Как работают люминесцентные лампы: устройство, праметры, схема, плюсы и минусы

Содержание

устройство, праметры, схема, плюсы и минусы


Современные люминесцентные лампы (ЛЛ) прекрасно справляются с освещением жилых, рабочих и технических помещений большой площади и позволяют снизить общее потребление электричества на 50-83%, уменьшив таким способом счета за коммунальные услуги.

В этой статье рассмотрим рабочие характеристики ЛЛ, их устройство, разберем основные преимущества и недостатки в сравнении с другими типами осветительных приборов. В дополнение приведем тематические фото и схемы, а также видеоролики о принципе работы лампочек люминесцентного типа и особенностях их применения.

Содержание статьи:

Принцип работы и устройство ЛЛ

Люминесцентный прибор представляет собой газозарядный источник света, где в ртутных парах электрический разряд создает интенсивное ультрафиолетовое излучение.

Компактные модули люминесцентного типа имеют стандартный цоколь, благодаря которому становятся удобной заменой ярких, но более энергозатратных ламп накаливания.

Как работает люминесцентная лампочка?

В видимый человеческому глазу свет его преображает специальный состав под названием люминофор, состоящий из галофосфата кальция, смешанного с дополнительными элементами.

После подключения к центральной электросети люминесцентной лампы, внутри стеклянной колбы требуется поддерживать так называемый тлеющий разряд.

Он дает возможность обеспечить свечение люминофорного слоя в постоянном режиме и даже в период кратковременного отключения центрального электропитания.

Раньше классическая лампа люминесцентного типа имела вид запаянной с двух сторон трубки, внутри которой находятся пары ртути. Сейчас приборы выпускаются в более разнообразных формах и конфигурациях

Конструкционные особенности прибора

Традиционная лампа люминесцентного типа — это стеклянный цилиндр с внешним диаметром 12, 16, 26 и 38 мм, обычно представленный как:

  • прямая удлиненная трубка;
  • изогнутый U-образный модуль;
  • кольцо;
  • сложная фигура.

В торцевые края герметично впаяны ножки. На их внутренней стороне размещены вольфрамовые электроды, конструктивно напоминающие биспиральные тела накала, встроенные в лампочки «Ильича».

В отдельных типах люминесцентных ламп используются более прогрессивные триспирали, представляющие собой закрученную биспираль. Оснащенные ими приборы имеют повышенный уровень КПД и более низкий порог теплопотери, существенно поднимающие общую эффективность светопотока

С наружной части электродные элементы подпаяны к металлическим штырькам металлического , на которые подается рабочее напряжение.

U-подобные и прямые приборы обычно оснащены цоколями G5 и G13, где буквенная кодировка означает штырьковый тип цокольного элемента, а цифровая показывает, на каком расстоянии друг от друга располагаются рабочие элементы.

Электропроводная среда, располагающаяся внутри стеклянной колбы, обладает отрицательным сопротивлением. Когда между двумя противоположными электродами возникает рост тока, требующий ограничения, оно проявляется и снижает рабочее напряжение.

В схему цепи включения обычной люминесцентной лампочки входит или балластник. Он отвечает за создание высокоуровневого импульсного напряжения, необходимого для корректной активации лампы.

Рисунок показывает внутреннее обустройство лампы люминесцентного типа и наглядно объясняет базовый принцип работы ее основных составных элементов

Помимо этой детали, ЭмПРА комплектуется . Он представляет собой элемент тлеющего разряда, внутри которого располагаются два электрода, окруженные средой инертного газа.

Один из них состоит из биметаллической пластины. В спящем режиме оба электрода находятся в разомкнутом состоянии.

Распространенные виды таких лампочек

Первичная классификация изделий на люминесцентной основе производится по уровню базового давления. Приборы высокого давления используются для осветительных установок большой мощности и наружного уличного освещения.

Лампы низкого давления применяются в быту для подачи света в производственные, технические и жилые помещения различного назначения.

Вид #1 — модули высокого давления

Устройства высокого давления вырабатывают насыщенный светопоток хорошей плотности. Внутренняя поверхность колбового элемента имеет специальное люминофорное покрытие из фторогерманата или арсената магния.

Рабочая мощность таких люминесцентных ламп колеблется в диапазоне 50-2000 Вт.

Ртутные модули высокого давления для корректной работы нуждаются в 220 ваттном номинальном сетевом напряжении. Коэффициент их пульсации обычно составляет от 61 до 74%

Полный розжиг осветительного модуля происходит в течение 3 секунд. Срок службы 80-125-ваттных изделий составляет около 6 000 ч, а лампы от 400 Вт и более могут проработать до 15 000 ч при беспрекословном соблюдении правил эксплуатации, установленных изготовителем.

Вид #2 — изделия низкого давления

ЛЛ низкого давления применяется для обеспечения светопотоком жилых, технических и производственных помещений.

Конструкционно прибор является трубкой из прочного стекла, содержащей внутри аргон под давлением 400 Па и в небольшом количестве ртуть либо амальгаму. На рынке предлагается в самых разнообразных модификациях и оснащается двумя электродными элементами.

Самая низкая температура, которую могут переносить ЛЛ низкого давления, составляет -15 °C. Поэтому для использования на открытых площадках эти источники света считаются неактуальными

Стеклянная колба может иметь самый разный диаметр. Уровень светоотдачи варьируется в зависимости от мощности самого устройства. Для его корректной работы требуется стартер дроссельного типа. Средний срок службы составляет 10 000 часов.

Особенности компактных ЛЛ

ЛЛ компактного типа – это изделия-гибриды, соединяющие в себе некоторые специфические отличительные черты ламп накаливания и характеристики люминесцентов.

Благодаря прогрессивным технологиям и расширившимся инновационным возможностям, имеют небольшой диаметр и некрупные габариты, свойственные лампочкам «Ильича», а также высокий уровень энергоэффективности, характерный для линейки приборов ЛЛ.

ЛЛ компактного типа выпускаются под традиционные цоколи E27, E14, E40 и очень активно вытесняют с рынка классические лампы накаливания за счет обеспечения качественного света при существенно меньшем потреблении электроэнергии

КЛЛ в большинстве случаев оснащаются электронным дросселем и могут использоваться в осветительных приборах специфического типа. Также применяются для замены в новых и раритетных светильниках простых и привычных ламп накаливания.

При всех достоинствах у компактных модулей есть такие специфические недостатки, как:

  • стробоскопический эффект или мерцание – основные противопоказания здесь касаются эпилептиков и людей с различными заболеваниями глаз;
  • выраженный шумовой эффект – в процессе пролонгированного применения появляется акустический фон, способный вызвать определенный дискомфорт у человека, находящегося в помещении;
  • запах – в некоторых случаях изделия издают едкие, неприятные ароматы, раздражающие обоняние.

Последняя позиция чаще наблюдается у безымянных поделок китайского происхождения, а первыми двумя часто страдают даже брендовые приборы, изготовленные согласно всем правилам и современным требованиям. Рейтинг лучших производителей КЛЛ мы привели .

Базовый спектр цветовых температур

Цвет свечения – один из самых важных параметров, напрямую зависящий от состава люминофора, преображающего ультрафиолетовое излучение в свет.

Сегодня к наиболее распространенным относятся 7 определений оттенков потока, вырабатываемого люминесцентными лампами:

  • ЛЕБ – естественный белый с заметным холодным оттенком;
  • ЛДЦ – натуральный дневной с улучшенным качеством цветопередачи;
  • ЛТБ – теплый белый;
  • ЛД – традиционный дневной белый;
  • ЛБ – классический белый;
  • ЛЕЦ – естественный с максимально качественной передачей оттенков;
  • ЛХБ – простой холодный белый.

Для жилых помещений, где человек проводит много времени, подходят оттенки теплой гаммы или натуральные дневные лампы с повышенным уровнем цветопередачи.

Белые и дневные тона, как правило, присутствуют в офисных, рабочих, промышленных помещениях, кабинетах и аудиториях. Они способствуют концентрации внимания, повышают мозговую активность и улучшают общую обучаемость и производительность труда.

Самые холодные оттенки применяются в медицинских учреждениях, лабораториях, больницах и технических помещениях. Они придают предметам дополнительную четкость и усиливают остроту зрения.

Люминесценты для мясных витрин продовольственных магазинов отличаются специально подобранным спектром излучения розового цвета. Он подчеркивает естественные оттенки продукции, делая ее более привлекательной в глазах покупателей

Цветовые компоненты, добавленные в люминофор, позволяют получать розовый, голубой, зеленый и другие необычные ламповые оттенки.

Такие приборы используются в дизайнерских, рекламных и коммерческих целях. С их помощью создают оригинальное свечение, необходимое в конкретном отдельно взятом случае.

Больше информации о цветовой температуре света, особенностях восприятия цвета человеком и нюансах выбора мы писали .

Сильные и слабые стороны устройств

Как у любых технических приспособлений, предназначенных для освещения бытовых и рабочих помещений, у люминесцентных ламп имеются свои слабые и сильные стороны.

На основании этой информации можно определить, где разумнее их использовать, а в каких случаях стоит отдать предпочтение источникам света иного плана.

Положительные стороны ламп

Основным преимуществом люминесцентных изделий считается повышенная светоотдача и хороший уровень КПД. Они обеспечивают помещение освещением, не раздражающим глаз, и демонстрируют нормальную выносливость даже в условиях интенсивной эксплуатации.

Модуль примерно в 5 раз превышает базовую мощность обычной лампочки «Ильича». А 20-ваттный люминесцент дает световой поток, равный тому, что обеспечивает лампа накаливания в 100 Ватт

Разнообразные температуры световых оттенков, приближенные по гамме к естественному солнечному свету, позволяют подобрать подходящий осветительный прибор под различные цели и для помещений любого назначения.

Поток света, выдаваемый модулем, получается не направленным, а рассеянным. Спокойное, приятное глазу сияние исходит не только от вольфрамовой нити, располагающейся внутри, но и от всей наружной поверхности колбы.

Это позволяет использовать люминесцентные источники как для создания общего фонового освещения, так и для организации зонального света.

Для применения в местах, где освещение включается автоматически, согласно сигналам датчиков движения, люминесценты не подходят. Они ограничены по допустимому количеству включений за определенный временной период и при слишком частой активации могут выйти из строя

Продолжительность службы люминесцентных изделий варьируется в зависимости от модели и доходит до 20 000 часов или до 5 лет.

Однако, покупателю следует знать, что этот ресурс лампа вырабатывает только при соблюдении таких условий, как:

  • наличие достаточного объема качественного электропитания без скачков и перепадов;
  • качественный ;
  • определенное количество активаций, обычно, не более 2000 за первые 2 года использования, что составляет всего 5 включений в день.

Нарушение этих базовых условий существенно ухудшит эффективность осветительного прибора, и значительно укоротит срок его жизни.

Модули можно использовать для освещения теплиц. Они обеспечивают естественный свет, максимально приближенный к солнечному, не потребляют много электропитания и проявляют хорошую стойкость к перепадам напряжения, характерным для загородных энергоподающих сетей

Уровень энергопотребления у люминесцентов почти в 5 раз ниже, чем у традиционных изделий, поэтому их можно отнести к источникам света.

С их помощью удастся эффективно осветить большое помещение, не расходуя при этом больших денег на коммунальные платежи.

Рабочая температура на поверхности колбы не превышает 50 градусов. Это дает возможность эксплуатировать лампу в помещениях, где к пожарной безопасности предъявляются повышенные требования.

Основные недостатки модулей

Первым большим минусом изделий является излишняя чувствительность к температурным перепадам. Они сильно реагируют на движение ртутного столбика и могут перестать работать при похолодании ниже -20 °C.

Жара, превышающая +50 °C, далеко не лучшим образом сказывается на функционировании и серьезно ограничивает спектр использования этих источников света.

Влаговоспримчивость тоже не относится к плюсам и не позволяет широко применять изделия в ванных комнатах и санитарных помещениях.

Со временем люминофор в ламповых колбах деградирует и спектр излучения изменяется. Параллельно падает уровень светоотдачи прибора и заметно снижается КПД

Иногда к недостаткам причисляется и сам светопоток, имеющий линейчатый, неравномерный спектр, искажающий естественные оттенки находящихся в комнате предметов.

Не все ощущают это визуально, но для тех, кто улавливает этот минус слишком явственно, продаются лампы с люминофором, приближенным к сплошному, более натуральному спектральному цвету. Правда, их светоотдача существенно меньше.

Случаются ситуации, когда люминесценты мерцают с удвоенной частотой питающей сети. Проблема эта решаема некоторым усовершенствованием прибора, в частности, применением с подходящим уровнем емкости сглаживающего конденсатора выпрямленного тока на входе инвертора.

Но то, что производители пытаются сэкономить и не комплектуют приборы конденсаторами необходимой емкости, несколько огорчает.

Бытовые ЛЛ модули лучше всего себя чувствуют, когда температура окружающего воздуха держится в диапазоне от +5 до +35 ˚С. Когда градусник демонстрирует меньшие показатели, пуск устройства существенно затрудняется, а время эксплуатации заметно сокращается

Потребность в дополнительном пусковом устройстве тоже немного снижает популярность ламп. Им обязательно требуется либо чрезмерно шумный и довольно громоздкий дроссель со стартером низкой надежности или более прогрессивный ЭПРА, имеющий функцию корректировки мощности, но при этом стоящий солидных денег.

Еще одно уязвимое место люминесцентов – высокая чувствительность к включению. Во время непосредственной активации лампы на электродах выгорает и осыпается особый состав, который обеспечивает стабильность разряда и защищает внутреннюю вольфрамовую нить от перегрева.

Постоянное включение существенно снижает срок службы прибора. Кроме того, появляется заметное глазу, раздражающее мерцание, а края ламповой колбы темнеют и теряют эстетичность.

Химическая угроза здоровью

Одним из основных недостатков люминесцентных источников света является химическая опасность. В ламповой колбе содержится высокотоксичная ртуть, причем ее количество колеблется от 1 до 70 мг.

Пары этого вещества могут нанести вред здоровью людей, постоянно находящихся в помещениях, освещаемых приборами ЛЛ типа.

Целостность отработавшей лампы нельзя нарушать, иначе токсичная ртуть попадет во внешнюю среду. За несанкционированную утилизацию предусмотрен штраф, поэтому лучше передать изделие в центр, занимающийся переработкой элементов, опасных для природы и человека

Когда модуль выходит из строя, его ни в коем случае нельзя разбивать или отправлять в обыкновенную урну. Его необходимо и правилам, четко описанным в действующем законодательстве.

Например, отвозить на полигоны, где от населения принимают токсичные материалы для их корректного уничтожения или переработки.

Сравнение с другими источниками света

Изделия ЛЛ-типа существенно отличаются как от устаревающих ламп накаливания, так и от прогрессивных светодиодных.

По сравнению с первыми они потребляют в 5 раз меньше электроэнергии, обеспечивая при этом такой же уровень насыщенности светопотока. Зато LED-приборам они несколько уступают по мощности в сочетании с энергопотреблением.

Таблица наглядно в цифрах показывает, насколько выгоднее использовать вместо традиционных лампочек Эдисона более современные источники качественного освещения

Правда, лампа накаливания весь период работы горит с одинаковой интенсивностью, тогда как люминесценты теряют часть насыщенности из-за выгорания внутреннего слоя, отражающего ультрафиолет.

LED-изделия в процессе эксплуатации приобретают некоторую тусклость благодаря деградации рабочих диодов. А в отдельных моделях есть возможность регулировки яркости освещения при помощи диммера.

В лампах накаливания или люминесцентах такая функция не предусмотрена. Но этот удобный режим в LED-приборах не бесплатен и за него придется отдать дополнительную сумму.

По уровню конструкционной хрупкости лампы накаливания и люминесценты схожи, так как имеют стеклянную колбу. Лед-модули в этом плане более устойчивы к ударам и механическим повреждениям. Да и отсутствие внутри каких-либо вредных и токсичных элементов делает их значительно привлекательнее для эксплуатации в домашних условиях.

Самые высокие расходы за весь эксплуатационный период влечет за собой использование ламп накаливания. Люминесценты расходуют энергию в разумных пределах, а светодиоды дают возможность снизить затраты до самых минимальных показателей

Что касается финансовой стороны, то изначально меньше других стоит лампочка накаливания. Однако, учитывая ее рабочий ресурс всего в 1 000 часов, это вряд ли можно считать ярко выраженным достоинством.

Базовая цена люминесцентов выше, однако, и служат они значительно дольше. Как говорят солидные производители, их хватает на 10 000-15 000 часов в том случае, если количество ежедневных активаций не превышает 5-6 раз.

Светодиодные модули могут похвастаться еще лучшими показателями, но и заплатить за это удовольствие придется намного больше, а это не во всех случаях целесообразно. Хотя тенденция замены одних источников света другими, прослеживается повсеместно. О необходимости замены люминесцентных лампочек светодиодными и порядке выполнения этой работы .

Выводы и полезное видео по теме

По какому принципу работают люминесценты. Подробное объяснение всех нюансов функционирования экономичных и энергоэффективных приборов для освещения:

В чем заключаются основные отличия люминесцентных элементов от простых и традиционных ламп накаливания. Сравнение мощности, светопотока и энергопотребления двух современных осветительных изделий:

Что собой представляют компактные энергосберегающие лампочки люминесцентного типа. Как они работают, сколько ватт потребляют и для каких целей используются:

Прибор люминесцентного типа – это практичный аналог классической лампы накаливания. С его помощью можно обеспечить качественным светопотоком помещение любых габаритов, снизив при этом энергопотребление. Прослужит он долго и не доставит владельцам никаких существенных хлопот.

Потом, когда лампы отработают свой срок, их понадобится утилизировать, а взамен купить новые, более прогрессивные модули.

А какой тип лампочек предпочитаете вы и что думаете о лампочках-люминесцентах? Поделитесь с другими пользователями своим мнением, расскажите, в чем вы видите основные плюсы ЛЛ, а что, лично для вас, является существенным недостатком этих приборов.

Если вы владеете хорошими теоретическими знаниями по теме вышеизложенной статьи и хотите дополнить наш материал полезными нюансами, пишите, пожалуйста, свои комментарии в блоке ниже.

Как работает люминесцентная лампа

Люминесцентная лампа, явившаяся результатом целого ряда открытий и исследований (подробнее об этом в статье история люминесцентной лампы), сегодня стала одним из основных источников искусственного света, как в офисных помещениях, так и в частных домах и квартирах. Ряд выгодных отличий от популярной еще пару десятков лет назад лампы накаливания, позволили люминесцентной лампе достаточно успешно конкурировать с «фаворитными» источниками света, а также привело к созданию ее боле совершенных и компактных модификаций. Но речь в этой статье пойдет не о ее достоинствах или недостатках, а о том, как она работает.

Все виды люминесцентных ламп, будь то популярные сейчас «экономки» или старые длинные лампы дневного света, построены и работают примерно по одному и тому же принципу. Отличие может быть лишь в электронной схеме подключения к источнику питания.

Конструкция люминесцентной лампы

Лампа состоит из стеклянной колбы (может быть самой разнообразной формы и размеров), двух (иногда четырех) электродов, инертного газа, ртути (паров), люминофора и схемы запуска (в экономках она находится внутри корпуса лампы).

Электрод представляет собой два проводящих электрических контакта (обычно из проволоки), к которым подводится электрический ток и нить накала, покрытую специальным эмиссионным веществом для более эффективного испускания электронов в процессе работы и большей продолжительности  службы самой лампы.

Принцип работы люминесцентной лампы

Когда электрическая цепь лампы подает на электроды ток, они начинают постепенно разогреваться и испускать электроны. Но этих электронов недостаточно, чтобы зажечь между электродами, так называемый тлеющий разряд – поток ионизированных частиц газа. Тогда в работу вступает та часть схемы управления, которая отвечает за запуск лампы. Кратковременный импульс напряжения зажигает инертный газ в лампе, а затем и пары ртути. Симбиоз этих веществ, ионизированных электрическим током, приводит к возникновению свечения в невидимой для нас ультрафиолетовой области спектра.

Чтобы преобразовать ультрафиолетовый свет в видимый свет, используется люминофор, нанесенный на стенки стеклянной колбы. Получается двойное преобразование. Сначала электроны, испускаемые электродами лампы, ионизируют газ и пары ртути, а затем ионизированные частицы возбуждают люминофор, заставляя его испускать видимый для нашего глаза свет.

Разница в принципе работы обычной длинной лампы дневного света и «экономки» лишь в том, что в первом случае схема запуска состоит из дросселя (индуктивности), конденсатора и стартера. Во втором же эти функции выполняет более сложная электрическая схема, в состав которой входят другие электронные компоненты.

Сейчас производители используют различный состав люминофора, чтобы менять цвет свечения люминесцентных ламп или как еще говорят – его температуру. Более желтое (теплое) свечение имеет температуру порядка 2700 К, естественное дневное (белое) – порядка 4100 К, я яркое (холодный свет) – примерно 6000 К. Подобную маркировку можно встретить и на самих лампах.

< Предыдущая   Следующая >

Принцип работы люминесцентной лампы и ее устройство

Принцип работы люминесцентной лампы базируется на эффекте классической люминесценции.

Электрическим разрядом в ртутных парах создаётся ультрафиолетовое излучение, преобразуемое посредством люминофора в видимое свечение.

При самостоятельном подключении и ремонте таких осветительных приборов учитываются особенности устройства и принцип их действия.

Устройство люминесцентной лампы

Люминесцентная лампа относится к категории классических разрядных источников освещения низкого давления. Стеклянная колба такой лампы всегда имеет цилиндрическую форму, а наружный диаметр может составлять 1,2см, 1,6см, 2,6см или 3,8см.

Цилиндрический корпус чаще всего прямой или U-изогнутый. К торцевым концам стеклянной колбы герметично припаиваются ножки с электродами, выполненными из вольфрама.

Устройство лампочки

Внешней стороной электроды подпаиваются к цокольным штырям. Из колбы осуществляется тщательное откачивание всей воздушной массы через специальный штенгель, расположенный в одной из ножек с электродами, после чего происходит заполнение свободного пространства инертным газом с ртутными парами.

На некоторые типы электродов в обязательном порядке производится нанесение специальных активирующих веществ, представленных окислами бария, стронцием и кальцием, а также незначительным количеством тория.

Схема

Стандартная схема подключения люминесцентной лампы значительно сложнее, нежели процесс включения традиционной лампы накаливания.

Требуется применять особые пусковые устройства, качественные и мощностные характеристики которых оказывают непосредственное влияние на сроки и удобство эксплуатации осветительного прибора.

Схема подключения люминесцентных ламп без дросселя и стартера

В настоящее время практикуется несколько схем подключения, которые отличаются не только по уровню сложности выполняемых работ, но и набором используемых в схеме устройств:

  • подключение с применением электромагнитного балласта и стартера;
  • подключение с электронным пускорегулирующим аппаратом.

Второй вариант подключения предполагает генерирование высокочастотного тока, а сам непосредственный запуск и процесс работы осветительного прибора запрограммированы электронной схемой.

Схема подключения лампы с дросселем и стартером

Чтобы правильно выполнить подключение осветительного прибора, необходимо знать устройство дросселя и стартера, а также учитывать правила подключения такого оборудования.

Как загорается люминесцентная лампа?

Как работает люминесцентная лампа? Функционирование люминесцентного осветительного прибора обеспечивается следующими поэтапными действиями:

  • на электроды, расположенные на цокольных штырях, подаётся напряжение;
  • высокое сопротивление газовой среды в лампе провоцирует поступление тока через стартер с образованием тлеющего разряда;
  • ток, проходящий через электродные спирали, в достаточной степени прогревает их, а разогретые стартерные биметаллические контакты замыкаются, что прекращает разряд;
  • после остывания стартерных контактов происходит их полное размыкание;
  • самоиндукция вызывает возникновение импульсного напряжения дросселя, достаточного для включения освещения;
  • проходящий через газовую среду ток уменьшается, а полное отключение стартера обуславливается недостаточностью напряжения.

Лампы спецназначения

Основным назначением устанавливаемых конденсаторов является эффективное снижение помех. Входные конденсаторы обеспечивают существенное понижение реактивной нагрузки, что важно при необходимости получить качественное освещение и продлить срок службы прибора.

Блок 1

Для чего нужен дроссель в люминесцентной лампе

Дроссель позволяет обеспечить требуемый для полноценного функционирования лампы электрический импульс. Принцип такого дополнительного устройства основан на сдвиге фазы переменного тока, что способствует получению необходимого количества тока для горения паров, которыми наполнена внутренняя часть лампы.

В зависимости от уровня мощности, рабочие параметры дросселя и сфера его использования могут варьироваться:

  • 9 Вт — для стандартной энергосберегающей лампы;
  • 11 w и 15 w — для миниатюрных или компактных осветительных приборов и энергосберегающих ламп;
  • 18 w — для настольных осветительных приборов;
  • 36 Вт — для люминесцентного светильника с малыми показателями мощности;
  • 58 Вт — для потолочных светильников;
  • 65 Вт — для многоламповых приборов потолочного типа;
  • 80 Вт — для мощных осветительных приборов.

При выборе нужно также ориентироваться на индуктивное сопротивление, регулирующее показатели мощности тока, подающегося на контакты люминесцентного осветительного прибора.

Принцип работы стартера люминесцентной лампы

Конструкция устройства представлена компактной стеклянной колбой, заполненной инертным газом. Колба установлена внутри металлического или пластикового корпуса, с парой электродов, один из которых относится к биметаллическому типу.

Напряжение на зажигание стартера не должно быть выше, чем номинальное напряжение питающей сети. В процессе подключения схемы запуска к питающей электросети, значительная часть напряжения переходит на разомкнутые стартерные электроды. Под воздействием напряжения обеспечивается образование тлеющего разряда, небольшая часть которого используется для разогрева биметаллических электродов.

Схема работы стартера

Результатом нагревания становится изгиб и замыкание электроцепи, с последующим прекращением тлеющего разряда внутри стартера. Проход тока по цепи последовательно соединенных дросселя и катодов вызывает их эффективный прогрев. Временем замкнутого состояния стартерных электродов определяется продолжительность прогрева катодов любой люминесцентной лампы.

Средний срок эксплуатации стартера равен продолжительности работы осветительного прибора, но с течением времени уровень интенсивности напряжения тлеющего внутреннего разряда заметно понижается.

Устройство и принцип работы люминесцентного светильника

Современные люминесцентные светильники относятся к категории наиболее распространенных типов надежных и долговечных осветительных приборов. Если до недавнего времени такие устройства использовались преимущественно в обустройстве освещения административных и офисных зданий, то в последние годы они всё чаще находят применение в жилых помещениях.

Источник света в таких видах светильников представлен люминесцентной или газоразрядной лампой, функционирующей благодаря свойству некоторых газообразных и парообразных веществ достаточно мощно светиться в условиях электрического поля.

Светильник люминесцентный

Люминесцентные лампы, устанавливаемые в малогабаритные и компактные светильники, могут обладать кольцевидной, спиралевидной или любой другой формой, что положительно сказывается на габаритах осветительного прибора.

Выпускаемые лампы принято подразделять на линейные и компактные модели. Первый вариант имеет характерные отличия по длине, а также диаметру колбы. Компактные модели имеют, как правило, изогнутую трубку, а основные различия представлены типом цоколя.

Блок 2

Несмотря на кажущуюся простоту устройства, и несложный принцип работы люминесцентной лампы, чтобы продлить срок службы прибора и получить качественное освещение, важно строго соблюдать схему подключения и использовать комплектующие только от проверенных и хорошо зарекомендовавших себя производителей.

Видео на тему

Схема подключения и принципы работы люминесцентных ламп.

Среди всех источников искусственного света самыми распространенными сегодня являются люминесцентные лампы. Благодаря тому что они в 5-7 раз экономичнее ламп накаливания и гораздо дешевле самых сверхэффективных на сегодня- светодиодных.

Люминесцентные лампы сегодня можно встретить на каждом шагу. Они используются преимущественно для освещения в магазинах, супермаркетах, учебных заведениях, общественных зданиях, а после появления компактных вариантов, подходящих под обычные патроны E27 и E14 домашних светильников и люстр, люминесцентные лампы стали широко применяться для освещения в многоквартирных квартирах и частных домах.

Принцип работы.

Люминесцентная лампа — это газоразрядный источник света, внутри стрелянной трубы протекает электрический разряд между двумя спиралями (катодом и анодом), расположенными  с обоих сторон. Пары ртути под воздействием электрического разряда излучают невидимое для наших глаз ультрафиолетовое излучение, которое затем преобразовывается в видимый свет при помощи нанесенного по внутренней поверхности лампы люминофора, состоящего из смеси фосфора с другими элементами.

Схема подключения с применением электромагнитный балласта или  ЭмПРА.

ЭмПРА — это сокращенная аббревиатура- Электромагнитный Пускорегулирующий Аппарат. Часто называемый, как дроссель. Его мощность должна соответствовать общей мощности подключаемым к нему лампам.
Это довольно старая (активно применяемая еще в советское время) простая стартерная схема подключения к электросети  люминесцентной лампы дневного света.

Стартер — это миниатюрная лампочка с неоновым наполнением с  двумя биметаллическими электродами внутри, которые разомкнуты в нормальном положении.

Принцип работы: при включении электропитания в стартере возникает разряд и замыкаются накоротко биметаллические электроды, после чего ток в цепи электродов и стартера ограничивается только внутренним сопротивлением дросселя, в результате чего возрастает почти в три раза больше  рабочий ток в лампе и моментально разогреваются  электроды люминесцентной лампы. Одновременно с этим остывают биметаллические контакты стартера и цепь размыкается.
В этот момент разрыва дроссель, благодаря самоиндукции создает запускающий высоковольтный импульс (до 1 кВольта), который приводит к разряду в газовой среде и зажигается лампа. После этого напряжение на ней будет равняться половине от сетевого, которого будет недостаточно  для повторного замыкания электродов стартера.
Если лампа светит стартер не будет участвовать в схеме работы и его контакты всегда будут разомкнуты.

Часто встречается последовательная схема включения  2 ламп, для работы в которой применяются стартеры на 127 Вольт,  но они не будут работать в одноламповой схеме, для которой понадобятся стартеры на 220 Вольт!

 

Недостатки  схемы ПРА:

  1. По сравнению со схемой с электронным балластом на 10-15 % больший расход электроэнергии.
  2. Долгий запуск  не менее 1 до 3  секунд (зависимость от износа лампы).
  3. Звук от гудения пластин дросселя, возрастающий со временем.
  4. Стробоскопический эффект мерцания лампы, что негативно влияет на зрение, при чем  детали станков, вращающихся синхронно с частотой сети-  кажутся неподвижными.
  5. Неработоспособность при низких температурах окружающей среды. Например, зимой в неотапливаемом гараже.

Схема подключения с применением электронного балласта или ЭПРА.

Электронный Пускорегулирующий Аппарат (сокращенно-  ЭПРА) в отличии от электромагнитного-  подает на лампы  напряжение не сетевой частоты, а высокочастотное от 25 до 133 кГц. А это полностью исключает возможность появления заметного для глаз мигания ламп. В ЭПРА используется автогенераторная схема, включающая трансформатор и выходной каскад на транзисторах.

Схемы подключений бывают разные, как правило они наносятся сверху на блоке и не вызывают трудности в подключении. Давайте рассмотрим пример.


Слева, L – фаза и N- ноль от электропитания. Один провод общий на контакты с левой стороны и два — раздельные.
Справа, 4 контакта. По два на каждую нить накала. Только соблюдайте схему подключения на каждую лампу с обоих сторон.

Преимущества схем с ЭПРА:

  • Увеличение срока службы люминесцентных ламп, благодаря специальному режиму работы и запуска.
  • По сравнению с ПРА до 20% экономия электроэнергии.
  • Отсутствие в процессе работы шума и мерцания.
  • Отсутствует в схеме  стартер, который часто ломается.
  • Специальные модели выпускаются с возможностью диммирования  или регулирования яркости свечения.

Как Вы уже поняли у ЭПРА  много преимуществ,  именно поэтому Мы только и рекомендуем их использовать.
Дополнительно прочитайте по этом теме нашу статью  ”Характеристики люминесцентных ламп и светильников”.

Как работает лампа дневного света схема. Из чего состоит люминесцентная лампа

Люминесцентные светильники давно удерживают первенство в освещении нашего быта, чему способствуют долговечность и экономичность данных устройств. Схем подключения люминесцентного светильника существует много, и у каждой из них есть свои особенности.
Сначала разберемся в принципе работы самой лампы . Длинная стеклянная трубка от нескольких сантиметров до… Если учитывать всевозможные современные спирали и изгибы, я не знаю, какова их может быть конечная длина? Мы все же займемся прямыми трубками, которые ограничивались в недавнем прошлом 80 ваттами, и тех, наверное, уже не существует.
Труба заполнена инертным газом с присутствием капельки ртути. Кстати, из-за ртути и утилизируют использованные люминесцентные лампочки в установленном законом порядке, иначе бы случилась экологическая катастрофа.
Суть работы лампы такова: между двумя электродами, представляющими собой нити накала на концах колбы, надо сделать устойчивый электрический пробой , испаряющий и ионизирующий ртуть. Ионизированные пары ртути создают ультрафиолетовое излучение , воздействующее на люминофор , которым изнутри покрыта колба. В зависимости от состава люминофора свечение может принимать все оттенки радуги.
Наверное, слышали о бактерицидных лампах или о кварцевании ? Так вот в этих светильниках люминофор отсутствует, стекло кварцевое, без препятствий пропускающее ультрафиолетовые лучи, более того, в салонах для загара именно такие светильники и применяются, а ультрафиолет может и раковую опухоль нажить — возьмите на заметку!
Как же создается электрический пробой? Рассмотрим некоторые варианты схем подключения люминесцентного светильника.

схема подключения однолампового люминесцентного светильника

Для начала надо разогреть нити накала, чтоб они могли излучать электроны — это называется электронной эмиссией . Данную функцию выполняет стартер . Его контакты настолько близки друг от друга, что при подаче 220В возникает между ними дуга, разогревающая биметаллическую пластину устройства. Пластина соединяется с рядом стоящим контактом, замыкая цепь накала люминесцентной лампы. Цепочка соединений всех элементов схемы представлена на Рис.1, по-моему, комментировать здесь нечего. О роли конденсаторов читайте ниже.
Чтобы не было короткого замыкания, в цепь подключается пускорегулирующий аппарат — ПРА , ограничивающий пусковой ток. Это катушка индуктивности, намотанная на сердечник из электротехнической стали, отсюда и название «дроссель».
Как только разогретые электроды начинают излучать электроны, напряжение на контактах стартера падает, они разрываются, на дросселе возникает высокое напряжение самоиндукции , способное между электродами создать устойчивый электрический пробой. Люминесцентный светильник зажигается, напряжение на лампочке падает наполовину засчет ПРА, и стартер, выполнив свою функцию, уходит на отдых до следующего этапа зажигания. Его в это время можно даже удалить, все равно светильник будет работать.

схема подключения двухлампового люминесцентного светильника

Смотря какие лампочки подключаете. Если лампы-сороковки, то это простое параллельное подключение: к схеме, указанной чуть выше, добавить еще такую, получим двухламповый люминесцентный светильник. Здесь присутствуют два конденсатора (раньше были, теперь их может и не быть). Маленький конденсатор (С1) уничтожает радиопомехи, большой (С2) — дросселя. Резистор R предназначен для разрядки С2 после выключения. Уберем это усложнение — все равно будет успешное зажигание, что, в общем-то, в современных светильниках и делается.


Другое дело, двадцатки — лампочки мощностью 18Вт (Рис.2 и 3). Их рабочее напряжение всего 60В, тогда как сороковки (36Вт) работают на 108 вольтах, поэтому 18-ваттные часто подключаются к сети 220В парой. Соединяются они последовательно, и у каждой — свой стартер, но балласт общий. Четырехламповые светильники 18Вт — просто два двухламповых в одном. Техника зажигания все та же.
Санитарные нормы не рекомендуют длительное пребывание в местах, освещенных стартерными люминесцентными светильниками, ввиду негативного воздействия мерцающего эффекта на зрение. В качестве альтернативы предлагается

схема подключения люминесцентного светильника с ЭПРА.

ЭПРА — это электронный пускорегулирующий аппарат , представляющий собой своеобразный преобразователь частоты и умножитель напряжения. Высокая частота, на которой работает с этим аппаратом люминесцентная лампа, становится не заметна глазу. Такая схема подключения люминесцентного светильника не только безопасна, но еще и экономичнее, в плане потребления электроэнергии, процентов на 15. Значительная потеря в массе из-за отсутствия электротехнической стали делает светильник более удобным при установке.
Основной упор ЭПРА делает на схему подключения двухлампового люминесцентного светильника, схема вычерчивается на крышке аппарата, поэтому проблемы с подключением сводятся к минимуму.


На моем рисунке фаза сети подается на клемму L, рядом — клемма N, на которую подключается «ноль», а на третий контакт. Все остальное видно на чертеже. Конечно, модификаций ЭПРА много, но не стоит бояться замены одного другим, чертеж на крышке все расставит по своим местам, только если монтаж проводов светильника изменить придется.

Люминесцентные лампы — 2-ой в мире по распространенности источник света, а в Стране восходящего солнца они занимают даже 1-ое место, обогнав лампы накаливания. Раз в год в мире делается более 1-го млрд люминесцентных ламп.

1-ые образцы люминесцентных ламп современного типа были показаны американской
компанией General Electric на Глобальной выставке в Нью-Йорке в 1938 году. За 70 лет существования они крепко вошли в нашу жизнь, и на данный момент уже тяжело представить какой-либо большой магазин либо кабинет, в каком не было бы ни 1-го осветительного прибора с люминесцентными лампами.

Люминесцентная лампа — это обычный разрядный источник света низкого давления , в каком разряд происходит в консистенции паров ртути и инертного газа , в большинстве случаев — аргона. Устройство лампы показано на рис. 1.


Пробирка лампы — это всегда цилиндр 1 из стекла с внешним поперечником 38, 26, 16 либо 12 мм. Цилиндр может быть прямым либо изогнутым в виде кольца, буковкы U либо более сложной фигуры. В торцевые концы цилиндра герметично впаяны стеклянные ножки 2, на которых с внутренней стороны смонтированы электроды 3. Электроды по конструкции подобны биспиральному телу накала ламп накаливания и также делаются из вольфрамовой проволоки. В неких типах ламп электроды изготовлены в виде триспирали, другими словами спирали из биспирали. С внешней стороны электроды подпаяны к штырькам 4 цоколя 5. В прямых и U-образных лампах употребляется только два типа цоколей — G5 и G13 (числа 5 и 13 указывают расстояние меж штырьками в мм).

Как и в лампах накаливания, из пробирок люминесцентных ламп воздух кропотливо откачивается через штенгель 6, впаянный в одну из ножек. После откачки объем пробирки заполняется инертным газом 7 и в него вводится ртуть в виде маленький капли 8 (масса ртути в одной лампе обычно около 30 мг ) либо в виде так именуемой амальгамы, другими словами сплава ртути с висмутом, индием и другими металлами.

На биспиральные либо триспиральные электроды ламп всегда наносится слой активирующего вещества — это обычно смесь окислов бария, стронция, кальция, время от времени с маленький добавкой тория.

Если к лампе приложено напряжение большее, чем напряжение зажигания, то в ней меж электродами появляется электронный разряд, ток которого непременно ограничивается какими-либо наружными элементами. Хотя пробирка заполнена инертным газом, в ней всегда находятся пары ртути, количество которых определяется температурой самой прохладной точки пробирки. Атомы ртути возбуждаются и ионизируются в разряде еще легче, чем атомы инертного газа, потому и ток через лампу, и ее свечение определяются конкретно ртутью.

В ртутных разрядах низкого давления толика видимого излучения не превосходит 2 % от мощности разряда, а световая отдача ртутного разряда — всего 5-7 лм/Вт. Но больше половины мощности, выделяемой в разряде, преобразуется в невидимое уф-излучение с длинами волн 254 и 185 нм. Из физики понятно: чем короче длина волны излучения, тем большей энергией это излучение обладает. При помощи особых веществ, именуемых люминофорами, можно перевоплотить одно излучение в другое, при этом, по закону сохранения энергии, «новое» излучение может быть только «менее энергичным», чем первичное. Потому уф-излучение можно перевоплотить в видимое при помощи люминофоров, а видимое в ультрафиолетовое — нельзя.

Вся цилиндрическая часть пробирки с внутренней стороны покрыта узким слоем конкретно такового люминофора 9, который и превращает уф-излучение атомов ртути в видимое. В большинстве современных люминесцентных ламп в качестве люминофора употребляется галофосфат кальция с добавками сурьмы и марганца (как молвят спецы, «активированный сурьмой и марганцем»). При облучении такового люминофора уф-излучением он начинает сиять белоснежным светом различных цветов. Диапазон излучения люминофора — сплошной с 2-мя максимумами — около 480 и 580 нм (рис. 2).

1-ый максимум определяется наличием сурьмы, 2-ой — марганца. Меняя соотношение этих веществ (активаторов), можно получить белоснежный свет различных цветовых цветов — от теплого до дневного. Потому что люминофоры превращают в видимый свет больше половины мощности разряда, то конкретно их свечение определяет светотехнические характеристики ламп.

В 70-е годы прошлого века начали делать лампы не с одним люминофором, а стремя, имеющими максимумы излучения в голубой, зеленоватой и красноватой областях диапазона (450, 540 и 610 нм). Эти люминофоры были сделаны сначало для кинескопов цветного телевидения, где с помощью их удалось получить полностью применимое проигрывание цветов. Композиция 3-х люминофоров позволила и в лампах достигнуть существенно наилучшей цветопередачи при одновременном увеличении световой отдачи, чем при использовании галофосфата кальция. Но новые люминофоры еще дороже старенькых, потому что в их употребляются соединения редкоземельных частей — европия, церия и тербия. Потому в большинстве люминесцентных ламп как и раньше используются люминофоры на базе галофосфата кальция.

Электроды в люминесцентных лампах делают функции источников и приемников электронов и ионов, за счет которых и протекает электронный ток через разрядный просвет. Для того чтоб электроны начали перебегать с электродов в разрядный просвет (как молвят, для начала термоэмиссии электронов), электроды должны быть нагреты до температуры 1100 – 1200 0С. При таковой температуре вольфрам сияет очень слабеньким вишневым цветом, испарение его сильно мало. Но для роста количества вылетающих электронов на электроды наносится слой активирующего вещества, которое существенно наименее термостойко, чем вольфрам, и при работе этот слой равномерно распыляется с электродов и оседает на стенах пробирки. Обычно конкретно процесс распыления активирующего покрытия электродов определяет срок службы ламп.

Для заслуги большей эффективности разряда, другими словами для большего выхода уф-излучения ртути, нужно поддерживать определенную температуру пробирки. Поперечник пробирки выбирается конкретно из этого требования. Во всех лампах обеспечивается приблизительно однообразная плотность тока — величина тока, деленная на площадь сечения пробирки. Потому лампы разной мощности в колбах 1-го поперечника, обычно, работают при равных номинальных токах. Падение напряжения на лампе прямо пропорционально ее длине. А потому что мощность равна произведению тока наальна их д напряжение, то при схожем поперечнике пробирок и мощность ламп прямо пропорционлине. У самых массовых ламп мощностью 36 (40) Вт длина равна 1210 мм, у ламп мощностью 18 (20) Вт — 604 мм.

Большая длина ламп повсевременно заставляла находить пути ее уменьшения. Обычное уменьшение длины и достижение подходящих мощностей за счет роста тока разряда нерационально, потому что при всем этом возрастает температура пробирки, что приводит к повышению давления паров ртути и понижению световой отдачи ламп. Потому создатели ламп пробовали уменьшить их габариты за счет конфигурации формы — длинноватую цилиндрическую пробирку сгибали напополам (U-об- различные лампы) либо в кольцо (кольцевые лампы). В СССР уже в 50-е годы делали U-образные лампы мощностью 30 Вт в пробирке поперечником 26 мм и мощностью 8 Вт в пробирке поперечником 14 мм.

Но кардинально решить делему уменьшения габаритов ламп удалось исключительно в 80-е годы, когда начали использовать люминофоры, допускающие огромные электронные нагрузки, что позволило существенно уменьшить поперечник пробирок. Пробирки стали делать из стеклянных трубок с внешним поперечником 12 мм и неоднократно изгибать их, сокращая тем общую длину ламп. Появились так называемые компактные люминесцентные лампы. По механизму работы и внутреннему устройству малогабаритные лампы не отличаются от обыденных линейных ламп.

Посреди 90-х годов на мировом рынке появилось новое поколение люминесцентных ламп, в маркетинговой и технической литературе называемое «серией Т5» (в Германии — Т16). У этих ламп внешний поперечник пробирки уменьшен до 16 мм (либо 5/8 дюйма, отсюда и заглавие Т5). По механизму работы они также не отличаются от обыденных линейных ламп. В конструкцию ламп внесено одно очень принципиальное изменение — люминофор с внутренней стороны покрыт узкой защитной пленкой, прозрачной и для ультрафиолетового, и для видимого излучения. Пленка защищает люминофор от попадания на него частиц ртути, активирующего покрытия и вольфрама с электродов, по этому исключается «отравление» люминофора и обеспечивается высочайшая стабильность светового потока в течение срока службы. Изменены также состав наполняющего газа и конструкция электродов, что сделало неосуществимой работу таких ламп в старенькых схемах включения. Не считая того — в первый раз с 1938 года — изменены длины ламп таким макаром, чтоб размеры осветительных приборов с ними соответствовали размерам стандартных модулей очень престижных на данный момент навесных потолков.

Люминесцентные лампы, в особенности последнего поколения в колбах поперечником 16 мм, существенно превосходят лампы накаливания по световой отдаче и сроку службы. Достигнутые сейчас значения этих характеристик равны 104 лм/Вт и 40000 часов.
Но люминесцентные лампы имеют и огромное количество недочетов, которые следует знать и учесть при выборе источников света:

1. Огромные габариты ламп нередко не позволяют перераспределять световой поток необходимым образом.
2. В отличие от ламп накаливания, световой поток люминесцентных ламп очень находится в зависимости от окружающей температуры (рис. 3).

3. В лампах содержится ртуть — очень ядовитый металл, что делает их экологически небезопасными.
4. Световой поток ламп устанавливается не сходу после включения, а спустя некое время, зависящее от конструкции осветительного прибора, окружающей температуры и самих ламп. У неких типов ламп, в которые ртуть вводится в виде амальгамы, это время может достигать 10-15 минут.
5. Глубина пульсаций светового потока существенно выше, чем у ламп накаливания, в особенности у ламп с редкоземельными люминофорами. Это затрудняет внедрение ламп в почти всех производственных помещениях и, не считая того, негативно сказывается на самочувствии людей, работающих при таком освещении.
6. Как было сказано выше, люминесцентные лампы, как и все газоразрядные приборы, требуют для включения в сеть использования дополнительных устройств.

На фоне постоянного роста цен на электричество населению приходится экономить. Наиболее простой способ сделать это — установить люминесцентные лампы. Они потребляют в 3-4 раза меньше, чем классические, давая практически такой же световой поток. Давайте разберем, чем хорош есть ли смысл менять обычные лампочки накаливания на “энергосберегайки” и в чем их основные достоинства.

Светильники, работающие по принципу люминесцента, были изобретены в середине 30-х годов прошлого века. Их придумали в США. Распространяться по стране они начали в 50-е годы, в 60-е они появились в Европе и СССР. Сегодня люминесцентные светильники находятся на втором месте по распространенности (первое занимают лампы накаливания), но их процентное соотношение постоянно растет. И даже светодиодные лампы не вытесняют люминесцентные с рынка — они занимают нишу обычных ламп накаливания.

Классические люминесцентные линейные лампы старого типа

Использование этих светильников долгое время было ограничено из-за их больших размеров. Если в общественных заведениях их еще можно было разместить, то для дома они не очень подходили. Но в 90-е годы ученым удалось усовершенствовать конструкцию, уменьшить ширину трубки до 12 мм и скрутить ее в спираль, создав аналог обычной лампочки. Это придало люминесцентным лампам новую жизнь.

Устройство светильника

Теперь давайте разберем, (речь идет о компактных вариантах, или КЛЛ):

  1. Колба.
  2. Цоколь.

Колба представляет собой тонкую трубку, завитую в спираль. Внутри трубки расположены электроды из вольфрама, окрашенные оксидами стронция, бария и кальция. Трубка герметично закрыта, в ней находится инертный газ, смешанный с парами ртути. Именно эти пары ионизируются и испускают ультрафиолет. Принцип работы следующий: на вольфрамовые контакты подается напряжение, между ними возникает заряд и происходит запуск светильника. Пары ртути излучают свет в ультрафиолетовом спектре. Чтобы сделать его видимым, на стенки трубки наносят специальное вещество — люминофор. В результате облучения от ультрафиолета он тоже “зажигается” и светится в видимом спектре. При помощи толщины слоя люминофора и его состава можно менять цвет и насыщенность потока. По сути, именно от него зависит, насколько хорошо устройство будет светить.

Внимание: при производстве КЛЛ используются различные редкоземельные элементы, нанесенные в 3-5 слоев в качестве люминофора. Следите за тем, чтобы цоколь не разбился — в нем много вредных веществ. Именно за счет использования более дорогих люминофоров, нанесенных толстым слоем, ученым удалось добиться значительного сокращения длины трубки.

Современные люминесцентные лампы

Изучая следует рассказать про вторую часть конструкции — цоколь. Он не только удерживает светильник в патроне, но и содержит внутри ЭПРА (пуско-регулирующую аппаратуру или, в просторечии, стартер/балласт). Они выдают токи с высокими частотами, из-за чего у комнатных ламп полностью отсутствует эффект мерцания, который хорошо заметен у обычных линейных ламп накаливания. Высокочастотные токи образуются в результате работы инвертора, выпрямляющего их и преобразующего в импульсы. Современные ЭПРА также способны усиливать мощностные коэффициенты, что позволяет создавать активные нагрузки и не компенсировать при работе косинус фи.

Внимание: по сути, срок службы лампы зависит от качества балласта. Расчетное время свечения люминофора около 20 тысяч часов, но устройство обычно работает меньше и выходит из строя в результате поломки ЭПРА.

При выборе старайтесь не экономить — дешевые лампы собираются из недорогих комплектующих, которые служат максимум полтора года. Также они крайне чувствительны к скачкам напряжения — при просадке на 10-20% балласт может выйти из строя.

Типы ламп

Все устройства можно разделить на два типа:

  1. Имеющие встроенный ЭПРА.
  2. Имеющие внешний дроссель.

Встроенные ЭПРА, входящие в состав люминесцентной лампы, обычно подключаются к классическому цоколю E27 или E14 — они могут использоваться в любых люстрах и светильниках. Лампы под внешние ЭПРА представляют собой обычную трубку с цоколем под штырьковые крепления. Обычно их используют в настольных светильниках — дроссель находится внутри корпуса, а лампа является расходным материалом.

Цоколь у них может быть рассчитан на подключение к 2 или 4 штырькам. При замене лампы нужно учитывать тип цоколя, чтобы не перепутать — промышленность выпускает более 10 видов подобных устройств.

Некоторые нюансы

Раньше люминесцентные лампы не очень любили, поскольку они давали “больничный” безжизненный белый свет. Сегодня ситуация изменилась — промышленность выпускает устройства с диапазоном работы от 2700 до 6500 градусов Кельвина, что практически полностью перекрывает возможные диапазоны от “лампового” желтого до практически голубого.

Сгоревший ЭПРА в люминесцентной лампе

Мощность подобных светильников варьируется от 5 до 23 ватт, для жилых помещений используют 9-15 ваттные варианты. Выбирая себе качественную лампу, обязательно спрашивайте у продавца про устройство люминесцентного светильника. Чем качественнее ЭПРА, тем дольше она прослужит. Стандартный срок службы сертифицированных ламп — 10 00 часов, тогда как дешевые китайские подделки служат 1000-3000 часов. Изделия от лидеров рынка, таких как PHILIPS или OSRAM, легко выхаживают по 15 тысяч часов, особенно если в сети нет провалов напряжения.

Внимание: люминесцентные светильники не работают вместе с диммерами. Если вам важен процесс регулировки уровня освещения, то приобретайте классические лампы накаливания.

И еще один совет напоследок. Не гонитесь за дешевыми устройствами — они служат очень мало. Если хотите сэкономить, то покупайте комплекты из 2, 4, 8 светильников — они обходятся значительно дешевле, чем одиночные. Выбирайте лампы от проверенных производителей — они гарантировано проработают весь положенный им срок.

Люди часто спрашивают, какой газ в люминесцентных лампах используют и не вреден ли он. В большинстве устройств используют аргон с парами ртути. Ничего страшного не произойдет, если вы разобьете ее в доме, но лучше все же не допускать подобного и сдавать их в пункты утилизации.

Схема подключения люминесцентных ламп и принцип их работы

На сегодняшний день люминесцентные лампы являются одним из самых распространенных источников искусственного освещения. Это объясняется тем, что светильники данного типа в несколько раз более экономичнее, чем привычные нам стандартные приборы накаливания и на порядок дешевле светодиодных.

Люминесцентный вид на сегодняшний день встречаются чуть ли не на каждом шагу: в офисах, больницах, школах и домах.

Как работает

Люминесцентная лампа представляет собой газоразрядный прибор, внутри которого и образуется этот разряд среди пары спиралей. Данные спирали есть не что иное, как анод и катод, расположены они с обеих сторон. Видимый свет появляется при ультрафиолетовом излучении парами ртути. Этому способствует нанесенный на внутреннюю поверхность лампы люминофор – вещество, в составе которого имеется фосфор и другие элементы.

Люминесцентные лампы работают благодаря специальному устройству –пускорегулирующему аппарату, который по-другому называется дроссель. Многие модели импортного производства функционируют как со стандартным дросселем, так и с устройством автоматической работы. Последние распространены как электронные пускорегулирующие автоматы.

Преимущества приборов, работающих на ЭПРА

Среди положительных качеств данных моделей можно выделить следующие:

  • отсутствие мерцания;
  • отсутствие шума;
  • относительно малый вес;
  • лучшее зажигание;
  • экономия электроэнергии.

Каждая люминесцентная лампа имеет ряд преимуществ перед стандартной лампой накаливания:

  • долговечность;
  • экономичность;
  • большая светопередача.

Однако у данной технологии есть и существенный недостаток – если температура в помещении не больше, чем пять градусов, зажигание такой лампы происходит медленно, а свет от нее более тусклый.

Схема подключения

Существует несколько схем подключения люминесцентных светильников.

Если используется электронная пускорегулирующая аппаратура, схема подключения выглядит следующим образом:

  • С – компенсационный конденсатор;
  • LL– дроссель;
  • EL– лампа люминесцентная;
  • SF– стартёр.

Как правило, на практике наиболее распространены светильники, в которых используются два прибора, подключенные последовательно. При этом схема их подключения имеет вид:

А – для люминесцентных моделей мощностью 20 (18) ВТ

В – для люминесцентных моделей мощностью 40 (36) ВТ

 

Когда применяются именно две лампы, появляется возможность уменьшения пульсации суммарного светового потока. Это происходит из-за того, что пульсация отдельно взятой лампы неодновременная, то есть имеется небольшой сдвиг по времени. В связи с этим никогда не станет равным нулю значение суммарного светового потока. Другое название схемы, когда применяется сразу два светильника – это схема с расщепленной фазой. Важным ее преимуществом является то, что при ней не требуется дополнительных мер с целью повышения коэффициента мощности. Еще одним преимуществом является то, что при снижении напряжения в сети, суммарный световой поток остается стабильным.

При подключении обязательно следует учитывать, что мощности дросселя и лампы должны быть идентичными. Если же мощность второй велика, то возможно стоит использовать сразу два дросселя.

Однако, несмотря на все явные достоинства, следует указать еще один существенный недостаток таких моделей. Все они содержат такое небезопасное вещество, как ртуть в жидком виде. На сегодняшний день существует проблема утилизации подобных устройств, вышедших из строя, поэтому использование люминесцентных ламп представляет угрозу окружающей среде.

Если при монтаже светильник нечаянно выскальзывает из рук и разбивается вдребезги, можно увидеть мелкие шарики ртути, которые раскатываются по земле.

Далее описана подробная схема подключения в комплекте с электромагнитным балластом.

  • Подается питающее напряжение на схему. Затем оно проходит через дроссель и нити накала, а следом – к выводам стартера;
  • стартер – есть не что иное, как неоновая лампочка, имеющая два контакта. На один из данных контактов приваривается биметаллическая пластина;
  • возникающее напряжение начинает ионизировать неон. Сквозь стартер начинает течь ток значительно силы, разогревающий газ и пластину из биметалла;
  • пластина при этом начинает изгибаться и замыкать выводы стартера;
  • электрический ток проходит по замкнутой цепи, благодаря чему нити накала разогреваются;
  • этот разогрев и дает толчок для возникновения в лампах свечения в условиях более низкого напряжения;
  • в момент, когда лампа начинает светиться, на стартере начинает падать напряжение. Падает оно до такого уровня, когда ион уже не способен ионизироваться. Стартер при этом автоматически отключается, а нити накала перестают быть под влиянием тока.

С целью обеспечить функционирование светильников, устанавливают дроссель. Данный прибор используется с целью ограничивать ток до необходимой величины, в зависимости от мощности. Благодаря самоиндукции обеспечивается надежный пуск ламп.

Плюсы и минусы ламп, имеющих электромагнитный балласт

Конструкция и схема данных светильников достаточно проста. Однако, несмотря на это их отличает высокая надежность и сравнительно небольшая стоимость, но у них имеются и недостатки.

Среди них:

  • нет гарантии запуска при пониженной температуре;
  • мерцание;
  • вероятность низкочастотного гула;
  • повышенное потребление электроэнергии;
  • достаточно большой вес и габариты.

Люминесцентные светильники компактного типа

Многие современные лампы люминесцентного типа подходят для освещения промышленных помещений. Однако для домашнего использования они неудобны вследствие больших габаритов и неподходящего дизайна. Технологии не стоят на месте и сегодня созданы такие приборы, которые имеют малогабаритный электронный балласт. Патент на компактную люминесцентную лампу был получен в 80-х годах прошлого века, однако использоваться они стали в быту не так давно. Сегодня по размеру компактные люминесцентные модели не превышают привычных стандартных. Что касается принципа работы, то он остался прежним. На концах лампы есть две нити накала. Именно между ними и появляется дуговой разряд, который производит ультрафиолетовые волны. Под воздействием данных волн происходит свечение люминофора.

Сколько служит компактная лампа

Компактная лампа по заявлениям производителя, должна служить около десяти тысяч часов. Однако из-за постоянной нестабильности напряжения в сети,срок службы устройств значительно сокращен. На уменьшение срока службы влияет и частота включения и выключения в схеме, а также функционирование в условиях повышенных либо, наоборот, слишком низких температур. По статистике самой частой причиной выхода таких устройств из строя является перегорание нитей канала.

Схемы подключения люминесцентных ламп дневного света



Схема включения люминесцентных ламп гораздо сложнее, нежели у ламп накаливания.
Их зажигание требует присутствия особых пусковых приборов, а от качества исполнения этих приборов зависит срок эксплуатации лампы.

Чтоб понять, как работают системы запуска, нужно до этого ознакомиться с устройством самого осветительного устройства.

Люминесцентная лампа представляет из себя газоразрядный источник света, световой поток которого формируется в главном за счёт свечения нанесённого на внутреннюю поверхность колбы слоя люминофора.

При включении лампы в парах ртути, которыми заполнена пробирка, случается электронный разряд и возникшее при всем этом уф-излучение воздействует на покрытие из люминофора. При всем этом происходит преобразование частот невидимого уф-излучения (185 и 253,7 нм) в излучение видимого света.
Ети лампы обладают низким потреблением электроэнергии и пользуются большой популярностью, особенно в производственных помещениях.

Схемы

При подключении  люминесцентных ламп используется особая пуско-регулирующая техника – ПРА. Различают 2 вида ПРА : электронная – ЭПРА (электронный балласт) и электромагнитная – ЭМПРА (стартер и дроссель).

Схема подключения с применением электромагнитный балласта или  ЭмПРА (дросель и стартер) Более распространённая схема подключения люминесцентной лампы – с использованием ЭМПРА. Это стартерная схема включения.




Принцип работы:  при подключении электропитания в стартере появляется разряд и
замыкаются накоротко биметаллические электроды, после этого ток в цепи электродов и стартера ограничивается лишь внутренним сопротивлением дросселя, в следствии чего же возрастает практически втрое больше  рабочий ток в лампе и мгновенно нагреваются электроды люминесцентной лампы.
Одновременно с этим остывают биметаллические контакты стартера и цепь размыкается.
В то же время разрыва дроссель, благодаря самоиндукции создает запускающий высоковольтный импульс (до 1 кВольта), который приводит к разряду в газовой среде и загорается лампа. После чего напряжение на ней станет равняться половине от сетевого, которого станет недостаточно  для повторного замыкания электродов стартера.
Когда лампа светит стартер не будет участвовать в схеме работы и его контакты будут и останутся разомкнуты.

 Основные недостатки

  • В сравнении со схемой с электронным балластом на 10-15 % больший расход электричества.
  •  Долгий пуск  не менее 1 до 3  секунд (зависимость от износа лампы)
  •  Неработоспособность при низких температурах окружающей среды. К примеру, зимой в неотапливаемом гараже.
  • Стробоскопический результат мигания лампы, что плохо оказывает влияние на зрение, при чем  детали станков, вращающихся синхронно с частотой сети-  кажутся неподвижными.
  • Звук от гудения пластинок дросселя, растущий со временем.

Схема включения с двумя лампами но одним дросселем. Следует заметить что индуктивность дросселя должна быть достаточной по мощности етих двух ламп.
Следует заметить что в последовательной схеме включения  двох ламп применяются стартеры на 127 Вольт,  они не будут работать в одноламповой схеме, для которой понадобятся стартеры на 220 Вольт

Ета схема где, как видите, нет ни стартера ни дроселя, можна применить если у ламп перегорели нити накала. В таком случае зажечь ЛДС можно при помощи повышающего трансформатора Т1 и конденсатора С1 который ограничит ток протекающий через лампу от сети 220вольт.

Ета схема подойдет все для тех же ламп у которых перегорели нити накала, но сдесь уже ненада повышающего трансформатора что явно упрощает конструкцию устройства

А вот такая схема с применением диодного выпрямительного моста устраняет ее мерцание лампы с частотой сети, которое снановится очень заметным при ее старении.

или сложнее

Если в вашем светильнике вышел с строя стартер или мигает постоянно лампа (вместе с стартером если присмотрется под корпус стартера) и под рукой нечем заменить, зажечь лампу можна и без него — достаточно на 1-2 сек. закоротить контакты стартера или поставить кнопку S2 (осторожно опасное напряжение)

тот же случай но уже для лампы с перегоревшей нитей накала

Схема подключения с применением электронного балласта или ЭПРА

Электронный Пускорегулирующий Аппарат (ЭПРА) в отличии от электромагнитного  подает на лампы  напряжение не сетевой частоты, а высокочастотное от 25 до 133 кГц. А это полностью исключает вероятность появления приметного для глаз мерцания ламп. В ЭПРА используется автогенераторная схема, включающая трансформатор и выходной каскад на транзисторах.

Основные преимущества схем с ЭПРА

  •   Повышение срока эксплуатации люминесцентных ламп, благодаря особому режиму работы и пуска. 
  •   В сравнении с ПРА до 20% экономия электричества.
  •   Отсутствие в ходе работы шума и мерцания. 
  •   Отсутствует в схеме  стартер, который часто ломается.
  •   Особые модели выпускаются с возможностью диммирования  либо регулировки яркости свечения.

Схема подключения конкретного электронного балласта изображена на каждом конкретном устройстве и не составляет особой проблемы в подключении 

Внутри такого электронного «дросселя» как правило схема на подобие етой…

Вниз по трубам — Как работают люминесцентные лампы

Центральным элементом люминесцентной лампы является герметичная стеклянная трубка . Трубка содержит небольшое количество ртути и инертный газ, обычно аргон , находящийся под очень низким давлением. Трубка также содержит порошок люминофора , нанесенный по внутренней стороне стекла. Трубка имеет два электрода , по одному на каждом конце, которые подключены к электрической цепи. Электрическая цепь, которую мы рассмотрим позже, подключена к источнику переменного тока (AC).

Когда вы включаете лампу, ток течет по электрической цепи к электродам. На электродах имеется значительное напряжение, поэтому электроны будут мигрировать через газ от одного конца трубки к другому. Эта энергия превращает часть ртути в трубке из жидкости в газ. Когда электроны и заряженные атомы движутся по трубке, некоторые из них столкнутся с газообразными атомами ртути. Эти столкновения возбуждают атомы, выталкивая электроны на более высокие энергетические уровни.Когда электроны возвращаются к своему первоначальному уровню энергии, они испускают световые фотоны.

Как мы видели в предыдущем разделе, длина волны фотона определяется конкретным расположением электронов в атоме. Электроны в атомах ртути расположены таким образом, что они в основном испускают световые фотоны в ультрафиолетовом диапазоне длин волн . Наши глаза не регистрируют ультрафиолетовые фотоны, поэтому этот вид света необходимо преобразовать в видимый свет, чтобы осветить лампу.

Вот здесь и проявляется порошковое покрытие трубки. Люминофор — это вещества, излучающие свет при воздействии света. Когда фотон попадает в атом люминофора, один из электронов люминофора перескакивает на более высокий энергетический уровень, и атом нагревается. Когда электрон возвращается на свой нормальный уровень, он выделяет энергию в виде другого фотона. Этот фотон имеет меньше энергии, чем исходный фотон, потому что некоторая энергия была потеряна в виде тепла. В люминесцентной лампе излучаемый свет находится в видимом спектре — люминофор излучает белого света, который мы можем видеть.Производители могут изменять цвет света, используя различные комбинации люминофоров.

Этот контент несовместим с этим устройством.

Обычные лампы накаливания также излучают довольно много ультрафиолетового света, но они не преобразуют его в видимый свет. Следовательно, много энергии, используемой для питания лампы накаливания, тратится впустую. Люминесцентная лампа заставляет работать этот невидимый свет, и поэтому на эффективнее . Лампы накаливания также теряют больше энергии из-за тепловыделения, чем люминесцентные лампы.В целом, обычная люминесцентная лампа в четыре-шесть раз эффективнее лампы накаливания. Однако люди обычно используют в доме лампы накаливания, поскольку они излучают «более теплый» свет — свет с большим количеством красного и меньшим количеством синего.

Как мы видели, вся система люминесцентных ламп зависит от электрического тока, протекающего через газ в стеклянной трубке. В следующем разделе мы увидим, что люминесцентная лампа должна делать, чтобы установить этот ток.

Как работают люминесцентные лампы — 1000 ламп.com Blog

Люминесцентные лампы состоят из покрытых люминофором стеклянных трубок с вольфрамовыми катодами на обоих концах, заполненных аргоном и небольшим количеством паров ртути. Когда к трубке прикладывается большое количество электричества, она создает электрическую дугу, которая возбуждает пары ртути, заставляя их высвобождать дополнительные электроны на ультрафиолетовых (УФ) частотах. Невидимый ультрафиолетовый свет стимулирует внутреннее люминесцентное покрытие трубки, превращаясь в видимый свет, когда он проходит через трубку по дуге и производит знакомое флуоресцентное свечение.Есть два распространенных типа флуоресцентных ламп: люминесцентные лампы с горячим катодом и люминесцентные лампы с холодным катодом.

Люминесцентные лампы с горячим катодом

Ключом к лампам с горячим катодом является балласт. Чтобы создать дугу и последующее свечение света, балласт нагнетает стандартные 120 вольт почти вдвое. Высокое напряжение быстро нагревает вольфрамовые нити, заставляя ток через газы запускать дугу. Однако почти сразу же повышенное напряжение отключается, чтобы предотвратить короткое замыкание лампы.У газа есть сопротивление, зависящее от температуры. Чем холоднее газ, тем большее сопротивление он имеет, и для начала требуется более высокое напряжение. Высокое напряжение опасно, и его трудно создать, поэтому пускорегулирующий аппарат управляет током, зажигает искры и поддерживает свет. Балласты бывают либо магнитными, либо электронными, и существует несколько типов методов запуска, которые балласты могут использовать для запуска люминесцентных ламп. Наиболее известные методы — это предварительный нагрев, быстрый запуск, мгновенный запуск и запрограммированный запуск.

В старых лампах использовался метод предварительного нагрева, при котором отдельный выключатель стартера нагревал катоды перед включением лампы, что позволяло использовать более низкие напряжения. В современных лампах часто используются электронные балласты мгновенного пуска, чтобы быстро подать на лампу сотни вольт для мгновенного зажигания, а не постепенного прогрева.

Флуоресцентные лампы с холодным катодом

Вы можете знать их в основном как неоновые вывески и иногда по спиральной трубке под А-образной крышкой. В CCFL, не путать с CFL, используются цельнометаллические катоды, похожие на гильзы, которые более долговечны, чем вольфрамовые катушки ламп с горячим катодом.Катоды не нагреваются заранее, и подается высокое напряжение, позволяющее лампам мгновенно включаться на полную яркость. Лампы с холодным катодом используют более высокое напряжение, чем обычные линейные люминесцентные лампы, для ионизации паров ртути.

3. Как работают люминесцентные лампы?

3,4. Физические характеристики ламп

Принципы работы

Люминесцентная лампа генерирует свет от столкновений в горячей газ («плазма») свободного ускоренного электроны с атомами– обычно ртуть — в какие электроны поднимаются на более высокие уровни энергии, а затем отступать при излучении на двух линиях УФ-излучения (254 нм и 185 нм).Таким образом созданное УФ-излучение затем преобразуется в видимый свет УФ возбуждение флуоресцентного покрытия на стеклянной оболочке фонарь. Химический состав этого покрытия подобран таким образом, чтобы излучать в желаемом спектре.

Строительство

Трубка люминесцентной лампы заполнена газом с низким содержанием пар ртути под давлением и благородные газы в целом давление около 0.3% от атмосферное давление. В самая обычная конструкция, пара эмиттеров накала, один на каждом конце трубки, нагревается током и используется для испускать электроны, которые возбуждают благородные газы и газообразную ртуть путем ударной ионизации. Ионизация может происходить только в исправных лампочках.Следовательно, вредные последствия для здоровья от этого процесса ионизации невозможно. Кроме того, лампы часто оснащаются двумя конверты, что значительно снижает количество УФ-излучения испускается.

Электрические аспекты эксплуатации

Для запуска лампы и поддерживать ток на достаточном уровне для постоянного света эмиссия.В частности, схема подает высокое напряжение на запускают лампу и регулируют ток через трубку. Возможны разные конструкции. в в простейшем случае используется только резистор, что относительно энергоэффективность. Для работы от переменный ток (AC) напряжения сети, использование индуктивного балласта является обычным явлением и было известен отказ до конца срока службы лампы, вызывающий мерцание лампы.Различные схемы, разработанные для начать и запустить люминесцентные лампы выставляют различные свойства, то есть излучение акустического шума (гула), срок службы (лампы и балласта), энергоэффективность и мерцание интенсивности света. Сегодня в основном улучшенная схемотехника используется, особенно с компактными люминесцентными лампами, где схемотехника не подлежит замене перед люминесцентными лампами.Это снизило количество технических сбоев, вызывающих эффекты, как указано выше.

EMF

Часть электромагнитный спектр который включает статические поля, а поля до 300 ГГц — вот что здесь упоминается как электромагнитные поля (ЭДС).Литература о том, какие виды и сильные стороны ЭМП. которые излучаются из КЛЛ редко. Однако есть несколько видов ЭДС, обнаруженных в близость этих ламп. Как и другие устройства, которые зависят на электричество для выполнения своих функций они излучают электрические и магнитные поля в низкочастотный диапазон ( частота распространения 50 Гц и, возможно, также гармоники из них, e.грамм. 150 Гц, 250 Гц и т. Д. В Европе). Кроме того, КЛЛ, в отличие от лампы накаливания, также излучают в высокочастотном диапазоне ЭДС (30-60 кГц). Эти частоты различаются между разными типами ламп.

Мерцание

Все лампы будут различать интенсивность света при удвоении мощности от сети. (линейная) частота, так как мощность, подаваемая на лампу, достигает пика дважды за цикл при 100 Гц или 120 Гц.Для лампы накаливания это мерцание уменьшается по сравнению с люминесцентными лампами за счет тепла емкость нити. Если модуляция света интенсивности достаточно для восприятия человеческим глазом, тогда это определяется как мерцание. Модуляции на 120 Гц не видно, в большинстве случаев даже не при 50 Гц (Seitz et al.2006 г.). Флюоресцентные лампы включая КЛЛ, которые используют поэтому высокочастотные (кГц) электронные балласты называются «без мерцания».

Однако как лампы накаливания (Chau-Shing and Devaney, 2004), так и «немерцающие» люминесцентные источники света (Хазова и О’Хаган 2008) производят еле заметное остаточное мерцание.Дефектный лампы или схемы могут в некоторых случаях привести к мерцанию при более низкой частот, либо только в часть лампы или во время цикла запуска в несколько минут.

Световое излучение, УФ-излучение и синий свет

Есть характерные различия между излучаемыми спектрами. люминесцентными лампами и лампы накаливания, потому что различных принципов работы.Лампы накаливания настраиваются по своей цветовой температуре за счет специальных покрытий из стекло и часто продаются с атрибутом «теплый» или «Холодный» или, более конкретно, по их цветовой температуре для профессиональные световые приложения (фотостудии, магазины одежды и т. д.). В случае люминесцентных ламп спектральное излучение зависит от покрытия люминофора. Таким образом, люминесцентные лампы могут быть обогащены синим светом (длины волн 400-500 нм), чтобы лучше имитируют дневной свет по сравнению с лампами накаливания. Как и люминесцентные лампы, КЛЛ излучают больше синего цвета. свет, чем лампы накаливания.На международном уровне признанные пределы воздействия излучения (200-3000 нм) испускается лампами и осветительными приборами, защищенными от фотобиологические опасности (Международная электротехническая Комиссия 2006 г.). Эти ограничения также включают излучение от КЛЛ.

УФ-содержание излучаемого спектра зависит как от люминофор и стеклянная колба люминесцентной лампы.УФ выброс лампы накаливания есть ограничивается температурой нити накала и поглощение стекла. Некоторый КЛЛ с одной оболочкой излучают УФ-В и следы УФ-С излучения на длине волны 254 нм, что не так для ламп накаливания (Khazova and O´Hagan 2008).Экспериментальный данные показывают, что КЛЛ производят больше УФ-излучение, чем вольфрамовая лампа. Кроме того, количество УФ-В излучение производится из КЛЛ с одной оболочкой, с того же расстояния 20 см, составляли примерно в десять раз выше, чем облучается вольфрамовой лампой (Мозли и Фергюсон, 2008 г.).

Как работают люминесцентные лампы?

Люминесцентные лампы — это энергоэффективный и экономичный способ освещения коммерческих помещений. На этой странице вы можете узнать больше о том, как работают люминесцентные лампы, в том числе:

Хотите заменить имеющееся освещение на люминесцентные лампы?
У нас есть в наличии тубы ведущих брендов по низким ценам, для оформления заказа звоните по телефону 0113 8876270.

Как они работают?

Люминесцентные лампы — обычное дело в общественных местах, офисах и школах, но что вы на самом деле знаете о внутренней работе люминесцентной лампы? Знание того, как работает лампа, может помочь вам понять, что могло произойти, когда она перестала работать, и вам будет проще узнать, как это исправить.

Ниже мы рассмотрим, что происходит внутри люминесцентной лампы, когда вы щелкаете выключателем света.

С чего все началось?

По данным Смитсоновского института в Вашингтоне, люминесцентная лампа появилась благодаря исследованию американского инженера-электрика и изобретателя Питера Купера Хьюитта работы физика Джулиуса Плюккера и стеклодува Генриха Гайсслера. В 1901 году, когда Хьюитт пропустил электрический ток через крошечные количества ртути в одной из стеклянных трубок Плюккера, она загорелась, что сделало ее самой первой люминесцентной лампой, в которой использовалась ртуть.Сегодня эти лампы работают примерно так же, с некоторыми изменениями, конечно.

Что внутри трубки?

Внутри люминесцентной лампы находятся различные химические компоненты и два электрода на каждом конце, подключенные к электрической цепи. Эти химические компоненты:

  • Инертный газ
  • Меркурий
  • Люминофорное покрытие на внутренней стороне трубки

Электрическая цепь подключается к источнику переменного тока через контактные штыри на конце трубки, которые подключаются к осветительной арматуре.Внутри стеклянной трубки находится небольшое количество ртути и инертный газ, например аргон. Если вы сломали люминесцентную лампу или вошли в контакт с внутренней частью лампы, вы могли заметить порошкообразное вещество, это порошок люминофора, который покрывает внутреннюю часть стекла.

Включение света

Основной процесс зажигания люминесцентной лампы включает в себя электрический ток, вызывающий химические реакции, в результате которых излучается свет. Вот что происходит при включении света:

  • Ток течет по электрической цепи к электродам.
  • Напряжение от электродов заставляет электроны перемещаться через газообразный аргон от одного конца трубки к другому.
  • Энергия от этого превращает часть жидкой ртути в газ.
  • Когда электроны и заряженные атомы движутся по трубке, они будут сталкиваться с атомами газа ртути.
  • Столкновения возбуждают атомы, поэтому уровень энергии электронов увеличивается.
  • Когда электроны успокаиваются и возвращаются к своему исходному уровню энергии, они испускают световые фотоны.
  • Эти фотоны являются ультрафиолетовыми, но при попадании на люминофорное покрытие трубки они превращаются в видимый свет.
  • Производители могут предлагать лампы разных оттенков, например, теплый белый, холодный белый или даже яркие цвета, используя различную смесь люминофоров для каждого цвета.

Люминесцентные лампы более эффективны, чем лампы накаливания, по двум причинам:

  1. Лампы накаливания излучают свет через нагретую нить накаливания и, следовательно, из-за этого тепла выделяют много энергии, люминесцентные лампы не нагреваются так сильно, как ток, протекающий через них, создает ультрафиолетовый свет при низком давлении.Люминесцентные лампы излучают немного тепла, но не так сильно, как лампы накаливания. Тепло распространяется быстрее из-за большего размера, и оно может варьироваться в зависимости от температуры в зависимости от их размера.
  2. Хотя и лампы накаливания, и люминесцентные лампы используют ультрафиолет, люминесцентная лампа заставляет работать избыточный ультрафиолетовый свет, тогда как лампа накаливания излучает ультрафиолет, но ничего с ним не делает.

Мы можем резюмировать процесс следующим образом:

  • Включить свет
  • Электрический ток превращает ртуть в газ
  • Газообразная ртуть сталкивается с электронами и атомами
  • Электроны возбуждаются и увеличиваются в энергии
  • Электроны расслабляются после того, как время снизится, и уровень энергии снизится
  • Это вызывает высвобождение фотонов света
  • Фотоны попадают в люминофор и становятся видимым светом

Часто задаваемые вопросы о люминесцентных лампах

В нашем подробном руководстве вы найдете ответы на ваши вопросы о люминесцентных лампах и лампах, чтобы вы могли делать покупки у нас с уверенностью.Если вы не можете найти здесь ответ на свой вопрос, не стесняйтесь обращаться к нам.

Сколько стоит эксплуатация люминесцентных ламп?

Стоимость эксплуатации люминесцентных ламп зависит от нескольких факторов: мощности лампы, стоимости электроэнергии и того, используете ли вы высокочастотную или переключаемую пускорегулирующую аппаратуру. Лампы работают намного эффективнее при использовании высокочастотных балластов, но гораздо менее эффективно при использовании пускового переключателя. Пусковой балласт при переключении приведет к тому, что лампа будет использовать примерно на 10% больше, поэтому лампа 40 Вт будет работать при 44 Вт.Если вы замените 2-футовую лампу T12 на 2-футовую 18-ваттную лампу, вы перейдете с 20-ватной лампы на 18-ваттную лампу, что приведет к меньшим затратам электроэнергии. Если вы заменили 2-футовый фитинг t8 на 2-футовый фитинг t5, вы перейдете с 18 Вт на 14 Вт.

Классифицируются ли люминесцентные лампы как опасные или опасные?

Согласно данным Mercury Recycling, ртуть, содержащаяся всего в одной люминесцентной лампе, может загрязнить 30 000 литров воды, что делает ее небезопасной для потребления человеком. Это означает, что безопасная утилизация трубок жизненно важна для минимизации негативного воздействия на окружающую среду и риска отравления.

Люминесцентные лампы классифицируются как опасные отходы и, несмотря на небольшой риск для здоровья человека, могут нанести вред окружающей среде. Компания Mercury Recycling рекомендует утилизировать люминесцентные лампы, а не утилизировать их, как наиболее безопасный и дешевый вариант. Для получения дополнительной информации прочтите наше руководство по утилизации люминесцентных ламп.

Подходят ли люминесцентные лампы для аквариумов или аквариумов?

Да, и их использование может принести большую пользу вашей рыбе. Прочтите наше руководство для получения дополнительной информации.

Можно ли выращивать растения с помощью люминесцентных ламп?

Да, прочтите наше подробное руководство о том, как выращивать растения в помещении с помощью люминесцентных ламп.

Нужен ли стартер для люминесцентных ламп?

Вам понадобится стартер, если вы используете лампы с пусковым механизмом переключения. Если вы используете высокую частоту, стартер не нужен. Если вы последовательно используете лампы T8 мощностью 2 фута 18 Вт (более одной трубки в фитинге), вам понадобится серийный стартер. Если вы используете одну лампу мощностью от 4 до 65 Вт, вы должны использовать универсальный стартер.Любые лампы мощностью более 65 Вт нуждаются в стартере большой мощности.

Можно ли затемнять люминесцентные лампы?

Да, но требуются регулируемый балласт и соответствующая система затемнения.

Можно ли красить люминесцентные лампы?

Это не рекомендуется, так как люминесцентные лампы во время работы немного нагреваются. Если вам нужна цветная трубка, лучше купить ее или цветную втулку, чтобы надеть ее на трубку.

Мы продаем различные цветные люминесцентные лампы T5 или T8, а также различные цветные гильзы для этой цели.

Сколько люмен в одной люминесцентной лампе?

Световой поток зависит от мощности, в наших описаниях продуктов указан световой поток каждой трубки, поэтому у вас будет точная информация, которая вам нужна.

Почему моя люминесцентная лампа продолжает мигать?

Для этого будет ряд возможных причин. Это может быть лампочка, если она почернела на концах, вероятно, она довольно старая и нуждается в замене. Если он все еще мигает, возможно, неисправен стартер (в цепях запуска переключателя).Если он все еще мигает, возможно, неисправен балласт и его необходимо заменить.

Дополнительную информацию см. В нашем руководстве по устранению неполадок.

Почему моя люминесцентная лампа продолжает мигать?

Причина в том, что стартер или балласт не работают должным образом и могут нуждаться в замене.

Почему моя люминесцентная лампа продолжает дуть?

Это может быть связано с заменой балласта. Балласт регулирует подачу электричества в лампу, и к концу срока ее службы он может начать делать это менее эффективно, посылая слишком большой или недостаточный ток в лампу, что отрицательно сказывается на среднем сроке службы лампы.

Дополнительную информацию см. В нашем руководстве по устранению неполадок.

Обратите внимание: информация в этой статье предназначена только для ознакомления. Мы настоятельно рекомендуем поговорить с электриком, прежде чем пытаться самостоятельно выполнять какие-либо электромонтажные работы. Любые ссылки, включенные в эту статью, предназначены только для информационных целей, и Lamp Shop Online не поддерживает веб-сайты, на которые есть ссылки.

Что такое люминесцентное освещение?

Люминесцентное освещение. Вы, наверное, уже имеете представление о том, что это такое.Может быть, вы хоть немного разбираетесь в том, как это работает.

Конечно, люминесцентное освещение опасно для глаз и размывает цвет лица.

Но флуоресцентное освещение — это гораздо больше, чем не очень идеальные побочные эффекты, включая некоторые приятные преимущества.

Вот что мы обсуждаем в этом посте:

Что такое люминесцентное освещение?

Флуоресцентное освещение — это универсальный тип освещения, с которым вы, скорее всего, столкнетесь в офисе, школе или продуктовом магазине.Он известен своей энергоэффективностью по сравнению с лампами накаливания и галогеновыми лампами и более низкой ценой по сравнению со светодиодами.

Существует несколько различных типов люминесцентного освещения, включая линейные люминесцентные лампы, люминесцентные изогнутые лампы, люминесцентные лампы с круговой линией и компактные люминесцентные лампы (компактные люминесцентные лампы).

В этой статье мы сосредоточимся на линейных люминесцентных лампах из-за их популярности. Люминесцентные лампы обычно используются в потолочных светильниках, таких как troffers, во всех типах коммерческих зданий.

Как работают люминесцентные лампы?

Флуоресцентное освещение зависит от химической реакции внутри стеклянной трубки для создания света. Эта химическая реакция включает взаимодействие газов и паров ртути, в результате чего образуется невидимый ультрафиолетовый свет. Этот невидимый ультрафиолетовый свет освещает люминофорный порошок, покрывающий внутреннюю часть стеклянной трубки, излучающий белый «флуоресцентный» свет.

Вот более подробная разбивка процесса:

Электричество сначала поступает в осветительную арматуру, как трос, и через балласт.Балласт, который регулирует напряжение, ток и т. Д. И необходим для работы люминесцентной лампы, подает электричество на контакты люминесцентной лампы на обоих концах.

Подробнее: Что такое балласт и как он работает?

Затем, после того, как электричество проходит через контакты, оно течет к электродам внутри герметичной стеклянной трубки, в которой поддерживается низкое давление. Электроны начинают перемещаться по трубке от одного катода к другому.

Внутри стеклянной трубки находятся инертные газы и ртуть, возбуждаемые электрическим током.Ртуть испаряется, когда течет электричество, и газы начинают реагировать друг с другом, создавая невидимый ультрафиолетовый свет, который мы фактически не видим невооруженным глазом.

Но мы, очевидно, замечаем люминесцентные лампы, излучающие свет, так что же именно мы видим?

Каждая люминесцентная лампа покрыта люминофорным порошком. Если воткнуть палец в тюбик и потереть его изнутри, это будет выглядеть так, как будто вы только что насладились порошкообразным пончиком.

Это люминофорное покрытие светится, когда оно возбуждается невидимым ультрафиолетовым светом, и это то, что мы видим нашими глазами — светящийся порошок люминофора, который создает «белый свет».Отсюда и термин «флуоресцентный» — «светящийся белый свет».

Из-за содержания ртути в люминесцентных лампах важно утилизировать лампы после того, как они перегорели. У нас есть служба утилизации, которая позволяет легко и быстро избавиться от старых перегоревших ламп из вашего шкафа и забыть о них. Мы также продаем коробки для вторсырья.

Зачем люминесцентным лампам балласт?

Основная цель балласта — принимать переменный ток, проходящий через провода в ваших стенах — буквально волнами, вверх и вниз — и превращать его в постоянный и прямой поток электричества.Это стабилизирует и поддерживает химическую реакцию, происходящую внутри колбы.

Чтобы правильно выбрать балласт для ваших ламп, вам необходимо ответить на эти три вопроса:

  1. Какому типу лампы требуется питание? (Например, это T8, T5? 4 фута? 2 фута? И т. Д.)
  2. Сколько ламп нужно мощности?
  3. Какое напряжение подается на светильник?

Балласты влияют на потребление энергии через так называемый балластный фактор.Подробнее о балластном факторе и его влиянии на потребление энергии читайте здесь.

Почему флуоресцентные лампы становятся розовыми и оранжевыми?

Если вы посмотрите на большую комнату, освещенную в основном люминесцентными лампами, то с большой вероятностью вы увидите все виды разных цветов, исходящих от потолка. Почему?

Эта концепция называется «смещение цвета». Чем дольше горят флуоресцентные лампы, тем больше вероятность того, что химические свойства изменятся и вызовут несбалансированную реакцию, в результате чего флуоресценция станет менее белой и менее яркой, чем была раньше.

Если последовательность действительно важна для вашего проекта освещения, вы можете подумать о групповой замене этих лампочек. Заменяя все трубки партиями, вы можете устранить проблему несоответствия цветов и яркости в вашем помещении.

Еще одно соображение — это обновление светодиодов для ваших ламп. О вариантах светодиодных ламп T8 мы поговорим в этой статье.

В чем разница между линейными люминесцентными лампами и компактными люминесцентными лампами?

Чтобы уточнить, как в линейных, так и в компактных люминесцентных лампах используется одна и та же технология для создания искусственного света.Самая большая разница — это форм-фактор или размер и конфигурация ламп CFL.

Компактные люминесцентные лампы (КЛЛ) — это просто усовершенствование линейной люминесцентной технологии, использующей меньше энергии. Они также предназначены для ввинчивания в обычную розетку для лампы накаливания или для вставки в утопленную банку. Их часто называют «пружинными лампами» или «подключаемыми» КЛЛ в зависимости от использования и формы.

Узнайте больше о компактных люминесцентных лампах в нашем посте: «Что такое лампы CFL и где их следует использовать?»

Где вы используете линейное люминесцентное освещение?

Хотя люминесцентные лампы используются в самых разных областях, они работают не везде.Самая распространенная причина, по которой люди используют люминесцентные лампы, — это экономия энергии с минимальными первоначальными затратами.

Вот некоторые типичные приложения для линейного флуоресцентного освещения:

Торговые офисы

Обычно офисные помещения не слишком заботятся о декоративном и акцентном освещении. Главный приоритет — общее освещение, функциональное для офисной среды. Из-за этого линейные люминесцентные лампы являются основными лампами, используемыми в офисных помещениях в США.

Склады

Если вы не знакомы с T5 с высокой выходной мощностью, вам необходимо это знать.Эти лампы могут прослужить до 90 000 часов и производить больше света (люменов), чем более толстые линейные люминесцентные лампы, такие как T12s и T8s. Из-за этого они являются отличным выбором для складов — или вообще для любого многоярусного потолка, где требуется значительное количество света.

Больницы

Подобно офисных помещений, больниц также использовать линейные флуоресцентные лампы, чтобы сэкономить деньги на энергию и производить белый, чистый, эффективный источник света.

Розничные магазины

При создании уникального дизайна освещения для розничной торговли мы рекомендуем правило 20/80 — 20 процентов вашего освещения должно быть декоративным и уникальным (например, настенные бра, люстры, чаши с облаками).И 80 процентов его должно быть стандартным общим освещением.

В таких универмагах, как Macy’s, JC Penney, Kohl’s и Target, 80-процентное общее освещение является основной областью для линейных флуоресцентных ламп.

Плюсы и минусы линейного люминесцентного освещения

Линейные люминесцентные профили

  • Энергоэффективность

    Переоборудовав лампы накаливания или галогенные на линейные люминесцентные лампы, вы можете рассчитывать на 40-процентную экономию на счетах за электроэнергию.

  • Разнообразие цветовых температур

    Если вам нужно действительно «прохладное» пространство, такое как коридор больницы или станция метро, ​​флуоресцентные лампы предлагают такую ​​прохладную цветовую температуру, как 6500 Кельвинов. Хотя не так много приложений, в которых требуется настолько холодный свет, диапазон цветов от теплого до холодного — это гибкость для флуоресцентных ламп.

  • Стоимость

    По сравнению со светодиодами, линейное люминесцентное освещение обычно более доступно.Фактически, светодиоды привели к снижению цен на флуоресцентные лампы за последние несколько лет.

Линейные флуоресцентные лампы

  • Изменение цвета или уменьшение светового потока

    Как мы упоминали выше, чем дольше горят флуоресцентные лампы, тем больше вероятность того, что химические свойства изменятся, что вызовет несбалансированную реакцию, что сделает флуоресценцию менее белой и менее яркой, чем была раньше. Светоотдача снижается, и со временем ваше освещение может выглядеть как лоскутное одеяло.

  • Резкий свет

    Флуоресцентные лампы не приятны для глаз! Если вы обнаружите, что ваши глаза часто налиты кровью или сухие, вы можете оценить источник света, под которым вы находитесь большую часть дня. Например, линейные люминесцентные лампы в параболических троферах в офисном помещении могут вызвать у вас подсознательное косоглазие из-за резкого света. Лучшим применением были бы линейные флуоресцентные лампы в центральном фильтре, который смягчает свет, падающий на землю.

  • Период прогрева

    Для того, чтобы флуоресцентные лампы достигли полной яркости, вам, возможно, придется подождать 10-30 секунд для прогрева.

  • Воздействие на окружающую среду или Затраты на переработку

    Хотя затраты на переработку перевешиваются за счет экономии энергии, создаваемой флуоресцентными лампами, существуют дополнительные расходы, чтобы убедиться, что люминесцентные лампы правильно утилизированы. Если вы не хотите вообще заниматься ртутью и переработкой, светодиоды могут быть для вас лучшим вариантом.

Есть еще вопросы о том, подходит ли флуоресцентное освещение для вашей области применения? Поговорите со специалистом по освещению, который расскажет о специфике вашего помещения.

Как работают люминесцентные лампы?

Мы углубимся, чтобы научить вас, как разные источники света производят свет. Эта информация может помочь вам, когда вы выбираете светильники для нового проекта освещения или обслуживаете уже имеющиеся светильники. Если вы когда-либо пробовали исследовать эту информацию, вы знаете, что она может оказаться ошеломляющей и сложной. Итак, я собираюсь упростить это для вас. В этом посте мы расскажем о люминесцентных лампах…

Люминесцентные лампы бывают разных форм и размеров, таких как линейные, круглые и всегда популярные вихревые компактные люминесцентные лампы.

Хотя различные типы люминесцентных ламп выглядят по-разному, принцип их работы в основном одинаков.

Люминесцентные лампы содержат:

  • Пары ртути
  • Электроды, подключенные к электрической цепи
  • Стеклянный конверт с внутренним покрытием из белого люминофора

Довольно просто, правда? Теперь давайте посмотрим, как эти элементы работают вместе, чтобы светить:

1. Когда вы включаете лампу, через электроды течет электрический ток. Электроны проходят в трубке вперед и назад.

2. Электроны возбуждают пары ртути в трубке, поднимая электроны атомов на более высокие уровни. Это заставляет ртуть испускать УФ-фотоны или УФ-свет, невидимый человеческому глазу.

3. Люминофорное покрытие преобразует УФ-свет в видимый свет. Это происходит, когда УФ-фотон сталкивается с атомом люминофора, толкая один из электронов люминофора на более высокий энергетический уровень и нагревая атом.Когда электрон возвращается к своему нормальному уровню, он выделяет энергию как видимый фотон — свет, который вы видите.

Последнее замечание о люминесцентных лампах:

Для работы всех люминесцентных ламп требуется пускорегулирующий аппарат. Иногда этот компонент встроен в саму лампочку, а иногда это отдельный элемент, который необходимо использовать вместе с лампой.

Балласт — это электрическое устройство, используемое для подачи правильного напряжения для запуска люминесцентной лампы и ограничения его во время работы.

Люминесцентным лампам необходимы балласты, потому что их газовые компоненты проводят электричество для работы. Для включения лампам нужен определенный ток. По мере того как лампа продолжает работать, ее электрическое сопротивление уменьшается. Заряженные частицы размножаются, и ток может подниматься по собственному газовому разряду. Если вы держите напряжение постоянно высоким, лампа может перегореть, поэтому это помогает регулировать балласт.

Какие вопросы у вас есть о люминесцентных лампах? Поделитесь ими в комментариях!

(Чтобы узнать, как работают светодиоды, ознакомьтесь с этим сообщением в блоге.)

Связанные

Люминесцентная лампа | Britannica

Узнайте, как работают различные типы электрического света — лампы накаливания, галогенные, люминесцентные и светодиодные.

Обзор различных типов электрического света, включая лампы накаливания, галогенные, люминесцентные и светодиодные.

Contunico © ZDF Enterprises GmbH, Майнц Посмотрите все видео по этой статье

Люминесцентная лампа , электрическая разрядная лампа, более холодная и более эффективная, чем лампы накаливания, излучающая свет за счет флуоресценции люминофорного покрытия.Люминесцентная лампа представляет собой стеклянную трубку, заполненную смесью паров аргона и ртути. Металлические электроды на каждом конце покрыты оксидом щелочноземельного металла, который легко испускает электроны. Когда ток проходит через газ между электродами, газ ионизируется и испускает ультрафиолетовое излучение. Внутренняя часть трубки покрыта люминофором — веществами, которые поглощают ультрафиолетовое излучение и флуоресцируют (переизлучают энергию в виде видимого света).

Компактные люминесцентные лампы (лампочки).

Encyclopædia Britannica, Inc.

Поскольку люминесцентная лампа не излучает свет за счет постоянного нагрева металлической нити накаливания, она потребляет гораздо меньше электроэнергии, чем лампа накаливания — по некоторым оценкам, только четверть электричества или даже меньше. Тем не менее, когда лампа включена, для ионизации газа при запуске необходимо первоначально в четыре раза большее рабочее напряжение люминесцентной лампы. Это дополнительное напряжение подается устройством, называемым балластом, которое также поддерживает более низкое рабочее напряжение после ионизации газа.В старых люминесцентных лампах балласт расположен в лампе отдельно от колбы и вызывает слышимое жужжание или жужжание, которое так часто бывает с люминесцентными лампами. В более новых компактных люминесцентных лампах (КЛЛ), в которых люминесцентная лампа свернута в спираль по форме, подобной лампе накаливания, балласт вставлен в чашку в основании сборки лампы и состоит из электронных компонентов, которые уменьшают или исключают жужжащий звук.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *