Как правильно выбрать электромагнитный пускатель?
Электромагнитный пускатель (контактор) – один из самых распространенных аппаратов для коммутации и управления электрической нагрузкой. При наличии двигателей и насосов без электромагнитных пускателей обойтись практически невозможно.
Я уже писал про выбор электромагнитных пускателей. Там в основном рассматривал различные схемы построения пускателей и сколько это стоит. Этой заметкой хотелось бы дополнить и завершить тему выбора электромагнитных пускателей.
Сейчас я расскажу более подробно, на какие факторы следует обращать внимание при выборе электромагнитного пускателя или контактора.
1 Определяемся с производителем.
Для наших целей обычно достаточно пускателей ПМЛ, КМИ, КТИ (никогда не применял). По своему опыту могу сказать, что около 90% применяемых пускателей -на ток до 25А, поэтому с КТИ как-то не пришлось еще поработать. Если по каким-либо причинам вы не можете указать производителя, можно перечислить все параметры.
2 Определяем номинальный ток пускателя.
Номинальный ток пускателя — максимальный ток, который может пропустить через контактную группу электромагнитный пускатель. Здесь существует классификация пускателей до 16А (первая величина), 25А (вторая величина), 40А (третья величина), 63А (четвертая величина). Есть пускатели и на большие токи, но они применяются в наших проектах очень редко. Следует иметь ввиду, что чем больше пускатель, тем у него больше габаритные размеры.
3 Выбираем степень защиты.
В случае установки электромагнитного пускателя в щите, то электромагнитный пускатель будет без защитной оболочки IP00. Очень хорошо подходят для этих целей малогабаритные пускатели серии КМИ. При установке пускателя в производственном помещении – IP54, в бытовых помещениях с нормальной категорий можно взять и IP40.
4 Выбираем напряжение катушки.
Как правило, выбираем пускатель с катушкой на 230В. Пускатель с катушкой на 400В позволяет экономить одну жилу кабеля. Выбор за вами… на форуме этот вопрос как-то поднимался.
5 В основном применяются нереверсивные пускатели.
В некоторых случаях, например для управления задвижкой нужно использовать реверсивный пускатель. Он представляет из себя два нереверсивных пускателя, соединенных особым образом.
6 Выбираем наличие кнопок управление и сигнальной лампы.
При установке пускателя в щите пускатель выбирается без кнопок и сигнальной лампы. Кнопки управления могут быть дополнительно установлены на передней дверке щита (обычные утопленные без фиксации кнопки ПУСК с одним замыкающим контактом и СТОП с одним размыкающим контактом). Возможен еще вариант установки поста кнопочного управления типа ПКУ (ПУСК, СТОП) у места управления.
В случае установки электромагнитного пускателя вне щита, то кнопки могут быть встроены в корпус пускателя (при необходимости).
Сигнальная лампа служит для сигнализации включенного состояния. Я почти никогда ее не ставлю.
7 Выбираем тепловое реле.
Для защиты двигателя можно использовать тепловое реле. Расчетный ток нашей нагрузки должен быть в диапазоне выбранного нами теплового реле.
При выборе силового щита необходимо помнить, что с тепловым реле электромагнитный пускатель имеет больший габарит, в прочем как и с другими дополнительными устройствами.
8 Выбираем дополнительные контакты.
В основном применяются пускатели с одним дополнительным замыкающим контактом, который используется в схеме управления пускателя. При организации более сложных процессов иногда недостаточно одного контакта. В этом случае можно поставить дополнительную приставку контактную с нужным количеством замыкающих и размыкающих контактов (до 4 шт.).
У вас может возникнуть вопрос: а можно ли в пускатель ПМЛ с IP54 установить приставку контактную ПКЛ? Вот ответ на этот вопрос…
Возможность установки приставки ПКЛ на пускатели ПМЛ
Еще хотелось бы отметить контакторы модульные (ИЕК). Особенность их в том, что они изготавливаются в двухполюсном и четырехполюсном исполнении и по габариту наверное почти как модульные автоматы.
Надеюсь данную тему можно закрыть, если что не понятно…пЕшЫте;)
Советую почитать:
Как выбрать магнитный пускатель для двигателя
Магнитное пусковое устройство – это низковольтный коммутирующий аппарат, применяемый для дистанционного пуска и отключения различных электрических цепей.
Он находит широкое применение как в бытовых, так и в промышленных системах, именно поэтому его правильный выбор так важен. Как это сделать – рассмотрим в настоящей статье.
Функциональные возможности
Магнитные пускатели находят очень широкое применение в различных отраслях хозяйственной деятельности и промышленности.
Наиболее же распространенные сферы их использования следующие:
- включение уличного освещения, внутризаводской и дворовой подсветки промышленных предприятий;
- коммутация электрических термонагревательных элементов и приборов (ТЭН-ов и инфракрасных излучателей) в системах электроотопления;
- управление электрическими асинхронными двигателями;
- применение в качестве главных пускателей для сетей промышленной автоматики.
При установке пускателя под открытым небом, следует обязательно учитывать класс его климатической стойкости по IP.
Вопрос выбора магнитного пускателя встает еще при разработке той либо иной электрической схемы, требующей его применения, а также при выполнении планового либо экстренного ремонта, когда вместо вышедшего из строя элемента следует подобрать его аналог.
Виды магнитных пускателей
Критерии выбора
Во время выбора пускателя следует руководствоваться его базовыми техническими характеристиками, а также некоторыми конструктивными особенностями, которые и рассмотрим ниже.
Напряжение (номинальное) в коммутируемой цепи
Подавляющее большинство магнитных пусковых устройств используется для запуска асинхронных электродвигателей, имеющих коротко замкнутый ротор и рассчитанных на внутризаводское напряжение 220 В/380 В. В случае, если используются электромоторы под вольтаж 380 В/660 В (что бывает значительно реже), то и пускатель надо выбирать соответствующий им по напряжению.
Для управления электродвигателями с возможностью реверса следует приобретать специальные реверсивные пусковые устройства.
Номинальная величина тока основных контактов
Соотношение величин тока коммутационного устройства и тока подключаемой нагрузки – один из важнейших параметров при выборе пускателя. Для ПУ, производство которых ведется в соответствии с ГОСТами, применяется условное деление на классы.
Для того, чтобы произвести выбор устройства по этому параметру, можно воспользоваться следующей таблицей:
Характеристики ПМЛ
Износостойкость коммутационная
Ее величина равна гарантированному количеству срабатываний, заявленному фирмой-изготовителем. Все пусковые устройства в данном случае делятся на 3 класса износостойкости: А, Б, В. Первый из них – самый высокий. Он гарантирует, что пускатель выдержит не менее 1,5 млн циклов. Классу Б соответствует величина от 630.000 до 1,5 млн циклов. Класс В – самый низкий. Приборы, отнесенные к нему, выдерживают от 100. 000 до 500.000 рабочих циклов.
Износостойкость механическая
Это не менее важная характеристика, которая показывает количество возможно допустимых включений/выключений аппарата без выхода из строя (при этом, все манипуляции в данном случае выполняются без нагрузки, а чисто механически). Величина этого параметра, в отличие от срабатывания под напряжением, значительно больше. В зависимости от типа ПУ она может составлять от 3 млн циклов до 20 млн циклов.
Количество полюсов
Для питания трехфазных электромоторов в большинстве случаев используются трехполюсные магнитные пускатели. Но, иногда возникают ситуации (например, когда источником нагрузки являются электронагревательные системы либо сети освещения), когда лучшим вариантом будет выбор многополюсного пускателя (среди таких устройств зарубежного производства встречаются аппараты с восемью и более полюсами).
Количество полюсов
Напряжение катушки (номинальное)
Большая часть пускателей, используемых при управлении электрооборудованием, имеют установленные в них катушки, рассчитанные на тоже напряжение, что и питающая сеть. При этом, иногда может возникнуть потребность в пускателе, имеющим катушку с напряжением, отличным от сетевого (к примеру, при обустройстве автоматических цепей). Производимые в настоящее время ПУ позволяют выбрать катушку под любое стандартное напряжение (9, 12,24,36…380 вольт, а некоторые и под более высокое).
Количество вспомогательных контактов и их параметры
Возможность реверса
Для управления реверсивными электромоторами следует выбирать реверсивные ПУ, внутри которых находятся два отдельных пускателя, подсоединенных друг к другу.
Защита
В базовом исполнении магнитные пускатели, как правило, не имеют систем защиты электрооборудования. При необходимости этот блок можно приобрести дополнительно. Кроме этого, как и для всего электрооборудования, при выборе ПУ следует обратить внимание на величину его климатического параметра (IP) – чем хуже условия среды, в которых он будет работать, тем величина этого параметра должна быть выше.
Пускатель в корпусе
Полезное видео
С советами экспертов по выбору магнитного пускателя вы также можете ознакомиться на видео ниже:
Заключение
Таким образом, подходить к выбору магнитного пускателя стоит очень серьезно – ведь он имеет большое число характеристик, правильный выбор которых обеспечит надежную исправную работу как самого устройства, так и всей электрической цепи.
Как подобрать электромагнитный пускатель (контактор)? – Блог Elektrovoz
Электромагнитный пускатель используют для дистанционного управления силовыми нагрузками и обеспечения защиты двигателей от перегрузок током. Это обеспечивается работой тепловых реле. К выбору пускателя подходят по некоторым критериям.
Прежде, на что необходимо обращается внимание, это величина магнитного пускателя. Ток главных контакторов пускателя должен превышать уровень тока нагрузки. Также необходимо отслеживать рабочее напряжение катушки, которая должна соответствовать напряжению цепи управления. Еще одна характеристика — она должна соответствовать количеству контактов в схеме управления. Контактор должен соответствовать условиям той среды, где он установлен. Наличие теплового реле позволит включать и выключать устройство при перегрузке системы. Важно обратить внимание на то, какое количество включений и выключений осуществляет прибор. Если таких функций прибор осуществляет много стоит выбрать бесконтактные пускатели. Очень хорошо, если электромагнитный контактор будет иметь дополнительные элементы управления такие, как кнопки и лампочки.
Для чего используют электромагнитный пускатель?
Магнитные пускатели это устройства, которое используют для запуска двигателя и разгона его до номинальной скорости. Он предназначен для обеспечения бесперебойной работы и защиты цепей и электродвигателя от перегрузок и скачков тока. Электромагнитные пускатели используют в системах управления с микропроцессорной техникой.
Магнитный пускатель также берет на себя функцию переключения направлений вращения ротора электродвигателя, чем изменяет последовательность фаз. Чтобы это произошло, он должен быть оснащен дополнительными контакторами.
Подключение магнитного пускателя — розетки, в однофазной сети 220В
Принцип работы магнитного пускателя
Принцип действия. Электропускатель состоит из катушки индивидуальности. Над ней располагается магнитопровод. При подаче на катушку напряжения, она пропускает через себя ток и таким образом образуется магнитное поле. Такое поле притягивает сердечник пускателя и замыкает контакты.
Который выбрать контактор?
Если возникает вопрос, который контактор выбрать, стоит обратить внимание на некоторые детали. Надо выбирать устройство в зависимости от того, где Вы будете его использовать. Здесь основную роль играет необходимое напряжение и величина тока главной цепи. Необходимо определиться с желаемым режимом работы. Это могут быть такие режимы, как длительные, прерывистые, кратковременные и смешанные. Подбирайте контактор в зависимости от количества имеющихся полюсов (их может насчитываться до 5). В зависимости от этих параметров будет зависеть и тип контактора.
Купить электромагнитный пускатель (контактор) по низким ценам Вы сможете в интернет-магазине «Электровоз». Отправка товара напрямую, со склада, позволяет существенно сэкономить. У Вас есть возможность заказать пускатель как в розницу, так и оптом. Весь товар перед отправкой проверяется на отсутствие дефектов.
Обслуживание магнитного пускателя — ElectrikTop.ru
Для коммутации электрических приборов низковольтной аппаратуры применяются устройства, которые получили название магнитный пускатель или контактор.
Назначение устройства
С помощью таких приборов осуществляют:
- Включение или отключение электродвигателей механических приводов в промышленном оборудовании;
- Управление системой наружного освещения населенных пунктов и подсветкой исторических и промышленных объектов;
- При использовании электрического отопления производится подключение и отключение ТЭНов нагревательных приборов;
- С их помощью производят коммутацию электродвигателей и других пусковых органов в цепях автоматики;
- Также средства коммутации широко применяются в бытовой аппаратуре.
Такие приборы выпускаются на однофазный или трехфазный пускатель.
Выбор прибора
Как правило, выбор магнитного пускателя осуществляется на этапе проектирования оборудования. Иногда возникает вопрос, как выбрать магнитный пускатель в процессе ремонта.
Для этого руководствуются следующими правилами:
- Прежде всего, рассматриваются технические характеристики и конструктивные особенности;
- Подбирают прибор на соответствующее напряжение цепи питания. В большинстве случаев это напряжение 220/380 вольт. Реже коммутируемая сеть имеет напряжение 380/660 вольт;
- При выборе аппарата рассматривают номинальный рабочий ток коммутируемого механизма. Они выпускаются на различные токи коммутации от 6,3А до 250А;
- Затем обращают внимание на параметр механической износостойкости. Он показывает, сколько циклов срабатывания может выдержать прибор без ремонта;
- Учитывают количество полюсов коммутации;
- На какое напряжение рассчитаны катушки магнитных пускателей. Они выпускаются на питающее напряжение от 9 до 380 вольт;
- Часто контакторы имеют вспомогательные или дополнительные контакты. Они используются в схемах автоматики и сигнализации;
- Промышленность освоила выпуск специальных приборов, которые могут осуществлять реверсивное включение двигателей. Такие приборы в одном корпусе имеют два контактора;
- Когда осуществляют выбор магнитного пускателя, обращают внимание на наличие теплового реле защиты.
При самостоятельном подключении оборудования выбор пускателя производят по мощности двигателя.
Для этого существует рекомендация подбора. Согласно которой Iном принимается как мощность электромотора, умноженная на два.
Исходя из полученного значения, выбор мотора производят таким образом, чтобы номинальный рабочий ток трехфазного двигателя был меньше тока магнитного пускателя.
То есть расчетные данные должны быть меньше значений подобранного контактора. По умолчанию при расчете принимается, что контактор способен выдерживать пусковые токи, они многократно превышают рабочие токи.
Так, для подключения двигателя мощностью 3,7 Квт рабочий ток составит 3,7*2=7,4 А. Для подключения асинхронного двигателя такой мощности, достаточно выбрать магнитный пускатель с рабочим током 10 А.
Для точного подбора устройства существуют математические формулы. Которые позволяют точно рассчитать параметры контактора.
Iном.=P/(U*η* cosφ*√3),
Эта формула справедлива для выбора устройства на 3-х фазное напряжение. Коэффициенты η принимают значение 0,87, и cosφ= 0,88.
Рассчитывают пусковой ток по формуле:
Iпуск.=k*Iном., где к-коэффициент кратности тока. Он имеет значение 7-8, в зависимости от мощности двигателя.
Для окончательного выбора необходимо вычислить ударный ток короткого замыкания в момент пуска. Его определяют по формуле:
i= (1,2-1,4)*Iп*√2,
После проведенных расчетов необходимо выбрать магнитный пускатель из модельного ряда, выбираем как для двигателя, так и для другой аппаратуры. После того как осуществили выбор магнитного пускателя по току в таблице модельного ряда, пускатель монтируют на дин рейку и собирают схему.
Далее подключают к исполнительным механизмам (электродвигатель и т. п.). Схема собрана и готова к работе.
Симптомы неисправности устройства
Как и все механизмы в процессе работы происходит отказ оборудования. Неисправности характеризуются следующими симптомами:
- При включении слышно сильное гудение пускателя. Что может привести к выходу катушки контактора из строя. Нормально работающее устройство издает еле слышное гудение;
- Включение главных контактов происходит не равномерно. И как следствие контакты подгорают, а при потере фазы может отказать и электродвигатель;
- В реверсивных устройствах отсутствует реверс;
- Якорь прилипает к сердечнику;
- Отсутствует самоблокировка.
Ремонт прибора
Для того чтобы произвести ремонт магнитного пускателя, необходимо не только знать симптомы, но и методы ремонта. При неравномерном включении контактов производят затяжку хомутика контактов.
При необходимости зачищают контакты от окислов и налипшего металла. При сильном гудении производят регулировку магнитных пускателей. Затягивают винты, крепящие якорь и сердечник. Проверяют состояние короткозамкнутого витка.
Его повреждение характеризуется звоном и дребезгом магнитного пускателя, когда он работает. Проверяют прилегание обеих половин сердечника. В случае неполного прилегания (менее 70%) производят ремонт магнитного пускателя для восстановления поверхности прилегания.
Для этого зажимают копировальную бумагу между сердечниками. Если поверхность недостаточна, производят притирку сердечников. Таким образом, устраняется гудение магнитного пускателя, а наличие зазора объясняет, почему гудит контактор.
Восстановление реверса осуществляют подгонкой механических тяг. Причиной залипания якоря и сердечника может быть недостаточность или отсутствие диэлектрической прокладки.
Проверяют толщину или наличие прокладки, а также воздушный зазор.
Если отсутствует самоблокировка, производят регулировку блок — контактов. Когда этого сделать невозможно, контакты меняют.
Для того чтобы убедиться в исправности устройства необходимо знать как проверить работоспособность магнитного пускателя.
Проверка работоспособности и обслуживание
Для этого необходимо произвести внешний осмотр прибора. Обращают внимание на состояние катушки. Она не должна иметь видимых потемнений и повреждений.
Контактная группа не должна иметь перекосов, а замыкание контактов происходит одновременно.
Измеряют напряжение срабатывания и отключения устройства. Прибор должен срабатывать при постепенном поднятии напряжение от 0 до 0,85Uном. А отключаться при понижении напряжения до 0,45Uном.
Для того чтобы коммутирующее устройство работало продолжительное время необходимо во время эксплуатации проводить обслуживание устройства.
Для этого проверяют состояние соединений. Очищают прибор от пыли. Контролируют состояние коммутирующих контактов. Производят ревизию металлических деталей устройства.
Особое внимание обращают на состояние пружины. Она должна быть довольно жесткой. Витки распределены равномерно по всей длине. Якорь не должен заедать и перекашиваться.
При наличии механических неисправностей, производят смазывание или шлифуют детали. Если устройство оборудовано тепловым реле, работоспособность его проверяют на специальном стенде в лабораторных условиях.
В домашних условиях эту проверку осуществить невозможно. При обнаружении неисправности производят ремонт или замену устройства на исправное.
Как выбрать пускатель
Магнитный пускатель – это устройство для дистанционного управления силовыми нагрузками (чаще всего электродвигателями). В автомобиле пускатель предназначен для управления асинхронным электродвигателем с короткозамкнутым ротором. Помимо того, пускатель обеспечивает защиту двигателя от перегрузок и сигнализацию о его работе. Пускатели различаются по назначению, наличию дополнительных функций, устойчивостью к внешним воздействиям, величине тока, рабочему напряжению.Выбор по серии электромагнитного пускателя. Из отечественных пускателей наиболее распространены ПМЛ, ПМ12 и ПМУ. Из иностранных — Siemens, Legrand и ABB.
Выбор пускателя по току нагрузки, которую он способен коммутировать (включать и выключать). Для автомобилей применяются пускатели 1 величины с коммутируемыми токами 10 и 16 А. Учтите, что эта величина должна быть больше максимального тока электродвигателя или другого электроприбора.
Выбор пускателя по рабочему напряжению катушки, которое должно соответствовать напряжению электрической цепи автомобиля. В данном случае стандартное значение напряжения составляет ~24 В.
Выбор пускателя по количеству дополнительных контактов, которое должно быть равным числу контактов в схеме управления. Замыкающие и размыкающие контакты учитываются отдельно друг от друга. Если количество контактов недостаточно для подключения в схему управления, можно применить специализированную приставку. Эта приставка замедляет срабатывание контактов на короткое время и пускатель можно использовать как реле времени.
Выбор пускателя по степени защиты от вредных воздействий окружающей среды (IP).
Выбор пускателя по наличию или отсутствию теплового реле зависит от того, допускает ли технологический режим работы управляемого электродвигателя перегрузки.
Выбор пускателя по наличию или отсутствию реверса зависит от того, является ли управляемый электродвигатель реверсивным или нет.
Выбор пускателя по дополнительным элементам управления (кнопки, сигнальные лампы) зависит от предпочтений пользователя и условиям эксплуатации.
Выбор пускателя по классу износостойкости зависит от того, будет ли он предназначаться для коммутации нагрузки в режиме частых срабатываний. При большом количестве включений и выключений в час рекомендуется выбирать бесконтактные пускатели.
Контакторы и пускатели серии ПМ12, пускатель электромагнитный пм12,пускатели пм
Пускатели электромагнитные – распространенный тип электрооборудования, которое повсеместно используется для обеспечения нормальной работы электроустановок. Главным образом, такие изделия крайне удобны для дистанционного пуска стационарных систем путем непосредственного подключения к электросети. Также подобные агрегаты обеспечивают реверсирование и остановку трехфазных асинхронных электродвигателей.
Популярное исполнение моделей – пускатели ПМ12. Каталог КЭАЗ – это внушительное количество модификаций от известного отечественного производителя. Курский электроаппаратный завод предлагает не только качественное исполнение продукции, но и умеренную стоимость. Это высокие показатели надежности и прочности товаров, которые подтверждаются многолетним опытом работы. За 70 лет своего существования торговая марка доказала, что доверие к ней со стороны потребителей вполне оправданно.
Магнитный пускатель ПМ12: особенности модельного ряда
Если вам нужен агрегат для работы в системе управления с использованием микропроцессорной техники при тиристорном управлении, стоит купить магнитный пускатель ПМ12 010100 УХЛ4 в. Также он подойдет при шунтировании включающей катушки помехоподавляющими устройствами. Если имеется тепловое реле, то в комплекте эти устройства осуществят надежную защиту управляемых электродвигателей от возникновения всевозможных перегрузок и токов, которые появляются при обрыве одной из фаз.
Прежде чем сделать покупку, стоит тщательно разобраться с маркировкой изделий. Если посмотреть, к примеру, на пускатель ПМ12 160150, рядом с серией можно увидеть цифровое обозначение, структура которого свидетельствует о следующем:
- «Пускатель»: обозначение определенной группы изделий.
- «ПМ12»: обозначение серии.
- «Комбинация из трех цифр» говорит о номинальном токе агрегата:
- 025 – 25а;
- 200 – 200а;
- 040 – 40а;
- 100 – 100а;
- 063 – 63а;
- 010 – 10а;
- 160 – 160а;
- 260 – 260а.
- 1 – отсутствие теплового реле, нереверсивный;
- 2 – наличие теплового реле, нереверсивный;
- 5 – реверсивный, отсутствие теплового реле, но наличие механической блокировки;
- 6 – наличие теплового реле и механической, а также электрической блокировки, реверсивный.
- 0 – IP00;
- 1 – отсутствие кнопок, степень защиты IP54;
- 2 – кнопочный агрегат (наличие «ПУСКа» и «СТАРТа»), соответствие степени защиты IP54;
- 4 – отсутствие кнопок, степень защиты IP40;
- 5 – соответствие степени IP20;
- 6 – кнопочная модель (наличие «ПУСКа» и «СТАРТа»), степень защиты IP40.
То есть, если взять магнитный ПМ12 010150, то можно сказать что аппарат некнопочный, нереверсивный, соответствует степени защиты IP00, рассчитан на номинальный ток в 10 А и не оснащен тепловым реле. Прежде чем купить агрегат, стоит также тщательно подобрать модель по условиям эксплуатации. УХЛ3 – цифро-буквенное обозначение, которое свидетельствует о том, что агрегаты нужно применять в помещениях с небольшими колебаниями уровня влажности и температуры воздуха. Они должны быть существенно меньшими, чем аналогичные колебания на улице.
Пускатели ПМ12 и особые условия эксплуатации
Чтобы оборудование работало нормально, важно строго придерживаться рекомендуемых условий эксплуатации. Прежде всего, нужно уставить изделие в правильном положении, то есть строго вертикально. Крепление агрегата происходит с помощью винтов или на ДИН-рейку (методом защелкивания). Допускается отклонение на 15% в любую сторону при условии снижения уровня рабочего номинального тока.
Пускатель электромагнитный ПМ12 010500 рассчитан на такие показатели номинального тока втягивающей катушки: 24 – 110в, 115 – 380в, 440 – 660в. Наибольшим значением в данном случае будет 440в для частоты в 60 Гц, 660в – для частоты в 50 Гц. Наименьшее значение – 24в (не 12 вольт).
Магнитный пускатель ПМ12 220в 25а, цена которого в полной мерее соответствует его высокому качественному исполнению, должен эксплуатироваться на высоте над уровнем моря не более 2-х километров. Хотя допускается применение оборудования на высоте до 4,3 километра, если рабочие номинальные токи будут снижены на 10%.
Где купить электромагнитный пускатель ПМ12 063151, чтобы цена и качество обслуживания вас удовлетворило? Большой выбор моделей электрооборудования по демократичным ценам предлагает ООО «Брэйн». Наша компания тесно сотрудничает с Курским электроаппаратным заводом уже многие годы. Внушительный ассортимент продукции, в том числе и пускателей ПМЛ, представлен на сайте optivolt.ru. Это удобный и выгодный вариант покупки необходимых агрегатов.
Тепловое реле — защита для электродвигателя
Для того, что бы защитить электродвигатель от токов высокой нагрузки в дополнение к защитному автомату необходимо поставить тепловое реле. Принцип работы теплового реле до безобразия прост. В тот момент, когда на электродвигателе возникает нагрузка сверх нормы, тепловое реле отсекает питание от катушки магнитного пускателя.
Отсекание фазы на катушку происходит за счёт нагрева биметаллических пластин, которые расходятся при высокой нагрузке. Завод изготовитель рассчитывает расширение пластин, которые нагреваются при прохождении через них тока сверх допустимой нормы.
Говоря проще, когда возникла нагрузка, биметаллические пластины расширились, и оборвали питание магнитного пускателя. Тепловое реле необходимо выбирать исходя из мощности электродвигателя. Для более точной настройки, все тепловые реле имеют настраиваемый диапазон, который можно выставить вплоть до одного ампера.
Тепловое реле подключается между магнитным пускателем и электродвигателем. В некоторых моделях через тепловое реле проходят все три фазы, но в основном через теплушку пропускается две фазы, а третья идет напрямую от магнитного пускателя.
С силовыми концами идущими на электродвигатель, мы разобрались, теперь давайте рассмотрим, как сделать что бы при высокой нагрузке, магнитный пускатель отсекал питание на электродвигатель.
Для того чтобы подключить тепловое реле, вам необходимо прочитать статью подключение магнитного пускателя. Если вы это уже знаете, то идем дальше. Как вы помните, фаза идущая на стоповую кнопку берется с верхних контактов пускателя.
Фазу идущую на кнопки необходимо пропустить через специальные контакты на тепловом реле. Принцип прост, фаза зашла – фаза вышла. Если на электродвигателе возникла нагрузка пластины между этими контактами разомкнуться и пускатель отключиться. Местоположение контактов на реле вы найдете сами, Всего там идёт пять зажимных контактов, три силовые и два на управление. Как видите всё просто и без лишней болтовни.
Для того чтобы правильно выбрать тепловое реле необходимо взглянуть на мощность электродвигателя и на его номинальные характеристики тока , которые указаны на табличке электродвигателя. Бывает такое, что табличка отсутствует, тогда берите клещи и замеряйте токи на каждой фазе желательно при нагрузке. Если электродвигатель не горячий смело ориентируйтесь на показания прибора. Допустим, у вас показало 16 ампер, прибавляйте 20% процентов на пусковые токи и выбирайте тепловое реле, где можно выставить 20 ампер и смело его подключайте.
При срабатывании на тепловом реле выскакивает кнопочка, которую потом можно включить. Если срабатывание начинает происходить часто, а нагрузка на ваш взгляд не повышается то вполне возможно, что у вас межвитковое замыкание, о котором вы тоже можете прочитать на нашем сайте про электричество.
< Охлаждение и устранение нагрева электродвигателей |
---|
Руководство по выбору пускателя двигателя IEC
Главная »О нас» Новости »Выбор пускателя двигателя IEC
Опубликовано автором springercontrols
Это подробное руководство по выбору правильного пускателя двигателя для вашего приложения. Давайте начнем с быстрого ознакомления с компонентами стартера двигателя. Пускатели двигателей в сборе состоят из контактора и реле перегрузки, установленных в поликарбонатном корпусе, соответствующем требованиям NEMA 4X.
Вы можете обратиться к нашему подробному руководству по выбору контактора, если вы хотите сначала ознакомиться с контакторами. Или, если вам нужен обзор контакторов и перегрузок и их работы, вы можете обратиться к нашему руководству по основам пускателей двигателей. Что касается предварительно смонтированных пускателей, мы рассматриваем только нереверсивные контакторы и категории использования AC-3 и AC-4.
Как создаются номера деталей для стартеров переменного тока
Для начала может быть полезно объяснить, как создаются номера деталей для пускателей переменного тока:
В приведенном выше примере описание номера детали JC0916P1G-JM :
Пускатель двигателя закрытого типа, однофазный контактор 9A , 1 фаза, , прямое напряжение , 4X poly, Кнопки пуска / останова , Катушка 120 В перем. Тока , O / L 5.5-8,5А
Пошаговый выбор пускателя двигателя IEC
Выполните следующие действия, чтобы выбрать пускатель двигателя, соответствующий вашим требованиям:
1.
Размер контактора и мощность сетиСм. Паспортную табличку вашего двигателя или оборудования, чтобы проверить силу тока полной нагрузки (FLA) при напряжении сети, которое вы намереваетесь обеспечить.
Обязательно проверьте, является ли линия питания однофазной или трехфазной мощностью двигателя
Выберите пускатель, рассчитанный на ток (А) выше, чем FLA вашего двигателя при напряжении сети, которое вы собираетесь использовать.
2. Диапазон реле перегрузки
Выберите перегрузку, выбрав диапазон тока, который содержит FLA двигателя из шага 1
3. Питание катушки переменного тока
Выберите мощность управления, используемую для включения контактора.
После того, как вы это сделаете, следует сузить круг пускателей до тех, у которых компоненты подходят для вашего двигателя, напряжения и проводки. Затем выберите конфигурацию стартера на основе следующих критериев в соответствии с вашими предпочтениями:
4.Управляющая мощность
Если сетевое питание также будет использоваться как управляющее, подключенное напрямую к контактору, это называется «пускатель прямого включения ».
Если управляющее напряжение не совпадает с линейным напряжением, мы называем это « отдельное управляющее напряжение »
Если стартер необходимо активировать от внешнего переключателя, мы добавляем клеммы для приема управляющей мощности от этого переключателя. Мы называем это « клеммы дистанционного запуска ».В этой схеме предполагается, что линейное напряжение и управляющее напряжение одинаковы.
Если вам нужны клеммы дистанционного пуска и вы будете использовать другое напряжение для сетевого и управляющего питания, мы называем это « отдельное управляющее напряжение + клеммы дистанционного пуска».
5. Кнопки крышки корпуса
КнопкиStart / Stop предоставляют вам зеленые / красные кнопки ручного управления для запуска и остановки двигателя на крышке корпуса
Кнопка сбросадает вам только синюю кнопку сброса на крышке корпуса для сброса реле перегрузки в случае его срабатывания. Кнопка сброса также функционирует как кнопка местного останова.
Нет кнопок на крышке. (В этой опции есть кнопка сброса на самой перегрузке. Однако она находится внутри корпуса и требует, чтобы корпус был открыт для доступа к нему. В результате схема подключения для этой опции такая же, как и у кнопки сброса. вариант, отличие в расположении кнопки сброса)
Электрические схемы и выбор предварительно смонтированного пускателя двигателя
Загрузите нижеприведенный PDF-файл со схемами подключения для различных конфигураций.Если вы не уверены, свяжитесь с нами. Если вы не видите то, что ищете, мы с радостью объясним или поговорим о настраиваемых параметрах.
Выбор предварительно смонтированного пускателя двигателя (PDF)
Консультации — Инженер по подбору | Как правильно выбрать пускатель двигателя
Автор: Андре Перра, Cerus Industrial, Hillsboro, Ore. 14 марта 2011 г.
Есть множество двигателей разных размеров и много разных применений в новом строительстве. У инженеров на выбор есть несколько типов пускателей двигателей, от сложных до простых. Как инженер решает, что выбрать? Здесь задействовано множество факторов, и в зависимости от требований приложения доступны различные типы устройств. Давайте начнем с разбивки пускателей двигателей на набор глобальных категорий продуктов.
Типы стартеров
VFD : Верхнюю часть диапазона возможностей пускателя двигателя составляют преобразователи частоты (VFD).ЧРП обычно используются для управления скоростью двигателя, но они также используются на небольших двигателях, где они служат только в качестве пускателей двигателя. В этих случаях частотно-регулируемый привод будет работать на полной скорости, обеспечивая при этом ряд преимуществ, в том числе пониженный пусковой ток, связь с центральной системой управления зданием и простой интерфейс для автоматического управления. Эти преимущества, конечно, достигаются за счет повышенной сложности, увеличения затрат на установку и чувствительности к окружающей среде, в которой установлен частотно-регулируемый привод. Для поддержки частотно-регулируемых приводов часто требуется дополнительное оборудование, такое как фильтры и защита от перенапряжения, что еще больше увеличивает стоимость.
Устройства плавного пуска : Подобно частотно-регулируемым приводам в том, что они способны изменять скорость двигателя, роль устройств плавного пуска (иногда называемых твердотельными пускателями пониженного напряжения) заключается в плавном увеличении скорости двигателя во избежание вызывая большие скачки тока и сводя к минимуму износ электрических контактов в системе. Учитывая эту функциональность, устройства плавного пуска обычно используются с устройствами включения / выключения, которые часто переключаются, например, компрессоры или конвейерные ленты.Хотя эта технология позволяет непрерывно запускать двигатель на частичной скорости, как и в случае с частотно-регулируемым приводом, устройства плавного пуска обычно неэффективны при частичном управлении скоростью. Как и частотно-регулируемые приводы, устройства плавного пуска содержат электронику и чувствительны к окружающей среде и качеству подаваемой электроэнергии. Таким образом, использование устройств плавного пуска связано со сложностью и затратами, аналогичными тем, которые используются для частотно-регулируемых приводов, но с меньшими возможностями.
Сетевые пускатели : Самый простой тип пускателей двигателя, пускатели поперечного сечения просто подключают и отключают питание двигателя.Хотя размер двигателей, которыми они могут управлять, не ограничен, эти двухпозиционные пускатели обычно используются в коммерческих зданиях с двигателями мощностью 15 л.с. и ниже, которые предназначены для непрерывной работы. Как правило, они не обеспечивают обратной связи с системами управления на уровне здания сами по себе, кроме простого подтверждения замыкания контактов, поэтому подрядчики должны дополнять их другими устройствами, такими как мониторы тока или мощности, для интеграции с новейшими системами управления зданием для подтверждения потока (воздуха или жидкости). ) и для контроля энергопотребления.
Умные пускатели
Недавно был разработан новый тип пускателя двигателя с пониманием сильных и слабых сторон традиционных типов стартера, перечисленных выше, и с целью объединения функций для обеспечения наилучшего соотношения цены и качества для широкого спектра применений.
Этот новый тип — интеллектуальный стартер. Умные пускатели — это, в основном, пускатели прямого действия, которые включают в себя многие функции электронных пускателей, но без особой сложности.Они предназначены для использования с двигателями, которые работают с одной скоростью, но они имеют встроенные средства связи и функции безопасности, которые позволяют им функционировать как часть автоматизированных систем экологического контроля здания, не требуя дополнительного оборудования. Они предназначены для включения многих функций, которые обычно устанавливаются в качестве надстроек к другим устройствам запуска двигателя, таких как встроенный измеритель мощности, расширенная защита двигателя и полезные интерфейсы пользователя, которые являются значительными улучшениями по сравнению с традиционными универсальными устройствами. линейные стартеры.В целом, эти новые интеллектуальные пускатели сокращают затраты на установку и техническое обслуживание, сохраняя при этом такую же простоту и надежность, как и пускатели общего назначения.
Повышение защиты
Независимо от типа пускателя, в любом пускателе двигателя должен быть предусмотрен набор возможностей. Одна из них — защита управляемого двигателя.
Традиционный пускатель имеет механическую защиту от перегрузки. Если двигатель запускается слишком часто и слишком быстро, он перегреется и потенциально повредит обмотки двигателя безвозвратно, поэтому требуется какая-то защита от тепловой перегрузки.Традиционно это поддерживается установкой теплового реле перегрузки с внутренним нагревателем в цепи двигателя. Реле перегрузки нагревает биметаллическую полосу, которая размыкает контакт, когда ее температура достигает желаемого предела. Как правило, контролировать температуру самого двигателя непрактично и нецелесообразно. Проще сконструировать контактный нагреватель, чтобы смоделировать тепловые характеристики двигателя. Чем выше ток, протекающий в двигатель, тем быстрее сработает выключатель перегрузки.Будучи механическим устройством, которое работает от тепла, тепловая перегрузка сохраняет тепло от повторяющихся запусков или непрерывной работы при полной нагрузке, что приводит к сокращению времени отключения или невозможности запуска, если перезапуск происходит слишком быстро с момента последнего отключения по перегрузке.
Вместо традиционных биметаллических термовыключателей или теплового моделирования, отслеживающего только ток двигателя, разработчики должны искать пускатели, которые активно контролируют ток, и анализируют информацию о напряжении для отслеживания энергопотребления.Измеряя мощность, стартер может определить, правильно ли работает двигатель, и защитить его от низкого напряжения и перегрузки, например, при потере одной из фаз питания. Однофазное состояние может повредить многофазный двигатель, и его трудно обнаружить с помощью только текущего или теплового контроля. Могут быть обнаружены другие условия низкого энергопотребления, например, вызванные питанием сухого насоса или обрывом ремня вентилятора, что позволяет защитить двигатель и соединительное оборудование, снизить затраты на техническое обслуживание и увеличить срок службы всей системы.Системам также необходимо обнаруживать и защищать от повторяющихся команд включения / выключения, вызванных плохими управляющими сигналами и отключением системы, чтобы избежать перегрева или повреждения стартера или двигателя.
Типичные датчики тока, поставляемые в качестве дополнения к пускателям двигателей, требуют регулировки или предоставляют только показания включения / выключения для проверки протекания тока. Более простым и безопасным в обслуживании решением является выбор пускателя двигателя с датчиком тока с регулируемыми пороговыми значениями, которые можно установить с помощью интерфейса оператора, без необходимости открывать корпус пускателя.
Благодаря некоторому интеллекту, встроенному в интеллектуальный пускатель, он также может вести журнал аварийных сигналов — вести учет аварийных сигналов, чтобы помочь техническим специалистам по обслуживанию быстрее и проще устранять проблемы — и можно предоставить различные программируемые параметры для перезапуска двигателя после сбой питания.
Включение удаленного мониторинга и управления
Системы автоматизации и энергоменеджмента на уровне здания требуют полного контроля над системами отопления, вентиляции и кондиционирования воздуха. Им также необходимо собрать информацию о том, как работают системы.За прошедшие годы были разработаны различные средства для поддержки этих усилий.
Дистанционные контроллеры обычно активируют промежуточные реле для включения пускателей двигателей. Причина этого в том, что контроллеры предназначены для работы только с низким током и низким напряжением через свои выходные контакты, в то время как двигатели работают с высоким напряжением и током. Часто подрядчик по системам управления должен поставить компоненты реле.
После завершения установки подрядчики используют различные средства для проверки того, что устройство, подключенное к двигателю, работает, подтверждая, что пускатель двигателя выполнил свою работу.Например, система может определить, работает ли двигатель, отслеживая мощность вентилятора с помощью реле давления или используя датчик тока для отслеживания тока, идущего к двигателю.
Обычно датчики тока монтируются внутри корпуса пускателя двигателя и также могут использоваться обслуживающим персоналом или системами управления зданием для обнаружения потери нагрузки (например, из-за обрыва ремня вентилятора). Они обычно называются датчиками расхода или состояния и часто требуют калибровки во время работы двигателя.
Внутри некоторых пусковых коробок двигателя может потребоваться установка других органов управления, например, органов управления заслонкой. Если в воздуховоде системы отопления, вентиляции и кондиционирования воздуха установлены заслонки, соответствующие заслонки должны открыться до запуска двигателя, чтобы система могла работать. Для этого требуются дополнительные компоненты управления — иногда трансформатор, может быть, одно или два реле. В худшем случае есть реле, датчик тока и элементы управления заслонкой, все они связаны внутри блока стартера.
Может потребоваться сигнализация, чтобы предупредить обслуживающий персонал о том, что система работает некорректно.Часто добавляются дополнительные реле, что может быть затруднено, поскольку количество доступных контактов ограничено. Со всеми надстройками среда внутри корпуса стартера может стать очень тесной и беспорядочной (см. Рисунок 1), а затраты могут быстро возрасти. Стоимость этих компонентов, включая установку, может варьироваться от 150 до 250 долларов за каждый стартер, в зависимости от расценок на оплату труда на местном рынке.
Если в пускатель двигателя встроен контроль мощности, а пускатель двигателя имеет сетевой интерфейс здания, то можно сэкономить на добавлении измерителя мощности для каждого отдельного двигателя.(Установка одного измерителя мощности на стартер может стоить от 750 до 1500 долларов за каждый двигатель.)
Для взаимодействия с системами управления зданием разработчики должны искать пускатели, которые подключаются напрямую к стандартной сети, такой как BACnet. BACnet (сеть автоматизации и управления зданиями) — это термин, обычно используемый для обозначения стандарта ANSI / ASHRAE 135-1995, принятого и поддерживаемого Американским национальным институтом стандартов (ANSI) и ASHRAE. Непатентованный коммуникационный стандарт, разработанный консорциумом управления зданием, пользователями системы и производителями, BACnet становится общепринятой альтернативой проприетарным коммуникационным решениям, которые до сих пор использовались в большинстве систем управления HVAC.
Предотвращение опасности вспышки дуги
Тот факт, что типичный пускатель двигателя был ядром для добавления устройств и смешивания соединений высокого и низкого напряжения, также может сделать его точкой сосредоточенной опасности для монтажного и обслуживающего персонала. Риски, связанные с работой с высоковольтным электричеством, очевидны для каждого, кто устанавливает электрическое оборудование, однако несчастные случаи, приводящие к травмам и смертельному исходу, все же происходят. Риск травмы выше, поскольку в системах пускателя двигателя используются низковольтные устройства управления (ниже 120 В переменного тока) с входами и выходами сетевого напряжения в одних и тех же корпусах.Чтобы снизить риск катастрофических событий в результате контакта незащищенных рабочих с контактами большой мощности в электрическом оборудовании, Национальная ассоциация противопожарной защиты. установила стандарт NFPA 70E, в котором содержатся рекомендации по обеспечению электробезопасности на рабочем месте. Этот стандарт соответствует Национальному электротехническому кодексу (NEC) и поддерживает требования Управления по охране труда и технике безопасности (OSHA) в отношении использования защитного оборудования при работе там, где существует потенциальная опасность поражения электрическим током (29 CFR 1910.335 (а) (1) (i)).
NFPA 70E требует, чтобы работодатели провели анализ опасности вспышки и предоставили рабочим одежду, предназначенную для защиты от уровня риска, связанного с каждой задачей. Для установщиков типичных устройств пускателя двигателя, которые необходимо протестировать и проверить на предмет правильной работы, открыв корпус стартера для снятия показаний тока, для защиты может потребоваться тщательно продуманный огнестойкий костюм для всего тела и изоляционные перчатки.
Лучшим вариантом для электрических спецификаций является выбор пускателя двигателя, который делает его функции управления и контроля доступными через панель управления, которая не требует открывания корпуса пускателя и обнажения электрических компонентов и высоковольтных соединений, тем самым полностью избегая дуги. опасность вспышки.
В качестве бонуса выбор пускателя двигателя, который включает стандартные функции контроля, сокращает объем требуемых монтажных работ и снижает вероятность ошибок установки, тем самым повышая надежность. Кроме того, при необходимости обслуживания предоставляется дополнительная информация о состоянии системы, чтобы упростить процесс обслуживания и сделать его более безопасным.
Экономия энергии
Помимо оптимизации функций технического обслуживания, пускатели двигателей со встроенной поддержкой мониторинга также могут способствовать экономии энергии.Например, для сертификации LEED Совета по экологическому строительству США требуется мониторинг мощности, а проверка потребляемой мощности дает больше баллов для оценки здания по системе LEED. Двигатели HVAC больше не должны работать непрерывно в течение длительных периодов времени. Датчики и таймеры присутствия могут быть легко интегрированы с элементами управления пускателем, обеспечивая обслуживание по запросу и сокращая общее потребление энергии. А простой интерфейс с BAS может поддерживать стратегии снижения энергопотребления в масштабах всего здания.
Итак, в следующий раз, когда вы будете искать пускатель двигателя, подумайте, нужна ли вам технология, восходящая к 1950-м годам, или вы хотите оборудовать свое здание, чтобы оптимизировать затраты и экономию энергии, а также улучшить техническое обслуживание и безопасность в будущем.
Перра — соучредитель и президент Cerus Industrial. До Cerus он был президентом Veris Industries, приобретенного Schneider Electric, и вице-президентом по маркетингу в Square D.
Как выбрать контактор или пускатель двигателя?
Дом — Промышленный контроль и OEM — Контакторы и пускатели NEMAEaton продает различные контакторы и пускатели, нам нужна дополнительная информация, чтобы помочь вам выбрать один.
Первое — какой тип контактора или пускателя вам нужен? Это зависит от приложения. Если вы знаете, какой из них вам нужен, прокрутите вниз до ссылки, соответствующей типу — если вы не уверены, вот варианты:
NEMA : Исторически на рынке Северной Америки использовались контакторы и пускатели, соответствующие требованиям NEMA. NEMA разрабатывает стандарты проектирования и спецификации испытаний для аттестации устройств. Они считаются очень прочными и имеют очень долгий электрический срок службы. У них более высокая цена.Но если вы устанавливаете их в более тяжелых промышленных условиях, когда вы хотите, чтобы продукт прослужил десятилетия, NEMA — это то, что вам нужно. Сталелитейные заводы, целлюлозно-бумажная промышленность, нефтехимия, горнодобывающие предприятия и т. Д., Как правило, используют устройства, соответствующие требованиям NEMA. Контакторы и пускатели NEMA не монтируются на DIN-рейку. Если вы ищете закрытый стартер, NEMA — самый доступный в коробке.
IEC — это международный стандарт, который все чаще используется в США.S из-за его экономической эффективности. Контакторы и пускатели IEC обычно меньше / компактнее, чем устройства NEMA. Их можно использовать в любом типе приложений, но они не будут иметь ожидаемого электрического срока службы, как у устройств с рейтингом NEMA, если вы не используете опубликованные кривые использования для достижения желаемого электрического срока службы. Обычно используется в погрузочно-разгрузочных работах, автомойках, упаковке и панелях управления OEM. Контакторы и пускатели IEC могут быть установлены на DIN-рейку (до 65 А) или на панели.
Определенное назначение (DP) — Контакторы и пускатели определенного назначения предназначены для использования на рынках HVAC, где низкая стоимость является главным приоритетом, а рабочий цикл невелик.Эти контакторы не предназначены для включения и выключения несколько раз в минуту. У них меньший электрический срок службы, чем у контакторов NEMA и IEC.
После того, как вы определили, какой тип, вам нужно будет знать —
- Двигатель не реверсивный или реверсивный?
- Напряжение нагрузки / двигателя,
- Управляющее напряжение (переменный / постоянный ток), также известное как напряжение катушки
- Ток нагрузки (ток полной нагрузки) (или мощность двигателя).
- Является ли приложение трехфазным, однофазным или постоянным током?
- Вы хотите, чтобы устройство было открыто или закрыто (в коробке — если да, какой тип / рейтинг защиты, например NEMA 1, NEMA 3R, NEMA 4X)?
Для выбора номера детали для стартеров NEMA open щелкните здесь:
Как выбрать размыкающий контактор или пускатель Freedom NEMA?
Для выбора номера детали для NEMA прилагаемых пускателей щелкните здесь:
Как выбрать прилагаемый стартер Freedom NEMA?
Для выбора номера детали открытых контакторов и пускателей IEC щелкните здесь:
Как выбрать контактор IEC или пускатель двигателя?
Для выбора номера детали для контакторов и пускателей определенного назначения щелкните здесь:
Как выбрать контактор или пускатель постоянного тока определенного назначения?
Как определить и определить размер пускателя двигателя | Библиотека.
AutomationDirectДоступны четыре основных варианта управления двигателем: базовые контакторы, традиционные пускатели, ручные пускатели мотора или комбинированные пускатели. Базовый контактор — это реле специального назначения, которое используется для управления большими электрическими токами. Точно так же в традиционном пускателе используются реле перегрузки, вспомогательные контакты и контакты аварийной сигнализации, а также механические блокировки для создания реверсивного устройства. С другой стороны, ручной пускатель двигателя представляет собой защитное устройство для двигателя, которое обеспечивает оптимальную защиту за счет объединения функций автоматического выключателя в литом корпусе и теплового реле перегрузки в компактном устройстве.Для сравнения, комбинированный пускатель состоит из комбинации ручного пускателя двигателя и магнитного контактора для достижения компактного управления двигателем, которое сводит к минимуму требования к пространству в корпусе.
Просто выполните эти 3 шага, чтобы выбрать наиболее подходящий.
[хозбрейк]
1. Что требует приложение?
[four_columns border = ”border”] Только базовые контакторы
Контактор
Типичные приложения
[стиль списка = «стрелка» цвет = «синий»]
- Электронный переключатель
- Освещение
- Резистивные нагрузки
- Индуктивные нагрузки, не связанные с двигателем
- Выключатели-разъединители
- Обход / изоляция ЧРП
[/ список]
[/ four_columns]
[four_columns border = ”border”] Традиционные закуски
Контактор и реле перегрузки
Типичные приложения:
[стиль списка = «стрелка» цвет = «синий»]
- Пуск и управление индуктивным двигателем
- NEC 430 и выполнение 409
- Нм стартер для замены / дооснащения
[/ список]
[/ four_columns]
[four_columns border = ”border”] Ручные пускатели двигателей
Ручной пускатель двигателя (MMS)
Типичные приложения:
[стиль списка = «стрелка» цвет = «синий»]
- Индуктивный запуск двигателя и ручное управление
- NEC 430 выполнение
- Блокировка / маркировка
- UL 508, тип E
- Без класса AC-4
[/ список]
[/ four_columns]
[four_columns_last border = ”border”] Комбинированные стартеры
Ручной пускатель двигателя, контактор, модуль связи и опорная плита
Типичные приложения:
[стиль списка = «стрелка» цвет = «синий»]
- Пуск и управление индуктивным двигателем
- NEC 430 и выполнение 409
- Блокировка / маркировка
- UL 508, тип F
[/ список]
[/ four_columns_last]
[хозбрейк]
2.
Учитывайте следующие факторы при выборе компонентов:[стиль списка = «стрелка» цвет = «синий»]
- Тип нагрузки: резистивная (AC-1) или индуктивная (AC-3)
- Рабочий цикл: одно направление, реверс, заглушка (AC-4)
- Мощность (л.с.) и сила тока при полной нагрузке (FLA)
[/ список]
[хозбрейк]
3. Выберите компоненты.
Перечисленные здесь детали — это компоненты управления двигателем Fuji, доступные на сайте www.AutomationDirect.com/motor-controls.
[four_columns border = ”border”]
Duo серии
Контактор SC-E
[стиль списка = «стрелка» цвет = «синий»]
- от 1/2 до 100 л.с. при 480 В
- 9-150 А (AC-3)
[/ список]
Odyssey серии
Контактор 3Н
[стиль списка = «стрелка» цвет = «синий»]
- от 60 до 300 л.с.
- 180-361 А (АС-3)
[/ список]
[/ four_columns]
[four_columns border = ”border”]
Duo серии
Контактор SC-E
Реле перегрузки TK-E
[стиль списка = «стрелка» цвет = «синий»]
[/ список]
Odyssey серии
Контактор 3Н
Реле перегрузки 3N
[стиль списка = «стрелка» цвет = «синий»]
[/ список]
[/ four_columns]
[four_columns border = ”border”]
Duo серии
BM3 Ручной пускатель двигателя
[стиль списка = «стрелка» цвет = «синий»]
[/ список]
[/ four_columns]
[four_columns_last border = ”border”]
Duo серии
BM3 Ручной пускатель двигателя
Модуль связи SC-EContactor BZ0L
BZ0BP Опорная плита
[стиль списка = «стрелка» цвет = «синий»]
[/ список]
[/ four_columns_last]
[хозбрейк]
Если вы хотите узнать больше, посетите www. AutomationDirect.com/motor-controls.
Как выбрать правильный пускатель двигателя
При поиске решения по питанию для приложения, инженеры сталкиваются с множеством вариантов, от типа двигателей до того, как они контролируются. Эта статья не работает вниз по трем основным категориям вариантов того, как электродвигатели контролируется. Как вы можете видеть ниже, следует учитывать множество факторов. определить лучший стартер, включая стоимость, функциональность и требования приложение.
- Пускатели для подключения к сети
- Наиболее экономичные
- Базовый уровень управления
«Пускатели для подключения к сети» или «Прямые пускатели» (DOL) просто подключают и отключают питание двигателя. Чаще всего они используются в двигателях мощностью 50 л.с. и ниже, предназначен для непрерывной работы. Прямые пускатели включают короткое замыкание и перегрузку защиты, и они обеспечивают обратную связь ВКЛ-ВЫКЛ, но они не подходят для системы, которые необходимо часто проверять. Однако для маломощных, простых и недорогих приложений стартеры DOL являются доступным вариантом.
- Устройство плавного пуска
- Стоимость «посреди дороги»
- Обеспечивает возможность постепенного увеличения скорости двигателя
Устройства плавного пуска могут изменять скорость двигателя, и чаще всего используются в двухпозиционных приложениях, требующих более высоких частота циклов (включено и выключено), например, компрессоры и конвейер ремни или гидроагрегаты.Мягкий стартеры обычно включают электронное управление, которое позволяет двигателю временно снизить нагрузку и крутящий момент в силовой передаче и электрическом токе скачок мотора при запуске. Этот функциональность предотвращает большие скачки тока и сводит к минимуму износ электрические контакты и обмотка двигателя в системе. Например, в конвейерных приложениях мягкий стартер поможет конвейеру запуститься плавно, а не рывком. и подвергнуть нагрузку компоненты привода. В вентиляторах или других системах с ремнями это Важно, чтобы приводы запускались медленно, чтобы избежать проскальзывания ремня.Устройства плавного пуска не могут работать двигатели на частичных скоростях, поэтому, если скорость двигателя должна быть отрегулирована в любое время Помимо запуска, лучшим решением для использования является ЧРП (см. ниже).
- VFD
- Высокая стоимость (с множеством различных уровней стоимости)
- Бесконечные возможности для регулирования скорости и регулирования с обратной связью
Хотя самый дорогой вариант для управление двигателем, частотно-регулируемые приводы повышают эффективность приложения благодаря возможности запуска двигатели с регулируемой скоростью в зависимости от текущей потребности приложения для питания.С 25% в мире электроснабжения используются электродвигатели, частотно-регулируемые приводы получили широкое распространение используется для управления электродвигателями в течение последних 20 лет.
VFD также позволяют применять такие как динамическое торможение и рекуперативные приводы. Динамическое торможение происходит там, где двигатель работает быстрее, чем синхронная скорость, заставляя его действовать как генератор, преобразование механической энергии обратно в электрическую или рассеиваемую в виде тепла. Регенеративные приводы относятся к емкости привод переменного тока, чтобы двигаться быстрее, чем обозначенная скорость двигателя, и возвращать электрический питание обратно в систему.Пример будет краном, где двигатель подъемника часто останавливается и реверсирует, и торможение необходимо для замедления нагрузки при опускании. На этапе опускания ЧРП приводит в движение восстанавливает мощность, которая будет использоваться в системе при следующем подъеме движения.
ЧРПпредоставляют наибольшие возможности для контроля, но также требуют большинства электрических компонентов и, как правило, более чувствительны к электрическому шуму и условиям окружающей среды, что делает их непригодны или менее рентабельны для некоторых решений.
Elite Controls строит и поставляет с все вышеперечисленные решения — мы будем рады помочь вам выбрать лучший двигатель и варианты управления для вашего следующего приложения!
Шесть соображений по выбору наиболее подходящей технологии управления двигателем
Этот пост написал Рик Андерсон из Rockwell Automation.
Инженеры-промышленники хорошо осведомлены о том, что их двигатели — особенно те, которые работают с насосами, компрессорами и вентиляторами — потребляют электроэнергию, на их эксплуатационные бюджеты.В ответ они обратились к эффективным технологиям управления двигателями, которые используют энергию, достаточную для запуска двигателей, предоставления диагностических данных и сокращения времени простоя. По мере того как с годами использование пускателей двигателей расширилось, технология пускателей двигателей также стала более сложной.
Способы запуска двигателя
Распространенные технологии пускателя двигателей включают пускатели прямого включения (DOL), устройства плавного пуска и частотно-регулируемые приводы (VFD).Понимание приложения и того, что важно для управления двигателем в этом приложении, поможет определить, какой метод запуска использовать.
В качестве основного метода пуска пускатель прямого пуска подает полное напряжение, ток и крутящий момент на двигатель сразу после команды пуска. Устройство плавного пуска или интеллектуальный контроллер двигателя активно управляет напряжением для управления пусковым / остановочным током и профилями крутящего момента для улучшения электрических и механических характеристик двигателя, цепи двигателя и работы машины.ЧРП преобразует сетевое напряжение переменного тока в напряжение постоянного тока, а затем инвертирует его обратно в смоделированное напряжение переменного тока для двигателя.
МетодыDOL имеют самые основные возможности запуска двигателя, в то время как частотно-регулируемые приводы имеют управление двигателем на протяжении всего времени запуска, остановки и работы. Для приложений, требующих управления двигателем только при запуске и останове, устройства плавного пуска более экономичны, чем частотно-регулируемые приводы, и имеют более совершенное управление, чем варианты прямого запуска. Кроме того, устройство плавного пуска и частотно-регулируемый привод могут запускать двигатель с пониженным напряжением и током.Они способствуют меньшему механическому износу, сокращают объем технического обслуживания и часто приводят к повышению эффективности работы системы. Хотя список возможных вариантов применения может показаться исчерпывающим, следующие вопросы могут помочь в принятии решения:
- Требуется ли в приложении контроль скорости, когда двигатель набирает скорость?
- Требуется ли приложению точное время запуска и остановки?
- Требуется ли приложению полный крутящий момент при нулевой скорости?
- Требуется ли в приложении постоянный крутящий момент?
- Каковы требования к стоимости, размеру и температуре?
- Есть ли проблемы с установкой и гармониками?
1.Контроль скорости
Первое, что нужно учитывать при выборе технологии управления двигателем, — это требования к регулированию скорости. Некоторые устройства плавного пуска имеют ограниченное управление низкой скоростью между пуском и остановкой. Низкие скорости могут варьироваться от 1 до 15 процентов от полной скорости и могут использоваться при техническом обслуживании или регулировке. Из-за повышения температуры кремниевого выпрямителя (SCR) и пониженного охлаждения двигателя этот режим рассчитан на относительно кратковременную работу. После перехода устройств плавного пуска на полное напряжение, даже если применяется фиксированная частота, выходная скорость фактически определяется нагрузкой двигателя.Рабочая скорость двигателя не может быть изменена, потому что устройство плавного пуска регулирует только напряжение двигателя, а не частоту.
В ЧРПиспользуется шина постоянного тока и биполярный транзистор с изолированным затвором (IGBT) для управления как напряжением, так и частотой. Это позволяет осуществлять полный и непрерывный регулируемый контроль скорости. Если процесс требует точного регулирования скорости, частота, подаваемая на двигатель частотно-регулируемым приводом, может быть изменена в зависимости от нагрузки. Кроме того, частота на выходе частотно-регулируемого привода на двигатель может быть любой, вплоть до пределов инвертора IGBT или механических пределов двигателя.
2. Время пуска и останова
Второе соображение — время запуска и остановки, а также то, насколько они должны быть точными. Обычно время пуска и останова устройств плавного пуска зависит от нагрузки. Внутренние алгоритмы регулируют напряжение на основе запрограммированного времени пуска и останова, чтобы увеличить ток и крутящий момент для запуска двигателя или уменьшить их, чтобы остановить его. Если нагрузка небольшая, двигатель может запуститься за меньшее время, чем запрограммированное значение. Если нагрузка тяжелая, запуск может занять больше времени.В некоторых более новых устройствах плавного пуска реализованы усовершенствованные алгоритмы, позволяющие более точное и менее зависимое от нагрузки время пуска и останова. С другой стороны, частотно-регулируемые приводы управляют напряжением и частотой, что обеспечивает точное время пуска и останова с минимальной зависимостью от нагрузки.
3. Полный крутящий момент при нулевой скорости
Для приложений, требующих полного крутящего момента при нулевой скорости, частотно-регулируемый привод может быть лучшим вариантом. ЧРП может создавать номинальный крутящий момент двигателя от нуля до номинальной скорости, включая полный крутящий момент при нулевой скорости.Устройства плавного пуска работают с фиксированной частотой (обычно от 50 до 60 Гц), а полный крутящий момент доступен только при полном напряжении. Начальный крутящий момент, или крутящий момент, доступный при нулевой скорости, представляет собой программируемое значение, которое обычно находится в диапазоне от нуля до 75 процентов.
4. Постоянный крутящий момент
Устройства плавного пускаиспользуют напряжение для управления током и крутящим моментом. При запуске ток изменяется прямо в зависимости от приложенного напряжения, а крутящий момент двигателя изменяется как квадрат приложенного напряжения. Это означает, что при разных приложенных напряжениях крутящий момент не всегда постоянный.Это может быть усложнено условиями нагрузки. Некоторые устройства плавного пуска реализуют алгоритмы управления крутящим моментом, но это не переводится напрямую в постоянный крутящий момент. И наоборот, во время ускорения частотно-регулируемые приводы применяют к двигателю разные частоты, и напряжение изменяется прямо пропорционально частоте. Этот простой режим управления VFD часто называют постоянным напряжением на герц, и он обеспечивает постоянный крутящий момент.
5. Стоимость, размер и тепловые характеристики
При низкой силе тока (менее 40 ампер) устройства плавного пуска имеют небольшое преимущество в стоимости по сравнению с частотно-регулируемыми приводами.По мере увеличения силы тока и мощности стоимость частотно-регулируемых приводов увеличивается быстрее, чем стоимость устройств плавного пуска. При высоких значениях силы тока (более 100 ампер) эта стоимость может быть значительной.
Что касается размера, устройства плавного пуска имеют преимущество в физических размерах по сравнению с частотно-регулируемыми приводами при всех номинальных значениях силы тока из-за физической конструкции каждого устройства. По мере увеличения тока и мощности эта разница может стать экспоненциально большой.
Кроме того, в сочетании с электромеханическим байпасом (внутренним или внешним) устройства плавного пуска обычно более эффективны, чем частотно-регулируемые приводы, и обычно выделяют меньше тепла.Это также связано с физической конструкцией устройств переключения мощности — устройства плавного пуска имеют меньше активных компонентов в схемах во время режимов пуска, работы и останова, чем ЧРП.
6. Установка и гармоники
Соображения, связанные с установкой, сложно дать количественно, но их можно разделить на несколько приблизительных категорий, таких как стоимость, размер, температура и качество электроэнергии. При установке устройств плавного пуска обычно меньше проблем из-за меньшего размера и меньшей стоимости. Если качество гармоник вызывает беспокойство, гармоники устройства плавного пуска меньше, чем у частотно-регулируемых приводов, и длинные кабели для частотно-регулируемых приводов необходимо учитывать более тщательно, чем у устройств плавного пуска.Для устройств плавного пуска обычно не требуются специальные типы проводов, и обычно не требуется снижение электромагнитной совместимости (ЭМС).
Оценка устройств плавного пуска
Если после рассмотрения этих факторов инженеры решат, что устройство плавного пуска является наиболее подходящим, имеется широкий спектр типов устройств плавного пуска. Многие устройства плавного пуска имеют несколько функций пуска, таких как плавный пуск, ограничение тока, управление насосом, медленная скорость и пуск при полном напряжении. Для остановки многие выполняют остановку насоса, торможение двигателя и плавный останов.Кроме того, потребность в усовершенствованном управлении крутящим моментом и скоростью для запуска центробежных насосов и высокоинерционных нагрузок привела к новым разработкам устройств плавного пуска.
На следующих графиках показаны отчеты и дисплеи анализа проб:
Эти новые продукты часто имеют множество функций управления и вариантов применения, что вынуждает инженеров переоценивать производительность, которую теперь может обеспечить устройство плавного пуска.Соображения включают:
- Расширенные методы пуска и останова: в дополнение к традиционным методам пуска, таким как плавный пуск, ограничение тока, управление насосом и пуск при полном напряжении, есть новые захватывающие режимы управления.
- Линейная скорость: Независимо от типа нагрузки, этот метод запускает двигатель в заданное время без использования внешнего тахометра. Контроллер использует достаточно энергии как для пусковой, так и для останавливающей нагрузки, независимо от размера.
- Рампа крутящего момента: инженеры могут регулировать начальный и максимальный крутящий момент определенного времени линейного изменения для точного управления при запуске двигателя.В режиме плавного пуска используется линейное изменение напряжения. Для сравнения, управление рампой крутящего момента гораздо более линейно и потенциально снижает нагрузку на механику системы.
- Низкая скорость: низкая скорость позволяет кратковременно работать на скоростях, отличных от полной. Работа на 1–15% полной скорости при движении вперед и назад без реверсивного контактора полезна для работ по техническому обслуживанию, регулировке и регулировке.
- Измерение: Измерения и эксплуатационная информация важны для точного мониторинга производительности и своевременной корректировки процесса для повышения производительности и энергоэффективности.Если пользователи могут его измерить, чаще всего они могут его оптимизировать. Встроенный мониторинг энергии и мощности в устройствах плавного пуска предоставляет информацию об энергопотреблении в реальном времени для оптимизации процесса без дополнительного оборудования.
- Энергосбережение: функция энергосбережения использует внутреннюю схему обратной связи устройства плавного пуска для контроля нагрузки и распознавания, когда двигатель потребляет меньше энергии — особенно часто при малых нагрузках — и регулировки путем уменьшения напряжения на клеммах двигателя.
- Перебалансировка фаз: Неравномерные линейные напряжения могут быть выровнены с помощью этого уникального алгоритма балансировки.Полученные в результате формы волны напряжения потенциально снижают неравномерность обмотки двигателя, нагрев и износ подшипников, которые могут возникнуть при несбалансированной форме волны.
- Твердотельные силовые структуры: Преимущества твердотельных силовых структур включают улучшенную производительность в приложениях с высоким уровнем вибрации, большую устойчивость к суровым условиям окружающей среды, более высокое количество операций в час, масштабируемые тепловые характеристики и более высокий номинальный ток короткого замыкания.
- Диагностика двигателя и контроллера: Профилактическое обслуживание системы, определяемое пользователем, определяемые пользователем отказы и сигналы тревоги, отслеживание и сбор данных при сбоях, а также часы реального времени обеспечивают гибкость приложений, возможности диагностики и улучшенное время безотказной работы.
- Возможности сети и интеграции: дополнительные коммуникационные модули позволяют интегрировать устройства плавного пуска в более крупную среду управления. Это позволяет улучшить поток данных и наглядность в масштабах всего предприятия. Сети, такие как EtherNet / IP, обеспечивают быстрый ввод в эксплуатацию и простую интеграцию. Возможности встроенной логики
- : встроенная технология управления, определяемая пользователем, использует цифровые и аналоговые входы и внутренние параметры устройства плавного пуска для управления выходами, локального управления информацией и автономного выполнения функций пуска / останова.Эта встроенная логика часто использует программирование функциональных блоков и может работать отдельно или дополнять систему диспетчерского управления.
- Масштабируемость: порты аппаратного расширения принимают дополнительные модули ввода-вывода и защиты. Это обеспечивает масштабируемость и оптимизацию процессов, а также гибкость приложений от простого к сложному.
Когда использовать устройство плавного пуска или частотно-регулируемый привод
Устройство плавного пуска
- Для приложений с пусковым моментом от низкого до среднего
- Для приложений с легкой и средней нагрузкой
- Если в рабочем режиме не требуется регулирование скорости или требуется незначительное регулирование скорости
- Если требуется снижение механического износа и повреждения системы
- Если ограничивающий ток является основной причиной не запуска при полном напряжении
- Для нижнего контроля
ЧРП
- В однофазных приложениях на некоторых приводах
- Для управления скоростью и повышения эффективности системы, работающей на пониженных скоростях в рабочем режиме
- Для более высокого пускового момента
- Для непрерывной обратной связи для управления критическим положением
У инженеров есть много вариантов управления двигателем.Точный учет того, что требуется для их применения, и выбор наиболее подходящего, может сократить время простоя, повысить эффективность и снизить затраты. Выбор инженеров теперь включает новые устройства плавного пуска с несколькими методами пуска и расширенными функциями. Инженеры могут согласовать профиль пуска / останова с нагрузкой с помощью простого изменения параметров управления вместо замены модулей управления. Повышенная производительность и экономия энергии позволят снизить нагрузку на двигатели по их эксплуатационному бюджету
Об авторе
Рик Андерсон — менеджер по продукции Rockwell Automation.Он отвечает за управление портфелем контроллеров SMC, а также за определение и выполнение требований к новым продуктам.
Связаться с Риком:
Версия статьи также была опубликована в журнале InTech.
Разница между контакторами и пускателями двигателей (и пускателями пониженного напряжения)
Электродвигатели абсолютно необходимы для автоматизации бесчисленных приложений по всему миру.В большинстве случаев, , приводящий в движение двигателей — снабжение их электроэнергией — требует некоторой инженерной системы, которая также должна быть совместима с устройством обмотки двигателя. Поскольку в этих системах питания двигателей часто используются или сопровождающие другие устройства электрического управления и связи, уже описанные в этом Руководстве по проектированию, мы рассмотрим их наиболее распространенные варианты. Дополнительную информацию о моторных приводах, имеющих функции помимо пускателя двигателей, можно найти на этой странице управления движением.ком статья.
Только самые простые и самые маленькие конструкции — обычно с однофазными двигателями мощностью 5 л.с. или меньше или трехфазными двигателями мощностью 15 л.с. или меньше — допускают прямое подключение к сети (также называемое через линию ). источник без риска перенапряжения двигателя и пониженного напряжения в сети. Трехфазные двигатели, приводимые в действие таким образом, могут иметь обмотки, соединенные простой звездой (также называемой звездой) или , треугольник … а двигатели с двойным напряжением (удобно, поскольку они могут принимать входное напряжение 230 В или 460 В) имеют комплекты сдвоенных катушек, которые могут работать параллельно или (для более высокого напряжения) последовательно.
Этот автоматический выключатель Siemens SIRIUS 3RV2011-1HA10 типоразмера S00 является токоограничивающим выключателем для фидеров нагрузки до 3 кВт при трехфазном напряжении 400 В переменного тока. Защита от короткого замыкания 104 А и регулируемая защита от перегрузки от 5,5 до 8 А надежно защищают электродвигатели. Изображение любезно предоставлено Automation24 Inc.Повсюду в других местах пуск двигателя через линию представляет слишком много проблем для самого двигателя, а также для систем, подключенных к двигателю, включая вредные электрические эффекты, а также чрезмерный износ компонентов механической передачи энергии.Цели проектирования, связанные с безопасностью, производительностью и точностью, обычно требуют использования более совершенных подходов к управлению автомобилем.
Пусковой ток является важным параметром при выборе правильного размера и сопряжения двигателей и пускателей двигателей. Пусковой ток от пускателя двигателя должен быть достаточным для обеспечения соответствия двигателя требованиям по крутящему моменту и ускорению, но не должен вызывать чрезмерного падения напряжения в линии электропитания. Терминологическая основа: Различия между контакторами и пускателями двигателейВ предыдущем разделе этого Руководства по проектированию мы подробно описали, как контакторы и реле являются отдельными компонентами, несмотря на то, что время от времени в промышленности используются термины, предполагающие иное.Контакторы и пускатели двигателей также являются отдельными компонентами. Здесь термины используются взаимозаменяемо, потому что их ядро - это та же самая точная технология — переключатель, способный работать с высокими напряжениями.
Этот пускатель двигателя с прямым включением представляет собой SIRIUS 3RM1001-1AA04 от Siemens с управляющим напряжением 24 В постоянного тока и регулируемым расцепителем тока перегрузки от 0,1 до 0,5 А. Он обеспечивает твердотельную защиту двигателя и подходит для систем с небольшими двигатели мощностью до 0,12 кВт Стандартная ширина 22,5 мм занимает минимум места внутри шкафов управления.Изображение любезно предоставлено Automation24 Inc.Разница в том, что пускатели двигателей имеют одну дополнительную систему или системы, которых нет в контакторах — реле перегрузки определенного типа для отключения входа напряжения , если это реле обнаруживает перегрузку двигателя или термически опасные условия из-за продолжительной работы перегрузка по току. Пускатели электродвигателей с самозащитой также имеют защиту от короткого замыкания. Здесь снова ключевое значение имеет точное использование терминологии: вместо того, чтобы использовать короткое замыкание для обозначения любой электрической неисправности, целесообразно использовать этот термин только при обсуждении внезапного сверхтока, возникающего из-за потока электроэнергии, который обнаружил какой-то непреднамеренный путь выхода из строя. путешествовать.Защита от короткого замыкания действует мгновенно, отключая систему от источника питания.
Это пример силового контактора. Это Siemens SIRIUS 3RT2015-1BB41 для питания трехфазных двигателей и электрических систем отопления мощностью до 3 л.с. при 480 В переменного тока. Силовой контактор использует управляющее напряжение 24 В постоянного тока, имеет замыкающий контакт и винтовые кабельные розетки.Фактически, существует множество размеров и версий этого силового контактора для фидеров нагрузки с автоматическими выключателями и различных коммутационных устройств SIRIUS для безопасного и функционального переключения электрических нагрузок.
• Контакторы 3RT2 бывают типоразмеров от S00 до S3. Контакторы 3RT1 бывают типоразмеров от S6 до S12
• Силовые контакторы 3RT.0 и вакуумные контакторы 3RT12 предназначены для переключения моторизованных нагрузок
• Четырехполюсные контакторы 3RT23 (и трехполюсные контакторы 3RT24 / 3RT14) переключают резистивные нагрузки
• Четырехполюсные 3RT25 контакторы предназначены для изменения полярности двигателей подъемных редукторов
• реле контактора 3Rh3 переключают в цепь управления
• контакторы конденсатора 3RT26 переключают емкостные нагрузки (AC-6b)
• контакторы 3RT1 / 3RT2 / 3Rh3 имеют расширенный рабочий диапазон… 3RT10 / 3RT20 / Контакторы 3Rh31 предназначены для использования на рельсах… а реле сопряжения 3RT20 / 3Rh31 предназначены для системного взаимодействия с электронными контроллерами
• 3RT1… -.Контакторы S.36 имеют входы отказоустойчивого управления для приложений, связанных с безопасностью.
Также доступны реверсивные контакторы в сборе, а также контакторы для пуска трехфазных двигателей с уменьшенными пиками пускового тока (в виде комплектов контакторов для схем звезда-треугольник.
Другое различие между контакторами и пускателями двигателей связано с тем, как эти два компонента рассчитаны и указаны. Контакторы обычно классифицируются по их допустимому напряжению. В отличие от них, пускатели двигателей обычно оцениваются по их допустимой токовой нагрузке и мощности двигателей, для которых они предназначены. re совместимы… даже при учете пускового тока при запуске без ложных срабатываний.Обычно это достигается за счет небольшой задержки срабатывания реле — многие двигатели (особенно двигатели меньшего размера) могут достичь полной рабочей скорости всего за несколько секунд.
Принципиальные схемы типовых вариантов контакторов, пускателей двигателей полного напряжения и устройств плавного пуска показывают их различия и сходства. Нажмите, чтобы увеличить.Пуск двигателя на самом базовом уровне подразделяется на ручной или автоматический.
Ручной запуск включает переключатели включения-выключения, которые просто замыкают или размыкают входную цепь двигателя при активации персоналом завода.Некоторые версии, которые квалифицируются как настоящие пускатели двигателя (как указано выше), включают реле тепловой перегрузки для обесточивания двигателя в случае его перегрева.
Напротив, автоматический запуск двигателя иногда называют магнитным запуском для электромеханических контакторов, которые являются стержнем этой конструкции.
Как и в любой технологии электромеханических реле, они имеют стационарные электромагнитные катушки, которые (по команде от кнопки, концевого выключателя, таймера, поплавкового выключателя или другого реле) объединяют две цепи.Эти схемы включают в себя входные силовые контакты и ответный носитель, который (будучи замкнутым вместе) позволяет току течь в обмотки двигателя. Одним из вариантов этой конструкции является комбинированный пускатель, который включает в себя магнитное действие, а также некоторый способ отключения электроэнергии при необходимости… либо с помощью предохранителя, прерывателя или переключателя цепи двигателя.
Пуск двигателя звезда-треугольник (один из типов системы пониженного броска) передает полное линейное напряжение на обмотки двигателя в звезду во время запуска, хотя напряжение на каждой обмотке двигателя уменьшается на величину, обратную корню квадратному из трех (57.7%), поэтому такое расположение иногда (довольно неточно) называют пуском при пониженном напряжении. Затем схема (обычно с контактором для каждой фазы, реле перегрузки, таймером и механической блокировкой) переключает вход двигателя для подачи полного линейного напряжения на его обмотки треугольником.
Пуск двигателя с частичной обмоткой — используется вместе со специальными двигателями с двойным напряжением, упомянутыми выше — подает линейное напряжение только на одну часть (половину или две трети) обмоток двигателя (обычно девять или двенадцать) после Начало.Затем, когда истечет установленное время или будет обнаружено установленное напряжение, срабатывает реле или таймер и подает команду на добавление остальных обмоток и подачу питания. Ускорение может быть нерегулярным, но пусковое сопротивление двигателя с частичной обмоткой не влияет на пусковой момент … и позволяет запускать с низким крутящим моментом, что полезно для насосов, вентиляторов и нагнетателей. Как и пуск по схеме звезда-треугольник, пуск с частичной обмоткой представляет собой тип системы с пониженным пусковым током и обеспечивает пониженное полное линейное напряжение при запуске двигателя, но технически не квалифицируется как пуск с пониженным напряжением.
Реверсивный пуск при полном напряжении определяет, как асинхронные двигатели изменяют направление вращения при изменении направления вращения любых двух силовых проводов. Системы реверсивного пуска просто включают в себя пару зеркальных контакторов, дополненных блокирующими подкомпонентами, чтобы обеспечить условия прямого и обратного хода. Более быстрое изменение направления вращения может быть выполнено с помощью , подключающего , который является временным источником питания для обеих цепей.
Больше управляемости: Пускатели электродвигателей пониженного напряженияПомимо линейки опций пуска двигателя при полном напряжении, есть пускатели пониженного напряжения.Там, где оси станков требуют плавного разгона без сотрясений до полной скорости (для защиты присоединенного машинного оборудования или некоторой присоединенной нагрузки) необходимы пускатели двигателей с пониженным напряжением. Фактически, они также полезны в настройках, регулируемых местными энергосистемами, которые ограничивают колебания напряжения и скачки тока на источниках питания во время запуска двигателя.
Пускатели двигателей с пониженным напряжением включают четыре общих подтипа.
Первичный резистор пускателя двигателяПускатели двигателей с первичным резистором — это экономичный вариант, в котором используются резисторы и некоторое количество контакторов, причем последнее определяет количество ступеней пускового напряжения.Эти шаги могут быть несколько резкими из-за низкой индуктивности схемы. Хотя резисторы могут быть громоздкими и снижать эффективность, этот тип стартера обеспечивает надежный пусковой момент двигателя.
Пускатели электродвигателей первичного реактораПускатели электродвигателей с первичным реактором чаще всего используются в больших высоковольтных электродвигателях. В них используется реактор (индуктор) в цепи, как в пускателе двигателя с первичным резистором. Возможны относительно длительные плавные ускорения (даже до десятка секунд или более), хотя дополнительная индуктивность системы может снизить общую эффективность, а низкий коэффициент мощности ухудшает составляющие тока, генерирующие крутящий момент, и магнитный поток двигателя.
Пускатели автотрансформаторныеПускатели электродвигателей первичного реактора относительно дороги, но полезны там, где требуется регулируемый пусковой момент. В пускателях двигателей с автотрансформатором используется однообмоточный электрический трансформатор, который является пассивным электрическим устройством для передачи электроэнергии от одной цепи к другой. Более конкретно, пускатели автотрансформатора используют три электрических контактора на автотрансформаторе, имеющем выбираемые ответвления.Это обеспечивает ступенчатое стартовое напряжение для длительного плавного ускорения при запуске — даже до нескольких десятков секунд. Пусковое напряжение может составлять от 50% до 80% линейного напряжения для высоких пусковых моментов в приложениях, где это (а не эффективность) является основной целью проектирования.
Устройства плавного пускаУстройства плавного пуска , использующие твердотельную полупроводниковую технологию, обладают наибольшей управляемостью из всех вариантов пускателя двигателя. Они также наиболее бережно относятся к внутренним компонентам двигателей и присоединенным механизмам передачи энергии.По своей сути устройства плавного пуска состоят из различных схем тиристоров или тиристоров… так, например, в некоторых конструкциях имеется по паре тиристоров на каждой из трех линий двигателя. Ознакомьтесь с разделом настоящего Руководства по проектированию, посвященным твердотельным реле, для ознакомления с основами этой технологии. Эти переключающие устройства работают для управления подачей электроэнергии на обмотки двигателя (как показано на схеме устройства плавного пуска, показывающей углы зажигания), при этом задействуя низкое напряжение двигателя, а также ток и крутящий момент при первоначальном запуске.Затем они постепенно повышают напряжение и крутящий момент в соответствии с установленной программой.
Программирование устройства плавного пуска двигателя определяет точные параметры увеличения заданного напряжения. Рассмотрим работу типичного устройства плавного пуска на основе SCR: здесь проводящий (стробируемый) SCR имеет подвижную точку затвора… и обратная регулировка этого значения скорости (называемого временем нарастания) вызывает увеличение накопления напряжения перед включением SCR. Затем, когда обмотки двигателя достигают полного напряжения, SCR отключается.
Одно предостережение: Чрезмерное время разгона может привести к тому, что ток превысит пределы безопасности двигателя или приведет к аварийному отключению по ограничению тока.
Помимо уже упомянутых преимуществ, устройства плавного пуска обеспечивают защиту двигателя (даже во время дисбаланса фаз при отключении электроэнергии), а также возможность плавного останова. Последнее полезно, когда двигатели приводят в движение такие конструкции, как конвейеры, которые имеют инерцию, способную смещаться или ломаться во время транспортировки.
Конечно, частотно-регулируемые приводы (VFD) — еще один вариант для функции плавного пуска. Они обеспечивают те же функции управляемого пуска и останова, что и устройства плавного пуска, хотя и другим способом — изменяя частоту входного напряжения двигателя, а не величину напряжения. Другие преимущества частотно-регулируемого привода перед устройствами плавного пуска включают возможность управления скоростью двигателя во всем рабочем диапазоне. Частотно-регулируемые приводы также могут выдавать мощность для удерживающего момента (полный крутящий момент при нулевой скорости), что является ключевым моментом в двигателях, таких как краны и лифты.
Однако для некоторых конструкций частотно-регулируемые приводы слишком дороги и сложны. Пускатели двигателей с пониженным напряжением, как правило, более подходят, чем частотно-регулируемые приводы, для которых нет выигрыша в эффективности от работы подключенного двигателя ниже его максимальной скорости.
.