Расчет производительности вентиляции | Калькулятор воздухообмена
Данный калькулятор позволяет выполнить расчет производительности приточной и вытяжной вентиляции. Программа подсчитывает производительность вентиляции на вход (спальня, гостиная, детская…) / выход (кухня, ванна, туалет). При недостаточных значениях воздухообмена инструмент предупреждает пользователя о нехватке мощности вентиляции. При выполнении произвольного расчета, кратность воздухообмена следует принимать по таблицам из СНиП, СП и других источников. Потребление воздуха на одного человека принято: при низкой физической нагрузке (квартира) – 20 м3/ч, средней (офис) – 40 м3/ч, высокой (спортзал) – 60 м3/ч. Справочные значения, которые используются при расчете вытяжной вентиляции: ванна, туалет — 25 м3/ч, кухня (электричество) — 60 м3/ч, кухня (газ) — 100 м3/ч. Чтобы получить результат, нажмите кнопку «Рассчитать».
Смежные нормативные документы:
- СП 60.13330.2012 «Отопление, вентиляция и кондиционирование воздуха»
- СП 54.13330.2016 «Здания жилые многоквартирные»
- СНиП 31-01-2003 «Здания жилые многоквартирные»
- СП 44.13330.2011 «Административные и бытовые здания»
- СП 56.13330.2011 «Производственные здания»
- СП 57.13330.2011 «Складские здания»
- СП 113.13330.2016 «Стоянки автомобилей»
- СП 118.13330.2012* «Общественные здания и сооружения»
- СП 278.1325800.2016 «Здания образовательных организаций высшего образования»
Кратность воздухообмена по СНиП 31-01-2003
Помещение | Кратность воздухообмена |
Спальная, общая, детская комнаты | 1 |
Библиотека, кабинет | 0.5 |
Кладовая, бельевая, гардеробная | 0.2 |
Тренажерный зал, бильярдная | 80 м3/ч |
Постирочная, гладильная, сушильная | 90 м3/ч |
Кухня с электроплитой | 60 м3/ч |
Помещение с газоиспользующим оборудованием | 100 м3/ч |
Ванная, душевая, уборная, совмещенный санузел | 25 м3/ч |
Сауна | 10 м3/ч |
Мусоросборная камера | 1 |
Умывальная общая | 0.5 |
Кладовые для хранения личных вещей, спортивного инвентаря, хозяйственные и бельевые в общежитии | 0.5 |
Машинное помещение лифтов | 0.5 |
Калькулятор расчета вентиляции для частного дома и промышленного помещения
1Калькуляторы онлайн
Для правильного выполнения расчета вентиляции в частном или общественном понимании недостаточно просто воспользоваться онлайн-калькулятором или взять данные из справочных таблиц. Необходимо понимать, как и почему принимаются нормативные показатели и как применить их к конкретным вычислениям.
Кратность воздухообмена
Этот критерий чаще всего используется для упрощенного расчета системы вентиляции. Под термином «кратность воздухообмена» (в английской терминологии air exchange rate) понимают обмен воздушных масс, выражающихся количеством за час. Причем в зависимости от способа эксплуатации помещения учитывается либо число обменов для помещения в целом, либо кратность с учетом площади (объема). Ниже приведена таблица с нормативными данными для помещений частного дома или общественного здания. При этом подразумевается, что приток воздуха идет естественным путем, а кратность считается для вытяжной вентиляции. Расчетная температура в холодный период указывается для того, чтобы при вычислениях компенсировать излишнюю сухость воздуха за счет действия отопительных приборов.
Таблица 1. Кратность воздухообмена по площади или назначению помещений.
При использовании таблицы важно обратить внимание: кратность указывается в расчете на площадь помещения, а в нашем онлайн-калькуляторе расчет ведется для объема.
При этом пользователь теряется – какое значение кратности применить в калькуляторе вентиляции, если максимальное значение не соответствует норме для жилых помещений? Здесь придется делать поправку на пересчет кратности для объема или воспользоваться ориентировочными цифрами (СНиП 2.08.01-89) из таблицы ниже.
Таблица 2. Кратность воздухообмена для помещений общего или специального назначения.
Применяя показатель, соответствующий жилым комнатам или спальням, равный единице, получаем требуемую производительность вентиляционной системы (м.куб./час).
Основой расчета вентиляции онлайн является формула
L = V х Kp
здесь V — объем комнаты (произведение площади на высоту), м.куб.;
Kp — кратность воздухообмена согласно санитарно-гигиеническим нормам, 1/ч.
Для жилой комнаты с площадью 20 м.кв. и высотой 2,5 м требуемая мощность вентиляции составит
L = (20 х 2,5) х 1 =50 м.куб.
При использовании данных первой таблицы расчет ведется без учета высоты помещения, то есть
L = S х Kp
здесь S — площадь помещения, м.кв.;
Kp — кратность воздухообмена согласно нормам, 1/ч.
Для тех же размеров комнаты (20 м.кв.) необходимый объем воздуха в час
L = 20 х 3 = 60 м.куб.
Данный метод вычислений дает более высокие требования к системе вентиляции, поэтому предпочтительным считается предыдущий вариант вычислений. При указании в таблице объема воздуха на помещение именно эти цифры используют для дальнейшего подбора компонентов вентиляционной системы.
Расчет вентиляции помещения в зависимости от числа людей
Второй сравнительно простой способ вычисления производительности вентиляционной системы – по числу находящихся в помещении людей. При этом в калькулятор вентиляции достаточно внести число пользователей и указать степень их активности.
Вычисления ведутся по формуле
L = N х Lнорм
Где L — необходимая производительность вентилирующей системы, м3/ч;
N — число людей;
Lнорм — расход воздушной смеси на человека, согласно нормативам (объем).
Последний показатель принимается согласно санитарно-гигиеническим нормам:
- спокойствие (отдых, сон) — 20 м3/ч;
- умеренная активность — 40 м3/ч;
- активная деятельность (физическая работа, тренировки) — 60 м3/ч.
Таким образом, для комнаты с теми же, что и в предыдущем примере расчета вентиляции, размерами (20 м.кв.) при одновременной умеренной активности 5 человек (офисная работа) потребуется мощность системы
L = 5 х 40 = 200 м.куб.
Если речь идет не о частном доме, а об общественном заведении, следует руководствоваться другими показателями.
Однако для таких помещений производительность вентиляции рассчитывается индивидуально, в ходе проектирования системы (или здания в целом), и кратность воздухообмена считается только дополнительным, проверочным показателем.
Заключение
Несмотря на то, что калькулятор расчета вентиляции, дает только приблизительные данные, он позволит примерно представлять необходимую производительность приточно-вытяжной вентиляции и проверить данные, представленные фирмой, монтирующей систему. Знание того, как рассчитать вентиляцию на бытовом уровне, поможет также при самостоятельной установке принудительно проветривающих помещение установок.
Описание. Формулы. Калькулятор.
Расчёт сечения воздуховода для механической (принудительной) вентиляции?
prjamougolnij_vozduhovodkrugliy_vozduhovodРасчёт сечения прямоугольного и/ли круглого воздуховода осуществляется с помощью двух известных параметров: воздухообмен по помещению и скорость потока воздуха.
Воздухообмен по помещению может быть заменён на производительность вентилятора. Производительность приточного или вытяжного вентиляторов указывается заводом изготовителем в паспортных данных изделия. При проектировании или предпроектной разработке, воздухообмен рассчитывается исходя из кратности. Кратность (количество раз замены полного объёма воздуха в помщении за 1 час) — это коэффициент из нормативной документации.
Скорость потока в воздуховоде необходимо измерить, если это смонтированная система. А если проект находится в стадии разработки, то скорость потока в воздуховоде задаётся самостоятельно. Скорость потока в воздуховоде не должна превышать 10 м/с.
Ниже приведены формулы и калькулятор на их основе, с помощью которых вы сможете рассчитать сечение прямоугольных и круглых воздуховодов.
Формула для расчёта круглого сечения (диаметра) воздуховода
Формула для расчёта прямоугольного сечения воздуховода
Калькулятор расчёта сечений прямоугольных и круглых воздуховодов через воздухообмен и скорость потока
Введите в поля параметры воздухообмена и требуемую скорость потока в воздуховоде
Онлайн-калькулятор расчета производительности вентиляции
Расчет вентиляции, как правило, начинается с подбора оборудования, подходящего по таким параметрам, как производительность по прокачиваемому объему воздуха и измеряемому в кубометрах в час. Важным показателем в системе является кратность воздухообмена. Кратность воздухообмена показывает, сколько раз происходит полная замена воздуха в помещении в течение часа. Кратность воздухообмена определяется СНиП и зависит от:
- назначения помещения
- количества оборудования
- выделяющего тепло,
- количества людей в помещении.
В сумме все значения по кратности воздухообмена для всех помещений составляют производительность по воздуху.
Расчет производительности по кратности воздухообмена
Онлайн-калькулятор расчета системы вентиляцииСледующий этап в расчете вентиляции — проектирование воздухораспределительной сети, состоящей из следующих компонентов: воздуховоды, распределители воздуха, фасонные изделия (переходники, повороты, разветвители.) Сначала разрабатывается схема воздуховодов вентиляции, по которой производится расчет уровня шума, напора по сети и скорости потока воздуха. Напор по сети напрямую зависит от того, какова мощность используемого вентилятора и рассчитывается с учетом диаметров воздуховодов, количества переходов с одного диаметра на другой, и количества поворотов. Напор по сети должен возрастать с увеличением длины воздуховодов и количества поворотов и переходов. Расчет количества диффузоров
|
Проектируя системы вентиляции, необходимо находить оптимальное соотношение между мощностью вентилятора, уровнем шума и диаметром воздуховодов. Расчет мощности калорифера производится с учетом необходимой температуры в помещении и нижним уровнем температуры воздуха снаружи.
Расчет мощности калорифера
Методика расчета мощности калорифера
Р = T * L * Сv / 1000, где:
Р — мощность прибора, кВт; T — разница температур на выходе и входе системы, °С; L — производительность м?/ч. Cv — объемная теплоемкость воздуха = 0,336 Вт·ч/м?/°С. Напряжение питания может быть однофазным 220 В или трехфазным 380 В. При мощности более 5 кВт желательно использование трехфазного подключения.
</tr></tbody></table>
Также при выборе оборудования для системы вентиляции необходимо рассчитать следующие параметры:
- Производительность по воздуху;
- Мощность калорифера;
- Рабочее давление, создаваемое вентилятором;
- Скорость потока воздуха и площадь сечения воздуховодов;
- Допустимый уровень шума.
Вентиляция — это инженерная система, представляющая собой совокупность устройств и мероприятий, обеспечивающих комфортный воздухообмен и поддерживающих определенный температурно-влажностный режим в помещениях.
Расчет системы вентиляции онлайн калькулятором KALK.PRO позволяет узнать необходимую мощность (производительность) вентиляции по площади помещения и кратности воздухообмена. В результате, согласно нормативам, вы получите необходимую производительность вентиляции для заданных условий в м3/ч.
Вы также можете рассчитать вентиляцию по количествую людей в помещении.
Единственный вопрос, который может возникнуть, что такое кратность воздухообмена ?
Кратность воздухообмена — это санитарный показатель, который используется для упрощенного расчета системы вентиляции. Он регламентируется СНиП 2.08.01-89 «Жилые здания» и СНиП 2.09.04-87 «Административные и бытовые здания». Выберите тип помещения, который вам подходит и подставьте значение в калькулятор вентиляции.
Кратность воздухообмена для жилых и технических помещений
Помещение | Кратность воздухообмена или количество удаляемого воздуха из помещения, м3/ч |
---|---|
Жилая комната квартир или общежитий | 3 м3/ч на 1 м2 |
Кухня квартиры и общежития, кубовая: с электроплитами, с газовыми плитами | не менее 60 м3/ч при 2-комфорочных плитах, не менее 75 м3/ч при 3-комфорочных плитах, не менее 90 м3/ч при 4-комфорочных плитах |
Сушильный шкаф для одежды и обуви в квартирах | 30 м3/ч |
Ванная | 25 |
Уборная индивидуальная | 25 |
Совмещенное помещение уборной и ванной | 50 |
То же, с индивидуальным нагревом | 50 |
Умывальная общая | 0,5 |
Душевая общая | 5 |
Уборная общая | 50 м3/ч на 1 унитаз 25 м3/ч на 1 писсуар |
Гардеробная комната для чистки и глажения одежды, умывальная в общежитии | 1,5 |
Помещение для культурно-массовых мероприятий, отдыха, учебных и спортивных занятий, помещения для администрации и персонала | 1 |
Постирочная | 7 |
Гладильная, сушильная в общежитиях | 3 |
Кладовые для хранения личных вещей, спортивного инвентаря, хозяйственные и бельевые в общежитии | 0,5 |
Палата изолятора в общежитии | 1 |
Машинное помещение лифтов | не менее 0,5 |
Мусоросборная камера | 1 |
Если вентиляция в доме или квартире не справляется со своими задачами, то это чревато очень серьёзными последствиями. Да, проблемы в работе этой системы проявляются на так быстро и чувствительно, как, скажем неполадки с отоплением, и не все хозяева уделяют им адекватное внимание. Но результаты могут быть весьма печальными. Это — спертый переувлажненный воздух в помещениях, то есть идеальная среда для развития болезнетворных микроорганизмов. Это — запотевшие окна и сырые стены, на которых вскорости могут появиться очаги плесени. Наконец, это — попросту снижение комфорта из-за распространяющихся от санузла, ванной, кухни в жилую зону запахов.
Калькуляторы расчета площади сечения вытяжной отдушины вентиляцииЧтобы избежать застойных явлений, в помещениях в течение отрезка времени должен происходить обмен воздуха с определённой кратностью. Приток осуществляется через жилую зону квартиры или дома, вытяжка – через кухню, ванную, санузел. Именно для этого там и располагаются окна (отдушины) вытяжных вентиляционных каналов. Нередко хозяева жилья, затевающие ремонт, спрашивают, можно ли заделать эти отдушины или уменьшить их в размерах, чтобы, например, установить на стенах те или иные предметы мебели. Так вот — полностью перекрывать их однозначно нельзя, а перенос или изменение в размерах возможны, но не только с условием, что будет обеспечена необходимая производительность, то есть способность пропустить требуемый объем воздуха. А как это определить? Надеемся, читателю помогут предлагаемые калькуляторы расчета площади сечения вытяжной отдушины вентиляции.
Калькуляторы будут сопровождаться необходимыми пояснениями по проведению вычислений.
Расчет нормального воздухообмена для эффективной вентиляции квартиры или домаИтак, при нормальной работе вентиляции в течение часа воздух в помещениях должен постоянно меняться. Действующими руководящими документами (СНиП и СанПиН) установлены нормы притока свежего воздуха в каждое из помещений жилой зоны квартиры, а также минимальные объемы его вытяжки через каналы, расположенные на кухне, в ванной в санузле, иногда – и в некоторых других специальных помещениях.
Эти нормативы, опубликованные в нескольких документах, для удобства читателя объединены в одну таблицу, показанную ниже:
Тип помещения | Минимальные нормы воздухообмена (кратность в час или кубометров в час) | |
---|---|---|
<font>ПРИТОК</font> | <font>ВЫТЯЖКА</font> | |
<font>Требования по Своду Правил СП 55.13330.2011 к СНиП 31-02-2001 «Одноквартирные жилые дома»</font> | ||
Жилые помещения с постоянным пребыванием людей | Не менее однократного обмена объема в течение часа | — |
Кухня | — | 60 м³/час |
Ванная, туалет | — | 25 м³/час |
Остальные помещения | Не менее 0,2 объема в течение часа | |
<font>Требования по Своду Правил СП 60.13330.2012 к СНиП 41-01-2003 «Отопление, вентиляция и кондиционирование воздуха»</font> | ||
Минимальный расход наружного воздуха на одного человека: жилые помещения с постоянным пребыванием людей, в условиях естественного проветривания: | ||
При общей жилой площади более 20 м² на человека | 30 м³/час, но при этом не менее 0,35 от общего объема воздухообмена квартиры в час | |
При общей жилой площади менее 20 м² на человека | 3 м³/час на каждый 1 м² площади помещения | |
<font>Требования по Своду Правил СП 54.13330.2011 к СНиП 31-01-2003 «Здания жилые многоквартирные»</font> | ||
Спальная, детская, гостиная | Однократный обмен объема в час | |
Кабинет, библиотека | 0,5 от объема в час | |
Бельевая, кладовка, гардеробная | 0,2 от объема в час | |
Домашний спортзал, биллиардная | 80 м³/час | |
Кухня с электрической плитой | 60 м³/час | |
Помещения с газовым оборудованием | Однократный обмен + 100 м³/час на газовую плиту | |
Помещение с твёрдотопливным котлом или печью | Однократный обмен + 100 м³/час на котел или печь | |
Домашняя прачечная, сушилка, гладильная | 90 м³/час | |
Душевая, ванная, туалет или совмещенный санузел | 25 м³/час | |
Домашняя сауна | 10 м³/час на каждого человека |
Пытливый читатель наверняка заметит, что нормативы по разным документам несколько отличаются. Причем, в одном случае нормы устанавливаются исключительно по размерам (объему) помещения, а другом – по количеству людей постоянно пребывающих в этом помещении. (Под понятием постоянного пребывания имеется в виду нахождение в комнате 2 часа и более).
Поэтому при проведении расчетов вычисления минимального объема воздухообмена желательно проводить по всем доступным нормативам. А затем – выбрать результат с максимальным показателем – тогда ошибки точно не будет.
Провести быстро и точно расчет притока воздуха для всех помещений квартиры или дома поможет первый предлагаемый калькулятор.
Калькулятор расчета требуемых объемов притока воздуха для нормальной вентиляцииКак видите, калькулятор позволяет провести вычисления и от объёмов помещений, и от количества постоянно пребывающих в них людей. Повторимся, желательно провести оба расчета, а затем выбрать из двух получившихся результатов, если они будут различаться, максимальный.
Проще будет действовать, если заранее составить небольшую таблицу, в которой перечислены все помещения квартиры или дома. А затем в нее вносить полученные значения притока воздуха – для комнат жилой зоны, и вытяжки – для помещений, где предусмотрены вытяжные вентиляционные каналы.
К примеру, это может выглядеть так:
Помещение и его площадь | Нормы притока | Нормы вытяжки | ||
---|---|---|---|---|
1 способ – по объему комнаты | 2 способ – по количеству людей | 1 способ | 2 способ | |
Гостиная, 18 м² | 50 | 90 | — | — |
Спальная, 14 м² | 39 | 60 | — | — |
Детская, 15 м² | 42 | 60 | — | — |
Кабинет, 10 м² | 14 | 30 | — | — |
Кухня с газовой плитой, 9 м² | — | — | 60 | 25 + 100 = 125 |
Санузел | — | — | 25 | — |
Ванная | — | — | 25 | — |
Гардероб-кладовая, 4 м² | 2 | — | ||
Суммарное значение | 240 | 177 | ||
Принимаемое общее значение воздухообмена | 240 |
Затем суммируются максимальные значения (они в таблице для наглядности выделены подчёркиванием), отдельно для притока и для вытяжки воздуха. А так как при работе вентиляции должно соблюдаться равновесие, то есть сколько воздуха в единицу времени поступило в помещения – столько же должно и выйти, итоговым выбирается также максимальное значение из полученных двух суммарных. В приведенном примере – это 240 м³/час.
Этот значение и должно быть показателем суммарной производительности вентиляции в доме или квартире.
Распределение объемов вытяжки по помещениям и определение площади поперечного сечения каналовИтак, найден объем воздуха, который должен поступить помещения квартиры в течение часа и, соответственно, выведен за это же время.
Далее, исходят их количества вытяжных каналов, имеющихся (или планируемых к организации – при проведении самостоятельного строительства) в квартире или доме. Полученный объем необходимо распределить между ними.
Для примера, вернемся к таблице выше. Через три вентиляционных канала (кухня, санузел и ванная) необходимо отвести 240 кубометров воздуха в час. При этом из кухни по расчетам должно отводиться не менее 125 м³, из ванной и туалета по нормативам – не менее, чем по 25 м³. Больше – пожалуйста.
Поэтому напрашивается такое решение: кухне «отдать» 140 м³/час, а оставшееся — разделить поровну между ванной и санузлом, то есть по 50 м³/час.
Ну а зная объем, который необходимо отвести в течение определённого времени – несложно подсчитать ту площадь вытяжного канала, которая гарантированно справится с задачей.
Правда, для расчетов требуется еще и значение скорости воздушного потока. А она тоже подчиняется определённым правилам, связанным с допустимыми уровнями шума и вибрации. Так, скорость потока воздуха на вытяжных вентиляционных решетках при естественной вентиляции должна быть в пределах диапазона 0,5÷1,0 м/с.
Приводить формулу расчета здесь не будем – сразу предложим читателю воспользоваться онлайн-калькулятором, который определит требуемую минимальную площадь сечения вытяжного канала (отдушины).
Калькулятор расчета минимальной площади сечения вентиляционной отдушиныОбладая элементарными знаниями в геометрии, полученную площадь несложно привести к размерам прямоугольника. Правда, при этом должно соблюдаться условие – соотношение длинной и короткой стороны – не более, чем 3:1.
Нередко вентиляционные решетки имеют и круглое окно. Значит, необходимо пересчитать площадь сечения в диаметр. Или же требуется сделать переход от прямоугольного сечения на круглое. В обоих случаях будет полезен третий калькулятор, предназначенный специально для такой цели.
Калькулятор расчета диаметра круглого канала, эквивалентного площади прямоугольногоПолученное значение будет ориентиром при приобретении стандартных деталей с круглым сечением. Естественно, округление при этом делается в бо́льшую сторону.
Правильная организации естественной вентиляции
Объем данной статьи не позволяет рассмотреть все нюансы организации вентиляции жилого дома или квартиры. Но в этом и нет особой нужды, так как на страницах нашего портала уже имеется специальная публикация, в которой проблемы естественной вентиляции рассматриваются со всеми подробностями.
Используемые источники:
- https://stroy-okey.ru/calculator/onlajn-kalkuljator-rascheta-ventiljacii/
- https://torvent.ru/raschyot_ventilyacii/
- https://sms161.ru/uslugi/ventilyaciya/raschet/
- https://kalk.pro/ventilation/ventilation-power/
- https://stroyday.ru/kalkulyatory/obshhestroitelnye-voprosy/kalkulyatory-rascheta-ploshhadi-secheniya-vytyazhnoj-otdushiny-ventilyacii.html
Расчет вентиляции помещения и площади сечения труб естественной вытяжки
Задача организованного воздухообмена комнат жилого дома либо квартиры — вывести лишнюю влагу и отработанные газы, заместив свежим воздухом. Соответственно, для устройства вытяжки и притока нужно определить количество удаляемых воздушных масс — произвести расчет вентиляции отдельно по каждому помещению. Методики вычислений и нормы расхода воздуха принимаются исключительно по СНиП.
Содержание:
Санитарные требования нормативных документов
Минимальное количество воздуха, подаваемое и удаляемое из комнат коттеджа вентиляционной системой, регламентируется двумя основными документами:
- «Здания жилые многоквартирные» — СНиП 31-01-2003, пункт 9.
- «Отопление, вентиляция и кондиционирование» — СП 60.13330.2012, обязательное Приложение «К».
В первом документе изложены санитарно-гигиенические требования к воздухообмену в жилых помещениях многоквартирных домов. Применяется 2 типа размерности — расход воздушной массы по объему за единицу времени (м³/ч) и часовая кратность.
Справка. Кратность воздухообмена выражается цифрой, обозначающей, сколько раз в течение 1 часа полностью обновится воздушная среда помещения.
В зависимости от назначения комнаты приточно-вытяжная вентиляция должна обеспечивать следующий расход либо количество обновлений воздушной смеси (кратность):
- гостиная, детская, спальня — 1 раз в час;
- кухня с электрической плитой — 60 м³/ч;
- санузел, ванная, туалет — 25 м³/ч;
- для топочной с твердотопливным котлом и кухни с газовой плитой требуется кратность 1 плюс 100 м³/ч в период работы оборудования;
- котельная с теплогенератором, сжигающим природный газ, — трехкратное обновление плюс объем воздуха, потребного для горения;
- кладовка, гардеробная и прочие подсобные помещения — кратность 0.2;
- сушильная либо постирочная — 90 м³/ч;
- библиотека, рабочий кабинет — 0.5 раз в течение часа.
Примечание. СНиП предусматривает снижение нагрузки на общеобменную вентиляцию при неработающем оборудовании либо отсутствии людей. В жилых помещениях кратность уменьшается до 0.2, технических — до 0.5. Неизменным остается требование к комнатам, где расположены газоиспользующие установки, — ежечасное однократное обновление воздушной среды.
В п. 9 документа подразумевается, что объем вытяжки равен величине притока. Требования СП 60.13330.2012 несколько проще и зависят от числа людей, находящихся в помещении 2 часа и более:
- Если на 1 проживающего приходится 20 м² и более площади квартиры, в комнаты обеспечивается свежий приток в объеме 30 м³/ч на 1 чел.
- Объем приточного воздуха считается по площади, когда на 1 жильца приходится меньше 20 квадратов. Соотношение такое: на 1 м² жилища подается 3 м³ притока.
- Если в квартире не предусмотрено проветривание (отсутствуют форточки и открывающиеся окна), на каждого проживающего необходимо подать 60 м³/ч чистой смеси независимо от квадратуры.
Перечисленные нормативные требования двух различных документов вовсе не противоречат друг другу. Изначально производительность вентиляционной общеобменной системы рассчитывается по СНиП 31-01-2003 «Жилые здания».
Результаты сверяются с требованиями Свода Правил «Вентиляция и кондиционирование» и при необходимости корректируются. Ниже мы разберем расчетный алгоритм на примере одноэтажного дома, показанного на чертеже.
Определение расхода воздуха по кратности
Данный типовой расчет приточно-вытяжной вентиляции выполняется отдельно для каждой комнаты квартиры либо загородного коттеджа. Чтобы выяснить расход воздушных масс по зданию в целом, полученные результаты суммируются. Используется довольно простая формула:
Расшифровка обозначений:
- L — искомый объем приточного и вытяжного воздуха, м³/ч;
- S — квадратура помещения, где рассчитывается вентиляция, м²;
- h — высота потолков, м;
- n — число обновлений воздушной среды комнаты в течение 1 часа (регламентируется СНиП).
Пример вычисления. Площадь гостиной одноэтажного здания с высотой потолков 3 м составляет 15.75 м². Согласно предписаниям СНиП 31-01-2003, кратность n для жилых помещений равна единице. Тогда часовой расход воздушной смеси составит L = 15.75×3 х 1 = 47.25 м³/ч.
Важный момент. Определение объема воздушной смеси, удаляемой из кухни с газовой плитой, зависит от устанавливаемого вентиляционного оборудования. Распространенная схема выглядит так: однократный обмен согласно нормативам обеспечивает система естественной вентиляции, а дополнительные 100 м³/ч выбрасывает бытовая кухонная вытяжка.
Аналогичные расчеты делаются по всем остальным комнатам, разрабатывается схема организации воздухообмена (естественной или принудительной) и определяются размеры вентиляционных каналов (смотрим пример ниже). Автоматизировать и ускорить процесс поможет расчетная программа.
Онлайн-калькулятор в помощь
Программа считает требуемое количество воздуха по кратности, регламентируемой СНиП. Просто выберите разновидность помещения и введите его габариты.
Примечание. Для котельных с газовым теплогенератором калькулятор учитывает только трехкратный обмен. Количество приточного воздуха, идущего на сжигание топлива, нужно прибавлять к результату дополнительно.
Выясняем воздухообмен по числу жильцов
Приложение «К» СП 60.13330.2012 предписывает производить расчёт вентиляции помещения по простейшей формуле:
Расшифруем обозначения представленной формулы:
- L — искомая величина притока (вытяжки), м³/ч;
- m — объем воздушной чистой смеси в расчете на 1 чел., указанный в таблице Приложения «К», м³/ч;
- N — количество людей, постоянно находящихся в рассматриваемой комнате 2 часа в день и более.
Очередной пример. Резонно предположить, что в той же гостиной одноэтажного дома два члена семьи пребывают длительное время. Учитывая, что проветривание организовано и на каждого жильца приходится свыше 20 квадратов площади, параметр m принимается равным 30 м³/ч. Считаем количество притока: L = 30×2 = 60 м³/ч.
Важно. Заметьте, полученный результат больше значения, определенного по кратности (47.25 м³/ч). В дальнейшие расчеты следует включить цифру 60 м³/ч.
Если количество проживающих в квартире настолько велико, что каждому человеку отведено меньше 20 м² (в среднем), то представленную выше формулу использовать нельзя. Правила указывают: в данном случае площадь гостиной и других комнат следует умножить на 3 м³/ч. Поскольку общая квадратура жилища равна 91.5 м², расчетный объем вентиляционного воздуха составит 91.5×3 = 274.5 м³/ч.
В просторных залах с высокими потолками (от 3 м) обновление атмосферы считается двумя способами:
- Если в помещении часто пребывает большое число людей, вычисляйте кубатуру подаваемого воздуха по удельному показателю 30 м³/ч на 1 чел.
- Когда количество посетителей постоянно меняется, вводится понятие обслуживаемой зоны высотой 2 метра от пола. Определяете объем этого пространства (умножьте площадь на 2) и обеспечиваете требуемую нормами кратность, как описано в предыдущем разделе.
Пример расчета и обустройства вентиляции
За основу возьмем планировку частного дома внутренней площадью 91.5 м² и перекрытиями высотой 3 м, представленного выше на чертеже. Как рассчитать количество вытяжки / притока на здание целиком согласно методике СНиП:
- Количество удаленного воздуха из гостиной и спальни, имеющей равную квадратуру, составит 15.75×3 х 1 = 47.25 м³/ч.
- В детской комнате: 21×3 х 1 = 63 м³/ч.
- Кухня: 21×3 х 1 + 100 = 163 м³/ч.
- Санузел — 25 м³/ч.
- Итого 47.25 + 47.25 + 63 + 163 + 25 = 345.5 м³/ч.
Примечание. Воздушный обмен в прихожей и коридоре не нормируется.
Теперь проверим результаты на соответствие второму нормативному документу. Поскольку в доме проживает семья из 4 человек (2 взрослых + 2 детей), в гостиной, спальне и детской долго находятся по 2 чел. Пересчитаем воздухообмен в указанных комнатах по количеству людей: 2×30 = 60 м³/ч (в каждом помещении).
Объем вытяжки из детской удовлетворяет требованиям (63 куба в час), а вот значения для спальни и гостиной придется откорректировать. Двум человекам недостаточно 47.25 м³/ч, берем 60 кубов и снова пересчитываем общую величину воздухообмена: 60 + 60 + 63 + 163 + 25 = 371 м³/ч.
Не менее важно правильно распределить воздушные потоки в здании. В частных коттеджах принято устраивать системы естественной вентиляции — это значительно дешевле и проще монтажа электрических нагнетателей с воздуховодами. Добавим лишь один элемент принудительного удаления вредных газов — кухонную вытяжку.
Как правильно организовать естественное движение потоков:
- Приток во все жилые помещения обеспечим через автоматические клапаны, встроенные в оконный профиль либо прямо в наружную стену. Ведь стандартные металлопластиковые окна герметичны.
- В перегородке между кухней и санузлом устроим блок из трех вертикальных шахт, выходящих на кровлю.
- Под межкомнатными дверьми предусмотрим зазоры шириной до 1 см для прохода воздуха.
- Установим кухонную вытяжку и подключим к отдельному вертикальному каналу. Она возьмет на себя часть нагрузки — удалит 100 кубов отработанных газов за 1 час в процессе готовки пищи. Останется 371 — 100 = 271 м³/ч.
- Две шахты выведем решетками в санузел и кухню. Размеры труб и высоту рассчитаем в последнем разделе данного руководства.
- За счет естественной тяги, возникающей в двух каналах, воздух устремится из детской, спальни и зала в коридор, а дальше — к вытяжным решеткам.
Обратите внимание: свежие потоки, изображенные на планировке, направляются из комнат с чистой воздушной средой в более загрязненные зоны, затем выбрасываются наружу через шахты.
Подробнее об организации природной вентиляции смотрите на видео:
Вычисляем диаметры вентканалов
Дальнейшие расчеты несколько сложнее, поэтому каждый этап мы сопроводим примерами вычислений. Результатом станет диаметр и высота вентиляционных шахт нашего одноэтажного здания.
Весь объем вытяжного воздуха мы распределили на 3 канала: 100 м. куб. принудительно удаляет вытяжка на кухне в период включения плиты, оставшийся 271 кубометр уходит по двум одинаковым шахтам естественным образом. Расход через 1 воздуховод получится 271 / 2 = 135.5 м³/ч. Площадь сечения трубы определяется по формуле:
- F — площадь поперечного сечения вентканала, м²;
- L — расход вытяжки через шахту, м³/ч;
- ʋ — скорость движения потока, м/с.
Справка. Скорость воздуха в каналах естественной вентиляции лежит в пределах 0.5–1.5 м/с. В качестве расчетного значения принимаем средний показатель — 1 м/с.
Как рассчитать сечение и диаметр одной трубы в примере:
- Находим размер поперечника в квадратных метрах F = 135.5 / 3600×1 = 0.0378 м².
- Из школьной формулы площади круга определяем диаметр канала D = 0.22 м. Выбираем ближайший больший воздуховод из стандартного ряда — Ø225 мм.
- Если речь идет о заложенной внутрь стены кирпичной шахте, то под найденное сечение подойдет размер вентканала 140×270 мм (удачное совпадение, F = 0.378 м. кв.).
Диаметр отводящей трубы под бытовую вытяжку считается аналогичным образом, только скорость потока, нагнетаемого вентилятором, принимается больше — 3 м/с. F = 100 / 3600×3 = 0.009 м² или Ø110 мм.
Подбираем высоту труб
Следующий шаг — определение силы тяги, возникающей внутри вытяжного блока при заданном перепаде высот. Параметр зовется располагаемым гравитационным давлением и выражается в Паскалях (Па). Расчетная формула:
- p — гравитационное давление в канале, Па;
- Н — перепад высот между выходом вентиляционной решетки и срезом вентканала над крышей, м;
- ρвозд — плотность воздуха помещения, принимаем 1.2 кг/м³ при домашней температуре +20 °С.
Методика расчета основана на подборе требуемой высоты. Вначале определитесь, на сколько вы готовы поднять трубы вытяжки над кровлей без ущерба внешнему виду здания, затем подставьте значение высоты в формулу.
Пример. Берем перепад высот 4 м и получаем давление тяги p = 9.81×4 (1.27 — 1.2) = 2.75 Па.
Теперь грядет сложнейший этап — аэродинамический расчет отводных каналов. Задача — выяснить сопротивление воздуховода потоку газов и сопоставить результат с располагаемым напором (2.75 Па). Если потеря давления окажется больше, трубу придется наращивать либо увеличивать проходной диаметр.
Аэродинамическое сопротивление воздуховода вычисляется по формуле:
- Δp — общие потери давления в шахте;
- R — удельное сопротивление трению проходящего потока, Па/м;
- Н — высота канала, м;
- ∑ξ — сумма коэффициентов местных сопротивлений;
- Pv — давление динамическое, Па.
Покажем на примере, как считается величина сопротивления:
- Находим величину динамического давления по формуле Pv = 1.2×1² / 2 = 0.6 Па.
- Вычисляем сопротивление от трения R = 0.1 / 0.225×6 = 0.27 Па/м.
- Местные сопротивления вытяжной шахты — это жалюзийная решетка и отвод кверху 90°. Коэффициенты ξ этих деталей — величины постоянные, равные 1.2 и 0.4 соответственно. Сумма ξ = 1.2 + 0.4 = 1.6.
- Окончательное вычисление: Δp = 0.27 Па/м х 4 м + 1.6×0.6 Па = 2.04 Па.
Примечание. Указанные в расчете значения коэффициентов и скорости воздуха 1 м/с можно применять независимо от диаметра шахт, который вы определили ранее.
Теперь сравниваем расчетный напор, образующийся в воздухопроводе, и полученное сопротивление. Поскольку p = 2.75 Па больше потерь давления Δp = 2.04 Па, шахта высотой 4 метра будет исправно работать на естественную вытяжку и обеспечит нужный расход удаляемых газов.
Как упростить задачу — советы
Вы могли убедиться, что расчеты и организация воздухообмена в здании — вопросы довольно сложные. Мы постарались разъяснить методику в максимально доступной форме, но вычисления все равно выглядят громоздкими для рядового пользователя. Дадим несколько рекомендаций по упрощенному решению задачи:
- Первые 3 этапа придется пройти в любом случае — выяснить объем выбрасываемого воздуха, разработать схему движения потоков и посчитать диаметры вытяжных воздуховодов.
- Скорость потока принимайте не более 1 м/с и по ней определяйте сечение каналов. Аэродинамику одолевать необязательно — просто выведите воздухопроводы на высоту не менее 4 метров над заборными решетками.
- Внутри здания старайтесь использовать пластиковые трубы — благодаря гладким стенкам они практически не сопротивляются движению газов.
- Вентканалы, проложенные по холодному чердаку, обязательно утеплите.
- Выходы шахт не перекрывайте вентиляторами, как это принято делать в туалетах квартир. Крыльчатка не даст нормально функционировать природной вытяжке.
Для притока установите в помещениях регулируемые стеновые клапаны, избавьтесь от всех щелей, откуда холодный воздух может бесконтрольно проникать в дом.
Источник
Онлайн-калькулятор расчета калорифера: мощность и расход теплоносителя
Автор Евгений Апрелев На чтение 5 мин Просмотров 60.3к.
При конструировании системы воздушного отопления используются уже готовые калориферные установки.
Для правильного подбора необходимого оборудования достаточно знать: необходимую мощность калорифера, который впоследствии будет монтироваться в системе отопления приточной вентиляции, температуру воздуха на его выходе из калориферной установки и расход теплоносителя.
Для упрощения производимых расчетов вашему вниманию представлен онлайн-калькулятор расчета основных данных для правильного подбора калорифера.
С помощью него вы сможете рассчитать:
- Тепловую мощность калорифера кВт. В поля калькулятора следует ввести исходные данные об объеме проходящего через калорифер воздуха, данные о температуре поступаемого на вход воздуха, необходимую температуру воздушного потока на выходе из калорифера.
- Температуру воздуха на выходе. В соответствующие поля следует ввести исходные данные об объеме нагреваемого воздуха, температуре воздушного потока на входе в установку и полученную при первом расчете тепловую мощность калорифера.
- Расход теплоносителя. Для этого в поля онлайн-калькулятора следует ввести исходные данные: о тепловой мощности установки, полученные при первом подсчете, о температуре теплоносителя подаваемого на вход в калорифер, и значение температуры на выходе из устройства.
Расчет мощности калорифера
Расчет расхода теплоносителя
Расчета калориферов, в качестве теплоносителя которых используется вода или пар, происходит по определенной методике. Здесь важной составляющей являются не только точные расчеты, но и определенная последовательность действий.
Добавление по теме
Обратите внимание!
Если вы не найдете ответ на свой вопрос в этой статье, то посмотрите вопросы наших читателей. Может быть кто-то уже задавал вопрос, похожий на ваш:Расчет производительности для нагрева воздуха определенного объема
Определяем массовый расход нагреваемого воздуха
G (кг/ч) = L х р
где:
L — объемное количество нагреваемого воздуха, м.куб/час
p — плотность воздуха при средней температуре (сумму температуры воздуха на входе и выходе из калорифера разделить на два) — таблица показателей плотности представлена выше, кг/м.куб
Определяем расход теплоты для нагревания воздуха
Q (Вт) = G х c х (t кон — t нач)
где:
G — массовый расход воздуха, кг/час с — удельная теплоемкость воздуха, Дж/(кг•K), (показатель берется по температуре входящего воздуха из таблицы)
t нач — температура воздуха на входе в теплообменник, °С
t кон — температура нагретого воздуха на выходе из теплообменника, °С
Вычисление фронтального сечения устройства, требующегося для прохода воздушного потока
Определившись с необходимой тепловой мощностью для обогрева требуемого объема, находим фронтальное сечение для прохода воздуха.
Фронтальное сечение — рабочее внутреннее сечение с теплоотдающими трубками, через которое непосредственно проходят потоки нагнетаемого холодного воздуха.
f (м.кв) = G / v
где:
G — массовый расход воздуха, кг/час
v — массовая скорость воздуха — для оребренных калориферов принимается в диапазоне 3 — 5 (кг/м.кв•с). Допустимые значения — до 7 — 8 кг/м.кв•с
Вычисление значений массовой скорости
Находим действительную массовую скорость для калориферной установки
V(кг/м.кв•с) = G / f
где:
G — массовый расход воздуха, кг/час
f — площадь действительного фронтального сечения, берущегося в расчет, м.кв
Расчет расхода теплоносителя в калориферной установке
Рассчитываем расход теплоносителя
Gw (кг/сек) = Q / ((cw х (t вх — t вых))
где:
Q — расход тепла для нагрева воздуха, Вт
cw — удельная теплоемкость воды Дж/(кг•K)
t вх — температура воды на входе в теплообменник, °С
t вых — температура воды на выходе из теплообменника, °С
Подсчет скорости движения воды в трубах калорифера
W (м/сек) = Gw / (pw х fw)
где:
Gw — расход теплоносителя, кг/сек
pw — плотность воды при средней температуре в воздухонагревателе (принимается по таблице внизу), кг/м.куб
fw — средняя площадь живого сечения одного хода теплообменника (принимается по таблице подбора калориферов КСк), м.кв
Определение коэффициента теплопередачи
Коэффициент теплотехнической эффективности рассчитывается по формуле
Квт/(м.куб х С) = А х Vn х Wm
где:
V – действительная массовая скорость кг/м.кв х с
W – скорость движения воды в трубах м/сек
A
Расчет тепловой производительности калориферной установки
Подсчет фактической тепловой мощности:
q (Вт) = K х F х ((t вх +t вых)/2 — (t нач +t кон)/2))
или, если подсчитан температурный напор, то:
q (Вт) = K х F х средний температурный напор
где:
K — коэффициент теплоотдачи, Вт/(м.кв•°C)
F — площадь поверхности нагрева выбранного калорифера (принимается по таблице подбора), м.кв
t вх — температура воды на входе в теплообменник, °С
t вых — температура воды на выходе из теплообменника, °С
t нач — температура воздуха на входе в теплообменник, °С
t кон — температура нагретого воздуха на выходе из теплообменника, °С
Определение запаса устройства по тепловой мощности
Определяем запас тепловой производительности:
((q — Q) / Q) х 100
где:
q — фактическая тепловая мощность подобранных калориферов, Вт
Q — расчетная тепловая мощность, Вт
Расчет аэродинамического сопротивления
Расчет аэродинамического сопротивления. Величину потерь по воздуху можно рассчитать по формуле:
ΔРа (Па)=В х Vr
где:
v — действительная массовая скорость воздуха, кг/м.кв•с
B, r — значение модуля и степеней из таблицы
Помогла вам статья произвести расчет калорифера?
Помогла, мне все понятноНе помогла, нужно объяснить более подробно
Определение гидравлического сопротивления теплоносителя
Расчет гидравлического сопротивления калорифера вычисляется по следующей формуле:
ΔPw(кПа)= С х W2
где:
С — значение коэффициента гидравлического сопротивления заданной модели теплообменника (смотреть по таблице)
W — скорость движения воды в трубках воздухонагревателя, м/сек.
Аэродинамика |
Массовый расход воздуха |
Объемный расход воздуха |
Подбор диаметра воздуховода |
Подбор размеров воздуховода |
Диаметр круглой диафрагмы |
Размеры прямоугольной диафрагмы |
Скорость воздуха по площади |
Расход воздуха по площади |
Скорость воздуха по диаметру воздуховода |
Скорость воздуха по размерам воздуховода |
Расход воздуха по диаметру воздуховода |
Расход воздуха по размерам воздуховода |
Потери давления на трение в круглом воздуховоде |
Потери давления на трение в прямоугольном воздуховоде |
Потери давления в местных сопротивлениях |
Гидравлика |
Расход жидкости по мощности. Вода |
Расход жидкости по мощности. Гликоль |
Мощность по диаметру трубопровода. Гликоль |
Мощность по расходу жидкости. Вода |
Мощность по расходу жидкости. Гликоль |
Подбор диаметра трубопровода по расходу жидкости |
Подбор диаметра трубопровода по мощности. Вода |
Подбор диаметра трубопровода по мощности. Гликоль |
Потери давления на трение в трубопроводе. Гликоль |
Потери давления в местных сопротивлениях. Гликоль |
Диаметр дросселирующей шайбы. Вода |
Kv клапана |
Изменение объема системы. Вода |
Изменение объема системы. Гликоль |
Тепловое удлинение трубопровода |
Скорость жидкости |
Расход жидкости по диаметру трубопровода |
Мощность по диаметру трубопровода. Вода |
Потери давления на трение в трубопроводе. Вода |
Потери давления в местных сопротивлениях. Вода |
Потери давления на клапане |
Отопление |
Сопротивление теплопередаче ограждения из двух материалов |
Сопротивление теплопередаче ограждения из одного материала |
Температура внутренней поверхности ограждения |
Вентиляция |
Мощность на охлаждение воздуха по температуре теплообменника |
Мощность на охлаждение воздуха по относительной влажности |
Мощность на охлаждение воздуха по энтальпии |
Мощность электродвигателя вентилятора |
Располагаемое давления естественной вентиляции |
Расход воды на пароувлажнение воздуха |
Мощность на пароувлажнение воздуха |
Мощность на нагрев воздуха |
Расход воздуха по тепловыделениям |
Расход воздуха по влаговыделениям |
Свойства воздуха |
Температура смеси воздуха |
Влагосодержание смеси воздуха |
Энтальпия смеси воздуха |
Относительная влажность смеси воздуха |
Давление насыщения пара по температуре |
Давление насыщения пара по влагосодержанию |
Барометрическое давление |
Парциальное давление |
Температура точки росы |
Плотность воздуха |
Удельная теплоёмкость воздуха |
Температура влажного термометра по относительной влажности |
Температура влажного термометра по энтальпии |
Влагосодержание воздуха по энтальпии |
Влагосодержание воздуха по относительной влажности |
Энтальпия воздуха по влагосодержанию |
Энтальпия воздуха по относительной влажности |
Относительная влажность воздуха по влагосодержанию |
Относительная влажность воздуха по энтальпии |
Свойства жидкости |
Температура замерзания. Гликоль |
Плотность. Вода |
Плотность. Гликоль |
Удельная теплоёмкость. Вода |
Удельная теплоёмкость. Гликоль |
Кинематическая вязкость. Вода |
Кинематическая вязкость. Гликоль |
Температура конденсации. Фреон |
Температура кипения. Фреон |
Давление конденсации. Фреон |
Давление кипения. Фреон |
Инженерная геометрия |
Площадь изоляции покрытой по круглому сечению |
Площадь изоляции покрытой по прямоугольному сечению |
Эквивалентный диаметр |
Масса стального трубопровода |
Площадь поверхности круглого воздуховода |
Площадь поверхности прямоугольного воздуховода |
Онлайн калькулятор расчета вентиляции
Этап первый
Сюда входит аэродинамический расчёт механических систем кондиционирования или вентиляции, который включает ряд последовательных операций.Составляется схема в аксонометрии, которая включает вентиляцию: как приточную, так и вытяжную, и подготавливается к расчёту.
Размеры площади сечений воздуховодов определяются в зависимости от их типа: круглого или прямоугольного.
Формирование схемы
Схема составляется в аксонометрии с масштабом 1:100. На ней указываются пункты с расположенными вентиляционными устройствами и потреблением воздуха, проходящего через них.
Выстраивая магистраль, следует обратить внимание на то какая система проектируется: приточная или вытяжная
Приточная
Здесь линия расчёта выстраивается от самого удалённого распределителя воздуха с наибольшим потреблением. Она проходит через такие приточные элементы, как воздуховоды и вентиляционная установка вплоть до места где происходит забор воздуха. Если же система должна обслуживать несколько этажей, то распределитель воздуха располагают на последнем.
Вытяжная
Строится линия от самого удалённого вытяжного устройства, максимально расходующего воздушный поток, через магистраль до установки вытяжки и дальше до шахты, через которую осуществляется выброс воздуха.
Если планируется вентиляция для нескольких уровней и установка вытяжки располагается на кровле или чердаке, то линия расчёта должна начинаться с воздухораспределительного устройства самого нижнего этажа или подвала, который тоже входит в систему. Если установка вытяжки находится в подвальном помещении, то от воздухораспределительного устройства последнего этажа.
Вся линия расчёта разбивается на отрезки, каждый из них представляет собой участок воздуховода со следующими характеристиками:
- воздуховод единого размера сечения;
- из одного материала;
- с постоянным потреблением воздуха.
Следующим шагом является нумерация отрезков. Начинается она с наиболее удалённого вытяжного устройства или распределителя воздуха, каждому присваивается отдельный номер. Основное направление – магистраль выделяется жирной линией.
Далее, на основе аксонометрической схемы для каждого отрезка определяется его протяжённость с учётом масштаба и потребления воздуха. Последний представляет собой сумму всех величин потребляемого воздушного потока, протекающего через ответвления, которые примыкают к магистрали. Значение показателя, который получается в результате последовательного суммирования, должно постепенно возрастать.
Определение размерных величин сечений воздуховодов
Производится исходя из таких показателей, как:
- потребление воздуха на отрезке;
- нормативные рекомендуемые значения скорости движения воздушного потока составляют: на магистралях — 6м/с, на шахтах где происходит забор воздуха – 5м/с.
Рассчитывается предварительное размерная величина воздуховода на отрезке, которая приводится к ближайшему стандартному. Если выбирается прямоугольный воздуховод, то значения подбираются на основе размеров сторон, отношение между которыми составляет не более чем 1 к 3.
Исходные данные для вычислений
Когда известна схема вентиляционной системы, размеры всех воздухопроводов подобраны и определено дополнительное оборудование, схему изображают во фронтальной изометрической проекции, то есть аксонометрии. Если ее выполнить в соответствии с действующими стандартами, то на чертежах (или эскизах) будет видна вся информация, необходимая для расчета.
- С помощью поэтажных планировок можно определить длины горизонтальных участков воздухопроводов. Если же на аксонометрической схеме проставлены отметки высот, на которых проходят каналы, то протяженность горизонтальных участков тоже станет известна. В противном случае потребуются разрезы здания с проложенными трассами воздухопроводов. И в крайнем случае, когда информации недостаточно, эти длины придется определять с помощью замеров по месту прокладки.
- На схеме должно быть изображено с помощью условных обозначений все дополнительное оборудование, установленное в каналах. Это могут быть диафрагмы, заслонки с электроприводом, противопожарные клапаны, а также устройства для раздачи или вытяжки воздуха (решетки, панели, зонты, диффузоры). Каждая единица этого оборудования создает сопротивление на пути воздушного потока, которое необходимо учитывать при расчете.
- В соответствии с нормативами на схеме возле условных изображений воздуховодов должны быть проставлены расходы воздуха и размеры каналов. Это определяющие параметры для вычислений.
- Все фасонные и разветвляющие элементы тоже должны быть отражены на схеме.
Если такой схемы на бумаге или в электронном виде не существует, то придется ее начертить хотя бы в черновом варианте, при вычислениях без нее не обойтись.
2. Вычисление потерь на трение
Потери
энергии потока вычисляются пропорционально
так называемому
«динамическому» напору, величине
pW2/2,
где р -плотность
воздуха при температуре потока
(определяется по таблице (1)
и (2)), a
W
— скорость в том или ином сечении контура
циркуляции воздуха.
Падение
давления воздуха вследствие действия
трения вычисляют
по формуле Вейсбаха:
гдеl
— длина участка контура циркуляции, м,
dэкв-эквивалентный
диаметр поперечного сечения участка,
м,
dэкв=
-коэффициентсопротивления трения.
Коэффициент
трения определяется режимом течениявоздуха
в рассматриваемом сечении контура
циркуляции, или величиной
критерия Рейнольдса:
Re=
dэкв где
Widэкв
— скорость и эквивалентный диаметр
канала
и
кинематический коэффициент вязкости
воздуха (определяется по таблицам
/1/ и /2/,
м
/с.
Значение
для значенийReвинтервале 105
-108
(развитое
турбулентное
значение) определяется по формуле
Никурадзе:=3,2
.
10-3—
0,231 .Re-0,231
Более
подробные сведения по выбору
/5/
приведена диаграмма для нахождения
значения
,
облегчающая
расчеты.
Вычисленные значения
выражаются в паскалях (Па).
В
таблице 3 сведены значения исходных
данных для каждого канала
скорость,
длина, поперечное сечение,
эквивалентный диаметр,
величина
критерия Рейнольдса, коэффициент
сопротивления,
динамический
напор и величина вычисленных потерь на
трение.
Таблица 3 | ||||||||
№ канала | W, м/с | F, м2 | dэкв М | l, | W2/2, Н | Re | , Па | |
1 | 15 | 0.8 | 0,77 | 1,0 | 76,5 | 3,5 | 0,015 | 1,5 |
2 | 25 | 0,87 | 0,88 | 1,75 | 212,5 | 6,7 | 0,013 | 5,5 |
3 | 21,7 | 1,0 | 0,60 | 3,0 | 160,1 | 3,9 | 0,014 | 11,2 |
4 | 28,9 | 0,75 | 0,60 | 1,75 | 283,9 | 5,3 | 0,0135 | 11,2 |
Расчеты
сопротивлений трения в каналах печи
5.3.
«Местные» потери
— под этим термином понимают потери
энергии в тех
местах, где поток воздуха внезапно
расширяется или суживается, претерпевает
повороты и т.д.
В
проектируемой печи таких мест достаточно
много — калориферы, повороты
каналов, расширения или сужения каналов
и др.
Эти
потери вычисляются также, как доля
динамического напора p=W2/2,
умножая
его на так называемый «коэффициент
местного сопротивления»
Сумма
29.4Па
=/2
Коэффициент
местного сопротивления определяется
но таблицам /1/ и /5/ в зависимости от типа
местного сопротивления, и габаритных
характеристик. Например, в
данной печи местное сопротивление типа
внезапного сужения имеет место
в канале 1-2 (см. рис.7). Соотношение сечений
(узкого к широкому).По
приложению /1 / находим
=0,25
= 160Па,
Совершенно
аналогично вычисляются другие местные
потери. Необходимо
отметить, что в ряде случаев местные
потери обусловлены
действием сразу двух видов сопротивлений.
Например, имеет
место поворот канала и одновременно
изменение его сечения (сужение
или расширение) следует провести
вычисление потерь для
обоих случаев и результаты сложить.
Результаты вычислений местных потерь
сведены в таблицу 4
№ | Тип | W, м/с | Па | Прим. | |
Внезапное | 43,4 | 0,125 | 160 | Нах. по табл | |
1-1 | Поворот | 25 | 1,5 | 318 | ~ |
2-3 | Скругленный | 25 | О,1 | 21,3 | ~ |
3 | Диафрагмы в потоке | 35,8 | 3,6 | 601 | ~ |
3-4 | Скругленный | 21,7 | 0,28 | 44,8 | ~ |
4-1 | Поворот | 28,9 | 0,85 | 241 | ~ |
4-1 | Внезапное | 28,9 | 0,09 | 25,5 | ~ |
Сумма
=1411,6 Па
Суммарные
потери:
=30 + 1410 =1440 Па
Вентиляторы
выбираем по характеристикам
центробежных
вентиляторов
, предположительно для типа ВРС № 10
(рабочее
колесо
диаметром 1000
мм).
Для
производительности 21,5
м3/с
и необходимого напора Н>1440
Па..
Получаем: n=550
об/мин;
,5;
Nуст
25
кВт.
Привод
вентилятора от асинхронного двигателя,
мощностью 30
кВт
типа
АО
при 720
об/мин,
через клиноременную передачу.
Этап второй
Здесь рассчитываются аэродинамические показатели сопротивления. После выбора стандартных сечений воздуховодов уточняется величина скорости воздушного потока в системе.
Расчёт потерь давления на трение
Следующим шагом является определение удельных потерь давления на трение исходя из табличных данных или номограмм. В ряде случаев может пригодиться калькулятор для определения показателей на основе формулы, позволяющей произвести расчёт с погрешностью в 0,5 процента. Для вычисления общего значения показателя, характеризующего потери давления на всём участке, нужно его удельный показатель умножить на длину. На этом этапе также следует учитывать поправочный коэффициент на шероховатость. Он зависит от величины абсолютной шероховатости того или иного материала воздуховода, а также скорости.
Вычисление показателя динамического давления на отрезке
Здесь определяют показатель, характеризующий динамическое давление на каждом участке исходя из значений:
- скорости воздушного потока в системе;
- плотности воздушной массы в стандартных условиях, которая составляет 1,2 кг/м3.
Определение значений местных сопротивлений на участках
Их можно рассчитать исходя из коэффициентов местного сопротивления. Полученные значения сводят в табличной форме, в которую включаются данные всех участков, причём не только прямые отрезки, но и по несколько фасонных частей. Название каждого элемента заносится в таблицу, там же указываются соответствующие значения и характеристики, по которым определяется коэффициент местного сопротивления. Эти показатели можно найти в соответствующих справочных материалах по подбору оборудования для вентиляционных установок.
При наличии большого количества элементов в системе или при отсутствии определённых значений коэффициентов используется программа, которая позволяет быстро осуществить громоздкие операции и оптимизировать расчёт в целом. Общая величина сопротивления определяется как сумма коэффициентов всех элементов отрезка.
Вычисление потерь давления на местных сопротивлениях
Рассчитав итоговую суммарную величину показателя, переходят к вычислению потерь давления на анализируемых участках. После расчёта всех отрезков основной линии полученные числа суммируют и определяют общее значение сопротивления вентиляционной системы.
Расчет воздуховодов приточных и вытяжных систем механической и естественной вентиляции
Аэродинамический
расчет воздуховодов обычно сводится
к определению размеров их поперечного
сечения,
а также потерь давления на отдельных
участках
и в системе в целом. Можно определять
расходы
воздуха при заданных размерах воздуховодов
и известном перепаде давления в системе.
При
аэродинамическом расчете воздуховодов
систем вентиляции обычно пренебрегают
сжимаемостью
перемещающегося воздуха и пользуются
значениями избыточных давлений, принимая
за условный
нуль атмосферное давление.
При
движении воздуха по воздуховоду в любом
поперечном
сечении потока различают три вида
давления:
статическое,
динамическое
и полное.
Статическое
давление
определяет потенциальную
энергию 1 м3
воздуха в рассматриваемом сечении (рст
равно давлению на стенки воздуховода).
Динамическое
давление
– это кинетическая энергия потока,
отнесенная к 1 м3
воздуха, определяется
по формуле:
(1)
где
– плотность
воздуха, кг/м3;
– скорость
движения воздуха в сечении, м/с.
Полное
давление
равно сумме статического и динамического
давлений.
(2)
Традиционно
при расчете сети воздуховодов применяется
термин “потери
давления”
(“потери
энергии потока”).
Потери
давления (полные) в системе вентиляции
складываются из потерь на трение и
потерь в местных
сопротивлениях (см.: Отопление и
вентиляция, ч. 2.1 “Вентиляция”
под ред. В.Н. Богословского, М., 1976).
Потери
давления на трение определяются по
формуле
Дарси:
(3)
где
– коэффициент
сопротивления трению, который
рассчитывается по универсальной формуле
А.Д. Альтшуля:
(4)
где
– критерий Рейнольдса; К – высота
выступов шероховатости (абсолютная
шероховатость).При
инженерных расчетах потери давления
на трение
,
Па (кг/м2),
в воздуховоде длиной /, м, определяются
по выражению
(5)
где
– потери
давления на 1 мм длины воздуховода,
Па/м [кг/(м2
* м)].
Для
определения Rсоставлены
таблицы и номограммы. Номограммы (рис.
1 и 2) построены для условий: форма сечения
воздуховода круг диаметром,
давление воздуха 98 кПа (1 ат), температура
20°С, шероховатость= 0,1 мм.
Для
расчета воздуховодов и каналов
прямоугольного сечения пользуются
таблицами и номограммами
для круглых воздуховодов, вводя при
этом
эквивалентный диаметр прямоугольного
воздуховода, при котором потери давления
на трение в
круглом
и прямоугольном
~
воздуховодахравны.
В
практике проектирования получили
распространение
три вида эквивалентных диаметров:
■ по скорости
при
равенстве скоростей
■ по
расходу
при
равенстве расходов
■ по
площади поперечного сечения
при равенстве
площадей сечения
При
расчете воздуховодов с шероховатостью
стенок,
отличающейся от предусмотренной в
таблицах или в номограммах (К = ОД мм),
дают поправку к
табличному значению удельных потерь
давления на
трение:
(6)
где
– табличное
значение удельных потерь давления
на трение;
– коэффициент
учета шероховатости стенок (табл. 8.6).
Потери
давления в местных сопротивлениях. В
местах поворота воздуховода, при делении
и слиянии
потоков в тройниках, при изменении
размеров
воздуховода (расширение – в диффузоре,
сужение – в конфузоре), при входе в
воздуховод или в
канал и выходе из него, а также в местах
установки
регулирующих устройств (дросселей,
шиберов, диафрагм) наблюдается падение
давления в потоке
перемещающегося воздуха. В указанных
местах происходит
перестройка полей скоростей воздуха в
воздуховоде и образование вихревых зон
у стенок, что сопровождается
потерей энергии потока. Выравнивание
потока происходит на некотором расстоянии
после прохождения
этих мест. Условно, для удобства проведения
аэродинамического расчета, потери
давления в местных
сопротивлениях считают сосредоточенными.
Потери
давления в местном сопротивлении
определяются
по формуле
(7)
где
–
коэффициент местного сопротивления
(обычно,
в отдельных случаях имеет место
отрицательное значение, при расчетах
следует
учитывать знак).
Коэффициентотносится
к наибольшей скорости
в суженном сечении участка или скорости
в сечении
участка с меньшим расходом (в тройнике).
В таблицах
коэффициентов местных сопротивлений
указано, к какой скорости относится.
Потери
давления в местных сопротивлениях
участка, z,
рассчитываются по формуле
(8)
где
– сумма
коэффициентов местных сопротивлений
на участке.
Общие
потери давления на участке воздуховода
длиной,
м, при наличии местных сопротивлений:
(9)
где
– потери
давления на 1 м длины воздуховода;
– потери
давления в местных сопротивлениях
участка.
Расчет вентиляции коттеджа, квартиры или офиса
Вентиляция в загородном доме начинается с планирования и расчетов
Новые материалы, которые применяются в строительстве частного жилья, пластиковые окна, различного вида отделки и текстиль требуют обустройства системы вентиляции. Так как привычное проветривание не может обезопасить организм живущих в доме людей, от постоянного наличия в воздушной среде увеличенных доз различных химических элементов.
Вентиляционные коммуникации в доме
Есть два вида систем вентилирования помещений: пассивная (естественная) и активная (искусственная) системы.
Пассивная вентиляция создается с помощью открытых окон и дверей, специально устроенных отверстий, располагающихся в верхней части помещений, чтобы теплый воздух, который поднимается вверх, беспрепятственно выходил из помещения. Этот вид вентиляции хорошо применять в зимнее время, когда необходимо освежить воздух в помещении, при этом не создаются сквозняки и не теряется большое количество тепла.
Устройство естественной вентиляции не требует дополнительных денежных затрат и поэтому нет необходимости проводить расчет вентиляции, но для гарантии доступа свежего воздуха в здание специалисты Еврострой Инжиниринг советуют:
- встраивать жалюзи в отверстия, предназначенные для вентилирования помещений, чтобы длительное время гарантировать невысокую степень вентилирования без создания сквозняков;
- контролировать интенсивность поступления воздуха введением различных способов открывания окон;
- для вентиляции всех помещений в многоэтажных частных домах следует при проветривании открывать окна на всех этажах, чтобы не было застоя воздуха в части комнат;
- следует применять москитные сетки для защиты от насекомых и для возможности держать окна в открытом состоянии в любой летний месяц;
- для избавления от сырости, следует предусматривать сквозное проветривание под напольной поверхностью.
К недостаткам естественной вентиляции можно отнести её ограниченность, недостаточно быстрое создание комфортной температуры, загрязнение воздуха в помещении частицами пыли, поступающими с наружным воздухом.
В искусственной системе вентилирования помещений, поступление свежего воздуха обеспечивается посредством вытяжных и приточных устройств. Этот вид работает от электрической энергии и для её правильного обустройства требуется провести обязательный расчет системы вентиляции. Это поможет правильно рассчитать необходимое количество материалов и оборудования для устройства искусственной системы вентиляции.
Приточные вентиляционные коммуникации
Система приточного вентилирования располагает одним существенным плюсом – низкой стоимостью. Конструкции системы приточного вентилирования предназначены для подачи и нагревания наружного воздуха при поступлении его в помещение. Они создают избыточное давление в здании, за счет чего из него вытесняется отработанный воздух.
Установки состоят из канального вентилятора, электрического калорифера и воздушного фильтра. Все эти устройства помещаются в изолированном корпусе из оцинкованной стали. Сверху корпус закрывается легко съемной крышкой.
Недостатки приточной вентиляции:
- необходимость фильтрации и нагрева воздуха в осеннее-зимний период;
- нагрев подаваемого воздуха требует увеличивать мощность системы отопления;
- отсутствие рекуперации тепла.
Вытяжные вентиляционные коммуникации
Вентиляторы, установленные в вытяжках, не поставляют в помещения свежий воздух, а только выкачивают его. Вследствие этого необходимо сделать расчет вентиляции дома и продумать различные способы поступления воздуха в помещения. Самым простым способом получения свежего воздуха является частичное открывание окон. В системе желательно применять процесс фильтрации приточного воздуха.
Лучшим видом вентиляционных систем, который лишен недостатков предыдущих двух, является приточно-вытяжная вентиляция загородного дома.
Приточно-вытяжная система
К недостаткам этого вида вентиляционных систем относят их высокую стоимость. Такие системы обеспечивают постоянный контроль воздухообмена, и могут комплектоваться оборудованием для охлаждения, нагревателем и увлажнителем.
Для эффективной работы системы вентиляции следует не допускать следующие ошибки:
- запрещена установка рекуператора в холодных помещениях;
- при работе системы следует следить за тем, чтобы окна были закрыты полностью;
- следует следить за правильностью установки вентиляционных каналов и выполнить все работы по изоляции системы;
- монтаж системы вентиляции выполняют по заранее составленной схеме, в которой учитываются проведенные расчеты монтажных работ, указывают необходимую мощность воздушного потока, места расположения точек вентиляционной системы.
Приточно-вытяжная вентиляционная система, установленная в частном доме, может иметь оборудование по отбору тепла у отработанного воздуха и передача его поступающему снаружи холодному воздуху для подогрева, что позволяет экономить топливо.
Естественная тяга — объем и скорость воздушного потока
Разница температур между наружным и внутренним воздухом создает «естественную тягу», заставляя воздух проходить через здание.
Направление воздушного потока зависит от температуры наружного и внутреннего воздуха. Если температура внутреннего воздуха выше, чем температура наружного воздуха, плотность внутреннего воздуха меньше плотности наружного воздуха, и внутренний воздух будет течь вверх и выходить из верхних частей здания.Более холодный наружный воздух будет поступать в нижние части здания.
Если температура наружного воздуха выше, чем температура внутреннего воздуха — внутренний воздух более плотный, чем наружный воздух — и воздух стекает внутрь здания. Более теплый наружный воздух поступает в верхние части здания.
Напор с естественной тягой
Напор с естественной тягой можно рассчитать как
dh мм h3O = 1000 h (ρ o — ρ r ) / ρ h3o (1)
где
dh ммh3O = напор в миллиметрах водяного столба (мм H 2 O)
ρ o = плотность наружного воздуха (кг / м 3) )
ρ r = плотность внутри воздуха (кг / м 3 )
ρ h3o = плотность воды (обычно 1000 кг / м 3 )
h = высота между выпускным и впускным воздухом (м)
Давление естественной тяги
Уравнение (1) может быть изменено на SI единицы давления:
dp = g ( ρ o — ρ r ) h (1b)
где
d p = давление (Па, Н / м 2 )
g = ускорение свободного падения — 9.81 (м / с 2 )
Плотность и температура
При плотности воздуха 1,293 кг / м 3 при 0 o C — плотность воздуха при любой температура может быть выражена как
ρ = (1,293 кг / м 3 ) (273 K) / (273 K + t) (2)
или
ρ = 353 / (273 + t) (2b)
где
ρ = плотность воздуха (кг / м 3 )
т = фактическая температура ( o C)
Уравнение (1) , приведенное выше, можно легко изменить, заменив плотности уравнением (2) .
Калькулятор давления естественной тяги
Калькулятор, представленный ниже, можно использовать для расчета давления естественной тяги, создаваемого разницей внутренней и внешней температуры.
Основные и незначительные потери в системе
Сила естественной тяги будет уравновешена с большими и незначительными потерями в каналах, входах и выходах. Основные и второстепенные потери в системе могут быть выражены как
dp = λ (l / d h ) ( ρ r v 2 /2) + Σξ 1/2 ρ r v 2 (3)
где
dp = потеря давления (Па, Н / м 2 , фунт f / фут 2 )
λ = коэффициент трения Дарси-Вайсбаха
л = длина воздуховода или трубы (м, футы)
d h = гидравлический диаметр (м, фут)
Σ ξ = коэффициент малых потерь (обобщенный)
Воздушный поток и скорость воздуха
Equatio n (1) и (3) можно комбинировать для выражения скорости воздуха в воздуховоде
v = [(2 г ( ρ o — ρ r ) h) / ( λ l ρ r / d h + Σ ξ ρ r )] 1/2 (4)
Уравнение (4) также можно изменить, чтобы выразить объем воздушного потока через воздуховод
q = π d h 2 /4 [(2 г ( ρ o — ρ r ) h) / ( λ l ρ r / d h + Σ ξ ρ r )] 1 / 2 (5) 9009 0
, где
q = объем воздуха (м 3 / с)
Калькулятор естественной тяги и скорости воздушного потока
Калькулятор ниже можно использовать для расчета объема и скорости воздушного потока в воздуховод, аналогичный изображенному на рисунке выше.Используемый коэффициент трения составляет 0,019 , что подходит для каналов из обычной оцинкованной стали.
Пример — Естественная тяга
Рассчитайте воздушный поток, вызванный естественной тягой в обычном двухэтажном семейном доме. Высота столба горячего воздуха от первого этажа до выходного воздуховода над крышей составляет примерно 8 м . Наружная температура составляет -10 o C , а внутренняя температура составляет 20 o C .
Воздуховод диаметром 0.2 м идет от 1. этажа до розетки над крышей. Длина воздуховода 3,5 м . Утечки воздуха через здание не принимаются во внимание. Меньшие коэффициенты суммируются до 1.
Плотность наружного воздуха можно рассчитать как
ρ o = (1,293 кг / м 3 ) (273 K) / ((273 K) / (273 K). K) + (-10 o C))
= 1,342 кг / м 3
Плотность внутреннего воздуха можно рассчитать как
ρ r = (1.293 кг / м 3 ) (273 K) / ((273 K) + (20 o C))
= 1,205 кг / м 3
Скорость в воздуховоде может быть рассчитывается как
v = [(2 (9,81 м / с 2 ) ((1,342 кг / м 3 ) — (1,205 кг / м 3 )) (8 м)) / ( 0,019 (3,5 м) (1,205 кг / м 3 ) / (0,2 м) + 1 (1,205 кг / м 3 ) )] 1/2
= 3.7 м / с
Расход воздуха можно рассчитать как
q = (3,7 м / с) 3,14 (0,2 м) 2 /4
= 0,12 м 3 / с
Примечание!
, что эти уравнения можно использовать для сухого воздуха, а не для расчетов массового расхода и потерь энергии, когда влажность воздуха может иметь огромное влияние.
График с естественной осадкой — единицы СИ и британские единицы
Используйте расчет изменений воздуха для определения CFM помещения
Воздушный поток в инженерном помещении может стать серьезной проблемой при балансировке системы отопления, вентиляции и кондиционирования воздуха.В большинстве расчетов для определения необходимого расхода воздуха используются только теплопотери или приток тепла в помещении, и часто не принимаются во внимание потребности в вентиляции помещения. Давайте посмотрим, как расчет воздухообмена может упростить этот этап балансировки воздуха.
Что такое воздухообмен?
Воздухообмен — это количество раз, когда воздух входит и выходит из комнаты из системы HVAC за один час. Или сколько раз комната заполнялась воздухом из регистров приточного воздуха за шестьдесят минут.
Затем вы можете сравнить количество изменений воздуха в помещении с приведенной ниже таблицей требуемых изменений воздуха. Если он находится в допустимом диапазоне, вы можете приступить к проектированию или уравновешиванию воздушного потока и получить дополнительную уверенность в том, что вы все делаете правильно. Если это выходит за пределы досягаемости, вам лучше еще раз взглянуть.
Формула изменения воздуха
Чтобы рассчитать воздухообмен в помещении, измерьте поток приточного воздуха в комнату, умножьте CFM на 60 минут в час. Затем разделите на объем комнаты в кубических футах:
Говоря простым языком, мы заменяем CFM на кубические футы в час (CFH).Затем мы вычисляем объем комнаты, умножая высоту комнаты на ширину и длину. Затем просто делим CFH на объем помещения.
Вот пример того, как работает полная формула:
Теперь сравните 7,5 воздухообмена в час с требуемым воздухообменом для этого типа помещения в таблице изменения воздуха в час ниже . Если это комната для обеда или отдыха, где требуется 7-8 воздухообменов в час, вы точно попали в цель. Если это бар, который требует 15-20 воздухообменов в час, пора подумать.
Комнатная CFM Formula
Давайте посмотрим на эту инженерную формулу по-другому. Например, что, если воздушный поток неизвестен, и вам нужно рассчитать необходимый CFM для комнаты? Вот четырехэтапный процесс расчета CFM помещения:
Шаг первый — Используйте приведенную выше таблицу изменения воздуха в час , чтобы определить требуемые изменения воздуха, необходимые для использования помещения. Допустим, это конференц-зал, требующий 10 воздухообменов в час.
Шаг второй — Рассчитайте объем комнаты (ДхШхВ).
Шаг третий — Умножьте объем помещения на требуемый объем воздухообмена.
Шаг четвертый. Разделите ответ на 60 минут в час, чтобы найти нужную комнату. CFM:
Вот пример того, как работать по формуле:
При проектировании или балансировке системы, требующей дополнительного воздушного потока для вентиляции, помните, что в этой комнате обычно требуется постоянная работа вентилятора, когда она занята.Это может представлять проблему для других комнат в той же зоне, поэтому примите это во внимание.
Для многих из этих помещений может потребоваться значительное количество наружного воздуха. Содержание БТЕ в этом воздухе должно быть включено в приток тепла или теплопотери здания при определении размера оборудования для обогрева и охлаждения.
Попрактикуйтесь в этих расчетах несколько раз в магазине или офисе. Затем выполните расчеты в полевых условиях несколько раз в течение следующей недели, чтобы проверить поток воздуха в помещениях с необычными требованиями к вентиляции. Изучите Таблицу изменений воздуха в час , чтобы ознакомиться с помещениями, в которых требуется больше вентиляции, чем требуется для обогрева или охлаждения.
R ob «Doc» Falke обслуживает промышленность как президент Национального института комфорта, обучающей компании и членской организации, работающей в сфере отопления, вентиляции и кондиционирования воздуха. Если вы подрядчик или технический специалист по ОВКВ, заинтересованный в бесплатной процедуре расчета замены воздуха, по телефону обратитесь к Доктору по телефону robf @ ncihvac.com или позвоните ему по телефону 800-633-7058. Посетите веб-сайт NCI по адресу nationalcomfortinstitute.com для получения бесплатной информации, статей и загрузок.
Расчет интенсивности вентиляции и выбросов аммиака: Сравнение стратегий отбора проб для молочного коровника с естественной вентиляцией
https://doi.org/10.1016/j.biosystemseng.2020.07.011Получить права и содержаниеОсновные моменты
- •
Отбор проб стратегия влияет на оценку Nh4 и скорости вентиляции.
- •
Максимальная разница в стратегиях выборки для оценки Nh4 составила 26%.
- •
Максимальная разница в стратегиях отбора проб для оценки скорости вентиляции составила 94%.
- •
Линия отбора проб в середине коровника не дает дополнительной информации.
- •
Измерение по всему периметру сарая увеличило набор данных до 210%.
Уровни выбросов и вентиляции (VR) в естественно вентилируемых молочных коровниках (NVDB) обычно измеряются с использованием косвенных методов, когда выбор места отбора проб внутри и снаружи (т.е. стратегия отбора проб) имеет решающее значение. Целью этого исследования было количественное определение влияния стратегии отбора проб на оценку выбросов и VR. Мы оборудовали NVDB в северной Германии обширной измерительной установкой, способной измерять выбросы при любых ветровых условиях. Концентрации аммиака (NH 3 ) и диоксида углерода (CO 2 ) измеряли с помощью двух инфракрасных спектрометров с преобразованием Фурье. Часовые значения интенсивности вентиляции и выбросов аммиака за период почти в год были получены с использованием метода баланса CO 2 , и были применены пять различных стратегий отбора проб для определения концентраций внутри и снаружи помещений.При сравнении стратегии оценки наивысшего уровня выбросов со стратегией оценки самого низкого уровня, различия в выбросах NH 3 в зимний, переходный и летний периоды составили + 26%, + 19% и + 11%, соответственно. По интенсивности вентиляции разница составила + 80%, + 94% и 63% для зимнего, переходного и летнего сезонов соответственно. За счет размещения измерений внутренней / внешней концентрации по всему периметру коровника вместо уменьшенной части периметра (выровненной с предполагаемым основным направлением ветра) объем доступных данных существенно увеличился примерно на 210% за тот же период мониторинга.
Ключевые слова
Скорость воздухообмена
CO 2 балансовый метод
Долгосрочные измерения
FTIR
Позиции для отбора проб
Рекомендуемые статьиЦитирующие статьи (0)
© 2020 Авторы. Опубликовано Elsevier Ltd от имени IAgrE.
Рекомендуемые статьи
Цитирующие статьи
Оценка скорости вентиляции по времени до 63% удаления CO2
- Загрузите соответствующее приложение и подключите монитор CO 2 к своему мобильному телефону через Bluetooth.Настройте монитор CO 2 на сбор данных измерений с интервалом в одну минуту.
- Измерьте внешний уровень CO 2 . Внешний уровень CO 2 находится между 380 и 420 частями на миллион в большинстве областей. Вы можете предположить, что это 400 ppm, или вы можете измерить его, оставив монитор CO 2 на открытом воздухе рядом со зданием на 5 минут. Вы получите одно значение CO 2 — за каждую минуту. Вы можете использовать среднее значение как внешний уровень CO 2 .
- Для стоматологического кабинета среднего размера (10 x 12 футов или 120 кв. Футов) добавьте примерно 3/5 стакана (125 г) пищевой соды на 64 унции. (1893 мл) уксуса в миске или тазу.
Для больших помещений (> 200 кв. Футов) используйте одну полную чашку пищевой соды (8 унций или 227 г) с одним галлоном (3785 мл) уксуса. - Когда в комнате находится только один человек и дверь закрыта, перемешивайте или встряхивайте смесь в течение двух минут (включите качающийся вентилятор на низком уровне, если он у вас есть).
- Поместите монитор CO 2 на стоматологическое кресло, удалите смесь, выйдите из комнаты и закройте дверь. Подождите два часа.
- Загрузите данные измерений в приложение монитора и отправьте CSV-файл на свой компьютер.
- Найдите пиковый уровень CO 2 (это будет значение CO 2 сразу после того, как вы выйдете из комнаты) и запишите время, соответствующее этому уровню. Это время начала спада концентрации CO 2 , t 0 .
- Введите пиковый уровень CO 2 и уровень за пределами CO 2 в этот калькулятор, вы получите значение «После удаления 63% CO 2 ». *
- На основе данных измерений найдите уровень CO 2 , который равен или наиболее близок к значению «После удаления 63% CO 2 », и запишите время, соответствующее этому уровню, t1.
- Введите время (в минутах), прошедшее между t 0 и t 1 (t 1 -t 0 ) в калькуляторе, вы получите скорость вентиляции, измеренную в воздухообмене в час (ACH) для этого номер.
* Однократная подмена воздуха удаляет 63% переносимых по воздуху загрязняющих веществ из определенного пространства. В этом случае за один воздухообмен удаляется 63% CO 2 из стоматологического кабинета. Таким образом, время, необходимое для удаления 63% CO 2 , эквивалентно времени, необходимому для выполнения одной замены воздуха в стоматологическом кабинете, которое используется для расчета значения ACH.
Мы не можем найти эту страницу
(* {{l10n_strings.REQUIRED_FIELD}})
{{l10n_strings.CREATE_NEW_COLLECTION}} *
{{l10n_strings.ADD_COLLECTION_DESCRIPTION}}
{{l10n_strings.COLLECTION_DESCRIPTION}} {{addToCollection.description.length}} / 500 {{l10n_strings.TAGS}} {{$ item}} {{l10n_strings.ПРОДУКТЫ}} {{l10n_strings.DRAG_TEXT}}{{l10n_strings.DRAG_TEXT_HELP}}
{{l10n_strings.LANGUAGE}} {{$ select.selected.display}}{{article.content_lang.display}}
{{l10n_strings.AUTHOR}}{{l10n_strings.AUTHOR_TOOLTIP_TEXT}}
{{$ select.selected.display}} {{l10n_strings.CREATE_AND_ADD_TO_COLLECTION_MODAL_BUTTON}} {{l10n_strings.CREATE_A_COLLECTION_ERROR}} Расчеты проектаHVAC | UC San Diego добавочный номер
Расчетные расчеты ОВКВ
Энергоэффективность и экологичный дизайн — важнейшие компоненты современных «умных» зеленых зданий.Этот практический курс охватывает фундаментальные расчеты, необходимые для проектирования систем отопления, вентиляции и кондиционирования воздуха (HVAC). Темы включают расчет нагрузки на охлаждение и обогрев, психометрический анализ и использование энергии HVAC.
Этот динамичный курс посвящен практическим методам расчетов систем отопления, вентиляции и кондиционирования воздуха в соответствии с регулирующими нормами и рекомендациями Американского общества отопления, охлаждения и кондиционирования воздуха (ASHRAE). Особое внимание уделяется общепринятым практическим проверкам при расчетах нагрузки HVAC и энергетическом анализе, включая обзор доступных компьютерных программ.Необязательная производственная практика включена.
Основные моменты курса:
- Расчет отопительной и охлаждающей нагрузки HVAC
- Психометрический анализ
- Энергетический анализ
- Качество воздуха в помещении
- Естественная вентиляция
- Гибридная естественная вентиляция
- Механическая вентиляция
- Анализ окупаемости энергосбережения
- Основы зданий с нулевым потреблением энергии
Преимущества курса:
- Изучите основы психометрии и узнайте, как выполнять расчет проектирования систем отопления, вентиляции и кондиционирования воздуха с использованием психометрической диаграммы.
- Узнайте разницу между сухим термометром, влажным термометром, относительной влажностью и удельной влажностью.
- Рассчитайте блоки воздушного охлаждения подходящего размера для данного помещения.
- Рассчитайте (CFM), необходимое для кондиционирования воздуха и фанкойлов.
- Рассчитайте необходимое оборудование для ИВЛ.
- Изучите методы естественной и гибридной вентиляции для «умных» зеленых зданий.
Требуемый учебник: Основы прямого цифрового управления HVAC, третье издание (ISBN-13: 978-0970447135) Доступно по адресу: http: // www.hvacddc.com
Дополнительная литература: Справочник ASHRAE 2016 — Системы и оборудование HVAC (ISBN-13: 978-1939200273) и Справочник ASHRAE 2015 — Приложения HVAC (ISBN-13: 978-1936504930)
Обычно предлагается курс: В классе. Пожалуйста, проверьте матрицу курсов, так как расписание меняется.
Пререквизиты : Студенты должны иметь желание изучать концепции отопления, вентиляции и кондиционирования воздуха (HVAC).
Следующий шаг: По завершении этого курса рассмотрите возможность прохождения других курсов по программе сертификации «Проектирование и управление системами HVAC».
Контактное лицо: Для получения дополнительной информации об этом курсе, пожалуйста, отправьте электронное письмо по адресу [email protected].
Номер курса: AMES-40019
Кредиты: 3,00 единицы
Соответствующие программы сертификации: Проектирование и управление системами HVAC
+ Expand All
15.09.2021 — 10.11.2021
750 долл. США
Онлайн
Закрыт
В данный момент нет запланированных разделов этого курса. Пожалуйста, свяжитесь с отделом науки и технологий по телефону 858-534-3229 или без[email protected] для получения информации о том, когда этот курс будет снова предложен.
ВЕНТОСИСТЕМА | VENTOS EN
VENTOS ONLINE предназначен для расчета проектировщиками естественной вентиляции. Программа в основном подходит для промышленных объектов, в которых в результате производственного процесса создается значительная тепловая нагрузка. Тепловой ток, создаваемый источником тепла на промышленных объектах, является достаточной «движущей силой» вентиляции, которую не могут нарушить порывы ветра.
Входными данными для программы являются тепловая нагрузка, параметры приточных и выпускных отверстий, а также установленных в них устройств механической вентиляции.Программа рассчитывает максимальную температуру под крышей, количество и скорость воздуха, проходящего через каждое вентиляционное отверстие, а также выравнивание давления в здании. Программа позволяет учитывать механическую вентиляцию и ветровое воздействие.
VENTOS ONLINE работает на трех языках: польском, английском и немецком. Он может создавать отчет со всеми числовыми данными и схематическим изображением здания на каждом из этих трех языков. Программу можно запустить, например, на польском языке, а затем дополнительно распечатать отчет на другом языке.
Если вы хотите получить бесплатный доступ к профессиональной версии программы VENTOS ONLINE, нажмите здесь
АккаунтVENTOS ONLINE будет активирован не позднее второго рабочего дня.
- Настоящее лицензионное соглашение распространяется только на ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ профессиональной версии программы VENTOS.
- Фирма ВЕНТОСИСТЕМ Богдан Контримович является владельцем программы, и Компания сохраняет законные авторские права на эту программу.
- Эта программа предназначена для проектировщиков для расчета естественной вентиляции цехов, особенно промышленных зданий с высокой тепловой нагрузкой.Любые итоговые отчеты, созданные с помощью этого программного обеспечения, могут быть включены в проекты Пользователя, но только в его первоначальной форме. Никакие изменения, особенно те, которые не указывают на происхождение права собственности на программное обеспечение, не допускаются.
- Эта лицензия дает Пользователю право на законное использование программы после регистрации и активации учетной записи Владельцем. Эта программа бесплатна.
- Данные для входа в программу VENTOS в профессиональной версии не могут быть доступны третьим лицам (не зарегистрированным) без ведома и согласия Владельцев.
- Действуют ограничения юридической ответственности. Содержание этих ограничений отображается на главной странице программы, а также в отчете о распечатке расчета.
- VENTOSYSTEM оставляет за собой право связаться с пользователем программы, чтобы предложить любую дополнительную или новую информацию и запросить комментарии и мнения пользователя, чтобы улучшить следующие обновленные версии программы.
Формулы в этой программе созданы для определения равновесия между всеми тепловыми эффектами, создаваемыми промышленными процессами в здании, а также потоком воздуха, удаляемым системой вентиляции.Основываясь на этом принципе, программа не предназначена для расчета выхлопа воздуха, используемого для предотвращения термодинамических катастроф, таких как пожары или взрыв, в случае случайного выброса горючих газов. Эта программа требует от пользователя владения и применения инженерных знаний, а также понимания физических явлений, происходящих в естественной вентиляции зданий. Результаты расчетов программы всегда будут соответствовать принятым критериям и введенным входным данным, за которые несет ответственность только пользователь.
Мы не несем ответственности за проектные предположения и данные. Заявление об отказе от юридической ответственности:
Все данные, информация и теоретические предположения для расчетов, используемые в нашей программе, были тщательно проанализированы и проверены Ventosystem. Однако нельзя исключать возможность возникновения ошибок полностью. Мы не несем ответственности за правильность, полноту и актуальность результатов расчетов, полученных на основе входных данных, которые не были авторизованы или проверены Ventosystem.
В частности, Ventosystem не несет ответственности за любой ущерб и последствия, возникшие в результате косвенного или прямого применения расчетов, которые не были нами разрешены. Ventosystem не несет ответственности за некритическое использование результатов для приложений, которые еще не были протестированы.