрузки. Появление таких токов зачастую происходит в том случае, если суммарная мощность подключенных устройств к линии превышает предельно допустимую норму.

 Токи перегрузки

Токи перегрузки зачастую бывают немного больше номинального значения тока автомата, поэтому токи перегрузки как правило не вызывают повреждение цепи в случае недолговременной продолжительности действия. Следовательно, нам не нужно мгновенно отключать сеть в данном случае (зачастую величина тока быстро приходит в норму). В каждом автоматическом выключателе предусмотрено определенное превышение силы тока, которое приводит к срабатыванию автомата.

Время срабатывания автоматического выключателя связано с величиной перегрузки. При значительном превышении номинала выключение автомата происходит за считанные секунды, а при небольшом превышении нормы, срабатывание автомата может произойти в течении часа и больше. Данная особенность обусловлена использованием в автомате биметаллической пластины, которая изгибается при нагреве током превышающего норму и тем самым приводит к срабатыванию автомата. Чем большее значение тока, тем быстрее изгибается пластина и тем раньше срабатывает автомат.

Токи КЗ

При правильном выборе автомата, ток КЗ должен приводить к его мгновенному срабатыванию. За обнаружение и немедленную реакцию автомата отвечает электромагнитный расцепитель. Конструктивно расцепитель представляет собой соленоид с сердечником. Под воздействием сверхтока сердечник вызывает мгновенное срабатывание автомата и данное отключение должно происходить в течении доли секунд.

Здесь мы плавно переходим к основному вопросу, которому посвящен наш материал. Существует, как мы уже говорили, несколько классов АВ, различающихся по времятоковой характеристике. Наиболее распространенными из них, которые применяются в бытовых электросетях, являются устройства классов B, C и D. Автоматические выключатели, относящиеся к категории A, встречаются значительно реже. Они наиболее чувствительны и используются для защиты высокоточных аппаратов.

Теперь мы плавно переходим к главному вопросу связанному с срабатыванием автоматических выключателей в зависимости от его времятоковой характеристики. Между собой эти устройства различаются по току мгновенного расцепления. Его величина определяется кратностью тока, проходящего по цепи, к номиналу автомата.

 Автоматы типа МА

Главная особенность подобных устройств – отсутствие в них теплового расцепителя. Обычно подобные устройства ставят для защиты электрических моторов и прочих мощных устройств.

Устройства класса А

Автоматы класса А имеют самый высокий порог чувствительности. В устройствах с времятоковой характеристикой А, тепловой расцепитель, как правило срабатывает в случае превышении воздействующей силы тока на 30% больше номинала выключателя.

Стоит учесть, что подобные автоматы устанавливаются в линии, в которой не допустимы даже кратковременные перегрузки. К примеру, это может быть цепь с полупроводниковыми элементами.

Защитные устройства класса B

Все устройства категории В имеют меньшую чувствительность, в сравнении с устройствами категории А. Срабатывание электромагнитного расцепителя в них происходит при превышении номинала автомата на 200%. При этом время срабатывания данных устройств составляет 0,015 сек.

Устройства категории В используются для установки в линиях, в которые включены приборы освещения, розетки и также в других цепях, в которых отсутствует пусковые токи или они имеют минимальное значение.

Устройства категории С

Устройства типа С весьма распространены в бытовых сетях. Устойчивость к перегрузкам у данных устройств выше, нежели у всех вышеперечисленных. Чтобы произошло срабатывание соленоида электромагнитного расцепителя, требуется превышение проходящего через расцепитель тока в 5 раз выше номинального значения. Тепловой расцепитель срабатывает в случае превышения номинала в 5 раз через 1,5 сек.

Как упоминалось ранее выключатели с времятоковой характеристикой С обычно устанавливаются в бытовых сетях. Данные устройства отлично работают в роли вводных устройств для защиты общей сети.

Вы можете купить автоматические выключатели категории С от лучших производителей:

Автоматы CHINT

Автоматы IEK

Автоматические выключатели категории D

Выключатели категории D имеют наиболее высокую перегрузочную способность. Электромагнитная катушка в устройстве срабатывает при превышении номинала автомата, как минимум в 10 раз.

Тепловой расцепитель срабатывает через 0,4 сек.

Зачастую устройства категории D применяются в общих сетях зданий и сооружений в роли страховки. Данные устройства срабатывают в том случае, если не произошло своевременное срабатывание автоматов защиты цепи в отдельных помещениях. Также автоматы категории D могут устанавливаться в цепях с большими пусковыми токами.

Вы можете купить автоматические выключатели категории D здесь:

Автоматы CHINT

Автоматы IEK

 Защитные устройства категории K и Z

Автоматы категории K и Z встречаются довольно редко. Устройства категории К имеют большой разброс в значениях тока, требуемых для электромагнитного расцепителя. К примеру, для цепи переменного тока данный показатель должен превышать номинал в 12 раз, а в случае применения в цепи постоянного тока, в 18 раз. Электромагнитный соленоид срабатывает через 0,02 сек. Тепловой расцепитель может сработать при превышении номинала всего на 5%.

Из-за своих свойств устройства категории К применяются в цепях с исключительно индуктивной нагрузкой.

Устройства категории Z также имеют различные токи срабатывания соленоида электромагнитного расцепителя, но разброс для данного варианта, не настолько большой, как в выключателях с категорией К. В цепи постоянного тока величина тока должна быть в 4,5 раза выше номинала, а в сетях переменного тока для срабатывания автомата, ток должен превысить автомат в 3 раза. Устройства категории Z обычно используют для защиты электроники.

Характеристики срабатывания автоматов. Принцип выбора

Автоматические выключатели: характеристики срабатывания и ситуации применения

Автоматический выключатель (автомат)  — коммутационное устройство, проводящее ток в нормальном режиме и блокирующее подачу электроэнергии в случаи аварии: перегрузки или короткого замыкания. 

Для размыкания электрической цепи автоматические выключатели оборудованы специальными устройствами – расцепителями. 

В современных модульных автоматах используется два типа расцепителей: 

1) Тепловой – служит для защиты от перегрузки

Биметаллическая пластина, которая изгибается при нагреве, проходящим через нее током, тем самым размыкая контакт. Чем больше перегрузка, тем быстрее нагревается биметаллическая пластинка и быстрее срабатывает расцепитель.

Нормируемые параметры – следующие:

  • 1,13 (In) –  тепловой расцепитель не срабатывает в течение 1 ч.
  • 1,45 (In) – расцепитель срабатывает в течение < 1 ч.
2) Электромагнитный (отсечка) – предназначен для защиты от короткого замыкания

Соленоид с подвижным сердечником, который втягивается при превышении заданного порога тока, мгновенно размыкая электрическую цепь. Отсечка срабатывает при существенном превышении номинального тока (2÷10 In) в зависимости от характеристики срабатывания. Рассмотрим наиболее распространенные автоматы с характеристиками: (B, C, D, K, Z).

1) Характеристика В (3-5 In)

Электромагнитный расцепитель срабатывает при токе, превышающем номинальный в 5 раз. Время отключения <1с. При токе, превышающим номинальный в 3 раза, в течение 4-5 с. сработает тепловой расцепитель. (Обращаем ваше внимание, что для постоянного тока (DC) граница срабатывания будет немного сдвинута (х1,5). 

Автоматические выключатели «В» применяются в осветительных сетях с небольшими пусковыми токами (или полным их отсутствием). 

2) Характеристика С (5-10 In)

Наиболее распространённые автоматические выключатели. Минимальный ток срабатывания составляет 5 In. При этом значении через 1,5 с сработает тепловой расцепитель, а при 10 кратном превышении номинала, электромагнитный разомкнет цепь меньше, чем за 0,1 с.

Автоматические выключатели «С» подходят для сетей со смешанной нагрузкой (освещение, бытовые электроприборы)

3) Характеристика D (10-20 In)

Характеризуются большой устойчивостью к перегрузке. Тепловой расцепитель разомкнет цепь за 0,4 при превышении порога в 10 In. Срабатывание соленоида произойдет при двадцатикратном превышении номинального тока.

Автоматические выключатели «D» используются для подключения электродвигателей с кратковременными большими токами (пусковые токи)

4) Характеристика K (8-15 In)

Для автоматов этой категории характерна большая разница в показателях для постоянного и переменного токов. Например, электромагнитный расцепитель гарантировано разомкнет цепь за 0,02 с. при достижении значения в 12 In в цепи переменного тока, а для постоянного это значения увеличивается до 18 In. При превышении номинального тока в 1,5 раза в течение 2 мин. сработает тепловой расцепитель.

Автоматы с характеристикой «K» применяются для подключения преимущественно индуктивной нагрузки.

5) Характеристика Z (2-3 In)

Автоматы этой категории также имеют различия в параметрах срабатывания для переменного и постоянного токов.

Электромагнитный расцепитель разомкнет цепь при трёхкратном превышении номинальных параметров в цепи переменного тока и 4,5 In в цепях постоянного тока. Тепловой расцепитель сработает при токе в 1,2 от номинального в течение часа.

Вследствие небольших значений по превышению номинальных параметров, Автоматы «Z» применяются только для защиты высокочувствительной электронной аппаратуры.

Подытоживая вышесказанное отметим, что для бытового использования подходят автоматы с характеристиками: «В» и «С», при возможном подключении электродвигателей с высокими пусковыми токами имеет смысл использовать автоматы категории «Е» (во избежание ложного срабатывания). Категория «К» подходит при работе с индуктивными нагрузками, а «Z» для электронного оборудования, чувствительного к небольшим перегрузкам. 

И последнее: если вы сомневаетесь в правильности выбора — обратитесь к профессиональному электрику, не гадайте!

В нашем магазине представлены автоматы всех перечисленных серий, при отсутствии того или иного оборудования его можно легко заказать.

Чтобы узнать подробности и заказать электротехническую продукцию звоните по телефону 
(495) 777-05-30 
Или оставьте сообщение через форму обратной связи в разделе «Контакты». 

Автоматические выключатели и их характеристики B, C, D

Основными характеристиками автоматических выключателей являются

Номинальный ток (In):

ток, который может протекать через автомат, без его срабатывания. 

Номинальное рабочее напряжение (Ue)

номинальное, на которое рассчитана изоляция автомата 

Номинальное напряжение изоляции (Ui)

Это величина напряжения, относительно которого выбирается напряжение при испытании электрической прочности изоляции, которое обычно превышает 2 Ui, и определяется длина пути тока утечки через изолятор.

Номинальное выдерживаемое импульсное напряжение (Uimp)

Параметр представляет собой величину импульса напряжения (определенной формы и полярности) в кВ, который рассматриваемое оборудование может выдержать в условиях испытаний без повреждения.

Обычно для промышленных автоматических выключателей Uimp = 8 кВ, для бытовых автоматических выключателей Uimp = 6 кВ.

Отключающая способность:

ток (в кА), срабатывания автомата при коротком замыкании, после которого он еще будет работоспособен. 

Характеристика автоматов В, С, D:

зависимость времени отключения от тока. 

Буквы B, C и D обозначают характеристику автоматов, которая называется «тип мгновенного расцепления» и установлена в ГОСТ Р 50345-99] (МЭК 60898-95) «Аппаратура малогабаритная электрическая. автоматические выключатели для защиты от сверхтоков бытового и аналогичного назначения».

Конкретный тип мгновенного расцепления устанавливает диапазон токов мгновенного расцепления, протекание которых в главной цепи выключателя может вызвать его расцепление без выдержки времени.

В ГОСТ Р 50345 для каждого типа мгновенного расцепления установлены следующие стандартные диапазоны токов:

тип В: 3In — 5In;

тип С: 5 In -10 In

тип D:10 In — 20 In

Стандартная времятоковая зона предписывает следующее поведение автоматического выключателя:

В случае если в главной цепи выключателя протекает электрический ток, величина которого соответствует нижней границе диапазона токов мгновенного расцепления 3In, 5In и 10 In, то он должен расцепиться за промежуток времени:

тип мгновенного расцепления B — более 0,1 с, но менее 45 или 90 с,

тип C — 15 или 30с

тип D — 4 или 8с.

При протекании в главной цепи электрического тока, равного верхней границе диапазона токов мгновенного расцепления (5In, 10In и 50In), автоматический выключатель должен расцепиться за промежуток времени менее 0,1 с.

В том случае, если значение электрического тока, протекающего в главной цепи, находится между нижней и верхней границами диапазона токов мгновенного расцепления, автоматический выключатель может расцепиться либо с незначительной выдержкой времени (несколько секунд), либо без выдержки времени (менее 0,1 с).

Фактическое время срабатывания автомата определяется его индивидуальной времятоковой характеристикой. 

Исходя из вышенаписанного автоматы предназначены:

типа В — для защиты потребителей с преимущественно активной нагрузкой (печь, обогреватель, ЛН),

типа С — двигателей,

типа D — двигателей в повторно-кратковременном (частые пуски) режиме работы. 

Что такое время токовые характеристики автоматических выключателей

При нормальной работе электросети и всех приборов через автоматический выключатель протекает электрический ток. Однако если сила тока по каким-либо причинам превысила номинальные значения, происходит размыкание цепи из-за срабатывания расцепителей автоматического выключателя.

Характеристика срабатывания автоматического выключателя является очень важной характеристикой, которая описывает то, насколько время срабатывания автомата зависит от отношения силы тока, протекающего через автомат, к номинальному току автомата.

Данная характеристика сложна тем, что для ее выражения необходимо использование графиков. Автоматы с одним и тем же номиналом будут при разных превышениях тока по-разному отключаться в зависимости от типа кривой автомата (так иногда называется токовая характеристика), благодаря чему имеется возможность применять автоматы с разной характеристикой для разных типов нагрузки.

Тем самым, с одной стороны, осуществляется защитная токовая функция, а с другой стороны, обеспечивается минимальное количество ложных срабатываний – в этом и заключается важность данной характеристики.

В энергетических отраслях бывают ситуации, когда кратковременное увеличение тока не связано с появлением аварийного режима и защита не должно реагировать на такие изменения. Это же относится и к автоматам.

При включении какого-нибудь мотора, к примеру, дачного насоса или пылесоса, в линии происходит достаточно большой бросок тока, который в несколько раз превышает нормальный.

По логике работы, автомат, конечно же, должен отключиться. К примеру, мотор потребляет в пусковом режиме 12 А, а в рабочем – 5. Автомат стоит на 10 А, и от 12 его вырубит. Что в таком случае делать? Если например поставить на 16 А, тогда непонятно отключится он или нет если заклинит мотор или замкнет кабель.

Можно было бы решить эту проблему, если его поставить на меньший ток, но тогда он будет срабатывать от любого движения. Вот для этого и было придумано такое понятие для автомата, как его «время токовая характеристика».

Какие существуют время токовые характеристики автоматических выключателей и их отличие между собой

Как известно основными органами срабатывания автоматического выключателя являются тепловой и электромагнитный расцепитель.

Тепловой расцепитель представляет собой пластину из биметалла, изгибающуюся при нагреве протекающим током. Тем самым в действие приводится механизм расцепления, при длительной перегрузке срабатывая, с обратнозависимой выдержкой времени. Нагрев биметаллической пластинки и время срабатывание расцепителя напрямую зависят от уровня перегрузки.

Электромагнитный расцепитель является соленоидом с сердечником, магнитное поле соленоида при определенном токе втягивает сердечник, приводящий в действие механизм расцепления – происходит мгновенное срабатывание при КЗ, благодаря чему пострадавший участок сети не будет дожидаться прогревания теплового расцепителя (биметаллической пластины) в автомате.

Зависимость времени срабатывания автомата от силы тока, протекающего через автомат, как раз и определяется время токовой характеристикой автоматического выключателя.

Наверное, каждый замечал изображение латинских букв B, C, D на корпусах модульных автоматов. Так вот они характеризуют кратность уставки электромагнитного расцепителя к номиналу автомата, обозначая его время токовую характеристику.

Эти буквы указывают ток мгновенного срабатывания электромагнитного расцепителя автомата. Проще говоря, характеристика срабатывания автоматического выключателя показывает чувствительность автомата – наименьший ток при котором автомат отключится мгновенно.

Автоматы имеют несколько характеристик, самыми распространенными из которых являются:

  • — B — от 3 до 5 ×In;
  • — C — от 5 до 10 ×In;
  • — D — от 10 до 20 ×In.

Что означают цифры указанные выше?

Приведу небольшой пример. Допустим, есть два автомата одинаковой мощности (равные по номинальному току) но характеристики срабатывания (латинские буквы на автомате) разные: автоматы В16 и С16.

Диапазоны срабатывания электромагнитного расцепителя для В16 составляет 16*(3…5)=48…80А. Для С16 диапазон токов мгновенного срабатывания 16*(5…10)=80…160А.

При токе 100 А автомат В16 отключится практически мгновенно, в то время как С16 отключится не сразу а через несколько секунд от тепловой защиты (после того как нагреется его биметаллическая пластина).

В жилых зданиях и квартирах, где нагрузки чисто активные (без больших пусковых токов), а какие-нибудь мощные моторы включаются нечасто, самыми чувствительными и предпочтительными к применению являются автоматы с характеристикой B. На сегодняшний день очень распространена характеристика С, которую также можно использовать для жилых и административных зданий.

Что касается характеристики D, то она как раз годится для питания каких-либо электромоторов, больших двигателей и других устройств, где могут быть при их включении большие пусковые токи. Также через пониженную чувствительность при КЗ автоматы с характеристикой D могут быть рекомендованы для использования как вводные для повышения шансов селективности со стоящими ниже групповыми АВ при КЗ.

Согласитесь логично, что время срабатывания зависит от температуры автомата. Автомат отключится быстрее, если его тепловой орган (биметаллическая пластина) разогретый. И наоборот при первом включении когда биметалл автомата холодный время отключения будет больше.

Поэтому на графике верхняя кривая характеризует холодное состояние автомата, нижняя кривая характеризует горячее состояние автомата.

Пунктирной линией обозначен предельный ток срабатывания для автоматов до 32 А.

Что показано на графике время токовой характеристики

На примере 16-Амперного автомата, имеющего время токовую характеристику C, попробуем рассмотреть характеристики срабатывания автоматических выключателей.

На графике можно увидеть, как протекающий через автоматический выключатель ток влияет на зависимость времени его отключения. Кратность тока протекающего в цепи к номинальному току автомата (I/In) изображает ось Х, а время срабатывания, в секундах – ось У.

Выше говорилось, что в состав автомата входит электромагнитный и тепловой расцепитель. Поэтому график можно разделить на два участка. Крутая часть графика показывает защиту от перегрузки (работа теплового расцепителя), а более пологая часть защиту от КЗ (работа электромагнитного расцепителя).

Как видно на графике если к автомату С16 подключить нагрузку 23 А то он должен отключится за 40 сек. То есть при возникновении перегрузки на 45 % автомат отключится через 40 сек.

На токи большой величины, которые могут привести к повреждению изоляции электропроводки автомат способен реагировать мгновенно благодаря наличию электромагнитного расцепителя.

При прохождении через автомат С16 тока 5×In (80 А) он должен сработать через 0.02 сек (это если автомат горячий). В холодном состоянии, при такой нагрузке, он отключится в пределах 11 сек. и 25 сек. (для автоматов до 32 А и выше 32 А соответственно).

Если через автомат будет протекать ток равный 10×In, то он отключается за 0,03 секунды в холодном состоянии или меньше чем за 0,01 секунду в горячем.

К примеру, при коротком замыкании в цепи, которая защищена автоматом С16, и возникновении тока в 320 Ампер, диапазон времени отключения автомата будет составлять от 0,008 до 0,015 секунды. Это позволит снять питание с аварийной цепи и защитить от возгорания и полного разрушения сам автомат, закоротивший электроприбор и электропроводку.

Автоматы с какими характеристиками предпочтительнее использовать дома

В квартирах по возможности необходимо обязательно применять автоматы категории B, которые являются более чувствительными. Данный автомат отработает от перегрузки так же, как и автомат категории С. А вот о случае короткого замыкания?.

Если дом новый, имеет хорошее состояние электросети, подстанция находится рядом, а все соединения качественные, то ток при коротком замыкании может достигать таких величин, что его должно хватить на срабатывание даже вводного автомата.

Ток может оказаться малым при коротком замыкании, если дом является старым, а к нему идут плохие провода с огромным сопротивлением линии (особенно в сельских сетях, где большое сопротивление петли фаза-нуль) – в таком случае автомат категории C может не сработать вообще. Поэтому единственным выходом из этой ситуации является установка автоматов с характеристикой типа В.

Следовательно, время токовая характеристика типа В является определенно более предпочтительной, в особенности в дачной или сельской местности или в старом фонде.

В быту на вводной автомат вполне целесообразно ставить именно тип С, а на автоматы групповых линий для розеток и освещения – тип В. Таким образом будет соблюдена селективность, и где-нибудь в линии при коротком замыкании вводной автомат не будет отключаться и «гасить» всю квартиру.

Похожие материалы на сайте:

Понравилась статья — поделись с друзьями!

 

Какую характеристику автоматического выключателя правильно устанавливать в жилых помещениях

← Новые распределительные щиты New VEGA HAGER — ваш хаб инноваций   ||   Видеообзор шкафы Hager Volta →

Какую характеристику автоматического выключателя правильно устанавливать в жилых помещениях

Для тех, кто не хочет вникать в технические тонкости, какую характеристику автоматического выключателя или дифавтомата (поскольку автоматический выключатель в нем, как часть) применить в защите вашей электросети, предлагаем вниманию рекомендации немецкого производителя HAGER – прочесть и принять:

  1. Характеристика срабатывания В (3-5 In):

    Применяется преимущественно для защиты кабелей и цепей в жилых домах (цепи освещения, розетки)

  2. Характеристика срабатывания С (5-10 In):

    Применяется для защиты кабелей и цепей преимущественно в приборах с повышенным пусковым током (группы ламп, электродвигатели, и т.д.)

  3. Характеристика срабатывания D (10-20 In):

    Применяется для защиты кабелей и цепей, особенно в приборах с очень большим пусковым током (сварочные трансформаторы, электродвигатели и т.д.)

Т.е. компания HAGER для жилых помещений рекомендует устанавливать характеристику «В». И ей следуют немецкие электрики. В принципе, подобной рекомендации придерживаются другие европейские производители. Почему же в нашей стране электромонтажники характеристику «В» в жилом фонде не принимают за стандарт, а часто применяют «С» характеристику?

Попробуем разобраться.

Рассмотрим таблицу отключения автоматического выключателя в зависимости от характеристики отключения:

Рис.1 Характеристика «В»

Выпуск автоматических выключателей с разными характеристиками отключения и отсутствие универсальной характеристики обусловлены различными требованиями к защите электрической линии от перегрузок, пусковых токов, короткого замыкания. Из таблицы мы видим, что самый быстрый и чувствительный автомат с «В» характеристикой, самый медленный и не чувствительный к пиковым нагрузкам – автомат с характеристикой «D».

Рис.2 характеристика «C»

Характеристика «С» кажется оптимальной, поскольку находится посередине графика (см. выше). Так ли это? Тот факт, что автоматы типа C сейчас активно применяются, не означает, что тип C «лучше» или «более продвинутый». Это просто два разных типа для разных условий, но технологический уровень их исполнения одинаков. И цена, практически, тоже одинакова.

Рис.3 характеристика «D»

Следует отметить, что в современной высококачественной бытовой технике, благодаря применению специальных технологий, пусковые токи значительно меньше, чем были раньше, даже если используется импульсный блок питания. Поэтому, если вы оснастили квартиру или коттедж современной техникой, можно сделать выбор в пользу защитных автоматов типа «B». При этом можно повысить надежность энергоснабжения, реализовав принцип селективного отключения. Он заключается в том, что из-за задержки по времени в срабатывании вышестоящего защитного автомата относительно нижестоящего предотвращается отключение питания по всему коттеджу или по всей квартире. Самый экономичный способ реализации селективной защиты — поставить вводной автомат типа С, а в качестве нижестоящих использовать автоматы типа B.

Еще одно хорошее преимущество характеристики «В» в квартире. Автоматы с такой характеристикой лучше щадят вашу сеть при коротком замыкании, т.к. раньше отключаются и не настолько требовательны к сечению проводников, как характеристика «С».

Выбор характеристики автоматических выключателей остается за вами. Можно полностью установить с характеристикой «С».

Время-токовые характеристики (ВТХ) автоматических выключателей

Здравствуйте, уважаемые читатели и гости сайта «Заметки электрика».

Вы наверное замечали, что на корпусах модульных автоматов изображены латинские буквы: B, C или D. Так вот они обозначают время-токовую характеристику этого автомата, или другими словами, ток мгновенного расцепления.

Согласно ГОСТа Р 50345-99, п.3.5.17 — это наименьшая величина тока, при котором автоматический выключатель сработает (отключится) без выдержки времени, т.е. это его электромагнитная защита.

В этом же ГОСТе Р 50345-99, п.5.3.5, говорится, что всего существует три стандартные характеристики (типы мгновенного расцепления):

  • B — электромагнитный расцепитель (ЭР) срабатывает в пределах от 3 до 5-кратного тока от номинального (3·In до 5·In)
  • C — (ЭР) срабатывает в пределах от 5 до 10-кратного тока от номинального (5·In до 10·In)
  • D — (ЭР) срабатывает в пределах от 10 до 20-кратного тока от номинального (10·In до 20·In, но встречаются иногда и 10·In до 50·In)

In – номинальный ток автоматического выключателя.

Помимо характеристик типа В, С и D, существуют и не стандартные характеристики типа А, К и Z, но о них я расскажу Вам в следующий раз. Чтобы не пропустить выход новых статей, подписывайтесь на рассылку сайта.

Рассмотрим каждый вид характеристики более подробно на примере модульных автоматических выключателей ВМ63-1 серии OptiDin и Optima от производителя КЭАЗ (Курский Электроаппаратный завод).

 

Время-токовая характеристика типа В

Рассмотрим время-токовую характеристику В на примере автоматических выключателей ВМ63-1 от КЭАЗ. Один автомат с номинальным током 10 (А), а другой — 16 (А).

Обратите внимание, что оба автомата имеют характеристику В, что отчетливо видно по маркировке на их корпусе: В10 и В16.

Для наглядности с помощью, уже известного Вам, испытательного прибора РЕТОМ-21 проверим заявленные характеристики данных автоматов.

Но сначала несколько слов о графике.

Вот график время-токовой характеристики (сокращенно, ВТХ) типа В:

На нем показана зависимость времени отключения автоматического выключателя от протекающего через него тока. Ось Х — это кратность тока в цепи к номинальному току автомата (I/In). Ось У — время срабатывания, в секундах.

Запомните!!! Время-токовые характеристики практически всех автоматов изображаются при температуре +30°С. 

График разделен двумя линиями, которые и определяют разброс времени срабатывания зон теплового и электромагнитного расцепителей автомата. Верхняя линия — это холодное состояние, т.е. без предварительного пропускания тока через автомат, а нижняя линия — это горячее состояние автомата, который только что был в работе или сразу же после его срабатывания.

Пунктирная линия на графике — это верхняя граница (предел) для автоматов с номинальным током менее 32 (А).

1. Токи условного нерасцепления (1,13·In)

У каждого автомата есть такое понятие, как «условный ток нерасцепления» и он всегда равен 1,13·In. При таком токе автомат не отключится в течение 1 часа (для автоматов с номинальным током менее 63А) и в течение 2 часов (для автоматов с номинальным током более 63А).

Точку условного нерасцепления автомата (1,13·In) всегда отображают на графике. Если провести прямую, то видно, что прямая уходит как бы в бесконечность и с нижней линией графика пересекается в точке 60-120 минут.

Например, автомат с номинальным током 10 (А). При протекании через него тока 1,13·In = 11,3 (А) его тепловой расцепитель не сработает в течение 1 часа.

Еще пример, автомат с номинальным током 16 (А). При протекании через него тока 1,13·In = 18,08 (А) его тепловой расцепитель не сработает в течение 1 часа.

Вот значения «токов условного нерасцепления» для различных номиналов:

  • 10 (А) — 11,3 (А)
  • 16 (А) — 18,08 (А)
  • 20 (А) — 22,6 (А)
  • 25 (А) — 28,25 (А)
  • 32 (А) — 36,16 (А)
  • 40 (А) — 45,2 (А)
  • 50 (А) — 56,5 (А)

2. Токи условного расцепления (1,45·In)

Есть еще понятие, как «условный ток расцепления» автомата и он всегда равен 1,45·In. При таком токе автомат отключится за время не более 1 часа (для автоматов с номинальным током менее 63А) и за время не более 2 часов (для автоматов с номинальным током более 63А).

Кстати, точку условного расцепления автомата (1,45·In) практически всегда отображают на графике. Если провести прямую, то видно, что прямая пересекает график в двух точках: нижнюю линию в точке 40 секунд, а верхнюю — в точке 60-120 минут (в зависимости от номинала автомата).

Таким образом, автомат с номинальным током 10 (А) в течение часа, не отключаясь, может держать нагрузку порядка 14,5 (А), а автомат с номинальным током 16 (А) — порядка 23,2 (А). Но это при условии, что автоматы изначально были в холодном состоянии, в ином случае время их отключения будет находиться в пределах от 40 секунд до одного часа.

Вот значения «токов условного расцепления» для различных номиналов:

  • 10 (А) — 14,5 (А)
  • 16 (А) — 23,2 (А)
  • 20 (А) — 29 (А)
  • 25 (А) — 36,25 (А)
  • 32 (А) — 46,4 (А)
  • 40 (А) — 58(А)
  • 50 (А) — 72,5 (А)

Вот об этом не стоит забывать при выборе сечения проводов и кабелей для электропроводки (вот Вам таблица в помощь).

Вот представьте себе, что кабель сечением 2,5 кв.мм Вы защищаете автоматом на 20 (А). Вдруг по некоторым причинам Вы перегрузили линию до 29 (А). Автомат 20 (А) может не отключаться в течение целого часа, а по кабелю будет идти ток, который в значительной мере превышает его длительно-допустимый ток (25 А). За это время кабель сильно нагреется и расплавится, что может привести к пожару или короткому замыканию. А если еще учесть то, что в последнее время производители кабельной продукции преднамеренно занижают сечения жил, то ситуация тем более усугубляется.

В принципе, выбор номиналов автоматических выключателей это отдельная тема для статьи. Я лишь привел здесь одну из наиболее распространенных ошибок. Если интересно, то почитайте мою статью, где я подробно разбирал ошибки одного горе-электрика и переделывал за ним его «творчество».

Лично я рекомендую защищать кабели следующим образом:

  • 1,5 кв.мм — защищаем автоматом на 10 (А)
  • 2,5 кв.мм —  защищаем автоматом на 16 (А)
  • 4 кв.мм —  защищаем автоматом на 20 (А) и 25 (А)
  • 6 кв.мм —  защищаем автоматом на 25 (А) и 32 (А)
  • 10 кв.мм — защищаем автоматом 40 (А)
  • 16 кв.мм — защищаем автоматом 50 (А)

Для удобства все данные я свел в одну таблицу:

Проверить рассмотренные автоматы на токи условного нерасцепления и условного расцепления у меня нет времени, поэтому перейдем к их дальнейшей проверке — это форсированный режим проверки при токе, равном 2,55·In.

3. Проверка теплового расцепителя при токе 2,55·In

Согласно ГОСТа Р 50345-99, п.9.10.1.2 и таблицы №6, если через автоматический выключатель будет проходить ток, равный 2,55·In, то он должен отключиться за время не менее 1 секунды из горячего состояния и не более 60 секунд из холодного состояния (для автоматов с номинальным током менее 32А) и не более 120 секунд из холодного состояния (для автоматов с номинальным током более 32А).

На графике ниже Вы можете видеть, что нижний предел по отключению взят с небольшим запасом, т.е. не 1 секунду, а 4 секунды. На то есть право у производителей автоматов. Вот поэтому они всегда к каждому автомату прикладывают свою ВТХ, которая, естественно, что удовлетворяет всем требованиям ГОСТа Р 50345-99.

Проверим!

Автомат ВМ63-1 от КЭАЗ с номинальным током 10 (А) при токе 25,5 (А) должен отключиться за время не менее 1 секунды из горячего состояния и не более 60 секунд из холодного состояния.

Первый раз автомат отключился за время 14,41 (сек.), а второй раз — 11,91 (сек.).

Автомат ВМ63-1 от КЭАЗ с номинальным током 16 (А) при токе 40,8 (А) должен отключиться за время не менее 1 секунды из горячего состояния и не более 60 секунд из холодного состояния.

Первый раз автомат отключился за время 13,51 (сек.), а второй раз — 7,89 (сек.).

Дополнительно можно проверить тепловой расцепитель, например, при двухкратном токе от номинального, но в рамках данной статьи я этого делать не буду. На сайте имеется уже достаточно статей про прогрузку различных автоматических выключателей, как бытового, так и промышленного исполнения. Вот знакомьтесь:

4. Проверка электромагнитного расцепителя при токе 3·In

Согласно ГОСТа Р 50345-99, п.9.10.2.1 и таблицы №6, если через автоматический выключатель будет проходить ток, равный 3·In, то он должен отключиться за время не менее 0,1 секунды. Верхний предел по времени ГОСТом Р 50345-99 не определен, и у автоматов разных производителей здесь может наблюдаться не большой разброс в пределах от 1 до 10 секунд.

Странно, конечно, ведь речь идет об электромагнитном расцепителе и он должен срабатывать без выдержки времени. Но тем не менее, при токе 3·In электромагнитный расцепитель еще не срабатывает и по факту автомат отключается от теплового расцепителя. Вот именно поэтому измеренное значение петли фаза-ноль

сравнивают с током не 3·In, а с 5·In, учитывая коэффициент 1,1.

Автомат ВМ63-1 от КЭАЗ с номинальным током 10 (А) при токе 30 (А) должен отключиться за время не менее 0,1 секунды.

Первый раз автомат отключился за время 8,71 (сек.), а второй раз — 8,11 (сек.).

Автомат ВМ63-1 от КЭАЗ с номинальным током 16 (А) при токе 48 (А) должен отключиться за время не менее 0,1 секунды.

Первый раз автомат отключился за время 8,16 (сек.), а второй раз — 6,25 (сек.).

5. Проверка электромагнитного расцепителя при токе 5·In

Согласно ГОСТа Р 50345-99, п.9.10.2.1 и таблицы №6, если через автоматический выключатель будет проходить ток, равный 5·In, то он должен отключиться за время менее 0,1 секунды.

Автомат ВМ63-1 от КЭАЗ с номинальным током 10 (А) при токе 50 (А) должен отключиться за время менее 0,1 секунды.

Первый раз автомат отключился за время 7,8 (мсек.), а второй раз — 7,7 (мсек.).

Автомат ВМ63-1 от КЭАЗ с номинальным током 16 (А) при токе 80 (А) должен отключиться за время менее 0,1 секунды.

Первый раз автомат отключился за время 8,5 (мсек.), а второй раз — 8,4 (мсек.).

Как видите, оба автомата полностью соответствуют требованиям ГОСТа Р 50345-99 и заявленным характеристикам завода-изготовителя КЭАЗ.

Кому интересно, как проходила прогрузка автоматов, то смотрите видеоролик:

Автоматы с характеристикой В применяются для защиты распределительных и групповых цепей с большими длинами кабелей и малыми токами короткого замыкания преимущественно с активной нагрузкой, например, электрические печи, электрические нагреватели, цепи освещения.

Но почему-то в магазинах их количество всегда ограничено, т.к. по мнению продавцов наиболее распространенными являются автоматы с характеристикой С. С чего это вдруг?! Вполне логично и целесообразно для групповых линий цепей освещения и розеток применять именно автоматы с характеристикой типа В, а в качестве вводного автомата устанавливать автомат с характеристикой С (это один из вариантов). Так хоть каким-то образом будет соблюдена селективность, и при коротком замыкании где-нибудь в линии вместе с отходящим автоматом не будет отключаться вводной автомат и «гасить» всю квартиру. Но о селективности я еще расскажу Вам более подробно в другой раз.

 

Время-токовая характеристика типа С

Вот ее график:

Автоматы с характеристикой С применяются в основном для защиты трансформаторов и двигателей с малыми пусковыми токами. Также их можно использовать для питания цепей освещения. Нашли они достаточно широкое распространение в жилом фонде, хотя свое мнение об этом я высказал чуть выше.

Внимание! Более подробнее про время-токовую характеристику С читайте в моей отдельной статье.

Время-токовая характеристика типа D

График:

По графику видно следующее:

1. Токи условного нерасцепления (1,13·In) и токи условного расцепления (1,45·In), но о них я расскажу чуть ниже.

2. Если через автоматический выключатель будет проходить ток, равный 2,55·In, то он должен отключиться за время не менее 1 секунды в горячем состоянии и не более 60 секунд в холодном состоянии (для автоматов с номинальным током менее 32А) и не более 120 секунд в холодном состоянии (для автоматов с номинальным током более 32А).

3. Если через автоматический выключатель будет проходить ток, равный 10·In, то он должен отключиться за время не менее 0,1 секунды.

4. Если через автоматический выключатель будет проходить ток, равный 20·In, то он должен отключиться за время менее 0,1 секунды.

Автоматы с характеристикой D применяются в основном для защиты электрических двигателей с частыми запусками или значительными пусковыми токами (тяжелый пуск).

 

Изменение характеристик расцепления автоматов

Как я уже говорил в начале статьи, все характеристики изображаются при температуре окружающего воздуха +30°С. Поэтому, чтобы узнать время отключения автоматов при других температурах, необходимо учитывать следующие поправочные коэффициенты:

1. Температурный коэффициент окружающего воздуха — Кt.

Думаю тут все понятно из графика. Чем ниже температура воздуха, тем значение коэффициента больше, а значит и увеличивается номинальный ток автомата, другими словами, его нагрузочная способность. Или, наоборот, чем жарче, тем нагрузочная способность автомата становится меньше. Ведь не зря, в жарких помещениях или летнюю жару многие замечают частые отключения автоматов, хотя нагрузка вовсе не изменялась. Ответ кроется в этом графике.

2. Коэффициент, учитывающий количество рядом установленных автоматов — Кn.

Здесь тоже никаких премудростей нет. Когда в одном ряду установлено несколько автоматов, то они передают свое тепло рядом стоящим автоматам. Этот график учитывает конвекцию тепла и выдает корректирующий коэффициент, учитывающий этот фактор.

Логика проста. Чем больше в ряду автоматов, тем больше уменьшается их нагрузочная способность.

Далее необходимо найти ток, приведенный к условиям нашего окружающего воздуха и монтажа:

In* = In · Кt · Кn

Как эти два коэффициента применить на практике?

Для этого рассмотрим пример. Щиток стоит на улице, в нем установлены 4 автомата — один вводной (ВА47-29 С40) и три групповых (ВА47-29 С16). Температура окружающего воздуха составляет -10°С.

Найдем поправочные коэффициенты для группового автомата ВА47-29 С16:

Найдем ток, приведенный к нашим условиям:

In* = In · Кt · Кn = 16 · 1,1  · 0,82 = 14,43 (А)

Таким образом, при определении времени срабатывания автомата по характеристике С кратность тока нужно брать не как отношение I/In (I/16), а как I/In* (I/14,43).

 

Заключение

Все вышесказанное в данной статье я представлю в виде общей таблицы (можете смело копировать ее и пользоваться):

Если Вы заметили, то разницей между время-токовыми характеристиками В, С и D являются только значения срабатывания электромагнитного расцепителя. По тепловой защите они работают в одних интервалах времени.

P.S. Надеюсь, что после прочтения данной статьи Вы сможете самостоятельно определять пределы времени срабатывания любых автоматических выключателей, а также правильно рассчитывать сечения проводов под номиналы автоматов.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


Различий и сходств между выключателями кривой K и D

Сравнение характеристик теплового и магнитного отключения


Миниатюрный автоматический выключатель (MCB) — это сбрасываемое защитное устройство, которое предотвращает возгорание электрических цепей и нанесение ущерба персоналу и имуществу. Это устройство, предназначенное для изоляции цепи во время перегрузки по току без использования плавкого элемента.

Есть два типа событий перегрузки по току; тепловая перегрузка и короткое замыкание.

  • Тепловая перегрузка: Тепловая перегрузка — это медленная и небольшая перегрузка по току, которая вызывает постепенное увеличение допустимой нагрузки и температуры цепи. Этот тип события характеризуется небольшим увеличением нагрузки (допустимой нагрузки) в цепи и прерывается тепловым расцепителем автоматического выключателя.
  • Короткое замыкание: Короткое замыкание — это сильная перегрузка по току, которая приводит к увеличению допустимой нагрузки цепи. Этот тип события характеризуется резким увеличением нагрузки (допустимой нагрузки) в цепи и прерывается магнитным расцепителем выключателя.
  • Отключающие характеристики

MCB графически представлены в виде диаграммы срабатывания. На диаграмме показана реакция теплового и магнитного отключающих элементов на различные ситуации перегрузки и короткого замыкания.

Компоненты кривой срабатывания

  • Область температур: Область кривой отключения, представляющая характеристики отключения биметаллического расцепителя.
    • Область отключения имеет наклон из-за постепенной перегрузки, нагрева и изгиба термоэлемента с течением времени.
  • Магнитная область: Область кривой отключения, представляющая характеристики отключения магнитного расцепителя
    • Область отключения не имеет наклона из-за мгновенного действия магнитного элемента во время короткого замыкания.

Примеры интерпретации кривых срабатывания — считывание кривых срабатывания

Пример 1: Характеристика теплового отключения

  • 10A B Прерыватель кривых
  • Тепловая перегрузка при 20 А

Для определения времени, за которое выключатель отключится при нагрузке 20 А

  • Найдите 20A в нижней части кривой — выключатель 20A при 2X токе составляет 20A
  • Следуйте по линии допустимой нагрузки до области срабатывания «время» кривой

Выключатель сработает при тепловой перегрузке от 10 до 100 секунд.Гарантируется, что выключатель не сработает раньше, чем через 10 секунд, и сработает не более 100 секунд. Прерыватель может сработать в любое время от 10 до 100 секунд.

Пример 2: Характеристика магнитного отключения

  • 10A B Прерыватель кривых
  • Короткое замыкание на 70 А

Для определения времени, за которое выключатель отключится при коротком замыкании 70.

  • Найдите 70A в нижней части кривой — прерыватель 10A @ 7X ток равен 70A
  • Обратите внимание на «время» в нижнем левом углу оси диаграммы

Автоматический выключатель сработает при коротком замыкании между ними.001 и 01 секунды. Гарантируется, что выключатель сработает не позднее, чем за 0,01 секунды при любом коротком замыкании, равном 70А.

Общие кривые срабатывания MCB


Есть несколько типов кривых MCB, которые производители предоставляют для применения защиты цепи в различных приложениях. Наиболее распространены кривые B, C и D. Один производитель MCB также производит кривые K и Z.

  • Прерыватели кривой B: Срабатывание при токе, превышающем номинальный ток в 3-5 раз в случае короткого замыкания.Автоматические выключатели с кривой B следует применять там, где нагрузки являются резистивными и не имеют пускового тока. Идеальное применение — освещение или электронные схемы.

  • Прерыватели кривой C: Срабатывание при 6–10-кратном номинальном токе в случае короткого замыкания. Автоматические выключатели с кривой C следует применять там, где нагрузки имеют небольшой пусковой ток при запуске. Идеальное применение — это схема с небольшой трансформаторной нагрузкой.

  • Прерыватели кривой D: Срабатывание при 10-15-кратном номинальном токе.Автоматические выключатели с кривой D следует применять там, где нагрузки имеют высокий уровень пускового тока при запуске. Идеальное применение — это схема с моторной нагрузкой.

Автоматические выключатели с кривой K –vs- Автоматические выключатели с кривой D

Прерыватели кривых K и D предназначены для двигателей, в которых допустимая токовая нагрузка увеличивается быстро и мгновенно во время «пуска». Обе кривые могут «преодолевать» кратковременный скачок тока и предотвращать ложное срабатывание, обеспечивая при этом защиту цепи.

Кривые автоматических выключателей K и D имеют практически идентичные характеристики отключения.Характеристики срабатывания магнитного элемента идентичны для двух кривых, а характеристики срабатывания теплового элемента немного отличаются.

E-T-A Характеристики теплового отключения по кривой D в зависимости от характеристик теплового отключения по кривой K


Пример:

  • 10A Прерыватель кривой D
  • Тепловая перегрузка при 20 А

Для определения времени, за которое выключатель отключится при нагрузке 20 А.

  • Найдите 20A в нижней части кривой — прерыватель 10A при 2X токе составляет 20A
  • Следуйте по линии допустимой нагрузки до области срабатывания «время» кривой

Выключатель сработает при тепловой перегрузке от 10 до 100 секунд.Гарантируется, что выключатель не сработает раньше, чем через 10 секунд, и сработает не более 100 секунд. Прерыватель может сработать в любое время от 10 до 100 секунд.

Давайте теперь сравним это с автоматическим выключателем на 10 А с температурной перегрузкой 20 А.

Прерыватель кривой K срабатывает при тепловой перегрузке от 6 до 350 секунд. Гарантируется, что выключатель не сработает раньше, чем через 6 секунд, и отключение не займет больше 350 секунд. Прерыватель может сработать в любое время от 6 до 350 секунд.

E-T-A Характеристики магнитного отключения по кривой D в сравнении с характеристиками магнитного отключения по кривой K


Пример:

  • Прерыватель кривой 10A K и прерыватель кривой 10A D
  • Короткое замыкание на 100 А

Оба выключателя имеют элемент, который срабатывает от 10 до 15 номинального тока. Оба выключателя сработают при коротком замыкании в интервале от 0,001 до 0,01 секунды. И оба выключателя гарантированно сработают не позднее.01 секунда для любого короткого замыкания, равного 100А или больше.

Анализ кривых K и D


  • Магнитный элемент: Магнитный элемент MCB кривой K и кривой D идентичен. Оба выключателя прерывают короткое замыкание при токе, в 10 раз превышающем номинальный (или больший), не позднее, чем за 0,01 секунды.
  • Термоэлемент Минимальное отключение: MCB с кривой D отключит перегрузку при двукратном номинальном токе за 10 секунд или больше. MCB с кривой K отключит перегрузку при двукратном номинальном токе за 6 секунд или больше.Кривая D отстает на 4 секунды по сравнению с кривой K. Дополнительные 4 секунды дают схеме больше времени для «прохождения» высокого броска при запуске и предотвращения ложных срабатываний.
  • Полоса пропускания теплового элемента: Полоса пропускания срабатывания кривой K при двукратном номинальном токе составляет от 6 до 350 секунд. Полоса срабатывания кривой D при 2-кратном номинальном токе составляет от 10 до 100 секунд. Различия между полосами пропускания демонстрируют точность калибровки и контроля качества.Прерыватель кривой D от E-T-A имеет гораздо меньшую полосу допуска и требует более высокого уровня регулировки во время производства и проверки контроля качества.

Кривые отключения MCB — кривые отключения B, C, D, K и Z

MCB (Миниатюрный автоматический выключатель) — это настраиваемое устройство, предназначенное для защиты цепи от коротких замыканий и сверхтоков. Кривая срабатывания автоматического выключателя (кривые B, C, D, K и Z ) говорят нам о номинальном токе срабатывания миниатюрных автоматических выключателей.Номинальный ток срабатывания — это минимальный ток, при котором автоматический выключатель срабатывает мгновенно. Требуется, чтобы ток отключения сохранялся в течение 0,1 с.

Определение

Кривые отключения MCB, также известные как характеристика отключения I-t, состоят из двух секций, а именно секции перегрузки и секции короткого замыкания. Раздел перегрузки описывает время отключения, необходимое для различных уровней токов перегрузки, а раздел короткого замыкания описывает мгновенный уровень тока отключения MCB.

Подробнее: Миниатюрный автоматический выключатель (MCB) — Принцип работы

Кривая отключения класса B

Автоматический выключатель с характеристиками срабатывания класс B срабатывает мгновенно, когда ток, протекающий через него, достигает от 3 до 5 значений номинального тока. Эти автоматические выключатели подходят для защиты кабеля.

Кривая отключения класса C

MCB с характеристиками срабатывания , класс C срабатывает мгновенно, когда ток, протекающий через него, превышает номинальный ток в 5-10 раз.Подходит для бытовых и жилых помещений и для электромагнитных пусковых нагрузок со средними пусковыми токами.

Кривая отключения класса D

Автоматический выключатель с характеристиками отключения , класс D срабатывает мгновенно, когда ток, протекающий через него, превышает номинальный ток в 10-20 раз (исключая 10). Подходит для индуктивных и моторных нагрузок с высокими пусковыми токами.

Кривая отключения класса K

MCB с характеристиками отключения , класс K срабатывает мгновенно, когда ток, протекающий через него, превышает номинальный ток в 8–12 раз.Подходит для индуктивных и моторных нагрузок с высокими пусковыми токами.

Кривая отключения класса Z

MCB с характеристиками срабатывания , класс Z срабатывает мгновенно, когда ток, протекающий через него, в 2–3 раза превышает номинальный ток. Этот тип MCB очень чувствителен к короткому замыканию и используется для защиты высокочувствительных устройств, таких как полупроводниковые устройства.

Кривая отключения класса A

MCB с характеристиками срабатывания , класс A срабатывает мгновенно, когда ток, протекающий через него, в 2–3 раза превышает номинальный ток.Как и автоматические выключатели класса Z, они также очень чувствительны к короткому замыканию и используются для защиты полупроводниковых устройств.

Чаще всего используются автоматические выключатели

с классом кривой срабатывания B и классом кривой срабатывания C. Автоматические выключатели с кривыми срабатывания класса C можно найти в распределительных щитах освещения в жилых и коммерческих зданиях. Он срабатывает, как только ток возрастает в 5-10 раз от номинального. Автоматические выключатели класса B используются для защиты электронных устройств, таких как ПЛК, источники питания постоянного тока и т. Д.в панелях управления. Он срабатывает, как только ток возрастает в 3-5 раз от номинального.

Часы: кривые отключения MCB лучше.

В некоторых приложениях частые пики тока происходят в течение очень короткого периода (от 100 мс до 2 с). Для таких приложений должны использоваться автоматические выключатели класса Z. Автоматические выключатели типа Z используются в цепях с полупроводниковыми приборами.

Важность типов кривых отключения MCB

Важно выбрать соответствующий номинал MCB и кривую срабатывания, чтобы защитить цепь от повреждений во время сбоев.Следовательно, необходимо рассчитать ток короткого замыкания и пусковой ток перед выбором подходящего номинала MCB. Если выбранный номинал MCB намного выше, чем требуется, он может не сработать в случае неисправности. Точно так же, если MCB недооценен, это может вызвать ложные срабатывания, например, даже пусковые токи или пусковые токи могут отключать MCB.

Кривые срабатывания других автоматических выключателей

Все автоматические выключатели, такие как MCCB, ACB, VCB и т. Д., Имеют свои собственные характеристики отключения.Единственное, что может не соответствовать категоризации MCB. Кроме того, типы кривых автоматического выключателя не одинаковы для всех типов автоматических выключателей. Он варьируется от одного типа автоматического выключателя к другому и зависит от многих конструктивных факторов.

Узнать больше о MCB:

Статьи по теме:
1. Разница между MCB и MCCB
2. Разница между контакторами и реле
3. Разница между устройствами плавного пуска и VFD
4.Разница между MCCB и RCCB
5. Разница между MCB и RCBO
6. Разница между RCCB и RCBO
7. Разница между MPCB и MCCB

MCB (Миниатюрные автоматические выключатели) — Типы, рабочие характеристики и кривые отключения

Короче говоря, MCB — это устройство для защиты от перегрузки и короткого замыкания. Они используются в жилых и коммерческих помещениях. Точно так же, как мы тратим время на тщательную проверку перед покупкой бытовой техники, такой как стиральные машины или холодильники, мы также должны исследовать миниатюрные автоматические выключатели.

MCB — лучшая альтернатива предохранителю Fuse , поскольку он не требует замены при обнаружении перегрузки. В отличие от предохранителя, MCB легко эксплуатируется и, таким образом, обеспечивает повышенную безопасность работы и большее удобство без больших эксплуатационных расходов. Они используются для защиты цепей с более низким током и имеют следующие характеристики:

  • Номинальный ток — Амперы
  • Номинальный ток короткого замыкания — Килоампер (кА)
  • Рабочие характеристики — Кривые B, C, D, Z или K

Дон Не путайте миниатюрный автоматический выключатель с MCCB (автоматический выключатель в литом корпусе) или GFCI (автоматический выключатель замыкания на землю).

Миниатюрный автоматический выключатель — это распределительное устройство, которое обычно доступно в диапазоне от 0,5A до 100A . Его номинальный ток короткого замыкания указан в килоамперах (кА), и это указывает на уровень его работоспособности.

Например, бытовой MCB обычно имеет уровень отказа 6 кА, тогда как тот, который используется в промышленном приложении, может нуждаться в блоке с возможностью отказа 10 кА.

Принцип работы миниатюрного автоматического выключателя (MCB)

Автоматические выключатели — это защитные устройства, которые предназначены для размыкания цепи в случае перегрузки или короткого замыкания.

Срабатывание автоматического выключателя в случае перегрузки и короткого замыкания:

  • Для защиты от перегрузки у них есть биметаллическая полоса , которая вызывает размыкание цепи.
  • Для защиты от короткого замыкания он имеет электромагнитный тип .
Внутри миниатюрного автоматического выключателя

Существует две схемы работы миниатюрного автоматического выключателя .

  1. Из-за теплового воздействия сверхтока
  2. Из-за электромагнитного эффекта сверхтока.

Температурный режим автоматического выключателя достигается с помощью биметаллической ленты. Всякий раз, когда через MCB протекает непрерывный электрический ток, биметаллическая полоса нагревается и отклоняется из-за изгиба.

Этот прогиб биметаллической ленты освобождает механическую защелку. Поскольку эта механическая защелка прикреплена к приводному механизму, она вызывает размыкание контактов миниатюрного автоматического выключателя .

Но во время короткого замыкания внезапное повышение электрического тока вызывает электромеханическое смещение плунжера, связанного с катушкой отключения или соленоидом MCB .

Плунжер ударяет по рычагу отключения, вызывая немедленное освобождение фиксирующего механизма, что приводит к размыканию контактов выключателя. Это было простое объяснение принципа работы миниатюрного автоматического выключателя .

Механизм отключения в миниатюрном автоматическом выключателе

Как объяснялось в предыдущем разделе, автоматический выключатель имеет два типа механизма отключения.

  1. Тепловое отключение
  2. Магнитное отключение

Это объясняется в следующем разделе.

1. Тепловой расцепитель

Тепловой расцепитель защищает от токов перегрузки.

Тепловой блок основан на биметаллическом элементе, расположенном за перемычкой выключателя и является частью токоведущей цепи выключателя.

При перегрузке повышенный ток нагревает биметалл, вызывая его изгиб. Когда биметалл изгибается, он тянет за расцепитель, размыкающий контакты выключателя.

Время, необходимое для изгиба биметалла и срабатывания выключателя, обратно пропорционально току.

Магнитный и тепловой расцепитель MCB

2. Магнитный расцепитель

Магнитный расцепитель защищает от короткого замыкания. Магнитный расцепитель состоит из электромагнита и якоря.

При коротком замыкании через катушки проходит ток большой величины, создавая магнитное поле, которое притягивает подвижный якорь к неподвижному якорю.

Молоток прижимается к подвижному контакту, и контакты размыкаются.

Магнитный расцепитель

Типы автоматических выключателей на основе характеристик отключения

Автоматические выключатели подразделяются на различные типы в зависимости от отключения в диапазоне тока короткого замыкания.Важными типами автоматических выключателей являются следующие:

  1. MCB типа B
  2. MCB типа C
  3. MCB типа D
  4. MCB типа K
  5. MCB типа Z

Ток отключения и время срабатывания каждого из вышеперечисленных типов MCB приведены в таблице ниже.

Тип Ток отключения Время работы
Тип B От 3 до 5 раз больше тока полной нагрузки 0.От 4 до 13 с
Тип C От 5 до 10 раз больше тока полной нагрузки 0,04 до 5 с
Тип D От 10 до 20 раз больше тока полной нагрузки от 0,04 до 3 с
Тип K От 8 до 12 раз превышающего ток полной нагрузки <0,1 с <0.1 сек.
Инфографика о различных типах миниатюрных автоматических выключателей

1. MCB типа B

Этот тип MCB отключает ток полной нагрузки от 3 до 5 раз.

Устройства типа B в основном используются в жилых помещениях или в легких коммерческих приложениях, где подключенными нагрузками являются в основном осветительные приборы, бытовые приборы с в основном резистивными элементами.

MCB типа B

Также используется для компьютеров и электронного оборудования с очень низкими пусковыми нагрузками (проводка ПЛК).Уровни импульсного тока в таких случаях относительно низкие.

Функции MCB типа B — защита и управление цепями от перегрузок и коротких замыканий; защита людей и кабелей большой длины в системах TN и IT.

Применения : жилое, коммерческое и промышленное.

Подробнее о MCB типа B

2. MCB типа C

Этот тип MCB срабатывает между 5 и 10 -кратным током полной нагрузки.

Используется в коммерческих или промышленных приложениях, где возможны более высокие значения токов короткого замыкания в цепи.

MCB типа C

Подключаемые нагрузки в основном индуктивные по своей природе (например, асинхронные двигатели) или люминесцентное освещение. Применения включают небольшие трансформаторы, освещение, пилотные устройства, схемы управления и катушки.

Функции MCB типа C: защита и управление цепями от перегрузок и коротких замыканий; защита резистивных и индуктивных нагрузок с низким пусковым током.

Применения : жилое, коммерческое и промышленное.

3. MCB типа D:

Этот тип MCB отключается между 10 и 20 -кратным током полной нагрузки.

Эти автоматические выключатели используются в специальных промышленных / коммерческих целях, где броски тока могут быть очень высокими. Примеры включают трансформаторы или рентгеновские аппараты, двигатели с большой обмоткой и т. Д.

Тип D MCB

Устройства с кривой D подходят для приложений, где ожидаются высокие уровни пускового тока.Высокая магнитная точка срабатывания предотвращает ложное срабатывание в высокоиндуктивных приложениях, таких как двигатели, трансформаторы и источники питания.

F Unctions типа D MCB — защита и управление цепями от перегрузок и коротких замыканий; защита цепей, питающих нагрузки с высоким пусковым током при замыкании цепи (трансформаторы, лампы пробоя).

Применения : жилое, коммерческое и промышленное.

4. MCB типа K

Этот тип MCB отключает от 8 до 12 раз тока полной нагрузки. Они подходят для индуктивных нагрузок и нагрузок двигателя с высокими пусковыми токами.

MCB типа K

Прерыватели кривых K и D предназначены для двигателей, в которых допустимая нагрузка быстро и мгновенно возрастает во время «запуска».

Функции MCB типа K — защита и управление цепями, такими как двигатели, трансформатор и вспомогательные цепи, от перегрузок и коротких замыканий.

Преимущества MCB типа K:

Отсутствие ложных срабатываний в случае функциональных пиковых токов до 8xIn, в зависимости от серии; благодаря высокочувствительному термостатическому биметаллическому расцепителю характеристика K-типа обеспечивает защиту повреждаемых элементов в диапазоне сверхтоков; он также обеспечивает лучшую защиту 2 кабелей и линий.

Приложения : Торговля и промышленность.

5. MCB типа Z:

Этот тип MCB отключается между 2–3 -кратным током полной нагрузки.

Этот тип MCB очень чувствителен к короткому замыканию и используется для защиты высокочувствительных устройств, таких как полупроводниковые устройства.

MCB типа Z

Функции MCB типа Z — это защита и управление электронными цепями от слабых и длительных перегрузок и коротких замыканий.

Приложения : Коммерческое и промышленное использование.

Все вышеперечисленные типы автоматических выключателей обеспечивают защиту от отключения в течение одной десятой секунды.

Это визуальная сводка кривых отключения (по стандарту
) и их типичных типов нагрузки.

Типы автоматических выключателей по количеству полюсов

Другой практический способ различения автоматических выключателей — это количество полюсов, поддерживаемых автоматическим выключателем. Исходя из этого, существуют следующие типы:

1. Однополюсный (SP) MCB
Однополюсный MCB

Однополюсный MCB обеспечивает переключение и защиту только для одной единственной фазы цепи.

2. Двухполюсный MCB
Двухполюсный MCB

Двухполюсный MCB обеспечивает переключение и защиту как фазы, так и нейтрали.

3. Трехполюсный (TP) MCB
Трехполюсный MCB

Трехфазный миниатюрный автоматический выключатель обеспечивает переключение и защиту только трех фаз цепи, а не нейтрали.

4. Трехполюсный с нейтралью [TPN (3P + N) MCB]

MCB TPN имеет переключение и защиту для всех трех фаз цепи, а также нейтраль также является частью MCB в качестве отдельного полюса.

Трехполюсный + нейтраль — кривая C MCB

Однако нейтральный полюс не имеет какой-либо защиты и может только переключаться.

5. Четырехполюсный (4-полюсный) MCB

4-полюсный MCB аналогичен TPN, но, кроме того, он также имеет защитную разблокировку для нейтрального полюса.

4-полюсный MCB

Этот MCB следует использовать в случаях, когда существует вероятность протекания большого тока нейтрали через цепь, например, в случае несимметричной цепи.

Характеристики / кривые отключения MCB (Тип B, C и D)

В этом разделе вы узнаете характеристики или кривые отключения различных типов MCB. Понимание кривых срабатывания очень важно, чтобы помочь вам при выборе MCB.

Что такое кривые срабатывания?

Характеристическая кривая / кривая отключения — это графическое представление ожидаемого поведения устройства защиты цепи.

Устройства защиты цепей бывают разных видов, включая предохранители, миниатюрные автоматические выключатели, автоматические выключатели в литом корпусе, дополнительные устройства защиты, автоматические выключатели для защиты двигателя, реле перегрузки, электронные предохранители и воздушные автоматические выключатели.

Кривая отключения обычно строится между током расцепителя и временем отключения (Время — Кривая тока).Они предоставляются производителями устройств защиты цепей, чтобы помочь пользователям выбрать устройства, которые обеспечивают надлежащую защиту и производительность оборудования, избегая при этом ложных срабатываний.

Типичная характеристическая кривая MCB

Кривые срабатывания автоматического выключателя состоят из двух частей:

  1. Срабатывание защиты от перегрузки (устройство теплового отключения) : Чем выше ток, тем короче время срабатывания
  2. Срабатывание короткого замыкания- защита цепи (магнитное расцепляющее устройство) : Если ток превышает пороговое значение этого защитного устройства, время отключения составляет менее 10 миллисекунд.

Первый наклонный участок кривой представляет собой графическое представление характеристик отключения теплового расцепителя. Эта часть кривой имеет наклон из-за характера теплового расцепителя.

Зоны отключения на кривой MCB

Вторая область — это время отклика магнитного отключения, которое различает каждую характеристику и для которой назначена идентификационная буква (Тип B, C, D, K, Z).

Классификация типа B, C или D основана на номинальном токе короткого замыкания, при котором происходит магнитное срабатывание для обеспечения кратковременной защиты (обычно менее 100 мс) от коротких замыканий.

Наиболее важными характеристиками MCB являются

  • Тип B.
  • Характеристические кривые типа C.
  • Характеристические кривые типа D.
1. Кривая типа B 2. Кривая типа C 3. Кривая типа D

Существует несколько специализированных кривых срабатывания, таких как

  • Кривая типа S
  • Кривая типа Z
  • Кривая типа K

Зачем нужны разные Кривые поездки?

Здесь возникает один вопрос: «Зачем нужны разные типы кривых срабатывания» или «Зачем нам нужны разные кривые срабатывания».

Роль автоматического выключателя состоит в том, чтобы срабатывать достаточно быстро, чтобы избежать отказа оборудования или проводки, но не так быстро, чтобы давать ложные или ложные срабатывания.

Важно, чтобы оборудование с высокими пусковыми токами не приводило к срабатыванию автоматического выключателя без необходимости, и все же устройство должно срабатывать в случае тока короткого замыкания, который может повредить кабели цепи.

Нам нужны разные кривые отключения, чтобы сбалансировать правильную величину максимальной токовой защиты и оптимальную работу машины.Выбор автоматического выключателя с кривой срабатывания, которая срабатывает слишком рано, может привести к ложному срабатыванию. Выбор автоматического выключателя, который срабатывает слишком поздно, может привести к катастрофическому повреждению машины и кабелей.

Теперь мы рассмотрим каждую из трех важных кривых срабатывания, упомянутых выше.

1. Кривая типа B

Устройства типа B обычно подходят для применения в домашних условиях . Они также могут использоваться в легких коммерческих приложениях, где коммутационные перенапряжения незначительны или отсутствуют.

Тип B MCB Curve

Они предназначены для отключения при токах короткого замыкания, в 3-5 раз превышающих номинальный ток. Например, устройство на 10 А сработает при 30-50 А.

2. Тип C Curve

Устройства типа C — нормальный выбор для коммерческих и промышленных приложений , где используется люминесцентное освещение, двигатели и т. Д.

Эти устройства предназначены для срабатывания при токе, превышающем номинальный в 5-10 раз (50-100 А для устройства на 10 А).

3. Кривая типа D

Устройства типа D имеют более ограниченное применение, обычно в промышленном использовании , где можно ожидать высоких пусковых токов .

Тип D MCB Curve

Примеры включают большие системы зарядки аккумуляторов, обмоточные двигатели, трансформаторы, рентгеновские аппараты и некоторые типы разрядного освещения. Устройства типа D рассчитаны на 10-20 срабатываний (100-200 А для устройства 10 А).

Нормальные характеристики кабеля относятся к непрерывной работе при определенных условиях установки. Кабели, конечно, будут пропускать более высокие токи в течение короткого времени без необратимых повреждений.


Автоматические выключатели типа B и C обычно могут быть выбраны для достижения времени отключения, которое защитит проводники цепи от нормальных импульсных токов в соответствии с BS 7671.Этого труднее достичь с устройствами типа D, которым может потребоваться более низкое полное сопротивление контура заземления (Zs) для достижения времени работы ячейки, требуемого Регламентом 413-02-08.

Различные типы кривых отключения в MCB

Источники импульсных токов

Импульсные токи в бытовых установках, как правило, низкие, поэтому устройство типа B подходит.

Импульсный ток или бросок тока в MCB

Например, пусковые токи, связанные с одной или двумя люминесцентными лампами или двигателем компрессора в холодильнике / морозильной камере, вряд ли вызовут нежелательное отключение.Люминесцентные и другие газоразрядные лампы создают импульсные токи, и хотя одна или две люминесцентные лампы вряд ли вызовут проблему, переключение ряда люминесцентных ламп блокируется.

В магазине, офисе или на заводе могут возникать значительные пусковые токи. По этой причине для этих приложений рекомендуются устройства типа C.

Величина импульсного тока будет зависеть от номинала лампы, системы запуска и типа ПРА, используемого в светильниках.

Авторитетный миниатюрный автоматический выключатель Производители составляют таблицы с указанием количества фитингов определенной марки и типа, которые могут использоваться с их устройствами.

Преодоление нежелательного отключения MCB

Иногда отказ вольфрамовых ламп накаливания может привести к срабатыванию миниатюрных автоматических выключателей типа B в бытовых и торговых помещениях.

Это вызвано высокими токами дуги, возникающими во время отказа, и обычно связано с лампами низкого качества.По возможности следует поощрять пользователя использовать лампы более высокого качества. Если проблема не устраняется, следует рассмотреть одно из перечисленных ниже измерений.

Устройство типа C может быть заменено устройством типа B, где нежелательное срабатывание сохраняется, особенно в коммерческих приложениях.

В качестве альтернативы можно использовать более высокий номинал типа B MCB , скажем 10А, а не 6А.

Какое бы решение ни было принято, установка должна соответствовать BS 7671.

Переход с устройств типа C на тип D должен производиться только после тщательного рассмотрения условий установки, в частности, времени работы, требуемого нормативными требованиями.

Прочие соображения

Невозможно переоценить важность выбора автоматических выключателей от известных производителей. Некоторые импортные продукты, заявившие, что они обладают способностью к короткому замыканию 6 кА, во время испытаний потерпели неудачу.

В отличие от этого, процедуры испытаний, применяемые в лабораториях британской ASCTA (Ассоциация органов по тестированию короткого замыкания), являются одними из самых подходящих в мире.

Устройства типа B следует использовать только в домашних условиях, где высокие пусковые токи маловероятны, а устройства типа C следует использовать во всех других ситуациях.

Выбор подходящего MCB

Решение об использовании миниатюрных автоматических выключателей типа B, C или D для окончательной защиты цепей в жилых, коммерческих, промышленных или общественных зданиях может быть основано на нескольких простых правилах.

Однако понимание различий между этими типами устройств может помочь установщику преодолеть проблемы нежелательного отключения или сделать подходящий выбор там, где разграничительные линии менее четко определены.

Следует подчеркнуть, что основное назначение устройств защиты цепей, таких как миниатюрные автоматические выключатели и плавкие предохранители, заключается в защите кабеля после устройства.

Существенное различие между устройствами типа B, C или D основано на их способности выдерживать импульсные токи без отключения. Как правило, это пусковые токи, связанные с люминесцентными и другими видами разрядного освещения, асинхронными двигателями, оборудованием для зарядки аккумуляторов и т. Д.

  • Типы B, C и D используются для максимальной токовой защиты кабелей в соответствии с IEC / EN 60898-1
  • Тип K для защиты двигателей и трансформаторов и одновременной максимальной токовой защиты кабелей с отключением от перегрузки на основе IEC / EN 60947-2
  • Тип Z для цепей управления с высоким импедансом, цепей преобразователя напряжения, и полузащита кабеля и одновременная защита кабелей от перегрузки по току с отключением от перегрузки в соответствии с IEC / EN 60947-2.

Как выбрать номинал MCB в определенной цепи

Если надлежащий рейтинг не выбран для конкретной цепи, не будет правильных функций MCB при перегрузке. Поэтому очень важно выбрать правильный рейтинг MCB, который можно легко рассчитать, как показано ниже.

Пример

Давайте представим, что у вас есть 4 вентилятора, один телевизор, 4 трубки, один V.C.D., один холодильник и один 1,5-тонный кондиционер на определенном контуре.

Ток в этой цепи будет (4 x 0,40) + (0,55) + (4 x 0,20) + (0,22) + (1,6) + (11) = 16 AMP .

Следовательно, подходящим номиналом MCB будет 20 AMP серии B.

Ниже приведен эталонный ток готовности некоторых важных устройств для расчета предпочтительного номинала MCB.

Расчет энергопотребления: 1 единица = рупий. 4,50 = 1000 Вт / час = 1 кВт / час.

Таблица выбора MCB

Таблица выбора MCB поможет вам выбрать правильный MCB для защиты вашей цепи.

Таблица выбора MCB 1 Таблица выбора MCB 2

Характеристики кривых отключения и координации автоматического выключателя

Рисунок 1: Упрощенная временная кривая тока. Фото: TestGuy

Время-токовые кривые используются для отображения времени, необходимого для отключения автоматического выключателя при заданном уровне перегрузки по току.

Время-текущие кривые обычно отображаются в виде графика журнала. Цифры по горизонтальной оси кривой представляют номинальный длительный ток (In) для автоматического выключателя, цифры по вертикальной оси представляют время в секундах.

Чтобы определить, сколько времени потребуется выключателю для отключения: найдите текущее значение, кратное (In), внизу графика. Затем нарисуйте вертикальную линию до точки, где она пересекает кривую, а затем проведите горизонтальную линию с левой стороны графика, чтобы найти время поездки.

Общее время отключения автоматического выключателя — это сумма времени срабатывания выключателя, времени отключения, времени механической срабатывания и времени горения дуги.

Кривые

разработаны с использованием заранее определенных характеристик, таких как работа при температуре окружающей среды 40 ° C, поэтому имейте в виду, что фактические условия эксплуатации автоматического выключателя могут вызвать отклонения в его характеристиках.

У большинства кривых есть информационное окно, в котором будет указано, к какому выключателю применяется кривая. Это информационное окно может также содержать важные примечания от производителя, такие как допустимое отклонение от времени поездки.

Пример кривой тока времени автоматического выключателя в реальном мире с основными моментами. Фото: TestGuy


Защита от перегрузки

Верхняя часть кривой время-ток показывает тепловую реакцию выключателя, изогнутая линия указывает номинальную производительность выключателя.

В термомагнитных выключателях тепловая перегрузка возникает, когда биметаллический проводник внутри автоматического выключателя отклоняется после нагревания током нагрузки, освобождая рабочий механизм и размыкая контакты.

Чем больше перегрузка, тем быстрее биметаллическая полоса нагревается и отклоняется для устранения перегрузки. Это так называемая обратная временная кривая.

Долговременная функция

В электронных автоматических выключателях функция длительного выдерживания (L) имитирует эффект термического биметаллического элемента.Номинальная точка срабатывания, в которой электронный расцепитель определяет перегрузку, составляет примерно 10% от выбранного номинального тока. После срабатывания автоматический выключатель сработает по истечении времени, заданного настройкой длительной задержки.


Защита от короткого замыкания

Нижняя часть кривой время-ток отображает реакцию автоматического выключателя на короткое замыкание. В термомагнитных выключателях место срабатывания при значительных сверхтоков приводит в действие магнитный якорь внутри автоматического выключателя, который отключает механизм.

Функция мгновенного действия

В электронных автоматических выключателях функция мгновенного действия (I) имитирует магнитную характеристику термомагнитного выключателя. Это достигается с помощью микропроцессора, который много раз в секунду берет выборки из формы волны переменного тока для вычисления истинного среднеквадратичного значения тока нагрузки. Мгновенное отключение происходит без преднамеренной задержки по времени.

Рисунок 3: Комбинированная кривая LSIG. Фото: TestGuy.

Кратковременная функция

Некоторые электронные автоматические выключатели могут быть оснащены функцией короткого замыкания (S), которая дает автоматическому выключателю задержку перед срабатыванием значительного перегрузки по току.Это позволяет осуществлять выборочную координацию между защитными устройствами, чтобы гарантировать, что только устройство, ближайшее к месту повреждения, будет отключено, не затрагивая другие цепи (см. Координацию автоматического выключателя ниже) .

Характеристика I 2 t кратковременной функции определяет тип задержки. I 2 t IN приведет к обратнозависимой задержке, которая напоминает временные / токовые характеристики предохранителей. Это похоже на функцию длительного времени, за исключением более быстрой задержки.I 2 t OUT обеспечивает постоянную задержку, обычно 0,5 секунды или меньше, как указано на кривой время-ток.

Функция блокировки зоны

Автоматические выключатели, оборудованные блокировкой зон по короткой задержке без сигнала ограничения от нижестоящего устройства, будут иметь минимальную временную полосу, применяемую независимо от настройки, это иногда называется максимальной неограниченной задержкой.

Когда мгновенная функция отключена, используется коррекция с кратковременной задержкой для мгновенного отключения автоматических выключателей в случае значительного короткого замыкания.Это называется кратковременной стойкостью и отображается на кривой срабатывания как абсолютное значение в амперах.

Связанные с: Основные принципы селективной блокировки зон (ZSI)


Защита от замыканий на землю

Как и функция защиты от замыканий на землю, элемент защиты от замыкания на землю (G) состоит из установки срабатывания и задержки. Когда происходит замыкание фазы на землю, сумма фазных токов перестает быть равной, потому что ток замыкания на землю возвращается через шину заземления.В 4-проводной системе четвертый трансформатор тока устанавливается на нейтральную шину для обнаружения этого дисбаланса.

Когда возникает дисбаланс тока, автоматический выключатель срабатывает, если величина превышает уставку срабатывания замыкания на землю. Если выключатель остается включенным в течение времени, заданного задержкой замыкания на землю, автоматический выключатель сработает. Защита от замыкания на землю иногда поставляется с функцией I 2 t, которая работает по тому же принципу, что и кратковременная задержка.

Пример 4-проводной системы защиты от замыканий на землю.Фото: TestGuy.

Защита от замыкания на землю требует наименьшего количества энергии для отключения автоматического выключателя, часто со значениями отключения, установленными значительно ниже уставки срабатывания длительного срабатывания. При проверке функции перегрузки или короткого замыкания автоматического выключателя защиту от замыкания на землю необходимо отключить или «убрать с дороги» для срабатывания других функций.

Использование испытательного комплекта изготовителя или изменение проводки входа трансформатора тока нейтрали является предпочтительным методом тестирования первичной инжекции на выключателе низкого напряжения с защитой от замыкания на землю, в противном случае два полюса могут быть соединены последовательно для обеспечения сбалансированных вторичных токов на расцепитель. .

Связано: Системы защиты от замыканий на землю: основы тестирования производительности


Координация автоматического выключателя

Время-токовые кривые необходимы для правильного согласования автоматических выключателей. В случае неисправности должен срабатывать только ближайший к неисправности автоматический выключатель, не затрагивая другие цепи.

В приведенном ниже примере три автоматических выключателя скоординированы таким образом, чтобы время отключения каждого выключателя было больше, чем время отключения выключателя (ей), расположенного ниже по цепи, независимо от величины повреждения.

Упрощенный пример координации отключения выключателя. Фото: TestGuy.

Автоматический выключатель CB-3 настроен на отключение, если перегрузка 2000A или выше происходит в течение 0,080 секунд . Автоматический выключатель CB-2 сработает, если перегрузка сохраняется в течение 0,200 секунд, и автоматический выключатель CB-1 , если неисправность сохраняется в течение 20 секунд .

Если неисправность происходит после выключателя CB-3 , он срабатывает первым и сбрасывает неисправность.Автоматические выключатели CB-2 и CB-1 будут продолжать обеспечивать питание цепи.

Каждая функция расцепителя должна быть скоординирована для предотвращения ложных срабатываний. Например, если автоматический выключатель питает часть оборудования большими пусковыми токами, значение мгновенного срабатывания должно быть выше, чем значение кратковременного срабатывания, чтобы предотвратить отключение, когда оборудование находится под напряжением.

Связано: Объяснение исследований по координации электроэнергетической системы


Артикул:

Комментарии

Войдите или зарегистрируйтесь, чтобы оставить комментарий.

Отключающая характеристика автоматического выключателя

Что такое отключающие характеристики?

Характеристики отключения описывают работу и поведение автоматических выключателей при перегрузке или коротком замыкании. Комбинация кривых отключения электромагнитного расцепителя и теплового биметаллического расцепителя дает общую кривую отключения для защиты от перегрузки.

Для автоматических выключателей доступны различные характеристики отключения в зависимости от типа компонента или оборудования, которые должны быть защищены в соответствии со стандартами IEC / EN 60898-1 и IEC / EN 60947-2.

Сравнение отключающих характеристик:

Стандартный

Отключение
кривая

Тепловой расцепитель

Расцепитель электромагнитный

Обычный
без отключения
ток

Обычное
отключение
ток

Отключение
время

Удерживать
ток
скачков

Поездка на
не менее

Отключение
время

МЭК / EN 60898-1

В

1.13 х В

> 1 ч.

3 x дюйм

> 0,1 с

1,45 x дюйм

<1ч

5 x дюйм

<0,1 с

С

1,13 x дюйм

> 1 ч.

5 x дюйм

> 0.1с

1,45 x дюйм

<1ч

10 дюймов

<0,1 с

D

1,13 x дюйм

> 1 ч.

10 дюймов

> 0,1 с

1.45 х В

<1ч

20 дюймов

<0,1 с

МЭК / EN 60947-2

К

1,05 x дюйм

> 1 ч.

10 дюймов

> 0,2 с

1.2 х В

<1ч

14 x дюйм

<0,2 с

1,5 x дюйм

<2 мин.

6,0 x дюйм

> 2 с

Z

1.05 х В

> 1 ч.

2 x дюйм

> 0,2 с

1,2 x дюйм

<1ч

3 x дюйм

<0,2 с

1,5 x дюйм

<2 мин.

6.0 х В

> 2 с


Типовые нагрузки по кривой срабатывания

Кривая Z

Разработан для защиты цепей, которым требуется очень низкая уставка отключения при коротком замыкании (пример: полупроводники)

Кривая B

Разработан для защиты кабеля (Ex: цепи управления, освещение)

Кривая C

Разработан для пусков со средним магнитным полем (Пример: панели освещения, панели управления)

Кривые D и K

Разработан с учетом высоких пусковых нагрузок (например, электродвигатель или цепи преобразования)


Почему автоматические выключатели имеют разные характеристики отключения?

Автоматические выключатели должны срабатывать достаточно быстро, чтобы избежать отказа оборудования или проводки, но не настолько быстро, чтобы вызывать ложные или ложные срабатывания.Чтобы избежать нежелательных срабатываний, автоматические выключатели должны иметь соответствующий размер, позволяющий компенсировать перегрузку по току. Нам нужны разные кривые отключения, чтобы сбалансировать правильную защиту от перегрузки по току и оптимальную работу машины.


Что такое кривая отключения?

Кривая отключения показывает расчетное время отключения автоматического выключателя. Ось X представляет собой кратный рабочий ток автоматического выключателя. Ось Y представляет время отключения. Логарифмическая шкала используется для отображения времени с.001 секунда при кратном рабочем токе.

Два основных компонента кривой срабатывания:

  1. Кривая отключения по температуре: Это кривая отключения для биметаллической ленты, которая предназначена для более медленных сверхтоков, чтобы учесть броски тока / запуск. (См. Кривые ниже)
  2. Кривая электромагнитного срабатывания: это кривая срабатывания катушки или соленоида. Он разработан, чтобы быстро реагировать на большие перегрузки по току, например, на короткое замыкание. (См. Кривые ниже)


При меньших токах перегрузки активно только тепловое отключение.С определенного предела электромагнитный расцепитель должен срабатывать в пределах допуска.


Что такое кривая B?

Кривая B предназначена для защиты кабелей и сигнальных устройств низкого уровня, таких как ПЛК. Электромагнитный расцепитель в три-пять раз превышает номинальный ток дополнительного устройства защиты (3 ~ 5 x In). Быстрое время срабатывания этих устройств сводит к минимуму повреждение проводов цепи управления из-за коротких замыканий низкого уровня.


Что такое кривая C?

Curve C разработан для приложений с умеренными пусковыми токами, таких как освещение, цепи управления, катушки, компьютеры и бытовая техника.Электромагнитное расцепление в пять-десять раз превышает номинальный ток дополнительного устройства защиты (5 ~ 10 x In). Более высокий уровень мгновенного срабатывания предотвращает ложное срабатывание, а защищаемые компоненты обычно могут выдерживать более высокие токи короткого замыкания без повреждений.


Что такое кривая D?

Curve D разработан для приложений с высокими пусковыми токами, например, трансформаторов, источников питания и нагревателей. Электромагнитное срабатывание в десять-двадцать раз превышает номинальный ток дополнительного устройства защиты (10 ~ 20 x In).Высокий уровень мгновенного срабатывания предотвращает ложное срабатывание, а защищаемые компоненты обычно могут выдерживать более высокие токи короткого замыкания без повреждений.


Что такое кривая K?

Curve K разработан для приложений с высокими пусковыми токами. Электромагнитное срабатывание в десять-четырнадцать раз превышает номинальный ток дополнительного устройства защиты (10 ~ 14 x In).


Что такое кривая Z?

Curve Z разработан для приложений с очень низкими пусковыми токами.Электромагнитный расцепитель в два-три раза превышает номинальный ток дополнительного устройства защиты (2 ~ 3 x In). Этот тип автоматических выключателей очень чувствителен к короткому замыканию и используется для защиты высокочувствительных устройств, таких как полупроводниковые устройства.

Продолжить чтение

Основные характеристики выключателя

Основными характеристиками выключателя являются:

  • Его номинальное напряжение Ue
  • Его номинальный ток В
  • Диапазон регулировки уровня тока срабатывания для защиты от перегрузки (Ir [1] или Irth [1] ) и для защиты от короткого замыкания (Im) [1]
  • Его номинальный ток отключения при коротком замыкании (Icu для промышленных выключателей; Icn для выключателей бытового типа).

Номинальное рабочее напряжение (Ue)

Это напряжение, при котором автоматический выключатель рассчитан на работу в нормальных (невозмущенных) условиях.

Автоматическому выключателю также присваиваются другие значения напряжения, соответствующие возмущенным условиям, как указано в разделе «Другие характеристики автоматического выключателя».

Номинальный ток (In)

Это максимальное значение тока, которое автоматический выключатель, оснащенный указанным реле максимального тока, может выдерживать неопределенное время при температуре окружающей среды, указанной производителем, без превышения указанных температурных пределов токоведущих частей.

Пример

Автоматический выключатель, рассчитанный на In = 125 A для температуры окружающей среды 40 ° C, будет оснащен соответствующим образом откалиброванным реле максимального тока (настроено на 125 A). Однако тот же автоматический выключатель может использоваться при более высоких значениях температуры окружающей среды, если он соответствующим образом «понижен». Таким образом, автоматический выключатель при температуре окружающей среды 50 ° C может выдерживать только 117 А в течение неограниченного периода времени или, опять же, только 109 А при 60 ° C, при соблюдении указанного температурного предела.

Таким образом, снижение номинальных характеристик автоматического выключателя достигается за счет уменьшения уставки тока срабатывания его реле перегрузки и соответствующей маркировки выключателя.Использование отключающего устройства электронного типа, разработанного, чтобы выдерживать высокие температуры, позволяет автоматическим выключателям (со сниженными номинальными характеристиками) работать при температуре окружающей среды 60 ° C (или даже 70 ° C).

Примечание: In для автоматических выключателей (в IEC 60947-2) обычно равно Iu для распределительного устройства, Iu — это номинальный непрерывный ток.

Номинальный размер рамы

Автоматическому выключателю, который может быть оснащен расцепителями максимального тока с различными диапазонами настройки уровня тока, присваивается номинал, который соответствует максимальному устройству отключения с настройкой уровня тока, которое может быть установлено.

Пример

Автоматический выключатель Compact NSX630N может быть оснащен 11 электронными расцепителями от 150 до 630 А. Номинальный ток автоматического выключателя составляет 630 А.

Уставка тока срабатывания реле перегрузки (Irth или Ir)

Помимо небольших автоматических выключателей, которые очень легко заменяются, промышленные автоматические выключатели оснащены съемными, т. Е. Заменяемыми, реле максимального тока. Кроме того, чтобы адаптировать автоматический выключатель к требованиям цепи, которую он контролирует, и избежать необходимости прокладки кабелей слишком большого размера, реле отключения обычно регулируются.Уставка тока срабатывания Ir или Irth (обычно используются оба обозначения) — это ток, при превышении которого автоматический выключатель сработает. Он также представляет собой максимальный ток, который автоматический выключатель может выдерживать без отключения. Это значение должно быть больше максимального тока нагрузки IB, но меньше максимально допустимого тока в цепи Iz (см. Главу «Размеры и защита проводов»).

Реле теплового срабатывания обычно регулируются от 0,7 до 1,0 от In, но когда для этого используются электронные устройства, диапазон регулировки больше; обычно 0.4 к 1 разу В.

Пример

(см. рис. х37)

Выключатель NSX630N, оборудованный реле максимального тока Micrologic 6.3E на 400 А, установленным на 0,9, будет иметь уставку тока срабатывания:

Ir = 400 x 0,9 = 360 А

Примечание: Для автоматических выключателей, оборудованных нерегулируемыми реле максимального тока, Ir = In. Пример: для автоматического выключателя iC60N на 20 А,

Ir = In = 20 А.

Рис. H37 — Пример автоматического выключателя Compact NSX630N с номиналом 400 А от Micrologic, настроенным на 0.9, чтобы получить Ir = 360 A

Уставка тока срабатывания реле короткого замыкания (Im)

Реле отключения при коротком замыкании (мгновенного действия или с небольшой выдержкой времени) предназначены для быстрого отключения выключателя при возникновении высоких значений тока повреждения. Их порог срабатывания Im равен:

  • Либо фиксируется стандартами для отечественных автоматических выключателей, например IEC 60898 или
  • Указано производителем для автоматических выключателей промышленного типа в соответствии с соответствующими стандартами, в частности, IEC 60947-2.

Для последних автоматических выключателей существует большое количество отключающих устройств, которые позволяют пользователю адаптировать защитные характеристики автоматического выключателя к конкретным требованиям нагрузки (см. Рис. h38, Рис. h39 и рис. h40).

Рис. H38 — Диапазоны тока отключения устройств защиты от перегрузки и короткого замыкания для выключателей низкого напряжения

Тип реле защиты Защита от перегрузки
Защита от короткого замыкания
Бытовые выключатели IEC 60898 Термомагнитный Ir = In Низкое значение
тип B
3 In ≤ Im ≤ 5 In
Стандартная установка
тип C
5 In ≤ Im ≤ 10 In
Цепь высокой уставки
тип D
10 In ≤ Im ≤ 20 In [a]
Модульные промышленные автоматические выключатели [b] Термомагнитный Ir = In
фиксированный
Низкое значение
тип B или Z
3.2 In ≤ фиксированный ≤ 4,8 дюйма
Стандартная установка
тип C
7 In ≤ фиксированная ≤ 10 In
Высокая уставка
тип D или K
10 In ≤ фиксированная ≤ 14 In
Автоматические выключатели промышленные [b]

IEC 60947-2

Термомагнитный Ir = фиксированный Фиксированное: Im = от 7 до 10 дюймов
Регулируемый:
0,7 In ≤ Ir ≤ In
Регулируемый:
  • Нижняя уставка: от 2 до 5 дюймов
  • Стандартная настройка: от 5 до 10 дюймов
Электронный Длительная задержка
0. 1 2 Для промышленного использования стандарты IEC не определяют значения. Вышеуказанные значения даны только как общеупотребительные.

Рис. H39 — Кривая отключения термомагнитного выключателя

Ir : уставка тока срабатывания реле перегрузки (тепловая или с большой задержкой)
Im : уставка тока срабатывания реле короткого замыкания (магнитная или короткая задержка)
Ii : срабатывание реле мгновенного действия при коротком замыкании- текущая настройка.
Icu : Отключающая способность

Рис. H40 — Кривая отключения автоматического выключателя с усовершенствованным электронным расцепителем

Автоматический выключатель с изоляцией

Автоматический выключатель подходит для разъединения цепи, если он соответствует всем условиям, предписанным для разъединителя (при его номинальном напряжении) в соответствующем стандарте. В таком случае он называется выключателем-разъединителем и маркируется на его лицевой стороне символом.

К этой категории относятся все распределительные устройства Acti 9, Compact NSX и Masterpact LV линейки Schneider Electric.

Номинальная отключающая способность при коротком замыкании (Icu или Icn)

Отключающая способность низковольтного выключателя по току короткого замыкания связана (приблизительно) с cos φ петли тока короткого замыкания. Стандартные значения для этого отношения установлены в некоторых стандартах.

Номинальный ток отключения при коротком замыкании выключателя — это наибольшее (ожидаемое) значение тока, которое выключатель способен отключать без повреждения. Величина тока, указанная в стандартах, представляет собой действующее значение переменной составляющей тока короткого замыкания, т.е.е. переходная составляющая постоянного тока (которая всегда присутствует в наихудшем случае короткого замыкания) предполагается равной нулю для расчета стандартизованного значения. Это номинальное значение (Icu) для промышленных выключателей и (Icn) для выключателей бытового типа обычно выражается в кА (действующее значение).

Icu (номинальная предельная отключающая способность sc) и Ics (номинальная рабочая отключающая способность sc) определены в IEC 60947-2 вместе с таблицей, связывающей Ics с Icu для различных категорий использования A (мгновенное отключение) и B (с выдержкой времени). отключение), как описано в разделе Другие характеристики автоматического выключателя.

Испытания для подтверждения номинальных характеристик н.у. Отключающая способность автоматических выключателей регулируется стандартами и включает:

  • Рабочие последовательности, состоящие из последовательности операций, т.е. замыкание и размыкание при коротком замыкании
  • Смещение фаз тока и напряжения. Когда ток находится в фазе с напряжением питания (cosφ для цепи = 1), прерывание тока легче, чем при любом другом коэффициенте мощности. Прерывание тока при малых значениях запаздывания cosφ значительно труднее; схема с нулевым коэффициентом мощности (теоретически) является наиболее обременительным случаем.

На практике все токи короткого замыкания в энергосистеме имеют (более или менее) отстающие коэффициенты мощности, и стандарты основаны на значениях, которые обычно считаются репрезентативными для большинства энергосистем. Как правило, чем выше уровень тока повреждения (при заданном напряжении), тем ниже коэффициент мощности петли тока повреждения, например, вблизи генераторов или больших трансформаторов.

На рисунке h41 ниже, взятом из IEC 60947-2, приведены стандартизованные значения cos φ для промышленных автоматических выключателей в соответствии с их номинальным значением Icu.

  • После последовательности размыкания — выдержки времени — замыкания / размыкания для проверки емкости Icu выключателя проводятся дальнейшие испытания, чтобы убедиться, что:
    • Устойчивость к диэлектрику
    • Отключение (изоляция) исполнения и
    • Испытание не повлияло на правильную работу защиты от перегрузки.

Рис. H41 — Icu, связанное с коэффициентом мощности (cosφ) цепи тока короткого замыкания (IEC 60947-2)

Icu cosφ
6 кА 0. 1 2 3 Значения уставок тока, которые относятся к токовым тепловым и «мгновенным» магнитным расцепителям для защиты от перегрузки и короткого замыкания.

MCB TRIP — Каковы причины? [Объяснение классов кривой поездки 2020]

Кривые срабатывания автоматического выключателя и автоматического выключателя (B, C, D, K, Z) Кривые срабатывания

MCB используются для отображения номинального тока срабатывания автоматических выключателей.Номинальный ток срабатывания — это минимальный уровень тока, при котором автоматический выключатель срабатывает мгновенно. Ток отключения должен сохраняться не менее 0,1 с, что является требованием для номинального значения.

Кривая отключения может также называться характеристикой отключения I-t. Он состоит из двух секций: секции перегрузки и секции короткого замыкания. Продолжительность отключения, необходимая для уровней токов перегрузки, отображается в разделе перегрузки, в то время как мгновенный уровень тока отключения автоматического выключателя описывается в разделе короткого замыкания.

Что такое отключения MCB

Классы кривых срабатывания:

Кривая срабатывания, класс B

Автоматические выключатели с характеристиками этого класса мгновенно срабатывают, когда токи, протекающие через них, в 3-5 раз превышают номинальный ток. Эти автоматические выключатели используются в основном для защиты кабеля.

Кривая срабатывания, класс C

Обычно автоматические выключатели, которые демонстрируют характеристики этого класса, имеют мгновенные отключения, когда ток, протекающий через них, превышает номинальный ток в 5-10 раз.Таким образом, они подходят для бытовых и бытовых применений и электромагнитных пусковых нагрузок, требующих средних пусковых токов.

Кривая срабатывания, класс D

Автоматические выключатели

с характеристиками этого класса мгновенно срабатывают, если ток, протекающий через них, превышает номинальный ток в 10,1–20 раз. Автоматические выключатели этого класса рекомендуются для использования в индуктивных нагрузках и нагрузках двигателей с высокими пусковыми токами.

Кривая срабатывания, класс K

Автоматические выключатели с характеристиками этого класса мгновенно срабатывают, когда токи, протекающие через них, в 8–12 раз превышают номинальный ток.Эти автоматические выключатели могут использоваться для индуктивных нагрузок и нагрузок двигателя с высокими пусковыми токами.

Кривая срабатывания, класс Z

Автоматические выключатели с характеристиками этого класса мгновенно срабатывают, когда токи, протекающие через них, в 2–3 раза превышают номинальный ток. Эти MCB обычно очень чувствительны к короткому замыканию и могут использоваться для защиты высокочувствительных устройств, таких как полупроводниковые устройства.

MCB Расчеты отключения

Как рассчитать настройки отключения автоматического выключателя

  • Обратите внимание на маркировку силы тока на переключателе MCB.Обычно это значение от 15 до 20. Также обратите внимание на маркировку напряжения на выключателе, это будет от 120 до 240.
  • После определения номинального напряжения и тока умножьте вольты на амперы. Результатом умножения будет максимальная мощность нагрузки, которую цепь может принять перед отключением.

Подробнее: MCB | Все, что вам нужно знать о миниатюрных автоматических выключателях

MCB Причины отключения

Что вызывает отключение автоматических выключателей?

  1. Перегрузка цепи

Одна из основных причин отключения автоматических выключателей — это перегрузка цепи.Это происходит, когда вы пытаетесь заставить цепь давать больше электрического тока, чем ее фактическая емкость. Это приведет к перегреву цепи, что подвергнет опасности все электрические устройства, подключенные к цепи. Возьмем, к примеру, если ваш настольный компьютер подключен к цепи, которая требует 17 ампер, но теперь использует 22 ампера, тогда схема настольной компьютерной системы будет перегрета и повреждена. Автоматический выключатель отключается, чтобы предотвратить перегрев, что может даже предотвратить крупный пожар.Вы можете решить эту проблему, пытаясь перераспределить свои электрические приборы и стараясь отключать их от одних и тех же цепей, чтобы избежать перегрузки цепей. Вы даже можете отключить некоторые устройства, которые в настоящее время не используются, чтобы снизить электрическую нагрузку на автоматический выключатель.

Причины отключения MCB

2 Короткое замыкание

Это еще одна распространенная причина отключения автоматических выключателей. Короткие замыкания даже опаснее перегруженных цепей. Короткое замыкание происходит, когда «горячий» провод касается «нейтрального провода» в одной из ваших электрических розеток.Каждый раз, когда это происходит, через цепь проходит огромное количество тока, что создает огромное количество тепла, больше, чем может выдержать цепь. В этой ситуации MCB отключится, чтобы отключить цепь, чтобы предотвратить опасное происшествие, такое как пожар. Короткие замыкания могут возникать по разным причинам, например, неплотное соединение или неисправная проводка. Вы можете легко определить случай короткого замыкания по запаху гари, который обычно остается вокруг автоматического выключателя. Кроме того, вы можете заметить вокруг него черный или коричневый оттенок.

3 скачка замыкания на землю.

Скачки при замыкании на землю очень похожи на короткие замыкания. Они случаются всякий раз, когда горячий провод соприкасается с заземляющим проводом из чистой меди или корпусом металлической розеточной коробки, который соединен с заземляющим проводом. Когда это происходит, через провод проходит больше электричества, чем может принять цепь. Автоматический выключатель отключается для защиты цепи и устройств от перегрева или возгорания. Вы можете легко определить выбросы замыкания на землю по черному или коричневому цвету вокруг автоматического выключателя.Не упускайте из виду ни одну из этих проблем всякий раз, когда вы их замечаете, потому что, поступая так, вы подвергнете себя, свою семью или соседа по комнате большой опасности. Если ваш MCB часто выезжает из строя, то пришло время известить профессионалов, которые приедут и изучат проблемы. НЕ ПЫТАЙТЕСЬ делать это самостоятельно, если у вас нет должной подготовки.

= >>> Где купить MCB

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *